WorldWideScience

Sample records for mechanical stimulation technique

  1. Probing cell structure responses through a shear and stretching mechanical stimulation technique.

    Science.gov (United States)

    Steward, Robert L; Cheng, Chao-Min; Wang, Danny L; LeDuc, Philip R

    2010-04-01

    Cells are complex, dynamic systems that respond to various in vivo stimuli including chemical, mechanical, and scaffolding alterations. The influence of mechanics on cells is especially important in physiological areas that dictate what modes of mechanics exist. Complex, multivariate physiological responses can result from multi-factorial, multi-mode mechanics, including tension, compression, or shear stresses. In this study, we present a novel device based on elastomeric materials that allowed us to stimulate NIH 3T3 fibroblasts through uniaxial strip stretching or shear fluid flow. Cell shape and structural response was observed using conventional approaches such as fluorescent microscopy. Cell orientation and actin cytoskeleton alignment along the direction of applied force were observed to occur after an initial 3 h time period for shear fluid flow and static uniaxial strip stretching experiments although these two directions of alignment were oriented orthogonal relative to each other. This response was then followed by an increasingly pronounced cell and actin cytoskeleton alignment parallel to the direction of force after 6, 12, and 24 h, with 85% of the cells aligned along the direction of force after 24 h. These results indicate that our novel device could be implemented to study the effects of multiple modes of mechanical stimulation on living cells while probing their structural response especially with respect to competing directions of alignment and orientation under these different modes of mechanical stimulation. We believe that this will be important in a diversity of fields including cell mechanotransduction, cell-material interactions, biophysics, and tissue engineering.

  2. Uncovering the mechanism(s) of deep brain stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Li Gang; Yu Chao; Lin Ling; Lu, Stephen C-Y [Inspiring Technical Laboratory, College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072 (China)

    2005-01-01

    Deep brain stimulators, often called 'pacemakers for the brain', are implantable devices which continuously deliver impulse stimulation to specific targeted nuclei of deep brain structure, namely deep brain stimulation (DBS). To date, deep brain stimulation (DBS) is the most effective clinical technique for the treatment of several medically refractory movement disorders (e.g., Parkinson's disease, essential tremor, and dystonia). In addition, new clinical applications of DBS for other neurologic and psychiatric disorders (e.g., epilepsy and obsessive-compulsive disorder) have been put forward. Although DBS has been effective in the treatment of movement disorders and is rapidly being explored for the treatment of other neurologic disorders, the scientific understanding of its mechanisms of action remains unclear and continues to be debated in the scientific community. Optimization of DBS technology for present and future therapeutic applications will depend on identification of the therapeutic mechanism(s) of action. The goal of this review is to address our present knowledge of the effects of high-frequency stimulation within the central nervous system and comment on the functional implications of this knowledge for uncovering the mechanism(s) of DBS.

  3. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation

    Science.gov (United States)

    Andrews, Russell J.

    2003-01-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  4. NQR Stimulation Technique for Explosives Detection System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A method of customization stimulation signal based on direct digital frequency synthesis (DDS) for Nuclear Quadrapole Resonance Explosives Detection System is presented. DDS has many advantages, such as high frequency resolution, high convert speed,

  5. Mechanisms of osteocyte stimulation in osteoporosis.

    Science.gov (United States)

    Verbruggen, Stefaan W; Vaughan, Ted J; McNamara, Laoise M

    2016-09-01

    Experimental studies have shown that primary osteoporosis caused by oestrogen-deficiency results in localised alterations in bone tissue properties and mineral composition. Additionally, changes to the lacunar-canalicular architecture surrounding the mechanosensitive osteocyte have been observed in animal models of the disease. Recently, it has also been demonstrated that the mechanical stimulation sensed by osteocytes changes significantly during osteoporosis. Specifically, it was shown that osteoporotic bone cells experience higher maximum strains than healthy bone cells after short durations of oestrogen deficiency. However, in long-term oestrogen deficiency there was no significant difference between bone cells in healthy and normal bone. The mechanisms by which these changes arise are unknown. In this study, we test the hypothesis that complex changes in tissue composition and lacunar-canalicular architecture during osteoporosis alter the mechanical stimulation of the osteocyte. The objective of this research is to employ computational methods to investigate the relationship between changes in bone tissue composition and microstructure and the mechanical stimulation of osteocytes during osteoporosis. By simulating physiological loading, it was observed that an initial decrease in tissue stiffness (of 0.425GPa) and mineral content (of 0.66wt% Ca) relative to controls could explain the mechanical stimulation observed at the early stages of oestrogen deficiency (5 weeks post-OVX) during in situ bone cell loading in an oestrogen-deficient rat model of post-menopausal osteoporosis (Verbruggen et al., 2015). Moreover, it was found that a later increase in stiffness (of 1.175GPa) and mineral content (of 1.64wt% Ca) during long-term osteoporosis (34 weeks post-OVX), could explain the mechanical stimuli previously observed at a later time point due to the progression of osteoporosis. Furthermore, changes in canalicular tortuosity arising during osteoporosis were shown

