WorldWideScience

Sample records for mechanism controlling radon

  1. The use of mechanical ventilation with heat recovery for controlling radon and radon-daughter concentrations

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Boegel, M.L.; Hollowell, C.D.; Roseme, G.D.

    1980-01-01

    An energy research house in Maryland was found to have radon concentrations far in excess of recommended guidelines. A mechanical ventilation system with heat recovery was installed in this house to test its effectiveness as an energy-efficient control technique for indoor radon. Radon concentration was monitored continuously for two weeks under varying ventilation conditions (0.07 to 0.8 air changes per hour (ach)) and radon daughter concentrations were measured by grab-sample techniques about nine times daily during this period. At ventilation rates of 0.6 ach and higher radon and radon daughter levels dropped below guidelines for indoor concentrations. Comparison with other studies indicates that indoor radon buildup may be a problem in a considerable portion of houses characterized by their low infiltration rates. The use of mechanical ventilation systems with air-to-air heat exchangers may offer a practical, cost-effective, and energy-efficient means of alleviating not only the radon problem specifically but also the general deterioration of indoor air quality in houses designed or retrofitted to achieve low infiltration

  2. Control of indoor radon and radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.

    1985-05-01

    There are three general categories of techniques for the control of radon and radon progeny concentrations in indoor air - restriction of radon entry, reduction of indoor radon concentrations by ventilation or air cleaning, and removal of airborne radon progeny. The predominant radon entry process in most residences appears to be pressure driven flow of soil gas through cracks or other openings in the basement, slab, or subfloor. Sealing these openings or ventilation of the subslab or subfloor space are methods of reducing radon entry rates. Indoor radon concentrations may be reduced by increased ventilation. The use of charcoal filters for removal of radon gas in the indoor air by adsorption has also been proposed. Concentrations of radon progeny, which are responsible for most of the health risks associated with radon exposures, can be controlled by use of electrostatic or mechanical filtration. Air circulation can also reduce radon progeny concentrations in certain cases. This paper reviews the application and limitations of each of these control measures and discusses recent experimental results

  3. Control of radon and its progeny concentration in indoor atmosphere

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subbaramu, M.C.

    1986-01-01

    Exposure to radon daughter concentration in indoor atmosphere can result in a significant risk to the general public. There are two generally used methods for the control of radon and progeny concentration in the indoor atmosphere, namely restriction of radon entry and reduction of indoor radon and its progeny concentration by ventilation or by air cleaning. Predominant radon entry process in most of the dwellings appears to be by pressure driven flow of soil gas through cracks or other openings in the basement slab or subfloors. Sealing these openings or ventilation of the subslab or subfloor space are the methods for reducing the radon entry rates. Indoor radon concentration can also be reduced by increasing the ventilation and by using charcoal filters for the removal of radon gas in indoor air by absorption. Concentration of radon progeny, which are responsible for most of the health risks associatd with radon exposure can also be controlled by the use of electrostatic or mechanical filters. This study describes briefly the above control strategies used for reducing the inhalation doses to persons in dwellings. (author). 9 refs., 2 tables

  4. Radon mitigation with mechanical supply and exhaust ventilation adjusted by a pressure control unit

    International Nuclear Information System (INIS)

    Kokotti, H.; Keskikuru, T.; Kalliokoski, P.

    1993-01-01

    Effective ventilation and positive or low negative pressure indoors are suggested to low indoor radon levels. The aim of this study is to develop and to test an equipment, which makes it possible to achieve simultaneously effective ventilation and minimum outdoor-pressure difference. The unit includes mechanical supply and exhaust air fans, a exchanger and a pressure control unit in direct digital control (DDC), which adjusts continuously air exchange based on the pressure difference transmitter information. (orig.). (8 refs., 6 figs.)

  5. Radon as a medicine. Therapeutic effectiveness, biological mechanism and comparative risk assessment

    International Nuclear Information System (INIS)

    Deetjen, Peter; Falkenbach, Albrecht; Harder, Dietrich; Joeckel, Hans; Kaul, Alexander; Philipsborn, Henning von

    2014-01-01

    Proofs of the therapeutic efficiency of balneological radon applications administered to patients suffering from rheumatic diseases, investigations into the biological action mechanism associated with the alpha particles emitted by radon and its radioactive daughter products, and the comparative risk assessment of radon treatment and medicinal pain therapy have been the research projects whose results are summarized in this book. Controlled clinical studies, if possible performed as prospective, randomized and placebo-controlled double blind studies, have given evidence that the therapeutic effects of balneological radon applications - long-lasting pain reduction and reduced consumption of medicines compared with controls - are significantly persisting over many post-treatment months. The molecular and cellular mechanism of action underlying these long-lasting therapeutic effects has been identified as the down-regulation of cellular immune responses, initiated by cellular apoptosis sequential to low alpha particle doses and by the subsequent release of anti-inflammatory cytokines. The unwanted side-effects of non-steroidal anti-rheumatic drug treatments have to be compared with the absence of side effects from the balneological radon applications which merely involve radiation doses well below the mean value and the fluctuation width of the annual doses attributable to everybody's natural radiation exposure.

  6. Radon as a medicine. Therapeutic effectiveness, biological mechanism and comparative risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deetjen, Peter; Falkenbach, Albrecht; Harder, Dietrich; Joeckel, Hans; Kaul, Alexander; Philipsborn, Henning von

    2014-07-01

    Proofs of the therapeutic efficiency of balneological radon applications administered to patients suffering from rheumatic diseases, investigations into the biological action mechanism associated with the alpha particles emitted by radon and its radioactive daughter products, and the comparative risk assessment of radon treatment and medicinal pain therapy have been the research projects whose results are summarized in this book. Controlled clinical studies, if possible performed as prospective, randomized and placebo-controlled double blind studies, have given evidence that the therapeutic effects of balneological radon applications - long-lasting pain reduction and reduced consumption of medicines compared with controls - are significantly persisting over many post-treatment months. The molecular and cellular mechanism of action underlying these long-lasting therapeutic effects has been identified as the down-regulation of cellular immune responses, initiated by cellular apoptosis sequential to low alpha particle doses and by the subsequent release of anti-inflammatory cytokines. The unwanted side-effects of non-steroidal anti-rheumatic drug treatments have to be compared with the absence of side effects from the balneological radon applications which merely involve radiation doses well below the mean value and the fluctuation width of the annual doses attributable to everybody's natural radiation exposure.

  7. Radon in the life environment and its countermeasures of prevention and control

    International Nuclear Information System (INIS)

    Li Zhenyuan; Zhang Shucheng

    2004-01-01

    Radon and its daughters are a primary component for human body received total natural radiation. They will hurt human body, even fall ill when human body is over-received radiation permitted in the life environment, especially indoors. The paper introduces mainly production mechanism of the radon and its daughters at indoor environment, the live environment investigation and monitoring technology, and effect factors on the radon concentration and distribution, as well as protection and control countermeasures for radon. (authors)

  8. Mechanisms of radon injury

    International Nuclear Information System (INIS)

    Cross, F.T.

    1988-01-01

    In this new project, they conduct molecular, cellular and whole-animal research relevant to understanding the inhalation toxicology of radon and radon-daughter exposures. The work specifically addresses the exposure-rate effect in radon-daughter carcinogenesis; the induction-promotion relationships associated with exposure to radon and cigarette-smoke mixtures; the role of oncogenes in radon-induced cancers; the effects of radon on DNA as well as on DNA repair processes; and the involvement of growth factors and their receptors in radon-induced carcinogenesis. Preliminary experiments showed that oncogenes are activated in radon-induced lung tumors. They have therefore begun further exposures pertinent to the oncogene and growth-factor studies. An in vitro radon cellular-exposure system was designed, and cell exposures were initiated. Initiation-promotion-initiation studies with radon and cigarette-smoke mixtures have also begun; and they are compiling a radon health-effects bibliography

  9. Control of respirable particles and radon progeny with portable air cleaners

    International Nuclear Information System (INIS)

    Offermann, F.J.; Sextro, R.G.; Fisk, W.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-02-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles and radon progeny. Following injection of cigarette smoke and radon in a room-size chamber, decay rates for particles and radon progeny concentrations were measured with and without air cleaner operation. Particle concentrations were obtained for total number concentration and for number concentration by particle size. In tests with no air cleaner the natural decay rate for cigarette smoke was observed to be 0.2 hr -1 . Air cleaning rates for particles were found to be negligible for several small panel-filters, a residential ion-generator, and a pair of mixing fans. The electrostatic precipitators and extended surface filters tested had significant particle removal rates, and a HEPA-type filter was the most efficient air cleaner. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in removing radon progeny. At low particle concentrations plateout of the unattached radon progeny is an important removal mechanism. Based on data from these tests, the plateout rate for unattached progeny was found to be 15 hr -1 . The unattached fraction and the overall removal rate due to deposition of attached and unattached nuclides have been estimated for each radon decay product as a function of particle concentration. While air cleaning can be effective in reducing total radon progeny, concentrations of unattached radon progeny can increase with increasing air cleaning. 39 references, 26 figures, 9 tables

  10. Study on collaborative optimization control of ventilation and radon reduction system based on multi-agent technology

    International Nuclear Information System (INIS)

    Dai Jianyong; Meng Lingcong; Zou Shuliang

    2015-01-01

    According to the radioactive safety features such as radon and its progeny, combined with the theory of ventilation system, structure of multi-agent system for ventilation and radon reduction system is constructed with the application of multi agent technology. The function attribute of the key agent and the connection between the nodes in the multi-agent system are analyzed to establish the distributed autonomous logic structure and negotiation mechanism of multi agent system of ventilation and radon reduction system, and thus to implement the coordination optimization control of the multi-agent system. The example analysis shows that the system structure of the multi-agent system of ventilation and reducing radon system and its collaborative mechanism can improve and optimize the radioactive pollutants control, which provides a theoretical basis and important application prospect. (authors)

  11. Controlling exposure to radon, France, December 2006

    International Nuclear Information System (INIS)

    Godet, J.L.; Perrin, M.L.; Dechaux, E.; Pineau, C.

    2007-01-01

    Controlling exposure to radon, France, December 2006 Exposure to radon, along with medical exposure, is the leading source of the French population exposure to ionizing radiation. Radon is a confirmed cause of lung cancer in man (classified in group I by the international Agency for research on Cancer (I.A.R.C.)). According to available estimates, the numbers of lung cancers attributable to radon exposure in France are far fewer than those caused by tobacco. However, according to a recent European study, around 9% of lung cancers in Europe may be caused by radon. Thus, due to the number of people exposed, radon has become a public health issue which calls for action, considering that exposure can be significantly reduced by implementing measures which are often simple. Since 2002, the Nuclear Safety Authority (Asn) has proceeded in implementing a new regulatory framework for the risk management related to the presence of radon in public places. The new system is now fully operational. In addition, based on the initiatives adopted by the government in June 2004 in the context of the National Health and Environment Plan (P.N.S.E.), the Asn drew up a plan in 2005, in collaboration with the Ministry for Urban Planning and Construction, to coordinate the actions of various national bodies involved in this field. This three-pronged strategy is as follows: - Creation of a new risk management policy related to the presence of radon in existing homes and in new buildings; - Supporting and controlling the implementation of regulations for managing radon related risks in public places; - Improvement and dissemination of knowledge on radon exposure and its related risks. (author)

  12. Determination of the factors that control migration and entry of radon into basements

    International Nuclear Information System (INIS)

    Borak, T.B.; Gadd, M.S.; Ward, D.C.; Barry, M.S.

    1992-01-01

    'Full Text:' Elevated concentrations of radon gas indoors are the result or a complicated combination of factors. This report describes results from a facility designed to test and verify theories of radon migration into underground structures. The buildings resemble miniature basements using conventional construction methods, hut eliminate other confounding factors introduced by the activities of occupants. Sensors accumulate data on soil properties such as temperature, moisture, pressure differentials, and permeability, as well as outdoor meteorological conditions and indoor environment. Results indicate that indoor radon concentrations do not correlate with changes in the adjacent soil gas concentration or the rate that radon enters the structure. When no attempt is made to control the indoor environment, periods of highest indoor concentration occur when the rate of entry is low. Methods to identify the driving mechanisms and implication for mitigation and control will he described. (author)

  13. Certain problems about radon. Pt.1

    International Nuclear Information System (INIS)

    Wu Huishan

    2005-01-01

    Discussion has been made on certain pointed out problems which presently influence the work and development of radon survey, and certain specific problems have been put forward which should be paid much attention and taken measures. Among the problems, some come from cognition, i.e. two kinds of balance and examination about radon, chief culprit of radon's daughter, multiply control and migration, the significance of radon in the water and soil, important standards for designing and evaluating the sites of construction projects, thoughts on the mechanism of the harm of radon and its daughters, diseases causing of both high and low radon, difficulty of emanation of indoor radon, normal low radon from natural marble; and others must be resolved specifically, i.e. establishment of national radon standards as quickly as possible, improvement of on-the-spot examination technique, national-wide radon survey with multiple disciplines and technology, the research on the mechanism of radon's harm and the establishment national radon study center. (authors)

  14. The control of radon levels in houses

    International Nuclear Information System (INIS)

    Al-Jarallah, M. B. I.

    2007-01-01

    The article speaks about radon entry ways to houses, the technologies of controlling the level of radon in indoors and four possible ways to solve the problem of high concentration of radon gas in housing and protection from being gathered to a certain extent that is harmful to health. These methods are: removal of the radon source, modifying the radon source, ventilation and air filtration. The article also addresses the impact of reducing the consumption of heating energy in homes and buildings using thermal insulators in floors, walls, ceilings and doors and making double glazed windows that confine the air. It has been proven that there is a steady relationship between energy conservation measures in housing and the increase of radon concentration by two to three times. In a lot of buildings, where conservation measures have been taken, materials to conserve heat are used, which themselves launch radon and this may lead to increased levels of the gas in the housing.

  15. Regulatory Strategy to Control Radon Exposure in Pakistan

    International Nuclear Information System (INIS)

    Younus, Irfan; Cho, Kun Woo

    2012-01-01

    Pakistan Nuclear Regulatory Authority (PNRA) was established in 2001 with one of the objectives to ensure the protection of workers, general public and the environment from the harmful effects of naturally occurring and artificially produced ionizing radiations by formulating and implementing the effective regulations. Radon is a naturally occurring odorless, colorless, tasteless, imperceptible to senses and chemically inert radioactive gas which is produced continuously from the natural decay of U-238, U-235 and Th-232 in most soils, rocks and water all over the earth. High levels of radon in the soil and rock are primarily responsible for indoor radon problems. Therefore when inhaled with air, there much probability that radon decay products will stay and decay in the lungs. If stayed in the lungs, the radiation may damage the cells causing lung cancer. Hence the radon problems have been taken seriously in most of the developed countries of the world. Radon reference levels for dwellings and workplaces have been set and the general public has been made alert of radon through newspapers and electronic media. In Pakistan, neither publicity campaign nor radon measurement and control programmes have been started countrywide. Rather small individual efforts for the sake of interest have been done to investigate the radon in some specific area or institution. This paper presents the regulatory strategy to control radon exposure for the sake of radiation protection of public and workers in Pakistan

  16. Radon Research Program, FY 1992

    International Nuclear Information System (INIS)

    1993-04-01

    The United States Department of Energy, Office of Health and Environmental Research (DOE/OHER) is the principal federal agency conducting basic research related to indoor radon. The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. There still remains a significant number of uncertainties in the currently available knowledge that is used to estimate lung cancer risk from exposure to environmental levels of radon and its progeny. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny and to identify and understand biological mechanisms of lung cancer development and required copollutants at low levels of exposure. Information useful in radon control strategies is also provided by the basic science undertaken in this program

  17. Evaluation of indoor aerosol control devices and their effects on radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.; Offermann, F.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-02-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles, and their concomitant effects on radon progeny concentrations have been investigated. Of the devices we examined the electrostatic precipitators and extended surface filters had significant particle removal rates, while the particle removal rates for several small panel-filters, an ion-generator, and a pair of mixing fans were found to be negligible. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in reducing radon progeny concentrations. Furthermore, at the low particle concentrations, plateout of the unattached radon progeny was found to be a significant removal mechanism. The overall removal rates due to deposition of attached and unattached progeny have been estimated from these data, and the equilibrium factors for total and unattached progeny concentrations have been calculated as a function of particle concentration. 7 references, 2 figures

  18. Evaluation of indoor aerosol control devices and their effects on radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.; Offerman, F.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.; Yater, J.

    1984-01-01

    Eleven portable air cleaing devices have been evaluated for control of indoor concentrations of respirable particles, and their concomitant effects on radon progeny concentrations have been investigated. Of the devices we examined the electrostatic precipitators and extended surface filters had significant particle removal rates, while the particle removal rates for several small panel-filters, an ion-generator, and a pair of mixing fans were found to be negligible. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in reducing radon progeny concentrations. Futhermore, at the low particle concentrations, plateout of the unattached radon progeny was found to be a significant removal mechanism. The overall removal rates due to deposition of attached and unattached progeny have been estimated from these data, and the equilibrium factors for total and unattached progeny concentrations have been calculated as a function of particle concentration. (Author)

  19. Instrumentation for a radon research house

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Revzan, K.L.; Robb, A.W.

    1981-07-01

    A highly automated monitoring and control system for studying radon and radon-daughter behavior in residences has been designed and built. The system has been installed in a research house, a test space contained in a two-story wood-framed building, which allows us to conduct controlled studies of (1) pollutant transport within and between rooms, (2) the dynamics of radon daughter behavior, and (3) techniques for controlling radon and radon daughters. The system's instrumentation is capable of measuring air-exchange rate, four-point radon concentration, individual radon daughter concentrations, indoor temerature and humidity, and outdoor weather parameters (temperature, humidity, modules, wind speed, and wind direction). It is also equipped with modules that control the injection of radon and tracer gas into the test space, the operation of the forced-air furnace, the mechanical ventilation system, and the mixing fans located in each room. A microcomputer controls the experiments and records the data on magnetic tape and on a printing terminal. The data on tape is transferred to a larger computer system for reduction and analysis. In this paper we describe the essential design and function of the instrumentation system, as a whole, singling out those components that measure ventilation rate, radon concentration, and radon daughter concentrations

  20. Evaluation of the performance characteristics of radon and radon-daughter concentration measurement devices under controlled environmental conditions

    International Nuclear Information System (INIS)

    Pearson, M.D.

    1989-04-01

    The Technical Measurements Center (TMC) conducted a study to expose 10 radon and 7 radon-daughter concentration measurement devices in the DOE/GJPO Radon/Radon-Daughter Environmental Chamber for a series of 24 controlled-environment tests. The tests evaluated the devices' response to temperature, relative humidity, dew point, condensation-nuclei concentration, radon-daughter/radon equilibrium ratio, and non-uniform radon and radon-daughter concentration. Devices were evaluated for linear response as a function of concentration. In addition to response to environmental parameters, the evaluation included determining the utility of the devices in providing reasonable assurance of compliance with the radon and radon-daughter concentration standards for DOE remedial action programs. This reasonable assurance criterion is based on a coefficient of variation of 25 percent for devices deployed for year-long measurements and a coefficient of variation of 18 percent for devices deployed for intermittent sampling. 39 refs., 65 figs., 33 tabs

  1. The impacts of balanced and exhaust mechanical ventilation on indoor radon

    International Nuclear Information System (INIS)

    Fisk, W.J.; Mowris, R.J.

    1987-02-01

    Models for estimating radon entry rates, indoor radon concentrations, and ventilation rates in houses with a basement or a vented crawl-space and ventilated by natural infiltration, mechanical exhaust ventilation, or balanced mechanical ventilation are described. Simulations are performed for a range of soil and housing characteristics using hourly weather data for the heating season in Spokane, WA. For a house with a basement, we show that any ventilation technique should be acceptable when the soil permeability is less than approximately 10 -12 m 2 . However, exhaust ventilation leads to substantially higher indoor radon concentrations than infiltration or balanced ventilation with the same average air exchange rate when the soil permeability is 10 -10 m 2 or greater. For houses with a crawl-space, indoor radon concentrations are lowest with balanced ventilation, intermediate with exhaust ventilation, and highest with infiltration

  2. Control of radon daughters in underground mining

    International Nuclear Information System (INIS)

    Swent, L.W.

    1983-01-01

    This paper discusses technical developments that may enable uranium mine operators to improve engineering controls of radon daughter concentrations in mines, and developments in regulatory controls. The origin of radon daughters in underground mines is explained. The procedure for sampling and determining the concentration of alpha radiation in sampled air is reviewed. The principal technical development in the last few years has been the perfection and use of a class of meters which determine radon daughter concentrations in an air sample in a matter of two or three minutes without any aging period. A number of underground uranium mine operators are now using ''instant'' type meters and the Mine Safety and Health Administration (MSHA) has approved their use in a number of mines. The difficulty experienced by uranium mine operators in complying with a MSHA regulation which requires that no person be exposed to radon daughter concentrations exceeding 1 Working Level (WL) in any active working place is discussed

  3. Evaluation of indoor aerosol control devices and their effects on radon progeny concentrations. Revision

    International Nuclear Information System (INIS)

    Sextro, R.G.; Offermann, F.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-11-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles, and their concomitant effects on radon progeny concentrations have been investigated. The experiments were conducted in a room-size chamber using cigarette smoke and radon injection from an external source. Of the devices examined the electrostatic precipitators and extended surface filters had significant particle removal rates, while the particle removal rates for several small panel-filters, an ion-generator, and a pair of mixing fans were found to be essentially negligible. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in reducing radon progeny concentrations. At the low particle concentrations, deposition of the unattached radon progeny on room surfaces was found to be a significant removal mechanism. Deposition rates of attached and unattached progeny have been estimated from these data, and were used to calculate the equilibrium factors for total and unattached progeny concentrations as a function of particle concentration. While particle removal reduces total airborne radon progeny concentrations, the relative alpha decay dose to the lungs appears to change very little as the particle concentration decreases due to the greater radiological importance of unattached progeny

  4. Effectiveness of radon control techniques in fifteen homes

    International Nuclear Information System (INIS)

    Turk, B.H.; Prill, R.J.; Fisk, W.J.; Grimsrud, D.T.; Sextro, R.G.

    1991-01-01

    Radon control systems were installed and evaluated in fourteen homes in the Spokane River Valley/Rathdrum Prairie and in one home in Vancouver, Washington. Because of local soil conditions, subsurface ventilation (SSV) by pressurization was always more effective in these houses than SSV by depressurization in reducing indoor radon levels to below guidelines. Basement overpressurization was successfully applied in five houses with airtight basements where practical-sized fans could develop an overpressure of 1 to 3 Pascals. Crawlspace ventilation was more effective than crawlspace isolation in reducing radon entry from the crawlspace, but had to be used in conjunction with other mitigation techniques, from the crawlspace, but had to be used in conjunction with other mitigation techniques, since the houses also had basements. Indoor radon concentrations in two houses with air-to-air heat exchangers (AAHX) were reduced to levels inversely dependent on the new total ventilation rates and were lowered even further in one house where the air distribution system was modified. Sealing penetrations in the below-grade surfaces of substructures was relatively ineffective in controlling radon. Operation of the radon control systems (except for the AAHX's) made no measurable change in ventilation rates or indoor concentrations of other measured pollutants. Installation costs ranged from approximately $4/m 2 for sealing to $28/m 2 for the AAHXs. Annual operating costs for the active systems were estimated to be approximately $60 to $170

  5. Radon Research Program, FY 1991

    International Nuclear Information System (INIS)

    1992-03-01

    The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny as well as to provide information useful in radon control strategies. Results generated under the Program were highlighted in a National Research Council report on radon dosimetry. The study concluded that the risk of radon exposure is 30% less in homes than in mines. This program summary of book describes the OHER FY-1991 Radon Research Program. It is the fifth in an annual series of program books designed to provide scientific and research information to the public and to other government agencies on the DOE Radon Research Program

  6. A statistical evaluation of the geogenic controls on indoor radon concentrations and radon risk

    Energy Technology Data Exchange (ETDEWEB)

    Appleton, J.D., E-mail: jda@bgs.ac.u [British Geological Survey, Kingsley Dunham Centre, Nicker Hill, Keyworth, Nottingham, NG12 5GG (United Kingdom); Miles, J.C.H. [Health Protection Agency (HPA), Radiation Protection Division, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2010-10-15

    ANOVA is used to show that approximately 25% of the total variation of indoor radon concentrations in England and Wales can be explained by the mapped bedrock and superficial geology. The proportion of the total variation explained by geology is higher (up to 37%) in areas where there is strong contrast between the radon potential of sedimentary geological units and lower (14%) where the influence of confounding geological controls, such as uranium mineralisation, cut across mapped geological boundaries. When indoor radon measurements are grouped by geology and 1-km squares of the national grid, the cumulative percentage of the variation between and within mapped geological units is shown to be 34-40%. The proportion of the variation that can be attributed to mapped geological units increases with the level of detail of the digital geological data. This study confirms the importance of radon maps that show the variation of indoor radon concentrations both between and within mapped geological boundaries.

  7. Indoor radon and decay products: Concentrations, causes, and control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-11-01

    This report is another in the on going technical report series that addresses various aspects of the DOE Radon Research Program. It provides an overview of what is known about the behavior of radon and its decay products in the indoor environment and examines the manner in which several important classes of factors -- structural, geological, and meteorological -- affect indoor radon concentrations. Information on US indoor radon concentrations, currently available monitoring methods and novel radon control strategies are also explored. 238 refs., 22 figs., 9 tabs.

  8. Risk assessment and control management of radon in drinking water

    International Nuclear Information System (INIS)

    Mills, W.A.

    1990-01-01

    The role of risk assessment and risk management of radon in drinking water was reviewed. It is noted that risk assessments for the public health consequences of radon in drinking water require information on radon concentration in water, exposure pathways, and dose-response relationships. On the other hand, risk management involves assumptions of risk acceptance and the establishment of governmental policies in accord with society's acceptance of these assumptions. Although risk assessment for radon exposures can be reasonably qualitative, risk management is clearly judgmental. The following conclusions/recommendations were made. (1) The presence of radon in drinking water is estimated to have its greatest health impact on the 18% of the US population served by private wells. (2) Although no direct evidence exists associated radon in water with health problems, the diseases that are associated with radon in drinking water are stomach cancer from ingestion and lung cancer from inhalation of radon decay products released during household use of water. (3) Using a number of questionable assumptions, the total number of cancer deaths per year attributable to radon in water is estimated to be about 5,000 as a maximum value, with essentially all cases occurring in the population served by private wells. (4) Promulgating federal regulations to control radon levels in water under the Safe Drinking Water Act seems unwarranted, since private wells would not likely be regulated. (5) Government control programs should be limited to emphasizing an awareness of possible substantially higher than average levels of radon in water in certain geological areas. 12 refs., 4 tabs

  9. Reasons for increasing radon concentrations in radon remediated houses

    International Nuclear Information System (INIS)

    Clavensjoe, B.

    1997-01-01

    The study comprises 31 single-dwelling houses where remedial actions were carried out in the 1980s. In all of them the radon concentrations have increased more than 30% according to recent control measurements. Radon sources are building material as well as the soil. The remedial actions dealt with ventilation systems, leakage through the basement floor, air cushions, sub-slab suction or radon wells according to the original problems. Causes for the increase varied: In many houses with soil radon problems, the installation of a normal mechanical ventilation system is not a good remedial action. In some houses on a ground with high permeability and high radon content in the soil air, the radon concentration may increase by the lowering of the indoor air pressure. In other houses the increase was a measurement effect, where sites/rooms were confused. Living related causes were identified in a number of cases, where fan speeds were reduced for energy conservation/noise reduction purposes or different use of windows airing had occurred. Extension of the dwelling space without changing the ventilation system caused the increase in one house. 23 refs

  10. The radon daughter radiation hazard in controlled recirculation systems

    International Nuclear Information System (INIS)

    Rolle, R.; Burton, R.C.

    1987-01-01

    In deep South African gold mines, controlled recirculation systems with air cooling are being used to an increasing extent to improve the thermal environment. Recirculation causes some air to reside in the working area for a longer time than would have occurred without recirculation. Since radon daughters grow spontaneously from radon there is some concern that, with the extended residence time, the potential radiation hazard could increase to an unacceptable level. This paper describes the results obtained from a theoretical model of a controlled recirculation system. Guidelines for the design of recirculation systems to control the radon daughter radiation, and to keep it within acceptable limits are provided. 3 refs., 5 figs

  11. Control of radon in Finnish workplaces

    International Nuclear Information System (INIS)

    Markkanen, M.

    2002-01-01

    Natural radiation in Finland is regulated in the Finnish Radiation Act from 1992. Occupational exposure to natural radiation is regulated by an amendment of the Radiation Decree in 1998. The most important issues in Finland are radon in workplaces, radioactivity in drinking water and in building materials, and mining and industrial processes. Radon levels in mines have been measured regularly since 1972. Finland has an action level for radon in workplaces of 400 Bq/m 3 . Radon prone areas have been identified primarily from measurements of radon in dwellings. Radon measurements are compulsory in workplaces in radon prone areas unless it can be shown by other means that radon levels are low. A programme focusing on radon in workplaces was initiated in 1992. To date, radon measurements have been carried out in 10,000 workplaces and remedial actions have been taken in 200 of these. The average reduction in radon concentration in remediated buildings is about 1,500 Bq/m 3 . Identification of NORM industries is based on the radionuclide content of the materials used (>1.4 Bq/g U and >0.4 Bq/g Th). The occupational exposure should not exceed 1 mSv/y (excluding radon)

  12. Studies on the migration rule and mechanism of radon and its daughters

    International Nuclear Information System (INIS)

    Jia Wenyi; Fang Fang; Zhou Rongsheng; Ma Yingjie; Qiu Yuande; Hou Xinsheng; Wu Yunping; Zu Xiulan; Wang Xiaoqin

    2000-01-01

    By using very precise, highly sensitive, static accumulated, easily repeated CD-1 α-cup, the migration rule and mechanism of radon and its daughters was studied. Significant results were obtained: (1) Under laboratory conditions, the vertical component of migration of radon and its daughters was much greater than the horizontal component, the former was over 90% and the latter was less than 10%. (2) Despite the very big specific gravity of radon and its daughters, the descending component of migration was less than 45%, while the ascending component was more than 45%. (3) After α-particles (emitted from radon and its daughters) being slowed down. 4 He combined with the radon and its daughters to form clusters. When the density of the cluster was less than that of the air, the self-ascending would occur

  13. Interaction of radon progeny with atmospheric aerosols

    International Nuclear Information System (INIS)

    Morawska, Lidia

    1994-01-01

    The radiological health hazard due to the airborne radon progeny depends on three factors (i) radon concentration in the air, (ii) radon progeny concentration, and (iii) active particle size distribution. Conclusions as to the health hazard cannot be drawn without full understanding of the interaction mechanisms between radon progeny and atmospheric aerosols. The aim of this work was to study the interaction mechanisms between radon progeny, natural environmental aerosols and environmental tobacco smoke (ETS). The experiments were performed under controlled laboratory conditions of radon concentration (1.85 and 3.70 Bq m -3 ), relative humidity (35, 50, 75 and 95%) and ETS generation. The size distribution of radioactivity carrying aerosols was measured using a wire screen diffusion battery system and size distribution of all airborne aerosols using a differential mobility particle sizer. The paper presents and discusses the results of activity size distribution and radon progeny concentration measurements for different environmental conditions. 7 refs., 2 tabs

  14. Human Lung Cancer Risks from Radon – Part III - Evidence of Influence of Combined Bystander and Adaptive Response Effects on Radon Case-Control Studies - A Microdose Analysis

    Science.gov (United States)

    Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.

    2012-01-01

    Since the publication of the BEIR VI (1999) report on health risks from radon, a significant amount of new data has been published showing various mechanisms that may affect the ultimate assessment of radon as a carcinogen, in particular the potentially deleterious Bystander Effect (BE) and the potentially beneficial Adaptive Response radio-protection (AR). The case-control radon lung cancer risk data of the pooled 13 European countries radon study (Darby et al 2005, 2006) and the 8 North American pooled study (Krewski et al 2005, 2006) have been evaluated. The large variation in the odds ratios of lung cancer from radon risk is reconciled, based on the large variation in geological and ecological conditions and variation in the degree of adaptive response radio-protection against the bystander effect induced lung damage. The analysis clearly shows Bystander Effect radon lung cancer induction and Adaptive Response reduction in lung cancer in some geographical regions. It is estimated that for radon levels up to about 400 Bq m−3 there is about a 30% probability that no human lung cancer risk from radon will be experienced and a 20% probability that the risk is below the zero-radon, endogenic spontaneous or perhaps even genetically inheritable lung cancer risk rate. The BEIR VI (1999) and EPA (2003) estimates of human lung cancer deaths from radon are most likely significantly excessive. The assumption of linearity of risk, by the Linear No-Threshold Model, with increasing radon exposure is invalid. PMID:22942874

  15. Dependence of radon level on ventilation systems in residences

    International Nuclear Information System (INIS)

    Kokotti, H.

    1995-01-01

    The concentration of indoor radon and radon entry from soil into a house are expected to increase with increasing radon concentration in soil pores, and indoor radon concentration is expected to decrease with increasing ventilation rate. Depressurization, which can be caused by the stack effect, by wind and by unbalanced ventilation, creates different pressure conditions in a house and in the soil beneath it. To reveal the possible differences in radon removal and entry resulting from different ventilation systems, radon concentrations were determined in three similar slab-on-grade buildings provided with mechanical supply and exhaust ventilation, mechanical exhaust or natural ventilation. To limitate the effect of differences in soil parameters, the houses were constructed on the same gravel esker in Kuopio. Thus, the variation in radon entry as a result of different depressurisation of the houses (caused by unbalanced mechanical ventilation systems) could also be observed. In addition, the effect of pressurisation on living rooms could be determined in five slab-on-grade houses constructed on the same esker in Hollola. Mechanical supply and exhaust ventilation system controlled by measured indoor-outdoor pressure difference, was installed in the six houses. The seasonal variation with and without controlled pressure conditions were followed in a slab-on-grade house constructed on a gravel esker in Rekola. Long-term radon concentrations were observed to correlate negatively with air exchange rates. However, the removal effect of ventilation was found to be disturbed by negative pressure due to the stack effect and/or to unbalanced mechanical ventilation. (91 refs., 17 figs., 10 tabs.)

  16. Design of automatic control system of temperature in radon chamber controlled by air-condition based on 485 BUS

    International Nuclear Information System (INIS)

    Man Zaigang; Wang Renbo; Zhang Xiongjie; Zhu Zhifu; Tang Bin

    2009-01-01

    Radon chamber can be widely used in various radon measurement instruments for calibration, testing and radon environment experiment. According to requisition, radon chamber temperature should be controllable from +10 degree C to +30 degree C, and the temperature control accuracy of the system reaches ±1 degree C. The design of automatic temperature controlled by air-condition based on 485 BUS is introduced. The software and hardware techniques of how the ATMEL89S52 micro controller controls air-condition and communicates with computer are elaborated on. (authors)

  17. Problems of the inclusion of workplaces with enhanced radon and radon daughter concentrations into occupational radiation protection control

    International Nuclear Information System (INIS)

    Przyborowski, S.

    1993-01-01

    New international recommendations (ICRP-60) on inclusion of workplaces with enhanced radon and radon daughter concentrations into occupational control are expected. Based on present regulations in Germany the problems of their implementation into radiation protection practice will be discussed. For underground workplaces and workplaces in radon spas and waterworks problems may be exist in particular points, whereas inclusion of workplaces in buildings seems to be problematicly in general. (orig./HP) [de

  18. The measure and control system of mini-type radon room based on PC104

    International Nuclear Information System (INIS)

    Zhou Shumin; East China Inst. of Technology, Fuzhou; Tang Bin; Sun Yamin

    2005-01-01

    Radon room is one of the standard equipment which demarcates radon measure instrument. The paper discusses the dynamic method and mathematic model which keeps the radon consistence stability in radon room. The system is developed on PC104. The system can monitor the radon consistence and replenishment radon according the radon control parameter. (authors)

  19. Case-control study of radon and lung cancer in New Jersey

    International Nuclear Information System (INIS)

    Wilcox, H. B.; Al-Zoughool, M.; Garner, M. J.; Jiang, H.; Klotz, J. B.; Krewski, D.; Nicholson, W. J.; Schoenberg, J. B.; Villeneuve, P. J.; Zielinski, J. M.

    2008-01-01

    Radon is known to cause lung cancer in humans; however, there remain uncertainties about the effects associated with residential exposures. This case-control study of residential radon and lung cancer was conducted in five counties in New Jersey and involved 561 cases and 740 controls. A yearlong α-track detector measurement of radon was completed for ∼93% of all residences lived in at the time of interview (a total of 2063). While the odds ratios (ORs) for whole data were suggestive of an increased risk for exposures >75 Bq m -3 , these associations were not statistically significant. The adjusted excess OR (EOR) per 100 Bq m -3 was -0.13 (95% CI: -0.30 to 0.44) for males, 0.29 (95% CI: -0.12 to 1.70) for females and 0.05 (95% CI: -0.14 to 0.56) for all subjects combined. An analysis of radon effects by histological type of lung cancer showed that the OR was strongest for small/oat cell carcinomas in both males and females. There was no statistical heterogeneity of radon effects by demographic factors (age at disease occurrence, education level and type of respondent). Analysis by categories of smoking status, frequency or duration did not modify the risk estimates of radon on lung cancer. The findings of this study are consistent with an earlier population-based study of radon and lung cancer among New Jersey women, and with the North American pooling of case control radon seven studies, including the previous New Jersey study. Several uncertainties regarding radon measurements and assumptions of exposure history may have resulted in underestimation of a true exposure-response relationship. (authors)

  20. Indoor Radon and Its Decay Products: Concentrations, Causes, and Control Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-01-01

    This report is an introduction to the behavior of radon 222 and its decay products in indoor air. This includes review of basic characteristics of radon and its decay products and of features of the indoor environment itself, all of which factors affect behavior in indoor air. The experimental and theoretical evidence on behavior of radon and its decay products is examined, providing a basis for understanding the influence of geological, structural, and meteorological factors on indoor concentrations, as well as the effectiveness of control techniques. We go on to examine three important issues concerning indoor radon. We thus include (1) an appraisal of the concentration distribution in homes, (2) an examination of the utility and limitations of popular monitoring techniques and protocols, and (3) an assessment of the key elements of strategies for controlling radon levels in homes.

  1. Suggestions for inclulsion of radon exhalation control target in building materials radioactivity standards

    International Nuclear Information System (INIS)

    Liu Fudong; Liu Senlin; Pan Ziqiang; Zhang Yonggui

    2010-01-01

    The specific-activity and radon exhalation rate from 26 building material samples from different areas were measured with high pure germanium (HPGe) gamma spectrometer and activated carbon cartridge. It is shown that the radium content is not completely relevant to radon exhalation rate from some building material. The existing national standards on 'The Limit of Radionuclides in Building Materials' (GB 6566-2001) only present internal exposure index as control target but not for radon exhalation rate; in fact, the radon exhalation rate from building materials is closely nearly related to indoor radon concentration. So we suggest that the radon exhalation control target should be included in the national standards on 'The Limit of Radionuclides in Building Materials'. (authors)

  2. Mitigation of indoor radon using balanced mechanical ventilation

    International Nuclear Information System (INIS)

    Wellford, B.W.

    1986-01-01

    Previous research has shown that, for a given source strength, the concentration of Rn 222 in the home is inversely proportional to the ventilation rate. Further reductions in the concentration of the decay products of radon can be achieved due to the decrease in residence time of the parent gas as well as increased plate-out of the progeny. Natural and mechanical ventilation can affect the distribution of pressure across the building envelope potentially increasing the flow of radon bearing soil gas into the home gas into the home and/or promoting mixing of areas of higher and lower concentration. Balanced heat recovery ventilation systems were installed in ten homes in the Boyertown, Pennsylvania area. Ventilation was restricted initially to the basement area. Five installations were later modified to introduce supply air to upstairs living spaces while continuing to exhaust from the basement. An independent contractor measured Rn 222 concentrations and decay product activity in the basement and first floor living area before and after installation or modification of the heat recovery ventilation system. Additional experiments to evaluate the effect of house tightening techniques and positive pressurization of the basement were conducted. With balanced ventilation of the basement only, the mean reduction in Working Level was 92.8% with a high of 98% and a low of 76%. Mean reduction of radon gas concentration was 79.1%. When modified to supply air upstairs, mean reduction in Working Level in the living area was 90%. House tightening measures to reduce stack effect were observed to reduce radon concentration. Results indicate that balanced ventilation is an effective strategy for radon mitigation and can be expected to achieve recommended levels in a majority of homes. 9 references, 2 figures, 2 tables

  3. Mechanisms and sources of radon entry in buildings constructed with modern technologies

    International Nuclear Information System (INIS)

    Zhukovsky, M.V.; Vasilyev, A.V.

    2014-01-01

    To investigate the influence of modern building construction technologies on the accumulation of radon indoor, 20 rooms in buildings constructed using mostly monolithic concrete or aerated concrete blocks have been studied. Dominance of the diffusion mechanism of radon entry in buildings constructed with modern technologies has been established. As a result of computer simulations it was found that the main contribution to the variability of radon concentration was made by changes in the ventilation rate. At a low ventilation rate ( -1 ) radon concentration above 200 Bq m -3 can be observed for residential buildings. There is a need for the regulation of the radium-specific activity in building materials. According to the estimates of this study, the content of 226 Ra in building materials should not exceed the value of 100 Bq kg -1 . (authors)

  4. Theoretical evaluation of indoor radon control using a carbon adsorption system

    International Nuclear Information System (INIS)

    Bocanegra, R.; Hopke, P.K.

    1989-01-01

    The conceptual framework for a carbon-based adsorption system for the control of indoor radon is presented. Based on the adsorptivity of typically available activated carbons, it is shown theoretically that carbon bed adsorbers can be effective in lowering indoor radon levels particularly when the area of radon ingress (the basement) has a relatively low exchange rate with the rest of the house

  5. Indoor Radon Concentration Related to Different Radon Areas and Indoor Radon Prediction

    Science.gov (United States)

    Juhásová Šenitková, Ingrid; Šál, Jiří

    2017-12-01

    Indoor radon has been observed in the buildings at areas with different radon risk potential. Preventive measures are based on control of main potential radon sources (soil gas, building material and supplied water) to avoid building of new houses above recommended indoor radon level 200 Bq/m3. Radon risk (index) estimation of individual building site bedrock in case of new house siting and building protection according technical building code are obligatory. Remedial actions in buildings built at high radon risk areas were carried out principally by unforced ventilation and anti-radon insulation. Significant differences were found in the level of radon concentration between rooms where radon reduction techniques were designed and those where it was not designed. The mathematical model based on radon exhalation from soil has been developed to describe the physical processes determining indoor radon concentration. The model is focused on combined radon diffusion through the slab and advection through the gap from sub-slab soil. In this model, radon emanated from building materials is considered not having a significant contribution to indoor radon concentration. Dimensional analysis and Gauss-Newton nonlinear least squares parametric regression were used to simplify the problem, identify essential input variables and find parameter values. The presented verification case study is introduced for real buildings with respect to various underground construction types. Presented paper gives picture of possible mathematical approach to indoor radon concentration prediction.

  6. Control methods of radon and its progeny concentration in indoor atmosphere

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subba Ramu, M.C.

    1990-01-01

    Exposure to radon-222 and its progeny in indoor atmosphere can result in significant inhalation risk to the population particularly to those living in houses with much higher levels of Rn. There are three methods generally used for the control of Rn and its progeny concentration in the indoor environment: (1) restricting the radon entry, (2) reduction of indoor radon concentration by ventilation or by aircleaning and (3) removal of airborne radon progeny by aerosol reduction. Prominent process of radon entry in most of the residence appears to be the pressure driven flow of soil gas through cracks or through other openings in the basements slab or subfloor. Sealing off these openings or ventilation of the slab or subfloor spaces are the methods of reducing the radon entry rate. Indoor radon progeny levels can also be reduced by decreasing the aerosol load in the dwellings. The results of a few experiments carried out to study the reduction in the working level concentration of radon, by decreasing the aerosol load are discussed in this paper. (author). 9 tabs., 8 figs., 37 refs

  7. Risk evaluation and control strategies for indoor radon: a brief discussion

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1994-01-01

    Average risks of death estimated for radon are larger than those for many exposures in the outdoor environment, but similar to some in industrial settings. However, the indoor environment differs in regard to cost, benefit, responsibility, and distribution of risks from the outdoor and occupational settings, where frameworks for setting risk-limiting objectives and strategies have already been developed substantially. This indicates the need to develop a conceptual framework for evaluating risks in the indoor environment, within which the objectives of radon control strategies can be sensibly chosen. Nevertheless, the range of estimated radon risks and of recent radon control strategies suggest near-term elements of any strategy, i.e. accurate and effective public information, as well as reliable monitoring and control capabilities, and a focus on areas where most high residential levels occur. Developing a conceptual framework for evaluating indoor risks will permit the formulation of suitable aims on average indoor exposures and lower exposure situations. (author)

  8. Mine engineering and ventilation problems unique to the control of radon daughters

    International Nuclear Information System (INIS)

    Rock, R.L.

    1975-01-01

    Quality and quantity of ventilation are the two interrelated but key factors in any radon-daughter control programme. The better the intake air quality (little or no contamination from radon and its daughters), the less are the total air requirements for ventilation of active mining areas. Engineering principles for quantity distribution of air through underground working areas are straightforward and the formulae and theories governing forced ventilation are not within the scope of this paper. Rather, this paper discusses the principal methods of utilizing mine planning to facilitate radon-daughter control and also treats the more subtle features of mine ventilation which are especially critical in the ventilation of mines where radon gas constitutes an environmental contamination problem. (author)

  9. Control in indoor radon decay products by air treatment devices

    International Nuclear Information System (INIS)

    Hinds, W.C.; Rudnick, S.N.; Maher, E.F.; First, M.W.

    1983-01-01

    An evaluation of the efficacy of household air cleaning devices as a means to control radon decay products in existing buildings is presented. Previous research on air cleaning methods for airborne radon decay products has been directed primarily to the control of radon decay products in mines and has only limited application to control in residences where dust concentration, air change rate, and humidity are lower than in mines. Results show that room size air cleaners can achieve substantial reductions in working levels in residences. Reductions observed at air infiltration rates of 0.52 air changes per hour ranged from 58 to 89%. Although the two air cleaners tested produced the greatest reductions, the low cost, simplicity, and other benefits of air circulating fans, particularly the ceiling fan, appear to make them most suitable for residences

  10. EML indoor radon workshop, 1982

    International Nuclear Information System (INIS)

    George, A.C.; Lowder, W.; Fisenne, I.; Knutson, E.O.; Hinchliffe, L.

    1983-07-01

    A workshop on indoor radon, held at the Environmental Measurements Laboratory (EML) on November 30 and December 1, 1982, covered recent developments in radon daughter research and development. Thirty papers were presented dealing with standardization and quality assurance measurement methods, surveys, measurements strategy, physical mechanisms of radon and radon daughter transport and development of guidance standards for indoor exposures. The workshop concluded with a planning session that identified the following needs: (1) national and international intercomparisons of techniques for measuring radon and radon daughter concentrations, working level and radon exhalation flux density; (2) development and refinement of practical measurement techniques for thoron and its daughter products; (3) quantitative definition of the sources of indoor radon and the mechanisms of transport into structures; (4) better knowledge of the physical properties of radon daughters; (5) more complete and accurate data on the population exposure to radon, which can only be met by broadly based surveys; and (6) more international cooperation and information exchange among countries with major research programs

  11. A detailed study of inexpensive radon control techniques in New York state houses

    International Nuclear Information System (INIS)

    Nitschke, I.A.; Wadach, J.B.; Clarke, W.A.; Traynor, G.W.; Adams, G.P.; Rizzuto, J.E.

    1984-01-01

    As part of a comprehensive indoor air quality and infiltration field study, radon concentrations were measured in 60 houses in upstate New York using passive integrating monitors. Indoor air radon concentrations ranged from 0.2 pCi/l to 50 pCi/l. Four houses with the highest radon levels were then extensively monitored using real-time continuous instruments for the measurement of radon, radon daughters, respirable particles, infiltration, inside-outside pressure difference, and weather parameters. Several inexpensive radon mitigation techniques were tested in these four houses. Their effectiveness ranged widely. Techniques identified as effective were permanently installed in 14 houses having indoor air radon concentration above 2 pCi/l. Finally, the long-term effectiveness of the installed control techniques is being tested using passive integrating radon monitors. (Author)

  12. Overview of current radon and radon daughter research at LBL

    International Nuclear Information System (INIS)

    1983-01-01

    This report provides a brief summary of radon and radon daughter research at Lawrence Berkeley Laboratory. The radon and radon daughter research program has two broad goals: (1) the study of sources of radon and its subsequent transport into houses, and (2) research on the behavior of radon daughters in indoor environments. Additional research effort is directed to several auxiliary areas, including development of instrumentation and monitoring techniques, studies of indoor air movement, and measurement and control of indoor particulate concentrations

  13. The effect of natural ventilation on radon and radon progeny levels in houses

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.; Socolow, R.

    1992-01-01

    In contradiction to the widely held assumption that ventilation is ineffective as a means of reducing indoor radon concentrations, experiments in a research house have shown that the basement radon level can be reduced by a factor of 5-10 using only natural ventilation. Measurements of the outdoor-basement pressure differential and the radon entry rate show that this unexpectedly large reduction in indoor radon levels is caused by two complementary physical processes. The first mechanism is the obvious one: dilution. Radon concentrations are lowered by the addition of uncontaminated outdoor air. The second mechanism is less evident: an open basement window reduces basement depressurisation. This decreases the rate at which radon-laden soil gas is drawn into the house. It was also found that the radon entry rate is a linear function of basement depressurisation up to a differential pressure of about 4 Pa, as would be expected for laminar soil gas flow; opening two basement windows approximately doubles the building air exchange rate and reduces the radon entry rate by up to a factor of 5. (author)

  14. A mechanism for radon decline prior to the 1978 Izu-Oshima-Kinkai earthquake in Japan

    International Nuclear Information System (INIS)

    Tsunomori, F.; Kuo, T.

    2010-01-01

    Precursory changes in the radon concentration of groundwater were observed by prior to the 1978 Izu-Oshima-Kinkai earthquake of magnitude 7.0. Mechanisms for interpreting the anomalous radon decrease are examined in this paper. The SKE-1 well is situated in a volcanic-rock fractured aquifer of limited recharge. Given these geological conditions, the dilation of brittle rock mass occurred at a rate faster than the recharge of groundwater and gas saturation developed in newly created cracks preceding the earthquake. Radon volatilization into the gas phase can explain the anomalous decrease of radon precursory to the 1978 earthquake. To support the hypothesis, vapor-liquid two-phase radon-partitioning experiments were conducted at formation temperature (14 deg. C) using formation water from the SKE-1 well. Experimental data indicated that the decrease in radon concentration from 483 ± 3 count/min to 439 ± 7 count/min required a gas saturation of 2.35% developed in rock cracks through the dilatancy process.

  15. Radon in workplaces

    International Nuclear Information System (INIS)

    Gooding, Tracy

    1995-01-01

    The naturally occurring radioactive gas radon has been found at excessive levels in many workplaces other than mines throughout the country. Prolonged exposure to radon and its decay products increases the risk of developing lung cancer, and controls to protect employees from excessive exposure are included in the Ionising Radiations Regulations 1985. The control of occupational exposure to radon is discussed here. (author)

  16. Construction of radon/radon daughter calibraton chamber

    International Nuclear Information System (INIS)

    Fry, J.; Gan, T.H.; Leach, V.A.; Saddlier, J.; Solomon, S.B.; Tam, K.K.; Travis, E.; Wykes, P.

    1983-01-01

    The radon/radon daughter test chamber is a copper lined room 1.65x1.75x2.75m with an effective volume of 8000 litres. The air residence time is controlled by circulating the air in the chamber through absolute filters which remove 99.9% of particulates. Radon is drawn into the chamber from a 17 μCi 226 RaCl source using the pressure differential across the blowers (<3 psi)

  17. Biological radiation effects of Radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A E

    1996-12-31

    In order to contribute to the knowledge on the effects of radon and its decay products, the aim of this investigation is to study the biological effects of radon using Drosophila melanogaster throught the somatic mutation and recombination test (SMART) and the analysis of some adaptative factors exposing larvaes to controlled radon atmosphers, considering that this insect could be used as biological monitor. Using the somatic mutation test a mutagenic effect was observed proportional to radon concentration, into an interval of 1 {+-} 0.3 to 111 {+-} 7.4 KBq/m{sup 3} equivalent to doses under 0.0106 Gy. The correlation analysis gives a linear (r=0.80) relationship with a positive slope of 0.2217. The same happens when gamma rays are used in the interval of 1 to 20 Gy, given a linear dose-dependent effect (r=0.878) is obtained; nevetheless the slop is smaller (m=0.003) than for radon. Analysing the results of adaptative factors of the nine exposed generations, it was found that probably radon exposition induced dominant lethals during gametogenesis or/and a selection of the more component gamets of the treated individuals in larval state. It was reflected in the significant decrease on fecundity of the generation exposed. Nevertheless the laying eggs had an increase in egg-to-adult viability and the develop velocity was higher than in control for 3 KBq/m{sup 3}, this suggest that radon concentrations used were able to induce repair mechanisms. These data agree with the Hormesis hypothesis that says: low doses have positive effects on health. It was not possible to obtain a dose-effect relationship except with the develop velocity where it was found a dose-effect inverse proportion. In conclusion, Drosophila melanogaster could be a good system to obtain in vivo damaged induction concentration dependent of radon and its decay products, as well as to study the effects in an exposed population by the analysis of adaptative factors. (Author).

  18. Radon daughter control in the Uravan Mineral Belt

    International Nuclear Information System (INIS)

    Swindle, R.W.

    1977-01-01

    The control of radon daughter products in mines of the Uravan Mineral Belt is strongly affected by the erratic nature of the ore deposits. Another problem is the frequent necessity of reactivating mine workings that have been inactive for many years. Ventilation holes and other airways are usually too small to provide adequate ventilation to satisfy current requirements, and they are often caved. The greatest change in ventilation systems in recent years has been the trend toward larger-diameter, drilled ventilation raises that provide more ventilation at considerably lower cost. The increase in raise size has aggrevated ground-support and ice-formation, difficulties, but these problems are being solved by lining the raises with shotcrete and grouting the water bearing horizons. Electronic air cleaners have been effectively used to remove radon daughter products from mine air for several years but their utility is limited by the rate of regrowth of the radon daughters after the air is cleaned. 5 figures

  19. A combined analysis of North American case-control studies of residential radon and lung cancer.

    Science.gov (United States)

    Krewski, Daniel; Lubin, Jay H; Zielinski, Jan M; Alavanja, Michael; Catalan, Vanessa S; Field, R William; Klotz, Judith B; Létourneau, Ernest G; Lynch, Charles F; Lyon, Joseph L; Sandler, Dale P; Schoenberg, Janet B; Steck, Daniel J; Stolwijk, Jan A; Weinberg, Clarice; Wilcox, Homer B

    2006-04-01

    Cohort studies have consistently shown underground miners exposed to high levels of radon to be at excess risk of lung cancer, and extrapolations based on those results indicate that residential radon may be responsible for nearly 10-15% of all lung cancer deaths per year in the United States. However, case-control studies of residential radon and lung cancer have provided ambiguous evidence of radon lung cancer risks. Regardless, alpha-particle emissions from the short-lived radioactive radon decay products can damage cellular DNA. The possibility that a demonstrated lung carcinogen may be present in large numbers of homes raises a serious public health concern. Thus, a systematic analysis of pooled data from all North American residential radon studies was undertaken to provide a more direct characterization of the public health risk posed by prolonged radon exposure. To evaluate the risk associated with prolonged residential radon exposure, a combined analysis of the primary data from seven large scale case-control studies of residential radon and lung cancer risk was conducted. The combined data set included a total of 4081 cases and 5281 controls, representing the largest aggregation of data on residential radon and lung cancer conducted to date. Residential radon concentrations were determined primarily by a-track detectors placed in the living areas of homes of the study subjects in order to obtain an integrated 1-yr average radon concentration in indoor air. Conditional likelihood regression was used to estimate the excess risk of lung cancer due to residential radon exposure, with adjustment for attained age, sex, study, smoking factors, residential mobility, and completeness of radon measurements. Although the main analyses were based on the combined data set as a whole, we also considered subsets of the data considered to have more accurate radon dosimetry. This included a subset of the data involving 3662 cases and 4966 controls with a-track radon

  20. Evaluation and control of radon daughter hazards in uranium mines

    International Nuclear Information System (INIS)

    Holaday, D.A.

    1974-11-01

    This monograph discusses primarily those health hazards to uranium miners which are produced by exposure to ionizing radiation. Emphasis is placed on the areas of evaluation of exposures to the radioactive gas radon-222 and its short-lived transformation products, and methods of controlling such exposures. A limited discussion of the biological effects of radon and radon daughters is undertaken, and some procedures are given for evaluating hazards created by other common contaminants of mine atmospheres. A large amount of information exists on these topics, some of which is unpublished or is not readily available. While efforts were made to obtain data from all sources, undoubtedly some valuable work was overlooked. The monograph is an endeavor to assemble pertinent information and make it available to those who are concerned with producing uranium at minimal risks. Where they were available, a variety of procedures for evaluating hazards are given, and examples of systems for controlling hazards are included. 154 references

  1. Ventilation systems as an effective tool for control of radon daughter concentration in mines

    International Nuclear Information System (INIS)

    Dory, A.B.

    1981-10-01

    Introduced with a brief discussion of the key role of ventilation in controlling mine atmospheres, the effects of the design of the ventilation system on the control of radon daughter concentrations are illustrated with specific reference to Alcan's Director Mine, St-Lawrence, Nfld. (This fluorspar mine was found to have high radon concentrations due to mine water bringing in dissolved radon.) After a discussion of the health physics history of the mine, the various phases of the ventilation system design and the general results are detailed. The author draws some conclusions having general application to the design of any mine with a radon or thoron daughter concentration. These include minimizing the 'age' of the air; the need for continuous ventilation in all areas; the value of remote control and monitoring; and the benefits of mine pressurization

  2. Radon reduction

    International Nuclear Information System (INIS)

    Hamilton, M.A.

    1990-01-01

    During a radon gas screening program, elevated levels of radon gas were detected in homes on Mackinac Island, Mich. Six homes on foundations with crawl spaces were selected for a research project aimed at reducing radon gas concentrations, which ranged from 12.9 to 82.3 pCi/l. Using isolation and ventilation techniques, and variations thereof, radon concentrations were reduced to less than 1 pCi/l. This paper reports that these reductions were achieved using 3.5 mil cross laminated or 10 mil high density polyethylene plastic as a barrier without sealing to the foundation or support piers, solid and/or perforated plastic pipe and mechanical fans. Wind turbines were found to be ineffective at reducing concentrations to acceptable levels. Homeowners themselves installed all materials

  3. Ventilation systems as an effective tool for control of radon daughter concentration in mines

    International Nuclear Information System (INIS)

    Dory, A.B.

    1981-10-01

    Experience in mines shows that a very high concentration of radon daughters builds up in an unventilated dead end heading. Even minimal air movement results in a drastic reduction in radon daughter concentration. Designing the ventilation system to provide an optimized flow of fresh air into the workplace results in acceptable climatic conditions and radon daughter levels. The example of the Director fluorospar mine in Newfoundland is used to illustrate the actual design and operation of a ventilation system that provided effective radon daughter control. It was found at this mine that the age of the air underground should be kept as low as possible; that no areas of the mine should be left unventilated unless they could be kept at negative pressure; that a comparatively simple remote control and monitoring system helped stabilize ventilation and detected upsets; that the ventilation system should operate continuously, even when the mine is shut down for short periods; and that pressurization of the mine seemed to inhibit radon influx

  4. Preliminary evaluation of the control of indoor radon daughter levels in new structures

    International Nuclear Information System (INIS)

    Fitzgerald, J.E. Jr.; Guimond, R.J.

    1976-01-01

    As part of its assessment of the radiological impact of the phosphate industry in Florida, the US Environmental Protection Agency has surveyed residences built atop uraniferous reclaimed phosphate mining land. These surveys have shown elevated radon daughter levels to exist in structures built on this land. In order to allow safer use of this land for residential construction, various state-of-the-art radon daughter control technologies were evaluated by the Agency. These included forced ventilation, polymeric sealants, excavation, crawl space construction, and improved slab quality. From a cost-effectiveness evaluation, improved slab quality and crawl space construction were determined to best satisfy the criteria for optimal radon daughter control

  5. Radon-daughter exposures in energy-efficient buildings

    International Nuclear Information System (INIS)

    Nero, A.V.; Berk, J.V.; Boegel, M.L.; Hollowell, C.D.; Ingersoll, J.G.; Nazaroff, W.W.

    1981-10-01

    A radon concentration of 1 pCi/1 (37 Bq/m 3 ) appears to lie in the range that is typical for air inside US residential buildings. Moreover, some US residences have concentrations higher than 1 pCi/1, sometimes by an order of magnitude, implying significant individual risk to occupants. For typical radon daughter equilibrium ratios, this concentration corresponds to a radon daughter exposure rate of 0.2 working level months (WLM) per year. This exposure rate may account for a significant lung cancer incidence if data on lung cancers per unit exposure in miners are applicable to such low exposures. Reductions in air exchange rates may rise the typical exposure rate and even increase it to unacceptable levels in some cases. Measures that reduce energy use by reducing natural infiltration or mechanical ventilation in new or retrofit buildings are therefore undergoing severe scrutiny. Lawrence Berkeley Laboratory has performed measurements in buildings specifically designed to use energy efficiently or utilize solar heating. In many of these buildings radon concentrations appear to arise primarily from soil underlying the buildings. Measures to control higher levels, e.g., by mechanical ventilation with heat recuperation, appear to be economical. However, to evaluate energy-saving programs adequately requires a much more comprehensive characterization of radon sources (for example, by geographical area) and a much fuller understanding of the dynamics of radon and its daughters indoors than now exist

  6. Surface-deposition and distribution of the radon-decay products indoors

    International Nuclear Information System (INIS)

    Espinosa, G.; Tommasino, L.