  6. Optically stimulated luminescence techniques in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Murray, A.S.

    2001-01-01

    Optically stimulated luminescence signals from natural quartz and feldspar are now used routinely in dating geological and archaeological materials. More recently they have also been employed in accident dosimetry, i.e. the retrospective assessment of doses received as a result of a nuclear...

  7. Mechanical Stimulation by Postnasal Drip Evokes Cough.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Iwata

    Full Text Available Cough affects all individuals at different times, and its economic burden is substantial. Despite these widespread adverse effects, cough research relies on animal models, which hampers our understanding of the fundamental cause of cough. Postnasal drip is speculated to be one of the most frequent causes of chronic cough; however, this is a matter of debate. Here we show that mechanical stimuli by postnasal drip cause chronic cough. We distinguished human cough from sneezes and expiration reflexes by airflow patterns. Cough and sneeze exhibited one-peak and two-peak patterns, respectively, in expiratory airflow, which were also confirmed by animal models of cough and sneeze. Transgenic mice with ciliary dyskinesia coughed substantially and showed postnasal drip in the pharynx; furthermore, their cough was completely inhibited by nasal airway blockade of postnasal drip. We successfully reproduced cough observed in these mice by injecting artificial postnasal drip in wild-type mice. These results demonstrated that mechanical stimulation by postnasal drip evoked cough. The findings of our study can therefore be used to develop new antitussive drugs that prevent the root cause of cough.

  8. Mechanical Stimulation by Postnasal Drip Evokes Cough.

    Science.gov (United States)

    Iwata, Toshiyuki; Ito, Isao; Niimi, Akio; Ikegami, Koji; Marumo, Satoshi; Tanabe, Naoya; Nakaji, Hitoshi; Kanemitsu, Yoshihiro; Matsumoto, Hisako; Kamei, Junzo; Setou, Mitsutoshi; Mishima, Michiaki

    2015-01-01

    Cough affects all individuals at different times, and its economic burden is substantial. Despite these widespread adverse effects, cough research relies on animal models, which hampers our understanding of the fundamental cause of cough. Postnasal drip is speculated to be one of the most frequent causes of chronic cough; however, this is a matter of debate. Here we show that mechanical stimuli by postnasal drip cause chronic cough. We distinguished human cough from sneezes and expiration reflexes by airflow patterns. Cough and sneeze exhibited one-peak and two-peak patterns, respectively, in expiratory airflow, which were also confirmed by animal models of cough and sneeze. Transgenic mice with ciliary dyskinesia coughed substantially and showed postnasal drip in the pharynx; furthermore, their cough was completely inhibited by nasal airway blockade of postnasal drip. We successfully reproduced cough observed in these mice by injecting artificial postnasal drip in wild-type mice. These results demonstrated that mechanical stimulation by postnasal drip evoked cough. The findings of our study can therefore be used to develop new antitussive drugs that prevent the root cause of cough.

  9. Photothermal and mechanical stimulation of cells via dualfunctional nanohybrids

    Science.gov (United States)

    Chechetka, Svetlana A.; Doi, Motomichi; Pichon, Benoit P.; Bégin-Colin, Sylvie; Miyako, Eijiro

    2016-11-01

    Stimulating cells by light is an attractive technology to investigate cellular function and deliver innovative cell-based therapy. However, current techniques generally use poorly biopermeable light, which prevents broad applicability. Here, we show that a new type of composite nanomaterial, synthesized from multi-walled carbon nanotubes, magnetic iron nanoparticles, and polyglycerol, enables photothermal and mechanical control of Ca2+ influx into cells overexpressing transient receptor potential vanilloid type-2. The nanohybrid is simply operated by application of highly biotransparent near-infrared light and a magnetic field. The technology may revolutionize remote control of cellular function.