    2015-01-01

    The exposure to radon-decay products is of great concern both in dwellings and workplaces. The model to estimate the lung dose refers to the deposition mechanisms and particle sizes. Unfortunately, most of the dose data available are based on the measurement of radon concentration and the concentration of radon decay products. These combined measurements are widely used in spite of the fact that accurate dose assessments require information on the particle deposition mechanisms and the spatial distribution of radon decay products indoors. Most of the airborne particles and/or radon decay products are deposited onto indoor surfaces, which deposition makes the radon decay products unavailable for inhalation. These deposition processes, if properly known, could be successfully exploited to reduce the exposure to radon decay products. In spite of the importance of the surface deposition of the radon decay products, both for the correct evaluation of the dose and for reducing the exposure; little or no efforts have been made to investigate these deposition processes. Recently, two parallel investigations have been carried out in Rome and at Universidad Nacional Autónoma de México (UNAM) in Mexico City respectively, which address the issue of the surface-deposited radon decay products. Even though these investigations have been carried independently, they complement one another. It is with these considerations in mind that it was decided to report both investigations in the same paper. - Highlights: • Distribution of Radon and Thoron decay indoor products. • Indoor radon measurements complexity. • Short and long term measurements of surface deposit of Radon and Thoron decay products. • Microclimate controlled conditions room. • Nuclear Tracks Detectors

  7. Radiation exposure due to radon and radon daughters

    International Nuclear Information System (INIS)

    Ullmann, W.

    1976-01-01

    Underground miners working over long periods of time in mines with a high content of radon and radon daughters belong to that group of occupationally exposed persons who are subject to the greatest somatic risk, with values especially high if the permissible dose limits are exceeded. Follwing an overview of the permissible limits currently in use for radon and radon daughters as well as the results of examinations performed in nationally-owned underground mining of the G.D.R., considerations are presented on the measuring quantities requisite for statistical, control and safety measurements in this field. Finally, conclusions are drawn concerning the measuring procedures and instruments to be employed for practical work. (author)

  8. Radon and radiation biology of the lung

    International Nuclear Information System (INIS)

    Crameri, R.; Burkart, W.

    1989-01-01

    The main papers presented at the meeting dealt with the behaviour of radon and the indoor environment, radiation biology of the lung, lung dosis and the possible cancer risk caused by radon in homes, contamination of the room air. A series of special papers treated the radon problem in detail: sources and transport mechanisms of radon, geological aspects of the radon radiation burden in Switzerland, radon in homes, search for radon sources, and the Swiss radon-programme RAPROS. 67 figs., 13 tabs., 75 refs

  9. A remote controlled system for continuous radon measurements to realize a monitoring network

    International Nuclear Information System (INIS)

    Roca, V.; Pugliese, M.; Venoso, G.; Roca, V.; Boiano, A.; D'Onofrio, A.; Pugliese, M.; Sabbarese, C.; Venoso, G.; D'Onofrio, A.; Sabbarese, C.

    2006-01-01

    R.A.M.O.N.A. (radon monitoring and acquisition) is a compact system for radon and climatic parameters monitoring. The instrument can perform alpha particles spectrometry with a resolution better than .5 %, so it is possible the discrimination of radon and thoron daughters. The development of battery operated electronics with integrated amplifier and micro controller makes the device applicable for in-lab and in-field measurements. Moreover, an ethernet interface allows to remotely drive the system and the download of acquired data. After a wide use of the prototype in laboratory, a lot of systems has been built and installed in some sites to carry out radon monitoring in soil. (authors)

  10. Radon and Lung Cancer Case-Control Study in Middle Ural

    International Nuclear Information System (INIS)

    Kirdin, I.A.; Lezhnin, V.L.; Yarmoshenko, I.V.; Ekidin, A.

    2001-01-01

    Full text: The pilot phase of radon and lung cancer case-control study has been performed in Karpinsk and Pervouralsk towns of Middle Ural region of Russia. The case group consists of 341 persons with lung cancer and living in that towns at least five previous years. The lung cancer diagnoses were carefully verified by instrumental techniques and 70% of its were morphologically validated. The persons for the control group (448) were chosen from the population living in that towns at least five years taking into account the age and sex. The special epidemiological questionnaire was developed which includes the items by the groups of factors as follow: clinical data, social factors, chronic lung diseases, life habit, tobacco smoking, alcohol drinking, diet preference etc. The epidemiological questionnaires were fulfilled for each member of case and control groups. Radon gas concentration and thoron equilibrium equivalent concentration measurements had been performed using nuclear track detectors and grab sampling accordingly in the dwellings of case and control groups members. By preliminary estimation the odds ratios are 1, 0.91, 1.2, 1.1 in the ranges of radon and thoron equilibrium equivalent concentration 0-6, 3-13, 13-36 and 36-370 Bq/m 3 respectively. The deeper and more rigorous analysis as well as different independent approaches will be discussed in the paper.(author)

  11. Residential radon exposure and lung cancer risk in Misasa, Japan. A case-control study

    International Nuclear Information System (INIS)

    Sobue, Tomotaka; Lee, Valerie S.; Ye, Weimin; Tanooka, Hiroshi; Mifune, Masaaki; Suyama, Akihiko; Koga, Taeko; Morishima, Hiroshige; Kondo, Sohei

    2000-01-01

    In order to investigate an association between residential radon exposure and risk of lung cancer, a case-control study was conducted in Misasa Town, Tottori Prefecture, Japan. The case series consisted of 28 people who had died of lung cancer in the years 1976-96 and 36 controls chosen randomly from the residents in 1976, matched by sex and year of birth. Individual residential radon concentrations were measured for 1 year with alpha track detectors. The average radon concentration was 46 Bq/m 3 for cases and 51 Bq/m 3 for controls. Compared to the level of 24 or less Bq/m 3 , the adjusted odds ratios of lung cancer associated with radon levels of 25-49, 50-99 and 100 or more Bq/m 3 , were 1.13 (95% confidence interval; 0.29-4.40), 1.23 (0.16-9.39) and 0.25 (0.03-2.33), respectively. None of the estimates showed statistical significance, due to small sample size. When the subjects were limited to only include residents of more than 30 years, the estimates did not change substantially. This study did not find that the risk pattern of lung cancer, possibly associated with residential radon exposure, in Misasa Town differed from patterns observed in other countries. (author)

  12. Radon-222: tracer of geological systems dynamics. Methodology and signal processing, interpretation of radon-222 behaviour in active geological media

    International Nuclear Information System (INIS)

    Richon, Patrick

    2011-01-01

    detection of the gravimetric waves O1 and M2 in the sub-glacial laboratory of Argentiere tend to prove the relationship between mechanical deformations and variations of radon-222 activity. It is therefore theoretically possible to detect radon variations induced by the mechanical strain linked to an earthquake. However, hydrological effects (piston effect) cannot be not excluded as it is shown with data acquired on the Roselend site. On the Merapi volcano, we also demonstrate that the barometric wave S2, dissimulated in the radon activity and soils gas temperature, allows us to follow the evolution of the fracture self-sealing. This proved to be a precursory process of the 2006 eruption. These results demonstrate the strong potential of the measurement of radon-222 applied to the tracking of natural phenomena, providing, however, that one have a control on the instrumentation, a knowledge of physical processes associated with radon transport, and mostly that the tools of signals processing are applied. These tools are very promising for monitoring and understanding geodynamical processes. (author) [fr

  13. Models for retrospective quantification of indoor radon exposure in case-control studies

    International Nuclear Information System (INIS)

    Gerken, M.; Kreienbrock, L.; Wellmann, J.; Kreuzer, M.; Wichmann, H.E.

    2000-01-01

    In epidemiologic studies on lung cancer risk due to indoor radon the quantification of individual radon exposure over a long time period is one of the main issues. Therefore, radon measurements in one or more dwellings, which in total have been inhabited by the participants for a sufficient time-period, are necessary as well as consideration of changes of building characteristics and ventilation habits, which influence radon concentration. Given data on 1-y alpha-track measurements and personal information from 6,000 participants of case-control studies in West and East Germany, and improved method is developed to assess individual radon exposure histories. Times spent in different rooms of the dwelling, which are known from a personal questionnaire, are taken into account. The time spent outside the house varies substantially among the participants. Therefore, assuming a substantially lower radon exposure outside the dwelling, the residence time constitutes an important aspect of total radon exposure. By means of an analysis of variance, important determinants of indoor radon are identified, namely constant conditions such as type of house, type of construction, year of construction, floor and type of basement, and changeable conditions such as heating system, window insulation, and airing habits. A correction of measurements in former dwellings by factors derived from the analysis is applied if current living conditions differ from those of the participants at the time when they were living in the particular dwellings. In rare cases the adjustment for changes leads to a correction of the measurements with a factor of about 1.4, but a reduction of 5% on average only. Exposure assessment can be improved by considering time at home and changes of building and ventilation conditions that affect radon concentration. The major concern that changes in ventilation habits and building conditions lead to substantial errors in exposure assessment cannot be confirmed in the

  14. Radon exposure and lung cancer

    International Nuclear Information System (INIS)

    Planinic, J.; Vukovic, B.; Faj, Z.; Radolic, V.; Suveljak, B.

    2003-01-01

    Although studies of radon exposure have established that Rn decay products are a cause of lung cancer among miners, the lung cancer risk to the general population from indoor radon remains unclear and controversial. Our epidemiological investigation of indoor radon influence on lung cancer incidence was carried out for 201 patients from the Osijek town. Ecological method was applied by using the town map with square fields of 1 km 2 and the town was divided into 24 fields. Multiple regression study for the lung cancer rate on field, average indoor radon exposure and smoking showed a positive linear double regression for the mentioned variables. Case-control study showed that patients, diseased of lung cancer, dwelt in homes with significantly higher radon concentrations, by comparison to the average indoor radon level of control sample. (author)

  15. The relationship between radon knowledge, concern and behavior, and health values, health locus of control and preventive health behaviors

    International Nuclear Information System (INIS)

    Kennedy, C.J.; Probart, C.K.; Dorman, S.M.

    1991-01-01

    Understanding similarities between health-related and radon-related knowledge, attitudes, and behaviors may suggest application of effective strategies of radon-related education in targeted populations. A mail survey was returned by 300 randomly selected homeowners in a community at risk for high home radon concentrations (50% response). While 64% were concerned, only 7% tested their homes. The expected association between radon knowledge, radon concern, and information-seeking was identified. In addition, those who tested their homes had greater knowledge and did more information seeking. Health values and radon concern were only weakly related. Environmental concern explained the greatest variance in radon concern (10%). Internal health locus of controls were more likely to have high radon concern. Of the preventive health behaviors, not smoking and seat belt use were the best predictors of variance in radon concern (5%). Segmenting the population is suggested for best educational outcome. Relating information to environmental issues may be helpful. Health-conscious people may need awareness of risks. Issues of self-control and radon testing and reduction may be helpful for some. Synergy between smoke and radon, compounded by smokers lack of concern suggests targeting smokers for education efforts

  16. Geographical associations between radon and cancer: is domestic radon level a marker of socioeconomic status?

    International Nuclear Information System (INIS)

    Wolff, S.P.; Stern, G.

    1991-01-01

    Previous studies showing a geographical association between radon and various cancers, particularly the leukaemias and lymphomas, appear to be confounded by the role of radon levels as a surrogate for socioeconomic status. Higher socioeconomic status (at least at the UK county level) is correlated with higher levels of domestic radon. Controlling for the relationship between socioeconomic status and radon removes the correlation between radon exposure and lymphoproliferative disease. Reported associations between radon and lymphoproliferative disease (and possibly other cancers) may be secondary to socioeconomic variables. (author)

  17. Distribution of indoor radon concentrations and elements of a strategy for control

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1986-05-01

    Indoor radon concentrations vary widely in the US housing stock, with normal concentrations estimated to cause a significant risk of lung cancer by comparison with environmental exposures normally considered, and high concentrations causing risks that exceed even those from cigarette smoking. The probability distribution, i.e., the number of houses at various concentrations, can be estimated from an analysis of the US indoor radon data accumulated to date. Such an analysis suggests that in about a million houses, occupants are receiving exposures greater than those experienced by uranium miners. The form of the frequency distribution, including not only the average concentration, but also the number of houses with high levels, has substantial influence on strategies for control of indoor radon. Such strategies require three major elements: formulation of control objectives in terms of guidelines for remedial action and for new houses; selection of means for identifying homes with high concentrations; and a framework for deciding what types of control measures are appropriate to particular circumstances and how rapidly they should be employed

  18. Utilisation of an Air-conditioning System to Control the Levels of Radon and Radon Progeny in a Workplace Environment

    International Nuclear Information System (INIS)

    Marley, F.

    2000-01-01

    From long-term real-time radon and radon progeny measurements taken in a relatively large retail store, cyclical patterns were evident, which were found to relate to the overriding influence of the timed air-conditioning system. Concentration of radon, radon progeny and the variability of F factor were found to depend significantly on the intermittent operation of this ventilation-air-conditioning system. After pressure equalisation remedial measures proved ineffective, the air-movement system was utilised to reduce the levels of radon and radon progeny to well within established norms applicable during working hours. It is demonstrated that the average levels for radon and radon progeny are reduced in absolute terms. This amounted to less than 12% of the general level, during designated work periods. Where air movement systems are already installed, as well as other circumstances, their regulation provides an economical solution to meeting legal and other standards for radon in the workplace. (author)

  19. Radon and radon daughters in South African underground mines

    International Nuclear Information System (INIS)

    Rolle, R.

    1980-01-01

    Radon and the radon daughters are the radionuclides which primarily determine the level of the radiation hazard in underground uranium mines and to a smaller extent in non-uranium mines. Radon is a gas, and its daughters adsorb on aerosol particles which are of respirable size. The hazard thus arises from the alpha decay of radon and its daughters in contact with lung tissue. Radon is itself part of the uranium decay chain. The major radionuclide, 238 U, decays successively through thirteen shorter-lived radionuclides to 206 Pb. Radon is the only gaseous decay product at room temperature; the other twelve are solids. The main hazard presented by the uranium decay chain is normally determined by the radon concentration because gaseous transport can bring alpha emitters close to sensitive tissue. There is no such transport route for the other alpha emitters, and the level of beta and gamma radiation caused by the uranium decay chain generally presents a far lower external radiation hazard. Radon itself is the heaviest of the noble gases, which are He, Ne, Ar, Kr, Xe and Rn. Its chemical reactions are of no concern in regard to its potential hazard in mines as it may be considered inert. It does, however, have a solubility ten times higher than oxygen in water, and this can play a significant part in assisting the movement of the gas from the rock into airways. Radon continuously emanates into mine workings from uranium ores and from the uranium present at low concentrations in practically any rock. It has been found that the control of the exposure level is most effectively achieved by sound ventilation practices. In South African mines the standard of ventilation is generally high and exposure to radon and radon daughters is at acceptably low levels

  20. Application of a radon model to explain indoor radon levels in a Swedish house

    CERN Document Server

    Font, L; Jönsson, G; Enge, W; Ghose, R

    1999-01-01

    Radon entry from soil into indoor air and its accumulation indoors depends on several parameters, the values of which normally depend on the specific characteristics of the site. The effect of a specific parameter is often difficult to explain from the result of indoor radon measurements only. The adaptation of the RAGENA (RAdon Generation, ENtry and Accumulation indoors) model to a Swedish house to characterise indoor radon levels and the relative importance of the different radon sources and entry mechanisms is presented. The building is a single-zone house with a naturally-ventilated crawl space in one part and a concrete floor in another part, leading to different radon levels in the two parts of the building. The soil under the house is moraine, which is relatively permeable to radon gas. The house is naturally-ventilated. The mean indoor radon concentration values measured with nuclear track detectors in the crawl-space and concrete parts of the house are respectively 75+-30 and 200+-80 Bq m sup - sup 3...

  1. Application of a radon model to explain indoor radon levels in a Swedish house

    International Nuclear Information System (INIS)

    Font, LL.; Baixeras, C.; Joensson, G.; Enge, W.; Ghose, R.

    1999-01-01

    Radon entry from soil into indoor air and its accumulation indoors depends on several parameters, the values of which normally depend on the specific characteristics of the site. The effect of a specific parameter is often difficult to explain from the result of indoor radon measurements only. The adaptation of the RAGENA (RAdon Generation, ENtry and Accumulation indoors) model to a Swedish house to characterise indoor radon levels and the relative importance of the different radon sources and entry mechanisms is presented. The building is a single-zone house with a naturally-ventilated crawl space in one part and a concrete floor in another part, leading to different radon levels in the two parts of the building. The soil under the house is moraine, which is relatively permeable to radon gas. The house is naturally-ventilated. The mean indoor radon concentration values measured with nuclear track detectors in the crawl-space and concrete parts of the house are respectively 75±30 and 200±80 Bq m -3 . Results of the model adaptation to the house indicate that soil constitutes the most relevant radon source in both parts of the house. The radon concentration values predicted by the model indoors fall into the same range as the experimental results

  2. Radon classification of building ground

    International Nuclear Information System (INIS)

    Slunga, E.

    1988-01-01

    The Laboratories of Building Technology and Soil Mechanics and Foundation Engineering at the Helsinki University of Technology in cooperation with The Ministry of the Environment have proposed a radon classification for building ground. The proposed classification is based on the radon concentration in soil pores and on the permeability of the foundation soil. The classification includes four radon classes: negligible, normal, high and very high. Depending on the radon class the radon-technical solution for structures is chosen. It is proposed that the classification be done in general terms in connection with the site investigations for the planning of land use and in more detail in connection with the site investigations for an individual house. (author)

  3. Cost effectiveness analysis of indoor radon control measures

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1989-01-01

    The problem of radon 222 in buildings as a contributor to radiation exposure is described. Five different control methods and the dose reductions that would result from each are analysed. The annualized cost for each control measure was evaluated and the cost effectiveness of each control measure was calculated on the basis of dollars per person-sievert dose reduction. The use of unipolar ion generators for particle removal appears to be the most cost effective and the use of ceiling fans to increase air circulation the least cost effective. 3 figs., 1 tab

  4. Result of the intercomparison exercise on radon measuring instruments and radon detectors 'bev- radon ring 2005'

    International Nuclear Information System (INIS)

    Baumgartner, A.; Maringer, F.J.; Michai, P.; Kreuziger, M.

    2006-01-01

    precautionary measures), should have assured quality of the used measuring systems. In this respect the findings from this intercomparison exercise are used for an actual control, improvement of the calibration and optimization to ensure the correct application of the used radon measuring systems in Austria. (authors)

  5. Biological radiation effects of Radon in Drosophila

    International Nuclear Information System (INIS)

    Pimentel P, A.E.

    1995-01-01

    In order to contribute to the knowledge on the effects of radon and its decay products, the aim of this investigation is to study the biological effects of radon using Drosophila melanogaster throught the somatic mutation and recombination test (SMART) and the analysis of some adaptative factors exposing larvaes to controlled radon atmosphers, considering that this insect could be used as biological monitor. Using the somatic mutation test a mutagenic effect was observed proportional to radon concentration, into an interval of 1 ± 0.3 to 111 ± 7.4 KBq/m 3 equivalent to doses under 0.0106 Gy. The correlation analysis gives a linear (r=0.80) relationship with a positive slope of 0.2217. The same happens when gamma rays are used in the interval of 1 to 20 Gy, given a linear dose-dependent effect (r=0.878) is obtained; nevetheless the slop is smaller (m=0.003) than for radon. Analysing the results of adaptative factors of the nine exposed generations, it was found that probably radon exposition induced dominant lethals during gametogenesis or/and a selection of the more component gamets of the treated individuals in larval state. It was reflected in the significant decrease on fecundity of the generation exposed. Nevertheless the laying eggs had an increase in egg-to-adult viability and the develop velocity was higher than in control for 3 KBq/m 3 , this suggest that radon concentrations used were able to induce repair mechanisms. These data agree with the Hormesis hypothesis that says: low doses have positive effects on health. It was not possible to obtain a dose-effect relationship except with the develop velocity where it was found a dose-effect inverse proportion. In conclusion, Drosophila melanogaster could be a good system to obtain in vivo damaged induction concentration dependent of radon and its decay products, as well as to study the effects in an exposed population by the analysis of adaptative factors. (Author)

  6. Comparison of radon and radon-daughter grab samples obtained during the winter and summer

    International Nuclear Information System (INIS)

    Karp, K.E.

    1987-08-01

    The Technical Measurements Center (TMC), under the auspices of the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) program, is investigating short-term methods for estimating annual average indoor radon-daughter concentrations (RDC). A field study at 40 sample locations in 26 residential structures in Grand Junction, Colorado, was conducted once in the winter and once in the summer. The short-term methods investigated as part of this study include ten-minute radon and radon-daughter grab sampling and hourly RDC measurements. The results of the field study indicate that ten-minute radon grab samples from basement locations are reproducible over different seasons during controlled sampling conditions. Nonbasement radon and RDC grab samples are highly variable even when the use of the location by the occupant is controlled and the ventilation rate is restricted. The grab sampling was performed under controlled occupied conditions. These results confirm that a short-term radon or RDC measurement in a nonbasement location in a house is not a standardized measurement that can be used to infer an annual average concentration. The hourly RDC measurements were performed under three sets of conditions over a 72-hour period. The three sets of conditions were uncontrolled occupied, controlled occupied, and controlled unoccupied. These results indicate that it is not necessary to relocate the occupants during the time of grab sampling. 8 refs., 8 figs., 10 tabs

  7. Radon mitigation in schools utilising heating, ventilating and air conditioning systems

    International Nuclear Information System (INIS)

    Fisher, G.; Ligman, B.; Brennan, T.; Shaughnessy, R.; Turk, B.H.; Snead, B.

    1994-01-01

    As part of a continuing radon in schools technology development effort, EPA's School Evaluation Team has performed radon mitigation in schools by the method of ventilation/pressurisation control technology. Ventilation rates were increased, at a minimum, to meet the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) standard, Ventilation for Acceptable Indoor Air Quality (ASHRAE 62-1989). This paper presents the results and the preliminary evaluations which led to the team's decision to implement this technology. Factors considered include energy penalties, comfort, indoor air quality (IAQ), building shell tightness, and equipment costs. Cost benefit of heat recovery ventilation was also considered. Earlier results of the SEP team's efforts have indicated a severe ventilation problem within the schools of the United States. Two case studies are presented where HVAC technology was implemented for controlling radon concentrations. One involved the installation of a heat recovery ventilator to depressurise a crawl space and provide ventilation to the classrooms which previously had no mechanical ventilation. The other involved the restoration of a variable air volume system in a two-storey building. The HVAC system's controls were restored and modified to provide a constant building pressure differential to control the entry of radon. Pre-mitigation and post-mitigation indoor air pollutant measurements were taken, including radon, carbon dioxide (CO 2 ), particulates, and bio-aerosols. Long-term monitoring of radon, CO 2 , building pressure differentials, and indoor/outdoor temperature and relative humidity is presented. (author)

  8. Radon levels in Oslo schools

    International Nuclear Information System (INIS)

    Birovlev, A.

    2004-01-01

    Radon measurements using passive CR-39 detectors have been conducted in all schools in Oslo municipality during winter 2003/2004. Results are presented and discussed in the light of qualitative and quantitative factors, some of which are specific for schools as workplaces. Analysis is conducted with respect to factors relating to building construction type, ventilation principle, age of building, building size etc. The influence of ventilation type on radon levels is studied, and problems of investigations based purely on conventional passive radon detectors are noted. Over-estimation of radon concentration by passive detectors and day-night variations of indoor radon levels in buildings with mechanical ventilation systems are discussed. Several guiding principles for planning similar investigations based on above discussions are outlined. (author)

  9. Occupational exposure to radon progeny: Importance, experience with control, regulatory approaches

    International Nuclear Information System (INIS)

    Kraus, W.; Schwedt, J.

    2002-01-01

    An overview of possible occupational exposures to enhanced natural radiation in Germany is given, based on an analysis of the German Radiological Protection Commission. So far, the most significant exposure source is radon at underground and above ground workplaces. As a result of relevant regulations, in East Germany since the 70's a systematic monitoring of exposures to radon progeny has been introduced step by step in the uranium industry, in conventional ore mining, in show caves and mines, in enterprises for securing mining areas against subsidence, in radon spas and in water works in radon affected areas. Individual exposures have been assessed. The monitoring results for the period 1975-1998 are presented. Successful protection measures leading to a significant reduction of the exposures are discussed. using workplace monitoring results and registered occupancy times. In West Germany no regulations in this area were in force. Nevertheless, voluntary measuring programmes at similar workplaces were carried out. In case of unacceptable exposures successful protection measures were implemented. At present a systematic approach to control occupational exposures to radon is laid down in the European Directive 96/29/Euratom which has to be taken over in the national legislation to come. The expected number of workplaces to be included in the radiation protection system in Germany, the recommendable way of including different workplace types taking into account appropriate reference levels, and possible approaches to a graded system of workplace and individual monitoring are discussed in detail. (author)

  10. Development of a radon chamber and measurement of the radon solubility in tissues; Entwicklung einer Radonkammer und Messung der Radonloeslichkeit in Gewebe

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas

    2015-04-22

    Every year thousands of patients with inflammatory diseases of the musculoskeletal system undergo radon therapy, but the molecular mechanism and the risk of this therapy are not understood. To study the effects of radon exposure in vitro and in vivo we constructed a radon exposure chamber in the framework of the GREWIS project. With this device we are able to expose samples under controlled and reproducible conditions including the radon galleries in Austria and Germany. Adjustable parameters are radon activity-concentration, temperature, humidity and exposure time. These parameters are permanently monitored and controlled. During experiments with cell cultures it is also possible to adjust the CO{sub 2}-concentration. In addition, experiments with mice can be performed with this setup. To measure the radon kinetics in different types of tissue we exposed tissue samples like fat or muscle and mice in the radonchamber. Afterwards we measured the -spectra of the short living radon decay products lead-214 and bismuth-214 in the exposed samples with a HPGe-Detector. We recorded the spectra at different time points after exposure and calculated the initial amount of radon at the end of the exposure period in the sample and investigated the diffusion of the radon out of it. We compared the results from different types of tissue but also activated coal. In an activated coal sample the radon is bound to it via Van-der-Waals-force and the decay spectra are governed by the life time of the bound radon (3,8 days). In contrast in the biological samples the primary radon diffuses out of the samples in less than 20 minutes and the spectra follow the kinetics of the decay of the daughter products. These measurements where performed for the first time under therapy conditions like in radon galleries and also with higher radon concentration. In our experiments we could see an enhanced accumulation of radon and its decay products in fatty tissue compared to muscle tissue. Also in

  11. Modelling of radon control and air cleaning requirements in underground uranium mines

    International Nuclear Information System (INIS)

    El Fawal, M.; Gadalla, A.

    2014-01-01

    As a part of a comprehensive study concerned with control workplace short-lived radon daughter concentration in underground uranium mines to safe levels, a computer program has been developed and verified, to calculate ventilation parameters e.g. local pressures, flow rates and radon daughter concentration levels. The computer program is composed of two parts, one part for mine ventilation and the other part for radon daughter levels calculations. This program has been validated in an actual case study to calculate radon concentration levels, pressure and flow rates required to maintain acceptable levels of radon concentrations in each point of the mine. The required fan static pressure and the approximate energy consumption were also estimated. The results of the calculations have been evaluated and compared with similar investigation. It was found that the calculated values are in good agreement with the corresponding values obtained using ''REDES'' standard ventilation modelling software. The developed computer model can be used as an available tool to help in the evaluation of ventilation systems proposed by mining authority, to assist the uranium mining industry in maintaining the health and safety of the workers underground while efficiently achieving economic production targets. It could be used also for regulatory inspection and radiation protection assessments of workers in the underground mining. Also with using this model, one can effectively design, assess and manage underground mine ventilation systems. Values of radon decay products concentration in units of working level, pressures drop and flow rates required to reach the acceptable radon concentration relative to the recommended levels, at different extraction points in the mine and fan static pressure could be estimated which are not available using other software. (author)

  12. Radon in workplaces

    International Nuclear Information System (INIS)

    Markkanen, M.; Annanmaeki, M.; Oksanen, E.

    2000-01-01

    The EU Member States have to implement the new Basic Safety Standards Directive (BSS) by May 2000. The Title VII of the Directive applies in particular to radon in workplaces. The Member States are required to identify workplaces which may be of concern, to set up appropriate means for monitoring radon exposures in the identified workplaces and, as necessary, to apply all or part of the system of radiological protection for practices or interventions. The BSS provisions on natural radiation are based on the ICRP 1990 recommendations. These recommendations were considered in the Finnish radiation legislation already in 1992, which resulted in establishing controls on radon in all types of workplaces. In this paper issues are discussed on the practical implementation of the BSS concerning occupational exposures to radon basing on the Finnish experiences in monitoring radon in workplaces during the past seven years. (orig.) [de

  13. Radon and its measurement

    International Nuclear Information System (INIS)

    Penzo, Silvia

    2006-03-01

    The work reviews the topics concerning the problem of the indoor radon and its measurement. The initial stage deals with the general features of radon, from the historical remarks about its discovery to the formation mechanisms in the soil, then passing to describe the transport processes that lead the radon to enter into the buildings. The mean radon concentration distribution among the Italian regions is reported and compared with the situation in the other countries of the world. A particular importance is given to present the national law concerning the radioprotection from the natural sources of ionizing radiations; a paragraph is completely devoted to this argument and to discuss the differences between the Italian approach and the regulations applied in the Test of Europe for both workplaces and dwellings. Chapter 3 describes the different detectors and methods to measure the radon and its short mean live decay products concentrations, together with the operative procedures and guides provided by the Italian law and by the international bodies. As an example of typical radon passive measurement device. the new ENEA detector developed at the Institute of Radioprotection is presented and discussed. Appendix 1 is entirely devoted to discuss the main remedial actions for decreasing the radon indoor concentration both for old and new buildings; appendix 2 reports the main quantities related to radon and radioprotection [it

  14. Second workshop on radon and radon daughters in urban communities associated with uranium mining and processing

    International Nuclear Information System (INIS)

    1979-01-01

    A second meeting of Atomic Energy Control Board staff, federal and provincial government representatives, and consultants was held to discuss progress in reducing the concentrations of radon and its daughter products in houses in communities like Bancroft, Elliot Lake, Port Hope, and Uranium City. Participants discussed successful and unsuccessful remedial techniques, possible sources of radon, and methods of measuring radon and radon daughters in buildings

  15. Dependency of radon entry on pressure difference

    International Nuclear Information System (INIS)

    Kokotti, H.; Kalliokoski, P.

    1992-01-01

    Radon levels, ventilation rate and pressure differences were monitored continuously in four apartment houses with different ventilation systems. Two of them were ventilated by mechanical exhaust, one by mechanical supply and exhaust, and one by natural ventilation. The two-storey houses were constructed from concrete elements on a slab and located on a gravel esker. It was surprising to find that increasing the ventilation rate increased levels of radon in the apartments. Increased ventilation caused increased outdoor-indoor pressure difference, which in turn increased the entry rate of radon and counteracted the diluting effect of ventilation. The increase was significant when the outdoor-indoor pressure difference exceeded 5 Pa. Especially in the houses with mechanical exhaust ventilation the pressure difference was the most important factor of radon entry rate, and contributed up to several hundred Bq m -3 h -1 . (Author)

  16. Effect of ventilation type on radon concentration at places of work

    International Nuclear Information System (INIS)

    Oksanen, E.

    1994-01-01

    Indoor radon ( 222 Rn) concentrations were measured at 76 child care facilities and 36 schools in southern Finland. The buildings had three different types of ventilation systems: mechanical air supply and exhaust, mechanical exhaust, and natural ventilation, the first being most common. The effect of the ventilation type on the long-term radon concentration was studied in child care facilities. The radon concentrations were highest in the naturally ventilated buildings. The mechanical air supply and exhaust system maintained the lowest values in cold wintertime. In school buildings both the long-term radon concentration and short-term radon and daughter concentrations were measured. The correlation of the ventilation type and the radon concentration was not obvious in this group of measurements, but the radon concentrations and the equilibrium factors were highest in buildings with natural ventilation. Radon concentrations were generally lower during the working hours than during the one-month period, as expected. (author)

  17. Influence of ventilation strategies on indoor radon concentrations based on a semiempirical model for Florida-style houses

    International Nuclear Information System (INIS)

    Hintenlang, D.E.; Al-Ahmady, K.K.

    1994-01-01

    Measurements in a full-scale experimental facility are used to benchmark a semiempirical model for predicting indoor radon concentrations for Florida-style houses built using slab-on-grade construction. The model is developed to provide time-averaged indoor radon concentrations from quantitative relationships between the time-dependent radon entry and elimination mechanisms that have been demonstrated to be important for this style of residential construction. The model successfully predicts indoor radon concentrations in the research structure for several pressure and ventilation conditions. Parametric studies using the model illustrate how different ventilation strategies affect indoor radon concentrations. It is demonstrated that increasing house ventilation rates by increasing the effective leakage area of the house shell does not reduce indoor radon concentrations as effectively as increasing house ventilation rates by controlled duct ventilation associated with the heating, ventilating, and air conditioning system. The latter strategy provides the potential to minimize indoor radon concentrations while providing positive control over the quality of infiltration air. 9 refs., 5 figs

  18. Result of the intercomparison exercise on radon measuring instruments and radon detectors 'bev- radon ring 2005'

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, A. [Vienna Univ. of Technology, Atominstitut, Wien (Austria); Maringer, F.J.; Michai, P.; Kreuziger, M. [BEV-Federal Office of Metrology and Surveying, Wien (Austria)

    2006-07-01

    precautionary measures), should have assured quality of the used measuring systems. In this respect the findings from this intercomparison exercise are used for an actual control, improvement of the calibration and optimization to ensure the correct application of the used radon measuring systems in Austria. (authors)

  19. Remedial measures in Swedish and Norwegian houses - application of radon and radon decay product measurements

    International Nuclear Information System (INIS)

    Just, G.; Philipsborn, H. von; Matolin, M.; Molzahn, D.

    1998-01-01

    Houses and apartments in Sweden and Norway with excessive indoor radon concentrations were studied in detail with a variety of methods, standard and novel ones recently developed. For suitable remediation it is necessary to distinguish soil radon and exhalation from blue (porous) concrete. Our CARBOTEST-S is a simple, sensitive, in-situ method to quantify radon exhalation from existing walls, as well as radon permeability of different protective foils and final quality control of foils applied to existing walls. (orig.) [de

  20. Monitoring and measurement of radon activity in a new design of radon calibration chamber

    International Nuclear Information System (INIS)

    Heidary, S.; Setayeshi, S.; Ghannadi-Maragheh, M.; Negarestani, A.

    2011-01-01

    A new radon calibration chamber has been designed, constructed and tested to set various desired environmental parameters. The chamber is cubic with two trapezoid sides with a total volume size of 0.498 m 3 . The three parameters, temperature, humidity and flow are controlled in the range of 20-45 deg. C (±2 deg. C), 10-70% (±2.5%) and 0.2-10 m 3 /min (±0.1 m 3 /min) respectively. The chamber is equipped with a controllable speed centrifugal fan to achieve a desirably uniform radon flow rate. Many parts of this system are controlled and monitored with a PLC (Programmable Logic Control) and HMI (Human Monitoring Interface) software (Citect Scada). Finally a radon detector (Alpha-Guard) registers the activity parameter.

  1. Locating and limiting radon in dwellings

    International Nuclear Information System (INIS)

    Hildingson, O.; Gustafsson, J.; Nilsson, I.

    1984-01-01

    More than 3,300 Swedish dwellings have an indoor radon daughter concentration above 400 Bq.m -3 (or 0.108 WL). It is considered to be unsafe to live in any of these dwellings and the radon daughter concentration has to be reduced. Before deciding what measures to take, it is important to determine the radon sources. Possible sources are exhalation from building materials and/or radon transport from the ground into the building through cracks and joints in the slab. Different methods of locating the sources have been developed. To locate cracks and joints in slabs the ventilation rate and the air pressure difference relative to the ground are changed while monitoring radon/radon daughter concentration. The effect of five different measures to reduce the indoor radon daughter concentration have also been evaluated: increased ventilation rate by mechanical ventilation, ventilation of the small spaces between the floor and the slab, sealing the surface of radon exhaling walls, sealing joints and cracks in the slab, and ventilation of the drainage under the slab. (author)

  2. Leukaemia risks and radon

    International Nuclear Information System (INIS)

    Wolff, S.P.

    1991-01-01

    A correlation has been established between domestic radon exposure and mutation in peripheral T lymphocytes. Some caution must be exercised, however, in interpreting this result as evidence that levels of domestically encountered radon are sufficient to cause leukaemogenic chromosomal alterations. Radon may simply be acting as a surrogate for some other mutagenic factor. Correlations with Local Authority statistics collected in the United Kingdom 1981 Census appear to show that lower domestic radon levels reflect relatively greater socioeconomic deprivation whereas higher levels reflect greater prosperity. The relative risk of lymphoproliferative disease correlates with the same factors that determine domestic radon levels at the county level. Putative relationships between domestic radon exposure and cancer thus need to be controlled for socioeconomic status and associated factors, at least at the county level. (The correlations may not apply to smaller areas.) Similarly, the causative factors underlying the relationships between higher regional socioeconomic status and leukaemia require closer examination. (author)

  3. Radon in homes and risk of lung cancer: 13 collaborative analyses of individual data from European case-control studies

    International Nuclear Information System (INIS)

    Darby, S.; Hill, D.; Doll, R.; Auvinen, A.; Barros Dios, J.M.; Ruano Ravina, A.; Baysson, H.; Tirmarche, M.; Bochicchio, F.; Deo, H.; Falk, R.; Forastiere, F.; Hakama, M.; Heid, I.; Schaffrath Rosario, A.; Wichmann, H.E.; Kreienbrock, L.; Kreuzer, M.; Lagarde, F.; Pershagen, G.; Makelainen, I.; Ruosteenoja, E.; Muirhead, C.; Oberaigner, W.; TomaBek, L.; Whitley, E.

    2007-01-01

    Objective: To determine the risk of lung cancer associated with exposure at home to the radioactive disintegration products of naturally occurring radon gas. Design: Collaborative analysis of individual data from 13 case-control studies of residential radon and lung cancer. Setting: Nine European countries. Subjects: 7148 cases of lung cancer and 14 208 controls. Main outcome measures: Relative risks of lung cancer and radon gas concentrations in homes inhabited during the previous 5-34 years measured in becquerels (radon disintegrations per second) per cubic metre (Bq/m3) of household air. Results: The mean measured radon concentration in homes of people in the control group was 97 Bq/m3, with 11% measuring > 200 and 4% measuring > 400 Bq/m3. For cases of lung cancer the mean concentration was 104 Bq/m3. The risk of lung cancer increased by 8.4% (95% confidence interval 3.0% to 15.8%) per 100 Bq/m3 increase in measured radon (P=0.0007). This corresponds to an increase of 16% (5% to 31%) per 100 Bq/m3 increase in usual radon- that is, after correction for the dilution caused by random uncertainties in measuring radon concentrations. The dose-response relation seemed to be linear with no threshold and remained significant (P = 0.04) in analyses limited to individuals from homes with measured radon < 200 Bq/m3. The proportionate excess risk did not differ significantly with study, age, sex, or smoking. In the absence of other causes of death, the absolute risks of lung cancer by age 75 years at usual radon concentrations of 0, 100, and 400 Bq/m3 would be about 0.4%, 0.5%, and 0.7%, respectively, for lifelong non-smokers, and about 25 times greater (10%, 12%, and 16%) for cigarette smokers. Conclusions: Collectively, though not separately, these studies show appreciable hazards from residential radon, particularly for smokers and recent ex-smokers, and indicate that it is responsible for about 2% of all deaths from cancer in Europe. (author)

  4. Radon: an environmental pollutant

    International Nuclear Information System (INIS)

    Mills, W.A.

    1979-01-01

    Radiological concerns with the disposal and use of mining and milling residues have heightened to the point that federal agencies are asking or being asked to formulate new regulactions for controlling radon daughters from a variety of sources - radioactivity previously considered to be part of our natural environment. Based on information derived from epidemiologic studies of underground miners, particularly uranium miners, the health impact on the general public is being projected. Depending on the assumptions made, these projections vary widely. Because of these variations in health risks, decisions on control measures have even wider implications on economic and social considerations. Thus the question: is radon an environmental pollutant. While not fully answering the question, recognizing the uncertainties in assessing and controlling radon daughters can put the question in better perspective

  5. Third workshop on radon and radon daughters in urban communities associated with uranium mining and processing. Pt. 1

    International Nuclear Information System (INIS)

    1980-01-01

    This third meeting of Atomic Energy Control Board staff, contractors, federal and provincial government representatives, and delegates from outside Canada was held to discuss progress in reducing concentrations of radon and radon daughters in houses. Speakers talked about successful and unsuccessful remedial measures, methods of measuring and monitoring thoron and radon in houses, and indoor radon concentrations in Canada, Britain and Sweden

  6. A study on the risk from indoor radon 220 and radon 222 exposures

    International Nuclear Information System (INIS)

    Rannou, A.

    1986-12-01

    The hazards from radon (radon 220 and 222) in dwelling atmospheres have been studied. In the first part devoted to the present state of the problem, an analysis is made of the formation mechanisms and the evolution of radon and its daughters indoors. The main physical and dosimetric quantities required for the risk evaluation are defined. The theoretical and experimental analysis of the methods of measurements of radon and its daughters used in the measurement campaign are considered in the second part. The progress and the result of the national survey are developed in the third part. The effects of several factors on indoor levels are discussed. The conclusions of a particular study in the Finistere ''department'' are presented. The data collected make it possible to assess the mean exposure of man to natural radiation [fr

  7. Geologic controls on indoor radon in the Pacific Northwest

    International Nuclear Information System (INIS)

    Otton, J.K.; Duval, J.S.

    1990-01-01

    This paper reports on comparisons of average indoor radon levels, soil radium content (derived from aerial gamma-ray data), and soil characteristics for selected townships in Washington, Oregon, and Idaho which show that: soil radium content provides a first-order estimate of the relative amounts of indoor radon where soils are either of low to moderate intrinsic permeability or of permeability reduced by high moisture; in drier parts of the study area (east of the Cascade Mountains), unusually high average indoor radon levels are almost all characterized by soils that have high effective permeabilities (greater than 20 inches per hour), based on available country soil descriptions; and in the wetter parts of the study area (west of the Cascade Mountains), townships with unusually high indoor radon levels are characterized by steeply sloped soils

  8. Workshop on radon and radon daughters in urban communities associated with uranium mining and processing

    International Nuclear Information System (INIS)

    1978-01-01

    This meeting of Atomic Energy Control Board staff, representatives of other government departments, and consultants was called to exchange information on steps taken to lower radiation levels in houses in communities such as Elliot Lake, Uranium City, and Port Hope. Discussions covered the sources of radon and radon daughters in these houses, radon measurement techniques, and remedial methods that worked or were not successful

  9. Radon

    Energy Technology Data Exchange (ETDEWEB)

    Weigel, F [Muenchen Univ. (Germany, F.R.). Inst. fuer Anorganische Chemie

    1978-09-01

    The noble gas radon, formerly called emanation, was discovered a few years after radium. /sup 222/Rn, the longest-lived isotope, has a half-life of 3,82 days. This half life is so short that the experimental techniques available at present (1978) are not sufficient for a characterization of defined radon compounds, even though there are definite indications for the existence of such compounds, and one may expect such radon compounds to be even more stable than the numerous known xenon compounds. - The radon isotopes /sup 219/Rn (Actinon), /sup 220/Rn (Thoron), and /sup 222/Rn (Radon) occur in nature despite their rather short half-lives, because they are continously generated from their mothers /sup 223/Ra, /sup 224/Ra, and /sup 226/Ra, which are in secular equilibrium with long-lived isotopes /sup 235/U, /sup 238/U, and /sup 232/Th, and are in turn continously formed from these long-lived isotopes. Since the radon isotopes are gases, they enter the atmosphere and are carried for long distances with air currents. - Because radon is so short-lived, its practical applications are rather limited. For medical applications, small sealed glass tubes filled with radon are used as radiation sources after the radon has decayed, because the whole series of Po-, Bi-, and Pb-isotopes of the radium decay chain are formed, whose penetrating radiation is useful for therapy. When solids are spiked with Ra isotopes, radon is evolved at a constant rate. On heating such solids, phase transitions show up by sudden increased radon evolution (Hahn's emanation method). - On the basis of nuclear theoretical calculations, there is hardly a chance for the discovery of a long-lived radon species. Therefore, major progress in radon chemistry is hardly to be expected in the near future.

  10. Protection of workers from radon

    International Nuclear Information System (INIS)

    Jacques, P.

    1992-01-01

    The TUC regards exposure to radon as one of a range of health hazards in industry which need to be controlled. In the case of radon the costs of control measures are very much lower than the costs of averting similar doses in the nuclear industry. All employers in the areas affected should be able to demonstrate that they have taken appropriate steps to determine the risks from radon and have introduced remedial measures where appropriate. The TUC considers it essential that trade union safety representatives should be fully involved and consulted about the problem. (Author)

  11. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    International Nuclear Information System (INIS)

    Riley, W.J.

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind's interactions with a building's superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport

  12. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Riley, William Jowett [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  13. Environmental Concentration of Radon and Radon Progeny in a Nuclear Facility in a Decommissioning Stage

    International Nuclear Information System (INIS)

    Ramirez, M. P.; Correa, E.; Sancho, C.

    1999-01-01

    According to the new European Directive 96/29/EURATOM the radiological risk due to natural radionuclides must be consider and the pertinent periodic control must be realized. During the works performed at CIEMAT an estimation of the effective average doses due to Radon inhalation in work places of the installation have been performed. Radon and Radon progeny concentration has been measured in continuous joint whit the meteorological conditions as temperature, pressure and relative humidity. Two different equipment has been used: Alpha-guard whit ionization chamber detector and Eda-wlm-300 whit a semiconductor detector. A passive Radon detector, E-perm has been simultaneously used in the monitoring system. The results obtained during the measuring of Radon and Radon progeny concentrations indoors and estimation of doses have been analyzed and are presented in the paper. (Author) 11 refs

  14. Indoor radon pollution: Control and mitigation. June 1978-December 1989 (Citations from the NTIS data base). Report for June 1978-December 1989

    International Nuclear Information System (INIS)

    1990-01-01

    This bibliography contains citations concerning the control and mitigation of radon pollution in homes and commercial buildings. Citations cover radon transport studies in buildings and soils, remedial action proposals on contaminated buildings, soil venting, building ventilation, sealants, filtration systems, water degassing, reduction of radon sources in building materials, and evaluation of existing radon mitigation programs including their cost effectiveness. Analysis and detection of radon and radon toxicity are covered in separate published bibliographies. (Contains 129 citations fully indexed and including a title list.)

  15. Radon as a remedy - radiobiological and medical aspects, risk; Radon als Heilmittel - strahlenbiologische und medizinische Aspekte, Risiko

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, E.R.; Nuernberger, E.; Martignoni, K. [Inst. fuer Strahlenhygiene des Bundesamtes fuer Strahlenschutz, Oberschleissheim/Neuherberg (Germany)

    1995-09-01

    For years there have been controversial discussions about the benefit and risk of radon-balneo-therapy. This is particularly true where the inhalation of radon and its daughter products in curative galleries is concerned. Animal experiments and studies on uranium miners have clearly shown that the exposure with radon and its daughter products is connected with an additional risk for lung cancer. Findings on balneo-therapeutic mechanisms are, at best, incomplete and the topic of controversial discussions in radiobiology. This applies specifically to `hormesis` or `adaptive response`, as indicated in this context. Given the numerous reports of therapeutic results, there appear to be curative effects from radon-balneotherapy for special indications. (orig.) [Deutsch] Nutzen und Risiko der Radon-Balneotherapie werden seit Jahren widerspruechlich diskutiert. Dies gilt insbesondere fuer die Inhalation des Radons und seiner Folgeprodukte in Heilstollen. Tierversuche und Untersuchungen bei Uranbergleuten haben eindeutig gezeigt, dass mit der Exposition durch Radon und seinen Folgeprodukten ein zusaetzliches Lungenkrebsrisiko verbunden ist. Erkenntnisse zum Wirkungsmechanismus der Radon-Balneotherapie liegen allenfalls in Ansaetzen vor und werden in der Strahlenbiologie kontrovers diskutiert. Dies gilt insbesondere fuer die in diesem Zusammenhang angefuehrte `Hormesis` bzw. `Adaptive Response`. Geht man von den zahlreich berichteten therapeutischen Erfahrungen aus, so scheint es Hinweise auf Heileffekte der Radon-Balneotherapie fuer spezielle Indikationen zu geben. (orig.)

  16. Radon anomalies prior to earthquakes (2). Atmospheric radon anomaly observed before the Hyogoken-Nanbu earthquake

    International Nuclear Information System (INIS)

    Ishikawa, Tetsuo; Tokonami, Shinji; Yasuoka, Yumi; Shinogi, Masaki; Nagahama, Hiroyuki; Omori, Yasutaka; Kawada, Yusuke

    2008-01-01

    Before the 1995 Hyogoken-Nanbu earthquake, various geochemical precursors were observed in the aftershock area: chloride ion concentration, groundwater discharge rate, groundwater radon concentration and so on. Kobe Pharmaceutical University (KPU) is located about 25 km northeast from the epicenter and within the aftershock area. Atmospheric radon concentration had been continuously measured from 1984 at KPU, using a flow-type ionization chamber. The radon concentration data were analyzed using the smoothed residual values which represent the daily minimum of radon concentration with the exclusion of normalized seasonal variation. The radon concentration (smoothed residual values) demonstrated an upward trend about two months before the Hyogoken-Nanbu earthquake. The trend can be well fitted to a log-periodic model related to earthquake fault dynamics. As a result of model fitting, a critical point was calculated to be between 13 and 27 January 1995, which was in good agreement with the occurrence date of earthquake (17 January 1995). The mechanism of radon anomaly before earthquakes is not fully understood. However, it might be possible to detect atmospheric radon anomaly as a precursor before a large earthquake, if (1) the measurement is conducted near the earthquake fault, (2) the monitoring station is located on granite (radon-rich) areas, and (3) the measurement is conducted for more than several years before the earthquake to obtain background data. (author)

  17. Radon Research Program, FY-1990

    International Nuclear Information System (INIS)

    1991-03-01

    The Department of Energy (DOE) Office of Health and Environmental Research (OHER) has established a Radon Research Program with the primary objectives of acquiring knowledge necessary to improve estimates of health risks associated with radon exposure and also to improve radon control. Through the Radon Research Program, OHER supports and coordinates the research activities of investigators at facilities all across the nation. From this research, significant advances are being made in our understanding of the health effects of radon. OHER publishes this annual report to provide information to interested researchers and the public about its research activities. This edition of the report summarizes the activities of program researchers during FY90. Chapter 2 of this report describes how risks associated with radon exposure are estimated, what assumptions are made in estimating radon risks for the general public, and how the uncertainties in these assumptions affect the risk estimates. Chapter 3 examines how OHER, through the Radon Research Program, is working to gather information for reducing the uncertainties and improving the risk estimates. Chapter 4 highlights some of the major findings of investigators participating in the Radon Research Program in the past year. And, finally, Chapter 5 discusses the direction in which the program is headed in the future. 20 figs

  18. Residential radon exposure, diet and lung cancer: a case-control study in a Mediterranean region.

    Science.gov (United States)

    Bochicchio, Francesco; Forastiere, Francesco; Farchi, Sara; Quarto, Maria; Axelson, Olav

    2005-05-10

    We performed a case-control study in Lazio, a region in central Italy characterized by high levels of indoor radon, Mediterranean climate and diet. Cases (384) and controls (404) aged 35-90 years were recruited in the hospital. Detailed information regarding smoking, diet and other risk factors were collected by direct interview. Residential history during the 30-year period ending 5 years before enrollment was ascertained. In each dwelling, radon detectors were placed in both the main bedroom and the living room for 2 consecutive 6-month periods. We computed odds ratios (ORs) and 95% confidence intervals (CIs) for time-weighted radon concentrations using both categorical and continuous unconditional logistic regression analysis and adjusting for smoking, diet and other variables. Radon measurements were available from 89% and 91% of the time period for cases and controls, respectively. The adjusted ORs were 1.30 (1.03-1.64), 1.48 (1.08-2.02), 1.49 (0.82-2.71) and 2.89 (0.45-18.6) for 50-99, 100-199, 200-399 and 400+ Bq/m(3), respectively, compared with 0-49 Bq/m(3) (OR = 1; 0.56-1.79). The excess odds ratio (EOR) per 100 Bq/m(3) was 0.14 (-0.11, 0.46) for all subjects, 0.24 (-0.09, 0.70) for subjects with complete radon measurements and 0.30 (-0.08, 0.82) for subjects who had lived in 1 or 2 dwellings. There was a tendency of higher risk estimates among subjects with low-medium consumption of dietary antioxidants (EOR = 0.32; -0.19, 1.16) and for adenocarcinoma, small cell and epidermoid cancers. This study indicates an association, although generally not statistically significant, between residential radon and lung cancer with both categorical and continuous analyses. Subjects with presumably lower uncertainty in the exposure assessment showed a higher risk. Dietary antioxidants may act as an effect modifier.

  19. An assessment of ecological and case-control methods for estimating lung cancer risk due to indoor radon

    International Nuclear Information System (INIS)

    Stidley, C.A.; Samet, J.M.

    1992-01-01

    Studies of underground miners indicate that indoor radon is an important cause of lung cancer. This finding has raised concern that exposure to radon also causes lung cancer in the general population. Epidemiological studies, including both case-control and ecological approaches, have directly addressed the risks of indoor residential radon; many more case-control studies are in progress. Ecological studies that associate lung-cancer rates with typical indoor radon levels in various geographic areas have not consistently shown positive associations. The results of purportedly negative ecological studies have been used as a basis for questioning the hazards of indoor radon exposure. Because of potentially serious methodologic flaws for testing hypotheses, we examined the ecological method as a tool for assessing lung-cancer risk from indoor radon exposure. We developed a simulation approach that utilizes the Environmental Protection Agency (EPA) radon survey data to assign exposures to individuals within counties. Using the computer-generated data, we compared risk estimates obtained by ecological regression methods with those obtained from other regression methods and with the open-quotes trueclose quotes risks used to generate the data. For many of these simulations, the ecological models, while fitting the summary data well, gave risk estimates that differed considerably from the true risks. For some models, the risk estimates were negatively correlated with exposure, although the assumed relationship was positive. Attempts to improve the ecological models by adding smoking variables, including interaction terms, did not always improve the estimates of risk, which are easily affected by model misspecification. Because exposure situations used in the simulations are realistic, our results show that ecological methods may not accurately estimate the lung-cancer risk associated with indoor radon exposure

  20. Realisation of a calibration chamber for radon in the air and establishment of a system for measuring radon in water

    International Nuclear Information System (INIS)

    Sassi, Nedra

    2011-01-01

    Radon is a radioactive gas that is naturally produced from the decay of radium. The main source of radon found in the earth's crust caused by the presence of a series of uranium (222 isotope of radon) and a series of thorium (220 isotope of radon) therein. We have optimized a new radon calibration chamber by developing an electronic system controlled by a PIC 16F877 microcontroller type to manage the various functions of the room. Several electronic circuits were developed to manage multiple functions such as pressure, temperature and controls motors and solenoids. This system can also be interfaced with a computer through programs such as LabView or Matlab.

  1. Application of CR-39 to radon measurement

    International Nuclear Information System (INIS)

    Miyake, Hiroshi

    1988-01-01

    CR-39, an ally diglycol carbonate, has recently come into wider use as material for solid-state track detector. Etching with NaOH or KOH solution allow CR-39 to develop extremely clear etch pits attributed to alpha rays. The most widely used method for measuring radon concentration employs a plastic cup with a solid-state track detector mounted at its bottom to detect alpha rays resulting from radon or its daughters that disintegrate within or on the wall of the cup. Simple in mechanism and low in cost, this method is suitable for such a case where the radon concentration distribution over a wide area has to be measured by using a large number of devices. The concentration of radon alone can be measured with the aid of a filter attached to the mouth of the cup to remove the daughters of radon and thoron. The simplest and most effective way of improving the sensitivity of a solid-state track detector for radon concentration measurement is to electrostatically collect daughters resulting from decay of radon onto the surface of the detector. Another method widely used to determine the radon concentration is to measure the concentration of the radon daughters instead of direct measurement of the concentration of radon itself. (Nogami, K.)

  2. Review of low-energy construction, air tightness, ventilation strategies and indoor radon: results from Finnish houses and apartments

    International Nuclear Information System (INIS)

    Arvela, H.; Holmgren, O.; Reisbacka, H.; Vinha, J.

    2014-01-01

    Low-energy and passive house construction practices are characterised by increased insulation, high air tightness of the building shell and controlled mechanical ventilation with heat recovery. As a result of the interaction of mechanical ventilation and high air tightness, the pressure difference in a building can be markedly enhanced. This may lead to elevated indoor radon levels. Minor leakages in the foundation can affect the radon concentration, even in the case where such leaks do not markedly reduce the total air tightness. The potential for high pressures to affect indoor radon concentrations markedly increases when the air tightness ACH 50 , i.e. the air change per hour induced by a pressure difference of 50 Pa, is -1 . Pressure differences in Finnish low-rise residential houses having mechanical supply and exhaust ventilation with heat recovery (MSEV) are typically 2-3 Pa, clearly lower than the values of 5-9 Pa in houses with only mechanical exhaust ventilation (MEV). In MSEV houses, radon concentrations are typically 30 % lower than in MEV houses. In new MSEV houses with an ACH50 of 0.6 h -1 , the limit for passive construction, the analytical estimates predict an increase of 100 % in the radon concentration compared with older houses with an ACH50 of 4.0 h -1 . This poses a challenge for efficient radon prevention in new construction. Radon concentrations are typically 30 % lower in houses with two storeys compared with only one storey. The introduction of an MSEV ventilation strategy in typically very airtight apartments has markedly reduced pressure differences and radon concentrations. (authors)

  3. Metrology of the radon in air volume activity at the italian radon reference chamber

    Energy Technology Data Exchange (ETDEWEB)

    Sciocchetti, G.; Cotellessa, G.; Soldano, E.; Pagliari, M. [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA Centro Ricerche Casaccia Roma (Italy)

    2006-07-01

    The approach of the Italian National Institute of Ionising Radiations (I.N.M.R.I.-ENEA) on radon metrology has been based on a complete and integrated system which can be used to calibrate the main types of {sup 222}Rn in air measuring instruments with international traceability. The Italian radon reference chamber is a research and calibration facility developed at the Casaccia Research Center in Roma. This facility has an inner volume of one m{sup 3}. The wall is a cylindrical stainless steel vessel coupled with an automated climate apparatus operated both at steady and dynamic conditions. The control and data acquisition equipment is based on Radotron system, developed to automate the multitasking management of different sets of radon monitors and climatic sensors. A novel approach for testing passive radon monitors with an alpha track detector exposure standard has been developed. It is based on the direct measurement of radon exposure with a set of passive integrating monitors based on the new ENEA piston radon exposure meter. This paper describes the methodological approach on radon metrology, the status-of-art of experimental apparatus and the standardization procedures. (authors)

  4. Metrology of the radon in air volume activity at the italian radon reference chamber

    International Nuclear Information System (INIS)

    Sciocchetti, G.; Cotellessa, G.; Soldano, E.; Pagliari, M.

    2006-01-01

    The approach of the Italian National Institute of Ionising Radiations (I.N.M.R.I.-ENEA) on radon metrology has been based on a complete and integrated system which can be used to calibrate the main types of 222 Rn in air measuring instruments with international traceability. The Italian radon reference chamber is a research and calibration facility developed at the Casaccia Research Center in Roma. This facility has an inner volume of one m 3 . The wall is a cylindrical stainless steel vessel coupled with an automated climate apparatus operated both at steady and dynamic conditions. The control and data acquisition equipment is based on Radotron system, developed to automate the multitasking management of different sets of radon monitors and climatic sensors. A novel approach for testing passive radon monitors with an alpha track detector exposure standard has been developed. It is based on the direct measurement of radon exposure with a set of passive integrating monitors based on the new ENEA piston radon exposure meter. This paper describes the methodological approach on radon metrology, the status-of-art of experimental apparatus and the standardization procedures. (authors)

  5. Radon availability in New Mexico

    International Nuclear Information System (INIS)

    McLemore, V.T.

    1995-01-01

    The New Mexico Bureau of Mines and Mineral Resources (NMBMMR) in cooperation with the Radiation Licensing and Registration Section of the New Mexico Environment Department (NMED) and the US Environmental Protection Agency (EPA) have been evaluating geologic and soil conditions that may contribute to elevated levels of indoor radon throughout New Mexico. Various data have been integrated and interpreted in order to determine areas of high radon availability. The purpose of this paper is to summarize some of these data for New Mexico and to discuss geologic controls on the distribution of radon. Areas in New Mexico have been identified from these data as having a high radon availability. It is not the intent of this report to alarm the public, but to provide data on the distribution of radon throughout New Mexico

  6. Indoor radon and childhood leukaemia

    International Nuclear Information System (INIS)

    Raaschou-Nielsen, O.