  10. Mechanism of adrenergic stimulation of hepatic ketogenesis.

    Science.gov (United States)

    Kosugi, K; Harano, Y; Nakano, T; Suzuki, M; Kashiwagi, A; Shigeta, Y

    1983-11-01

    The effects of alpha- and beta-adrenergic stimulation on ketogenesis were examined in freshly isolated rat hepatocytes in order to determine which alpha- or beta-adrenergic stimulation is involved in the enhancement of ketogenesis. In the presence of 0.3 mmol/L (U-14C)-palmitate, epinephrine, norepinephrine, and phenylephrine at 500 ng/mL increased ketogenesis by 25% (16.0 +/- 0.17 v 12.8 +/- 0.13 nmol/mg protein per hour), 20% (15.3 +/- 0.28) and 20% (15.4 +/- 0.36), respectively. However, isoproterenol even at 1 microgram/mL did not stimulate ketogenesis. Phentolamine (5 micrograms/mL) almost completely abolished the effect of epinephrine on ketogenesis (13.7 +/- 0.30 v 16.0 +/- 0.17) but propranolol did not inhibit the stimulation by epinephrine (15.6 +/- 0.38 v 16.0 +/- 0.17). Trifluoperazine (10 mumol/L), presumably an inhibitor of calcium-dependent protein kinase, abolished the effect of epinephrine (13.6 +/- 0.22 v 16.0 +/- 0.17). These results indicate that catecholamines increase ketogenesis predominantly through the alpha-adrenergic system independent of cyclic AMP, and calcium-dependent protein kinase is thought to be involved in the activation of ketogenesis. On the other hand, glucagon stimulated ketogenesis with an increase of cyclic AMP, which was not inhibited by alpha- and beta-adrenergic antagonists. Alpha-adrenergic stimulation increased hepatic glycogenolysis much more at much lower concentrations when compared with ketogenesis. Stimulation of ketogenesis by catecholamines seemed to be less sensitive and responsive compared with hepatic glycogenolysis.

  11. Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    H Nikukar

    2014-05-01

    We observed significant responses after 1 and 2-week stimulations in cell number, cell shapes and phenotypical markers. Microarray was performed for all groups. Cell count showed normal cell growth with stimulation. However, cell surface area, cell perimeter, and arboration after 1-week stimulation showed significant increases. Immunofluorescent studies have showed significant increase in osteocalcin production after stimulation. Conclusions: Nanoscale mechanical vibration showed significant changes in human mesenchymal stem cell behaviours. Cell morphology changed to become more polygonal and increased expression of the osteoblast markers were noted. These findings with gene regulation changes suggesting nanoscale mechanostimulation has stimulated osteoblastogenesis.  Keywords:  Mesenchymal, Nanoscale, Stem Cells.

  12. Mechanisms and Effects of Transcranial Direct Current Stimulation

    Science.gov (United States)

    Giordano, James; Bikson, Marom; Kappenman, Emily S.; Clark, Vincent P.; Coslett, H. Branch; Hamblin, Michael R.; Hamilton, Roy; Jankord, Ryan; Kozumbo, Walter J.; McKinley, R. Andrew; Nitsche, Michael A.; Reilly, J. Patrick; Richardson, Jessica; Wurzman, Rachel

    2017-01-01

    The US Air Force Office of Scientific Research convened a meeting of researchers in the fields of neuroscience, psychology, engineering, and medicine to discuss most pressing issues facing ongoing research in the field of transcranial direct current stimulation (tDCS) and related techniques. In this study, we present opinions prepared by participants of the meeting, focusing on the most promising areas of research, immediate and future goals for the field, and the potential for hormesis theory to inform tDCS research. Scientific, medical, and ethical considerations support the ongoing testing of tDCS in healthy and clinical populations, provided best protocols are used to maximize safety. Notwithstanding the need for ongoing research, promising applications include enhancing vigilance/attention in healthy volunteers, which can accelerate training and support learning. Commonly, tDCS is used as an adjunct to training/rehabilitation tasks with the goal of leftward shift in the learning/treatment effect curves. Although trials are encouraging, elucidating the basic mechanisms of tDCS will accelerate validation and adoption. To this end, biomarkers (eg, clinical neuroimaging and findings from animal models) can support hypotheses linking neurobiological mechanisms and behavioral effects. Dosage can be optimized using computational models of current flow and understanding dose–response. Both biomarkers and dosimetry should guide individualized interventions with the goal of reducing variability. Insights from other applied energy domains, including ionizing radiation, transcranial magnetic stimulation, and low-level laser (light) therapy, can be prudently leveraged. PMID:28210202