    2008-01-01

    This paper summarises the epidemiological literature on domestic exposure to radon and risk for childhood leukaemia. The results of 12 ecological studies show a consistent pattern of higher incidence and mortality rates for childhood leukaemia in areas with higher average indoor radon concentrations. Although the results of such studies are useful to generate hypotheses, they must be interpreted with caution, as the data were aggregated and analysed for geographical areas and not for individuals. The seven available case - control studies of childhood leukaemia with measurement of radon concentrations in the residences of cases and controls gave mixed results, however, with some indication of a weak (relative risk < 2) association with acute lymphoblastic leukaemia. The epidemiological evidence to date suggests that an association between indoor exposure to radon and childhood leukaemia might exist, but is weak. More case - control studies are needed, with sufficient statistical power to detect weak associations and based on designs and methods that minimise misclassification of exposure and provide a high participation rate and low potential selection bias. (authors)

  7. Intercomparison of active and passive instruments for radon and radon progeny in North America

    International Nuclear Information System (INIS)

    George, A.C.; Tu, Keng-Wu; Knutson, E.O.

    1995-02-01

    An intercomparison exercise for radon and radon progeny instruments and methods was held at the Environmental Measurements Laboratory (EML) from April 22--May 2, 1994. The exercise was conducted in the new EML radon test and calibration facility in which conditions of exposure are very well controlled. The detection systems of the intercompared instruments consisted of. (1) pulse ionization chambers, (2) electret ionization chambers, (3) scintillation detectors, (4) alpha particle spectrometers with silicon diodes, surface barrier or diffused junction detectors, (5) registration of nuclear tracks in solid-state materials, and (6) activated carbon collectors counted by gamma-ray spectrometry or by alpha- and beta-liquid scintillation counting. 23 private firms, government laboratories and universities participated with a 165 passive integrating devices consisting of: Activated carbon collectors, nuclear alpha track detectors and electret ionization chambers, and 11 active and passive continuous radon monitors. Five portable integrating and continuous instruments were intercompared for radon progeny. Forty grab samples for radon progeny were taken by five groups that participated in person to test and evaluate their primary instruments and methods that measure individual radon progeny and the potential alpha energy concentration (PAEC) in indoor air. Results indicate that more than 80% of the measurements for radon performed with a variety of instruments, are within ±10% of actual value. The majority of the instruments that measure individual radon progeny and the PAEC gave results that are in good agreement with the EML reference value. Radon progeny measurements made with continuous and integrating instruments are satisfactory with room for improvement

  8. Radon mitigation experience in difficult-to-mitigate schools

    International Nuclear Information System (INIS)

    Leovic, K.W.; Craig, A.B.

    1990-01-01

    Initial radon mitigation experience in schools has shown sub-slab depressurization (SSD) to be generally effective in reducing elevated levels of radon in schools that have a continuous layer of clean, coarse aggregate underneath the slab. However, mitigation experience is limited in schools without sub-slab aggregate and in schools with characteristics such as return-air ductwork underneath the slab or unducted return-air plenums in the drop ceiling that are open to the sub-slab area (via open tops of block walls). Mitigation of schools with utility tunnels and of schools constructed over crawl spaces is also limited. Three Maryland schools exhibiting some of the above characteristics are being researched to help understand the mechanisms that control radon entry and mitigation in schools where standard SSD systems are not effective. This paper discusses specific characteristics of potentially difficult-to-mitigate schools and, where applicable, details examples from the three Maryland schools

  9. Radon removal from gaseous xenon with activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Hieda, K.; Hiraide, K.; Hirano, S.; Kishimoto, Y.; Kobayashi, K.; Koshio, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Liu, J.; Martens, K. [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Suzuki, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Takachio, O.; Takeda, A.; Ueshima, K.; Umemoto, D. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); and others

    2012-01-01

    Many low background experiments using xenon need to remove radioactive radon to improve their sensitivities. However, no method of continually removing radon from xenon has been described in the literature. We studied a method to remove radon from xenon gas through an activated charcoal trap. From our measurements we infer a linear relationship between the mean propagation velocity v{sub Rn} of radon and v{sub Xe} of xenon in the trap with v{sub Rn}/v{sub Xe}=(0.96{+-}0.10) Multiplication-Sign 10{sup -3} at -85 Degree-Sign C. As the mechanism for radon removal in this charcoal trap is its decay, knowledge of this parameter allows us to design an efficient radon removal system for the XMASS experiment. The verification of this system found that it reduces radon by a factor of 0.07, which is in line with its expected average retention time of 14.8 days for radon.

  10. The matter of radon

    International Nuclear Information System (INIS)

    O'Riordan, M.C.; O'Riordan, C.N.

    1992-01-01

    By comparison with the radiation doses from radon, the doses to individual members of the public and to the general community from nuclear activities are quite trivial. Doses from radon in some British homes exceed the statutory dose limit for nuclear workers;the collective dose from radon is two thousand times the value for nuclear discharges. And yet, too little attention - legal or otherwise - is paid to this radioactive pollutant. An attempt is made in this paper to compensate for the neglect. The origins, properties and harmful effects of radon are described. Measurements in homes and places of work are summarised. Voluntary and regulatory controls on exposure are elucidated. Questions of public administration, confidentiality of information and sale of property are discussed. Prospects for progress are assessed. (author)

  11. Transport studies of radon in limestone underlying houses

    International Nuclear Information System (INIS)

    Gammage, R.B.; Dudney, C.S.; Wilson, D.L.; Saultz, R.J.

    1990-01-01

    In hilly limestone terrains of the southern Appalachians, subterranean networks of solution cavities and fissures present circulatory systems facilitating convective and advective transport of radon-bearing gas. Evidence suggests that the primary driving forces for transport are aerostatic pressure differentials created by the difference between the underground and the outside air temperatures. Examples are presented of houses experiencing elevated indoor radon levels as a consequence of communicating with such subsurface transportation systems. The location of a house near the upper or lower end of a subterranean-circulatory system seems to produce amplification of indoor radon levels in winter or summer, respectively. The transport mechanism for radon-bearing air in karst and its impact on indoor radon need better understanding, both in regard to evaluating the geographical prevalence of the phenomenon and the induced spatial and temporal effects that are possible. This paper reports field studies made at houses in karst regions at Oak Ridge, Tennessee, and Huntsville, Alabama. A primary radon-transport mechanism is advocated of ascending or descending subsurface columns of air whose flows are largely driven by aerostatic pressure gradients created by the inground-outdoor air temperature differentials. 5 refs., 5 figs., 1 tab

  12. Radon

    Science.gov (United States)

    ... radon-resistant features. These features include gravel and plastic sheeting below the foundation, along with proper sealing ... lower the radon level. Detailed information about radon reduction in your home or building can be found ...

  13. Modeling ventilation and radon in new dutch dwellings

    International Nuclear Information System (INIS)

    Janssen, M.P.M.

    2003-01-01

    Indoor radon concentrations were estimated for various ventilation conditions, the differences being mainly related to the airtightness of the dwelling and the ventilation behavior of its occupants. The estimations were aimed at describing the variation in air change rates and radon concentrations to be expected in the representative newly built Dutch dwellings and identifying the most important parameters determining air change rate and indoor radon concentration. The model estimations were compared with measurements. Most of the air was predicted to enter the model dwelling through leaks in the building shell, independent of the ventilation conditions of the dwelling. Opening the air inlets was shown to be an efficient way to increase infiltration and thus to decrease radon concentration. The effect of increasing the mechanical ventilation rate was considerably less than opening the air inlets. The mechanical ventilation sets the lower limit to the air change rate of the dwelling, and is effective in reducing the radon concentration when natural infiltration is low. Opening inside doors proved to be effective in preventing peak concentrations in poorly ventilated rooms. As the airtightness of newly built dwellings is still being improved, higher radon concentrations are to be expected in the near future and the effect of occupant behavior on indoor radon concentrations is likely to increase. According to the model estimations soil-borne radon played a moderate role, which is in line with measurements. (au)

  14. The radon

    International Nuclear Information System (INIS)

    1998-01-01

    This booklet is intended to answer briefly the most important questions about the nature and sources of radon, its pathways from environment to organism, as well as the ways to minimize its concentration in the habitat's atmosphere. The radon is a naturally appearing radioactive gas, produced through the decay of uranium and radium present in the terrestrial crust. It can be found everywhere on the planet's surface and it is emitted particularly from the granite and volcanic underground rocks as well as from certain construction materials. It is one of the agents producing pulmonary cancer, although not so dangerous as the tobacco is. The following items are elaborated in this booklet: - the place of radon in the average exposure to ionizing radiations of the French population; - the risk; - the radon in the environment (the meteorological conditions, the nature of the rocks); - radon in dwellings (radon measurements in the French dwellings, the entrance pathways of radon, the dependence of radon concentration on the profession and way of life of the inhabitants); - radon measurements; - how to reduce the radon concentration in dwellings

  15. Factors affecting passive monitoring of radon

    International Nuclear Information System (INIS)

    Asano, Tomohiro; Kahn, B.

    1989-09-01

    In recent years, increasing cancer has been expressed as a possible health hazards associated with long-term exposures to a large population at a low level of radon in the environment. Because radon is ubiquitous nuclide, nation-wide monitoring is necessary to determine lung cancer risk. For such purpose, passive sampling methods with track etch detector or charcoal adsorption collector may have the advantage in lower cost and convenience. The charcoal adsorption collector is considered in this study. Various factors may significantly affect the charcoal adsorption mechanism on its practical application. Moisture effects are discussed here as having major impact on radon collection by charcoal. Set of equations are presented in this report to describe adsorption of radon including moisture effects. (author) 61 refs

  16. Radon dynamics in underwater thermal radon therapy

    International Nuclear Information System (INIS)

    Lettner, H.; Hofmann, W.; Winkler, R.; Rolle, R.; Foisner, W.

    1998-01-01

    At a facility for underwater thermal radon therapy in Bad Hofgastein, experiments were carried out with the aim of establishing radon in the air exhaled by the treated patients and of radon decay products on the skin of the patients. The time course of radon concentration in the exhaled air shows a maximum a few minutes after entering the bath, then the Rn concentration remains constant over the remaining time spent in the bath. Taking into account several simplifying assumptions, the average dose to the epidermis from radon daughters is about 50 μGy. (A.K.)

  17. Radon in Schools

    Science.gov (United States)

    ... Search Search Radon Contact Us Share Radon in Schools Related Information Managing Radon in Schools Radon Measurement ... Radon Could Be a Serious Threat to Your School Chances are you've already heard of radon - ...

  18. Radon in Finnish dwellings. Sample survey 2006

    International Nuclear Information System (INIS)

    Maekelaeinen, I.; Kinnunen, T.; Reisbacka, H.; Valmari, T.; Arvela, H.

    2009-12-01

    concentrations are high in houses using a slab-on-ground foundation. In addition, foundation solution in hillside houses or houses that have a basement with open staircase between the lowest floor and the rest of the dwelling still increases radon concentrations. This is caused by the ground contact constructions that allow radon-bearing air to flow through them into the living spaces. Also the soil at the building site affects radon concentration. Radon concentrations were higher in houses built on gravel and sand formations and quarried rock than other soil types. High concentrations were found also on tighter soil types. The use of light-weight concrete blocks increases radon leaks from the soil. Radon concentrations were lower in houses with mechanical supply and exhaust ventilation than in houses with natural or mechanical exhaust ventilation. After the rise in radon concentrations in new houses that started in sixties, concentrations have started to drop in houses built in 2000 and later. This is due to the crawl space foundation and mechanical supply and exhaust ventilation becoming more common. In addition, the use of radon prevention techniques in new building has increased. In the areas of Tavastia and South-Eastern Finland radon piping has been installed in 64 per cent of houses built after 1995, the percentage being 24 in the whole country. The sealing of foundation constructions, which is important for radon prevention, has not become as common as was hoped for. The success of radon prevention in new building is crucial when aiming for low radon concentrations in the building stock. (orig.)

  19. Development of calibration facility for radon and its progenies at NIM (China)

    International Nuclear Information System (INIS)

    Liang, J.C.; Liu, H.R.; Zhang, M.; Zheng, P.H.; Guo, Q.J.; Yang, Z.J.; Li, Z.S.; Zhang, L.

    2015-01-01

    Accurate measurement of radon and its progenies is the basis to control the radon dose and reduce the risk of lung cancer caused. The precise calibration of measuring instrument is an important part of the quality control of measurements of the concentration of radon and radon progenies. To establish Chinese national standards and realise reliable calibrations of measuring instrument for radon and its progenies, a radon chamber with regulation capability of environmental parameters, aerosol and radon concentrations was designed and constructed at National Institute of Metrology (NIM). The chamber has a total volume of ∼20 m 3 including an exposure volume of 12.44 m 3 . The radon concentration can be controlled from 12 Bq m -3 to the maximum of 232 kBq m -3 . The regulation range of temperature, relative humidity and aerosol are 0.66-44.39 deg. C, 16.4-95 %RH and 10 2 -10 6 cm -3 , respectively. The main advantages of the NIM radon chamber with respect to maintaining a stable concentration and equilibrium factor of radon progenies in a wide range through automatic regulation and control of radon and aerosol are described. (authors)

  20. Indoor radon in three similar two-story houses with different ventilation systems

    International Nuclear Information System (INIS)

    Kokotti, H.; Savolainen, T.; Raunemaa, T.; Kalliokoski, P.

    1989-01-01

    Radon levels were monitored in three similar two-story apartment houses which were located side by side on a gravel esker in eastern Finland. The houses differed only in regard to their ventilation systems which included the following: natural ventilation, mechanical exhaust, and complete mechanical ventilation. The study started immediately when the houses were finished and was continued for two years. Radon concentrations were highest (60-430 Bq/m 3 ) in the beginning of the study period before the tenants moved in. During the following spring and fall, average radon levels of the houses decreased below 100 Bq/m 3 . Radon concentrations varied within a wide range, from 20 to 230 Bq/m 3 , in the apartments. Among the houses, the highest concentrations were found in the house equipped with mechanical exhaust ventilation and the lowest in the house with both a mechanical supply and exhaust system. One reason for the decreasing levels of radon after a one-year occupancy was that the tenants increased the ventilation of their apartments. In the house with complete mechanical ventilation, the stability of ventilation also contributed to the decrease of the indoor radon level

  1. Radon-technical design methods based on radon classification of the soil

    International Nuclear Information System (INIS)

    Kettunen, A.V.

    1993-01-01

    Radon-technical classification of the foundation soil divides the foundation soil into four classes: negligible, normal, high and very high. Separate radon-technical designing methods and radon-technical solutions have been developed for each class. On regions of negligible class, no specific radon-technical designing methods are needed. On regions of normal radon class, there is no need for actual radon-technical designing based on calculations, whereas existing radon-technical solutions can be used. On regions of high and very high radon class, a separate radon-technical designing should be performed in each case, where radon-technical solutions are designed so that expected value for indoor radon content is lower than the maximum allowable radon content. (orig.). (3 refs., 2 figs., 2 tabs.)

  2. Radon in houses due to radon in potable water

    International Nuclear Information System (INIS)

    Hess, C.T.; Korsah, J.K.; Einloth, C.J.

    1987-01-01

    Radon concentration in the air of 10 houses has been measured as a function of water use and meterological parameters such as barometric pressure, wind velocity and direction, indoor and outdoor temperature, and rainfall. Results of calibrations and data collected in winter, spring, fall, and summer are given for selected houses. Average values of radon concentration in air are from 0.80 to 77 rhoCi/1. Water use average ranges from 70 to 240 gal/day. Average potential alpha energy concentrations in these houses range from 0.02 to 1.6 working levels. The radon level due to water use ranges from 0 to 36% of the house radon from soil and water combined. The radon level change due to use of a filter on the water supply shows a 60% reduction in radon in the house. Conclusions are that water radon can be a major fraction of the radon in houses. The ratio of airborne radon concentration due to water use to the radon concentration in water is 4.5 x 10/sup -5/ - 13 x 10/sup -5/

  3. Identification of radon anomalies related to earthquakes

    International Nuclear Information System (INIS)

    Ozdas, M.; Inceoglu, F.; Rahman, C.; Yaprak, G.

    2009-01-01

    Put of many proposed earthquake precursors, temporal radon variation in soil is classified as one of a few promising geochemical signals that may be used for earthquake prediction. However, to use radon variation in soil gas as a reliable earthquake precursor, it must be realized that radon changes are controlled not only by deeper phenomena such as earthquake, but they are also controlled by meteorological parameters such as precipitation, barometric pressure, air temperature and etc. Further studies are required to differentiate the changes in the measured radon concentration caused by tectonic disturbances from the meteorological parameters. In the current study, temporal radon variations in soil gas along active faults in Alasehir of Gediz Graben Systems have been continuously monitored by LR-115 nuclear track detectors for two years. Additionally, the meteorological parameters such as barometric pressure, rainfall and air temperature at the monitoring site have been observed during the same period. Accordingly, regression analysis have been applied to the collected data to identify the radon anomalies due to the seismic activities from those of meteorological conditions.

  4. Radon: Chemical and physical states of radon progeny. Final technical report

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.

    1996-01-01

    The evolving chemical and physical form of radon progeny influence their transport to the bioreceptor and the extent to which that receptor can take up these species into various tissues. When first born following radioactive decay processes, the potentially deleterious radon progeny undergo various physical and chemical transformations as they transcend from a highly charged to a neutral state, and interact with various constituents of the environment. These transformations impact on the extent to which the radon progeny become associated with aerosol particles on the one hand, and their ultimate chemical form that is available for uptake in the biosystem, on the other. The program, which originally commenced in 1987, dealt with the basic chemistry and physics of radon progeny and hence impacted on several themes of importance to the DOE/OHER radon program. One of these is dose response, which is governed by the physical forms of the radon progeny, their transport to the bioreceptor and the chemical forms that govern their uptake. The second theme had to do with cellular responses, one of the major issues motivating the work. It is well known that various sizes of ions and molecules are selectively transported across cell membrane to differing degrees. This ultimately has to do with their chemical and physical forms, charge and size. The overall objective of the work was threefold: (1) quantifying the mechanisms and rates of the chemical and physical transformation; (2) ascertaining the ultimate chemical forms, and (3) determining the potential interactions of these chemical species with biological functional groups to ascertain their ultimate transport and incorporation within cells

  5. Radon in water aeration system operational performance

    International Nuclear Information System (INIS)

    Lamarre, B.L.

    1990-01-01

    North East Environmental Products, Inc. is a manufacturer of residential scale aeration systems for removal of radon and volatile organic chemicals from private water supplies. This paper is a review of the operational history of residential scale point of entry (POE) radon aeration systems. Emphasis is placed on the difficulties and solutions encountered in actual installations caused by both mechanical difficulties and water quality parameters. A summary of radon reduction efficiency is presented for wells with radon concentrations from 21,000 to 2,600,000 pCi/L. A discussion of customer concerns and attitudes is presented along with other areas for further technical improvement. Training techniques for dealers and installers are also discussed. An update of the current status of the radon in water industry includes current sales volumes as compared to the potential market and an update on the radon in water MCL standard setting process from an industry perspective

  6. Aerosol properties of indoor radon decay products

    International Nuclear Information System (INIS)

    Martell, E.A.

    1984-01-01

    Lung cancer risks attributable to indoor radon are highly dependent on the properties of radon progeny aerosols which, in turn, are dependent on the nature and concentration of small particles in indoor air. In clean filtered air, radon progeny are attached to small hygroscopic particles of high mobility which are rapidly deposited on surfaces. By contrast, radon progeny attached to cigarette smoke are on large particles of low mobility which persist in air. Radon progeny ingaled by smokers are largely associated with smoke particles from 0.5 to 4.0 μm diameter. Such particles are selectively deposited at bronchial bifurcations and are highly resistant to dissolution. The attached radon progeny undergo a substantial degree of radioactive decay at deposition sites before clearance which gives rise to large alpha radiation doses in small volumes of bronchial epithelium. These processes provide new insights on mechanisms of bronchial cancer induction and on relative risks of lung cancer in smokers, passive smokers, and other non-smokers. (Author)

  7. Monitoring radon reduction in Clinton, New Jersey houses

    International Nuclear Information System (INIS)

    Osborne, M.C.; Brennan, T.; Michaels, D.

    1987-01-01

    In 1986, a preliminary survey of houses in Clinton, New Jersey, conducted by the New Jersey Department of Environmental Protection (DEP), identified more than 50 houses with indoor radon concentrations greater than 100 pCi/l in the subdivision of Clinton Knolls. Many of these houses had radon concentrations of 600 pCi/l or higher. At the request of the New Jersey DEP, EPA's Air and Energy Engineering Research Laboratory, AEERL, initiated a project to develop and demonstrate cost-effective radon reduction techniques in 10 representative Clinton Knolls houses. Radon reduction was to be completed before the beginning of the 1986-1987 heating season to keep the exposure of residents to a minimum. Additional data were collected to add to the general body of information on radon transport and its control in houses; however, the data collected in this study were secondary to the pressing need of demonstrating effective radon reduction techniques. The authors describe these techniques and discuss the data on radon transport and control in this project

  8. An electrical circuit model for simulation of indoor radon concentration.

    Science.gov (United States)

    Musavi Nasab, S M; Negarestani, A

    2013-01-01

    In this study, a new model based on electric circuit theory was introduced to simulate the behaviour of indoor radon concentration. In this model, a voltage source simulates radon generation in walls, conductivity simulates migration through walls and voltage across a capacitor simulates radon concentration in a room. This simulation considers migration of radon through walls by diffusion mechanism in one-dimensional geometry. Data reported in a typical Greek house were employed to examine the application of this technique of simulation to the behaviour of radon.

  9. Project radon final report

    International Nuclear Information System (INIS)

    Ekholm, S.; Rossby, U.

    1990-01-01

    The main radiation problem in Sweden is due to radon in dwellings. At the Swedish State Power Board, R, D and D about radon has been going on since 1980. The work has concentrated on the important questions: How to find building with enhanced radon levels?; How to accurately decide on measures that will give adequate cleaning-up results, using appropriate measurement procedures; What cleaning-up effect is possible to achieve with an electro-filter?; and What cleaning-up effects are possible to achieve with different types of ventilation systems? The R, D and D-work, has been pursued in cooperation with universities of technology in Denmark and Finland, equipment manufacturers, consultants and authorities concerned. It was decided in December 1986 to give an offer to some SSPB-employees to investigate the radon situation of their dwellings, in order to test methods of measurement and cleaning-up under realistic conditions and to develop the methods to commercial maturity. The investigation was named 'Project Radon' and was carried out in three years with costs amounting to 1 M dollars. During the project less comprehensive radon measurements, named 'trace-measurements' were undertaken in about 1300 dwellings and more elaborate measurements, leading to suggestions of actions to be taken, in about 400 dwellings. Out of the suggestions, about 50 are carried out including control measurement after actions taken. The control measurement have shown that the ability to suggest appropriate actions is very successful - in just one case was a minor additional action necessary. The high reliability is achieved by always doing elaborate measurements before suggested mitigation method is decided on. (authors)

  10. Geology and occurrence of radon precursors

    International Nuclear Information System (INIS)

    Schmalz, R.F.

    1990-01-01

    The discovery that radioactive radon gas may occur as a significant indoor contaminant in houses and in the workplace has had far-reaching consequences in public health, real estate marketing, the construction industry, health and liability insurance underwriting, and in legislation at the federal and state levels. Many factors are known to affect radon level inside a building - its location, construction, ventilation, and substructure; the climate of the region in which it is located and the life styles of it occupants, for example. Despite the importance of assessing the hazard radon contamination may represent, the economic cost and the time required to screen hundreds of millions of individual buildings make such an effort impracticable. The effectiveness of large-scale regional screening to evaluate radon potential depends on an understanding of the chemical and physical properties of the gas, and of the geological and geochemical factors which control the distribution of its radioactive progenitors, radium, uranium and thorium. It is the purpose of this paper to review and summarize our present knowledge of these large-scale controls on radon occurrence

  11. Contribution of radon and radon daughters to respiratory cancer

    International Nuclear Information System (INIS)

    Harley, N.; Samet, J.M.; Cross, F.T.; Hess, T.; Muller, J.; Thomas, D.

    1986-01-01

    This article reviews studies on the contribution of radon and radon daughters to respiratory cancer and proposes recommendations for further research, particularly a national radon survey. The steady-state outdoor radon concentration averages 200 pCi/m3, and indoor levels are about 4 times higher. The primary source of radon in homes is the underlying soil; entry depends on multiple variables and reduced ventilation for energy conservation increases indoor radon levels. Occupational exposures are expressed in units of radon daughter potential energy concentration or working level (WL). Cumulative exposure is the product of the working level and the time exposed. The unit for cumulative exposure is the working level month (WLM). The occupational standard for radon exposure is 4 WLM/year, and 2 WLM/year has been suggested as a guideline for remedial action in homes. Epidemiologic studies show that miners with cumulative radon daughter exposures somewhat below 100 WLM have excess lung cancer mortality. Some 3% to 8% of miners studied have developed lung cancer attributable to radon daughters. All of the underground mining studies show an increased risk of lung cancer with radon daughter exposure. All cell types of lung cancer increased with radon exposure. If radon and smoking act in a multiplicative manner, then the risk for smokers could be 10 times that for nonsmokers. The potential risk of lung cancer appears to be between 1 and 2 per 10,000/WLM, which yields a significant number of lung cancers as some 220 million persons in the United States are exposed on average to 10 to 20 WLM/lifetime

  12. An overview of Ireland's National Radon Policy

    International Nuclear Information System (INIS)

    Long, S.; Fenton, D.

    2011-01-01

    In Ireland radon is a significant public health issue and is linked to 150-200 lung cancer deaths each year. Irish National Radon Policy aims to reduce individual risk by identifying and remediating buildings with high radon concentrations and also to reduce collective dose through radon prevention as required by revised building regulations. Achievements to date are significant and include the completion of the National Radon Survey, the testing of every school in Ireland, the on-going testing of social housing, collaboration between the public health and radiation protection authorities and the inclusion of radon in inspections of workplaces. However, this work now needs to be drawn together centrally to comprehensively address the radon problem. The RPII and the relevant central governing department, the Dept. of Environment, Heritage and Local Government are currently working to constitute a group of key experts from relevant public authorities to drive the development of a National Radon Control Strategy. (authors)

  13. Real estate transaction radon test tampering

    International Nuclear Information System (INIS)

    Ritter, D.L.

    1990-01-01

    A thousand-house study, over the past two years showed 35% of the houses were tampered with. This paper offers statistical charts representing the different methods of tampering; A slide presentation showing houses and the non-tamper controls used to monitor EPA closed-house conditions, movement of detectors and covering of detectors. A strong message must be conveyed now, that tampering will not be tolerated by radon technicians, when performing radon tests in the field. A message that incorporates non-tamper controls that are cost effective and provide for reasonably priced testing; A message that will lend credibility to our Radon industry by means of separating the professional test from a do-it-yourself homeowner test. This paper will address that message and offer a program for the prevention of tampering in a house during a PROFESSIONALLY done Radon test

  14. Radon in buildings: instrumentation of an experimental house

    International Nuclear Information System (INIS)

    Ameon, R.; Diez, O.; Dupuis, M.; Merle-Szeremeta, A.

    2004-01-01

    IRSN decided to develop a code called RADON 2 for conducting simple and methodical studies of indoor radon concentrations. Since a validity check must be performed of the phenomenological model on which the code is based, an experimental program was initiated in 2002, within which a house in Brittany, located on a well-characterized uranium-bearing geological formation, was fitted with special instruments. After characterizing the soil underlying the house, the instrumentation implemented on site continuously monitors a number of parameters to characterize: the radon source term in the building (exhalation rate of 222 Rn at the ground/building interface and at soil surface, radon concentration in the soil and in outdoor air); radon penetration by advection (differential pressure in the house basement); the driving mechanisms for natural ventilation in the house (weather conditions, indoor temperature and relative humidity); radon distribution throughout the house by air flow and radon diffusion (indoor radon concentration at each floor of the house). Using the experimental data acquired over the past two years, the phenomena governing radon penetration inside the house (wind and stack effect) and radon extraction (fresh air supply rate) have been characterized to lay down the bases for validating the newly developed code

  15. Radon and health

    International Nuclear Information System (INIS)

    Chobanova, Nina

    2016-01-01

    Radon is radioactive noble gas that can be found in soil, water, outdoor and indoor air. Since environmental radon on average accounts for about half of all human exposure to radiation from natural sources, increasing attention has been paid to exposure to radon and its associated health risks. Many countries have introduced regulations to protect their population from radon in dwellings and workplaces. In this article are discussed main characteristics of radon, including sources of exposure, variation in radon exposure, how managing risks from radon exposure, how to measure the concentration of radon. There are results of measurements conducted under the 'National radon programme' in Bulgaria also. Key words: radon, sources of exposure, risk, cancer, measure to decrease the concentration [bg

  16. Comparative study on radon effects and thermal effects on humans in radon hot spring therapy

    International Nuclear Information System (INIS)

    Yamaoka, K.; Mitsunobu, F.; Hanamoto, K.; Tanizaki, Y.; Sugita, K.; Kohima, S.

    2003-01-01

    Full text: The radon therapy is used radon ( 222 Rn) gas, which mainly emits alpha-rays, and induces a small amount of active oxygen in the body. Because most of the diseases to which the radon therapy as well as the thermal therapy is applied are related to activated oxygen, in this study the effects of the radioactivity of radon and thermal effects were compared under the room or the hot spring condition with the similar chemical component, using as the parameters which are closely involved in the clinical for radon therapy. In the results, the radon and thermal therapy enhanced the antioxidation function, such as the activities of superoxide dismutase (SOD) and catalase, which inhibit lipid peroxidation and total cholesterol produce in the body. Moreover the therapy enhanced concanavalin A (ConA)-induced mitogen response, and increased the level of CD4, which is the marker of helper T cell, and decreased the level of CD8, which is the common marker of killer T cell and supresser T cell, in the white cell differentiation antigen (CD4/CD8) assay. Furthermore, the therapy increased the levels of alpha atrial natriuretic polypeptide (alpha ANP), beta endorphin, adrenocorticotropic hormone (ACTH), insulin and glucose-phosphate dehydrogenase (G-6-PDH), and decreased the vasopression level. The results were on the whole larger in the radon group than in the thermal group. The findings suggest that the radon therapy more contributes to the prevention of life style-related diseases related to peroxidation reactions and immune depression than thermal therapy. Moreover these indicate what may be a part of the mechanism for the alleviation of hypertension, osteoarthritis (pain) and diabetes mellitus brought about more radon therapy than thermal therapy

  17. Radon in housing

    International Nuclear Information System (INIS)

    1984-04-01

    The enclosed material deals with the substantial efforts made until now to control the levels of radon in Sweden dwellings. It is meant as a source material for the several publications which have emerged from the National Institute of Radiation Protection in Stockholm during 1983 and 1984. The first document is a translation of chapter 16, the deliberations of the Swedish Radon Commission, appointed by the government in 1979. Comments on the report of the commission were solicited before 1 October, 1983. (author)

  18. Methodology for determination of radon-222 production rate of residential building and experimental verification

    International Nuclear Information System (INIS)

    Tung, Thomas C.W.; Niu, J.L.; Burnett, J.; Lau, Judy O.W.

    2005-01-01

    Indoor radon concentration is mainly associated with the radon production rate of building material, ventilation rate, and the outdoor radon concentrations. Radon production rate of a room is defined as the sum of the products of the radon emanation rates and the exposed areas of the materials. Since the selection of the building materials and the exposed areas are different from room to room, it makes the radon production rate of homes fall in a wide range. Here, the radon production rate of a room is suggested to be quantified by a sealing method, in which the systematic radon growth curve is obtained. The radon production rate of the room can be determined from the initial slope of the growth curve. Three rooms at different homes in Hong Kong were selected in the study for verifying the methodology. The uncertainty characterized by data scatter arisen from the coupling effect of the leakage rate and outdoor radon was also included in the discussion. During the measurements, no occupant was allowed into the home. No mechanical ventilation was involved in the measurement. The indoor and outdoor radon concentrations of the sampled homes were monitored simultaneously and lasted for more than three days. The radon production rates and the uncertainties of three rooms at Homes 1, 2, and 3 were found to be 232.8, 46.0, 414.6, and 20.3, 9.4, 59.2Bqh -1 , respectively. The approach is valid when the air leakage rate of the room is controlled below 0.1h -1

  19. Case-control study on radon exposure and lung cancer in an Italian region. Preliminary results

    International Nuclear Information System (INIS)

    Bochicchio, F; Nuccetelli, C.; Forastiere, F.; Mallone, S.; Sera, F.

    2000-01-01

    The present estimates of the lung cancer risk for the general population due to radon exposure in dwellings are generally obtained by extrapolating the risk estimates derived from epidemiologic studies on miner cohorts. However, due to uncertainties related to this extrapolation, numerous case-control studies in Europe and North America were planned to estimate directly the risk in dwellings. Most of these studies are still underway and, thanks to their similar design and compatible protocols, it will be possible to perform a pooled analysis in order to improve statistical power. One of these projects is being conducted in the Lazio region of Italy, which is one of the Italian regions with the highest levels of radon indoors. A total of 408 cases and 424 controls older than 34 years, who lived for 25 years or longer in the Lazio Region, were recruited in a hospital of Rome. Detailed information regarding smoking, and occupational exposure of the subjects were collected by interviews in hospital. Residential histories (periods and addresses) during the 35 years preceding the enrolment were ascertained for all study members from the local Register and from a short questionnaire to the subjects or to the next-of-kin, resulting in 2068 dwellings to be monitored within the Lazio region. The distribution of the number of dwellings among cases and controls was the following: 25.7% of the cases and 27.3% of the controls had lived all the preceding 35 years in a single dwelling, whereas only a minority (7.9%) changed five addresses or more. The mean number of dwellings was very similar among cases (2.47) and controls (2.50). In each dwelling, radon dosemeters were placed in both the main bedroom and living room for two consecutive six-month periods. In the second six-month period, two thermoluminescent dosemeters were also collocated in each monitored room to measure gamma radiation emitted by the building materials, in order to evaluate more comprehensively the exposure of

  20. Radon problem in uranium industry

    International Nuclear Information System (INIS)

    Khan, A.H.; Raghavayya, M.

    1991-01-01

    Radon emission is invariably associated with the mining and processing of uranium ores. Radon (sup(222)Rn) enters mine atmosphere through diffusion from exposed ore body, fractures and fissures in the rocks and is also brought in by ground water. Being the progenitor of a series of short lived radioisotopes it contributes over 70% of the radiation dose to mine workers and thus accounts for nearly 30% of the total radiation doses received by workers in the whole nuclear industry. This paper summarises the data on radon emanation from the ore body, backfilled sands and mine water. Radon and its progeny concentrations in different haulage levels and stopes of the Jaduguda uranium mine are presented to emphasise the need for a well planned ventilation system to control radiation exposure of miners. Results of radon monitoring from a few exploratory uranium mines are included to indicate the need for a good ventilation system from inception of the mining operations. Relative contribution of mine exhaust and tailings surfaces to the environmental radon are also given. Some instruments developed locally for monitoring of radon and its progeny in mines and in the environment are briefly described to indicate the progress made in this field. (author). 17 refs., 2 figs., 6 tabs

  1. Predicting radon/radon daughter concentrations in underground mines

    International Nuclear Information System (INIS)

    Leach, V.A.

    1984-01-01

    A detailed description of a computer programme is outlined for the calculation of radon/radon daughter concentrations in air. This computer model is used to predict the radon/radon daughter concentrations in Working Level (WL) at the workplace and at the various junctions at either end of the branches in a typical ventilation network proposed for the Jabiluka mine in the Northern Territory

  2. Radon study in underground buildings in Chongqing, China

    International Nuclear Information System (INIS)

    Deng Wen; Jiang Rende; Liu Yigang

    1993-01-01

    Radon concentration measurements using a scintillation detector were conducted in 51 large underground buildings, which have been used as hotels, entertainment halls, restaurants, shops and factories, etc, in Chongqing, China. The results showed that the radon concentrations in these underground buildings ranged from 3.2 to 616.2 Bqm -3 . The arithmetic mean was 57.6 Bqm -3 , which was about 4 times as much as the mean radon concentration in ground buildings in Chongqing. The underground buildings with the highest radon concentrations were correlated with the high content of radium-226 in building materials, mechanical ventilation through interior circulatory ducts, underground depth of the building, and particularly, fissures in the walls. Measures of radon mitigation in underground buildings were recommended. (orig.). (3 refs., 5 tabs.)

  3. Study on indoor radon exposure and its effect on human health

    International Nuclear Information System (INIS)

    Lu Xinwei

    2005-01-01

    Radon and its daughters relate to people health. Radon widely exists in the nature. The paper discusses the source, exposure and activity level of indoor radon, systematically analyzes the hazards and dose-response of residential radon exposure, and at last indicates the concrete method of controlling residential radon concentration. By interdicting radon pollution source and ventilation might effectively reduce indoor radon concentration and improve environmental air quality. (authors)

  4. Use of natural basement ventilation to control radon in single family dwellings

    International Nuclear Information System (INIS)

    Cavallo, A.; Gadsby, K.; Reddy, T.A.

    1992-01-01

    Natural basement ventilation has always been recommended as a means of reducing radon levels in houses. However, its efficacy has never been documented. In these experiments, natural ventilation has for the first time been studied systematically in two research houses during both the summer cooling season and the winter heating season. Ventilation rates, environmental and house operating parameters, as well as radon levels, have been monitored. It can be definitely concluded from radon entry rate calculations that natural ventilation can reduce radon levels in two ways. The first is by simple dilution. The second is by reducing basement depressurization and thus the amount of radon-contaminated soil gas drawn into the structure. Therefore, basement ventilation can be an effective mitigation strategy under some circumstances. It might be especially useful in houses with low radon concentrations (of the order of 370 Bq m -1 ) or those with low levels and which cannot be mitigated cost-effectively with conventional technology. (Author)

  5. Biological effects of radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A E; Tavera D, L; Cruces M, M P; Arceo M, C; Rosa D, M.E. de la

    1992-04-15

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  6. Biological effects of radon in Drosophila; Efectos biologicos del radon en Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la

    1992-04-15

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  7. Radiometers for radon concentration in air

    International Nuclear Information System (INIS)

    Bartak, J.; Machaj, B.; Pienkos, J.P.

    2002-01-01

    Constant grow of science and technology stimulates development of new improved measuring tools. New measuring demand arise also in radon concentration measurements. Varying rock stress and rock cracks influencing radon emanation encouraged research aimed at use of this phenomenon to predict crumps of mine formation among others based on variation of radon emanation. A measuring set was developed in the Institute of Nuclear Chemistry and Technology enabling long term monitoring of radon concentration in mine bore-hole. The set consists probe and probe controller. Detection threshold of the probe is 230 Bq/m 3 . The set can operate in the environment with methane explosion hazard. A radiometer employing Lucas cell as radiation detector for radon concentration in air was also developed its detection threshold is approx. 10 Bq/m 3 . Replaceable Lucas cell of the radiometer allows for measurement of high as well as low radon concentration in short time interval. (author)

  8. Methods of radon measurement and devices

    International Nuclear Information System (INIS)

    Miles, J.

    2004-01-01

    The following topics and instrumentation are discussed: The quantity to be measured; Active measurement methods (scintillation cells, ionisation chambers, electrostatic collection of decay products); Passive measurement methods (charcoal detectors; electret ion chambers; etched track detectors); and Detector considerations for large-scale surveys ('always on' or 'switchable' detectors?; response to radon-220; avoidance of electrostatic effects; quality assurance for passive radon detectors; quality control within the laboratory; external quality assurance; detectors need to be easily deliverable). It is concluded that the ideal detector for large scale surveys of radon in houses is a small, closed detector in a conducting holder which excludes radon-220, supported by rigorous quality assurance procedures. (P.A.)

  9. Radon in homes of the Portland, Oregon Area: Radon data from local radon testing companies collected by CRM (Continuous Radon Measurement) machines

    Science.gov (United States)

    Whitney, H.; Lindsey, K.; Linde, T.; Burns, S. F.

    2013-12-01

    Students from the Department of Geology at Portland State University paired up with the Oregon Health Authority to better understand radon gas values in homes of the Portland metropolitan area. This study focuses on radon values collected by continuous radon measurement (CRM) machines, taken by local radon testing companies. The local companies participating in this study include Alpha Environmental Services, Inc., Cascade Radon, Environmental Works, The House Detectives, LLC, and Soil Solutions Environmental Services, Inc. In total, 2491 radon readings spanning across 77 zip codes were collected from local companies in the Portland metropolitan area. The maximum value, average value, percentage of homes greater than 4 pCi/L and total rank sum was calculated and used to determine the overall radon potential for each zip code (Burns et al., 1998). A list and four maps were produced showing the results from each category. Out of the total records, 24 zip codes resulted in high radon potential and the average reading for the entire Portland Metropolitan area was 3.7 pCi/L. High potential zip codes are thought to be a result of sand and gravel (Missoula Flood deposits) and faults present in the subsurface. The CRM data was compared with both long-term and short-term data provided by the Oregon Health Authority to validate radon potentials in each zip code. If a home is located in a zip code with high or moderate radon potential across two types of data sets, it is recommended that those homes be tested for radon gas.

  10. The role of ventilation in controlling the dispersion of radon gas from a cellar in a domestic house

    International Nuclear Information System (INIS)

    Ward, I.C.; Wang, F.; Sharples, S.; Pitts, A.C.

    1994-01-01

    In certain parts of the United Kingdom where radon gas seeps from the ground into the basement of domestic housing, normal methods of removing this gas by using under floor extract ventilation is not appropriate. In this situation the radon gas enters the basement through the side walls of the cellar and hence into the house. Using mechanical ventilation to either pressurise or de-pressurise the cellar may be an appropriate solution to this problem, however, before installing such a system in a house a ventilation strategy must be established. This paper sets out a ventilation strategy for minimising the ingress of radon into a domestic house, which has been established by simulating the air movement within a domestic house using Breeze Version 6 for a range of environmental conditions. The results of this analysis show that in winter when the emission of radon gas is most strong de-pressurisation of the basement can improve the ingress of the gas to the rest of the house. (author)

  11. Cost-benefit considerations in the development of policies and procedures for controlling indoor exposure to radon and its decay products

    International Nuclear Information System (INIS)

    Puskin, J.S.; Guimond, R.J.; Napolitano, S.; Nelson, C.B.

    1989-01-01

    The applicability of ALARA to the problem of controlling residential radon levels is limited. Cost-benefit considerations can nevertheless be useful in guiding policy in this area. From a societal perspective, the cost-benefit balance for mitigating radon in homes to the EPA action level of 4 pCi/L, or lower, is generally better than for most programs aimed at reducing environmental risks. Reduction of radon levels in new homes tends to be less costly; moreover, reduced radon levels in new construction may be achievable with a net cost savings to the homeowner due to concomitant decreases in energy expenses. Since programs to reduced radon exposure rely on voluntary actions by homeowners, the societal cost-benefit balance cannot dictate the extent of radon mitigation efforts. However, both economic incentives and governmental guidance can influence these efforts. Cost-benefit analysis can be an important tool in formulating such guidance

  12. Meta-analysis of thirty-two case-control and two ecological radon studies of lung cancer.

    Science.gov (United States)

    Dobrzynski, Ludwik; Fornalski, Krzysztof W; Reszczynska, Joanna

    2018-03-01

    A re-analysis has been carried out of thirty-two case-control and two ecological studies concerning the influence of radon, a radioactive gas, on the risk of lung cancer. Three mathematically simplest dose-response relationships (models) were tested: constant (zero health effect), linear, and parabolic (linear-quadratic). Health effect end-points reported in the analysed studies are odds ratios or relative risk ratios, related either to morbidity or mortality. In our preliminary analysis, we show that the results of dose-response fitting are qualitatively (within uncertainties, given as error bars) the same, whichever of these health effect end-points are applied. Therefore, we deemed it reasonable to aggregate all response data into the so-called Relative Health Factor and jointly analysed such mixed data, to obtain better statistical power. In the second part of our analysis, robust Bayesian and classical methods of analysis were applied to this combined dataset. In this part of our analysis, we selected different subranges of radon concentrations. In view of substantial differences between the methodology used by the authors of case-control and ecological studies, the mathematical relationships (models) were applied mainly to the thirty-two case-control studies. The degree to which the two ecological studies, analysed separately, affect the overall results when combined with the thirty-two case-control studies, has also been evaluated. In all, as a result of our meta-analysis of the combined cohort, we conclude that the analysed data concerning radon concentrations below ~1000 Bq/m3 (~20 mSv/year of effective dose to the whole body) do not support the thesis that radon may be a cause of any statistically significant increase in lung cancer incidence.

  13. Radon in the human life

    International Nuclear Information System (INIS)

    Thomas, J.

    1995-01-01

    Radon causes the utmost but controllable radiation exposure of the population. This is now clear, nearly hundred years after the discovery of radioactivity. Remediate and preventive activities have been stated with a complex approach using building engineering, geological sciences, physics and medicine. Despite of long experience in radon problems all these approaches need further development. (J.K.)

  14. Radon in the human life

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J [State Office for Nuclear Safety, Prague (Czech Republic)

    1996-12-31

    Radon causes the utmost but controllable radiation exposure of the population. This is now clear, nearly hundred years after the discovery of radioactivity. Remediate and preventive activities have been stated with a complex approach using building engineering, geological sciences, physics and medicine. Despite of long experience in radon problems all these approaches need further development. (J.K.).

  15. Radon analyser

    International Nuclear Information System (INIS)

    1981-01-01

    The process claimed includes the steps of transferring radon gas produced by a sample to a charcoal trap, cooled to a temperature whereby the radon is absorbed by the charcoal, heating the charcoal trap to a sufficient temperature to release the radon, and transferring the radon to a counting device where the gas particles are counted

  16. A study of radon indoor concentration; Un estudio de concentracion de radon intramuros

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Ruiz, W.; Segovia, N.; Ponciano, G. [ININ, Gerencia de Ciencias Ambientales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    It was realized a study of radon concentration in houses of Mexico City and in a laboratory of the Nuclear Centre of Salazar, State of Mexico. The radon determination in air was realized with solid nuclear track detectors and with Honeywell and Alpha guard automatic equipment. The results show that the majority of houses have values under 148 Bq/m{sup 3} obtaining some housings with upper values located in the Lomas zone. A study in smokers houses and another of controls showed very similar distributions. It was studied the day time fluctuations finding that radon increases considerably during the dawn. Some upper values obtained in a laboratory of the Nuclear Centre were remedied with ventilation. (Author)

  17. Radon gas as a tracer for volcanic processes

    International Nuclear Information System (INIS)

    Thomas, D.M.

    1990-01-01

    Radon emissions from volcanic systems have been under investigation for several decades. Soil gas and groundwater radon activities have been used to map faults and to characterize geothermal systems, and measurements of atmospheric radon and radon daughter concentrations have been used to estimate the volume of magma chambers feeding active eruptions. Several studies have also shown that temporal variations in radon concentration have been associated with the onset of volcanic eruptions or changes in the rates or character of an eruption. Some of these studies have been able to clearly define the cause of the radon anomalies but others have proposed models of radon emission and transport that are not well supported by the known physical and chemical processes that occur in a volcanic system. In order to better characterize the processes that control radon activities in volcanic systems, it is recommended that future radon monitoring programs attempt to maintain continuous recording of radon activities; individual radon measurements should be made over the shortest time intervals possible that are consistent with acceptable counting statistics and geophysical, meteorological, and hydrological parameters should be measured in order to better define the physical processes that affect radon activities in volcanic systems. (author). 63 refs

  18. Radon and its products radiation-induced non-cancerous effect

    International Nuclear Information System (INIS)

    Zhang Xiaoying; Liao Duanfang

    2009-01-01

    The association between exposed to radon and cardiovascular mortality as well as radon therapy for the treatment of rheumatic diseases have become an increasing concern. Here, by analysis uranium miners' cohort epidemiological investigation, show the possibility between the cumulative exposure to radon and death from coronary heart disease. Besides, the existing randomized controlled trials suggest a positive effect of radon therapy on pain in rheumatic diseases. (authors)

  19. Investigations of radon and radon daughters in surficial aquifers of florida

    International Nuclear Information System (INIS)

    1991-05-01

    The principal purpose of the investigation was to test the hypothesis that radon soil flux, considered the principal source of indoor radon contamination, has an underlying relationship to the radon content of associated shallow groundwaters. The working hypothesis was that radon build-up in both soil and shallow groundwater is basically a consequence of the same factor, radon emanation from soil grains and the solid surfaces of the aquifers. Groundwater may be advantageous as an indicator of radon potential. Another object of the project was to investigate temporal and spatial trends of radon daughter products in shallow aquifers. After analyzing all of the radon soil, flux, and groundwater measurements made over the two-year study period, it is clear that while there is no direct relationship between either radon soil concentration or flux and groundwater radon. Measurements in wells where polonium is present at very high concentrations have shown that 210Po is largely unsupported by its radioactive predecessor, and that polonium is considerably more variable, in both space and time than other parameters measured in the same wells, including radon

  20. Radon dosimetry: a review of radon and radon daughter exposure conditions in dwellings and other structures

    International Nuclear Information System (INIS)

    Ryan, M.T.; Goldsmith, W.A.; Poston, J.W.; Haywood, F.F.; Witherspoon, J.P.

    1983-07-01

    Within the past few years several situations have been brought to light which indicate an increased radiation exposure of certain segments of the general population caused by human activities. The most widely publicized activities are those associated with the mining and milling of uranium in the western United States, the phosphate industry in Florida, and those potential problems represented by former Manhattan Engineer District sites. One of the primary problems involves exposure to radon and radon daughters which are released from large waste piles or, in some cases, evolve from backfill and construction materials used in homes, schools, and other buildings. This report presents a review of the available data on radon and radon daughter concentrations in dwellings and other structures. The primary objectives were to compile and tabulate pertinent radon exposure data and to prepare a statistical summary of the data which will be useful in the prediction of normal levels of radon and radon daughter concentrations in these structures. In addition, other parameters associated with radon exposure conditions are presented and discussed

  1. Fluid-based radon mitigation technology development for industrial applications

    International Nuclear Information System (INIS)

    Liu, K.V.; Gabor, J.D.; Holtz, R.E.; Gross, K.C.

    1996-01-01

    The objective of the radon mitigation technology development effort is to develop an efficient and economical radon gas removal technology based on a fluid absorption process. The technology must be capable of cleaning up a wide range of radon gas stream concentrations to a level that meets EPA gas emission standards for residential and industrial applications. Argonne has recently identified a phenomenon that offers the possibility of radon recovery from the atmosphere with high efficiency at room temperature, and radon release at slightly elevated temperatures (50-60 degrees C.) such a device would offer numerous substantial advantages over conventional cryogenic charcoal systems for the removal of radon. Controlled sources of radon in Argonne's radon research facility are being used to quantitatively assess the performance of a selected class of absorbing fluids over a range of radon concentrations. This paper will discuss the design of laboratory- and engineering-scale radon absorption units and present some preliminary experimental test results

  2. Background concentrations of radon and radon daughters in Canadian homes

    International Nuclear Information System (INIS)

    McGregor, R.G.; Vasudev, P.; Letourneau, E.G.; McCullough, R.S.; Prantl, F.A.; Taniguchi, H.

    1980-01-01

    Measurements of radon and radon daughters were carried out in 14 Canadian cities on a total of 9999 homes selected in a statistically random manner. The geometric means of the different cities varied from 0.14 to 0.88 pCi/l. for radon and 0.0009 to 0.0036 Working Levels for radon daughters. The radon originates from natural radioactivity in the soil surrounding the homes. (author)

  3. Study of the effects of radon in three biological systems; Estudio de los efectos del radon en tres sistemas biologicos

    Energy Technology Data Exchange (ETDEWEB)

    Tavera, L. [Instituto Mexicano del Petroleo, Av. Eje Central Lazaro Cardenas No. 152, Edif. 23, Col. San Mateo Atepehuacan, 07730 Mexico D.F. (Mexico); Balcazar, M.; Lopez, A.; Brena, M. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Rosa, M.E. De la [Facultad de Quimica, UNAM, 04510 Mexico D.F. (Mexico); Villalobos P, R. [Centro de Estudios de la Atmosfera, UNAM, 04510 Mexico D.F. (Mexico)

    2002-07-01

    The radon and its decay products are responsible of the 3/4 parts of the exposure of the persons to the environmental radiation. The discovery at the end of XIX Century of the illnesses, mainly of cancer, which appeared in the presence of radon, lead to an accelerated growing of the radon studies: monitoring, dosimetry, effects on the persons, etc. Several epidemiological studies of radon in miners and population in general have been realized; advancing in the knowledge about the concentration-lung cancer risk relationship, but with discrepancies in the results depending on the concentration levels. Therefor, studies which consuming time, efforts and money go on doing. The research of the radon effects in biological systems different to human, allows to realize studies in less time, in controlled conditions and generally at lower cost, generating information about the alpha radiation effects in the cellular field. Therefor it was decided to study the response of three biological systems exposed to radon: an unicellular bacteria Escherichia Coli which was exposed directly to alpha particles from an electrodeposited source for determining the sensitivity limit of the chose technique. A plant, Tradescantia, for studying the cytogenetic effect of the system exposed to controlled concentrations of radon. An insect, Drosophila Melanogaster, for studying the genetic effects and the accumulated effects in several generations exposed to radon. In this work the experimental settlements are presented for the expositions of the systems and the biological results commenting the importance of these. (Author)

  4. Radon in public buildings; Radon in oeffentlichen Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H.; Flesch, K. [IAF - Radiooekologie GmbH, Dresden (Germany); Hermann, E. [B.P.S. Engineering GmbH, Zwickau (Germany); Loebner, W. [Wismut GmbH, Chemnitz (Germany); Leissring, B. [Bergtechnisches Ingenieurbuero GEOPRAX, Chemnitz (Germany)

    2009-07-01

    From the Free State of Saxony, a study was commissioned to survey how reliable measurements to characterize the radon situation in public buildings at a reasonable financial and human effort can be carried out to reduce radiation exposure in public buildings. The study approach was for 6 objects. To characterize the radon situation the time evolution measurement of radon concentrations of more than 1 to 2 weeks turned out to be sufficient. A novel data analysis enables the identification of a ''typical daily alteration of the radon concentration'' depending on the ventilation conditions and the daily use of the offices or class rooms. The identification of typical diurnal radon variations for the working time and weekends or holidays is of fundamental importance for assessing the exposure situation in public buildings. It was shown that the radon concentration during working time are in general much lower than in the times when the buildings (offices) are unused. It turned out that the long-term radon measurements with nuclear track detectors within distinct time regimes (day / night, working hours / leisure time) by utilizing switch modules are very efficient to estimate the actual exposure. (orig.)

  5. A radon progeny deposition model

    International Nuclear Information System (INIS)

    Rielage, Keith; Elliott, Steven R.; Hime, Andrew; Guiseppe, Vincent E.; Westerdale, S.

    2010-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly 222 Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of 210 Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.

  6. A Radon Progeny Deposition Model

    International Nuclear Information System (INIS)

    Guiseppe, V. E.; Elliott, S. R.; Hime, A.; Rielage, K.; Westerdale, S.

    2011-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly 222 Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of 210 Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.

  7. Exposure due to radon in homes - an IAEA perspective

    International Nuclear Information System (INIS)

    Navratilova-Rovenska, K.; Boal, T.; Colgan, T.

    2014-01-01

    The results of miner and residential epidemiology studies provide statistically strong evidence of harmful effects of exposure due to radon and its progeny. With the publication of the fifth edition of the International Basic Safety Standards, of the World Health Organizations Handbook on Indoor Radon and new ICRP statement on radon, there is increased interest from the public health and radiation protection authorities on controlling exposure due to radon and its progeny.The IAEA Safety Requirements publication 'Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards' sets out requirements on governments for control of existing exposure situations, which includes exposure due to radon. The types of situation that are included in the scope of existing exposure situations include exposure in workplaces for which the exposure due to radon is not required by or directly related to the work and for which annual average activity concentrations due to 222 Rn must not exceed a maximum reference level of 1000 Bq/m 3 annual activity concentration, as well as exposure in dwellings and in other buildings with high occupancy factors for members of the public for which the reference level must not exceed a maximum value of 300 Bq/m 3 . These requirements include: collecting data on the activity concentrations of radon in dwellings and other buildings with high occupancy by the public; providing information on exposure due to radon and the associated health risks; and if necessary, to develop an action plan for controlling public exposure to radon. The IAEA has developed a Safety Guide to provide guidance on developing the radon action plan: 'Protection of the Public against Exposure Indoors due to Radon and Other Natural Sources of Radiation'. This presentation will summarize the information on the assistance that the IAEA is currently providing to IAEA Member States to develop radon action plans. These activities include

  8. Molecular dynamics simulations of radon accumulation in water and oil

    Energy Technology Data Exchange (ETDEWEB)

    Pafong, Elvira; Drossel, Barbara [Institut fuer Festkoerperphysik, Technische Universitaet Darmstadt (Germany)

    2016-07-01

    Radon is a radioactive gas that can enter the human body from air or from ground water. Radon can accumulate to levels that considerably rise the risk of lung cancer while it is also known as a a treatment of various ailments, most notably rheumatoid arthritis. The accumulation of radon differs between tissues, with particularly high concentrations in fatty cells. In order to understand the mechanisms responsible for the different solubility of radon in water and fat, we perform molecular dynamics simulations of radon gas at ambient conditions in contact with a bulk material consisting either of water or oil. We evaluate the diffusion coefficient of radon in both media as well as the equilibrium concentration. The crucial point here is to understand the hydrophobic interaction between water and radon as compared to the dispersive interaction between radon and oil. Therefore, we artificially vary the water charges (i.e., the hydrophobicity) as well as the parameters of the van-der-Waals interaction.

  9. Radon in Austria

    International Nuclear Information System (INIS)

    Friedmann, H.

    2000-01-01

    Several projects in Austria deal with the problem of enhanced radon exposure to the public. The Austrian Radon Project is the largest project within this task, with the aim of investigating the radon concentrations in Austrian homes. Another project concerns mitigation methods. According to the EU directive EURATOM 96/29 it is also necessary to check working places for possibly enhanced radon concentrations. These projects are and will be funded by the government. The federal government of Upper Austria sponsored a project to test the indoor air quality in kindergartens including radon measurements. Within an EU research project, the radon concentrations in Austrian springs and groundwater were systematically listed and analyzed. Additional investigations will focus on methods to improve the radon potential maps from the Austrian Radon Project by including geological and other information. (author)

  10. Design, construction and testing of a radon experimental chamber; Diseno, construccion y pruebas de una camara experimental de radon

    Energy Technology Data Exchange (ETDEWEB)

    Chavez B, A; Balcazar G, M

    1991-10-15

    To carry out studies on the radon behavior under controlled and stable conditions it was designed and constructed a system that consists of two parts: a container of mineral rich in Uranium and an experimentation chamber with radon united one to the other one by a step valve. The container of uranium mineral approximately contains 800 gr of uranium with a law of 0.28%; the radon gas emanated by the mineral is contained tightly by the container. When the valve opens up the radon gas it spreads to the radon experimental chamber; this contains 3 accesses that allow to install different types of detectors. The versatility of the system is exemplified with two experiments: 1. With the radon experimental chamber and an associated spectroscopic system, the radon and two of its decay products are identified. 2. The design of the system allows to couple the mineral container to other experimental geometries to demonstrate this fact it was coupled and proved a new automatic exchanger system of passive detectors of radon. The results of the new automatic exchanger system when it leave to flow the radon freely among the container and the automatic exchanger through a plastic membrane of 15 m. are shown. (Author)

  11. Measurements of indoor radon and radon progeny in Mexico City

    International Nuclear Information System (INIS)

    Cheng, Y.S.; Rodriguez, G.P.

    1996-01-01

    Indoor radon has been a public concern associated with increased lung cancer risks. Radon decay products interact with indoor aerosols to form progeny with different size distributions, which may influence the lung dosimetry when the progeny are inhaled. Air pollution in Mexico City is a serious problems with high particulate concentrations, but there are few reports of indoor radon measurement. The purposes of this study were to measure the aerosol concentration, radon concentration, and radon activity size distribution in the living area of three houses in Mexico City. The radon concentration was monitored by a RGM-3 radon gas monitor (Eberline, Inc., Santa Fe, NM). A graded diffusion battery was used to determine the progeny concentration and activity size distribution. The concentration and size distribution of the indoor aerosols were monitored by a quartz, crystal microbalance cascade impactor. Our measurements showed high concentrations of indoor aerosols (20-180 gg m -3 ). However, the radon concentrations-were low ( -1 ), but showed a clear diurnal pattern with peak concentrations from 2-10 AM. The activity size distributions of radon progeny were trimodal, with peaks of 0.6 nm, 4-5 nm, and 100 rim. Most activities were associated with large particle sizes. Our results indicated that indoor radon concentration was not high, due in part to a relatively high air exchange with outdoor air. The high aerosol concentration may also play an important part in the activity size distribution of radon progeny

  12. Reduction of radon from household water supplies

    International Nuclear Information System (INIS)

    Shapiro, P.S.; Sorg, T.J.