  13. Triple-stimulation technique in multifocal neuropathy with conduction block.

    Science.gov (United States)

    Deroide, Nicolas; Uzenot, David; Verschueren, Annie; Azulay, Jean-Philippe; Pouget, Jean; Attarian, Shahram

    2007-05-01

    In patients with multifocal neuropathy with conduction block (CB), CBs located between the root and Erb's point are not detected in nerve conduction studies. We therefore examined whether the triple-stimulation technique (TST) might provide a useful means of detecting CB proximal to Erb's point. Clinical assessments, extensive nerve conduction studies (NCS), conventional transcranial magnetic stimulation, and TST were performed on 10 patients with multifocal motor neuropathy with CB (MMNCB) and 6 patients with Lewis-Sumner syndrome. Conduction blocks located proximal to Erb's point were detected in 9 patients. Of the CBs, 58% were associated with muscle weakness. The use of TST to detect proximal CB improved the sensitivity of the American Association of Neuromuscular and Electrodiagnostic Medicine criteria for definite or probable MMNCB from 60% to 90%. Thus, the TST is a useful means for detection of proximal CB and gives NCS considerable additional diagnostic power.

  14. Comparative Evaluation of Tactile Sensation by Electrical and Mechanical Stimulation.

    Science.gov (United States)

    Yem, Vibol; Kajimoto, Hiroyuki

    2017-01-01

    An electrotactile display is a tactile interface that provides tactile perception by passing electrical current through the surface of the skin. It is actively used instead of mechanical tactile displays for tactile feedback because of several advantages such as its small and thin size, light weight, and high responsiveness. However, the similarities and differences between these sensations is still not clear. This study directly compares the intensity sensation of electrotactile stimulation to that of mechanical stimulation, and investigates the characteristic sensation of anodic and cathodic stimulation. In the experiment, participants underwent a 30 pps electrotactile stimulus every one second to their middle finger, and were asked to match this intensity by adjusting the intensity of a mechanical tactile stimulus to an index finger. The results showed that anodic stimulation mainly produced vibration sensation, whereas cathodic sensation produced both vibration and pressure sensations. Relatively low pressure sensation was also observed for anodic stimulation but it remains low, regardless of the increasing of electrical intensity.

  15. Electric-field-stimulated protein mechanics.

    Science.gov (United States)

    Hekstra, Doeke R; White, K Ian; Socolich, Michael A; Henning, Robert W; Šrajer, Vukica; Ranganathan, Rama

    2016-12-15

    The internal mechanics of proteins-the coordinated motions of amino acids and the pattern of forces constraining these motions-connects protein structure to function. Here we describe a new method combining the application of strong electric field pulses to protein crystals with time-resolved X-ray crystallography to observe conformational changes in spatial and temporal detail. Using a human PDZ domain (LNX2(PDZ2)) as a model system, we show that protein crystals tolerate electric field pulses strong enough to drive concerted motions on the sub-microsecond timescale. The induced motions are subtle, involve diverse physical mechanisms, and occur throughout the protein structure. The global pattern of electric-field-induced motions is consistent with both local and allosteric conformational changes naturally induced by ligand binding, including at conserved functional sites in the PDZ domain family. This work lays the foundation for comprehensive experimental study of the mechanical basis of protein function.

  16. Mechanisms of Cochlear Stimulation Through the Round Window

    Science.gov (United States)

    Lukashkin, Andrei N.; Weddell, Thomas; Russell, Ian J.

    2011-11-01

    The round window membrane (RW) functions as a pressure relief valve in conventional hearing allowing structures of the middle ear to move. Investigations in recent years have shown that middle ear implants can be used to stimulate the cochlea via the RW. Isolated clinical uses of this technique have been applied but more thorough theoretical and empirical studies are required. Using guinea pigs as test subjects we have investigated physiological effects of RW stimulation using a simulation of active middle ear prosthesis, a cylindrical neodymium iron boron disk magnet placed upon the RW which can be stimulated by an electromagnetic coil positioned in close proximity to the magnet.