    1988-01-01

    Groundwater can be a major source of indoor radon in homes that use individual wells or are served by very small community water supply systems. In the United States, several wells have been found to contain more than 37,000,000 Bq.m -3 of radon dissolved in the water. This radon can be released in the indoor air in the course of using water for normal household activities. A measurement of the radon in the drinking water can be made when an indoor radon problem is suspected. While ventilation may reduce indoor radon levels that result from household water usage, the most common control technique presently applied is removing the radon from the water using a granular activated carbon (GAC) treatment system. Aeration methods are also effective and have been proven to be economical for small community water supplies. Some of the issues faced in using GAC are sizing and maintaining the unit and shielding and disposing of the GAC to prevent exposure from gamma radiation. (author)

  13. Soil gas radon response to environmental and soil physics variables

    International Nuclear Information System (INIS)

    Thomas, D.M.; Chen, C.; Holford, D.

    1991-01-01

    During the last three years a field study of soil gas radon activities conducted at Poamoho, Oahu, has shown that the primary environmental variables that control radon transport in shallow tropical soils are synoptic and diurnal barometric pressure changes and soil moisture levels. Barometric pressure changes drive advective transport and mixing of soil gas with atmospheric air; soil moisture appears to control soil porosity and permeability to enhance or inhibit advective and diffusive radon transport. An advective barrier test/control experiment has shown that advective exchange of soil gas and air may account for a substantial proportion of the radon loss from shallow soils but does not significantly affect radon activities at depths greater than 2.3 m. An irrigation test/control experiment also suggests that, at soil moisture levels approaching field capacity, saturation of soil macroporosity can halt all advective transport of radon and limit diffusive mobility to that occurring in the liquid phase. The results of the authors field study have been used to further refine and extend a numerical model, RN3D, that has been developed by Pacific Northwest Laboratories to simulate subsurface transport of radon. The field data have allowed them to accurately simulate the steady state soil gas radon profile at their field site and to track transient radon activities under the influence of barometric pressure changes and in response to changes in soil permeability that result from variations in soil moisture levels. Further work is continuing on the model to enable it to properly account for the relative effects of advective transport of soil gas through cracks and diffusive mobility in the bulk soils

  14. Adsorption of radon and water vapor on commercial activated carbons

    International Nuclear Information System (INIS)

    Hassan, N.M.; Ghosh, T.K.; Hines, A.L.; Loyalka, S.K.

    1995-01-01

    Equilibrium adsorption isotherms are reported for radon and water vapor on two commercial activated carbons: coconut shell Type PCB and hardwood Type BD. The isotherms of the water vapor were measured gravimetrically at 298 K. The isotherms of radon from dry nitrogen were obtained at 293, 298, and 308 K while the data for the mixture of radon and water vapor were measured at 298 K. The concentrations of radon in the gas and solid phases were measured simultaneously, once the adsorption equilibrium and the radioactive equilibrium between the radon and its daughter products were established. The shape of the isotherms was of Type III for the radon and Type V for the water vapor, according to Brunauer's classification. The adsorption mechanism was similar for both the radon and the water vapor, being physical adsorption on the macropore surface area in the low pressure region and micropore filling near saturation pressure. The uptake capacity of radon decreased both with increasing temperature and relative humidity. The heat of adsorption data indicated that the PCB- and the BD-activated carbons provided a heterogeneous surface for radon adsorption. The equilibrium data for radon were correlated with a modified Freundlich equation

  15. Measurements of radon in soil gas

    International Nuclear Information System (INIS)

    Paschuk, Sergei A.; Correa, Janine Nicolosi; Schelin, Hugo R.; Barbosa, Laercio; Sadula, Tatyana; Matsuzaki, Cristiana A.

    2009-01-01

    Full text: After the decades of systematic and numerous studies performed at different countries of the World, it has been concluded that radon as well as its progeny is the main cause of lung cancer. It is well known that more than 50% of the effective annual radiation dose received by a human being is related to the radon and its progenies. Among the principle mechanisms that bring the radon inside the dwelling is the soil exhalation as well as exhalation and release from the water. Radon concentration in the soil and its transport (emanation, diffusion, advection and adsorption) to the surface depends on different physical, geological and ambient parameters such as the geology of the area, geochemical composition of the soil, its porosity and permeability, grain size, soil humidity, bottom sediments and inputs from streams, temperature, atmospheric pressure, etc. Since the main part of indoor radon originates in the soil, the measurements of radon concentration in soil gas have to be considered as an important tool and indicator of probable high levels of radon inside the dwellings. Present work describes the radon in soil gas measurements performed during the last two years in cooperation between the Laboratory of Applied Nuclear Physics of the Federal University of Technology (UTFPR), the Nuclear Technology Development Center (CDTN) and the Institute of Radiation Protection and Dosimetry (IRD) from the Brazilian Nuclear Energy Commission (CNEN). Following previously concluded measurements of radon concentration in dwellings and the measurements of 222 Rn activity in drinking water collected at artesian bores of Curitiba urban area, present step of activities has been dedicated to measurements of radon concentration in soil gas. Experimental setup was based on the Professional Radon Monitor (ALPHA GUARD) connected to specially developed for such measurements Soil Gas Probe through the air pump and filter system. The equipment was adjusted with air flow of 0

  16. Control of radon and daughters in uranium mines and calculations on biologic effects

    International Nuclear Information System (INIS)

    Holaday, Duncan A.; Rushing, David E.; Coleman, Richard D.; Woolrich, Paul F.; Kusnetz, Howard L.; Bale, William F.

    2006-01-01

    A long range study under way by the Public Health Service since 1950 seeks to define the effects of uranium mining operations on the health of the miners and to derive data leading to the establishment of a healthful working environment. Although no evidence of health damage has been found among American miners, the European experience points to possible serious health effects. As a preventive measure, steps were therefore taken early in the industry's growth to safeguard the health of the miners. The current bulletin describes the results of the environmental study to date, together with the work of other investigators, with reference to methods of measuring atmospheric concentrations of radon and daughter products, the establishment of a safe working level for radon daughter products, and the development of effective control measures. It is believed that the material presented will be found useful by the industry and others, particularly in evaluating health hazards and in deriving economically feasible control methods

  17. Indoor radon

    International Nuclear Information System (INIS)

    1997-12-01

    The radon, a natural radioactive gas, is present almost everywhere on the earth's surface. It can be accumulated at high concentration in confined spaces (buildings, mines, etc). In the last decades many studies conducted in several countries showed that inhaling important amounts of radon rises the risk of lung cancer. Although, the radon is a naturally appearing radioactive source, it may be the subject of a human 'enhancement' of concentration. The increasing radon concentration in professional housing constitutes an example of enhanced natural radioactivity which can induce health risks on workers and public. Besides, the radon is present in the dwelling houses (the domestic radon). On 13 May 1996, the European Union Council issued the new EURATOM Instruction that establishes the basic standards of health protection of population and workers against the ionizing radiation hazards (Instruction 96/29/EURATOM, JOCE L-159 of 29 June 1996). This instruction does not apply to domestic radon but it is taken into consideration by another EURATOM document: the recommendation of the Commission 90/143/EURATOM of 21 February 1990 (JOCE L-80 of 27 March 1990). The present paper aims at establishing in accordance to European Union provisions the guidelines for radon risk management in working places, as well as in dwelling houses, where the implied risk is taken into account. This document does not deal with cases of high radon concentration on sites where fabrication, handling or storage of radium sources take place. These situations must be treated by special studies

  18. Creating Geologically Based Radon Potential Maps for Kentucky

    Science.gov (United States)

    Overfield, B.; Hahn, E.; Wiggins, A.; Andrews, W. M., Jr.

    2017-12-01

    Radon potential in the United States, Kentucky in particular, has historically been communicated using a single hazard level for each county; however, physical phenomena are not controlled by administrative boundaries, so single-value county maps do not reflect the significant variations in radon potential in each county. A more accurate approach uses bedrock geology as a predictive tool. A team of nurses, health educators, statisticians, and geologists partnered to create 120 county maps showing spatial variations in radon potential by intersecting residential radon test kit results (N = 60,000) with a statewide 1:24,000-scale bedrock geology coverage to determine statistically valid radon-potential estimates for each geologic unit. Maps using geology as a predictive tool for radon potential are inherently more detailed than single-value county maps. This mapping project revealed that areas in central and south-central Kentucky with the highest radon potential are underlain by shales and karstic limestones.

  19. Radon reduction and radon-resistant construction demonstrations in New York state. Final report

    International Nuclear Information System (INIS)

    1991-02-01

    A survey of radon levels in New York State homes indicates that approximately 4.4 percent of the homes have long-term living area radon concentrations above the U.S. EPA guideline of four pCi/l. The project addressed the effectiveness of techniques to reduce the radon level in existing homes and to prevent the occurrence of high radon concentrations in new homes. The goal of the project was to demonstrate the effectiveness of radon reduction techniques in homes containing indoor radon concentrations of more than the current EPA guidelines of four pCi/l. At the same time, radon-resistant construction techniques were demonstrated in homes under construction to provide guidelines for houses being built in areas with a danger of high radon levels. The project demonstrated new radon mitigation techniques in homes containing indoor radon concentrations exceeding four pCi/l; assessed the value of previously installed radon reduction procedures, and demonstrated new radon-resistant construction methods

  20. Evaluation of experiences in long-term radon and radon-daughter measurements

    International Nuclear Information System (INIS)

    Young, J.A.; Jackson, P.O.; Thomas, V.W.

    1982-12-01

    Pacific Northwest Laboratory (PNL) is performing side-by-side measurements of radon and radon daughter concentrations using several instruments and techniques, and is comparing these measurements with side-by-side measurements made by other investigators at other locations. The standard deviation of the differences between the (natural) logarithms of the Terradex Track Etch radon concentrations and the logarithms of the Radon Progency Integrating Sampling Units (RPISU) radon daughter concentrations (S.D.-ln) measured in 50 buildings in Edgemont, South Dakota, was 0.37. Using this S.D.-ln, it can be calculated that if the Track Etch radon daughter concentration is 0.010 WL there should be only a 14% probability that the RPISU average would be greater than 0.015 WL, and only a 3% probability tht the RPISU average would be greater than 0.020 WL. If buildings had been cleared from remedial action when the Track Etch averages were less than 0.10 WL, then about 61% of the buildings would have been cleared from remedial action, and only a few percent of these buildings would have actually had average RPISU concentrations greater than 0.015 WL. The S.D.-ln between the Track Etch radon measurements and the RPISU radon daughter measurements made by ALARA at Grand Junction, the PERM radon measurements and the MOD-225 radon daughter measurements made by Mound Facility at Canonsburg and Middlesex, and the PERM and Track Etch radon measurements made by Mound Facility at Salt Lake City were similar to the S.D.-ln between the Track Etch radon measurements and the RPISU radon daughter measurements at Edgemont

  1. Health hazards from radon daughters in dwellings in Sweden

    International Nuclear Information System (INIS)

    Axelson, O.; Edling, C.

    1980-01-01

    To clarify the possible etiological role for lung cancer from exposure to the low levels of radon and its daughters in dwellings, a case-control study was made, comparing cases of lung cancer with controls with respect to residency in different types of houses. This pilot study was restricted to include only people who lived in typically rural areas. The results support the hypothesis that radon and radon daughter exposure in dwellings is pertinent to the question of the etiology of lung cancer

  2. Orphan radon daughters at Denver Radium site

    International Nuclear Information System (INIS)

    Holub, R.F.; Droullard, R.F.; Davis, T.H.

    1992-01-01

    During 18 mo of sampling airborne radioactively at a National Priority List (open-quotes Superfundclose quotes) site in metroPOlitan Denver, Bureau of mines personnel discovered radon daughters that are not supported by the parent radon gas. We refer to them as open-quotes orphanclose quotes daughters because the parent, radon, is not present in sufficient concentration to support the measured daughter products. Measurements of the open-quotes orphanclose quotes daughters were made continuously, using the Bureau-developed radon and working-level (radon-daughter) monitors. The data showed high equilibrium ratios, ranging from 0.7 to 3.5, for long periods of time. Repeated, high-volume, 15-min grab samples were made, using the modified Tsivoglou method, to measure radon daughters, to which thoron daughters contributed 26 ± 12%. On average 28 ± 6% of the particulate activity was contributed by thoron daughters. Most samples were mixtures in which the 218 Po concentration was lower than that of 214 Pb and 214 Bi, in agreement with the high-equilibrium factors obtained from the continuous sampling data. In view of the short half-life of radon progeny, we conclude that the source of the orphan daughters is not far from the Superfund sites. The mechanism of this phenomenon is not understood at this time, but we will discuss its possible significance in evaluating population doses

  3. New apparatus for measuring radon adsorption on solid adsorbents

    International Nuclear Information System (INIS)

    Hassan, N.M.; Hines, A.L.; Ghosh, T.K.; Loyalka, S.K.; Ketring, A.R.

    1991-01-01

    A new experimental system was designed to measure radon uptake by solid adsorbents from air or other carrier gases/vapors. The total amount of radon adsorbed corresponding to a specific gas-phase concentration was determined by simultaneously measuring the solid-phase and gas-phase concentrations. The system was used to measure radon adsorption isotherms on BPL activated carbon at 288, 298, and 308 K and on silica gel and molecular sieve 13X at 298 K. The isotherms were of type III according to Brunauer's classification. The heat of adsorption data indicated that the BPL activated carbon provided a heterogeneous surface for radon adsorption. The equilibrium data were correlated by the Freundlich equation. In this paper the possible adsorption mechanism and the use of the adsorption isotherms to measure indoor radon concentrations are discussed

  4. Application of single-chip microcomputer to portable radon and radon daughters monitor

    International Nuclear Information System (INIS)

    Meng Yecheng; Huang Zhanyun; She Chengye

    1992-01-01

    Application of single-chip microcomputer to portable radon and radon daughters monitor is introduced in this paper. With the single-chip microcomputer automation comes into effect in the process from sampling to measuring of radon and radon daughters. The concentrations of radon and radon daughters can be easily shown when the conversion coefficients are pre-settled before the measurement. Moreover, the principle and design are briefly discussed according to the characteristics of the monitor

  5. Compact detector for radon and radon daughter products

    International Nuclear Information System (INIS)

    Alter, H.W.; Oswald, R.A.

    1986-01-01

    This invention provides an improved compact track registration detector for radon gas. The detector comprises a housing having an open mouth, a bottom, and side walls; track registration means, supported inside the housing, which forms damage tracks along paths traversed by alpha particles; a microporous filter positioned across the mouth of the housing to prevent entry of radon daughters and particulate matter; and a cap that may be placed on the mouth of the housing to retain the filter. The housing has internal wall surfaces dimensioned to optimize the registration of alpha particles from radon and radon daughters present in the housing

  6. Environmental radon with RAD7 detector; Radon ambiental con detector RAD7

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, A.; Balcazar, M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Fernandez G, I. M.; Capote F, E., E-mail: arturo.lopez@inin.gob.mx [Centro de Proteccion e Higiene de las Radiaciones, Carretera La Victoria II Km 2.5 e/ Monumental y Final, Guanabacoa, La Habana (Cuba)

    2016-09-15

    Experimental results of the radon detection with the equipment RAD7 are presented. The use of a solid state detector placed in a semi-spherical chamber with an electric field allows a high sensitivity of 0.4 cpm/P Ci/l. Radon detection is achieved by the spectroscopy of its decay products. In accordance with a table of errors for various ranges of counts and radon concentrations, reported by the manufacturer, an equation was obtained that allows establishing operation criteria of the equipment. For radon detection at ambient concentrations as low as 30 Bq m{sup -3}, is shown that short counts of 10 minutes are good enough to make decisions on radiation protection matter. In places where concentrations are close to 200 Bq m{sup -3}, counting intervals of the order of 0.5 hours will have an acceptable counting error of the order of 20%. The determination of radon in soil was, according to the expected, on the order of 10 kBq m{sup -3}, and was found that even with the recommended counting times of 5 minutes, there is a risk of increased humidity inside the detector above 20% Rh, with associated reduction of detection efficiency, if the desiccant is not used properly. The equipment was subjected to a radon exposure in air of 13, 373 Bq m{sup -3} ± 3.7%, contained within a controlled chamber, with a variation in temperature of (19-21) degrees Celsius and in the relative humidity of (5-7) %, the good stability of the chamber allows to propose calibration processes of these equipment s by assessing the concentration by means of a Ge (Hp) detector. (Author)

  7. The use of soil gas as radon source in radon chambers

    International Nuclear Information System (INIS)

    Al-Azmi, Darwish

    2009-01-01

    A procedure is described in which soil gas is utilized as an alternative to the 226 Ra source for the supply of the radon gas required to fill a radon chamber where radon-measuring devices are calibrated. The procedure offers opportunities to vary the radon concentration within the chamber around an average value of about 500 Bq/m 3 , which is considered to be sufficient for calibrating indoor radon detectors. The procedure is simple and the radon source does not require radiation protection certification (for import and/or use), unlike the commercially produced standard radioactive ( 226 Ra) sources.

  8. Controlled study of the evolution of radon and its decay products in radioactive mine environments

    International Nuclear Information System (INIS)

    Calizaya A, F.

    1985-01-01

    This thesis discusses three aspects related to radon emissions and control of radon decay products in mine environments: (1) measurement of the effects of environmental parameters on radiation levels, (2) analysis of the data using ordinary linear regression and transfer function models and (3) prediction of the concentration of radioactive contaminants in the mine air. In-mine and laboratory experiments were conducted to develop the research data. In mine tests were conducted in a bulkhead isolated mine drift containing low grade uranium ore at the Colorado School of Mines, Experimental Mine with the US Bureau of Mines - Spokane Research Center (USBM, SRC) micro-computer based radiation monitoring system. Parameters such as amount of ore, amount of condensation nuclei in the mine air, temperature, air velocity, and barometric pressure were studied. The laboratory tests were conducted in an air-tight radon chamber equipped with a container of the radioactive material, various monitors, and the USBM, SRC Data Acquisition System. The effect of parameters such as ore grade, particle size, rock moisture, air temperature and relative humidity on radon concentrations were measured in the laboratory. Radiation levels, together with parameters affecting these levels, were measured over a period of one year (June 1984-July 1985) both in the laboratory model and in the field

  9. Radon: possible links with leukaemia and other non-lung cancers

    International Nuclear Information System (INIS)

    Henshaw, D.L.; Eatough, J.P.

    1993-01-01

    The evidence for possible links between domestic radon exposure and incidence of leukaemia and other non-lung cancers is reviewed. Recent calculations of the radon derived dose to red bone marrow suggests that if background radiation is linked to leukaemia in the general population then radon exposure may be a causative factor. Accordingly, statistically significant geographical correlations between domestic radon exposure and incidence of leukaemia have been observed in several data sets. In a preliminary study the level of hprt mutation in peripheral blood of individuals has been found to correlate with radon concentration in their homes. Geographical associations have also been observed between domestic radon exposure and certain other cancers. A model has been developed which predicts the possible carcinogenic effect of simultaneous exposure to alpha particles and gamma radiation and to radon and cigarette smoke, reflecting the nature of natural exposures. The model is used to suggest a mechanism for an antagonistic effect of radon and smoking at domestic levels but a synergistic effect at higher dose rates such as in uranium miners. (orig.)

  10. Radon in Antarctica

    International Nuclear Information System (INIS)

    Ilic, R.; Rusov, V.D.; Pavlovych, V.N.; Vaschenko, V.M.; Hanzic, L.; Bondarchuk, Y.A.

    2005-01-01

    The paper reviews results of radon measurements obtained in Antarctic research stations in the last 40 years by both active and passive radon monitors. A brief description of the radon laboratory set-up in the Ukrainian Academician Vernadsky station on the Antarctic Peninsula (W 64 o 16 ' , S 65 o 15 ' ), where radon is measured by two types of etched track Rn dosimeter and 4 types of continuous radon monitoring devices is presented. Some selected results of research work are described related to: (i) analysis of radon storms, defined as an abrupt increase of 222 Rn during the occurrence of a cyclone, and its applicability for the study of the transport of air masses of continental origin to Antarctica; (ii) a study of the correlation of changes of radon concentration and geomagnetic field induced by tectonic activity and its application to predicting tectonomagnetic anomalies, and (iii) verification of a newly developed theoretical model based on noise analysis of the measured radon signal for earthquake prediction. Suggestions for future utilization of radon for basic research in Antarctica (and not only in Antarctica) conclude the contribution. conclude the contribution

  11. Radon-hazard potential the Beaver basin, Utah

    International Nuclear Information System (INIS)

    Bishop, C.E.

    1995-01-01

    Indoor-radon levels in the Beaver basin of southwestern Utah are the highest recorded to date in Utah, ranging from 17.5 to 495 picocuries per liter (pCi/L). Because the U.S. Environment Protection Agency considers indoor-radon levels above 4 pCi/L to represent a risk of lung cancer from long-term exposure, the Utah Geological Survey is preparing a radon-hazard-potential map for the area to help prioritize indoor testing and evaluate the need for radon-resistant construction. Radon is a chemically inert radioactive gas derived from the decay of uranium-238, which is commonly found in rocks and soils. Soil permeability, depth to ground water, and uranium/thorium content of source materials control the mobility and concentration of radon in the soil. Once formed, radon diffuses into the pore space of the soil and then to the atmosphere or into buildings by pressure-driven flow of air or additional diffusion. The Beaver basin has been a topographic and structural depression since late Miocene time. Paleocene to Miocene volcanic and igneous rocks border the basin. Uraniferous alluvial-fan, piedmont-slope, flood-plain, and lacustrine sediments derived from the surrounding volcanic rocks fill the basin. A soil-gas radon and ground radioactivity survey in the Beaver basin shows that soils have high levels of radon gas. In this survey, uranium concentrations range from 3 to 13 parts per million (ppm) and thorium concentrations range from 10 to 48 ppm. Radon concentrations in the soil gas ranged from 85 to 3,500 pCi/L. The highest concentrations of uranium, thorium, and radon gas and the highest radon-hazard-potential are in the well-drained permeable soils in the lower flood- plain deposits that underlie the city of Beaver

  12. Radon-Instrumentation; Radon-Instrumentacion

    Energy Technology Data Exchange (ETDEWEB)

    Moreno y Moreno, A. [Departamento de Apoyo en Ciencias Aplicadas, Benemerita Universidad Autonoma de Puebla, 4 Sur 104, Centro Historico 72000 Puebla (Mexico)

    2003-07-01

    The presentation of the active and passive methods for radon, their identification and measure, instrumentation and characteristics are the objectives of this work. Active detectors: Active Alpha Cam Continuous Air Monitor, Model 758 of Victoreen, Model CMR-510 Continuous Radon Monitor of the Signature Femto-Tech. Passive detectors: SSNTD track detectors in solids Measurement Using Charcoal Canisters, disk of activated coal deposited in a metallic box Electrets Methodology. (Author)

  13. Radon exhalation of hardening concrete: monitoring cement hydration and prediction of radon concentration in construction site.

    Science.gov (United States)

    Kovler, Konstantin

    2006-01-01

    The unique properties of radon as a noble gas are used for monitoring cement hydration and microstructural transformations in cementitious system. It is found that the radon concentration curve for hydrating cement paste enclosed in the chamber increases from zero (more accurately - background) concentrations, similar to unhydrated cement. However, radon concentrations developed within 3 days in the test chamber containing cement paste were approximately 20 times higher than those of unhydrated cement. This fact proves the importance of microstructural transformations taking place in the process of cement hydration, in comparison with cement grain, which is a time-stable material. It is concluded that monitoring cement hydration by means of radon exhalation method makes it possible to distinguish between three main stages, which are readily seen in the time dependence of radon concentration: stage I (dormant period), stage II (setting and intensive microstructural transformations) and stage III (densification of the structure and drying). The information presented improves our understanding of the main physical mechanisms resulting in the characteristic behavior of radon exhalation in the course of cement hydration. The maximum value of radon exhalation rate observed, when cement sets, can reach 0.6 mBq kg(-1) s(-1) and sometimes exceeds 1.0 mBq kg(-1) s(-1). These values exceed significantly to those known before for cementitious materials. At the same time, the minimum ventilation rate accepted in the design practice (0.5 h(-1)), guarantees that the concentrations in most of the cases will not exceed the action level and that they are not of any radiological concern for construction workers employed in concreting in closed spaces.

  14. Reinforced natural radioactivity: the case of radon measurement

    International Nuclear Information System (INIS)

    Bernhard, S.; Desray, M.

    2009-01-01

    Summarizing a presentation of radon measurement instruments, of their use and of the interpretation of their results, the authors briefly recall the origin of exposures to radon (geological or occupational), indicate the three types of control (detection of presence of radon, search for and characterization of sources and transfer ways, worker dosimetric follow-on) and the three types of measurement (selective, integrated or continuous), and evoke the range of measurement instruments

  15. Risk of Lung Cancer and Indoor Radon Exposure in France

    International Nuclear Information System (INIS)

    Baysson, H.; Tirmarche, M.; Tymen, G.; Ducloy, F.; Laurier, D.

    2004-01-01

    It is well established that radon exposure increases risks of lung cancer among underground miners. to estimate the lung cancer risk linked to indoor radon exposure, a hospital based case-control study was carried out in France, With a focus on precise reconstruction of past indoor radon exposure over the 30 years preceding the lung cancer diagnosis. The investigation rook place from 1992 to 1998 in four regions of France: Auvergne, Brittany, Languedoc and Limousin. During face-to-face interviews a standardized questionnaire was used to ascertain demographic characteristics, information on active and passive smoking, occupational exposure, medical history as well as extensive details on residential history. Radon concentrations were measured in the dwellings where subjects had lived at least one year during the 5-30 year period before interview. Measurements of radon concentrations were performed during a 6-month period, using two Kodalpha LR 115 detectors, one in the living room and one in the bedroom. The time-weighted average (TWA) radon concentration for a subject during the 5-30 year period before interview was based on radon concentrations over all addresses occupied by the subject weighted by the number of years spent at each address. For the time intervals without available measurements, we imputed the region-specific arithmetic average of radon concentrations for measured addresses of control subjects. Lung cancer risk was examined in relation to indoor radon exposure after adjustment for age, sex, region, cigarette smoking and occupational exposure. The estimated relative a risk per 100 Bq/m''3 was 1.04, at the borderline of statistical significance (95 percent Confidence Interval: 0.99, 1..1). These results are in agreement with results from other indoor radon case-control studies and with extrapolations from underground miners studies. (Author) 31 refs

  16. Wind direction correlated measurements of radon and radon progeny in atmosphere: a method for radon source identification

    International Nuclear Information System (INIS)

    Akber, R.A.; Pfitzner, J.; Johnston, A.

    1994-01-01

    This paper describes the basic principles and methodology of a wind direction correlated measurement technique which is used to distinguish the mine-related and background components of radon and radon progeny concentrations in the vicinity of the ERA Ranger Uranium Mine. Simultaneous measurements of atmospheric radon and radon progeny concentrations and wind speed and direction were conducted using automatic sampling stations. The data were recorded as a time series of half hourly averages and grouped into sixteen 22.5 degrees wind sectors. The sampling interval and the wind sector width were chosen considering wind direction variability (σ θ ) over the sampling time interval. The data were then analysed for radon and radon progeny concentrations in each wind sector. Information about the wind frequency wind speed seasonal and diurnal variations in wind direction and radon concentrations was required for proper data analysis and interpretation of results. A comparison with model-based estimates for an identical time period shows agreement within about a factor of two between the two methods. 15 refs., 1 tab., 5 figs

  17. Continuous measurements of soil radon under regular field conditions

    International Nuclear Information System (INIS)

    Font, LL

    1999-01-01

    Continuous soil radon measurements were performed in the frame of an European Community-radon network using the Clipperton II detector. It has been found that in some periods, soil radon levels obtained with one Clipperton II probe are very different from those obtained with another probe placed at the same depth but a short distance apart. It has been also found that the response of the probes to a sudden change of radon concentration is controlled by the diffusion process along the bottom tube of the probe. Therefore, this study shows that the experimental data can be attributed to the natural behaviour of soil radon

  18. Procedure manual for the estimation of average indoor radon-daughter concentrations using the radon grab-sampling method

    International Nuclear Information System (INIS)

    George, J.L.

    1986-04-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology established the Technical Measurements Center to provide standardization, calibration, comparability, verification of data, quality assurance, and cost-effectiveness for the measurement requirements of DOE remedial action programs. One of the remedial-action measurement needs is the estimation of average indoor radon-daughter concentration. One method for accomplishing such estimations in support of DOE remedial action programs is the radon grab-sampling method. This manual describes procedures for radon grab sampling, with the application specifically directed to the estimation of average indoor radon-daughter concentration (RDC) in highly ventilated structures. This particular application of the measurement method is for cases where RDC estimates derived from long-term integrated measurements under occupied conditions are below the standard and where the structure being evaluated is considered to be highly ventilated. The radon grab-sampling method requires that sampling be conducted under standard maximized conditions. Briefly, the procedure for radon grab sampling involves the following steps: selection of sampling and counting equipment; sample acquisition and processing, including data reduction; calibration of equipment, including provisions to correct for pressure effects when sampling at various elevations; and incorporation of quality-control and assurance measures. This manual describes each of the above steps in detail and presents an example of a step-by-step radon grab-sampling procedure using a scintillation cell

  19. Instruments to measure radon activity concentration or exposure to radon. Interlaboratory comparison 2011

    International Nuclear Information System (INIS)

    Foerster, Elisabeth; Beck, Thomas; Buchroeder, Helmut; Doering, Joachim; Schmidt, Volkmar

    2011-10-01

    According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices.., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices. Passive radon measurement devices 1 using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if the devices are issued by recognized radon measurement services, and the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by BfS. A radon measuring service is recognized by the competent authority if it proves its organizational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily. The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the website www.bfs.de/de/ion/radon/fachinfomessung/vergleichspruefungen.html and from the European Information System on Proficiency Testing Schemes (eptis) available in the internet. (orig.)

  20. Uncertainties of estimating average radon and radon decay product concentrations in occupied houses

    International Nuclear Information System (INIS)

    Ronca-Battista, M.; Magno, P.; Windham, S.

    1986-01-01

    Radon and radon decay product measurements made in up to 68 Butte, Montana homes over a period of 18 months were used to estimate the uncertainty in estimating long-term average radon and radon decay product concentrations from a short-term measurement. This analysis was performed in support of the development of radon and radon decay product measurement protocols by the Environmental Protection Agency (EPA). The results of six measurement methods were analyzed: continuous radon and working level monitors, radon progeny integrating sampling units, alpha-track detectors, and grab radon and radon decay product techniques. Uncertainties were found to decrease with increasing sampling time and to be smaller when measurements were conducted during the winter months. In general, radon measurements had a smaller uncertainty than radon decay product measurements. As a result of this analysis, the EPA measurements protocols specify that all measurements be made under closed-house (winter) conditions, and that sampling times of at least a 24 hour period be used when the measurement will be the basis for a decision about remedial action or long-term health risks. 13 references, 3 tables

  1. Blower door method in radon diagnostics

    International Nuclear Information System (INIS)

    Fronka, A.; Moucka, L.

    2004-01-01

    The idea of the radon transfer factor is commonly presented as the ratio of the building indoor radon concentration to the subsoil radon concentration. Ventilation and the pressure field over the whole building envelope, which varies in a time over a very wide range even in the same building, poses a major problem. Therefore a new approach based on the controlled conditions determining the soil air infiltration was developed. Radon in soil gas infiltrates into the building indoor environment particularly through cracks and other leakages in the structure providing the building contact with its subsoil. The infiltration is driven by the air pressure difference on the two sides of the structure. The pressure difference is caused by the stack effect and its value ranges from 1-2 Pa in family houses to some tens of Pa in higher buildings. Unfortunately, the pressure difference is very unstable under normal conditions, being affected by a host of parameters such as the height of the building, distribution and geometry of leakages, outdoor-indoor temperature difference, etc. Wind direction and velocity of the wind plays a major role. In our research the blower door method was applied in combination with a monitoring of the indoor radon concentration. The indoor-outdoor pressure difference and the pressure difference at the two sides of the screen shutter of the blower door fan are also measured. The blower door ensures a constant, evaluable air exchange rate. The fan power is regulated to provide a stable pressure difference within the range of roughly 5-100 Pa. This approach provides very well defined conditions allowing us to apply a constant ventilation-constant radon supply model. In such circumstances the dynamical changes of radon concentrations are very fast, and therefore a unique continual radon monitor was applied. The radon supply rate is evaluated from the radon steady state of the time course of radon concentration. The dependence of the radon supply rate on

  2. Can radon gas measurements be used to predict earthquakes?

    International Nuclear Information System (INIS)

    2009-01-01

    After the tragic earthquake of April 6, 2009 in Aquila (Abruzzo), a debate has begun in Italy regarding the alleged prediction of this earthquake by a scientist working in the Gran Sasso National Laboratory, based on radon content measurements. Radon is a radioactive gas originating from the decay of natural radioactive elements present in the soil. IRSN specialists are actively involved in ongoing research projects on the impact of mechanical stresses on radon emissions from underground structures, and some of their results dating from several years ago are being brought up in this debate. These specialists are therefore currently presenting their perspective on the relationships between radon emissions and seismic activity, based on publications on the subject. (authors)

  3. Radon as a remedy - radiobiological and medical aspects, risk

    International Nuclear Information System (INIS)

    Schwarz, E.R.; Nuernberger, E.; Martignoni, K.

    1995-01-01

    For years there have been controversial discussions about the benefit and risk of radon-balneo-therapy. This is particularly true where the inhalation of radon and its daughter products in curative galleries is concerned. Animal experiments and studies on uranium miners have clearly shown that the exposure with radon and its daughter products is connected with an additional risk for lung cancer. Findings on balneo-therapeutic mechanisms are, at best, incomplete and the topic of controversial discussions in radiobiology. This applies specifically to 'hormesis' or 'adaptive response', as indicated in this context. Given the numerous reports of therapeutic results, there appear to be curative effects from radon-balneotherapy for special indications. (orig.) [de

  4. Radon programme: presence and future

    International Nuclear Information System (INIS)

    Hulka, J.

    2009-01-01

    In this presentation an overview of radon programme experiences is presented. The paper summarises national radon policy, national programmes, legislation, the role of preventive measures and interventions with respect to existing and future exposure and knowledge of radon risk, problems of remediation strategies, practical protection in dwellings, radon measurements strategies, progress in radon measurement of an individual house (radon diagnosis), radon mapping process and sense of delineation of radon prone areas, natural radioactivity of building materials and radioactivity in public water and their role in the radon programme, public awareness on radon issue and publicity campaign. Some research activities are proposed aiming at effective solutions of radon issues in future

  5. Radon-222 emissions and control practices for licensed uranium mills and their associated tailings piles. Final report

    International Nuclear Information System (INIS)

    1985-06-01

    The report is organized into five main sections. The conclusions of the effort are summarized in Chapter 2. A general description of current milling and tailings management practices and a summary of the site-specific characteristics of operating and standby uranium mills are contained in Chapter-3. The sources and emission rates of radon-222 at licensed mills and their associated tailings piles are contained in Chapter 4 along with the results of an effort to develop generic procedures to estimate radon-222 emissions for milling operations and tailings disposal. Control practices that are being or could be applied to the milling operation and tailings disposal areas and their estimated cost and effectiveness in reducing radon-222 emissions are presented in Chapter 5. The appendices contain detailed information on mill site data and emission estimates

  6. Radon

    International Nuclear Information System (INIS)

    1990-01-01

    This leaflet in the At-a-Glance Series, describes what radon is, where it is found, why it presents a risk to health, the official advice, and the remedies that are available to reduce radon levels. (author)

  7. Measurement and apportionment of radon source terms for modeling indoor environments

    International Nuclear Information System (INIS)

    Harley, N.H.

    1990-01-01

    This research has two main goals; (1) to quantify mechanisms for radon entry into homes of different types and to determine the fraction of indoor radon attributable to each source and (2) to model and calculate the dose (and therefore alpha particle fluence) to cells in the human and animal tracheobronchial tree that is pertinent to induction of bronchogenic carcinoma from inhaled radon daughters

  8. Moisture dependence of radon transport in concrete : Measurements and modeling

    NARCIS (Netherlands)

    Cozmuta, [No Value; van der Graaf, ER; de Meijer, RJ

    2003-01-01

    The moisture dependence of the radon-release rate of concrete was measured under well controlled conditions. It was found that the radon-release rate almost linearly increases up to moisture contents of 50 to 60%. At 70 to 80% a maximum was found and for higher moisture contents the radon-release

  9. Experience gained with a case control study of risk factors in bronchial carcinoma - would the approach be suitable for assessment of the radon problem?

    International Nuclear Information System (INIS)

    Wichmann, H.E.

    1988-01-01

    In the USA and in Sweden, case control studies are being done for investigating the incidence of lung cancer and a possible association with indoor exposure to radon daughters. In the F.R.G., methods and results of a case control study of other risk factors in bronchial carcinoma are available, and the question currently discussed is whether the data obtained by this study, together with additional measurements, could be used to assess the radon problem, or whether an individual radon study should be done, and what its requirements would be. (orig.) [de

  10. Effectiveness of ventilation improvements as a protective measure against radon

    International Nuclear Information System (INIS)

    Hoving, P.; Arvela, H.

    1993-01-01

    Radon reduction rates for ventilation improvement measures vary considerably. In 70% of the cases studied, further mitigation is needed to reach a level of 400 Bq/m 3 . Ventilation measures in crawl spaces and basements have resulted in reduction rates of up to 90%, though more typically 30-70%. Installing new mechanical systems in dwellings has resulted in 20-80% reduction rates. If fan use or fan efficiency is increased, radon levels can be reduced as much as when new systems are installed. Increasing fresh-air supply through vents or window gaps reduces radon concentrations 10-40%. Low ventilation rates, measured after mitigation using the passive per fluorocarbon tracer gas method, seem to be accompanied by also low radon reduction rates. Multiple zone tracer gas measurements were conducted in order to reveal radon entry from the soil and radon transport between zones. (orig.). (3 refs., 3 figs., 2 tabs.)

  11. Radon emanation from soils

    International Nuclear Information System (INIS)

    Markkanen, M.; Arvela, H.

    1992-01-01

    The results of gamma spectrometric sample measurements of radon ( 222 Rn) emanation coefficients and radium concentrations ( 226 Ra) from about 800 Finnish soil samples are presented. The radon emanation rate was measured in about 400 soil samples, using radon-tight cans and Lucas cells. The effects of water content and temperature on radon emanation were investigated, using various samples of different soil types. Radon emanation and the effect of water content on radon emanation were investigated separately for different grain sizes (samples of till). The results provide some information on radon emanation in different soil types and relate emanation in laboratory conditions to conditions in ground soil. In routine measurements of radon emanation from soil samples, use of a 5% water content was considered advisable. The correction coefficients of radon emanation varied between 0.3 and 1.5, depending on the water content and soil type. At 5% water content, hardly any difference was found between radon emanation at temperatures of 20 and 1 o C. Radon emanation was found to be an inverse function of grain sizes larger than 0.5 mm in diameter. (author)

  12. Radon and buildings: Pt. 1

    International Nuclear Information System (INIS)

    1994-02-01

    An effective way of reducing the level of radon in dwellings is to extract air from beneath the ground floor. This is usually achieved by mechanical ventilation or by use of a radon sump. However, in some circumstances, these remedial measures may lower the air pressure inside the dwelling. In a small number of cases, this causes combustion gases from open-flued combustion appliances, such as open fires, to spill into the living spaces. Spillage of this type is potentially hazardous. This leaflet recommends ways to reduce the likelihood of spillage, and suggests solutions if spillage does occur. (author)

  13. Lung Cancer Risk from Occupational and Environmental Radon and Role of Smoking in Two Czech Nested Case-Control Studies

    Directory of Open Access Journals (Sweden)

    Ladislav Tomasek

    2013-03-01

    Full Text Available The aim of the present study was to evaluate the risk of lung cancer from combined exposure to radon and smoking. Methodologically, it is based on case-control studies nested within two Czech cohort studies of nearly 11,000 miners followed-up for mortality in 1952–2010 and nearly 12,000 inhabitants exposed to high levels of radon in homes, with mortality follow-up in 1960–2010. In addition to recorded radon exposure, these studies use information on smoking collected from the subjects or their relatives. A total of 1,029 and 370 cases with smoking information have been observed in the occupational and environmental (residential studies, respectively. Three or four control subjects have been individually matched to cases according to sex, year of birth, and age. The combined effect from radon and smoking is analyzed in terms of geometric mixture models of which the additive and multiplicative models are special cases. The resulting models are relatively close to the additive interaction (mixing parameter 0.2 and 0.3 in the occupational and residential studies, respectively. The impact of the resulting model in the residential radon study is illustrated by estimates of lifetime risk in hypothetical populations of smokers and non-smokers. In comparison to the multiplicative risk model, the lifetime risk from the best geometric mixture model is considerably higher, particularly in the non-smoking population.

  14. Radon in geological medium

    Energy Technology Data Exchange (ETDEWEB)

    Hricko, J [GEOCOMPLEX, a.s., Bratislava (Slovakia)

    1996-12-31

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a{sub v} has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km{sup 2}. The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a{sub v} > 50 kBq/m{sup 3}). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs.

  15. Radon in geological medium

    International Nuclear Information System (INIS)

    Hricko, J.

    1995-01-01

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a v has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km 2 . The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a v > 50 kBq/m 3 ). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs

  16. Modified design in new construction prevents infiltration of soil gas that carries radon

    International Nuclear Information System (INIS)

    Ericson, S.O.; Schmied, H.

    1987-01-01

    Dwellings located on permeable soil with strong exhalation of radon often get a contribution to indoor radon from infiltrating soil gas carrying radon from the ground into the building. 100 dwellings have been built on radon dangerous land with different modifications in design and construction in order to prevent infiltration of radon. Tight construction, ventilated crawl space, ventilation/depressurization of the capillary breaking layer (crushed stone), and mechanical ventilation with heat recovery by air to air heat exchangers or heat pumps have been tested. Added building costs and measured concentration of radon after construction and 3-5 years later are reported. It is concluded that it is possible to build radon protective and radon safe dwellings on any land. The added costs have ranged from zero to 4% of total building costs

  17. BGS Radon Protective Measures GIS

    International Nuclear Information System (INIS)

    Appleton, D.; Adlam, K.

    2000-01-01

    The British Geological Survey Radon Protective Measures Geographical Information System is described. The following issues are highlighted: Identification of development sites where radon protection is required in new dwellings; Mapping radon potential on the basis of house radon and geology; Radon Protective Measures GIS; Radon site reports; and Follow-up radon protective measures sire reports

  18. Radon measurement studies in Kazakhstan

    International Nuclear Information System (INIS)

    Sevost'yanov, V.N.

    2003-01-01

    Today, one has to admit that despite the important role and certain achievements in providing the radiation control in Kazakhstan, radon measurements still present some problems related to clear definition of physical quantities applied, correct use of methods, and application of adequate measuring devices to meet requirements of regulatory documents currently in effect, such as NRB-99. The paper provides some data on radon measurements, describes the problem status in Kazakhstan and proposes ways to solve it. (author)

  19. Nuclear tracks in solids and gas radon measurements

    International Nuclear Information System (INIS)

    Espinosa, G.

    2007-01-01

    Full text: The Department of Energy (DOE), the Environmental Protection Agency (EPA) in USA, and the European Community, have dedicated significant budget to the Radon study, its health effects and remedial actions for controlling and achieving lower levels, in these cases, nationwide research programs have been organized. With the aim to contribute on the radon levels knowledge in our country, the Applied Dosimetry Project at the Physics Institute of the University of Mexico has developed an indoor and outdoor radon measurement methodology. In this paper a passive radon detector device based on CR-39 polycarbonate for use in radon research and routine measurements is presented. As well the methodology for the track formation, automatic reading system, calibration procedure and measurements in a different location, are shown in this work. The results had been compared with dynamic detection systems, and another methodologies and research groups in order to have a high confidence in the radon levels reported. (Author)

  20. Working towards residential Radon survey in South America

    International Nuclear Information System (INIS)

    Zielinski, Jan M.; University of Ottawa, ON; Canoba, Analia C.; Shilnikova, Natalia S.; Veiga, Lene H. S.

    2008-01-01

    Information about residential radon levels in low and middle income countries is very sparse. In response to the World Health Organization initiative in the International Radon Project, we propose a research project that will address this knowledge gap in South America by conducting a residential radon survey. Following initial in vitro and in vivo studies of radon and studies of uranium miners exposed to radon, over twenty large case-control studies of lung cancer risk from exposure to residential radon have been completed worldwide by year 2004. Recently pooled data from these individual studies have been analyzed. These collaborative analyses of the indoor studies in Europe, North America, and China provide strong direct evidence that radon is causing a substantial number of lung cancers in the general population. To reduce radon lung cancer risk, national authorities must have methods and tools based on solid scientific evidence to develop sound public health policies. We propose to conduct a survey in ten South American countries using the distribution and analysis of passive alpha tracking detectors in houses selected at random in pre-selected cities in each participating country. We also present an approach to estimate the cost of carrying out such a survey and the radon laboratory infrastructure needed. The results of the proposed survey will allow to conduct assessment of the exposure to residential radon in the populations of South American countries and to assess the health impact of this exposure. The results of the project will also help national health authorities in developing national residential radon action levels and regulations, as well as provide public health guidance for radon awareness and mitigation. (author)

  1. Effect of humidity on radon exhalation rate from concrete

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni; Obayashi, Haruo; Tsuji, Naruhito; Nakayoshi, Hisao

    1998-01-01

    The objective of the present study is evaluation of seasonal humidity effect on radon exhalation rate from concrete. Three concrete pieces have been placed in three different fixed humidity circumstances for about a year. The three fixed humidities are selected 3, 10, 25 g m -3 in absolute humidity, those correspond to dry condition as control, winter and summer, respectively. Radon exhalation rate from each concrete piece is measured every one month during humidity exposure. Under the lower humidity, radon exhalation rate from concrete is small. On the contrary, radon exhalation rate is large in the higher humidity circumstance. This trend is consistent with the seasonal variation of indoor air radon concentration in low air-exchange-rate room. (author)

  2. The effect of humidity on the detection of radon

    International Nuclear Information System (INIS)

    Money, M.; Heaton, B.

    1976-01-01

    As part of the investigation into the performance of a radon monitoring system the effect of altering the humidity on the levels of radon detected by the system whilst attempting to keep other factors constant, has been investigated. The variations in the levels of radon detected in four experiments, as the humidity of the surrounding atmosphere was artificially raised, are shown graphically together with the variations in temperature and water vapour pressure, as calculated from the relative humidity and saturation vapour pressure. In each case a general rise and fall in radon detected follows a similar rise and fall in humidity, but temperature rise has only a small effect on the radon emanation rate. As the levels of humidity do not alter the rate of emanation it is assumed that the efficiency of collection is altered in some way. Mechanisms are discussed. (U.K.)

  3. Radon safety in terms of energy efficiency classification of buildings

    Science.gov (United States)

    Vasilyev, A.; Yarmoshenko, I.; Zhukovsky, M.

    2017-06-01

    According to the results of survey in Ekaterinburg, Russia, indoor radon concentrations above city average level have been found in each of the studied buildings with high energy efficiency class. Measures to increase energy efficiency were confirmed to decrease the air exchange rate and accumulation of high radon concentrations indoors. Despite of recommendations to use mechanical ventilation with heat recovery as the main scenario for reducing elevated radon concentrations in energy-efficient buildings, the use of such systems did not show an obvious advantage. In real situation, mechanical ventilation system is not used properly both in the automatic and manual mode, which does not give an obvious advantage over natural ventilation in the climate of the Middle Urals in Ekaterinburg. Significant number of buildings with a high class of energy efficiency and built using modern space-planning decisions contributes to an increase in the average radon concentration. Such situation contradicts to “as low as reasonable achievable” principle of the radiation protection.

  4. Radon Measurements in Vojvodina

    International Nuclear Information System (INIS)

    Bikit, I.; Bikit, K.; Forkapic, S.; Mrda, D.; Nikolov, J.; Todorovic, N.; Veskovic, M.

    2013-01-01

    Recent analyses of epidemiological studies of lung cancer risk from residential exposures demonstrate a statistically significant increase per unit of exposure below average annual concentrations of about 200 Bq/m 3 . Indoor radon measurements performed in Novi Sad in about 400 houses and flats are presented and discussed in this paper. By measuring gamma-activity of radon daughters, radon activity concentration was determined to be 50 Bq/m 3 . In Vojvodina region indoor radon levels were measured by alpha track detectors CR-39 on about 3000 locations during the winter seasons in the period of three years (2003-2005). The main aim of the present study was to explore the critical group of population for radon exposure and to estimate maximal annual doses. Existing radon maps which identify regions with elevated radon levels will improve data collection and analysis for the future radon campaigns. Collaboration on the JRC program of European indoor radon map and implementation of grid system are also discussed.(author)

  5. Radon and cancer

    International Nuclear Information System (INIS)

    2011-01-01

    This publication proposes an overview on what is known about the carcinogenic effect of radon. It recalls the origin of radon, its presence in the environment, and its radioactivity. It comments data on the relationship between exposure to radon and lung cancer, and with other forms of cancer. It discusses the role of the exposure level, and the cases of professional and domestic exposure with respect to these risks. It indicates the hazardous areas in France which are well identified, outlines that smokers are more likely victims of risks related to radon, that this risk is still underrated and underestimated (notably by the public). It gives an overview of existing regulations regarding exposure to radon, of public health policies and national plans concerning radon, and recalls some WHO recommendations

  6. Analysis of radon reduction and ventilation systems in uranium mines in China.

    Science.gov (United States)

    Hu, Peng-hua; Li, Xian-jie

    2012-09-01

    Mine ventilation is the most important way of reducing radon in uranium mines. At present, the radon and radon progeny levels in Chinese uranium mines where the cut and fill stoping method is used are 3-5 times higher than those in foreign uranium mines, as there is not much difference in the investments for ventilation protection between Chinese uranium mines and international advanced uranium mines with compaction methodology. In this paper, through the analysis of radon reduction and ventilation systems in Chinese uranium mines and the comparison of advantages and disadvantages between a variety of ventilation systems in terms of radon control, the authors try to illustrate the reasons for the higher radon and radon progeny levels in Chinese uranium mines and put forward some problems in three areas, namely the theory of radon control and ventilation systems, radon reduction ventilation measures and ventilation management. For these problems, this paper puts forward some proposals regarding some aspects, such as strengthening scrutiny, verifying and monitoring the practical situation, making clear ventilation plans, strictly following the mining sequence, promoting training of ventilation staff, enhancing ventilation system management, developing radon reduction ventilation technology, purchasing ventilation equipment as soon as possible in the future, and so on.

  7. Analysis of radon reduction and ventilation systems in uranium mines in China

    International Nuclear Information System (INIS)

    Hu Penghua; Li Xianjie

    2012-01-01

    Mine ventilation is the most important way of reducing radon in uranium mines. At present, the radon and radon progeny levels in Chinese uranium mines where the cut and fill stoping method is used are 3–5 times higher than those in foreign uranium mines, as there is not much difference in the investments for ventilation protection between Chinese uranium mines and international advanced uranium mines with compaction methodology. In this paper, through the analysis of radon reduction and ventilation systems in Chinese uranium mines and the comparison of advantages and disadvantages between a variety of ventilation systems in terms of radon control, the authors try to illustrate the reasons for the higher radon and radon progeny levels in Chinese uranium mines and put forward some problems in three areas, namely the theory of radon control and ventilation systems, radon reduction ventilation measures and ventilation management. For these problems, this paper puts forward some proposals regarding some aspects, such as strengthening scrutiny, verifying and monitoring the practical situation, making clear ventilation plans, strictly following the mining sequence, promoting training of ventilation staff, enhancing ventilation system management, developing radon reduction ventilation technology, purchasing ventilation equipment as soon as possible in the future, and so on.

  8. Lung cancer risk, exposure to radon and tobacco consumption in a nested case-control study of French uranium miners

    International Nuclear Information System (INIS)

    Leuraud, K.; Billon, S.; Bergot, D.; Tirmarche, M.; Laurier, D.; Caer, S.; Quesne, B.

    2006-01-01

    Introduction: A nested case-control study was conducted among the French uranium miners cohort in order to assess the effect of protract ed radon exposure on lung cancer risk taking into account tobacco consumption. Material and methods: One hundred uranium miners employed by the French company CEA-COGEMA and who died of a lung cancer between 1980 and 1994 were identified as cases among the cohort. For each case, five controls were randomly matched on birth period and attained age at the time of death of the corresponding case. Cumulated radon exposure during employment was reconstructed for each of these 100 cases and 500 controls. Smoking habits were retrospectively determined from three complementary sources: 1) medical files, 2) forms filled in by occupational physicians and 3) questionnaires applied in face-to-face interviews, phone calls or mailings. Analysis was performed by conditional logistic regression using a linear excess relative risk (ERR) model. A multiplicative model was fitted to assess the joint effect of radon exposure and smoking on lung cancer risk. Results: Smoking status was established for 62 cases and 320 controls and two categories ('ever smokers' vs. 'never smokers') were defined. Ninety percent of the cases and 73% of the controls were classified as 'ever smokers'. Mean five-year lagged cumulated radon exposures were 82.0 and 47.6 working level months (WLM) for the cases and the controls, respectively. The excess relative risk per WLM (ERR/WLM) was 1.1% with a 95%-confidence interval (CI) of 0.2-2.0%. When adjusting for smoking, radon exposure effect was little modified (ERR/WLM = 0.8%, 95% -CI = 0.1- 2.8%). The effect of smoking on lung cancer risk was comparable to results reported in previous miners cohorts (OR = 3.04, 95% -CI = 1.20-7.70). Discussion: A consequent effort was carried out to collect smoking status from three sources for the miners included in this nested case-control study. This analysis shows that, when adjusting on

  9. Radon in the workplace

    International Nuclear Information System (INIS)

    Scivyer, C.R.; Gregory, T.J.

    1995-01-01

    This Guide has been prepared for the Health and Safety Executive (HSE) by the Building Research Establishment (BRE). Following the guidance is not compulsory and you are free to take other action. However if you do follow the guidance you will normally be doing enough to comply with the law. Health and Safety Inspectors seek to secure compliance with the law and may refer to this guidance as illustrating good practice. In the past, concern about exposure of employees to radon has largely centred on the mining environment. In recent times, with increased knowledge and mapping of radon levels in homes, attention has increasingly turned to radon exposure in buildings used for work purposes. Now there is a considerable fund of information to show that employees in some buildings can receive very significant radiation doses from radon. Surveys show that levels of radon tend to be higher in buildings with small rooms, such as offices rather than larger factory and warehouse constructions. The particular problem is that the nature of the work process gives no clue as to the radon hazard that may exist, and the employer may be unaware of its presence and how to deal with it. This Guide is aimed principally at employers and those who control buildings used for work purposes, or their representatives. It offers guidance on practical measures for reducing radon levels in workplaces. The guidance should also be of interest and assistance to those, such as surveyors and builders, concerned with specifying and carrying out the necessary remedial measures. Advice is provided for the majority of building types and construction situations likely to be encountered in larger non-domestic buildings. For buildings where construction is similar to that found in dwellings the guidance published by BRE on remedial measures for dwellings should be used. BRE prepared this Guide with assistance from the National Radiological Protection Board (NRPB) and Cornwall County Council under contract

  10. Risks from Radon: Reconciling Miner and Residential Epidemiology

    International Nuclear Information System (INIS)

    Chambers, Douglas B.; Harley, Naomi H.

    2008-01-01

    Everyone is exposed to radon, an inert radioactive gas that occurs naturally and is present everywhere in the atmosphere. The annual dose from radon and its (short-lived) decay products is typically about one-half of the dose received by members of the public from all natural sources of ionizing radiation. Data on exposures and consequent effects have recently been reviewed by the National Council on Radiation Protection and Measurements (NCRP) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Studies of underground miners provides a well-established basis for estimating risks from occupational exposures to radon and for studying factors that may affect the dose response relationship such as the reduction of risk (coefficients) with increasing time since exposure. Miners' studies previously formed the basis for estimating risks to people exposed to radon at home, with downward extrapolation from exposures in mines to residential levels of radon. Presently, the risk estimates from residential studies are adequate to estimate radon risks in homes. Although there are major uncertainties in extrapolating the risks of exposure to radon from the miner studies to assessing risks in the home, there is remarkably good agreement between the average of risk factors derived from miner studies and those from pooled residential case-control studies. There are now over 20 analytical studies of residential radon and lung cancer. These studies typically assess the relative risk from exposure to radon based on estimates of residential exposure over a period of 25 to 30 years prior to diagnosis of lung cancer. Recent pooled analyses of residential case-control studies support a small but detectable lung cancer risk from residential exposure, and this risk increases with increasing concentrations. The excess relative risk of lung cancer from long-term residential exposure is about the same for both smokers and non-smokers; however, because the

  11. Radon awareness in Ireland: a assessment of the effectiveness of radon road shows

    International Nuclear Information System (INIS)

    Synnott, H.

    2006-01-01

    Full text: In late 2004 the Radiological Protection Institute of Ireland (R.P.I.I.) initiated a series of radon road shows in areas designated as High Radon Areas 1 in the R.P.I.I. s national radon survey of homes. The main objective of these road shows was to provide information to a local audience on the risks of exposure to radon. These road shows target both employers and householders. Each road show has the same general format. A presentation and/or meeting with a major employer representative group within the area. The purpose is to make employers aware of the risks associated with exposure to radon in the workplace and to highlight their obligations under current Irish health and safety legislation regarding radon in the workplace. An information stand on radon manned by R.P.I.I. staff members in a local shopping centre or other similar area. This provides those concerned about radon with accessible information on radon exposure risks, how to measure radon and the steps a home owner could take to reduce radon concentrations where necessary. Where possible R.P.I.I. staff members visit one or more schools in the general area. A short presentation on radon was given to students and students were given an opportunity to asks questions Maximizing media exposure to publicize our visits is vital to the success of these visits. Each visit is preceded by a Press Release whose main aim is to brief local and national media on the radon issue so as to achieve maximum publicity mainly through radio and television coverage. In general the media are very interested in the whole radon area and R.P.I.I. staff members have given 57 radio and 10 television interviews to date since the commencement of this initiative. The four road shows carried out to date have been successful in encouraging householders to carry out radon measurements. Since the start of the road shows to the present, the R.P.I.I. has seen a 44% increase in the number of householders requesting radon

  12. Project Radon

    International Nuclear Information System (INIS)

    Ekholm, S.

    1988-01-01

    The project started in March 1987. The objective is to perform radon monitoring in 2000 dwellings occupied by people employed by State Power Board and to continue to contribute to the development of radon filters. The project participates in developing methods for radon measurement and decontamination and in adapting the methods to large scale application. About 400 so called radon trace measurements (coarse measurement) and about 10 action measurements (decontamination measurement) have been made so far. Experience shows that methods are fully applicable and that the decontamination measures recommended give perfectly satisfactory results. It is also established that most of the houses with high radon levels have poor ventilation Many of them suffer from moisture and mould problems. The work planned for 1988 and 1989 will in addition to measurements be directed towards improvement of the measuring methods. An activity catalogue will be prepared in cooperation with ventilation enterprises. (O.S.)

  13. World Health Organization's International Radon Project 2005-2008

    International Nuclear Information System (INIS)

    Carr, Zhanat; Shannoun, Ferid; Zielinski, Jan M.

    2008-01-01

    worldwide, and has also produced the interactive web based map of national levels of residential radon around the world. The WHO Radon handbook includes chapters on exposure guidelines, measurement, mitigation, cost-effectiveness and radon risk communication, as well as a background chapter and recommendations for policies leading to radon risk reduction. Both WHO-IRP outputs provides sound, evidence-based guidance and tools for radon control measures including the cost-effectiveness analysis of available approaches. (author)

  14. Accumulation of radon in the underground detector cups

    International Nuclear Information System (INIS)

    Qiu Yuanhuo.

    1985-01-01

    Theoretical calculations based on the radon migration mechanism (i. e. diffusion, convection and atmospheric pumping etc) show that the balance of radon concentration in underground detector cups buried and in surrounding soil gas requires about 0.7-10 hours. However, the equilibrium of radon with its daughter products in the cups needs about 4 hours. Therefore, it is considered that 4.5-12 hours are needed for these two processes. It takes 3-4 days for Tn to reach radioactive equilibrium with its short-lived daughter products. When thorium concentration is higher than background exposure time of the detector cups should be over 3-4 days. Using buried detector cups, field experiments give correlative results compared with those of theoretical calculations. The study is oriented both for optimizing the burial time of the detector cup and interpretation of radon anomalies detected

  15. A Radon Chamber without Radium Source for Detector Calibration and Radon Measurements

    International Nuclear Information System (INIS)

    Al-Azmi, D.; Karunakara, N.

    2008-01-01

    A radon chamber of volume 216 liters was designed and constructed for calibration of radon detectors and radon test measurements. The main feature of this chamber is that the active 226 Ra source, to generate the 222 Rn inside the chamber volume, is not required. Instead, 222 Rn from soil gas is utilized for this purpose. The supply of radon comes from the soil gas. Soil gas is drawn from the soil to fill the chamber with high radon concentration levels (∼ 80 kBq/m3). Desired radon concentration levels can be obtained by drawing the soil gas for different time durations and/or flow rate (author)

  16. Exposure to unusually high indoor radon levels

    International Nuclear Information System (INIS)

    Rasheed, F.N.

    1993-01-01

    Unusually high indoor radon concentrations were reported in a small village in western Tyrol, Austria. The authors have measured the seasonal course of indoor radon concentrations in 390 houses of this village. 71% of houses in winter and 33% in summer, showed radon values on the ground floor above the Austrian action level of 400 Bq/cm 3 . This proportion results in an unusually high indoor radon exposure of the population. The radon source was an 8,700-year-old rock slide of granite gneiss, the largest of the alpine crystalline rocks. It has a strong emanating power because its rocks are heavily fractured and show a slightly increased uranium content. Previous reports show increased lung cancer mortality, myeloid leukemia, kidney cancer, melanoma, and prostate cancer resulting from indoor radon exposure. However, many studies fail to provide accurate information on indoor radon concentrations, classifying them merely as low, intermediate, and high, or they record only minor increases in indoor radon concentrations. Mortality data for 1970-91 were used to calculate age and sex standardized mortality rates (SMR) for 51 sites of carcinoma. The total population of Tyrol were controls. A significantly higher risk was recorded for lung cancer. The high SMR for lung cancer in female subjects is especially striking. Because the numbers were low for the other cancer sites, these were combined in one group to calculate the SMR. No significant increase in SMR was found for this group

  17. Radon reduction in waterworks

    International Nuclear Information System (INIS)

    Raff, O.; Haberer, K.; Wilken, R.D.; Funk, H.; Stueber, J.; Wanitschek, J.; Akkermann-Kubillus, A.; Stauder, S.

    2000-01-01

    The removal of radon from water using water aeration is one of the most effective methods for reducing radon in waterworks. Therefore, this report describes investigations on packed tower columns and shallow aeration devices and a method for mathematical modelling of gas exchange processes for dimensioning packed tower columns for radon removal. Moreover, possibilities for removing radon using active carbon filtration under waterworks typical conditions and for reducing indoor radon levels in waterworks are discussed. Finally, conclusions on the necessity of radon removal in German waterworks are drawn. (orig.) [de

  18. Indoor radon II

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Because of the growing interest in and public concern about indoor radon, APCA, in April 1987, sponsored the Second International Specialty Conference on Indoor Radon. This book is the proceedings of this conference and includes discussions on: A current assessment of the nature of the problem; Issues related to health effects and risk assessment; The development of public and private sector initiatives; Research into methods of control and prevention; International perspectives; and Measurement methods and programs. The material is intended for the technically oriented and for those responsible for developing programs and initiatives to address this important public health issue. Contributors include federal, state, and provincial program officials and members of the academic and private sectors

  19. Radon house doctor

    International Nuclear Information System (INIS)

    Nitschke, I.A.; Brennan, T.; Wadach, J.B.; O'Neil, R.

    1986-01-01

    The term house doctor may be generalized to include persons skilled in the use of instruments and procedures necessary to identify, diagnose, and correct indoor air quality problems as well as energy, infiltration, and structural problems in houses. A radon house doctor would then be a specialist in radon house problems. Valuable experience in the skills necessary to be developed by radon house doctors has recently been gained in an extensive radon monitoring and mitigation program in upstate New York sponsored by Niagara Mohawk Power Corporation and the New York State Energy Research and Development Authority. These skills, to be described in detail in this paper, include: (i) the use of appropriate instruments, (ii) the evaluation of the symptoms of a radon-sick house, (iii) the diagnostic procedures required to characterize radon sources in houses, (iv) the prescription procedures needed to specify treatment of the problem, (v) the supervision of the implementation of the treatment program, (vi) the check-up procedures required to insure the house cured of radon problems. 31 references, 3 tables

  20. Detailed radon emanation mapping in Northern Latium

    International Nuclear Information System (INIS)

    Aumento, F.

    1993-01-01

    Detailed radon surveys over 5,000 km 2 of Northern Latium, covering the northern part of the volcanic province of Central Italy, commenced in the mid eighties as part of a geothermal exploration programme; the surveys have subsequently been continued and amplified with environmental protection in mind. The area is now covered by ground emission maps, radon levels in water supplies, emissions from the different lithologies and concentrations in houses. The high uraniferous content of the volcanics, the porous nature of the ubiquitous pyroclastics, and active geothermal systems in the area combine to convey to ground level high concentrations of radon. The emissions show strong lateral variations which are geologically and tectonically controlled, such that only detailed surveys reveal the extent and locations of anomalous radon emanations. Unfortunately, long ago towns often developed in strategic locations. For Northern Latium this means on volcanic highs formed by faulted tuff blocks, two geological features associated with particularly high radon emissions. As a result, in contrast to the low average indoor radon concentrations for the greater part of Italy, in some of these town the average values exceed 450 Bq/m 3 . (author). 1 fig

  1. Hydrogeological controls of radon in a few hot springs in the Western Ghats at Ratnagiri district in Maharashtra, India

    International Nuclear Information System (INIS)

    Ansari, Md. Arzoo; Sharma, Suman; Saravana Kumar, U.; Chatterjee, Sitangshu; Diksha; Low, Upananda

    2014-01-01

    Geological structures (faults, fractures and weak zones) and high heat flow in geothermal areas allow easy passage for release of radon gas to the atmosphere. Radon is constantly transported from the Earth's interior and vented out through exhalation points at permeable fault zones. 222 Rn concentrations were measured in a few hot springs and nearby groundwater using RAD7 at Tural and Rajwadi, Ratnagiri district, Maharashtra. The 222 Rn concentrations in the hot springs vary from 1087 ± 132 to 1655 ± 177 Bq/m 3 at Tural and from 152 ± 67 to 350 ± 82 Bq/m 3 at Rajwadi. Groundwaters from wells within a radius of 200 m around the geothermal fields have radon concentration between 1087 ± 132 and 5445 ± 337 Bq/m 3 . We have assessed the radon activity in the vicinity of the hot springs to understand their hydrogeological control, origin of heat source and possible effect on the tourist and the human population residing nearby. (author)

  2. Multidimensional simulation of radon diffusion through earthen covers

    International Nuclear Information System (INIS)

    Mayer, D.W.; Gee, G.W.

    1983-01-01

    The purpose of this report is to document applications of the RADMD model used at PNL to perform analyses of radon diffusion through uranium mill tailings cover systems. The accuracy of the numerical formulation of the RADMD model was demonstrated through a comparison with a two-dimensional analytic solution to the radon diffusion equation. Excellent agreement was obtained between two-dimensional radon concentration profiles predicted by RADMD and those obtained with the analytic solution. A simulation was made of radon diffusion into a test canister using the two dimensional capabilities of RADMD. The radon flux profile was computed and illustrates the effects of the canister on the surface radon flux. The influence of the canister on the radon flux was shown to be significant under certain circumstances. Defects in earthen cover systems were evaluated using the three dimensional capabilities of RADMD. The results support the expectation that defective covers can increase the surface flux from a covered talings pile. Compared to a cover with no defects, radon flux could be elevated by as much as a factor of three when 20% of the radon control layer area contained pockets of reduced moisture. The effects of temporal and spatial variations in moisture content have been modeled by coupling RADMD with a variable saturated flow model. Two dimensional simulations were made of the time dependence of radon flux from a tailings site before and after cover placement. The results demonstrated the expected flux reduction produced by a thick earthen cover. Time dependence of the radon flux after cover placement was attributed to slight changes in moisture content of the cover material with time. The particular cover studied had a compacted clay layer that effectively attenuated the radon

  3. Risk Assessment from Radon Gas in the Greenhouses

    International Nuclear Information System (INIS)

    Fahmi, N.M.; El-Khatib, A.M.; Abd El-Zaher, M

    2009-01-01

    Radon is a naturally occurring radioactive gas found in varying amounts in all soils. Therefore, it is very important to study radon emanation from different soils in different circumstances; especially, in green houses which widely used to propagate and cultivate of plants. In greenhouses radon comes from either soil or the substances which make suitable flooring in the greenhouse. Radon and its progeny are accumulated in the air and on the plants themselves, which causes hazard for workers and customers in a later stage. Radon gas is measured in two kinds of greenhouses, one of them is constructed from plastic sheet and the other from glass (Agriculture Research Center - Horticulture Research Institute) using CR-39 NTDs as a passive technique. It based on the production of track in the detector due to alpha-particles emitted from radon and its progeny. The observed track densities are then converted to annual radon dose to be 12.36 mSv and 8.3 mSv for the plastic and glass greenhouses under investigation, respectively. It is also found that the workers have been subject to regulatory control

  4. Developmental toxicology of radon exposures

    International Nuclear Information System (INIS)

    Sikov, M.R.; Cross, F.T.; Mast, T.J.; Palmer, H.E.; James, A.C.; Thrall, K.D.

    1992-01-01

    Concerns about hazards associated with radon exposure in dwellings may be especially relevant to pregnant women, many of whom spend substantial amounts of time in their homes. There are few data concerning the placental transfer and fetoplacental distribution of inhaled radon and decay products or their effects on the conceptus. We performed a study in rats to determine if prenatal effects could be produced by prolonged inhalation exposures to high concentrations of radon throughout gestation. A group of 43 pregnant rats was exposed 18 h d -1 , at a rate of 124 working level months (WLM) per day, from 6 to 19 days of gestation (dg), of radon and daughters adsorbed onto ore dust. A group of 26 pregnant rats from the same shipment was exposed to a filtered-air atmosphere as controls. At 20 dg, the rats were removed from the chambers, killed, and necropsied. The fetuses were evaluated for the presence of toxic effects, which included detailed teratology protocols. These exposures did not produce detectable reproductive toxicity nor teratogenic change. Two other rats were removed from the radon chambers during the last day of exposure, and their tissues were analyzed to determine the distribution of radioactivity and for dosimetry. Samples from these rats suggested that the dose rates to the placenta were roughly threefold those to the fetus but were similar to those to the liver and femur of the pregnant rats. These data indicate that the dose to the conceptus from the decay of placentally transferred radon and its progeny is more important than the contribution of translocated decay products. Translocated radon decay products are an important source of radiation doses to placental structures, however, and may have most of the radioactivity content at birth

  5. Indoor radon measurements and radon prognosis for the province of Kymi, southeastern Finland

    International Nuclear Information System (INIS)

    Pennanen, M.; Maekelaeinen, I.; Voutilainen, A.

    1996-12-01

    The purpose of the regional radon prognosis is to classify areas with different levels of radon risk. The radon prognosis gives the percentages of future homes expected to have indoor radon concentrations exceeding the levels of 200 and 400 Bq/m 3 . It is assumed that no protection against the entry of radon is used in construction. In this study about 5900 indoor radon measurements made in single family houses, semi-detached houses and row houses were used. Data on the location, geology and construction of buildings were determined from maps and questionnaires. An empirical statistical model, the adjusted indoor radon measurements and geological data were used to assess the radon risk from soil and bedrock in different areas. The building sites of the province of Kymi were divided into thirteen sub-areas. The radon prognosis are calculated for the most radon-prone foundation types including 1) houses with a slab-on-grade and 2) houses with a basement or hillside houses with open stairwells between basement and first floor. The radon levels are generally greater in the western part of the area. The radon risk is highest in gravel-dominated esker areas in southwestern, western (in Pyhtaa, Kotka, Anjalankoski, litti, Valkeala) and central (Taipalsaari) parts of the area. The radon risk is also high in some bedrock and till areas, also in southwestern and western parts of the area. In these areas the level of 200 Bq/m 3 will be exceeded in 80 % of new houses. About half of the future houses in these areas will have indoor radon concentrations exceeding 400 Bq/m 3 . The radon risk is lowest in the eastern part of the province of Kymi in every soil type. In this area the level of 200 Bq/m 3 will be exceeded in 30 % of new houses. Below 10 % will exceed 400 Bq/m 3 . (orig.) (14 refs.)

  6. Management of the radon-related risk. Guide for local authorities. Guide for employers

    International Nuclear Information System (INIS)

    Struillou, Yves; Gupta, Olivier

    2017-01-01

    A first guide aims at being an aid to decision by specifying obligations of local authorities as owners of buildings open to public or as employers, but also at being a support for their health and social actions in terms of information on radon risk in housing. After a presentation of the risk related to radon (health risks, radon propagation, regulatory areas concerned by radon risk management in France), the report indicates the various obligations and mandatory actions for local authorities as building owner and as employer, and actions to be undertaken for existing and new buildings. Technical sheets are provided regarding radon detection, certifications, simple actions, technical diagnosis, remediation works, efficiency control of technical solutions, expert in radiation protection. The second guide aims at being an aid to decision by specifying obligations for employers in terms of management of radon-related risk to which some workers might be exposed, and at providing some good practice recommendations. After a presentation of the risk related to radon (health risks, radon propagation, regulatory areas concerned by radon risk management in France), the report addresses how to organise the radon-related risk management, how to measure radon in work places, how to interpret results and which actions to undertake. Technical sheets are provided regarding radon detection, certifications, simple actions, technical diagnosis, remediation works, efficiency control of technical solutions, expert in radiation protection

  7. A study of radon indoor concentration

    International Nuclear Information System (INIS)

    Pena, P.; Ruiz, W.; Segovia, N.; Ponciano, G.

    2000-01-01

    It was realized a study of radon concentration in houses of Mexico City and in a laboratory of the Nuclear Centre of Salazar, State of Mexico. The radon determination in air was realized with solid nuclear track detectors and with Honeywell and Alpha guard automatic equipment. The results show that the majority of houses have values under 148 Bq/m 3 obtaining some housings with upper values located in the Lomas zone. A study in smokers houses and another of controls showed very similar distributions. It was studied the day time fluctuations finding that radon increases considerably during the dawn. Some upper values obtained in a laboratory of the Nuclear Centre were remedied with ventilation. (Author)

  8. Instruments to measure radon-222 activity concentration or exposure to radon-222. Intercomparison 2014

    International Nuclear Information System (INIS)

    Foerster, Elisabeth; Beck, Thomas; Buchroeder, Helmut; Doering, Joachim; Schmidt, Volkmar

    2014-10-01

    According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices.., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices. Passive radon measurement devices 1 using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if the devices are issued by recognized radon measurement services, and the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by the Bundesamt fuer Strahlenschutz (BfS). A radon measuring service is recognized by the competent authority if it proves its organisational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily. The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the European Information System on Proficiency Testing Schemes (EPTIS) and from the BfS websites.

  9. Design, construction and testing of a radon experimental chamber

    International Nuclear Information System (INIS)

    Chavez B, A.; Balcazar G, M.

    1991-10-01

    To carry out studies on the radon behavior under controlled and stable conditions it was designed and constructed a system that consists of two parts: a container of mineral rich in Uranium and an experimentation chamber with radon united one to the other one by a step valve. The container of uranium mineral approximately contains 800 gr of uranium with a law of 0.28%; the radon gas emanated by the mineral is contained tightly by the container. When the valve opens up the radon gas it spreads to the radon experimental chamber; this contains 3 accesses that allow to install different types of detectors. The versatility of the system is exemplified with two experiments: 1. With the radon experimental chamber and an associated spectroscopic system, the radon and two of its decay products are identified. 2. The design of the system allows to couple the mineral container to other experimental geometries to demonstrate this fact it was coupled and proved a new automatic exchanger system of passive detectors of radon. The results of the new automatic exchanger system when it leave to flow the radon freely among the container and the automatic exchanger through a plastic membrane of 15 m. are shown. (Author)

  10. Radon in workplaces

    International Nuclear Information System (INIS)

    Reichelt, A.; Lehmann, K.-H.; Reineking, A.; Porstendoerfer, J.; Schwedt, J.; Streil, T.

    2000-01-01

    The radiological assessment of the results of radon measurements in dwellings is not automatically applicable to workplaces due to different forms of utilization, constructional conditions, time of exposure, heating and ventilation conditions, additional aerosol sources, aerosol parameters, chemical substances, etc. In order to investigate the peculiarities of the radon situation in workplaces located inside buildings compared with that in dwellings, long-time recordings of radon, attached radon progeny and unattached radon progeny concentrations ( 218 Po, 214 Pb, 214 Bi) are carried out at several categories of workplaces (e.g. offices, social establishments, schools, production rooms, workshops, kitchens, agricultural facilities). 36 workplaces have been investigated. There have been carried out at least 2-3 long-time recordings for each workplace during different seasons. At the same time the gamma dose rate, meteorological conditions, aerosol particle concentrations have been registered. Many special dates from the workplaces and the buildings have been recorded. Activity size distribution of the aerosol-attached and unattached fraction of short-lived radon decay products have been determinated in 20 workplaces. Mainly the following measurement systems were used: Radon- and Radon Progeny Monitor EQF 3020, SARAD GmbH, Germany. Alpha-Track Radon Detectors, BfS Berlin, Germany. Screen Diffusion Batteries with Different Screens, University of Goettingen, Germany. Low-Pressure Cascade Impactor, Type BERNER. Condensation Nuclei Counter, General Electric, USA. PAEC-f p -Rn-Monitor, University of Goettingen, Germany. Through the measurements, many peculiarities in the course of the radon-concentration, the equilibrium factor F, the unattached fraction f p and the activity size distribution have been determined. These amounts are influenced mainly by the working conditions and the working intervals. The influence of these peculiarities in workplaces on the dose have

  11. Public perceptions of radon risk

    International Nuclear Information System (INIS)

    Mainous, A.G. III; Hagen, M.D.

    1993-01-01

    Since 1984, a significant amount of media attention has focused on health threats from radon gas exposure. Using a probability telephone survey of adults (n = 685), we studied public perceptions of risk from radon exposure versus other environmental health risks. The results indicated that 92% of those individuals who had heard of radon believe radon to be a health risk, although only 4% believe they are currently exposed to high levels of radon gas. Perception of risk from radon was positively related to other perceptions of environmental risks. Younger and less educated individuals were more likely to perceive radon as a health risk. Women were three-and-one-half times as likely as men to perceive risk from radon. However, there was no significant relationship between perceived risk from radon and cigarette smoking. Media attention has apparently led to public awareness of radon hazards, but further attention is needed to improve smokers' awareness of their special risks from radon

  12. Swiss radon programme 'RAPROS'

    International Nuclear Information System (INIS)

    Zeller, W.

    1992-03-01

    The results of the five-year radon research program RAPROS presented in this report, allow for scientifically valid statements on the origin of elevated levels of indoor radon in Switzerland. These results form a basis for recommendations and for actions to be taken. Indoor radon concentrations have been measured in more than 4000 living-rooms and 2000 basements; a sampling density of about 0.2% of the Swiss housing stock. According to these measurements radon leads to an estimated average annual effective dose of 2 milli-Sievert, although in some regions the annual dose may be much higher. Extrapolation of the existing data shows that in about 10'000 Swiss houses radon may exceed 1000 Bq/m 3 . For these houses remedial actions are recommended. There seems to be no radon problem in the large cities in the Swiss Plateau. High indoor radon concentrations in Switzerland are due to the soil beneath the buildings. Data from the study indicated that the most important soil characteristic influencing indoor radon concentrations was its gas permeability. Because natural ventilation in a heated house creates a slight underpressure in the lower levels with respect to surrounding soils, radon is driven from the soil into the building. Weatherization of the houses to reduce energy consumption had in most cases no effect on the indoor radon concentrations. Radon from tap water or from building materials does not contribute significantly to indoor radon levels in Switzerland. The high levels in the Jura Mountains are thought to be associated with karstic limestone bedrock. Several houses within Switzerland have now been modified to reduce radon levels. The most successful mitigation technique combined forced-air ventilation with tightening of the basement to decrease or prevent air infiltration from the soil. (author) figs., tabs., refs

  13. Environmental radon

    International Nuclear Information System (INIS)

    Majumdar, S.K.; Schmalz, R.F.; Miller, E.W.

    1990-01-01

    This book covers many aspects of environmental radon, including: historical perspectives; occurrence and properties; detection, measurement, and mitigation, radon and health; and political, economic, and legislative impacts

  14. Radon and radon daughters in public, private and commercial buildings in communities associated with uranium mining and processing in Canada

    International Nuclear Information System (INIS)

    Eaton, R.S.

    1982-01-01

    The elevated indoor radon levels in certain communities in Canada have been studied. An overview of the investigational and remedial action programs are presented in this paper. It is suggested that radon daughter concentrations can be controlled by: (a) removing source; (b) placing a barrier between the source and the living space; (c) diverting the radon before it enters a building: (d) increasing the ventilation rate. All methods have been proven but no one technique is the most cost effective because of widely varying conditions found in older housing

  15. Radon thematic days - Conference proceedings

    International Nuclear Information System (INIS)

    2011-03-01

    This document brings together the available presentations given at the Radon thematic days organized by the French society of radiation protection (SFRP). Twenty five presentations (slides) are compiled in the document and deal with: 1 - General introduction about radon (Sebastien Baechler, IRA); 2 - Survey of epidemiological studies (Dominique Laurier, IRSN); 3 - Dosimetric model (Eric Blanchardon, Estelle Davesne, IRSN); 4 - Radon issue in Franche-Comte: measurement of the domestic exposure and evaluation of the associated health impact (Francois Clinard, InVS); 5 - WHO's (World Health Organization) viewpoint in limiting radon exposure in homes (Ferid Shannoun, OMS); 6 - Radon measurement techniques (Roselyne Ameon, IRSN); 7 - Quality of radon measurements (Francois Bochud, IRA); 8 - International recommendations (Jean-Francois Lecomte, IRSN); 9 - Radon management strategy in Switzerland - 1994-2014 (Christophe Murith, OFSP); 10 - 2011-2015 action plan for radon risk management (Jean-Luc Godet, Eric Dechaux, ASN); 11 - Radon at work place in Switzerland (Lisa Pedrazzi, SUVA); 12 - Strategies of radiation protection optimization in radon exposure situations (Cynthia Reaud, CEPN); 13 - Mapping of the radon potential of geologic formations in France (Geraldine Ielsch, IRSN); 14 - Radon database in Switzerland (Martha Gruson, OFSP); 15 - Radon 222 in taps water (Jeanne Loyen, IRSN); 16 - Buildings protection methods (Bernard Collignan, CSTB, Roselyne Ameon, IRSN); 17 - Preventive and sanitation measures in Switzerland (Claudio Valsangiacomo, SUPSI); 18 - Training and support approach for building specialists (Joelle Goyette-Pernot, Fribourg engineers and architects' school); 19 - Status of radon bulk activity measurements performed between 2005-2010 in public areas (Cyril Pineau, ASN); 20 - Neuchatel Canton experiments (Didier Racine, SENE); 21 - Montbeliard region experience in the radon risk management (Isabelle Netillard, Pays de Montbeliard Agglomeration); 22

  16. Dust and radon: the legal implications

    International Nuclear Information System (INIS)

    Van Sittert, J.M.O.

    1990-01-01

    It is known that radon gas is not generally considered to be a major problem when encountered in the working environment. However, in its process of decay, a series of four short lived daughter products are formed. In a dust-laden atmosphere these daughter products, which are ionized readily, attach to the particulate material and when inhaled are deposited in the alveoli of the lungs. Therefore, if respirable dust is controlled, the effects of radon daughters will also be minimized. The legal requirements for dust control in South Africa and their implications are discussed. 1 ill

  17. Energy deposition and radiation quality of radon and radon daughters. Final report

    International Nuclear Information System (INIS)

    Karam, L.R.; Caswell, R.S.

    1996-01-01

    This program was aimed at creating a quantitative physical description, at the micrometer and nanometer levels, of the physical interactions of the alpha particles from radon and its daughters with cells at risk in the bronchial epithelium. The authors calculated alpha-particle energy spectra incident upon the cells and also energy deposition spectra in micrometer- and nanometer-sized sites as a function of cell depth, site size, airway diameter, activities of 218 Po and 214 Po, and other parameters. These data are now being applied, using biophysical models of radiation effects, to predict cell killing, mutations, and cell transformation. The model predictions are then compared to experimental biophysical, biochemical, and biological information. These studies contribute to a detailed understanding of the mechanisms of the biological effectiveness of the radiations emitted by radon and its progeny

  18. Variance of indoor radon concentration: Major influencing factors

    Energy Technology Data Exchange (ETDEWEB)

    Yarmoshenko, I., E-mail: ivy@ecko.uran.ru [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation); Vasilyev, A.; Malinovsky, G. [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation); Bossew, P. [German Federal Office for Radiation Protection (BfS), Berlin (Germany); Žunić, Z.S. [Institute of Nuclear Sciences “Vinca”, University of Belgrade (Serbia); Onischenko, A.; Zhukovsky, M. [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation)

    2016-01-15

    Variance of radon concentration in dwelling atmosphere is analysed with regard to geogenic and anthropogenic influencing factors. Analysis includes review of 81 national and regional indoor radon surveys with varying sampling pattern, sample size and duration of measurements and detailed consideration of two regional surveys (Sverdlovsk oblast, Russia and Niška Banja, Serbia). The analysis of the geometric standard deviation revealed that main factors influencing the dispersion of indoor radon concentration over the territory are as follows: area of territory, sample size, characteristics of measurements technique, the radon geogenic potential, building construction characteristics and living habits. As shown for Sverdlovsk oblast and Niška Banja town the dispersion as quantified by GSD is reduced by restricting to certain levels of control factors. Application of the developed approach to characterization of the world population radon exposure is discussed. - Highlights: • Influence of lithosphere and anthroposphere on variance of indoor radon is found. • Level-by-level analysis reduces GSD by a factor of 1.9. • Worldwide GSD is underestimated.

  19. Radon in Estonian dwellings - Results from a National Radon Survey

    Energy Technology Data Exchange (ETDEWEB)

    Pahapill, Lia; Rulkov, Anne; Rajamaee, Raivo [Estonian Radiation Protection Centre (Kiirguskeskus), Tallinn (Spain); Aakerblom, Gustav [Swedish Radiation Protection Authority, Stockholm (Sweden)

    2003-10-01

    A countrywide survey of radon concentrations in Estonian dwellings was carried out during the period 1998-2001. The survey formed a part of the cooperation program on radiation protection between the Estonian Radiation Protection (Kiirguskeskus) Centre and the Swedish Radiation Protection Authority (SSI). The survey included measurements in a number of dwellings representative for Estonia in detached houses and multifamily buildings (only dwellings on the bottom floor were included in the survey). Altogether, radon concentrations were measured in 515 dwellings, a number large enough to be statistically significant. All measurements were made with alphatrack film detectors of the same type that SSI uses in Sweden. The measurements were made during a 2-3 month period during the winter half-year. Two detectors were used in each dwelling. In Estonia there are 0.17 million dwellings in detached houses and 0.45 million in multi apartment buildings. Of the 1.26 million inhabitants in Estonia. 0.36 million live in detached houses and 0.90 million in multi apartment buildings. Most of the latter were built during the Soviet occupation. Of the dwellings in multifamily buildings 30 % are assumed to be situated on the first floor. The mean radon concentration in dwellings in detached hoses, according to the survey results, is 103 Bq/m{sup 3}, in dwellings on the bottom floor in multi apartment buildings it is 78 Bq/m{sup 3}. In 1% of the dwellings the radon concentration exceeded 400 Bq/m{sup 3}. The highest radon concentration found in the study was 1040 Bq/m{sup 3}. Based on the assumption that the average radon concentration in the dwellings in multi-apartment buildings that are not situated on the bottom floor is 30 Bq/m{sup 3}, and that these dwellings constitute 70% of all dwellings in multi apartment buildings, the mean radon concentration in dwellings in multi apartment buildings is calculated to be 44 Bq/m{sup 3}. The mean value for all Estonia dwellings is calculated

  20. Radon in Estonian dwellings - Results from a National Radon Survey

    International Nuclear Information System (INIS)

    Pahapill, Lia; Rulkov, Anne; Rajamaee, Raivo; Aakerblom, Gustav

    2003-10-01

    A countrywide survey of radon concentrations in Estonian dwellings was carried out during the period 1998-2001. The survey formed a part of the cooperation program on radiation protection between the Estonian Radiation Protection (Kiirguskeskus) Centre and the Swedish Radiation Protection Authority (SSI). The survey included measurements in a number of dwellings representative for Estonia in detached houses and multifamily buildings (only dwellings on the bottom floor were included in the survey). Altogether, radon concentrations were measured in 515 dwellings, a number large enough to be statistically significant. All measurements were made with alphatrack film detectors of the same type that SSI uses in Sweden. The measurements were made during a 2-3 month period during the winter half-year. Two detectors were used in each dwelling. In Estonia there are 0.17 million dwellings in detached houses and 0.45 million in multi apartment buildings. Of the 1.26 million inhabitants in Estonia. 0.36 million live in detached houses and 0.90 million in multi apartment buildings. Most of the latter were built during the Soviet occupation. Of the dwellings in multifamily buildings 30 % are assumed to be situated on the first floor. The mean radon concentration in dwellings in detached hoses, according to the survey results, is 103 Bq/m 3 , in dwellings on the bottom floor in multi apartment buildings it is 78 Bq/m 3 . In 1% of the dwellings the radon concentration exceeded 400 Bq/m 3 . The highest radon concentration found in the study was 1040 Bq/m 3 . Based on the assumption that the average radon concentration in the dwellings in multi-apartment buildings that are not situated on the bottom floor is 30 Bq/m 3 , and that these dwellings constitute 70% of all dwellings in multi apartment buildings, the mean radon concentration in dwellings in multi apartment buildings is calculated to be 44 Bq/m 3 . The mean value for all Estonia dwellings is calculated to be 60 Bq/m 3 . Using

  1. Radon-film-badges by solid radiators to complement track detector-based radon monitors

    International Nuclear Information System (INIS)

    Tommasino, L.; Tommasino, M.C.; Viola, P.

    2009-01-01

    Existing passive radon monitors, based on track detectors, present many shortcomings, such as a limited response sensitivity for one-week-indoor measurements and a limited response linearity for the assessment of large radon exposures indoors, in thermal spa, in caves, and in soil. Moreover, for in-soil measurements these monitors are too bulky and are often conducive to wrong results. For what concerns the radon-in-water measurements, they are just not suitable. A new generation of passive radon monitors is introduced in this paper, which are very similar to the compact badges used in neutron- and gamma-dosimetry and will be referred to as radon-film-badges. These film-badges are formed by thin-film radiators with suitable radon-sorption characteristics, facing track detectors. The key strategy adopted for these radiators is to exploit an equilibrium type of radon sorption in solids. Even though this new generation of passive monitors is at its infancy, it appears already clear that said monitors make it finally possible to overcome most of the shortcomings of existing passive radon monitors. These devices are uniquely simple and can be easily acquired by any existing radon service to complement their presently used passive radon monitors with little or no effort.

  2. Mineral dusts and radon in uranium mines

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1991-01-01

    The Environmental Protection Agency (EPA) continues to assert that radon is a major cause of lung cancer in this country. EPA is fostering a radon program that could entail huge financial and emotional costs while yielding negligible benefits to public health. Justification for the program was the occurrence of lung cancer in men exposed to huge amounts of radon, mineral dusts, and other lung irritants in uranium mines on the Colorado Plateau. Lung cancer has been reported in about 356 cigarette smokers and in about 25 nonsmokers. During the era of high radon levels, monitoring was sporadic. Conditions in only a small fraction of the mines were measured, and that on a few separate occasions. Later, cumulative exposure to radon was calculated on the basis of measurements involving only a tiny fraction of the miners. Some were exposed to more than 15,000 pCi/liter of radon and its products. The level in the average home is about 1.5 pCi/liter. In making extrapolations from mine to home, the assumption is made that residents are in their dwellings most of the time and that miners spend only 170 hours a month in the mine. Two major questionable assumptions are involved in extrapolations from high doses of radon in the mines to low doses in homes. One is that no threshold is involved; that is, that humans have no remediation mechanism for α particle damages. There is evidence to the contrary. The most unrealistic assumption is that heavy exposure to silica has no effect on inducing lung cancer. Many studies have shown that silica dust causes lung cancer in animals. Exposure of human culture cells to silica has resulted in formation of neoplastic tissue. EPA has no solid evidence that exposures to 4 pCi/liter of radon causes lung cancer in either smokers or nonsmokers. Indeed, there is abundant evidence to the contrary in the fact that in states with high levels of radon, inhabitants have less lung cancer than those in states with low levels

  3. A Risk Management Strategy for Radon: The US Experience (invited paper)

    International Nuclear Information System (INIS)

    Boschi, N.

    1998-01-01

    In the United States (US) the Environmental Protection Agency (EPA or Agency) has played a leading role on radon policy. EPA estimates that indoor radon in the US causes approximately 14,000 lung cancer deaths per year with an uncertainty range of 7,000 to 30,000. In 1988, EPA and the Center for Disease Control issued an advisory urging that most houses in the US be tested for radon. The risk assessments have indicated a problem of substantial magnitude. Nonetheless, risk of radon has been assumed to follow a non-threshold model and risk management strategies have been based on the concept that exposures at levels ≥148 Bq.m -3 (4 pCi.1 -1 ). EPA's approach has been to call for voluntary testing, since the Agency does not have direct regulatory authority, and to follow an action guideline of 148 Bq.m -3 . This paper provides an overview of EPA's risk management strategy to control exposure to indoor radon. The first part reviews EPA's approach to radon testing and radon measurement protocols while introducing the option of encouraging homes to be tested and, if necessary, mitigated at the time of any real estate transaction. The second part introduces EPA's voluntary guidelines for construction techniques on how to minimise radon in new homes and addresses how these guidelines could be adopted by the States, local governments, and private sector homebuilders. The third part presents EPA's programme to educate the public on indoor radon risk. The paper concludes by outlining a Congressional directed approach to radon protection based on a multi-media risk management model for radon in air and water. (author)

  4. Radon in buildings

    International Nuclear Information System (INIS)

    Connell, J.J.

    1991-01-01

    This guide is intended to inform designers, householders and other building owners about the radon problem and to help in deciding if there is need to take any action to reduce radon levels in their homes or other buildings.It explains what radon is, how it enters buildings and what effect it may have on health. Reference is made to some of the usual ways of reducing the level of radon and guidance is given on some sources of assistance

  5. Mapping radon-prone areas using γ-radiation dose rate and geological information

    International Nuclear Information System (INIS)

    García-Talavera, M; Rey, C; Ramos, L; García-Pérez, A

    2013-01-01

    Identifying radon-prone areas is key to policies on the control of this environmental carcinogen. In the current paper, we present the methodology followed to delineate radon-prone areas in Spain. It combines information from indoor radon measurements with γ-radiation and geological maps. The advantage of the proposed approach is that it lessens the requirement for a high density of measurements by making use of commonly available information. It can be applied for an initial definition of radon-prone areas in countries committed to introducing a national radon policy or to improving existing radon maps in low population regions. (paper)

  6. Study of the effects of radon in three biological systems

    International Nuclear Information System (INIS)

    Tavera, L.; Balcazar, M.; Lopez, A.; Brena, M.; Rosa, M.E. De la; Villalobos P, R.

    2002-01-01

    The radon and its decay products are responsible of the 3/4 parts of the exposure of the persons to the environmental radiation. The discovery at the end of XIX Century of the illnesses, mainly of cancer, which appeared in the presence of radon, lead to an accelerated growing of the radon studies: monitoring, dosimetry, effects on the persons, etc. Several epidemiological studies of radon in miners and population in general have been realized; advancing in the knowledge about the concentration-lung cancer risk relationship, but with discrepancies in the results depending on the concentration levels. Therefor, studies which consuming time, efforts and money go on doing. The research of the radon effects in biological systems different to human, allows to realize studies in less time, in controlled conditions and generally at lower cost, generating information about the alpha radiation effects in the cellular field. Therefor it was decided to study the response of three biological systems exposed to radon: an unicellular bacteria Escherichia Coli which was exposed directly to alpha particles from an electrodeposited source for determining the sensitivity limit of the chose technique. A plant, Tradescantia, for studying the cytogenetic effect of the system exposed to controlled concentrations of radon. An insect, Drosophila Melanogaster, for studying the genetic effects and the accumulated effects in several generations exposed to radon. In this work the experimental settlements are presented for the expositions of the systems and the biological results commenting the importance of these. (Author)

  7. Measurement and apportionment of radon source terms for modeling indoor environments

    International Nuclear Information System (INIS)

    Harley, N.H.

    1992-01-01

    This research has two main goals; (1) to quantify mechanisms for radon entry into homes of different types and to determine the fraction of indoor radon attributable to each source and (2) to model and calculate the dose (and therefore alpha particle fluence) to cells in the human and animal tracheobronchial tree that is pertinent to induction of bronchogenic carcinoma from inhaled radon daughters. The dosimetry has been extended to include organs other than the lung

  8. Radon and its hazards

    International Nuclear Information System (INIS)

    Chang Guilan

    2002-01-01

    The author describes basic physical and chemical properties of radon and the emanation, introduces methods of radon measurement, expounds the hazards of non-mine radon accumulation to the health of human being and the protection, as well as the history how the human being recognizes the hazards of radon through the specific data and examples, and finally proposes protecting measures to avoid the hazards of radon to the health of human being, and to do ecologic evaluation of environments

  9. Radon dosimetry for workers: ICRP's approach

    International Nuclear Information System (INIS)

    Marsh, James W.; Laurier, Dominique; Tirmarche, Margot

    2017-01-01

    The International Commission on Radiological Protection (ICRP) has recently published two reports on radon exposure; Publication 115 on lung cancer risks from radon and radon progeny and Publication 126 on radiological protection against radon exposure. A specific graded approach for the control of radon in workplaces is recommended where a dose assessment is required in certain situations. In its forthcoming publication on Occupational Intakes of Radionuclides (OIR) document, Part 3, effective dose coefficients for radon and thoron will be provided. These will be calculated using ICRP reference biokinetic and dosimetric models. Sufficient information and dosimetric data will be given so that site-specific dose coefficients can be calculated based on measured aerosol parameter values. However, ICRP will recommend a single dose coefficient of 12 mSv per working level month (WLM) for inhaled radon progeny to be used in most circumstances. This chosen reference value was based on both dosimetry and epidemiological data. In this paper, the application and use of dose coefficients for workplaces are discussed including the reasons for the choice of the reference value. Preliminary results of dose calculations for indoor workplaces and mines are presented. The paper also briefly describes the general approach for the management of radon exposure in workplaces based both on ICRP recommendations and the European directive (2013/59/EURATOM). (authors)

  10. Biological effects of radon in Drosophila

    International Nuclear Information System (INIS)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la

    1992-04-01

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  11. Intercomparison and intercalibration of passive/active radon and active radon progeny instruments and methods in North America

    International Nuclear Information System (INIS)

    George, A.C.; Tu, Keng W.

    1993-06-01

    An intercomparison and intercalibration exercise for radon and radon progeny measurements made with active and passive instruments was held at EML from October 22--30,1992. Twenty-five participants submitted 96 passive integrating devices, eight active devices for radon, and seven integrating devices for potential alpha energy concentration (PAEC). In addition, 40 grab samples for radon progeny analysis were taken by five groups that participated in person during the intercomparison. The results reported to EML indicate that the majority of the participants (70%) obtained mean results within 10% of the EML reference value. Although the instruments used in this exercise are based on different principles of collection and detection, they all appear reliable. However, in some instances there seemed to be some minor problems with quality control and calibration bias. Also, the large counting errors for the PAEC experienced by some of the participants can be minimized by using higher sampling air flow rates without sacrificing instrument portability

  12. Human perception of radon risk and radon mitigation: Some remarks

    International Nuclear Information System (INIS)

    Neznal, M.; Neznal, M.

    2008-01-01

    The Radon program in the Czech Republic has a relatively long and rich history. Procedures, which enable to evaluate the risk of radon penetration from the ground, to protect new buildings, to find existing buildings with elevated indoor radon levels and to realise remedial measures in such buildings, have been developed, published and tested. In some cases, the whole system may fail due to psychological or sociological reasons. Three types of problems (conflicts) will be presented: human behaviour affecting measurement results, conflict between individual and 'all-society' points of view, interpretation of radon risk itself. (authors)

  13. Radon/radon-daughter measurement methods and instrumentation

    International Nuclear Information System (INIS)

    Rock, R.L.

    1977-01-01

    Radon-daughter measurement equipment and techniques have been continuously improved over the last 25 years. Improvements have been in the areas of accuracy, time and convenience. We now have miniaturized scalers and detectors available for measuring the alpha particle count rates from aerosol samples collected on filter papers. We also have small lightweight efficient pumps for conveniently collecting samples and we have various counting methods which allow us to choose between making very precise measurements or nominal measurements. Radon-daughter measurement methods used in uranium mines and mills are discussed including a personal radon-daughter-exposure integrating device which can be worn by miners

  14. Study of the factors affecting radon diffusion through building materials

    International Nuclear Information System (INIS)

    Chauhan, R.P.

    2011-01-01

    Radon appears mainly by diffusion processes from the point of origin following - decay of 226 Ra in underground soil and building materials used, in the construction of floors, walls, and ceilings. The diffusion of radon in dwellings is a process determined by the radon concentration gradient across the building material structure and can be a significant contributor to indoor radon inflow. Radon can originate from the deeply buried deposit beneath homes and can migrate to the surface of earth. Radon diffusion and transport through different media is a complex process and is affected by several factors. It is well known that for building construction materials the porosity, permeability and the diffusion coefficient are the parameters, which can quantify the materials capability to hinder the flow of radon soil gas. An increase in porosity will provide more air space within the material for radon to travel, thus reducing its resistance to radon transport. The permeability of material describes its ability to act as a barrier to gas movement when a pressure gradient exists across it and is closely related to the porosity of material. The radon diffusion coefficient of a material quantifies the ability of radon gas to move through it when a concentration gradient is the driving force. This parameter depends upon the porosity and permeability of the medium. As diffusion process is the major contributor to indoor levels, therefore, the factors affecting the diffusion process need to be kept in consideration. Keeping this in mind the experimental arrangements have been made for control study of radon diffusion through some building materials to observe the effects of different factors viz.; compaction, grain size, temperature, humidity and the mixing of these materials etc. For the present study alpha sensitive LR-115 type II solid-state nuclear track detectors (SSNTDs) have been used for the recording of alpha tracks caused by radon gas after its diffusion through the

  15. Radon level and radon effective dose rate determination in Moroccan dwellings using SSNTDs

    International Nuclear Information System (INIS)

    Oufni, L.; Misdaq, M.A.; Amrane, M.

    2005-01-01

    Inhalation of radon ( 222 Rn) and its daughter product are a major source of natural radiation exposure. The measurement of radon activity in dwelling is assuming ever increasing importance. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. Keeping this in view, the indoor radon activity level and radon effective dose rate were carried out in the dwellings of Beni-Mellal, Khouribgra and Ben Guerir cities, Morocco, using the solid state nuclear track detectors (SSNTD) technique. Assuming an indoor occupancy factor of 0.8 and 0.4 for the equilibrium factor of radon indoors, we found that the 222 Rn effective dose rate in the studied dwellings ranges from 1.01 to 7.90mSvy -1 . The radon activity in the corresponding dwellings was found to vary from 40 to 532Bqm -3 . The radon activity has not only been found to vary with seasonal changes, but also with the age, the construction mode of houses, the ventilation conditions and with specific sites and geological materials

  16. Radon daughter plate-out onto Teflon

    Science.gov (United States)

    Morrison, E. S.; Frels, T.; Miller, E. H.; Schnee, R. W.; Street, J.

    2018-01-01

    Radiopure materials for detector components in rare event searches may be contaminated after manufacturing with long-lived 210Pb produced by the decay of atmospheric radon. Charged radon daughters deposited on the surface or implanted in the bulk of detector materials have the potential to cause noticeable backgrounds within dark matter regions of interest. Understanding the mechanics governing these background signals is therefore a paramount concern in dark matter experiments in order to distinguish a real signal from internal detector backgrounds. Teflon (i.e. PTFE) is a specific material of interest because it makes up the walls of the inner detector of many liquid noble detectors such as the LUX-ZEPLIN experiment. The rate of radon daughter plate-out onto Teflon can be orders of magnitude larger than the plate-out rate onto other materials. Mitigation of plate-out onto Teflon and steel by proximity to other materials is demonstrated.

  17. Radiation doses from radon and progeny in Irish houses

    International Nuclear Information System (INIS)

    McLaughlin, J.P.

    1985-08-01

    In the United Kingdom, the estimated average annual effective dose equivalent to members of the public from all sources is 2.4 mSv (240 mrem). 40% of this dose is contributed by exposure to radon, and it is not unreasonable to assume that the situation in Ireland is very similar. During 1982-84 a preliminary study of radon and penetrating radiation on 300 Irish houses showed seasonally averaged indoor radon concentrations in the range 3 Bq/m 3 of air to 700 bq/m 3 , with a median value of about 40 bq/m 3 . A national survey of indoor radon has now been undertaken; 3000 households, randomly selected from the electoral register are to be monitored and the result correlated with energy conservation practices. The final part of this document deals with the regulatory aspects of radon control and reviews the practices for reduction of indoor radon daughter doses presently in hand in Scandinavia. An appendix of radiation units and terms is also given

  18. The radon monitoring system in Daya Bay Reactor Neutrino Experiment

    International Nuclear Information System (INIS)

    Chu, M.C.; Kwan, K.K.; Kwok, M.W.; Kwok, T.; Leung, J.K.C.; Leung, K.Y.; Lin, Y.C.; Luk, K.B.; Pun, C.S.J.

    2016-01-01

    We developed a highly sensitive, reliable and portable automatic system (H 3 ) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H 3 is able to measure radon concentration with a statistical error less than 10% in a 1-h measurement of dehumidified air (R.H. 5% at 25 °C) with radon concentration as low as 50 Bq/m 3 . This is achieved by using a large radon progeny collection chamber, semiconductor α-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013.

  19. Environmental Assessment for moving the Pacific Northwest Laboratory radon generators from Life Sciences Laboratory II, Richland North Area, to Life Sciences Laboratory I, 300 Area, and their continued use in physical and biological research

    International Nuclear Information System (INIS)

    Nelson, I.C.

    1993-01-01

    The Pacific Northwest Laboratory (PNL) radon generators are a core resource of the overall U. S. Department of Energy's (DOE) Radon Research Program and are administratively controlled within the ''Radon Hazards in Homes'' project. This project primarily focuses on radon exposures of animals and addresses the major biologic effects and factors influencing risks of indoor radon exposures. For example, the ''Mechanisms of Radon Injury'' and ''In vivo/In vitro Radon-Induced Cellular Damage'' projects specifically address the cytogenetic and DNA damage produced by radon exposure as part of a larger effort to understand radon carcinogenesis. Several other ongoing PNL projects, namely: ''Biological Effectiveness of Radon Alpha Particles: A Microbeam Study of Dose Rate Effects,'' ''Laser Measurements of Pb-210,'' ''Radon Transport Modeling in Soils,'' ''Oncogenes in Radiation Carcinogenesis,'' ''Mutation of DNA Targets,'' ''Dosimetry of Radon Progeny,'' and ''Aerosol Technology Development'' also use the radon exposure facilities in the conduct of their work. While most, but not all, studies in the PNL Radon Research Program are funded through DOE's Office of Health and Environmental Research, PNL also has ongoing collaborative radon studies with investigators worldwide; many of these use the radon exposure facilities. The purpose of the proposed action is to provide for relocation of the radon generators to a DOE-owned facility and to continue to provide a controlled source of radon-222 for continued use in physical and biological research

  20. The April 1994 and October 1994 radon intercomparisons at EML

    International Nuclear Information System (INIS)

    Fisenne, I.M.; George, A.C.; Perry, P.M.; Keller, H.W.

    1995-10-01

    Quality assurance/quality control (QA/QC) are the backbone of many commercial and research processes and programs. QA/QC research tests the state of a functioning system, be it the production of manufactured goods or the ability to make accurate and precise measurements. The quality of the radon measurements in the US have been tested under controlled conditions in semi-annual radon gas intercomparison exercises sponsored by the Environmental Measurements Laboratory (EML) since 1981. The two Calendar Year 1994 radon gas intercomparison exercises were conducted in the EML exposure chamber. Thirty-two groups including US Federal facilities, USDOE contractors, national and state laboratories, universities and foreign institutions participated in these exercises. The majority of the participant's results were within ±10% of the EML value at radon concentrations of 570 and 945 Bq m -3

  1. Indoor radon and risk of lung cancer: an epidemiological study in Finland

    International Nuclear Information System (INIS)

    Ruosteenoja, E.

    1991-03-01

    The main aim of the present study was to establish whether high radon concentrations in dwellings in Finland had increased the risk of lung cancer. Previous studies had shown an association between the α-active radon daughters and elevated lung cancer risk among miners. Convincing evidence of the risk among the general population exposed to radon indoors was, however, lacking. A descriptive analysis was first conducted in an area in southern Finland with high indoor radon exposure. In 18 rural municipalities this analysis yielded no significant correlation between the average radon exposure and incidence of male lung cancer. A case-control study within a cohort of the same rural population was then designed. The data included 238 male cases of lung cancer diagnosed in 1980-85 and 434 controls (390 smokers and 44 nonsmokers) from the male population. Radon exposure was measured, when possible, in all the dwellings occupied by a case or control in 1950-1975. Measurements were available for the total 25-year period, or for a proportion of it, for 164 cases and 334 controls; for the rest only estimates were available. In spite of the fact that the controls were mainly selected among smokers, the amount smoked still appeared to be the most important lung cancer risk factor in the data, the risk increasing linearly with the quantity of cigarettes smoked in a lifetime. The risk of lung cancer was not associated with the radon exposure level when the whole data were studied. In heavy smokers, however, a positive though not significant, effect on the risk from radon exposure was found. In the range of uncertainty the findings do not conflict with most of those observed among miners or the general population so far. (orig.)

  2. Radon therapy; Radon in der Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Kaija [Technische Hochschule Mittelhessen, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2017-04-01

    Radon therapies are used since more than 100 years in human medicine. Today this method is controversially discussed due to the possible increase of ionizing radiation induced tumor risk. Although the exact mode of biological radiation effect on the cell level is still not known new studies show the efficiency of the radon therapy without side effect for instance for rheumatic/inflammatory or respiratory disorders.

  3. Molecular and cytogenetic characterization of radon-induced lung tumors in the rat

    International Nuclear Information System (INIS)

    Dano, Laurent

    2000-01-01

    Radon is a natural radioactive gas. This radioelement, which is an α-particle emitter, is omnipresent in the environment. Inhalation of atmospheric radon is the major exposure route in man of natural radioactivity which results in respiratory tract contamination. An increased lung cancer risk associated with radon inhalation has been shown both in humans and animals by epidemiological and experimental studies, respectively. In rats, characterization of dose-effect relationships has led to the construction of statistical models that may help theoretically in the prediction of human health involvements of both occupational and domestic chronic exposure to radon. However, little is known about the cellular and molecular mechanisms of radon-induced lung carcinogenesis. In the laboratory, a model of lung cancers induced in rats after radon inhalation is available. This model represents a good tool to identify and characterize the genetic events contributing to the development of radon-induced lung tumors. Carrying out a global approach based on the combined use of classical and molecular cytogenetic methods, the analysis of 17 neoplasms allowed the identification of chromosomal regions frequently altered in these tumors. Numerous similarities have been found between our results and the cytogenetic data for human lung cancers, suggesting common underlying genetic molecular mechanisms for lung cancer development in both species. Moreover, our study has allowed to point to tumor suppressor genes and proto-oncogenes potentially involved in radon-induced lung carcinogenesis. Thus, our results may aid further molecular studies aimed either at confirming the role of these candidate genes or at demonstrating the involvement of yet to be identified genes. (author) [fr

  4. The US radon problem, policy, program and industry: achievements, challenges and strategies

    International Nuclear Information System (INIS)

    Angell, W. J.

    2008-01-01

    US radon research, policy and programs have stalled since their start in the late 1980's and early 1990's. In 2005, more homes had radon above the US Environmental Protection Agency (EPA) Reference Level than anytime in history since more homes were added to the housing stock that had indoor radon concentrations exceeding 150 Bq m -3 than had been mitigated. Funding for the US radon program has declined two-thirds from 1997 to 2007. Despite impressive goals for radon reduction, EPA lacks sound progress indicators especially in new construction radon control systems. School radon reduction has been at a standstill since the early 1990's. There has been no significant radon risk reduction in low-income sectors of the population. There is need for effective partnerships between the public and private sectors of the US radon professional communities as well as with the international programs and professionals. (authors)

  5. Radon atlas of Finland

    International Nuclear Information System (INIS)

    Voutilainen, A.; Maekelaeinen, I.; Pennanen, M.; Reisbacka, H.; Castren, O.

    1997-11-01

    The most efficient means of reducing indoor radon exposure is to locate and mitigate dwellings with radon concentration exceeding the action level of 400 Bq/m 3 and to build new houses so that radon concentrations do not exceed 200 Bq/m 3 . The maps and tables in this report are useful tools for those who plan and decide what kind of radon mitigation measures are needed in municipalities. STUK (The Radiation and Nuclear Safety Authority) has an indoor radon database of 52 000 dwellings, for which the indoor radon concentration and construction details are known. The building site soil type of about 38 000 dwellings is known. This atlas is a summary of all indoor radon measurements made by STUK in lowrise dwellings and in first-floor flats. The results are shown as arithmetic means of 5- or 10-km squares on maps of the provinces. Three radon maps have been made for each province. On one map the data consist of all measurements the position coordinates of which are known. On the two other maps the building sites of houses are classified into permeable and low-permeable soil types. The tables show statistics for all indoor radon measurements by municipality and building site soil type. (orig.)

  6. Analysis of the joint effects of radon exposure and smoking on lung cancer risk in three nested case-control studies in Europe

    International Nuclear Information System (INIS)

    Leuraud, Klervi; Laurier, Dominique; Schnelzer, Maria; Grosche, Bernd; Tomasek, Ladislav

    2008-01-01

    Full text: Objectives: Three case-control studies nested in the French (Fr), German (Ge) and Czech (Cz) cohorts of uranium miners were conducted in the frame of a European research Project, named Alpha-Risk, on the quantification of risks associated with multiple radiation exposures. These case-control studies aimed at assessing the effect of protracted radon exposure on lung cancer risk taking into account individual tobacco consumption. Material and methods: In the three case-control studies, cases were miners of the corresponding cohort who died of lung cancer (100, 704, 672 cases for the Fr, Ge and Cz study, respectively). For each case, controls were randomly matched on birth period and attained age at the time of death of the corresponding case (500, 1398 and 1491 controls for the Fr, Ge and Cz study, respectively). Cumulated radon exposure during employment was obtained from ambient and individual measurements for the Fr and Cz studies, and from a job exposure matrix for the Ge study. Smoking habits were retrospectively determined from medical archives and questionnaires applied in face-to-face interviews, phone calls or mailings. Analysis was performed by conditional logistic regression using a linear excess relative risk (ERR) model. A multiplicative model was fitted to assess the joint effect of radon exposure and smoking on lung cancer risk. Results: Smoking status was established for 62, 421, and 672 cases and 320, 620, and 1491 controls for the Fr, Ge, and Cz study, respectively. Two categories ('ever smokers' vs. 'never smokers') were defined. The percentages of 'ever-smokers' were 90%, 95%, and 92% for the cases and 73%, 75%, and 73% for the controls, for the Fr, Ge and Cz study, respectively. Mean five-year lagged cumulated radon exposures were 115, 717 and 174 working level months (WLM) for the cases, and 71, 505 and 118 WLM for the controls, for the Fr, Ge and Cz study, respectively. The excess relative risk per WLM (ERR/WLM) was 0.98% with a 95

  7. Scopingreport radon

    International Nuclear Information System (INIS)

    Blaauboer, R.O.; Vaas, L.H.; Hesse, J.M.; Slooff, W.

    1989-09-01

    This report contains general information on radon concerning the existing standards, sources and emissions, the exposure levels and effect levels. lt serves as a basis for the discussion during the exploratory melting to be held in November/December 1989, aimed at determining the contents of the Integrated Criteria Document Radon. Attention is focussd on Rn-222 (radon) and Rn-220 (thoron), presently of public interest because of radon gas pollution in private homes. In the Netherlands air quality standards nor product standards for the exhalation rate of building materials have been recommended. The major source of radon in the Netherlands is the soil gas (> 97%), minor sources are phosphate residues and building materials (> 2% in total). Hence, the major concern is the transfer through the inhalation of air, the lung being the most critical organ at risk to develop cancer. Compared to risks for humans, the risks of radon and its daughters for aquatic and terrestric organisms, as well as for agricultural crops and livestock, are assumed to be limited. In the Netherlands the average dose for man due to radon and thoron progeny is appr. 1.2 mSv per year, the estimated dose range being 0.1-3.5 mSv per year. This dose contributes for about 50% to rhe total exposure due to all sources of ionizing radiation. Of this dose respectively 80% is caused by radon and about 90% is received indoor. The estimated dose for the general population corresponds to a risk for inducing fatal cancers of about 15 x 10-6 per year, ranging from 1.2 x 10-6 to 44 x 10-6 which exceeds the risk limit of 1 x 10-6 per year -as defined in the standardization policy in the Netherlands for a single source of ionizing radiation-with a factor 15 (1- 44). Reduction of exposure is only possible in the indoor environment. Several techniques have been described to reduce the indoor dose, resulting from exhalation of the soil and building materials. )aut- hor). 37 refs.; 3 figs.; 8 tabs

  8. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface

    International Nuclear Information System (INIS)

    Tsapalov, Andrey; Kovler, Konstantin; Miklyaev, Peter

    2016-01-01

    Radon exhalation rate from the soil surface can serve as an important criterion in the evaluation of radon hazard of the land. Recently published international standard ISO 11665-7 (2012) is based on the accumulation of radon gas in a closed container. At the same time since 1998 in Russia, as a part of engineering and environmental studies for the construction, radon flux measurements are made using an open charcoal chamber for a sampling duration of 3–5 h. This method has a well-defined metrological justification and was tested in both favorable and unfavorable conditions. The article describes the characteristics of the method, as well as the means of sampling and measurement of the activity of radon absorbed. The results of the metrological study suggest that regardless of the sampling conditions (weather, the mechanism and rate of radon transport in the soil, soil properties and conditions), uncertainty of method does not exceed 20%, while the combined standard uncertainty of radon exhalation rate measured from the soil surface does not exceed 30%. The results of the daily measurements of radon exhalation rate from the soil surface at the experimental site during one year are reported. - Highlights: • Radon exhalation rate from the soil surface area of 32 cm"2 can be measured at level of 10 mBq/(m"2s) at the uncertainty ≤30%. • The method has a metrological justification. • No need to consider climate conditions, soil properties and conditions, mechanism and rate of radon transport in the soil.

  9. Combined effect of radon exposure and smoking on lung cancer risk - result of a case-control study among Czech miners

    International Nuclear Information System (INIS)

    Tomasek, Ladislav

    2010-01-01

    Because of the predominant role of cigarette smoking as a cause of lung cancer, an understanding of the joint effect of smoking and radon exposure is needed for the assessment of the risk from radon. The aim of the present work is to verify differences in smoking specific risk coefficients observed earlier (BEIR VI). The present study includes two cohorts of uranium miners in west and central Bohemia and one cohort of burnt clay miners exposed to radon. In the nested study, for each case of lung cancer (observed in 1954-2007) with smoking data up to three controls were selected from all cohort members matched by year of birth, age, and the cohort. Data on smoking in the study were collected from subjects in person, from medical records, and from relatives. The statistical assessment of the study was based on conditional logistic regression with linear dependence of estimated relative risk on radon exposure

  10. Indoor Radon and Lung Cancer Risk in Osijek

    International Nuclear Information System (INIS)

    Planinic, J.; Vukovic, B.; Faj, Z.; Radolic, V.; Culo, D.; Smit, G.; Suveljak, B.; Stanic, D.; Faj, D.

    2001-01-01

    Full text: Although studies of radon exposure have established that Rn decay products are a cause of lung cancer among miners, the lung cancer risk to the general population from indoor radon remains unclear. Our investigation of indoor radon influence on lung cancer incidence was carried out for 188 cases of the disease appeared in Osijek town during last five years. Radon concentration was measured in homes of the patients as well as for a control group. An ecologic method was applied by using the town map with square fields of 1,1km2 and the town was divided into 24 fields. For indoor radon level in the fields and belonging number of the diseases, a positive correlation coefficient was obtained, that was statistically significant, and a linear regression equation of cancer mortality rates was determined. In the mentioned population of the patients, subgroups of smokers and nonsmokers, males and females were also particularly investigated. (author)

  11. Radon and lung cancer among New Jersey women

    International Nuclear Information System (INIS)

    Schoenberg, J.; Klotz, J.; Wilcox, H.; Nicholls, G.

    1990-01-01

    An epidemiologic study previously conducted in New Jersey women was extended to examine the association of lung cancer with radon exposure. The substudy included 433 cases and 402 controls who lived in a single index residence for 10+ years during the period 10--30 years prior to diagnosis or selection. Lung cancer risks showed a significant trend (p = 0.04) with increasing year-round living area radon concentrations (based on alpha track measurements), and a weaker (p = 0.09) trend with estimated cumulative radon exposure. The relative risk coefficient of 3.4% per working level month (WLM) was consistent with the range of 0.5--4%/WLM generally reported for underground miners. This paper results must be interpreted cautiously due to the small number of subjects with high radon exposures and the possibility of selection biases. Nevertheless, the study suggests that findings of radon-related lung cancer in miners can be applied to the residential setting

  12. Soil-gas radon as seismotectonic indicator in Garhwal Himalaya

    International Nuclear Information System (INIS)

    Ramola, R.C.; Prasad, Yogesh; Prasad, Ganesh; Kumar, Sushil; Choubey, V.M.

    2008-01-01

    Research on earthquake-related radon monitoring has received enormous attention recently. Anomalous behaviour of radon in soil and groundwater can be used as a reliable precursor for an impending earthquake. While earthquake prediction may not yet be possible, earthquake prediction research has greatly increased our understanding of earthquake source mechanisms, the structural complexities of fault zones, and the earthquake recurrence interval, expected at a given location. This paper presents some results of continuous monitoring of radon in soil-gas in Garhwal Himalaya, India. Daily soil-gas radon monitoring with seismic activity and meteorological parameters were performed in the same laboratory system, located at H.N.B. Garhwal University Campus, Tehri Garhwal, India. Radon anomalies along with meteorological parameters were found to be statistically significant for the seismic events within the magnitudes M2.0-M6.0 and epicentral distances of 16-250 km from the monitoring station. The frequent positive and negative anomalies with constant environmental perturbation indicate the opening and closing of micro cracks within the volume of dilatancy by strain energy. The spike-like and sharp peak anomalies were recorded before, during and after earthquakes occurred in the area. The variations in radon concentrations in soil-gas are found to be correlated with seismic activities in the Garhwal Himalaya. The correlation between radon level and meteorological parameters is also discussed

  13. Radon soil increases before volcano-tectonic earthquakes in Colombia

    International Nuclear Information System (INIS)

    Garzon, G.; Serna, D.; Diago, J.; Moran, C.

    2003-01-01

    Continuous studies of radon concentration changes in soils for the purpose of earthquake monitoring have been carried out in three colombian districts and in the edifices of Galeras and nevado del Ruiz volcanoes since 1995. In zones of active faulting have been measured radon soil emissions between 1000 and 2500 pCi/L. In an intersection of two active geological faults have been measured levels of 25 000 pCi/L. In the present work appears a compilation of examples of the registered anomalous radon emissions in several stations before earthquakes of tectonic character. Examples of registered radon increases before: (1) events of magnitudes between 2 and 4; (2) the occurrence of seismic swarms; and (3) the Quindio (Colombia) earthquake (M w = 6, 2) of January 1999, are described. A model of transport mechanism for the studied isotopes is presented. (orig.)

  14. The measurement of radon concentration of soil in a civil construction site

    International Nuclear Information System (INIS)

    Liu Hanbin; Fan Guang

    2004-01-01

    Radon is one of radioactive resources which do harm to human body. Therefore, its concentration in the soil should be measured before the civil construction works. Code for Indoor Environmental Pollution Control of Civil Building Engineering (GB50325-2001) is the main norm used for soil radon concentration measurement. By using FD-3017 RaA radon measuring equipment, the soil radon concentration in a civil building engineering site has been measured, the result shows that the concentration is lower than the regional average value, radon protective measures should not be installed in that site. (authors)

  15. Radon concentration in the springs of the alluvial fan

    International Nuclear Information System (INIS)

    Horiuchi, Kimiko; Ishii, Tadashi; Kobayashi, Masao

    2003-01-01

    Rokugo alluvial fan is one of the typical stratified alluvial fans which have grown in the east edge of Yokote basin in Akita Prefecture. Many of Rokugo's springs are gushing out from 45 m to 50 m above the sea level where city town have been developed. Mechanism of gushing out of spring is closely bound up with the landform of this area. There is nearly no radon existing in the surface water, but in groundwater, radon concentrations are stable in every stratums and infiltration of groundwater to surface water. We would like to obtain some hydrological information by measuring radon concentration in water samples of Rokugo alluvial fan. (author)

  16. Characterization of radon entry rates and indoor concentrations in underground structures

    International Nuclear Information System (INIS)

    Borak, T.B.; Whicker, F.W.; Fraley, L.; Gadd, M.S.; Ibrahim, S.A.; Monette, F.A.; Morris, R.; Ward, D.C.

    1992-01-01

    An experimental facility has been designed to comprehensively determine the influence of soil and meterological conditions on the transport of radon into underground structures. Two identical basements are equipped to continuously monitor pressure differentials, temperatures, soil moisture, precipitation, barometric pressure, wind speed, wind direction, natural ventiliation rates, and radon concentrations. A computerized data acquisition system accumulates and processes data at the rate of 6000 points per day. The experimental design is based on performing experiments in one structure, with the other used as a control. Indoor radon concentrations have temporal variations ranging from 150 to 1400 Bq m -3 . The corresponding entry rate of radon ranges from 300 to 10,000 Bq h -1 . When the radon entry rate is high, the indoor radon concentration decreases, whereas elevated radon concentrations seem to be associated with slow but persistent radon entry rates. This inverse relationship is partially due to compensation from enhanced natural ventilation during periods when the radon entry rate is high. Correlations between measured variables in the soil and indoor-outdoor atmospheres are used to interpret these data. This laboratory has the capability to generate essential data required for developing and testing radon transport models

  17. Radon og boligen

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    Radon er en radioaktiv og sundhedsskadelig luftart, som ved indånding øger risikoen for lungekræft. Der er ingen dokumenteret nedre grænse for, hvornår radon er ufarligt. Derfor anbefales det, at man tilstræber et så lavt radonindhold i indeluften som muligt. Man kan hverken lugte, se, høre eller...... smage radon, så vil du vide, om du har radon i din bolig, må du måle radonindholdet i indeluften. Radon forekommer naturligt i jorden og kan suges ind sammen med jordluft, hvis der inde er et undertryk, og hvis konstruktionerne mod jord er utætte. Jordluft trænger ind gennem revner og utætte samlinger......, fx omkring rør til kloak, vand og varmeforsyning. Koncentrationen af radon i jorden varierer meget fra sted til sted, også lokalt og gennem året. Tidligere undersøgelser har vist, at der kan forekomme høje koncentrationer i Sydgrønland, specielt i området syd for Narsalik ved Paamiut, 61°30’N....

  18. Radon campaigns. Status report 2008

    International Nuclear Information System (INIS)

    Arvela, H.; Valmari, T.; Reisbacka, H.; Niemelae, H.; Oinas, T.; Maekelaeinen, I.; Laitinen-Sorvari, R.

    2008-12-01

    Radon campaigns aim at activating citizens to make indoor radon measurements and remediation as well as increasing the common awareness of indoor radon questions. Indoor radon increases the risk of lung cancer. Through radon campaigns Radiation and Nuclear Safety Authority (STUK) also promotes the attainment of those goals that the Ministry of Social Affairs and Health has set for municipal authorities in Finland for prevention of the harmful effects of radon. The Ministry of Social Affairs and Health supports this campaign. Radon campaigns were started in autumn 2003. By autumn 2008 the campaigns have been organised already in 64 regions altogether in 160 municipalities. In some municipalities they have already arranged two campaigns. Altogether 14 100 houses have been measured and in 2 100 of these the action limit of radon remediation 400 Bq / m 3 has been exceeded. When participating in radon campaigns the house owners receive a special offer on radon detectors with a reduced price. In 2008 a new practice was introduced where the campaign advertisements were distributed by mail to low-rise residential houses in a certain region. The advertisement includes an order / deposit slip with postage paid that the house owner can send directly to STUK to easily make an order for radon measurement. In the previous radon campaigns in 2003 - 2007 the municipal authorities collected the orders from house owners and distributed later the radon detectors. The radon concentrations measured in the campaign regions have exceeded the action limit of 400 Bq / m 3 in 0 - 39% of houses, depending on the region. The total of 15% of all measurements made exceeded this limit. The remediation activities have been followed by sending a special questionnaire on remedies performed to the house owners. In 2006 - 2007 a questionnaire was sent to those households where the radon concentration of 400 Bq / m 3 was exceeded during the two first campaign seasons. Among the households that replied

  19. Radon and its daughters in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Rundo, J

    1984-05-01

    Prolonged exposure to radon should build up a reservoir of radon in body fat and fluids. Movement of the subject to an environment with a lower radon concentration from an environment with a higher level of radon would result in an exhalation of radon, and the initial exhalation rate of radon should depend on the radon concentration inhaled. This paper describes the behavior of radon and its daughters in vivo and a relationship between the radon exhalation rate and the time after a meal. A major but short-lived postprandial increase in the exhalation rate of radon was observed. We report a similar effect in the exhalation rate of radon by persons containing no radium. It should be noted that the possibility exists that a large amount of radon daughters in the chest may interfere in the investigation of possible internal contamination with plutonium or other actinides by external counting. (author).

  20. Radon in balneology - measurement of radon retention by patients and radiation protection for personell

    International Nuclear Information System (INIS)

    Just, G.; Falkenbach, A.; Grunewald, W.A.; Philipsborn, H. von

    2001-01-01

    In radon balneology patients are exposed to radon either from water or air through the skin or through inhalation. Drinking radon water was not included in the study. Previously, the radon transfer has been determined for an estimate of the medically active amount of radon retained in the patient. A simpler approach of measuring radon in expiration under and after exposure has now been standardised and applied to probands under different conditions of exposure. In addition, radon decay products were measured in sweat, saliva and in the skin. Experimental parameters were evaluated for a comparison of different concentrations observed under different conditions. Results are likely to improve both therapy for patients and radiation protection for members of the personnel. (orig.) [de

  1. Analysis of radon protection cover on uranium tailings pile

    International Nuclear Information System (INIS)

    Zhang Zhe

    1993-01-01

    The average radon emanation rate of the whole surface over one year was used for evaluating the radon release of uranium tailings pile. The effective of radon protection cover depends on the shape and property of the tailings pile, the properties of covering and the control of air vadose in the pile. It was indicated that the covering with low diffusion coefficient, small porosity and bad permeability was suitable to cover the pile. The analytical formula of the covering layer thickness was given

  2. Radon anomaly in soil gas as an earthquake precursor

    International Nuclear Information System (INIS)

    Miklavcic, I.; Radolic, V.; Vukovic, B.; Poje, M.; Varga, M.; Stanic, D.; Planinic, J.

    2008-01-01

    The mechanical processes of earthquake preparation are always accompanied by deformations; afterwards, the complex short- or long-term precursory phenomena can appear. Anomalies of radon concentrations in soil gas are registered a few weeks or months before many earthquakes. Radon concentrations in soil gas were continuously measured by the LR-115 nuclear track detectors at site A (Osijek) during a 4-year period, as well as by the Barasol semiconductor detector at site B (Kasina) during 2 years. We investigated the influence of the meteorological parameters on the temporal radon variations, and we determined the equation of the multiple regression that enabled the reduction (deconvolution) of the radon variation caused by the barometric pressure, rainfall and temperature. The pre-earthquake radon anomalies at site A indicated 46% of the seismic events, on criterion M≥3, R<200 km, and 21% at site B. Empirical equations between earthquake magnitude, epicenter distance and precursor time enabled estimation or prediction of an earthquake that will rise at the epicenter distance R from the monitoring site in expecting precursor time T

  3. Radon anomaly in soil gas as an earthquake precursor

    Energy Technology Data Exchange (ETDEWEB)

    Miklavcic, I.; Radolic, V.; Vukovic, B.; Poje, M.; Varga, M.; Stanic, D. [Department of Physics, University of Osijek, Trg Ljudevita Gaja 6, POB 125, 31000 Osijek (Croatia); Planinic, J. [Department of Physics, University of Osijek, Trg Ljudevita Gaja 6, POB 125, 31000 Osijek (Croatia)], E-mail: planinic@ffos.hr

    2008-10-15

    The mechanical processes of earthquake preparation are always accompanied by deformations; afterwards, the complex short- or long-term precursory phenomena can appear. Anomalies of radon concentrations in soil gas are registered a few weeks or months before many earthquakes. Radon concentrations in soil gas were continuously measured by the LR-115 nuclear track detectors at site A (Osijek) during a 4-year period, as well as by the Barasol semiconductor detector at site B (Kasina) during 2 years. We investigated the influence of the meteorological parameters on the temporal radon variations, and we determined the equation of the multiple regression that enabled the reduction (deconvolution) of the radon variation caused by the barometric pressure, rainfall and temperature. The pre-earthquake radon anomalies at site A indicated 46% of the seismic events, on criterion M{>=}3, R<200 km, and 21% at site B. Empirical equations between earthquake magnitude, epicenter distance and precursor time enabled estimation or prediction of an earthquake that will rise at the epicenter distance R from the monitoring site in expecting precursor time T.

  4. Radon programme in Czech Republic. Results, experience and future

    International Nuclear Information System (INIS)

    Hulka, J.; Thomas, J.; Fojtikova, I.; Vlcek, J.; Moucka, L.; Fronka, A.; Jilek, K.; Heribanova, A.; Slovak, J.; Barnet, I.; Burian, I.; Jiranek, M.; Cechak, T.

    2004-01-01

    The beginning of the radon programme in the Czech republic dates back to the early 1980s. Incorporated in national legislation (Atomic Act, Radiation Protection Decree), the programme includes now both preventive measures and interventions. Preventive measures are based on the control of major potential radon sources (soil gas, building material and supplied water) to prevent construction of new houses where the recommended indoor radon level of 200 Bq/m 3 would be exceeded. Radon risk (index) assessment of the individual building site bedrock in the case of new house siting and building protection as stipulated by the technical building code are obligatory. The estimation of the radon-related index of building sites is based on a standard method involving a set of radon soil and soil permeability measurements. In addition, producers of building materials are obligated to monitor natural radioactivity in their products. The activity index (including 40 K, 226 Ra and 232 Th) is used as a screening level for regulation of the potential indoor gamma dose rate, and the 226R a mass activity is used as a limiting value for radon exhalation. A similar regulatory system is in place for public water supplies based on obligatory radon, total alpha and total beta measurements. A survey of effectiveness of the preventive measures was carried out during the past years. It appeared, however, that the indoor radon level of 200 Bq/m 3 is exceeded in some 20 % of new houses. An unexpectedly low air exchange rate in modern energy-saving houses seems to be among the reasons. Remedial actions are aimed at promoting targeted indoor radon survey in existing buildings and helping owners to put reasonable remedial measures into effect. Governmental activities include representative and targeted indoor radon survey, subsidies for remediation measures and test measurements, and improving the level of public awareness of the radon issue. Indoor radon survey is targeted on radon-prone areas

  5. Radon entry into a simple test structure

    DEFF Research Database (Denmark)

    Andersen, C.E.; Søgaard-Hansen, J.; Majborn, B.

    1992-01-01

    A simple test structure for studies of radon entry into houses has been constructed at a field site at Riso National Laboratory. It consists of a 40 1, stainless-steel cylinder placed in a 0.52 m deep quadratic excavation with a side length of 2.4 m. The excavation is lined with an airtight...... membrane, and soil gas enters the cylinder through a changeable interface in the bottom. The depressurisation of the cylinder is controlled by a mass-flow controller, thereby limiting the influence of natural driving forces. Pressures, temperatures and radon concentrations are measured continuously...... in the cylinder and in selected locations in the soil. In this paper, the test structure is described, and initial results concerning the transport of soil gas and radon under steady-state conditions are reported. It is found that the soil in the vicinity of the structure is partially depleted with respect...

  6. Radon Mapping of the Osijek Town

    International Nuclear Information System (INIS)

    Radolic, V.; Faj, Z.; Smit, G.; Culo, D.; Planinic, J.

    1998-01-01

    After ten years investigation of radon seasonal variations at three very different locations, as well as radon concentration measurements in kindergartens and schools, systematical indoor radon measurements were undertaken in dwellings of Osijek. Indoor radon was measured by means of the LR-115 nuclear track detector at 48 town locations that gave the arithmetic mean of 71.6 Bq m -3 , standard deviation of 44.0 Bq m -3 and geometric mean of 60.1 Bq m -3 , for the radon concentration range from 23 to 186 Bq m -3 . The empirical frequency distribution of radon concentrations, with the class width of 20 Bq m -3 , was in accordance with the theoretical log-normal distribution which was shown with χ 2 - test. The radon map pointed out a region of higher radon concentrations (central part of the town) that was ascribed to the geological soil structure. Thus supposition was confirmed by radon measurement in the soil gas using radon emanators with the LR-115 film that showed the positive correlation between radon concentrations in the soil and indoors. Radon measurements in Osijeks primary schools pointed out a school that had the highest radon concentration (300 Bq m -3 ) considering all the former indoor radon measurements. The radon distribution in the school building was investigated afterwards radon mitigation procedures were undertaken. (author)

  7. The effect and the amendment of thermoregulation to the stability of radon concentration in radon chamber

    International Nuclear Information System (INIS)

    Zhang Xiongjie; Wang Renbo; Qu Jinhui; Tang Bin; Zhu Zhifu; Man Zaigang

    2010-01-01

    When the temperature in the airtight radon chamber was adjusted, it would induce the frequent changes of the air pressure in chamber, then the radon concentration in the radon chamber would continuously reduce, which could seriously destroy the stability of the radon concentration in radon chamber. In this paper, on the study of the effect reasons to the stability of radon concentration in airtight radon chamber due to the thermoregulation, a new amendment scheme was put forward, and the solutions of the relevant parameters were discussed. The amendment scheme had been successfully applied to HD-6 radon chamber, and achieved good results. (authors)

  8. CONTRIBUTION OF RADON FLOWS AND RADON SOURCES TO THE RADON CONCENTRATION IN A DWELLING

    NARCIS (Netherlands)

    DEMEIJER, RJ; STOOP, P; PUT, LW

    1992-01-01

    In this paper a model is presented for analysis of the radon concentrations in a compartment in terms of contributions from transport by flows of air between compartments and from radon sources in the compartment. Measurements were made to study the effect of increased natural ventilation of the

  9. Residential radon and lung cancer: a cohort study in Galicia, Spain

    Directory of Open Access Journals (Sweden)

    Raquel Barbosa-Lorenzo

    Full Text Available Case-control studies show an association between residential radon and lung cancer. The aim of this paper is to investigate this association through a cohort study. We designed an ambispective cohort study using the Galician radon map, Spain, with controls drawn from a previous case-control study. Subjects were recruited between 2002 and 2009. The data were cross-checked to ascertain lung cancer incidence and then analysed using a Cox regression model. A total of 2,127 subjects participated; 24 lung cancer cases were identified; 76.6% of subjects were drawn from the radon map. The adjusted hazard ratio was 1.2 (95%CI: 0.5-2.8 for the category of subjects exposed to 50Bq/m3 or more. This risk rose when subjects from the case-control study were analyzed separately. In conclusion, we did not observe any statistically significant association between residential radon exposure and lung cancer; however, it appears that with a sample of greater median age (such as participants from the case-control study, the risk of lung cancer would have been higher.

  10. Radon and radon daughter monitoring (including thoron daughter monitoring)

    International Nuclear Information System (INIS)

    Leach, V.A.; Grealy, G.; Gan, W.

    1982-01-01

    Radon/radon daughter and thoron daughter measurement techniques are outlined. The necessary precautions and critical assessments of each method are also presented with a view to providing a better understanding of the various measurement methods

  11. Does the new EU-BSS improve radon protection in Austria?

    International Nuclear Information System (INIS)

    Ringer, W.; Haider, W.

    2015-01-01

    The new Council Directive 2013/59/EURATOM regarding radiation protection (EU-BSS) contains comprehensive regulations regarding radon protection in dwellings, in public buildings, and at workplaces for the first time. Key elements are the specification of a reference level of maximum 300 Bq/m 3 , the establishment of a national radon action plan, and a more comprehensive regulation of radon protection at workplaces and public buildings. The radon action plan shall contain strategies and measures regarding for example the estimation of the distribution of indoor radon concentrations, the mapping of radon, the radon risk communication strategy, the assignment of responsibilities, and regular reviews of the action plan. The new EU-BSS often requires only the establishment of strategies and the specification of measures, leaving the precise content of the strategies and measures to the member states. This gives the member states flexibility for the implementation of the EU-BSS into national legislation and allows to account for specific national experiences and circumstances. This contribution discusses and evaluates - based on the existing regulations concerning radon protection in Austria - the effectiveness of different new measures and regulations with respect to reducing the radon risk in Austria. Furthermore, their feasibility and practicability in terms of administrative and financial effort will be discussed. Thus, efficient new measures which lead to an improvement of the current radon control system will be identified.

  12. Uranium prospecting through radon detection; La prospection de l'uranium par le radon

    Energy Technology Data Exchange (ETDEWEB)

    Pradel, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    Prospecting rests on the determination of the concentration of ground air in radon. Radon diffusing from deep uranium bearing layers is detected in upper ground layers. (author) [French] La prospection est basee sur l'etude de la concentration en radon dans l'air du sol. Dans les terrains superficiels, on decele le radon qui diffuse a partir des couches profondes uraniferes. (auteur)

  13. Radon and its daughters in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Rundo, J

    1984-05-01

    Prolonged exposure to radon should build up a reservoir of radon in body fat and fluids. If the subject moved to an environment with a lower radon concentration from an environment with a higher level of radon, the result would be an exhalation of radon, and the initial exhalation rate of radon should depend of the radon concentration inhaled. This paper describes the behavior of radon and its daughters in vivo and a relationship between the radon exhalation rate and the time after a meal. A major but short-lived postprandial increase in the exhalation rate of radon was observed. The author reports a similar effect in the exhalation rate of radon by persons containing no radium. It should be noted that the possibility exists that a large amount of radon daughters in the chest may interfere in the investigation of possible internal contamination with plutonium or other actinides by external counting. 8 figures.

  14. Measurement of exhalation rate of radon and radon concentration in air using open vial method

    International Nuclear Information System (INIS)

    Horiuchi, Kimiko; Ishii, Tadashi.

    1991-01-01

    It was recognized that more than half of total exposure dose on human subject is caused by radon and its decay products which originate from naturally occurring radioactive substances (1988 UNSCEAR). Since then the exhalation of radon from the ground surface has received increasing attention. The authors have developed a new method for the determination of radon in natural water using toluene extraction of radon and applying a liquid scintillation counter of an integral counting technique which is able to get the absolute counting of radon. During these studies, the authors found out that when a counting vial containing of Liquid scintillator (LS)-toluene solution, without a lid, is exposed to the atmosphere for a while, dissolution of radon clearly occurs due to high solubility of radon into toluene layer. To extend this finding for the determination of radon in the atmosphere, the authors devised a new method to actively collect the atmosphere containing radon in a glass bottle by discharging a definite amount of water in it, which is named as open-vial dynamic method. The radon concentration can be easily calculated after the necessary corrections such as the partition coefficient and others. Applying proposed method to measure the radon exhalation rate from the ground surface and radon concentration in air of the dwelling environment, radioactive mineral spring zone and various geological formation such as granitic or sedimentary rocks. (author)

  15. Risks from radon

    International Nuclear Information System (INIS)

    Doll, Richard

    1992-01-01

    The best estimate of risk to which everyone is exposed from natural radon in buildings is now obtained by extrapolation from observations on men exposed to radon in mines. The relationship between dose and effect derived by the US National Research Council implies that about 6% of the current life-time risk of developing the disease in the UK is attributable to radon, but for residents of some houses it will be much greater. This estimate is dependent on many assumptions, some of which are certainly wrong, and reliable estimates can be obtained only by direct observations on people living in different houses. It is possible that radon may also cause some risk of other cancers, notably leukaemia, but such risks, if real, are certainly small. Studies in progress should provide reliable estimates of all radon induced risks within a few years. (author)

  16. Radon in Africa: South African Lessons Learnt

    International Nuclear Information System (INIS)

    Simanga, A.T.

    2010-01-01

    Processing (MIMP) facilities Workers are exposed in mining to:- Radon and its progeny External Exposure (gamma) Radioactive dust Water ingestion (inadvertently) Radon: Technical Considerations Monitoring is performed to detect, quantify and compare with goals. It must be fit for purpose and monitoring plan must be developed, implemented and evaluated. Monitoring Plan A radon monitoring plan is site specific, but the basic steps are common. Basic Steps in the Plan Purpose of monitoring Monitoring strategy Survey Data Handling Quality control Concluding Remarks In radiological protection- NORM industries in particular Mining and Mineral Processing Facilities- Rn is a major contributor to exposure In Africa as more regulatory infrastructure gets set up- Radon will become a prominent issue- because mining is major. Challenge is how do we ensure that the decisions we make are: - Based on credible data to enable incredible impact - Based on credible legislative framework - Made by technically competent people

  17. Radon: Detection and treatment

    International Nuclear Information System (INIS)

    Loken, S.; Loken, T.

    1989-01-01

    Within the last few years, natural radon exposure in non-industrial settings, primarily homes, has become a health concern. Research has demonstrated that many homes throughout the United States have radon concentrations much higher than the legal federal limits set for miners. Thousands of unsuspecting people are being exposed to high levels of radiation. It is estimated that up to 15 percent of lung cancers are caused from radon. This is a significant health risk. With basic knowledge of the current information on radon, a primary health care provider can address patients' radon concerns and make appropriate referrals

  18. Cost and effectiveness of radon-resistant features in new school buildings

    International Nuclear Information System (INIS)

    Craig, A.B.; Leovic, K.W.; Saum, D.W.

    1991-01-01

    Recent concerns over elevated levels of radon in existing buildings have prompted the design and construction of a number of school buildings that either are radon resistant or incorporate features that facilitate post-construction mitigation if needed. This paper describes initial results of a study of several schools with radon-resistant features that were recently constructed in the northeastern US. These designs are generally based on experience with radon mitigation in existing houses and schools and radon-resistant new house construction. The study was limited to slab-on-grade schools, where the most common radon-resistant school design is active subslab depressurization (ASD). The additional construction costs for eight schools built with ASD ranged from $3 to $11 per square meter of slab area. The radon contractors who designed these systems have tended to overdesign the radon-reduction systems in the absence of specific written guidance to follow to lessen potential liability in the event of system failure. Design features include detailed sealing of all stab cracks, multiple exhaust stacks, and extensive subslab piping. Recent Environmental Protection Agency (EPA) research on radon mitigation suggests that simpler ASD systems may provide sufficient radon resistance in new large buildings at lower costs. Components of a specification for radon-resistant school construction are discussed, based on comments from radon system designers. Another school being studied was built with a heating, ventilating, and air-conditioning (HVAC) pressurization radon control system, and considerations for this type of system are examined

  19. Map showing radon potential of rocks and soils in Montgomery County, Maryland

    Science.gov (United States)

    Gundersen, L.C.; Reimer, G.M.; Wiggs, C.R.; Rice, C.A.

    1988-01-01

    This report summarizes the radon potential of Montgomery County in the context of its geology. Radon is a naturally occurring gas produced by the radioactive decay of uranium. Radon produced by uraniferous rocks and soils may enter a house through porous building materials and through openings in walls and floors. Radon gases has a tendency to move from the higher pressure commonly existing in the soil to the lower pressure commonly existing in the house. The U.S. Environmental Protection Agency (U.S. EPA, 1986a) estimates that elevated levels of indoor radon may be associated with 5,000 to 20,000 of the 130,000 lung cancer deaths per year. They also estimate that 8 to 12 percent of the homes in the United States will have annual average indoor radon levels exceeding 4 picoCuries per liter of air (pCi/L). Above this level, the U.S. EPA recommends homeowners take remedial action. May factors control the amount of radon which may enter a home from the geologic environment. Soil drainage, permeability, and moisture content effect the amount of radon that can be released from rocks and soils (known as the emmanation) and may limit or increase how far it can migrate. Well drained, highly permeable soils facilitate the movement of radon. Soils with water content in the 8 to 15 percent range enhance the emmanation of radon (Lindmark, 1985). Daily and seasonal variations in soil and indoor radon can be caused by meteorologic factors such as barometric pressure, temperature, and wind (Clements and Wilkening, 1974; Schery and other, 1984). Construction practices also inhibit or promote entry of radon into the home (U.S. EPA, 1986b). In general, however, geology controls the source and distribution of radon (Akerblom and Wilson, 1982; Gundersen and others, 1987, 1988; Sextro and others, 1987; U.S. EPA, 1983; Peake, 1988; Peake and Hess, 1988). The following sections describe: 1) the methods used to measure radon and equivalent uranium (eU) in soil; 2) the radon potential

  20. Managing Radon in Schools

    Science.gov (United States)

    EPA recommends testing all schools for radon. As part of an effective IAQ management program, schools can take simple steps to test for radon and reduce risks to occupants if high radon levels are found.

  1. Soil Radon In The Nigerian Younger Granites | Dewu | Nigerian ...

    African Journals Online (AJOL)

    ... not had enough time to attain equilibrium with its daughters. In general, the results suggest that with proper control, soil radon measurements over the Younger Granite can be used for uranium exploration in the region. Keywords: Radon, younger granite, soil uranium, half-lifeand thorium. Nigerian Journal of Physics Vol.

  2. Radon and radon daughter measurements at and near the former Middlesex Sampling Plant, Middlesex, New Jersey

    International Nuclear Information System (INIS)

    Haywood, F.F.; Perdue, P.T.; Christian, D.J.; Leggett, R.W.; Dickson, H.W.; Myrick, T.E.

    1980-03-01

    The results of the radon and radon daughter measurements made to date (1978) at the Middlesex Sampling Plant in Middlesex, New Jersey, are presented in this report. These measurements were one portion of a more comprehensive radiological survey conducted at this site and the surrounding area from 1976 to 1978. The surveyed property served as a uranium ore sampling plant during the 1940's and early 1950's and as a result contains elevated levels of surface an subsurface contamination. On-site indoor radon daughter and radon concentrations exceeded both the US Surgeon General Guidelines and the Nuclear Regulatory Commission's maximum permissible concentration limits for radon (10 CFR Part 20) in all structures surveyed. Off-site structures showed concentrations of radon and radon daughters at or only slightly above background levels, except for one site where the radon levels were found to be above the 10 CFR Part 20 guidelines. Outdoor radon ad radon daughter concentrations, measured both on and off the site, were well below the guidelines, and the data give no indication of significant radon transport from the site

  3. Measurement of the concentration of radon in the air

    International Nuclear Information System (INIS)

    Aten, J.B.Th.; Bierhuizen, H.W.J.; Hoek, L.P. van; Ros, D.; Weber, J.

    1975-01-01

    A simple transportable air monitoring apparatus was developed for controlling the radon contamination of air in laboratory rooms. It is not highly accurate but is sufficient to register the order of magnitude of the radon concentration. Air is pumped through a filter for one or two hours and an alpha decay curve of the dust on the filter is determined. Scintillation counting forty minutes after sampling indicates the radon activity. The calibration method of measuring the equilibrium of daughter product concentrations is discussed extensively

  4. Inverse method for determining radon diffusion coefficient and free radon production rate of fragmented uranium ore

    International Nuclear Information System (INIS)

    Ye, Yong-jun; Wang, Li-heng; Ding, De-xin; Zhao, Ya-li; Fan, Nan-bin

    2014-01-01

    The radon diffusion coefficient and the free radon production rate are important parameters for describing radon migration in the fragmented uranium ore. In order to determine the two parameters, the pure diffusion migration equation for radon was firstly established and its analytic solution with the two parameters to be determined was derived. Then, a self manufactured experimental column was used to simulate the pure diffusion of the radon, the improved scintillation cell method was used to measure the pore radon concentrations at different depths of the column loaded with the fragmented uranium ore, and the nonlinear least square algorithm was used to inversely determine the radon diffusion coefficient and the free radon production rate. Finally, the solution with the two inversely determined parameters was used to predict the pore radon concentrations at some depths of the column, and the predicted results were compared with the measured results. The results show that the predicted results are in good agreement with the measured results and the numerical inverse method is applicable to the determination of the radon diffusion coefficient and the free radon production rate for the fragmented uranium ore. - Highlights: • Inverse method for determining two transport parameters of radon is proposed. • A self-made experimental apparatus is used to simulate radon diffusion process. • Sampling volume and position for measuring radon concentration are optimized. • The inverse results of an experimental sample are verified

  5. Study of radon emanation from uranium mill tailings. Relations between radon emanating power and physicochemical properties of the material

    International Nuclear Information System (INIS)

    Pellegrini, D.

    1999-01-01

    The uranium extraction from ores leads to large amounts of mill tailings still containing radionuclides, such as thorium-230 and radium-226, which generate radon-222. Without protective action, radon exposition may be high enough to cause concern for health of populations living in the vicinity of an uranium mill tailings disposal. This exposition pathway has therefore to be taken into account in the radiological impact studies. The emanating power, i.e. the part of radon atoms which escape from the solid particles, is directly involved in the radon source term evaluation. It may be determined for a given material by laboratory measurements. Emanating powers from 0.08 to 0.33 have been obtained for mill tailings from Jouac (Limousin, France), at various moisture contents. In order to reduce the relations of dependence between some of the emanation parameters, more simple phases, kaolinite and polymeric resins, have been studied. Those experiments have led us to the selection of the mechanisms and the parameters to consider for the development of an emanation modelling. The whole of the results obtained point out the radon sorption, in various proportions depending on the materials. The moisture content influence on the emanation from materials containing fine particles have been confirmed: the emanation increases with this parameter until a continuous water film surrounding the particles have been formed, and then become constant. This 'water effect' occurs in a moisture content range, which depends on the material porosity. Elsewhere, the presence of amorphous phases may led to a high radon emanation. (author)

  6. Radon exhalation rates corrected for leakage and back diffusion – Evaluation of radon chambers and radon sources with application to ceramic tile

    Directory of Open Access Journals (Sweden)

    M. Abo-Elmagd

    2014-10-01

    Full Text Available The natural radon decay, leakage and back diffusion are the main removal processes of radon from its container. Ignoring these processes leads to underestimate the measured value of radon related parameters like exhalation rate and radium content. This work is aimed to evaluate two different radon chambers through determining their leakage rate λv and evaluation of radon source by determine its back diffusion rate λb inside the evaluated radon chambers as well as a small sealed cup. Two different methods are adapted for measuring both the leakage rate and the back diffusion rate. The leakage rate can be determined from the initial slope of the radon decay curve or from the exponential fitting of the whole decay curve. This can be achieved if a continuous monitoring of radon concentration inside the chamber is available. Also, the back diffusion rate is measured by sealing the radon source in the chamber and used the initial slope of the buildup curve to determine λb and therefore the exhalation rate of the source. This method was compared with simple equation for λb based on the ratio of the source to the chamber volume. The obtained results are applied to ceramic tile as an important radon source in homes. The measurement is targeted the ceramic glaze before and after firing as well as the obtained tile after adhere the glaze on the tile main body. Also, six different tile brands from Egyptian market are subjected to the study for comparison.

  7. Biological basis of inhalation exposure of radon and its daughters

    International Nuclear Information System (INIS)

    Matsuoka, Osamu

    1989-01-01

    Since inhalation exposure by radon and its daughters is very specific type of internal exposure, it is necessary to understand its characteristic nature. The specificity originates from the nuclear feature of radon daughters and the biological micro-environment in the respiratory tract. Inhaled radon and its daughters exist in the respiratory tract as ions attached to air dusts and deposit on the mucus surface of the respiratory tract by various mechanisms such as impaction, sedimentation and diffusion. Deposition of radon daughters is predominant around the site of the fourth generation according to Weibel's model. Deposited particles with radon daughters are cleared by muco-ciliary transportation. Its speed is estimated to be about 1.0 cm/min, at the upper region. Alpha decay will happen during transportation in the respiratory tract. Radon has no tissue affinity metabolically. Therefore, the irradiation is limited to the epithelial cells of respiratory tract. The cell components within 30-70 micron in depth are irradiated with alpha particle. Biological effectiveness of alpha radiation is very high compared with beta or gamma radiation. The target cell for carcinogenesis by radon exposure is considered to be the basal cell of epithelium. Lung cancer induced by radon inhalation is recognized to be squamous cell carcinoma, small cell carcinoma, or oat-cell carcinoma and adenocarcinoma. The modification factors which influence the effect of radon exposure are co-inhalation of ore dust and smoking habit. According to epidemiological studies on lung cancer which occurred in uranium miners, it is suggested that the smoking habit strongly promotes lung cancer induction. (author)

  8. Geology of radon occurrence around Jari in Parvati Valley, Himachal Pradesh, India

    International Nuclear Information System (INIS)

    Choubey, V.M.; Sharma, K.K.; Ramola, R.C.

    1997-01-01

    Soil gas and indoor radon concentrations have been measured around Jari in Parvati Valley, Himachal Pradesh, India, to study their relationship with the local geology. Both soil gas and indoor radon concentrations were found to be higher near structurally controlled uranium mineralization. Indoor radon levels in the houses of the study area are considerably higher than the ICRP recommended value of 200 Bq m -3 . The high indoor radon concentration found may be attributed to the geology of the area. This area needs more detailed investigation as it may be one of the areas of high radon risk in India. (Author)

  9. Investigation of radon and thoron concentrations in a landmark skyscraper in Tokyo

    International Nuclear Information System (INIS)

    Kazumasa Inoue; Masahiro Fukushi

    2013-01-01

    The temporal variation of the radon concentration, and the radon and thoron concentrations every 3 months for a year were measured using two types of devices in a landmark skyscraper, the Tokyo Metropolitan Government Daiichi Building. In the measurement of temporal variation of the radon concentration using a pulse type ionization chamber, the average radon concentration was 21 ± 13 Bq m -3 (2-68 Bq m -3 ). The measured indoor radon concentration had a strong relationship with the operation of the mechanical ventilation system and the activities of the office workers. The radon concentration also increased together with temperature. Other environmental parameters, such as air pressure and relative humidity, were not related to the radon concentration. In the long-term measurements using a passive radon and thoron discriminative monitor, no seasonal variation was observed. The annual average concentrations of radon and thoron were 16 ± 8 and 16 ± 7 Bq m -3 , respectively. There was also no relationship between the two concentrations. The annual average effective dose for office workers in this skyscraper was estimated to be 0.08 mSv y -1 for 2000 working hours per year. When considering the indoor radon exposure received from their residential dwellings using the annual mean radon concentration indoors in Japan (15.5 Bq m -3 ), the annual average effective dose was estimated to be 0.37 mSv y -1 . This value was 31 % of the worldwide average annual effective dose. (author)

  10. Studies of Radon and Radon Progeny in Air Conditioned Rooms in Hospitals

    International Nuclear Information System (INIS)

    Marley, F.; Denman, A.R.; Phillips, P.S.

    1998-01-01

    A series of continuous real-time radon and radon progeny measurements together with passive etched track detector measurements were performed in hospital premises during 1996. In one small room, detailed measurements over several weeks showed that both the radon concentration and the Equilibrium Factor depended on the intermittent operation of a filtered positive pressure displacement air-conditioning system, which was designed to conform to operating theatre standards. The average radon level measured while the air-conditioning was off was almost four times higher than that recorded whilst it was on. The progeny level was over five times higher than that whilst it was on. Thus, the Equilibrium Factor (F), was significantly lower when the air-conditioning was on. Measurements in similar rooms in two hospitals, confirmed that the reduction in radon level was a general finding. Thus staff working in such environments receive significantly lower radiation dose from radon than staff working in nearby normally ventilated rooms. (author)

  11. Energy recovery ventilation as a radon mitigation method for Navy family housing in Guam

    International Nuclear Information System (INIS)

    1993-12-01

    Energy recovery ventilation involves the exchange of contaminated indoor air with fresh, uncontaminated outdoor air with recovery of energy. During radon mitigation diagnostics, air change measurements were performed within three typical Navy family houses, and some were found to be well below recommended minimum standards. The only practical way to solve the indoor air quality problem was to increase the ventilation rate. Options were evaluated, and it was decided to install energy recovery ventilation (ERV) systems. An ERV system is a packaged unit complete with blower fans, controls, and air-to-air heat exchanger. However, because of economical limits on the quantity of conditioned air that can be exchanged, ERV has a finite range of application in radon abatement. In Guam, ERV has potential applications in up to 370 units and in an additional 154 units if the mechanical systems are moved indoors. The performance of ERV systems were evaluated during a demonstration program to determine the removal efficiency of radon

  12. A comparison of contemporary and retrospective radon gas measurements in high radon dwellings in Ireland

    International Nuclear Information System (INIS)

    Kelleher, K.; McLaughlin, J.P.; Fenton, D.; Colgan, P.A.

    2006-01-01

    Little correlations has been found between contemporary radon gas measurements made in the past and retrospective radon gas measurements in Irish dwellings. This would suggest that these two techniques would result in two significantly different cumulative radon exposure estimates. Contemporary radon gas measurements made a few years apart in the same room of a dwelling were found to be significantly different. None of these differences could be explained by known changes to the rooms themselves., such ventilation or structural alterations to the room. This highlights the limitations of the contemporary radon gas measurements as a surrogate measurement for use in residential radon epidemiology. The contemporary radon gas measurements made by the Radiological Protection Institute of Ireland (R.P.I.I.) and University College of Dublin (U.C.D.) do not cover the same exposure period as the retrospective estimates and so the accuracy of the retrospective measurements cannot be demonstrated. A weak correlation can be seen between the retrospective radon gas estimates and a combination of the two contemporary radon gas estimates. It is not unreasonable to expect improvement in the correlation if further contemporary radon gas measurements were made in these rooms. (N.C.)

  13. Enhancement of exposure to radon progeny as a consequence of passive smoking

    International Nuclear Information System (INIS)

    Moghissi, A.A.; Seiler, M.C.

    1989-01-01

    Among indoor air pollutants, radon and tobacco smoke take dominant positions. Because radon decay products have a relatively short residence time in air, the extent of the equilibrium between radon and its daughter products is linearly proportional to the carcinogenic risk, at least at low exposure levels. The relevant factor is the equilibrium factor F. This paper discusses the enhancement of radon exposure as a result of the presence of particulate matter originating from tobacco smoke. The presence of tobacco smoke provides a mechanism for radon progeny to be attached to inhalable particles and to remain in indoor air for a prolonged time. The results of our study indicate a significant increase in F as a consequence of passive smoking. These modeling efforts are consistent with the experimental data reported previously

  14. Modeling of indoor radon

    International Nuclear Information System (INIS)

    Paschoa, A.S.

    1990-01-01

    This paper reports on models for radon, which are developed not only to describe the behavior of radon and daughters since the moment that radon is created in natural sources by the alpha decay of 226 Ra up to the point that doses to humans are estimated based on the inhalation of radon and its progeny. The objective of a model should be determinant in defining the model structure and boundaries. Modeling indoors radon is particularly useful when the 226 Ra concentration in building materials and soils can be known before a house will be built with such 226 Ra bearing materials and over 226 Ra rich soils. The reported concentrations of 226 Ra in building materials range from 0.3 Bq · kg -1 in wood to about 2.6 x 10 3 Bq · kg -1 in aerated concrete based on alum shale. 30 In addition, when a house is built on a soil containing a high 226 Ra concentration, radon exhalation from the soil contributes to increase radon concentration indoors. The reported radon exhalation from soils range from 3.4 Bq · m -2 · s -1 in latosolic soil from Osaka, Japan to about 53 mBq · m -2 · s -1 in chernozemic soil from Illinois

  15. Radon levels in dwellings in chalk terrain. Development and analysis of distributional and causal models

    International Nuclear Information System (INIS)

    Killip, Ian Richmond

    2002-01-01

    This thesis investigates the range, distribution and causes of high radon levels in dwellings in the Brighton area of Southeast England. Indoor radon levels were measured in more than 1000 homes. The results show that high radon levels can arise in an area previously considered to offer low radon potential from local geological sources. Climate and building-related factors were found to affect significantly the radon levels in dwellings. Multiple regression was used to determine the influence of the various factors on indoor radon levels and an empirical model develop to predict indoor radon levels. The radon hazard, independent of building-related effects, was determined for each surveyed location by adjusting the radon measurement to that expected on the ground floor of a 'model' dwelling. This standardised set of radon levels was entered into a geographical information system (GIS) and related to surface geology. The geometric mean radon level for each lithological unit was plotted to produce a radon hazard map for the area. The highest radon levels were found to be associated with the youngest Chalk Formations, particularly where they meet overlying Tertiary deposits, and with Clay-with-Flints Quaternary deposits in the area. The results were also converted to the radon activity equivalent to that expected from the NRPB's standard dual-detector dwelling survey method and analysed by lognormal modelling to estimate the proportion of dwellings likely to exceed the UK Action Level of 200 Bq/m 3 for each lithological unit. The likely percentages of dwellings affected by radon thus obtained were mapped to lithological boundaries to produce a radon potential map. The radon hazard map and the empirical radon model facilitate the prediction of radon levels in dwellings of comparable construction and above similar geology and should further the understanding of the behaviour of radon gas in buildings to allow indoor radon concentrations to be controlled. The radon

  16. Temporal Patterns of Lung Cancer Risk from Radon, Smoking and their Interaction

    International Nuclear Information System (INIS)

    Tomasek, L.; Urban, S.; Kubik, A.; Zatloukal, P.

    2004-01-01

    Studies of uranium miners conducted since the late 1960s demonstrated that the risk depends on cumulated exposure in terms of working level months (WLM) integrating both duration of exposure and concentration of radon. It has been also demonstrated that the risk from radon decreases with time since exposure. The objective of the work is to study temporal patterns of lung cancer risk from occupational and residential radon and from smoking. The present analysis of temporal changes of relative risk is based on a model, where the total individual exposure is partitioned into components in dependence on time. Exposure to radon is studied in a cohort of 9411 Czech uranium miners with 766 cases of lung cancer and in a residential study of 1 803 inhabitants exposed to radon in houses with 218 cases. Temporal patterns of smoking are analyzed in a case-control study of patients from a major Prague hospital including 566 cases. for both carcinogens, the relative risk decreases with time since exposure. In comparison to period with exposure before 5-19 years, the risk from exposures before 20-34 years is 36% and 34% for smoking and randon, respectively. The effect of exposures from more distant periods 35-49 is only 5% for smoking and 14% for radon in comparison to 5-19 years. Combined effect of smoking and radon is studied by a nested case-control approach including 434 cases and 962 controls. Analyses of the joint effects of smoking and radon, conducted in the occupational and the residential studies, suggest a sub-multiplicative interaction. The relative risk from radon among non-smokers is higher by a factor of 2-3 in comparison to smokers, suggesting different patterns of lung deposition and clearance among smokers and non-smokers. (Author) 13 refs

  17. Temporal Patterns of Lung Cancer Risk from Radon, Smoking and their Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Tomasek, L.; Urban, S.; Kubik, A.; Zatloukal, P.

    2004-07-01

    Studies of uranium miners conducted since the late 1960s demonstrated that the risk depends on cumulated exposure in terms of working level months (WLM) integrating both duration of exposure and concentration of radon. It has been also demonstrated that the risk from radon decreases with time since exposure. The objective of the work is to study temporal patterns of lung cancer risk from occupational and residential radon and from smoking. The present analysis of temporal changes of relative risk is based on a model, where the total individual exposure is partitioned into components in dependence on time. Exposure to radon is studied in a cohort of 9411 Czech uranium miners with 766 cases of lung cancer and in a residential study of 1 803 inhabitants exposed to radon in houses with 218 cases. Temporal patterns of smoking are analyzed in a case-control study of patients from a major Prague hospital including 566 cases. for both carcinogens, the relative risk decreases with time since exposure. In comparison to period with exposure before 5-19 years, the risk from exposures before 20-34 years is 36% and 34% for smoking and randon, respectively. The effect of exposures from more distant periods 35-49 is only 5% for smoking and 14% for radon in comparison to 5-19 years. Combined effect of smoking and radon is studied by a nested case-control approach including 434 cases and 962 controls. Analyses of the joint effects of smoking and radon, conducted in the occupational and the residential studies, suggest a sub-multiplicative interaction. The relative risk from radon among non-smokers is higher by a factor of 2-3 in comparison to smokers, suggesting different patterns of lung deposition and clearance among smokers and non-smokers. (Author) 13 refs.

  18. Scopingsreport Radon

    NARCIS (Netherlands)

    Blaauboer RO; Vaas LH; Hesse JM; Slooff W

    1989-01-01

    Dit scopingsrapport vormt een onderdeel van de voorbereiding tot het opstellen van het basisdocument radon. Het doel van dit rapport is het algemene kennisniveau van de deelnemers aan de scopingsbijeenkomst aangaande radon op eenzelfde peil te brengen en discussie- en beslispunten inzake de

  19. Radon in dwellings

    International Nuclear Information System (INIS)

    Erikson, B.E.; Boman, C.A.; Nyblom, L.; Swedjemark, G.A.

    1980-06-01

    The report presents the function of the ventilation by natural draught in three-storey houses. In some cases also the measurement of gamma radiation, radon and radon daughters was made. The investigation took place in Uppsala. The houses were built of light weight concrete made of alum-shale. The measurements showed that the contents of radon daughters were far below the provisional limits. (G.B.)

  20. Sequence analysis of LACI mutations obtained from lung cells of control and radon-exposed Big Blue trademark transgenic mice

    International Nuclear Information System (INIS)

    Jostes, R.F.; Cross, F.T.; Stillwell, L.

    1995-01-01

    We have exposed Stratagene Big Blue trademark transgenic mice by inhalation to 310, 640 and 960 Working Level Months (WLM) of radon progency. Twelve LacI mutations have been isolated from the lung tissue of a mouse from the 960-WLM group and the LacI gene sequenced. Mutations are scored only if they occur unambiguously in both strands of the mutant gene; the entire gene is evaluated. In addition, sixteen LacI mutations were isolated from the lung tissue of a mouse from the 640-WLM group; seven have been completely sequenced. Nine LacI mutations from the lung tissue of unirradiated control mice have been sequenced. Sequence data from the unirradiated mice are similar to that found in lung tissue at Stratagene; predominately G:C to A:T transitions in the protein associated region. The mutation spectrum from radon-irradiated mice is markedly different from that obtained with the control, unirradiated mice. Small deletions and insertions compromise 53% of the mutations in the irradiated mice. No multiple events have been noted in the spontaneous mutations; six of the mutations obtained from radon-irradiated mice (26%) have multiple events within the gene. In some, deletions, insertions are base changes occur together. The mutational events in the irradiated mice are approximately equally distributed throughout the gene. The breakpoint rejoining regions of large deletions obtained from the radon-irradiated mice are being studied at the University of California, San Francisco

  1. Effect of indoor-generated airborne particles on radon progeny dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Trassierra, C. Vargas [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); Stabile, L., E-mail: l.stabile@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); Cardellini, F.; Morawska, L. [National Institute of Ionizing Radiation Metrology (INMRI-ENEA), Rome (Italy); Buonanno, G. [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR (Italy); International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane (Australia)

    2016-08-15

    Highlights: • Investigation of the interaction between particles and radon progeny dynamics. • Measurements of particles emitted by different indoor sources. • Tests performed in a controlled radon chamber. • Particle size strongly influences the radon progeny dynamics. • Particle surface area concentration is the key parameter of the radon-particle interaction. - Abstract: In order to investigate the interaction between radon progeny and particles, an experimental campaign was carried out in a radon chamber at the Italian National Institute of Ionizing Radiation Metrology, quantifying the amount of attached and unattached radon daughters present in air, as well as the equilibrium factor in the presence of particles generated through indoor sources. A fixed radon concentration was maintained, while particles were generated using incense sticks, mosquito coils and gas combustion. Aerosols were characterized in terms of particle concentrations and size distributions. Simultaneously, radon concentration and attached/unattached potential alpha energy concentration in the air were continuously monitored by two different devices, based on alpha spectroscopy techniques. The presence of particles was found to affect the attached fraction of radon decay products, in such a way that the particles acted as a sink for radionuclides. In terms of sources which emit large particles (e.g. incense, mosquito coils), which greatly increase particle surface area concentrations, the Equilibrium Factor was found to double with respect to the background level before particle generation sessions. On the contrary, the radon decay product dynamics were not influenced by gas combustion processes, mainly due to the small surface area of the particles emitted.

  2. Comparing summer and winter indoor radon and radon daughters activity in Campinas, Brazil

    International Nuclear Information System (INIS)

    Guedes, O.S.; Hadler, N.J.C.; Iunes, P.J.; Neman, R.S.; Souza, W.F.; Tello, S.C.A.; Paulo, S.R.

    2002-01-01

    We developed a technique - based on alpha particle track detection using CR-39 - where the activity originated from indoor radon can be potentially separated into three fraction: (i) radon in the air, (ii) radon daughters (RD), 218 Po and 214 Po, in the air and (iii) RD plated-out on the detector surface during exposure. In this work only a partial separation was carried out, then our results are limited to radon plus RD in the air and RD attached to detector surface. These activities can be separated if size and gray level of the round tracks are measured using an automatic optical microscopy system.Our group carried out an indoor radon and radon daughters (RD) survey in Campinas made up by a summer (November, 96 to May, 97) and a winter (May, 97 to November, 97) exposure, where the detectors were placed in the same rooms of the same dwellings (approximately 100) in both cases. Comparing winter and summer alpha activity for the detectors analyzed up to now, approximately 45 dwellings, we observed that: i) it seems that the source of radon is the material (brick and concrete mainly) making up walls, floor and ceiling of the dwellings, ii) there is no clear relationship between intensity of aeration and the activities measured in this work, and iii) the average ratio between winter and summer activity in the air (radon plus RD) is approximately equal to similar ratios observed in other countries, but for radon only. (author)

  3. Application of the can technique and radon gas analyzer for radon exhalation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman E-mail: fazalr@kfupm.edu.sa; Al-Jarallah, M.I.; Musazay, M.S.; Abu-Jarad, F

    2003-12-01

    A passive 'can technique' and an active radon gas analyzer with an emanation container were applied for radon exhalation rate measurements from different construction materials, viz. five marble seven ceramic and 100 granite tiles used in Saudi Arabia. The marble and ceramic tiles did not show detectable radon exhalation using the active radon gas analyzer system. However the granite tiles showed relatively high radon exhalations, indicating a relatively high uranium content. A comparison of the radon exhalation rates measured by the two techniques showed a linear correlation coefficient of 0.57. The radon exhalation rates from the granites varied from 0.02 to 6.58 Bq m{sup -2} h{sup -1} with an average of 1.35{+-}1.40 Bq m{sup -2} h{sup -1}. The geometric mean and the geometric standard deviation of the frequency distribution were found to be 0.80 and 3.1, respectively. The track density found on the nuclear track detectors in the can technique exposed to the granites, having high exhalation rates, varied linearly with exposure time with a linear correlation coefficient of 0.99. This experimental finding agrees with the theoretical prediction. The can technique showed sensitivity to low radon exhalation rates from ceramic, marble and some granite over a period of 2 months, which were not detectable by the active radon gas analyzer system. The reproducibility of data with both measuring techniques was found to be within a 7% deviation.

  4. Indoor radon and radon daughters survey at Campinas-Brazil using CR-39: First results

    International Nuclear Information System (INIS)

    Guedes, S.; Hadler, J.C.N.; Iunes, P.J.; Navia, L.M.S.; Neman, R.S.; Paulo, S.R.; Rodrigues, V.C.; Souza, W.F.; Tello, C.A.S.; Zuniga, A.

    1999-01-01

    The first results of a radon and radon daughters (RD) survey performed at Campinas-SP, Brazil, are presented. We employed a technique that, potentially, makes possible to measure the radon and RD activity in the air and to separate from this result the activity of radon, alone. In this preliminary paper only the former activity is studied

  5. Indoor radon and radon daughters survey at Campinas-Brazil using CR-39: First results

    CERN Document Server

    Guedes, S; Iunes, P J; Navia, L M S; Neman, R S; Paulo, S R; Rodrigues, V C; Souza, W F; Tello, C A S; Zúñiga, A G

    1999-01-01

    The first results of a radon and radon daughters (RD) survey performed at Campinas-SP, Brazil, are presented. We employed a technique that, potentially, makes possible to measure the radon and RD activity in the air and to separate from this result the activity of radon, alone. In this preliminary paper only the former activity is studied.

  6. Radon as a hydrological indicator

    Energy Technology Data Exchange (ETDEWEB)

    Komae, Takami [National Research Inst. of Agricultural Engineering, Tsukuba, Ibaraki (Japan)

    1997-02-01

    The radon concentration in water is measured by a liquid scintillation method. After the radioactive equilibrium between radon and the daughter nuclides was attained, the radon concentration was determined by the liquid scintillation analyzer. {alpha}-ray from radon, then two {beta}- and two {alpha}-ray from the daughter nuclei group were released, so that 500% of the apparent counting efficiency was obtained. The detector limit is about 0.03 Bq/l, the low value, which corresponds to about 5.4x10{sup -15} ppm. By determining the radon concentration in groundwater, behavior of radon in hydrological process, the groundwater exchange caused by pumping and exchange between river water and groundwater were investigated. The water circulation analysis by means of radon indicator in the environment was shown. By using the large difference of radon concentration between in river water and in groundwater, arrival of injected water to the sampling point of groundwater was detected. (S.Y.)

  7. Continuous, environmental radon monitoring program at the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Liu, N.; Sorensen, C.D.; Tung, C.H.; Orchard, C.R.

    1995-01-01

    A continuous, environmental radon monitoring program has been established in support of the Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP). The monitoring program is to characterize the natural radon emissions at the YMP site, to understand the existing radon concentrations in the environmental background, and to assess and control the potential work exposure. Based upon a study of the monitoring results, this paper presents a preliminary understanding of the magnitudes, characteristics, and exposure levels of radon at the YMP site

  8. Lessons from radon

    International Nuclear Information System (INIS)

    Nichols, M.

    1993-01-01

    At EPA there is a public outreach program that the Office of Air and Radiation (OAR) has developed for radon. To meet the difficult challenge radon presented, OAR's Radon Division developed working relationships with national nonprofit groups who share a mission. These groups have well-established communication networks with their memberships for advancing their goals. Such diverse groups as the American Lung Association, the Advertising Council, the National Association of Counties (NACo), the Consumer Federation of America, the National Association of Homebuilders, and the National Safety Council have joined with EPA to reduce radon health risks. Through this alliance, EPA has been able to take advantage of communication channels that it could never replicate on tis own. Every group working with EPA disseminates the radon message through its own established channels to reach its constituency. These partners wield authority in their fields and are ideal for addressing the concerns of their audiences

  9. Radon mitigation in schools

    International Nuclear Information System (INIS)

    Leovic, K.W.; Craig, A.B.; Saum, D.W.

    1990-01-01

    This article reports on radon mitigation in school buildings. Subslab depressurization (SSD) has been the most successful and widely used radon reduction method in houses. Thus far, it has also substantially reduced radon levels in a number of schools. Schools often have interior footings or thickened slabs that may create barriers for subslab air flow if a SSD system is the mitigation option. Review of foundation plans and subslab air flow testing will help to determine the presence and effect of such barriers. HVAC systems in schools vary considerable and tend to have a greater influence on pressure differentials (and consequently radon levels) than do heating and air-conditioning systems encountered in the radon mitigation of houses. As part of any radon mitigation method, ASHRAE Standard 62-1989 should be consulted to determine if the installed HVAC system is designed and operated to achieve minimum ventilation standards for indoor air quality

  10. Health effects of radon

    International Nuclear Information System (INIS)

    Easterly, C.

    1994-01-01

    Exposure of people to radon has taken on increased interest during the last decade because of the understanding that buildings can serve to trap radon and its daughters, and thereby build up undesirable concentrations of these radioactive elements. Numerous studies of underground miners (often uranium miners) have shown an increased risk of lung cancer in comparison with nonexposed populations. Laboratory animals exposed to radon daughters also develop lung cancer. The abundant epidemiological and experimental data have established the carcinogenicity of radon progeny. Those observations are of considerable importance, because uranium, from which radon and its progeny arise, is ubiquitous in the earth's crust, including coal mines. Risk estimates of the health effects of long-term exposures at relatively low levels require continued development, especially to address the potential health effects of radon and radon daughters in homes and occupational settings where the exposure levels are less than levels in underground uranium and other metal mines that have been the subject of epidemiological studies. Two approaches can be used to characterize the lung-cancer risks associated with radon-daughter exposure: mathematical representations of the respiratory tract that model radiation doses to target cells and epidemiological investigation of exposed populations, mainly underground uranium miners. The mathematically-based dosimetric approach provides an estimate of lung cancer risk related to radon-daughter exposure based specifically on modeling of the dose to target cells. The various dosimetric models all require assumptions, some of which are not subject to direct verification, as to breathing rates; the deposition of radon daughters in the respiratory tract; and the type, nature, and location of the target cells for cancer induction. The most recent large committee effort drawn together to evaluate this issue was sponsored by the National Research Council

  11. Radon risk in the house; Il rischio radon nelle abitazioni

    Energy Technology Data Exchange (ETDEWEB)

    Bressa, G. [Padua Univ., Padua (Italy). Dipt. di Farmacologia e Anestesiologia, Lab. di Tossicologia

    2001-04-01

    Radon was discovered in 1900, but its potential dangerousness for man was fully understood only in 1950. Being a radioactive natural gas - and therefore particularly dangerous - radon results from the long decay chain of radionuclides, such as thorium and radium. Some igneous rocks (granite, tufa and lava) as well as coal are considered to be the main sources of this radionuclide. A number of epidemiologic studies have shown the carcinogenicity of this element, particularly among miners and workers subjected to high level exposure in confined spaces such as basements, garages, cellars, etc. There are, however, some techniques to remove radon in order to reduce exposure to minimum values. [Italian] Il radon fu scoperto nel 1900, ma solo nel 1950 si comprese la sua potenziale pericolosita' per l'uomo. Il radon e' particolarmente pericoloso essendo un gas naturale radioattivo. Esso proviene dalla lunga catena di decadimento di radionuclidi come il torio e di radio. Sorgenti di tale radionuclide sono da considerarsi principalmente alcune rocce ignee (graniti, tufi e lave) e il carbone. Diversi studi epidemiologici hanno evidenziato la cancerogenicita' di tale elemento, specie tra i minatori e soggetti esposti ad alti livelli in ambienti confinati quali scantinati, garage sotterranei, ecc.. Esistono comunque tecniche di intervento per la rimozione del gas radon in modo tale da ridurre l'esposizione a valori minimi.

  12. Estimation of radon emanation coefficient for soil and flyash

    International Nuclear Information System (INIS)

    Sahu, S.K.; Swarnkar, M.; Ajmal, P.Y.; Pandit, G.G.; Puranik, V.D.

    2012-01-01

    Since terrestrial materials include radium ( 226 Ra) originating from the decay of uranium ( 238 U), all such materials release radon ( 222 Rn) to varying degrees. When a radium atom decays to radon, the energy generated is strong enough to send the radon atom a distance of about 40 nanometers-this is known as alpha recoil. For a radon atom to escape the radium atom must be within the recoil distance from the grain surface of flyash or soil and the direction of recoil must send the radon atom toward the outside of the grain. Therefore, all of the radon atoms generated by the radium contained in flyash or soil grain are actually not released into pore spaces and mobilized. The fraction of radon atoms generated from radium decay that are released from into flyash or soil pore space is defined as the radon emanation coefficient or emanating power, of the material. Grain size and shape are two of the important factors that control the radon emanation coefficient because they determine in part how much uranium and radium is near enough to the surface of the grain to allow the newly-formed radon to escape into a pore space. In a porous medium, where the radon is in radioactive equilibrium with its parent radium, the emanation coefficient is given by the expression: where C 0 is the undiluted radon activity concentration in the pores of the medium, and C Ra is the radium activity concentration of the sample. The 226 Ra activity concentration of the flyash and soil sample were determined by using the g-spectrometry. C 0 was determined by the can experiment using LR-115 for flyash and soil samples. The C 0 values for flyash and soil samples were found to be 245.7 Bq/m 3 and 714.3 Bq/m 3 respectively. The radon emanation coefficient for flyash was found to be 0.0024 while that for soil was 0.0092. Therefore the soil sample was found to be four times higher radon emanation coefficient than flyash which is in line with the results reported in the literatures. This may suggest

  13. Radon in Syrian houses

    International Nuclear Information System (INIS)

    Othman, I.; Hushari, M.; Raja, G.; Alsawaf, A.

    1996-01-01

    A nationwide investigation of radon levels in Syrian houses was carried out during the period 1991-1993. Passive radon diffusion dosemeters using polycarbonate detectors were distributed in houses all over Syria. Detectors were subjected to electrochemical etching to reveal latent tracks of alpha particles. The mean radon concentration in Syrian houses was found to be 45 Bq m -3 with some values several times higher. This investigation indicated that there were a few houses in Syria that require remedial action. Most houses that have high levels of radon were found in the southern area, especially in the Damascus governorate. The study also indicated that radon concentrations were higher in old houses built from mud with no tiling. (author)

  14. The therapeutic use of radon; Radon als Heilmittel

    Energy Technology Data Exchange (ETDEWEB)

    Deetjen, P [Innsbruck Univ. (Austria). Inst. fuer Physiologie und Balneologie

    1995-09-01

    Spas with a somewhat elevated concentration of Radon{sup 222} (between 300 and 3000 Bq/l) are described to achieve good clinical results in the treatment of chronic rheumatic diseases. Recently a prospective randomized doubel-blind-study proved the pain reducing efficacy of Radon therapy in patients with cervical pain. Studies in experimental animal models have accumulated remarkable data in tissues and organs that provide a rationale to explain the observed effects of Radon therapy in patients. (orig.) [Deutsch] In verschiedenen europaeischen und asiatischen Laendern werden oft schon seit vielen Jahrhunderten Quellen als besonders heilkraeftig beschrieben, die eine etwas erhoehte Aktivitaet an Radon{sup 222} aufweisen (etwas zwischen 300 und 3000 Bq/l). Neuerdings liegt auch eine prospektive randomisierte Doppelblind-Studie vor, die den klinischen Nachweis der Schmerzlinderung durch eine Radonkur erbringt. In tierexperimentellen Untersuchungen wurden unter Radonexposition zahlreiche stimulierende Effekte auf Zellstoffwechsel, Immunabwehr, Abbau toxischer Radikale, DNA-Reparatur-Systeme oder Synthese von Mediatorsubstanzen gemessen, die rationale Ansaetze fuer das Verstaendnis der Wirkung einer Radonexposition im niedrigen Dosisbereich ergeben. (orig.)

  15. An investigation into control of radon and its daughter products in some Cornish mine atmospheres

    International Nuclear Information System (INIS)

    Dungey, C.J.; Hore, J.; Waller, M.D.

    1979-01-01

    Elements of the uranium series are widespread as trace elements in the granitic rocks in which much of Cornwall's mining takes place. The radon gas, together with its decay or daughter products, can be inhaled by the underground worker. It is now realised that even a small concentration of the gas can be harmful; this is reflected by the tightening of control standards in the U.S.A. by a factor of 30 in the past 10 years. The current standards are such that many non-uranium mines must now provide some means of control. As yet, no statutory limits have been set in the United Kingdom mining regulations, but the industry locally is hopeful of achieving reduced levels that will pre-empt any forthcoming legislation. The first requirement of any control technique is the ability to monitor the effects of any action. An instrument developed recently in the U.S.A. now enables the radon daughter concentration to be determined quickly on the spot, so the effectiveness of any control measures can be evaluated more rapidly. The evaluation of the best potential methods of control requires some understanding of the behaviour of the decay products in typical mine environments. Several control techniques are being tested, both in controlled experimental conditions at the Camborne School of Mines and in field conditions at South Crofty and Wheal Pendarves mines. The experience and results of these tests so far are examined. (author)

  16. Utilization of rice husk ash to enhance radon resistant potential of concrete

    International Nuclear Information System (INIS)

    Jain, Ravinder; Kant, Krishan; Yadav, Mani Kant; Chauhan, R.P.

    2013-01-01

    The radiological and health implication posed by radon and their decay products are well known. The soil containing varying amount of radionuclides is the primary source of indoor radon. The indoor radon level depends upon its entrance through the pores of the ground and floor. Thus it is necessary to restrict the radon from soil to enter indoors by application of materials with low radon diffusion coefficient. The method used for radon shielding purpose in present study utilizes the rice husk ash for substitution with cement to achieve low diffusion coefficient. The study describes the method to optimize the condition of preparation of rice husk ash using X-ray diffraction and fluorescence spectroscopy techniques. The rice husk substitution with cement was optimized by compressive and porosity test of concrete cubes. The diffusion coefficient through concrete modified by rice husk ash was carried out by scintillation radon monitor and specially design radon diffusion chamber. The radon exhalation rates from concrete carried out using active technique decreasing radon emanation from concrete with increase of rice husk ash. The result of present study suggest substitution of 20-30% rice husk ash with cement to achieve lower radon diffusion and exhalation rates with higher compressive strength as compared to control concrete. (author)

  17. Radon in public buildings

    International Nuclear Information System (INIS)

    Schulz, H.; Flesch, K.; Hermann, E.; Loebner, W.; Leissring, B.

    2009-01-01

    From the Free State of Saxony, a study was commissioned to survey how reliable measurements to characterize the radon situation in public buildings at a reasonable financial and human effort can be carried out to reduce radiation exposure in public buildings. The study approach was for 6 objects. To characterize the radon situation the time evolution measurement of radon concentrations of more than 1 to 2 weeks turned out to be sufficient. A novel data analysis enables the identification of a ''typical daily alteration of the radon concentration'' depending on the ventilation conditions and the daily use of the offices or class rooms. The identification of typical diurnal radon variations for the working time and weekends or holidays is of fundamental importance for assessing the exposure situation in public buildings. It was shown that the radon concentration during working time are in general much lower than in the times when the buildings (offices) are unused. It turned out that the long-term radon measurements with nuclear track detectors within distinct time regimes (day / night, working hours / leisure time) by utilizing switch modules are very efficient to estimate the actual exposure. (orig.)

  18. Improved thomas formula for radon measurement

    International Nuclear Information System (INIS)

    Ji Changsong

    1991-06-01

    The FT 648 type portable absolute radon meter has been developed and the designing principle of this instrument is introduced. The absolute radon meter differs from relative radon meter. By using structure parameters, operating parameters and readout of this instrument, the radon content of measured gas is obtained directly without calibration in advance. Normally, the calibration is done by a standard radioactive gaseous source of which the radon concentration is known. The systematic error is removed by adding filter-efficiency Σ, α self-absorption correction β, energy spectrum correction S, geometric factor Ω of probe and gravity dropping correction factor G to the Thomas formula for radon measurement of two-filter method. The atmosphere radon content, which is given in hour-average, in Beijing area was measured by FT 648 type absolute radon meter. The measurement lasted continuously for several days and nights and a 'saddle shape' of radon content-time curve was observed. The day's average radon content was 8.5 Bq·m -3

  19. Technique and equipment for measuring volume activity of radon in the air of radon laboratories and clinics

    International Nuclear Information System (INIS)

    Vorob'ev, I.B.; Krivokhatskij, A.S.; Nekrasov, E.V.; Nikolaev, V.A.; Potapov, V.G.; Terent'ev, M.V.

    1990-01-01

    Usability of a new equipment-technique combination for measuring radon activity in the air of radon laboratories and balneological clinics is studied. The complex includes nitrate-cellulose detector, radon chamber, Aist, Istra type spark counters and technique of spark counting. The method sensitivity is 50 Bqxm 3 , the error is 30%. Usability and advisability of track method in radon laboratories and balneological clinics for simultaneous measurement in several points of integral volumetric radon activities are confirmred. The method permits to carry out rapid and accurate bulk investigations. The results of determining mean volumetric radon activity in the air in different points of radon laboratory and radon clinics are presented

  20. Radon in dwellings the national radon survey Cork and Kerry

    International Nuclear Information System (INIS)

    McGarry, A.T.; Fennell, S.G.; Mackin, G.M.; Madden, J.S.

    1998-07-01

    This report presents the results of the third phase of the National Radon Survey carried out by the Radiological Protection Institute of Ireland. The counties included in this phase are Cork and Kerry. The average radon concentrations for the houses measured in these counties were 76 Bq/m 3 and 70 Bq/m 3 . The measurement data were grouped on the basis of the 10 km grid squares of the Irish National Grid System and used to predict the percentage of dwellings in each grid square which exceeds the Reference Level of 200 Bq/m 3 . Grid squares where this percentage is predicted to be 10% or higher are designated High Radon Areas. The health effects of exposure to high radon levels are discussed and recommendations are made regarding both new and existing dwellings. (author)

  1. The mechanical ventilation of suspended timber floors for radon remediation - a simple analysis

    International Nuclear Information System (INIS)

    Woolliscroft, M.

    1994-01-01

    Mechanical ventilation of the underfloor space is one of the most effective ways of reducing radon levels in buildings with suspended timber floors. There is a question, however, whether this ventilation should be supply or extract, sometimes extract is more effective, sometimes supply is more effective. This report presents a simple analysis of the problem and suggests the hypothesis that the relative effectiveness of supply or extract ventilation to the underfloor space depends on the relative airtightness of the floor and the soil or oversite surface. The analysis suggests that if the floor is relatively tight then supply ventilation may be more effective whereas if the floor is relatively leaky or there is oversite concrete then extract may be better. It is suggested that in either case it is better to keep the underfloor pressure low and that when mechanical ventilation is provided to the underfloor space it may be necessary to increase the number of airbricks. (author)

  2. Design of hygrothermal detection and control intelligent system based on AVR-MCU in radon chamber

    International Nuclear Information System (INIS)

    Zheng Yongming; Fang Fang; Zhou Wei; Zheng Meiyang; Xu Jianyi

    2006-01-01

    The design of a new hygrothermal detection and control system based on AVR-MCU, which is used in minitype and medium-sized radon chamber, is introduced. The kernel of the interface among ATmega128 MCU, hygrothermal sensor, refrigeration and desiccation components is described. In addition, with the calculation of the control capability in theory, it comes to the conclusion that the design is feasible, and this control system not only can work in independence, but also can cooperate with PC by RS232 communication. (authors)

  3. Radon programmes and health marketing.

    Science.gov (United States)

    Fojtikova, Ivana; Rovenska, Katerina

    2011-05-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed.

  4. Radon in workplaces: First results of an extensive survey and comparison with radon in homes

    International Nuclear Information System (INIS)

    Bucci, S.; Pratesi, G.; Viti, M. L.; Pantani, M.; Bochicchio, F.; Venoso, G.

    2011-01-01

    Extensive radon surveys have been carried out in many countries only in dwellings, whereas surveys in workplaces are rather sparse and generally restricted to specific workplaces/activities, e.g. schools, spas and caves. Moreover, radon-prone areas are generally defined on the basis of radon surveys in dwellings, while radon regulations use this concept to introduce specific requirements in workplaces in such areas. This approach does not take into account that work activities and workplace characteristics can significantly affect radon concentration. Therefore, an extensive survey on radon in different workplaces have been carried out in a large region of Italy (Tuscany), in order to evaluate radon distribution in workplaces over the whole territory and to identify activities and workplace characteristics affecting radon concentration. The results of this extensive survey are compared with the results of the survey carried out in dwellings in the same period. The workplaces monitored were randomly selected among the main work activities in the region, including both public and industrial buildings. The survey monitored over 3500 rooms in more than 1200 buildings for two consecutive periods of ∼6 months. Radon concentration was measured by means of passive nuclear track detectors. (authors)

  5. The significance of radon in radioactive pollution of environment. Pt. 2. Radon effect on living organism

    International Nuclear Information System (INIS)

    Kossakowski, S.; Dziura, A.; Kossakowski, A.

    1998-01-01

    Authors review the history of radon monitoring. Epidemiological studies of lung cancer and its correlation to radon concentration in mines and buildings are described. The influence of radon on animals living in the buildings built from waste materials is described. Authors review plans concerning creation of radon monitoring system in Poland. The necessity of monitoring influence of radon on animals is described

  6. Some problems in the action level and dose assesment of radon

    International Nuclear Information System (INIS)

    Pan Ziqiang

    2007-01-01

    In the recent past, remarkable progresses has been made in radon epidemiological investigation for human populations, with the radon-induced excess relative risk being 0.16%/100 Bq m -3 . It should be noted, for implementing radon action standards, that the action levels are differently implicated for population dwellings and workplaces. The dose limits and the derived air concentration are provided for the individuals, both of which can not be used as the main basis for con- trolling workplaces (sources). The controlling of radon concentrations should be based primarily on radiation protection optimization and constraints. (authors)

  7. Monitoring of radon concentration in dwellings

    International Nuclear Information System (INIS)

    Kurosawa, Ryuhei

    1991-01-01

    Radon problems in dwellings have recently received much attention. Radon concentration in dwellings, as well as in the general environment, varies with various factors such as meteorological conditions and soil components. Therefore, a long term monitoring of radon concentration is required to obtain an average concentration. This paper reviews a passive type radon monitor that is handy and allows a long term radon monitoring. It provides the structure and principle of the radon monitor, covering the type, filter function, sensitivity of diffusion collecting type (cup type), electrostatic collecting type, adsorption collecting type, and detector of radon monitor. Actual examples of the radon monitor are also given. Radon daughter nuclides will have become major foci of exposure countermeasures. In the future, the development of a passive type monitor for determining potential alpha energy concentration is required. (N.K.)

  8. Radon and lung cancer in Bangalore Metropolitan, India

    International Nuclear Information System (INIS)

    Sathish, L.A.; Nethravathi, K.S.; Ramachandran, T.V.

    2012-01-01

    Radon is a radioactive gas released from the normal decay of 238 U in rocks and soil. It is an invisible, odorless, tasteless gas that seeps up through the ground and diffuses into the air. In a few areas, depending on local geology, radon dissolves into ground water and can be released into the air when the water is used. Radon gas usually exists at very low levels outdoors. However, in areas without adequate ventilation, such as underground mines, radon can accumulate to levels that substantially increase the risk of lung cancer. Radon decays quickly, giving off tiny radioactive particles. When inhaled, these radioactive particles can damage the cells that line the lung. Long-term exposure to radon can lead to lung cancer, the only cancer proven to be associated with inhaling radon. Public interest in radon has been occasionally piqued by articles in the general press. Considerable attention has been given to the high radon levels that were uncovered in the Reading Prong region of Pennsylvania, following the discovery in late 1984 of extremely high levels in one home. Several epidemiological study programmes in different countries are in progress to estimate the population exposures due to natural radiation with a view to obtain the radiation risk coefficients at low dose rate levels. In this regard, radiation surveys in high background areas (HBRAs) can provide excellent settings for epidemiological studies relating to the effects of low doses of radiation. In view of these, a comprehensive estimate of the natural inhalation dose requires both 222 Rn and 220 Rn levels in the indoor atmosphere. In this outlook an attempt is made to investigate the 222 Rn and 220 Rn levels in dwellings of Bangalore Metropolitan, India. Three year results shows that the activity concentrations of 226 Ra, 232 Th, radon in ground water, the concentrations 222 Rn and 220 Rn and the dose rate (mSvy -1 ) are at alarming levels for the environment of Bangalore Metropolitan, India. The

  9. Workshop on dosimetry for radon and radon daughters

    International Nuclear Information System (INIS)

    Turner, J.E.; Holoway, C.F.; Loebl, A.S.

    1978-05-01

    Emphasis is placed on the dosimetry for radon and daughters, rather than on monitoring and instrumentation. The objectives of the meeting were to exchange scientific information, to identify problem areas in radon-daughter dosimetry, and to make any observations or recommendations by the participants through issuance of this report. The discussion topics included the history of dosimetry for radon and daughters, human data, aerosols, deposition and movement in the respiratory tract, dose calculations, dose-to-working-level-month (WLM) conversion factors, animal experiments, and the development of regulations and remedial criteria for reducing population exposures to radon daughters. This report contains a summary of Workshop discussions plus individual statements contributed by several of the participants. The outstanding problem areas from the standpoint of dosimetry appear to involve the appropriate lung organ mass to be used (average lung-tissue dose vs. high-level local dose); recognition of the discrete, rather than continuous, structure of the mucus; lack of knowledge about lung clearance; the variability of dose with the degree of disequilibrium and the unattached fraction of radon daughters for a given WLM; and questions about the character of uranium mine atmospheres actually breathed in the older mines from which much of the epidemiological information originates. The development of criteria for taking remedial action to reduce exposures involves additional concerns of basing long-term risk assessment on short-term sampling and applying WLM data for miners to general populations

  10. A technical evaluation of the EDA radon gas continuous monitoring system

    International Nuclear Information System (INIS)

    Bigu, J.

    1979-04-01

    Extensive laboratory and underground tests were conducted with a radon gas continuous monitoring system built by EDA Instruments Inc. The system consists of several remote radon gas sensors linked via signal cables to a central control unit that fully controls the operation of the radon monitors. The system enables four operations to be performed: sampling, background, flush and bypass. The sequence and duration of these functions is programmable. Up to 20 functions in any desired pattern each lasting from 1 min to 23 hr 59 min can be programmed. Several programs were used during the experiments in order to obtain radon and thoron gas levels. The performance of the EDA system was quite satisfactory. It is suggested that ruggedization as well as some other modifications be introdouced into the system to: a) better withstand the harsh underground environment; and b) improve its performance

  11. Environmental radon with RAD7 detector

    International Nuclear Information System (INIS)

    Lopez M, A.; Balcazar, M.; Fernandez G, I. M.; Capote F, E.

    2016-09-01

    Experimental results of the radon detection with the equipment RAD7 are presented. The use of a solid state detector placed in a semi-spherical chamber with an electric field allows a high sensitivity of 0.4 cpm/P Ci/l. Radon detection is achieved by the spectroscopy of its decay products. In accordance with a table of errors for various ranges of counts and radon concentrations, reported by the manufacturer, an equation was obtained that allows establishing operation criteria of the equipment. For radon detection at ambient concentrations as low as 30 Bq m -3 , is shown that short counts of 10 minutes are good enough to make decisions on radiation protection matter. In places where concentrations are close to 200 Bq m -3 , counting intervals of the order of 0.5 hours will have an acceptable counting error of the order of 20%. The determination of radon in soil was, according to the expected, on the order of 10 kBq m -3 , and was found that even with the recommended counting times of 5 minutes, there is a risk of increased humidity inside the detector above 20% Rh, with associated reduction of detection efficiency, if the desiccant is not used properly. The equipment was subjected to a radon exposure in air of 13, 373 Bq m -3 ± 3.7%, contained within a controlled chamber, with a variation in temperature of (19-21) degrees Celsius and in the relative humidity of (5-7) %, the good stability of the chamber allows to propose calibration processes of these equipment s by assessing the concentration by means of a Ge (Hp) detector. (Author)

  12. Rapid determination of radon daughter concentrations

    International Nuclear Information System (INIS)

    Bigu, J.

    1990-08-01

    A technical evaluation of four radon 222 progeny measuring instruments has been conducted. The evaluation has been carried out under laboratory controlled conditions and at several locations in an underground uranium mine. The laboratory evaluation consisted of a thorough study of the behaviour and performance of the instruments under a wide variety of environmental conditions such as radon 222 gas concentration, radon 222 progeny concentration, temperature, relative humidity, aerosol concentration, and gamma-field exposure. The four instruments tested were: the Pylon WL-1000C, the MDA IWLM-811, the MIMIL IIM, and the EDA WLM-30. The readings of the instruments were compared with a widely accepted radon 222 progeny concentration measuring method, namely, the Thomas-Tsivoglou method. Two variables affected two instruments significantly, namely, under high aerosol concentration conditions, one of the instruments (EDA WLM-30) ceased to operate because of filter loading. The other variable was gamma-field exposure which affected another instrument (MDA-811) adversely. The instruments were rated according to several criteria. The overall best performer was the MIMIL IIM, although other instruments also fared quite well under a variety of experimental conditions

  13. The Pennsylvania radon story

    International Nuclear Information System (INIS)

    Gerusky, T.M.

    1987-01-01

    In December 1984, the Pennsylvania Bureau of Radiation Protection found itself confronted with the discovery of a home in eastern Pennsylvania having the highest level of radon daughters ever reported. The Bureau responded with a massive radon monitoring, educational, and remediation effort. As of November, 1986, over 18,000 homes had been screen for radon daughters, of which approximately 59% were found to have levels in excess of the 0.020 Working Level guideline. Pennsylvania's response to the indoor radon problem is detailed in this article

  14. Radon problems

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1985-01-01

    This chapter examines the health hazards resulting from the release of naturally occurring radioactive gas derived from the decay of uranium. It is estimated that random inhalation is now causing about 10,000 fatal lung cancers per year in the US. Radon is constantly being generated in rocks and soils (in which uranium is naturally present) and in materials produced from them (e.g., brick, stone, cement, plaster). It is emphasized that radon levels in buildings are typically 5 times higher than outdoors because radon diffusing up from the ground below or out of bricks, stone, cement, or plaster is trapped inside for a relatively long time

  15. Unattached radon daughter atoms and radon daughter equilibrium ratios in uranium mines. Final report

    International Nuclear Information System (INIS)

    Holaday, D.A.

    1972-01-01

    Uranium mines in Colorado and New Mexico were surveyed for airborne concentrations of radon (10043922) and radon daughters. A procedure for measuring individual daughters and the fraction of each existing as free atoms was developed and used for field monitoring. Samples were taken in working areas and particle counts were made. The data was analyzed to determine the ratio of radon to radon daughters as well as the ratios among the radon daughters. The author concludes that since the radon to working level ratios have not changed much in 20 years, using the ratio as the basis for estimating relative biological hazard is just as uncertain now as then. The large number of daughters present as free atoms indicate that the lung radiation doses calculated using any of the lung models need reexamination

  16. Radon - The management of the risk related to radon

    International Nuclear Information System (INIS)

    2010-01-01

    This leaflet briefly explains what radon is, where it comes from, and what it becomes. It indicates and briefly comments its concentrations in French departments, describes how radon can affect our health (lung cancer), describes how the risk can be reduced in buildings, and indicates the existing regulatory provisions

  17. Models of radon entry: A review

    International Nuclear Information System (INIS)

    Gadgil, A.J.

    1991-08-01

    This paper reviews existing models of radon entry into houses. The primary mechanism of radon entry in houses with high indoor concentrations is, in most cases, convective entry of radon bearing soil-gas from the surrounding soil. The driving force for this convective entry is the small indoor-outdoor pressure difference arising from the stack effect and other causes. Entry points for the soil-gas generally are the cracks or gaps in the building substructure, or though other parts of the building shell in direct contact with the soil, although entry may also occur by flow though permeable concrete or cinder block walls of the substructure. Models using analytical solutions to idealized geometrical configurations with simplified boundary conditions obtain analytical tractability of equations to be solved at the cost of severe approximations; their strength is in the insights they offer with their solutions. Models based on lumped parameters attempt to characterize the significant physical behavioral characteristics of the soil-gas and radon flow. When realistic approximations are desired for the boundary conditions and terms in the governing equations, numerical models must be used; these are usually based on finite difference or finite element solutions to the governing equations. Limited data are now available for experimental verification of model predictions. The models are briefly reviewed and their strengths and limitations are discussed

  18. Radon programmes and health marketing

    International Nuclear Information System (INIS)

    Fojtikova, I.; Rovenska, K.

    2011-01-01

    Being aware of negative health effects of radon exposure, many countries aim for the reduction of the radon exposure of their population. The Czech radon programme was commenced >20 y ago. Since then experts have gathered a lot of knowledge, necessary legislation has been enacted, tens of thousands of inhabitants have been offered free measurement and subsidy for the mitigation. Despite the effort, the effectiveness of the radon programme seems to be poor. Newly built houses still exhibit elevated radon concentrations and the number of houses mitigated is very low. Is it possible to enhance the effectivity of radon programme while keeping it on a voluntary basis? One possible way is to employ health marketing that draws together traditional marketing theories and science-based strategies to prevention. The potential of using marketing principles in communication and delivery of radon information will be discussed. (authors)

  19. A numerical study on the performance evaluation of ventilation systems for indoor radon reduction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Eun; Park, Hoon Chae; Choi, Hang Seok; Cho, Seung Yeon; Jeong, Tae Young; Roh, Sung Cheoul [Yonsei University, Wonju (Korea, Republic of)

    2016-03-15

    Numerical simulations were conducted using computational fluid dynamics to evaluate the effect of ventilation conditions on radon ({sup 222}Rn) reduction performance in a residential building. The results indicate that at the same ventilation rate, a mechanical ventilation system is more effective in reducing indoor radon than a natural ventilation system. For the same ventilation type, the indoor radon concentration decreases as the ventilation rate increases. When the air change per hour (ACH) was 1, the indoor radon concentration was maintained at less than 100 Bq/m{sup 3}. However, when the ACH was lowered to 0.01, the average indoor radon concentration in several rooms exceeded 148 Bq/ m{sup 3}. The angle of the inflow air was found to affect the indoor air stream and consequently the distribution of the radon concentration. Even when the ACH was 1, the radon concentrations of some areas were higher than 100 Bq/m{sup 3} for inflow air angles of 5 .deg. and 175 .deg.

  20. Radon in buildings

    International Nuclear Information System (INIS)

    Ryan, N.M.; Finn, M.

    1995-01-01

    This guide is intended to inform designers, contractors, householders and other building owners about radon in buildings and to provide guidance where it has been decided to take action to reduce radon levels. It gives some pointers to good practice insofar as it relates to non complex buildings of normal design and construction. Reference is made to the usual ways of reducing l;levels of radon and guidance is given on sources of further information. I

  1. Radon in dwellings the national radon survey Galway and Mayo

    International Nuclear Information System (INIS)

    McGarry, A.T.; Fennell, S.G.; Mackin, G.M.; Madden, J.S.; O'Colmain, M.

    1999-07-01

    This report presents the results of the final phase of the National Radon Survey carried out by the Radiological Protection Institute of Ireland. The counties included in this phase are Galway and Mayo. The average radon concentrations for the houses measured in these counties were 112 Bq/m 3 and 100 Bq/m 3 , respectively. The measurement data were grouped on the basis of the 10 km grid squares of the Irish National Grid System and used to predict the percentage of dwellings in each grid square which exceeds the Reference Level of 200 Bq/m 3 . Grid squares where this percentage is predicted to be 10% or higher are designated High Radon Areas. The health effects of exposure to high radon levels are discussed and recommendations are made regarding both new and existing dwellings. (author)

  2. A discussion of radon and the mitigation strategy at the Henderson Mine

    International Nuclear Information System (INIS)

    Loring, D.M.; Meisburger, E.P. IV

    2010-01-01

    The geology at the Henderson molybdenum mine near Denver, Colorado makes radon a ventilation challenge. Unforeseen events can occur due to the dynamic nature of caving mining. As such, the Climax Molybdenum Company has adopted proper ventilation, monitoring and control strategies at the mine to mitigate concerns regarding radon. Due to the granitic ore and presence of trace uranium mineralization, radon daughters are generated and make their way through the caved orebody to drawpoints on the production level. This paper described historical geological events which involved reaction by the ventilation group to mitigate higher-than-normal radon concentrations, with particular reference to the causes, responses and planning to avoid similar issues in the future. The radon control strategy involves 3 items, notably negative pressure on the cave through regulators or fans connecting the broken ore of the cave to an isolated main exhaust drift; isolation of the cave through bulkheading of all intake air sources to the caved ore; and positive pressurization of the undercut level through forcing fans in the drill drifts so that pressure can be maintained in the cave, thus preventing radon daughters from leaking into the work area. 7 refs., 1 tab., 9 figs.

  3. Measurement of radon concentration in water using the portable radon survey meter.

    Science.gov (United States)

    Yokoyama, S; Mori, N; Shimo, M; Fukushi, M; Ohnuma, S

    2011-07-01

    A measurement method for measuring radon in water using the portable radon survey meter (RnSM) was developed. The container with propeller was used to stir the water samples and release radon from the water into the air in a sample box of the RnSM. In this method, the measurement of error would be water was >20 Bq l(-1).

  4. Influence of indoor air conditions on radon concentration in a detached house

    International Nuclear Information System (INIS)

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-01-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50–60%. - Highlights: ► We use CFD to simulate indoor radon concentration and distribution. ► The effects of ventilation rate, temperature and moisture are investigated. ► Model validation is performed through analytical solution and measurement results. ► Results show that ventilation rate is inversely proportional to radon level. ► There is a range of temperature and relative humidity that minimize radon level.

  5. Pre- and post construction radon measurements in a new housing development

    International Nuclear Information System (INIS)

    Rydock, J.P.; Naess-Rolstad, A.; Brunsell, J.T.

    2001-01-01

    Results from pre- and post construction radon measurements in a new housing development are presented. The houses were built in an area that had not been previously associated with elevated indoor radon concentrations. Exhalation measurements of gravel and stone from the site and soil gas measurements under several houses did not indicate an elevated radon potential. However, 4 of 21 finished houses (or 19%) exhibited annual average indoor radon concentrations over 200 Bq.m -3 (5.4 pCi/l). The highest concentrations were observed in the first house built in 1 of the 6 houses built differently than the original designs, with the elements of a sub floor ventilation system included for possible radon control if necessary. These results suggest that site investigations can be of limited value in determining where not to include radon protection measures in new housing. Also, that care must be taken to adequately inform everyone involved in the building process of the importance of maintaining a tight seal against the ground to prevent possible radon gas entry into a house. (author)

  6. Relationship between indoor radon and lung cancer: a study of feasibility of an epidemiological study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, S.; Neuberg, D.; DuMouchel, W.; Kleitman, D.; Chernoff, H.

    1981-01-01

    This report describes a study to assess the feasibility of an epidemiologic investigation of the relationship between residential radon exposure and lung cancer. Field measurements of residential radon levels in the State of Maine are described. Using these radon measurements and BEIR, 1980 risk assessments, it is estimated that at most 10% of lung cancers in Maine can be considered attributable to residential radon exposure. Calculations are made of sample sizes necessary for a case-control study of radon and lung cancer, for several levels of radon and smoking health effects. The effects of misclassification of exposure variables on the probability of detecting a radon health effect are discussed. A comparison is made of three different mathematical models which could be used for sample size estimation. Dollar cost estimates are given for conducting an epidemiologic case-control study of the relationship between residential radon exposure and lung cancer.

  7. Relationship between indoor radon and lung cancer: a study of feasibility of an epidemiological study. Final report

    International Nuclear Information System (INIS)

    Rasmussen, S.; Neuberg, D.; DuMouchel, W.; Kleitman, D.; Chernoff, H.

    1981-01-01

    This report describes a study to assess the feasibility of an epidemiologic investigation of the relationship between residential radon exposure and lung cancer. Field measurements of residential radon levels in the State of Maine are described. Using these radon measurements and BEIR, 1980 risk assessments, it is estimated that at most 10% of lung cancers in Maine can be considered attributable to residential radon exposure. Calculations are made of sample sizes necessary for a case-control study of radon and lung cancer, for several levels of radon and smoking health effects. The effects of misclassification of exposure variables on the probability of detecting a radon health effect are discussed. A comparison is made of three different mathematical models which could be used for sample size estimation. Dollar cost estimates are given for conducting an epidemiologic case-control study of the relationship between residential radon exposure and lung cancer

  8. Sex and smoking sensitive model of radon induced lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhukovsky, M.; Yarmoshenko, I. [Institute of Industrial Ecology of Ural Branch of Russian Academy of Sciences, Yekaterinburg (Russian Federation)

    2006-07-01

    Radon and radon progeny inhalation exposure are recognized to cause lung cancer. Only strong evidence of radon exposure health effects was results of epidemiological studies among underground miners. Any single epidemiological study among population failed to find reliable lung cancer risk due to indoor radon exposure. Indoor radon induced lung cancer risk models were developed exclusively basing on extrapolation of miners data. Meta analyses of indoor radon and lung cancer case control studies allowed only little improvements in approaches to radon induced lung cancer risk projections. Valuable data on characteristics of indoor radon health effects could be obtained after systematic analysis of pooled data from single residential radon studies. Two such analyses are recently published. Available new and previous data of epidemiological studies of workers and general population exposed to radon and other sources of ionizing radiation allow filling gaps in knowledge of lung cancer association with indoor radon exposure. The model of lung cancer induced by indoor radon exposure is suggested. The key point of this model is the assumption that excess relative risk depends on both sex and smoking habits of individual. This assumption based on data on occupational exposure by radon and plutonium and also on the data on external radiation exposure in Hiroshima and Nagasaki and the data on external exposure in Mayak nuclear facility. For non-corrected data of pooled European and North American studies the increased sensitivity of females to radon exposure is observed. The mean value of ks for non-corrected data obtained from independent source is in very good agreement with the L.S.S. study and Mayak plutonium workers data. Analysis of corrected data of pooled studies showed little influence of sex on E.R.R. value. The most probable cause of such effect is the change of men/women and smokers/nonsmokers ratios in corrected data sets in North American study. More correct

  9. Sex and smoking sensitive model of radon induced lung cancer

    International Nuclear Information System (INIS)

    Zhukovsky, M.; Yarmoshenko, I.

    2006-01-01

    Radon and radon progeny inhalation exposure are recognized to cause lung cancer. Only strong evidence of radon exposure health effects was results of epidemiological studies among underground miners. Any single epidemiological study among population failed to find reliable lung cancer risk due to indoor radon exposure. Indoor radon induced lung cancer risk models were developed exclusively basing on extrapolation of miners data. Meta analyses of indoor radon and lung cancer case control studies allowed only little improvements in approaches to radon induced lung cancer risk projections. Valuable data on characteristics of indoor radon health effects could be obtained after systematic analysis of pooled data from single residential radon studies. Two such analyses are recently published. Available new and previous data of epidemiological studies of workers and general population exposed to radon and other sources of ionizing radiation allow filling gaps in knowledge of lung cancer association with indoor radon exposure. The model of lung cancer induced by indoor radon exposure is suggested. The key point of this model is the assumption that excess relative risk depends on both sex and smoking habits of individual. This assumption based on data on occupational exposure by radon and plutonium and also on the data on external radiation exposure in Hiroshima and Nagasaki and the data on external exposure in Mayak nuclear facility. For non-corrected data of pooled European and North American studies the increased sensitivity of females to radon exposure is observed. The mean value of ks for non-corrected data obtained from independent source is in very good agreement with the L.S.S. study and Mayak plutonium workers data. Analysis of corrected data of pooled studies showed little influence of sex on E.R.R. value. The most probable cause of such effect is the change of men/women and smokers/nonsmokers ratios in corrected data sets in North American study. More correct

  10. Multivariate signal processing in measurements of radon and radon daughters in air

    International Nuclear Information System (INIS)

    Urbanski, P.; Machaj, B.

    2000-01-01

    Extensive measurements of radon and radon daughters concentration gauge in a radon chamber were carried out. Count rate 'spectra' against time at the output of radiation detectors were measured and registered. The count rate spectra were then processed employing Principal Component Regression (PCR). A root mean square error of the count rate was estimated. It was found that PCR processing removes a great part of count rate random fluctuations originating from the radiation statistics that results in a decrease of count rate random error. The root mean square error of count rate in a radon daughter monitor is about 3 times lower, which is equivalent to the error of the gauge with a 9 times higher air flow rate if no PCR processing is used. In case of the radon concentration gauge the increase of sensitivity is even higher and amounts to 5 times. (author)

  11. Radon balneotherapy and physical activity for osteoporosis prevention: a randomized, placebo-controlled intervention study.

    Science.gov (United States)

    Winklmayr, Martina; Kluge, Christian; Winklmayr, Wolfgang; Küchenhoff, Helmut; Steiner, Martina; Ritter, Markus; Hartl, Arnulf

    2015-03-01

    Low-dose radon hyperthermia balneo treatment (LDRnHBT) is applied as a traditional measure in the non-pharmacological treatment of rheumatic diseases in Europe. During the last decades, the main approach of LDRnHBT was focused on the treatment of musculoskeletal disorders, but scientific evidence for the biological background of LDRnHBT is weak. Recently, evidence emerged that LDRnHBT influences bone metabolism. We investigated, whether combined LDRnHBT and exercise treatment has an impact on bone metabolism and quality of life in a study population in an age group at risk for developing osteoporosis. This randomized, double-blind, placebo-controlled trial comprised guided hiking tours and hyperthermia treatment in either radon thermal water (LDRnHBT) or radon-free thermal water (PlaceboHBT). Markers of bone metabolism, quality of life and somatic complaints were evaluated. Statistics was performed by linear regression and a linear mixed model analysis. Significant changes over time were observed for most analytes investigated as well as an improvement in self-assessed health in both groups. No significant impact from the LDRnHBT could be observed. After 6 months, the LDRnHBT group showed a slightly stronger reduction of the osteoclast stimulating protein receptor activator of nuclear kB-ligand compared to the PlaceboHBT group, indicating a possible trend. A combined hyperthermia balneo and exercise treatment has significant immediate and long-term effects on regulators of bone metabolism as well as somatic complaints. LDRnHBT and placeboHBT yielded statistically equal outcomes.

  12. Mortality and indoor radon daughter concentrations in 13 Canadian cities

    International Nuclear Information System (INIS)

    Letourneau, E.G.; Wigle, D.T.

    1980-01-01

    A study was carried out to determine if lung cancer and general mortality rates in 13 Canadian cities were significantly correlated with average indoor radon daughter concentrations. The radon daughter measurements were obtained from a study of 10,000 homes chosen in a statistically valid grab sample basis. Cancer deaths by year of death, sex, age, and cause were retrieved for each of the cities for the period 1957-1976. Age specific and age standardized mortality rates were calculated. The results showed no evidence of any substantial association between general or lung cancer mortality rates and indoor radon daughter concentrations. The limitations of this study and the feasibility of a common international program of epidemiology of radon daughter exposure are discussed. A proposal is made for the use of case control studies of lung cancer to assess the relative importance of smoking, occupational and domestic exposure to radon daughters

  13. Development of an on-line radon monitoring apparatus and design of the on-line radon monitoring platform based on CAN bus

    International Nuclear Information System (INIS)

    Guo Huiping; Lu Ning; Shang Aiguo; Zhou Chunlin; Chen Yingfen; Yu Hongwei

    2004-12-01

    For actual demand, an idea of 'on-line monitoring' is put forward as a way of radon monitoring, instead of traditional so called 'off-line monitoring'. In this way, the apparatus has some automatic functions such as continuous monitoring, real-time alarm; thereby, there is no need for operators' intervention in each monitoring process. With technique of hardware and software design in automation's field, the authors have successfully developed the prototype and finished the scale of it in a standard radon-chamber. This apparatus is composed of detector part and secondary-instrument. The detector part is made up of a passive diffusion collecting chamber, high voltage static electricity, semiconductor detector, charge-sensitive preamplifier and forming circuit. The secondary-instrument is actually a micro-controller system, which consists of a single-chip micro-controller cored measure-controlling unit, display unit, printing unit and alarming unit. Taking this apparatus as a cell, a 'on-line Radon Monitoring Platform' based on CAN bus has been put forward, which can realize multi-points environmental radioactivity real-time monitoring radioactivity and data process. (authors)

  14. Geologic factors and house construction practices affecting indoor radon in Onondaga County, New York

    International Nuclear Information System (INIS)

    Laymon, C.; Kunz, C.

    1990-01-01

    Indoor radon in Onondaga County, New York is largely controlled by bedrock and surficial geology. At more local scales, these alone are insufficient to characterize indoor radon potential. This paper reports on a detailed study of the concentration of indoor radon, soil radium, soil-gas radon, soil and bedrock type, permeability, and home construction practices indicates that above-average indoor radon concentrations are associated with gravelly moraine and glaciofluvial deposits, the radium-bearing Marcellus Shale, and high permeability zones around the substructure of houses built into limestone bedrock

  15. Radon measurements in indoor workplaces

    International Nuclear Information System (INIS)

    Tokonami, S.; Matsumoto, M.; Furukawa, M.; Fujimoto, K.; Fujitaka, K.; Pan, J.; Kurosawa, R.

    1996-01-01

    Radon measurements in several office buildings located in Tokyo were carried out with two types of device to study the time-dependent radon concentration in indoor workplaces. Both types of device use the electrostatic field for the collection of 218 Po onto the electrode of the detector. One provides an average radon concentration throughout the day. The other, in which a weekly timer is installed in the circuit of the electrode of the device, provides an average radon concentration during working hours (9:00-17:00, Monday-Friday). Although radon concentrations in Japanese dwellings have been found to be generally low, relatively high concentrations were observed in the office buildings. No consistent seasonal variation was recognised in this study. Little difference of average radon concentrations between working hours and the whole day was found throughout the year in two offices. On the other hand, a significant difference was observed in other offices. The operation of an air conditioner might change the radon concentration during working hours. From the results of radon measurements the average effective dose in the workplace was estimated to be 0.23 mSv for 2000 working hours in a year. (Author)

  16. New devices for radon measurements

    International Nuclear Information System (INIS)

    Sevostyanov, V.N.

    2004-01-01

    adding up to 30 minutes. The second new elaboration is 'Ramon-02-Automat' used to automatically monitor radon and thoron daughter decay products. The appliance enables the installation of diffusion battery to automatically measure unattached component as well as beta and gamma detectors in the mode of automatic activity measurement of beta and gamma active aerosols. The appliance can be used as a working man-pack means of measurement and also as fully automatic appliance capable of working without a re-charge for 30 days making measurements in a given time interval (above 800 measurements.) The appliance employs the method of alpha spectrometric measurements of air samples and the ribbon filter type NEL-4 for over 3,000 measurements as a filtering material. The ribbon filter is replaceable. All units in the appliance are controlled by a microprocessor. (author)

  17. Radon studies in Indian dwellings

    International Nuclear Information System (INIS)

    Khan, A.J.

    2000-01-01

    The indoor radon ( 222 Rn) concentration has been measured by Solid State Nuclear Track Detectors (SSNTDs) in large number of Indian dwellings. Radon concentrations were measured in different parts of the country. In the first study, radon concentrations were measured in 143 dwellings of Udaipur, Bikaner and Banswara towns of Rajasthan province. The distributions of the time-averaged indoor radon concentration in these three towns of the Rajasthan fit an approximately log normal distribution. The geometric mean (GM) values of radon concentrations in these three places were found to be 74 Bq m -3 , 46 Bq m -3 and 66 Bq m -3 with a geometric standard deviation (GSD) of 2.2, 2.2 and 2.5 respectively. In another study, radon concentrations were measured in about 150 dwellings of hilly regions of the country. The measurements were carried out in Kohima (Nagaland), Baijnath and Palampur (Himachal Pradesh). The distribution of radon concentration in Kohima dwellings was found to be approximately log normal, however, the radon distribution in Baijnath and Palampur dwellings seems to be bimodal. The GM values of the radon concentrations for 65 dwellings in Kohima and 43 dwellings in Baijnath and Palampur were 88 Bq m -3 and 134 Bq m -3 with GSD of 1.7 and 2.5 respectively. The results are discussed in detail. (author)

  18. Radon Sources and Associated Risk in terms of Exposure and Dose

    Directory of Open Access Journals (Sweden)

    Efstratios Gregory Vogiannis

    2015-01-01

    Full Text Available Radon concern the international scientific community from early 20th century. Initially as radium emanation, almost the second half of the century as severe harmful to human health. Initial brilliant period of use as medicine, followed by a period of intense concern for its health effects. Primary target groups surveyed were miners early in Europe later in U.S. There is now compelling evidence that radon and its progeny can cause lung cancer. Human activities may create or modify pathways increasing indoor radon concentration compared to outdoor background. These pathways can be controlled by preventive and corrective actions. Indoor Radon and its short-lived progeny attached on aerosol particles or free compose an air mixture that carry a significant energy amount (PAEC. Exposure on PAEC and dose delivered reviewed in detail. Special attention was paid to the case of water workers because lack of adequate data. Radon risk assessment and current legislation regulates dose from radon and its progeny, also were reviewed.

  19. Radon prevention coating in hot and humid environment

    International Nuclear Information System (INIS)

    Yang Yushan; Dong Faqin; Deng Yuequan; Qu Ruixue

    2013-01-01

    The radon prevention performance of a new self-made radon prevention coating was researched in the radon contamination provided by the releasing radon modules. With coating thickness of 0.8 mm, the radon mitigation efficiency in 1 # radon module concentration is optimal when the addition of defoaming agent is 0.3% (mass fraction). The radon mitigation efficiency increases with the coating thickness when the defoaming agent of 0.3% is added, but the radon mitigation efficiency tends to be stable as the coating thickness is more than 2.0 mm. The radon mitigation efficiency of radon prevention coating appended precipitated barium sulphate decreases obviously, and the addition of ash calcium, white cement and gesso don't decrease radon mitigation efficiency. The addition of white cement and gesso addition affects the radon prevention stability, while radon mitigation efficiency of radon prevention coating with ash calcium keeps a good performance. Under the hot and humid environment, the radon prevention coating still has good radon mitigation efficiency in 2 # radon module concentration. (authors)

  20. Radon in homes: The Alaskan experience

    International Nuclear Information System (INIS)

    Seifert, R.D.

    1990-01-01

    For the past four years, since radon was first found to be a concern in Alaska in 1986, the interest and awareness of radon as a special housing and health concern has continued to grow. This paper will discuss the features of a house in Alaska which would characterize it as at risk for radon, and also those efforts at mitigation which have been most effective in reducing radon under Alaskan conditions. Clearly radon must be able to enter a home in order to be a problem. Riefenstuhl and Kline (personal communication, 1988) have analyzed the conditions for radon transport from soils to home interiors very lucidly through the following scheme: four factors must exist in a house locale for it to be a radon at risk house. Two of the factors are geological in nature: (1) there must be adequate uranium and therefore ample radon to provide a source for transport; (2) there must be enough permeability in the soil to allow rapid soil gas movement to carry radon from its origin to the interior of the home within two half-lives of time (six days) or so. The other two factors are determined by the structure of the house itself and the way in which it is operated: (3) the house must have soil contact and imperfections, holes, cracks, intentional perforations which allow movement of soil gas with radon through the envelope of the basement or crawlspace; (4) there must be a lower pressure inside the house than in the soil so that soil gas flows into the house. All four of these characteristics are required to have radon be a problem. The absence of any single characteristic will eliminate radon (in general). This presents a series of options for mitigation of radon then, since elimination of any of the four characteristics will mitigate radon

  1. The distribution of indoor radon in Transylvania (Romania) - influence of the natural and anthropogenic factors

    Science.gov (United States)

    Cucos Dinu, Alexandra; Baciu, Calin; Dicu, Tiberius; Papp, Botond; Moldovan, Mircea; Bety Burghele, Denissa; Tenter, Ancuta; Szacsvai, Kinga

    2017-04-01

    Exposure to radon in homes and workplaces is now recognized as the most important natural factor in causing lung cancer. Radon activity is usually higher in buildings than in the outside atmosphere, as it may be released from building materials and soil beneath the constructions, and the concentration builds-up indoor, due to the low air renewal rates. Indoor radon levels can vary from one to multiple orders of magnitude over time and space, as it depends on several natural and anthropogenic factors, such us the radon concentration in soil under the construction, the weather conditions, the degree of containment in the areas where individuals are exposed, building materials, outside air, tap water and even city gas, the architecture, equipment (chimney, mechanical ventilation systems, etc.), the environmental parameters of the building (temperature, pressure, etc.), and on the occupants' lifestyle. The study presents the distribution of indoor radon in Transylvania, Romania, together with the measurements of radon in soil and soil water. Indoor radon measurements were performed by using CR-39 track detectors exposed for 3 months on ground-floor level of dwellings, according to the NRPB Measurement Protocol. Radon concentrations in soil and water were measured using the LUK3C device. A complete map was plotted at the date, based on 3300 indoor radon measurements, covering an area of about 42% of the Romanian territory. The indoor radon concentrations ranged from 5 to 3287 Bq m-3, with an updated preliminary arithmetic mean of 179 Bq m-3, and a geometric mean of 122 Bq m-3. In about 11% of the investigated grid cells the indoor radon concentrations exceed the threshold of 300 Bq m-3. The soil gas radon concentration varies from 0.8 to 169 kBq m-3, with a geometric mean of 26 kBq m-3. For water samples, the results show radon concentrations within the range of 0.3 - 352.2 kBq m-3, with a geometric mean of 7.7 Bq L-1. A weak correlation between the three sets of values

  2. A calibration facility for radon fluxmeter

    International Nuclear Information System (INIS)

    Li Xianjie; Qiu Shoukang; Zhou Jianliang; Liu Chunkui; Pan Jialin; Yang Mingli

    1998-01-01

    Calibration facilities for radon fluxmeter with three kinds of different emanation medium have been developed. The stability of radon flux is 5%, 9% (RSD) respectively. The uniformity of radon flux is 4.5%, 8.5% (RSD) respectively. These specifications fulfill the calibration requirement for radon fluxmeter. The determination of radon flux of facility takes full account of eliminating the main error source-attenuation effect (including leakage and back diffusion etc.): not only prevent attenuation and make a relevant correction. Therefore the accuracy of determination is assured. The calibration, intercomparison of radon flux meter and the quantitatively evaluation on the measurement method of radon flux are made to be possible by the successful establishment of this facility. (author)

  3. Automatically processed alpha-track radon monitor

    International Nuclear Information System (INIS)

    Langner, G.H. Jr.

    1993-01-01

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided

  4. The householders' guide to radon

    International Nuclear Information System (INIS)

    1988-06-01

    This guide is a follow-up to the leaflet Radon in Houses which was issued previously by the Department of the Environment. It is intended for people who live in areas with high levels of radon. It is written particularly for householders whose homes have already been tested and found to have an appreciable level of radon. It explains what radon is, how it gets into houses and what the effects on health may be. It also outlines some of the ways of reducing the level of radon and gives guidance both on how to get the work done and likely costs. (author)

  5. Radon surveys and their implications

    International Nuclear Information System (INIS)

    Miles, J.C.H.; Cliff, K.D.; Dixon, D.W.; Green, B.M.R.; Strong, J.C.

    1989-01-01

    In the UK, as in other countries, radon daughter inhalation is the most significant cause of human exposure to ionising radiation either at home or at work whether one considers the mean or the maximum dose. Substantial studies of radon are under way in the UK, and the importance of radon is recognised in several spheres. NRPB investigations of the radon levels in buildings and mines are reported, the distributions of doses presented and risk factors calculated. The bases of radon limitation for workers and members of the public are given and the means of compliance discussed. (author)

  6. Assessment of current techniques for reduction of indoor radon concentration in existing and new houses in European countries

    International Nuclear Information System (INIS)

    Holmgren, O.; Arvela, H.

    2012-03-01

    ventilation in living spaces, in the cellar or in the crawl space, are less effective: the reduction in the radon concentration is typically 10 - 60%. The efficiencies of prevention techniques are analogous to those of remediation techniques. Active SSD is the most efficient prevention technique. The efficiency of passive SSD and passive radon piping is lower, typically 20 - 50%. However, widespread use of such systems can be recommended. Radon-proof membrane in the base floor reduces the radon concentration on average by 50%. The impact of remedial techniques and preventive techniques on energy consumption is significant for active SSD, mainly due to the power consumption of the electrical fan used and potentially also to a lesser degree due to cooling of the base floor. The impact on energy consumption of passive SSD and passive radon piping is negligible. Sealing entry routes in both remediation and prevention in new construction has a positive impact through reduction of the leakage of cold air from the ground in low energy and passive houses. Replacing existing natural or mechanical exhaust ventilation with a new mechanical supply and exhaust ventilation system with heat recovery typically reduces energy consumption. On the other hand, other methods increasing ventilation in living spaces reduce the radon concentration, but simultaneously increase energy consumption due to increased air exchange. Sealing the constructions of house foundations in contact with soil and the control of air flows in standard, low energy and passive construction have synergistic goals. Reduction of soil-air flows into the house reduces indoor radon concentrations and simultaneously also the energy consumption. (orig.)

  7. Radon and radon-daughter concentrations in air in the vicinity of the Anaconda Uranium Mill

    International Nuclear Information System (INIS)

    Momeni, M.H.; Lindstrom, J.B.; Dungey, C.E.; Kisieleski, W.E.

    1979-11-01

    Radon concentration, working level, and meteorological variables were measured continuously from June 1977 through June 1978 at three stations in the vicinity of the Anaconda Uranium Mill with measurements integrated to hourly intervals. Both radon and daughters show strong variations associated with low wind velocities and stable atmospheric conditions, and diurnal variations associated with thermal inversions. Average radon concentration shows seasonal dependence with highest concentrations observed during fall and winter. Comparison of radon concentrations and working levels between three stations shows strong dependence on wind direction and velocity. Radon concentrations and working-level distributions for each month and each station were analyzed. The average maximum, minimum, and modal concentration and working levels were estimated with observed frequencies. The highest concentration is 11,000 pCi/m 3 on the tailings. Working-level variations parallel radon variations but lag by less than one hour. The highest working levels were observed at night when conditions of higher secular radioactive equilibrium for radon daughters exist. Background radon concentration was measured at two stations, each located about 25 km from the mill, and the average is 408 pCi/m 3 . Average working-level background is 3.6 x 10 -3

  8. Proceedings of the Radon national action plan workshop

    International Nuclear Information System (INIS)

    Chevet, Pierre-Franck; Godet, Jean-Luc; Tirmarche, Margot; Strand, Per; Mrdakovic Popic, Jelena; Dysvik, Solveig; Skjold, Anne Marit; Vallet, Benoit; Van Deventer, Emilie; Colgan, Tony; ); Mundigl, Stefan; ); Magnusson, S.; Long, Bill; McBurney, Ruth; Thompson, P.A; Pollard, David; Fenton, David; Long, Stephanie; Dehandschutter, Boris; Murith, Christophe; Skeppstroem, Kirlna; Petrova, Karla; Davidkova, Jana; Pravdova, Eva; Kiselev, Sergey; Mc Coll, Neil; Vallet, Jeremie; Rannou, Alain; Kurttio, Paivi; Martinsen, Finn; Roulet, Claude-Alain; Goyette, Joelle; Frutos, Borja; Olaya, Manuel; Linares Alemparte, Pilar; Marinko, Janez; Garcia-Talavera, Marta; Pedrazzi, Lisa; Mc Laughlin, James; Gutierrez-Villanueva, Jose-Luis; Janssens, Augustin

    2015-01-01

    Following the publication of the new European Basic Safety Standards Directive (the Council Directive 2013/59/EURATOM ), published in January 2014, Member States of the European Union have 4 years to incorporate it and to prepare or update their strategy for reducing radon concentration and the associated national radon action plan. Under a joint initiative from ASN and NRPA, 20 European countries, represented by authorities in charge of Radiation Protection, Health, Labour and Housing and Landscaping were brought together during a workshop on national radon action plans. The objective of the workshop, held in ASN's premises, was to share the views and experiences concerning national strategies for reducing radon exposure of the population and associated lung cancer risk. The radon workshop was supported by the World Health Organisation (WHO), the International Atomic Energy Agency (IAEA), the Heads of European Radiation protection Control Authorities (HERCA) and the European Commission (EC). Authorities from USA (EPA, CRCPD), Canada (CNSC) and Russia (FMBA) and the European Radon Association (ERA) also participated in the workshop. This radon workshop has offered the opportunity to compare the actions in place or in preparation in different countries aiming at reducing radon exposure in home and dwellings, in buildings with public access (i.e. schools) and in workplaces. Preventive and corrective solutions, associated with incentives and communication to increase the public awareness, as well as education and training actions for different actors concerned, have been presented and discussed. The question about the relative place of regulation in the national strategy has been considered as an important key point. This document brings together the presentations (slides) given at the workshop. The main conclusions of the workshop are presented at the end of the document

  9. Consumer's Guide to Radon Reduction

    Science.gov (United States)

    ... Labs and Research Centers Radon Contact Us Share Consumer's Guide to Radon Reduction: How to Fix Your ... See EPA’s About PDF page to learn more. Consumer's Guide to Radon Reduction: How to Fix Your ...

  10. Standardization of radon measurements

    International Nuclear Information System (INIS)

    Matuszek, J.M.; Hutchinson, J.A.; Lance, B.H.; Virgil, M.G.; Mahoney, R.J.

    1988-01-01

    Radon escaping from soil into homes appears to present the single greatest source of radiation exposure that most people will ever face. Measurement protocols for the relatively inert gas inextricably link the method of collection with the counting of the specimen. The most commonly used methods depend on the measurement of dislocation sites on plastic α-track detectors or on the adsorption of radon onto activated charcoal for subsequent counting of the γ-rays produced by decay of the radon progeny. The uncertainties inherent to the radon-measurement methods used commercially in the United States are far greater than those for measurements of other environmental radionuclides. The results of this preliminary study raise doubts as to whether existing proficiency-testing programs can provide assurance that radon-measurement methods are representative of actual conditions in any dwelling. 17 refs., 1 figs., 4 tabs

  11. Selection of a radon level corresponding to 0.02 WL

    International Nuclear Information System (INIS)

    Haywood, L.R.

    1980-01-01

    The Atomic Energy Control Board requires that the concentration of radon daughters in occupied structures in communities associated with nuclear facilities be less than 0.02 working level. The AECB has been interested in using measurements of radon concentration rather than of working level for compliance at 0.02 WL. It has been found, however, that there is no radon concentration which corresponds to 0.02 WL over a typical range of field conditions. This is principally due to the range of physical characteristics of structures, heating methods, living habits and of outdoor temperatures that may be encountered. A radon level of 2.4 pCi/l would indicate 95 percent of the instances at the three towns studied when working level exceeded 0.02

  12. Hazardous waste disposal in relationship to radon gas emanation in atmosphere

    International Nuclear Information System (INIS)

    Fang, H.Y.

    1990-01-01

    Radioactive/toxic radon gas (Rn) produced naturally in the ground by the normal decay of uranium (U) and radium (Ra) is widely distributed in trace amounts in the earth's crust. It is a colorless, odorless and tasteless element and is one of the six generally known noble gases which are inert gases lacking the usual or anticipated chemical or biological action. Most radon gas is concentrated in the oxidation belt which is at a relatively shallow depth from the ground surface. Under normal conditions, the amount of radon gas seeping into the atmosphere or entering into residential buildings is very little and will not be harmful to human health. In recent years, due to population growth, a progressive living standard and industrial progress, many natural farm lands, forests and wetlands have been destroyed by conversion into residential and industrial compounds; consequently, such construction activities and industrial waste disposal changes the dynamic equilibrium of the ecosystem which can trigger and accelerate radon gas emanation and mobilization. This change is the major reason for the problem of indoor radon concentration which has significantly increased in recent years. Recent findings indicate that radon is not a totally inert element as previously thought. It can be influenced by local environments such as temperature, pH value, ion exchange, redox reaction, etc. to some degree. Also radon gas interacts with soil, water, air and others; unfortunately, the interface mechanisms between radon and the environment are not yet clearly understood and little information on these aspects is available. In this paper only the hazardous waste disposal causes for radon emanation are discussed. To deal with such complex phenomena, a new approach is presented that assumes radon gas interaction with the environment through dust in the air and suspensions in the water and soil-water system

  13. Radon programme in the Czech Republic

    International Nuclear Information System (INIS)

    Hulka, J.; Thomas, J.

    2003-01-01

    The framework of the Radon programme in the Czech republic includes both precautionary measures and interventions. The programme informally started in early eighties has been now incorporated in national legislation (Atomic Act, Radiation Protection Decree, etc.). Aim of precautionary measures is to avert construction of building above natural radiation guidance levels (200 Bq/m 3 for indoor radon concentration and 0.5 Sv/h for gamma dose rate) by protection of new buildings against soil radon ingress, by regulation of natural radioactivity in building materials and supplied water. Aim of interventions is to identify buildings affected by enhanced natural radioactivity and help owners to put into effect reasonable remedial measures. Two sets of intervention levels for indoor natural exposure were established: guidance intervention levels 400 Bq/m 3 (indoor radon), 1.0 Sv/h (indoor gamma dose rate) and limit values 4000 Bq/m 3 and 10 Sv/h. The radon programme is based both on governmental and private activities. The governmental activities include representative and targeted indoor radon survey, subsidy for radon mitigation, mitigation test measurements and public information on radon issue. The private activities include radon measurement (radon index of building site, indoor measurements, radon diagnosis) and remedial measures. More than 100 commercial companies were authorised by Radiation Protection Authority (SUJB) to provide these measurements

  14. Radon survey techniques

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The report reviews radon measurement surveys in soils and in water. Special applications, and advantages and limitations of the radon measurement techniques are considered. The working group also gives some directions for further research in this field

  15. Comparison of retrospective and contemporary indoor radon measurements in a high-radon area of Serbia

    International Nuclear Information System (INIS)

    Zunic, Z.S.; Yarmoshenko, I.V.; Kelleher, K.; Paridaens, J.; Mc Laughlin, J.P.; Celikovic, I.; Ujic, P.; Onischenko, A.D.; Jovanovic, S.; Demajo, A.; Birovljev, A.; Bochicchio, F.

    2007-01-01

    In Niska Banja, Serbia, which is a high-radon area, a comparison was made between two retrospective radon measuring methods and contemporary radon measurements. The two retrospective methods derive the radon concentrations that occurred in dwellings over longer periods in the past, based on the amount of trapped 210 Po on the surface of glass objects (surface traps, ST) or in the bulk of porous materials (volume traps, VT). Both surface implanted 210 Po in glass objects and contemporary radon in air were measured in 46 rooms, distributed in 32 houses of this radon spa-town, using a dual alpha track detector configuration (CR-39 and LR115) and CR-39 track etched detectors, respectively. In addition to the use of surface trap measurements, in 18 rooms (distributed in 15 houses) VT samples of suitable material were also collected, allowing to compare ST and VT retrospective radon concentration estimates. For each room, contemporary annual radon concentrations (CONT) were measured or estimated using seasonal correction factors. The distribution of the radon concentration in all data sets was found to be close to lognormal (Chi-square test > 0.05). Geometric means (GM) are similar, ranging from 1040 to 1380 Bq m -3 , whereas geometric standard deviations (GSD) for both the retrospective methods are greater than for the CONT method, showing reasonable agreement between VT, ST and CONT measurements. A regression analysis, with respect to the lognormal distribution of each data set, shows that for VT-ST the correlation coefficient r is 0.85, for VT-CONT r is 0.82 and for ST-CONT r is 0.73. Comparison of retrospective and contemporary radon concentrations with regard to supposed long-term indoor radon changes further supports the principal agreement between the retrospective and conventional methods

  16. The use of track registration detectors to reconstruct contemporary and historical airborne radon ( sup 2 sup 2 sup 2 Rn) and radon progeny concentrations for a radon-lung cancer epidemiologic study

    CERN Document Server

    Steck, D J

    1999-01-01

    Epidemiologic studies that investigate the relationship between radon and lung cancer require accurate estimates for the long-term average concentrations of radon progeny in dwellings. Year-to-year and home-to-home variations of radon in domestic environments pose serious difficulties for reconstructing an individual's long-term radon-related exposure. The use of contemporary radon gas concentrations as a surrogate for radon-related dose introduces additional uncertainty in dose assessment. Studies of glass exposed in radon chambers and in a home show that radon progeny deposited on, and implanted in, glass hold promise for reconstructing past radon concentrations in a variety of atmospheres. We developed an inexpensive track registration detector for the Iowa Radon Lung Cancer Study (IRLCS) that simultaneously measures contemporary airborne radon concentrations, surface deposited alpha activity density, and implanted sup 2 sup 1 sup 0 Po activity density. The implanted activity is used to reconstruct the cum...

  17. Laboratory measurements of radon diffusion through multilayered cover systems for uranium tailings

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.; Rich, D.C.; Nederhand, F.A.; Sandquist, G.M.; Jensen, C.M.

    1981-12-01

    Laboratory measurements of radon fluxes and radon concentration profiles were conducted to characterize the effectiveness of multilayer cover systems for uranium tailings. The cover systems utilized soil and clay materials from proposed disposal sites for the Vitro, Durango, Shiprock, Grand Junction and Riverton tailings piles. Measured radon fluxes were in reasonable agreement with values predicted by multilayer diffusion theory. Results obtained by using air-filled porosities in the diffusion calculations were similar to those obtained by using total porosities. Measured diffusion coefficients were a better basis for predicting radon fluxes than were correlations of diffusion coefficient with moisture or with air porosity. Radon concentration profiles were also fitted by equations for multilayer diffusion in the air-filled space. Layer-order effects in the multilayer cover systems were examined and estimated to amount to 10 to 20 percent for the systems tested. Quality control measurements in support of the multilayer diffusion tests indicated that moisture absorption was not a significant problem in radon flux sampling with charcoal canisters, but that the geometry of the sampler was critical. The geometric design of flux-can samplers was also shown to be important. Enhanced radon diffusion along the walls of the test columns was examined and was found to be insignificant except when the columns had been physically disturbed. Additional moisture injected into two test columns decreased the radon flux, as expected, but appeared to migrate into surrounding materials or to be lost by evaporation. Control of moisture content and compaction in the test columns appeared to be the critical item affecting the accuracies of the experiments

  18. The feasible research with measuring radon for taking the soils sample

    International Nuclear Information System (INIS)

    Zeng Bing, Ge Liangquan; Liu Hefan; Li Yeqiang; Zhang Jinzhao; Song Xiao'an

    2010-01-01

    It explains the mechanism of the separation of soil's radon. Through the designed experiment, it confirms the feasibility of measuring radon for taking the soil's sample. It determines the content of the radon and its sub field with indoor and outside through ways of the activated charcoal adsorption, the initiative suction and the diameter mark etching, also the 226 Ra. The paper indicates: it is feasible with measuring radon for taking the soil's sample, and the stability of data is that indoor data are better than outside's. The temperature, the humidity, the rainfall amount, the intensity and so on are the serious influence of the data. If you want to take a soil's sample, you must avoid the rain as far as possible, and avoid the fault zone, the belt of folded strata and complex geologic structure region, and so on. (authors)

  19. Experimental and theoretical study of radon levels in a house

    Energy Technology Data Exchange (ETDEWEB)

    Ameon, R.; Dupuis, M.; Marie, L.; Diez, O.; LionS, J. [Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-roses (France); Tymen, G. [LARAAH, Universite de Bretagne Occidentale, Brest (France)

    2006-07-01

    Full text of publication follows: Radon being a radioactive gas of natural origin is omnipresent everywhere at the surface of earth. It is created by the radium decay issued from the uranium contained in the earth crust and more specifically in granitic and volcanic subsoils. Because of the dilution due to air masses, its concentration in open air is low. On the other hand, radon may accumulate in the confined atmosphere of buildings and achieve high concentration levels. Across France, it has been estimated that 300 000 individual dwellings present concentration higher than the French reference level of 400 Bq.m{sup -3} and that 60 000 other ones would exhibit concentration above 1 000 Bq.m{sup -3}, the French warning threshold. Indoor radon concentration may vary significantly for various reasons, including design of buildings, radium content and texture of the soil in contact with the building's slab and walls, the under pressure value between the inside and outside and the fresh air supply rate. These considerations have led the I.R.S.N. to develop a code called R.A.D.O.N. 2 for conducting simple and methodical studies of indoor radon concentrations, to take into account the above-mentioned factors. But, the achievement of an effective diagnosis and risk management -aiding tool requires to first check its validity on the phenomenological model at the origin of the code. A 3-year experimental follow-up was, thus, conducted within an unoccupied house built on an uranium-bearing geological formation. After characterization of the subsoil, the instrumentation was implemented on site to continuously monitor the following parameters: - the radon source term in the building (exhalation rate of {sup 222}Rn at the ground/building interface and at soil surface, radon concentration at the soil and in outdoor air), - the radon penetration by advection (differential pressure in the house basement), - the driving mechanisms for natural ventilation in the house (weather

  20. Experimental and theoretical study of radon levels in a house

    International Nuclear Information System (INIS)

    Ameon, R.; Dupuis, M.; Marie, L.; Diez, O.; LionS, J.; Tymen, G.

    2006-01-01

    Full text of publication follows: Radon being a radioactive gas of natural origin is omnipresent everywhere at the surface of earth. It is created by the radium decay issued from the uranium contained in the earth crust and more specifically in granitic and volcanic subsoils. Because of the dilution due to air masses, its concentration in open air is low. On the other hand, radon may accumulate in the confined atmosphere of buildings and achieve high concentration levels. Across France, it has been estimated that 300 000 individual dwellings present concentration higher than the French reference level of 400 Bq.m -3 and that 60 000 other ones would exhibit concentration above 1 000 Bq.m -3 , the French warning threshold. Indoor radon concentration may vary significantly for various reasons, including design of buildings, radium content and texture of the soil in contact with the building's slab and walls, the under pressure value between the inside and outside and the fresh air supply rate. These considerations have led the I.R.S.N. to develop a code called R.A.D.O.N. 2 for conducting simple and methodical studies of indoor radon concentrations, to take into account the above-mentioned factors. But, the achievement of an effective diagnosis and risk management -aiding tool requires to first check its validity on the phenomenological model at the origin of the code. A 3-year experimental follow-up was, thus, conducted within an unoccupied house built on an uranium-bearing geological formation. After characterization of the subsoil, the instrumentation was implemented on site to continuously monitor the following parameters: - the radon source term in the building (exhalation rate of 222 Rn at the ground/building interface and at soil surface, radon concentration at the soil and in outdoor air), - the radon penetration by advection (differential pressure in the house basement), - the driving mechanisms for natural ventilation in the house (weather conditions, indoor

  1. Perception of radon risk in typical non-uranium mines in China

    International Nuclear Information System (INIS)

    Fu Yinhua; Sun Quanfu; Du Weixia; Lei Suwen; Lei Shujie; Wang Haijun; Qian Yekan; Li Xiaoyin; Su Xu

    2008-01-01

    Objective: To investigate the perception of risk flora occupational exposure to radon among the non-uranium miners in China, and to explore its major influence factors. Methods: 2836 workers from 24 mines in 9 provinces/regions were interviewed. Logit regress analysis was used to identify the major influence factors. Results: Among the interviewed mine workers, 13.3% of them had heard of radon, 29.0% of those miners who had heard of radon had some knowledge of the source of radon. Only 1.8% of the investigated mine workers had correct perception of health risk resulted from exposure to radon. The major factors to influence the radon risk perception included education degree and type of employment, perception was lower in those miners with low education or temporally employed. Perception level differed by province/regions and mines. Sex, age, and working length of the current job were not the main factors to influence the risk perception. Conclusions: The perception of radon risk resulted from occupational exposure among the Chinese non-uranium mine workers is low. More works are needed to effectively implement notification of occupational health hazards, which is stipulated by Chinese law on prevention and control of occupational disease, and one of the important factors in radon mitigation in mines. (authors)

  2. Quality assurance for radon measurements in Germany

    International Nuclear Information System (INIS)

    Beck, T.R.; Buchroeder, H.; Foerster, E.; Schmidt, V.

    2005-01-01

    Full text: Radiation protection regarding work activities at workplaces with naturally occurring radiation has been regulated in the German Radiation Protection Ordinance. Regulations refer only to workplaces where the presence of natural radiation leads to a significant increase in the exposure of workers. These workplaces were identified in the following working areas with enhanced exposures to radon-222: underground mines, including visitor mines and show caves; radon-spas and galleries; water supply and distribution industries. Presently, regulations are being initiated by the German government to limit the exposures to radon in homes. For radon measurements at workplaces passive radon devices for individual monitoring as well as active measuring systems for workplace monitoring can be used. However, passive radon devices are preferred for radon measurements in homes because of low costs and availability in large quantities. To assure the quality of radon measurements the German Federal Office for Radiation Protection (BfS) has established annual interlaboratory comparisons for passive radon devices. The comparisons are carried out in the BfS radon calibration laboratory accredited by the German Calibration Service. Passive radon devices which use solid state track detectors, electrets or activated charcoal can be submitted. Approved radon services which offer radon measurements to determine radon exposure in homes and at workplaces have to pass the comparisons successfully. (author)

  3. Radon survey in Metropolitan Toronto schools

    International Nuclear Information System (INIS)

    Becker, E.; Moridi, R.

    1992-01-01

    The radon testing survey in Metropolitan Toronto public schools was the most intensive project of its kind ever undertaken in Canadian schools. It also included an extensive public education program on radiation and radon-in-schools. The radon levels at 632 schools were measured using the CAIRS Radon Monitors. Ninety percent of the locations measured were found to have a radon level equal to or less than 2 mWL. Two locations in two different schools were found to have a radon level at or above the Action Level (20 mWL). The remaining results were between the two extremes. Follow-up testing in those schools where more than 10 mWL of radon was found is in progress. (author)

  4. Radon Survey in Hospitals in Slovenia

    International Nuclear Information System (INIS)

    Vaupotic, J.

    2003-01-01

    In Slovenia, several radon studies at workplaces have been carried out in last years, supported by the Ministry of Education, Science and Sport, and the Ministry of Health. After radon surveys in kindergartens, schools and homes, within which about 2600 buildings were checked for radon and which provided the level of radon problem in the country, next investigations were focused on the workplaces with potentially higher radon risk. Hence, in the Postojna Cave permanent radon monitoring was introduced in 1995 and comprehensive radon studies were performed: in 5 bigger spas during 1996-1998, in major waterworks and wine cellars in 2001, and in major Slovene hospitals in 2002. This paper reports the results of radon study in 26 major Slovene hospitals, comprising radon concentrations in 201 rooms and dose estimates for 1025 persons working in these rooms. Radon survey in 201 rooms of 26 major hospitals in Slovenia revealed only 7 rooms in which monthly average radon concentration in the indoor air exceeded 400 Bqm -3 . Generally, concentrations in basement were on average for about 30% higher than in ground floor, although exceptionally high values have also been found in the ground floor. For 966 persons (94.2%) of the total of 1025 persons working in the rooms surveyed, the annual effective dose, estimated according to the Basic Safety Standards was below 1 mSv, while for 59 it exceeded 1 mSv. In 7 rooms with more than 400 Bqm -3 in which 16 persons receive between 2.1 and 7.3 mSv per year radon monitoring is continued. (author)

  5. Radon: Residential attitudes toward the risk

    International Nuclear Information System (INIS)

    Fort, R.; Hinman, G.; Rosenman, R.; Wandschneider, P.

    1990-01-01

    Veradale, Washington (east of Spokane) is a region of high residential radon concentrations. Three hundred eighty residents of Veradale recently responded to a mail survey designed to elicit (1) their knowledge of and attitudes toward the risks of radon in their homes, (2) the actions they have taken or intend to take to identify and reduce those risks, and (3) policy preferences toward radon. Results reveal that these residents know that they live in an area with high radon levels, that radon causes lung cancer, and that radon will affect their health. However only 11% of respondents have had their homes tested for radon. This especially is puzzling because a large number of respondents claimed that (1) radon was important in home buying decisions, (2) they would test their own homes, (3) they would take action if such tests revealed problems, and (4) their willingness to pay for tests and improvements was well within the current costs of these actions. It remains a mystery why testing is at such a low level. Three other results are of note. First, subsidies for radon tests and home improvements may be having the unintended consequences of unneeded improvements and (potentially) moves without improvements. Second, individuals want radon testing required and results made known during home purchase decisions. Third, at present, weatherization programs that concentrate radon are acceptable to individuals. Of course, the future may hold different results. Administrators of weatherization programs, who are trusted by respondents according to this survey, would do well to institute weatherization programs with reduced radon concentrations in mind

  6. ERRICCA radon model intercomparison exercise

    International Nuclear Information System (INIS)

    Andersen, C.E.; Albarracin, D.; Csige, I.; Graaf, E.R. van der; Jiranek, M.; Rehs, B.; Svoboda, Z.; Toro, L.

    1999-04-01

    Numerical models based on finite-difference or finite-element methods are used by various research groups in studies of radon-222 transport through soil and building materials. Applications range from design of radon remediation systems to more fundamental studies of radon transport. To ascertain that results obtained with these models are of good quality, it is necessary that such models are tested. This document reports on a benchmark test organized by the EU project ERRICCA: European Research into Radon in Construction Concerted Action. The test comprises the following cases: 1) Steady-state diffusive radon profiles in dry and wet soils, 2) steady-state entry of soil gas and radon into a house, 3) time-dependent radon exhalation from a building-material sample. These cases cover features such as: soil heterogeneity, anisotropy, 3D-effects, time dependency, combined advective and diffusive transport of radon, flux calculations, and partitioning of radon between air and water in soil pores. Seven groups participated in the intercomparison. All groups submitted results without knowing the results of others. For these results, relatively large group-to-group discrepancies were observed. Because of this, all groups scrutinized their computations (once more) and engaged in follow-up discussions with others. During this debugging process, problems were indeed identified (and eliminated). The accordingly revised results were in better agreement than those reported initially. Some discrepancies, however, still remain. All in all, it seems that the exercise has served its purpose and stimulated improvements relating to the quality of numerical modelling of radon transport. To maintain a high quality of modelling, it is recommended that additional exercises are carried out. (au)

  7. THE REPUBLIC OF BELARUS RADON DANGER MAP

    Directory of Open Access Journals (Sweden)

    L. A. Chunikhin

    2016-01-01

    Full Text Available Radon is the major contributor to the background exposure of the population. In the world practice, the radon risk or radon potential mapping are used for the radon dose assessment.The aim of this work was a radon danger mapping of the Republic of Belarus to assess the radiation situation and determine the radon hazard critical areas.Materials and methods: The mapping is based on measured values of radon volume activity in the living rooms of different buildings on the territory of the six regions of the Republic of Belarus. We have performed more than 4000 measurements. Integral track radon radiometers based on the polymer Kodak LR-115 film were used to evaluate radon volume activity. Exposure time ranged from 90 to 120 days. The cartogram was built with using the MAPINFO software package.Results: The low levels of radon concentrations were determined in the Brest and Gomel regions, as well as in the southern districts of Minsk and south-western districts of the Mogilev region. The high levels radon concentrations were determined in some districts of the Vitebsk and Grodno regions, as well as in the north-eastern districts of the Mogilev region. About 2–5 times nonuniformity of radon distribution in settlements of the Republic was observed. The radon hazard critical areas with radon concentrations in the range of 200–400 Bq/m3 were found in some districts of the Vitebsk, Grodno and Mogilev regions.Conclusions: The radon risk map of the Republic of Belarus gives the possibility to estimate the existing radiation risk. Taking into account the low efficiency of countermeasures long after the Chernobyl accident, it is necessary to increase the level of radiation protection through the radon mitigation activities or to change the radon normative documents.

  8. Indoor radon concentration in Poland

    International Nuclear Information System (INIS)

    Mamont-Ciesla, K.; Jagielak, J.; Rosinski, S.W.; Sosinka, A.; Bysiek, M.; Henschke, J.

    1996-01-01

    Preliminary survey of Rn concentration indoors by means of track detectors and y-ray dose rate with the use of TLD in almost 500 homes in selected areas of Poland was performed in the late 1980s. It was concluded that radon contributes 1.16 mSv i.e. about 46 per cent of the total natural environment ionizing radiation dose to the Polish population. Comparison of the average radon concentrations in 4 seasons of a year and in 3 groups of buildings: masonry, concrete and wood, revealed that the ground beneath the building structure is likely the dominant source of radon indoors. Since the National Atomic Energy Agency in its regulations of 1988-03-31 set up the permissible limit of the equilibrium equivalent concentration of radon in new buildings (equal 100 Bq/m3), the nation-scale survey project for radon in buildings has been undertaken. These regulations were supposed to take effect in 1995-01-01. The project has 3 objectives: to estimate the radiation exposure due to radon daughters received by Polish population to identify radon-prone areas in Poland to investigate dependence of the indoor radon concentrations on such parameters as: type of construction material, presence (or absence) of cellar under the building, number of floor

  9. Airborne geophysical radon hazard mapping

    International Nuclear Information System (INIS)

    Walker, P.

    1993-01-01

    Shales containing uranium pose a radon health hazard even when covered by several meters of overburden. Such an alum shale in southern Norway has been mapped with a joint helicopter borne electromagnetic (HEM) and radiometric survey. Results are compared with ground spectrometer, radon emanometer and radon gas measurements in dwellings, and a model to predict radon gas concentrations from the airborne data is developed. Since the shale is conductive, combining the HEM data with the radiometric channel allows the shale to be mapped with greater reliability than if the radiometric channel were used alone. Radiometrically more active areas which do not pose a radon gas hazard can thus be separated from the shales which do. The ground follow-up work consisted of spectrometer and radon emanometer measurements over a uranium anomaly coinciding with a conductor. The correlation between the airborne uranium channel, the ground uranium channel and emanometry is extremely good, indicating that airborne geophysics can, in this case, be used to predict areas having a high radon potential. Contingency tables comparing both radon exhalation and concentration in dwellings with the airborne uranium data show a strong relationship exists between exhalation and the airborne data and while a relationship between concentration and the airborne data is present, but weaker

  10. Efficient measurement of radon daughters

    International Nuclear Information System (INIS)

    Rolle, R.

    1992-01-01

    In environmental control there is an increasing need for efficient measurement of radon and thoron daughters in air. Measuring instruments should be rugged and portable for field use, while also permitting unattended operation for several days. Simple operating procedures should permit evaluation of rapidly changing concentrations over extended periods. These requirements demand careful balance in the design of hardware and measuring procedures. The design principles for a continuous flow-through spectrometer, that has been developed for precision sequential measurement of radon and thoron daughters, are described. Because of the high precision of measurement, this type of instrument should find application in environments from technologically enhanced natural radiation to the very lowest natural background situations. (author)

  11. Measurements on, and modelling of diffusive and advective radon transport in soil

    DEFF Research Database (Denmark)

    Graff, E.R. van der; Witteman, G.A.A.; Spoel, W.H. van der

    1994-01-01

    Results are presented of measurements on radon transport in soil under controlled conditions with a laboratory facility consisting of a stainless steel vessel (height and diameter 2 m) filled with a uniform column of sand. At several depths under the sand surface, probes are radially inserted...... into the vessel to measure the radon concentration in the soil gas. To study advective radon transport a perforated circular box is placed in the sand close to the bottom of the vessel. By pressurising this box, an air flow through the sand column is induced. Radon concentration profiles were measured without...... an air flow as a function of time, and for several values of the air flow, equilibrium radon concentration profiles were measured....

  12. Accurate measurement of indoor radon concentration using a low-effective volume radon monitor

    International Nuclear Information System (INIS)

    Tanaka, Aya; Minami, Nodoka; Mukai, Takahiro; Yasuoka, Yumi; Iimoto, Takeshi; Omori, Yasutaka; Nagahama, Hiroyuki; Muto, Jun

    2017-01-01

    AlphaGUARD is a low-effective volume detector and one of the most popular portable radon monitors which is currently available. This study investigated whether AlphaGUARD can accurately measure the variable indoor radon levels. The consistency of the radon-concentration data obtained by AlphaGUARD is evaluated against simultaneous measurements by two other monitors (each ∼10 times more sensitive than AlphaGUARD). When accurately measuring radon concentration with AlphaGUARD, we found that the net counts of the AlphaGUARD were required of at least 500 counts, <25% of the relative percent difference. AlphaGUARD can provide accurate measurements of radon concentration for the world average level (∼50 Bq m -3 ) and the reference level of workplace (1000 Bq m -3 ), using integrated data over at least 3 h and 10 min, respectively. (authors)

  13. Radon in dwellings in selected areas of Ireland

    International Nuclear Information System (INIS)

    Madden, J.S.; Duffy, J.T.; Mackin, G.A.; Colgan, P.A.; McGarry, A.T.

    1994-10-01

    risk in Ireland of contracting fatal lung cancer (3%), and can reasonably be considered an unacceptable level of additional risk in situations where effective control of indoor radon is possible. (author)

  14. The effect of radon 222 on the oral mucosa of rabbits

    International Nuclear Information System (INIS)

    Minta, A.; Minta, P.; Kochanski, W.

    1975-01-01

    In experiments on 52 rabbits the authors investigated the effects of radon 222 administered by inhalation on the oral mucosa. The experimental animals were divided into 3 groups: 1 - controls, 2 - receiving radon inhalations in concentration 1 nCi/1, 3- receiving similar inhalations in a concentration of 5 nCi/l of air. Sections involving the lower lip with the mucosa were obtained for investigations after 10, 20, 30 and 60 days of inhalation. In the group of animals receiving radon in lower concentration its stimulating effect manifested itself as stimulation of mesenchymal cells and vascular endothelium. In group 3 sebaceous glands, atrophy and excessive keratinization of epidermis. Taking into account the analogy of these processes the authors concluded that in balneotherapy of oral diseases radon water application with low content of radon 222 may be satisfactory and safe. (author)

  15. Status of Radon Related Activities in Member States Participating in Technical Cooperation Projects in Europe

    International Nuclear Information System (INIS)

    2017-03-01

    This publication summarizes the status of radon programmes at the start of 2014 in the Member States in Europe participating in the IAEA technical cooperation project on establishing enhanced approaches to the control of public exposure to radon. The current status was determined from responses to a questionnaire covering the following elements of a national radon action plan: policies and strategies; radon measurement surveys; establishment of reference levels; managing radon in existing buildings and in future buildings; education and training of professionals; and public awareness initiatives.

  16. Contribution of waterborne radon to home air quality

    International Nuclear Information System (INIS)

    Deb, A.K.

    1994-01-01

    Radon-222 is a member of the uranium decay chain and is formed from the decay of radium-226. Radon and its decay products emit alpha particles during the decay process. If radon is inhaled, alpha particles emitted from inhaled radon and its daughters increase the risk of lung cancer. Radon is soluble in water; thus when radon comes in contact with groundwater it dissolves. The radon concentration in groundwater may range from 100 pCi/L to 1,000,000 pCi/L. When water with a high radon level is used in the home, radon is released from the water to the air and thus can increase indoor air radon concentration. Considering the estimated health risk from radon in public water supply systems, EPA has proposed a maximum contaminant level (MCL) of 300 pCi/L for radon in public drinking water supplies. To address the health risks of radon in water and the proposed regulations, the American Water Works Association Research Foundation (AWWARF) initiated a study to determine the contribution of waterborne radon to radon levels in indoor household air

  17. Development of a portable instantaneous soil radon measurement instrument

    International Nuclear Information System (INIS)

    Wang Yushuang; Ge Liangquan; Jiang Haijing; Lin Yanchang

    2007-01-01

    A dual-channel instantaneous soil radon measurement instrument based on the method of electrostatic collection is designed. It has the features of small size, low cost, and high sensitivity, etc. A single chip microcomputer is adopted as the data processing and control unit. The concentration of radon can be reported in field. The result is also corrected by the pressure sensing system. A double channel discriminator is used so that the detector can eliminate the interference from the progenies of radon except RaA. LCD and MCU based encoding keyboard are used to give users a friendly interface. Operating and function setting is easy. (authors)

  18. Uranium mine venting during operation of self-propelled Diesel engine mechanisms

    International Nuclear Information System (INIS)

    Hemer, M.

    1983-01-01

    A draft directive has been issued for the ventilation of uranium mines which takes into consideration the concentration of radon daughter products, radon volume activity as well as the concentration of harmful wastes emitted by the Diesel engines of mining mechanisms. The mathematical relations are given for the calculation of the required amount of pure mine winds. Also listed are the technical requirements for ventilation, dust emission and the control and maintenance of mining mechanisms. (M.D.)

  19. Radon in Croatian spas

    International Nuclear Information System (INIS)

    Radolic, V.; Vukovic, B.; Planinic, J.

    2004-01-01

    There are ten thermal spas in Croatia and all of them provide health services for patients and visitors. Radon measurements were performed since there is a lack of data concerning natural radioactivity originated from radon and its short-lived progenies in such environments. The thermal water at two different sites (the indoor swimming pool with geothermal water and the spring) in each spa was sampled and radon concentrations were measured by AlphaGUARD radon measuring system. The obtained values were in the range of 0.7 to 19 Bq.dm -3 and 2 to 94 Bq.dm -3 for indoor swimming pools and springs, respectively. Integrated measurements of radon concentration in air were performed by two solid state nuclear track detectors LR-115 II (open and diffusion one) thus enabling estimation of equilibrium factor between radon and its daughters. The annual effective doses received by spa workers were found to be about 1 mSv/y (below the lower limit value of 3 mSv/y recommended by ICRP 65). The doses of patients and visitors were one or two order of magnitude lower than that of the personnel. (author)

  20. Chemical properties of radon

    International Nuclear Information System (INIS)

    Stein, L.

    1986-01-01

    Radon is frequently regarded as a totally inert element. It is, however, a ''metalloid'' - an element which lies on the diagonal of the Periodic Table between the true metals and nonmetals and which exhibits some of the characteristics of both. It reacts with fluorine, halogen fluorides, dioxygenyl salts, fluoro-nitrogen salts, and halogen fluoride-metal fluoride complexes to form ionic compounds. Several of the solid reagents can be used to collect radon from air but must be protected from moisture, since they hydrolyze readily. Recently, solutions of nonvolatile, cationic radon have been produced in nonaqueous solvents. Ion-exchange studies have shown that the radon can be quantitatively collected on columns packed with either Nafion resins or complex salts. In its ionic state, radon is able to displace H + , Na + , K + , Cs + , Ca 2+ , and Ba 2+ ions from a number of solid materials. 27 refs., 6 figs

  1. Seasonal variation in concentration of radon and thoron at non-uranium mines in China

    International Nuclear Information System (INIS)

    Cui Hongxing; Wu Yunyun; Zhang Qingzhao; Shang Bing

    2009-01-01

    Objective: To study the seasonal variation in concentrations of radon and thoron in non-uranium mine. Methods: Eight kinds of mineral types from 9 non-uranium mines were selected, including copper, gold, aluminium, manganese, antimonium, tungsten, copper-nickel and coal mines in 6 provinces, such as Yunnan, Shandong, Xinjiang, Heilongjiang, Hunan and Guizhou. LD-P R-T discriminative detectors were used to measure radon and thoron concentrations in underground mines during four seasons in one year. Results: Radon concentrations in underground mines showed a significantly seasonal variation. Radon concentration ranged from 35.5 to 4841 Bq/m 3 in summer, and the average value in four mines exceeded 1000 Bq/m 3 of the control limit for workplace (GB 18871-2002) . In winter, radon concentration ranged from 5 to 1917 Bq/m 3 , only one of them exceeded the control limit. The ratio of radon from summer to winter ranged from 2 to 12. Ventilation was one of the main factors which influenced the seasonal variation of radon. While the thoron concentration in underground mines showed a tendency that it was higher in summer and lower in winter. It was difficult to attain representative values for thoron, due to the influence of location of detectors. The seasonal variation of thoron should be further studied. Conclusions: Seasonal variation for radon and thoron should be taken into account to estimate the effective dose to miners. The values of radon concentration during the short term should be corrected. (authors)

  2. Radon and temperature as tracer of geothermal flow system: application to Arxan geothermal system, Northeastern China

    Science.gov (United States)

    Gu, X.; Shao, J.; Cui, Y.

    2017-12-01

    In this work, hydrogeological and hydrochemical investigations were applied to explain geothermal system factors controlling groundwater mineralization in Arxan geothermal system, Northeastern China. Geothermal water samples were collected from different locations (thermal baths and wells). Radon concentrations of water samples representing different water types and depths were controlled using RAD7. In addition to radon concentration, physical parameters such as temperature (T), pH, electrical conductivity (EC) and TDS were measured in situ, while major ions were analyzed in laboratory. Temperature spatial variability in the study area was described using kriging interpolation method. Hydrochemical analysis and thermal parameters suggest two distinct hydrogeological systems. The first type was dominated by a moderate temperature (25 41°C) with a chemical facies Na-HCO3, which characterizes Jurassic deep water. The second water type was characterized by Ca.Na-HCO3 type with a temperature <25 °C and represents the shallow aquifer. Superficial aquifer displays higher radon concentration (37 to 130 Bq/L), while deep groundwater from Jurassic aquifer shows relatively a low radon concentration (6 to 57.4 Bq/L). Seasonal and geographical variations of radon give insight into the processes controlling radon activities in the Arxan groundwater. Radon concentrations along with spatial distribution of water temperature reveal the existence of vertical communication between shallow aquifer and deep Jurassic aquifer through vertical faults and fractures system, the emanation of radon from thermal water and groundwater is controlled by the geological structure of the area. Furthermore, the knowledge and conclusion demonstrates that combined use of radon and temperature as tracers can give insight into the characteristics of geological structure and geothermal flow system.

  3. The radon: evaluation and risk management; Le radon: evaluation et gestion du risque

    Energy Technology Data Exchange (ETDEWEB)

    Lacoste, A.C. [Direction Generale de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France); Masse, R. [Academie des Technologies, 75 - Paris (France); Aurengo, A. [Hopital Pitie-Salpetriere, Service de Medecine Nucleaire, 75 - Paris (France); Erich Wichmann, H. [Neuberberg Munich Univ. (Germany); Timarche, M.; Laurier, D.; Robe, M.Ch. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Clamart (France); Baubron, J.C.; Bonijoly, D. [BRGM, 75 - Paris (France); Collignan, B. [Centre Scientifique et Technique du Batiment, (CSTB), 75 - Paris (France); Berrier, H. [Direction Gle de l' Urbanisme de l' Habitat et de la Construction, 75 - Paris (France); Jaouen, J. [Direction Departementale des Affaires Sanitaires et Sociales de la Haute-Vienne (France); Caamano, D. [Direction Departementale des Affaires Sanitaires et Sociales de l' Essonne, 91 (France); Guiot, F. [Direction Departementale des Affaires Sanitaires et Sociales de la Haute-Marne (France); Grall, B. [Direction Departementale des Affaires Sanitaires et Sociales de Bretagne (France); Frutos Vasquez, B.; Olaya Adan, M. [Istituto de Ciencias de la Construction (Italy); Garcia Cadierno, J.P.; Martin Matarranz, J.L.; Serrano Renedo, J.; Suarez Mahou, E. [Consejo de Seguridad Nuclear, Madrid (Spain); Fernandez, J.A. [ENUSA Industrias Avanzadas (Spain); Mjones, L.; Pirard, P. [Institut de veille sanitaire, 94415 - Saint-Maurice (France); Godet, J.L.; Rougy, Ch. [Direction Gle de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France)

    2003-06-15

    The radon exposure constitutes for the French population the first cause of natural irradiation among the different natural sources of irradiation. It is possible to have a significant action on it, either by making draught proof in order to avoid to radon to get inside houses, either by ventilating in order to dispel the radon and improve air quality. (N.C.)

  4. Radon in large buildings

    International Nuclear Information System (INIS)

    Wilson, D.L.; Dudney, C.S.; Gammage, R.B.

    1993-01-01

    Over the past several years, considerable research has been devoted by the U.S. Environmental Protection Agency (USEPA) and others to develop radon sampling protocols for single family residences and schools. However, very little research has been performed on measuring radon in the work place. To evaluate possible sampling protocols, 833 buildings throughout the United States were selected for extensive radon testing. The buildings tested (warehouses, production plants and office buildings) were representative of commercial buildings across the country both in design, size and use. Based on the results, preliminary radon sampling protocols for the work place have been developed. (orig.). (5 refs., 3 figs.)

  5. Radon dose and aerosols

    International Nuclear Information System (INIS)

    Planinic, J.; Radolic, V.; Faj, Z.; Vukovic, B.

    2000-01-01

    The equilibrium factor value (F) was measured in the NRPB radon chamber and the corresponding track density ratio (r = D/D 0 ) of bare (D) and diffusion (D 0 ) LR-115 nuclear track detectors was determined, as well as the regression equation F(r). Experiments with LR-115 nuclear track detectors and aerosol sources (burning candle and cigarette) were carried out in the Osijek University radon chamber and afterwards an empirical relationship between the equilibrium factor and aerosol concentration was derived. For the purpose of radon dose equivalent assessment, procedures for determining the unattached fraction of radon progeny were introduced using two nuclear track detectors. (author)

  6. Radon remediation of a two-storey UK dwelling by active sub-slab depressurization: observations on hourly Radon concentration variations

    International Nuclear Information System (INIS)

    Denman, A.R.

    2008-01-01

    Radon concentration levels in a two-storey detached single-family dwelling in Northamptonshire, UK, were monitored at hourly intervals throughout a 5-week period during which sub-slab depressurization remediation measures, including an active sump system, were installed. Remediation of the property was accomplished successfully, with the mean radon levels upstairs and downstairs greatly reduced and the prominent diurnal variability in radon levels present prior to remediation almost completely removed. Following remediation, upstairs and downstairs radon concentrations were 32% and 16% of their pre-remediation values respectively. The mean downstairs radon concentration was lower than that upstairs, with pre-and post-remediation values of the upstairs/downstairs concentration ratio, R U/D , of 0.93 and 1.76 respectively. Cross-correlation between upstairs and downstairs radon concentration time-series indicates a time-lag of the order of 1 hour or less, suggesting that diffusion of soil-derived radon from downstairs to upstairs either occurs within that time frame or forms a relatively insignificant contribution to the upstairs radon level. Cross-correlation between radon concentration time-series and the corresponding time-series for local atmospheric parameters demonstrated correlation between radon concentrations and internal/external pressure-difference prior to remediation. This correlation disappears following remediation, confirming the effectiveness of the remediation procedure in mitigating radon ingress from the ground via the stack-effect. Overall, these observations provide further evidence that radon emanation from building materials makes a not insignificant contribution to radon concentration levels within the building. Furthermore, since this component remains essentially unaffected by sub-slab depressurization, its proportional contribution to the total radon levels in the home increases following remediation, leading to the conclusion that where

  7. The influence of mechanical vibrations of railway and car traffics on the radon exhalation using track detector technique

    International Nuclear Information System (INIS)

    Moharram, B.M.

    2000-01-01

    The influence of train and car traffic vibrations on the radon concentration (CRn) increase near the railway tracks and the heavy traffic roads. It was estimated along the railway road, and perpendicular directions using CR-39 detectors. The special radius of the influence is about 32 m, while the related value for car traffics is found to be about 25 m. The base line of radon concentration in soil gas and radon exhalation are estimated in the whole area, far from the center of traffic roads by a distance (> 100 m) in different different directions and found to be 0.6 Bq/L and 1.25 x 10 4 Bq m -2 respectively.It is easy to detect that the average ratio between the radon concentration at its higher level and its base line, which is regular concentration of radon in the ordinary positions far from the effect of traffics, is about 1.18 for railway traffics. While the related value to vehicle traffic is about 1.23, which is higher than that of railway traffic because the ground is stimulated per minutely

  8. Contribution of radon in natural gas to the dose from aiborne radon-daughters in homes

    International Nuclear Information System (INIS)

    Barton, C.J.; Moore, R.E.; Rohwer, P.S.

    1973-01-01

    Data have been obtained on the radon concentration in natural gas supplied to several metropolitan areas in the United States. The average value of 20 pCi/l was selected to estimate the contribution of this source of natural radioactivity to doses from radon-daughters received by individuals in homes. Radon-daughter concentrations in the home atmosphere were calculated by use of computer programs for an 8000 ft 3 house in which 27 ft 3 of gas per day was used for cooking in an unvented kitchen range. The total estimated dose to the bronchial epithelium included contributions from radon plus daughters in the outside ventilation air, each of which was assumed to be present at a concentration of 0.13 pCi/l, and from the radon plus daughters in the natural gas. The latter contribution averaged approximately 3 percent of the total dose. There was a 3.5 percent decrease in the estimated total dose when the air change rate increased from 0.25 to 2.0 per hour. We conclude that radon and radon-daughters entering the home with natural gas produce a negligible fraction of the total dose to the respiratory system of home occupants from airborne radon-daughters

  9. Radon and radon-daughter concentrations in air in the vicinity of the Anaconda Uranium Mill

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, M H; Lindstrom, J B; Dungey, C E; Kisieleski, W E

    1979-11-01

    Radon concentration, working level, and meteorological variables were measured continuously from June 1977 through June 1978 at three stations in the vicinity of the Anaconda Uranium Mill with measurements integrated to hourly intervals. Both radon and daughters show strong variations associated with low wind velocities and stable atmospheric conditions, and diurnal variations associated with thermal inversions. Average radon concentration shows seasonal dependence with highest concentrations observed during fall and winter. Comparison of radon concentrations and working levels between three stations shows strong dependence on wind direction and velocity. Radon concentrations and working-level distributions for each month and each station were analyzed. The average maximum, minimum, and modal concentration and working levels were estimated with observed frequencies. The highest concentration is 11,000 pCi/m/sup 3/ on the tailings. Working-level variations parallel radon variations but lag by less than one hour. The highest working levels were observed at night when conditions of higher secular radioactive equilibrium for radon daughters exist. Background radon concentration was measured at two stations, each located about 25 km from the mill, and the average is 408 pCi/m/sup 3/. Average working-level background is 3.6 x 10/sup -3/.

  10. An investigation into the knowledge and attitudes towards radon testing among residents in a high radon area

    International Nuclear Information System (INIS)

    Clifford, Susan; Menezes, Gerard; Hevey, David

    2012-01-01

    The aim of this study was to investigate the knowledge and attitudes of residents in the Castleisland area to radon. Castleisland in Co. Kerry was described as a high radon area following the discovery of a house in the area with radon levels 245 times that of the national reference level. Residents in this area were then asked to measure their homes for radon in the Castleisland radon survey. The uptake of this measurement was 17%. In order to investigate this response rate further, a questionnaire was designed and distributed to residents in the Castleisland area. This questionnaire measured the testing history of the participants, the reasons for testing/not testing, the factors important to them when considering having their home tested, radon knowledge and finally intentions to measure their home for radon. It was found that the main reason people do not test their home for radon is that they believe their home does not have a problem. Optimistic bias was thought to play a role here. The subjective norm component of the theory of planned behaviour was found to have a significant independent contribution in the variation in intentions to measure one’s home for radon and this in turn could be targeted to increase uptake of radon measurement in the future. (note)

  11. Temporal patterns of lung cancer risk from radon and smoking - consequences to remediation measures

    International Nuclear Information System (INIS)

    Tomasek, L.

    2004-01-01

    Studies of uranium miners conducted since the late 1960s demonstrated that the risk depends on cumulated exposure in terms of working level months (WLM) integrating both duration of exposure and concentration of radon. It has been also demonstrated that the risk from radon decreases with time since exposure. The present analysis of temporal changes of relative risk is based on a model where the total individual exposure is partitioned into components in dependence on time. Exposure to radon is studied in a cohort of 9411 Czech uranium miners with 766 cases of lung cancer and in a residential study of 11 803 inhabitants exposed to radon in houses with 218 cases. In addition, temporal patterns of the risk from smoking are analyzed in a case-control study of patients from a major Prague hospital including 566 cases. For both carcinogens, the relative risk decreases with time since exposure. The risk from exposures before 20-34 years is 36% and 34% in comparison to period 5-19 for smoking and radon, respectively. The effect of exposures from more distant periods 35-49 is only 5% for smoking and 14% for radon in comparison to 5-19 years. This substantial decrease of relative risk with time may contribute to a better evaluation of remediation measures taken in houses and in the cost effectiveness of remediation. Combined effect of smoking and radon is studied by a nested case-control approach including 434 cases and 962 controls. Analyses of the joint effects of smoking and radon, conducted in the occupational and the residential studies, suggest a sub-multiplicative interaction. The relative risk from radon among non-smokers is higher by a factor of 2-3 in comparison to smokers, suggesting different patterns of lung deposition and clearance among smokers and non-smokers. (author)

  12. Radon in dwellings the national radon survey Clare, Limerick and Tipperary

    International Nuclear Information System (INIS)

    McGarry, A.T.; Fennell, S.G.; Mackin, G.M.; Madden, J.S.; O'Colmain, M.

    1998-12-01

    This report presents the results of the fourth phase of the National Radon Survey carried out by the Radiological Protection Institute of Ireland. The counties included in this phase are Clare, Limerick and Tipperary. The average radon concentrations for the houses measured in these counties were 88 Bq/m 3 , 77 Bq/m 3 and 79 Bq/m 3 . The measurement data were grouped on the basis of the 10 km grid squares of the Irish National Grid System and used to predict the percentage of dwellings in each grid square which exceeds the Reference Level of 200 Bq/m 3 . Grid squares where this percentage is predicted to be 10% or higher are designated High Radon Areas. The health effects of exposure to high radon levels are discussed and recommendations are made regarding both new and existing dwellings. (author)

  13. Radon remediation in irish schools

    International Nuclear Information System (INIS)

    Synnott, H.

    2006-01-01

    Full text: Commencing in 1998, the Radiological Protection Institute of Ireland carried out radon measurements in 3826 schools in the Republic of I reland on behalf of the Irish Department of Education and Science (D.E.S.). This represents approximately 97% of all schools in the country. Approximately 25% (984) schools had radon concentrations above the Irish national schools Reference Level for radon of 200 Bq/m 3 and required remedial work. The number of individual rooms with radon concentrations above 200 Bq/m 3 was 3020. Remedial work in schools commenced in early 2000. In general schools with maximum radon concentrations in the range 200 -400 Bq/m 3 in one or more rooms were remediated through the installation of passive systems such as an increase in permanent background ventilation mainly wall vents and trickle vents in windows. Schools with maximum radon concentrations greater than 400 Bq/m 3 were usually remediated through the provision of active systems mainly fan assisted sub -slab de pressurization or where this was not possible fan assisted under floor ventilation. The cost of the remedial programme was funded by central Government. Active systems were installed by specialized remedial contractors working to the specifications of a radon remedial expert appointed by the D.E.S. to design remedial systems for affected schools. Schools requiring increased ventilation were granted aided 190 pounds per affected room and had to organize the work themselves. In most schools radon remediation was successful in reducing existing radon concentrations to below the Reference Level. Average radon concentration reduction factors for sub-slab de pressurization systems and fan assisted fan assisted under floor ventilation ranged from 5 to 40 with greater reduction rates found at higher original radon concentrations. Increasing ventilation in locations with moderately elevated radon concentrations (200 - 400 Bq/m 3 ) while not as effective as active systems produced on

  14. Radon discrimination for work place air samples

    International Nuclear Information System (INIS)

    Bratvold, T.

    1994-01-01

    Gross alpha/beta measurement systems are designed solely to identify an incident particle as either an alpha or a beta and register a count accordingly. The tool of choice for radon identification, via decay daughters, is an instrument capable of identifying the energy of incident alpha particles and storing that information separately from detected alpha emissions of different energy. In simpler terms, the desired instrument is an alpha spectroscopy system. K Basins Radiological Control (KBRC) procured an EG ampersand G ORTEC OCTETE PC alpha spectroscopy system to facilitate radon identification on work place air samples. The alpha spectrometer allows for the identification of any alpha emitting isotope based on characteristic alpha emission energies. With this new capability, KBRC will explicitly know whether or not there exists a true airborne concern. Based on historical air quality data, this new information venue will reduce the use of respirators substantially. Situations where an area remains ''on mask'' due solely to the presence of radon daughters on the grab air filter will finally be eliminated. This document serves to introduce a new method for radon daughter detection at the 183KE Health Physics Analytical Laboratory (HPAL). A new work place air sampling analysis program will be described throughout this paper. There is no new technology being introduced, nor any unproven analytical process. The program defined over the expanse of this document simply explains how K Basins Radiological Control will employ their alpha spectrometer

  15. Toward resolving model-measurement discrepancies of radon entry into houses

    International Nuclear Information System (INIS)

    Garbesi, K.; Lawrence Berkeley Lab., CA

    1994-10-01

    Analysis of the literature indicated that radon transport models significantly and consistently underpredict the advective entry into houses of soil-gas borne radon. Advective entry is the dominant mechanism resulting in high concentrations of radon indoors. The author investigated the source of the model-measurement discrepancy via carefully controlled field experiments conducted at an experimental basement located in natural soil in Ben Lomond, California. Early experiments at the structure confirmed the existence and magnitude of the model-measurement discrepancy, ensuring that it was not merely an artifact of inherently complex and poorly understood field sites. The measured soil-gas entry rate during structure depressurization was found to be an order of magnitude larger than predicted by a current three-dimensional numerical model of radon transport. The exact magnitude of the discrepancy depends on whether the arithmetic or geometric mean of the small-scale measurements of permeability is used to estimate the effective permeability of the soil. This factor is a critical empirical input to the model and was determined for the Ben Lomond site in the typical fashion using single-probe static depressurization measurements at multiple locations. The remainder of the dissertation research tests a hypothesis to explain the observed discrepancy: that soil permeability assessed using relatively small-scale probe measurements does not reflect bulk soil permeability for flows that is likely to occur at larger scales of several meters or more in real houses and in the test structure. The idea is that soil heterogeneity is of a nature that, as flows occur over larger scales, larger scales of heterogeneity are encountered that facilitate larger flux rates, resulting in a scale dependence of effective soil permeability

  16. RECOMMENDED FOUNDATION FILL MATERIALS CONSTRUCTION STANDARD OF THE FLORIDA RADON RESEARCH PROGRAM

    Science.gov (United States)

    The report summarizes the technical basis for a recommended foundation fill materials standard for new construction houses in Florida. he radon-control construction standard was developed by the Florida Radon Research Program (FRRP). ill material standards are formulated for: (1)...

  17. Radon risk communication research: Practical lessons

    International Nuclear Information System (INIS)

    Fisher, A.; Johnson, F.R.

    1990-01-01

    Those responsible for state and local radon programs often express frustration about the small share of homes that have been tested for radon, and the small share of those with high readings that have been mitigated. There are now a number of completed studies that have examined how well alternative ways of communicating about radon risk have accomplished the goals of motivating appropriate testing and mitigation. This paper summarizes the research results that are most crucial for planning and implementing effective radon risk communication programs. We identify six reasons why people do not respond to radon as a serious threat and provide some remedies suggested by radon studies

  18. Diffusive transport of radon in a homogeneous column of dry sand

    NARCIS (Netherlands)

    van der Spoel, W.H.; van der Graaf, E.R.; de Meijer, R.J.

    To validate a model for radon transport in soil, measurements of diffusive radon transport under well-defined and controlled conditions have been made in a homogeneous column of dry sand with an air-filled volume on top. This volume simulates a crawl space. The measurements concern time-dependent

  19. Design issues in studies of radon and lung cancer: Implications of the joint effect of smoking and radon

    International Nuclear Information System (INIS)

    Upfal, M.; Divine, G.; Siemiatycki, J.

    1995-01-01

    Many case-control studies have been undertaken to assess whether and to what extent residential radon exposure is a risk factor for lung cancer. Nearly all these studies have been conducted in populations including smokers and nonsmokers. In this paper, we show that, depending on the nature of the joint effect of radon and tobacco on lung cancer risk, it may be very difficult to detect a main effect due to radon in mixed smoking and nonsmoking populations. If the joint effect is closer to additive than multiplicative, the most cost-effective way to achieve adequate statistical power may be to conduct a study among never-smokers. Because the underlying joint effect is unknown, and because many studies have been carried out among mixed smoker and nonsmoker populations, it would be desirable to conduct some studies with adequate power among never-smokers only. 30 refs., 4 figs., 2 tabs

  20. Radon hazard from caisson and tunnel construction in Kong Kong

    International Nuclear Information System (INIS)

    Lam, W.K.; Tsin, T.W.; Ng, T.P.

    1988-01-01

    A possible occupational risk of caisson and tunnel excavation in Hong Kong results from the inhalation of natural radon daughters. In this study radon daughter concentrations ranging from 0.001 to 71.4 WL were recorded in caissons of various dimensions and from 0.03 to 0.95 WL in tunnels over 1 km in length under construction (ICRP exposure limit being 0.4 WL). There was clear indication of increased radon daughter accumulation in confined and unventilated areas and in unventilated caissons an exponential increase of radon daughter concentration with the ratio of depth to cross-sectional area was observed (r=0.9). The study revealed a potential radiation hazard facing underground construction workers and this is being examined by an ongoing epidemiological cohort study: meanwhile environmental control should be improved. (UK)

  1. Radon detection system, design, test and performance

    International Nuclear Information System (INIS)

    Balcazar, M.; Chavez, A.; Pina-Villalpando, G.; Navarrete, M.

    1999-01-01

    A portable radon detection system (α-Inin) has been designed and constructed for using it in adverse environmental conditions where humidity, temperature and chemical vaporous are present. The minimum integration time is in periods of 15 min during 41 days. A 12 V battery and a photovoltaic module allow the α-Inin autonomy in field measurements. Data is collected by means of a laptop computer where data processing and α-Inin programming are carried out. α-Inin performance was simultaneously tested in a controlled radon chamber, together with a commercial α-Meter

  2. Ground-truthing predicted indoor radon concentrations by using soil-gas radon measurements

    International Nuclear Information System (INIS)

    Reimer, G.M.

    2001-01-01

    Predicting indoor radon potential has gained in importance even as the national radon programs began to wane. A cooperative study to produce radon potential maps was conducted by the Environmental Protection Agency (EPA), U.S. Geological Survey (USGS), Department of Energy (DOE), and Lawrence Berkeley Laboratory (LBL) with the latter taking the lead role. A county-wide predictive model based dominantly on the National Uranium Resource Evaluation (NURE) aerorad data and secondly on geology, both small-scale data bases was developed. However, that model breaks down in counties of complex geology and does not provide a means to evaluate the potential of an individual home or building site. Soil-gas radon measurements on a large scale are currently shown to provide information for estimating radon potential at individual sites sort out the complex geology so that the small-scale prediction index can be validated. An example from Frederick County, Maryland indicates a positive correlation between indoor measurements and soil-gas data. The method does not rely on a single measurement, but a series that incorporate seasonal and meteorological considerations. (author)

  3. Measurements of radon in drinking water (Curitiba, PR, Brazil)

    International Nuclear Information System (INIS)

    Correa, Janine Nicolosi; Paschuk, Sergei A.; Schelin, Hugo R.; Barbosa, Laercio; Sadula, Tatyana; Matsuzaki, Cristiana A.

    2009-01-01

    Full text: Among the principle mechanisms that bring the radon inside the dwelling is the exhalation and release from the water. It was evaluated that considering the latest mechanism, the exhalation of radon from the water represents about 89% of the cancer risk and the consumption of water with high concentration of radon is related to about 11% of risk cancer. Radon concentration in water could be subject of different factors such as the geology of the area, bottom sediments and inputs from streams, temperature, atmospheric pressure, etc. It is well known that the solubility of radon in water is about 510 cm 3 kg -1 at 0 deg C and decreases at higher temperatures. The 222 Rn concentration in various types of natural water in different countries usually is about few Bq/L and is the subject of the National legislation as well as International norms and recommendations. For example, the United States Environmental Protection Agency (USEPA) established a limit of 11.1 Bq/L for the radon level in drinking water and this limit is considered as guideline in Canada and many countries of the European Union. Current work presents the results of more than 100 measurements of 222 Rn activity in drinking water collected at artesian bores at Curitiba region during the period of 2008 - 2009. The measurements were performed at the Laboratory of Applied Nuclear Physics of the Federal University of Technology in cooperation with the Nuclear Technology Development Center (CDTN) of Brazilian Nuclear Energy Committee (CNEN). Experimental setup was based on the Professional Radon Monitor (ALPHA GUARD) connected to specific kit of glass vessels Aqua KIT through the air pump. The equipment was adjusted with air flow of 0.5 L/min. The 222 Rn concentration levels were detected and analyzed by the computer using the software DataEXPERT by GENITRON Instruments. Collected average levels of 222 Rn concentration were processed taking into account the volume of water sample and its temperature

  4. Investigation of radon level in Chongqing

    International Nuclear Information System (INIS)

    Pan Chunzhen; Liu Jialie; Du Hengyan; Wang Ling; Li Yiwei

    2009-01-01

    Contents of radon in air in the urban district, building fields,diggings and hotel in Chongqing were investigated. Result shows that the mean concentration of radon is 10.8 Bq/m 3 in air in the urban district, and the mean concentration of radon is 1193 Bq/m 3 in soils on building fields. Radon level is obviously different in each of diggings, with the highest being in fluorite mine and the second in plumbum and zinc mine. The statistical mean value of radon concentration of 10 typles of diggings investigated is 65.2 Bq/m 3 , while the mean concentration of radon in fluorite mine is 369 Bq/m 3 , which is 35 times higher than in the urban area. The mean concentration of radon is 32.9 Bq/m 3 in eight hotels. (authors)

  5. Paloma-radon: atmospheric radon 222 as a geochemical probe for water in the martian subsoil

    International Nuclear Information System (INIS)

    Sabroux, J.Ch.; Michielsen, N.; Voisin, V.

    2003-01-01

    Radon exhalation from a porous soil is known to depend strongly on the soil moisture content: a minute amount of water, or water ice, in the pore space increases dramatically the possibility for radon to migrate far from its parent mineral. We propose to take advantage of this characteristic by using atmospheric radon 222 as a geochemical probe for water in the Martian soil, at least one order of magnitude deeper than the current Mars Odyssey neutron data. Strong thermal inversions during the Martian night will accumulate radon in the lowest atmospheric boundary layer, up to measurable levels despite the comparatively high environmental (cosmic and solar) background radiation and the assumed low uranium content of the upper crust of the planet. Preliminary studies and development of an instrument for the measurement of the Martian atmospheric alpha radioactivity is part of the CNES supported PALOMA experiment. Two test benches have been implemented, one of them allowing differential measurements of the diffusion of radon in the Martian soil simulant NASA JSC Mars-1, under relevant temperatures and pressures. The other, a 1 m3 radon-dedicated test bench, aims to characterize the instrument that will measure radon in the Mars environment (7 mb CO 2 ). Tests on several nuclear radiation detectors show that semiconductor alpha-particle detectors (PIPS) are the best option. In addition, the detection volume is left open in order to capitalize upon the long (ca. 4 m) alpha track at this low pressure. A stationary diffusion model was developed in order to assess the radon flux at the Mars soil surface. Diffusion of gas in Martian soil is governed by Knudsen diffusion. The radon Knudsen diffusion coefficient was estimated, depending on the soil moisture and relevant structural properties, leading to a radon diffusion length of the order of 20 m. The landed platform PALOMA-Radon instrument will consist of a set of alpha detectors connected to an electronic spectrometer, a

  6. Paloma-radon: atmospheric radon 222 as a geochemical probe for water in the martian subsoil

    Energy Technology Data Exchange (ETDEWEB)

    Sabroux, J.Ch.; Michielsen, N.; Voisin, V

    2003-07-01

    Radon exhalation from a porous soil is known to depend strongly on the soil moisture content: a minute amount of water, or water ice, in the pore space increases dramatically the possibility for radon to migrate far from its parent mineral. We propose to take advantage of this characteristic by using atmospheric radon 222 as a geochemical probe for water in the Martian soil, at least one order of magnitude deeper than the current Mars Odyssey neutron data. Strong thermal inversions during the Martian night will accumulate radon in the lowest atmospheric boundary layer, up to measurable levels despite the comparatively high environmental (cosmic and solar) background radiation and the assumed low uranium content of the upper crust of the planet. Preliminary studies and development of an instrument for the measurement of the Martian atmospheric alpha radioactivity is part of the CNES supported PALOMA experiment. Two test benches have been implemented, one of them allowing differential measurements of the diffusion of radon in the Martian soil simulant NASA JSC Mars-1, under relevant temperatures and pressures. The other, a 1 m3 radon-dedicated test bench, aims to characterize the instrument that will measure radon in the Mars environment (7 mb CO{sub 2}). Tests on several nuclear radiation detectors show that semiconductor alpha-particle detectors (PIPS) are the best option. In addition, the detection volume is left open in order to capitalize upon the long (ca. 4 m) alpha track at this low pressure. A stationary diffusion model was developed in order to assess the radon flux at the Mars soil surface. Diffusion of gas in Martian soil is governed by Knudsen diffusion. The radon Knudsen diffusion coefficient was estimated, depending on the soil moisture and relevant structural properties, leading to a radon diffusion length of the order of 20 m. The landed platform PALOMA-Radon instrument will consist of a set of alpha detectors connected to an electronic spectrometer

  7. Radon Concentration in Caves of Croatia - Assesing Effective Radon Doses for Occupational Workers and Visitors

    International Nuclear Information System (INIS)

    Radolic, V.; Miklavcic, I.; Poje, M.; Stanic, D.; Vukovic, B.; Paar, D.

    2011-01-01

    Radon monitoring at potentially highly radioactive location such as caves is important to assess the radiological hazards to occupational workers and occasional visitors. In its Publication 65 the ICRP has produced recommendations dealing with exposure to elevated background radiation, in particular, the risk associated with the inhalation of radon and radon progeny. Recommended annual effective dose from radon 222Rn and its short-lived progeny for workers should not exceed 20 mSv and for occasional users (visitors) the same recommendation is 1 mSv. Measurements were performed with series of track etched detectors (LR115 - type II) in several caves in Croatia. The obtained values for the radon concentration ranged from ambient values up to several thousand Bq m -3 . Radon concentration was measured in about 20 caves of Velebit and Zumberak mountains and the highest radon concentration was in Lubuska jama (3.8 kBq m -3 ) and cave Dolaca (21.8 kBq m -3 ), respectively. Djurovica cave is especially interesting because of its huge tourist potential due to its location bellow Dubrovnik airport. Its mean annual radon concentration of 17.6 kBq m -3 classifies Djurovica cave among caves with high radon concentration. A visitor during half an hour visit at summer time would receive an effective dose of 30.6 μSv. Calculated mean dose rate of 44 μSv/h means that workers (mainly tourist guides) should limit their time inside cave to 454 hours per year. Manita pec is the only cave open for tourists on the territory of Paklenica National Park. The preliminary radon measurements performed during summer 2010, gave an average radon concentration of 1.1 kBq m -3 . An exposure to average dose rate of 3.7 μSv/h means that the tourist guides would receive an effective dose of 0.42 mSv during summer period according to their working schedule. A visitor during half an hour visits would receive an effective dose of 1.86 μSv. (author)

  8. Measurement of the radon exhalation rate from the medium surface by tracing the radon concentration

    International Nuclear Information System (INIS)

    Yanliang Tan; Detao Xiao

    2013-01-01

    The paper will present a method based on the accumulation chamber technique for measuring of radon exhalation from the medium surface. A radon monitor traces the change of radon concentration in the accumulation chamber, and then the radon exhalation can be obtained accurately through linear fit. Based on our recent experiments, the radon exhalation rate from the medium surface obtained from this method is in good agreement with the actual exhalation rate of our simulation facility. This method is superior to the competition method which obtains the radon exhalation through the exponential fit by an external PC-system. The calculation for the exponen