  17. Identifying irradiated flours by photo-stimulated luminescence technique

    Science.gov (United States)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-02-01

    Photo-stimulated luminescence (PSL) technique was used in this study to detect gamma irradiation treatment of five types of flours (corn, rice, tapioca, wheat and glutinous rice) at four different doses 0, 0.2, .05 and 1kGy. The signal level was compared with two threshold values (700 and 5000). With the exception of glutinous rice, all irradiated samples produced a strong signal above the upper threshold (5000 counts/60s). All control samples produced negative result with the signals below the lower threshold (700 counts/60s) suggesting that the samples have not been irradiated. Irradiated glutinous rice samples produced intermediate signals (700 - 5000 counts/60s) which were subsequently confirmed using calibrated PSL. The PSL signals remained stable after 90 days of storage. The findings of this study will be useful to facilitate control of food irradiation application in Malaysia.

  18. Identifying irradiated flours by photo-stimulated luminescence technique

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi [Faculty of Science and Technology, National University of Malaysia, Bangi, 43000 Kajang, Selangor (Malaysia); Othman, Zainon; Abdullah, Wan Saffiey Wan [Malaysian Nuclear Agency, Bangi 43000 Kajang, Selangor (Malaysia)

    2014-02-12

    Photo-stimulated luminescence (PSL) technique was used in this study to detect gamma irradiation treatment of five types of flours (corn, rice, tapioca, wheat and glutinous rice) at four different doses 0, 0.2, .05 and 1kGy. The signal level was compared with two threshold values (700 and 5000). With the exception of glutinous rice, all irradiated samples produced a strong signal above the upper threshold (5000 counts/60s). All control samples produced negative result with the signals below the lower threshold (700 counts/60s) suggesting that the samples have not been irradiated. Irradiated glutinous rice samples produced intermediate signals (700 - 5000 counts/60s) which were subsequently confirmed using calibrated PSL. The PSL signals remained stable after 90 days of storage. The findings of this study will be useful to facilitate control of food irradiation application in Malaysia.

  19. Nociceptive responses to thermal and mechanical stimulations in awake pigs

    DEFF Research Database (Denmark)

    di Giminiani, Pierpaolo; Petersen, Lars Jelstrup; Herskin, Mette S.

    2013-01-01

    animal studies in a large species require further examination. This manuscript describes the initial development of a porcine model of cutaneous nociception and focuses on interactions between the sensory modality, body size and the anatomical location of the stimulation site. METHODS: Pigs of different...... significantly lower pain thresholds (shorter latency to response) than large pigs to thermal and mechanical stimulations. Stimulations at the two anatomical locations elicited very distinct sets of behavioural responses, with different levels of sensitivity between the flank and the hind legs. Furthermore...

  20. Vagus nerve stimulation for epilepsy: A review of central mechanisms

    OpenAIRE

    Krahl, Scott E.; Clark, Kevin B.

    2012-01-01

    In a previous paper, the anatomy and physiology of the vagus nerve was discussed in an attempt to explain which vagus nerve fibers and branches are affected by clinically relevant electrical stimulation. This companion paper presents some of vagus nerve stimulation's putative central nervous system mechanisms of action by summarizing known anatomical projections of vagal afferents and their effects on brain biogenic amine pathways and seizure expression.

  1. Sciatic nerve block performed with nerve stimulation technique in an amputee a case study

    DEFF Research Database (Denmark)

    Heiring, C.; Kristensen, Billy

    2008-01-01

    We present a case of a sciatic nerve block performed with the nerve stimulation technique. This technique is normally not used in amputees because detection of a motor response to an electrical stimulation is impossible. In our patient the stimulation provoked a phantom sensation of movement...

  2. Physiological Mechanisms in Combined Electric-Acoustic Stimulation.

    Science.gov (United States)

    Sato, Mika; Baumhoff, Peter; Tillein, Jochen; Kral, Andrej

    2017-09-01

    Electrical stimulation is normally performed on ears that have no hearing function, i.e., lack functional hair cells. The properties of electrically-evoked responses in these cochleae were investigated in several previous studies. Recent clinical developments have introduced cochlear implantation (CI) in residually-hearing ears to improve speech understanding in noise. The present study documents the known physiological differences between electrical stimulation of hair cells and of spiral ganglion cells, respectively, and reviews the mechanisms of combined electric and acoustic stimulation in the hearing ears. Literature review from 1971 to 2016. Compared with pure electrical stimulation the combined electroacoustic stimulation provides additional low-frequency information and expands the dynamic range of the input. Physiological studies document a weaker synchronization of the evoked activity in electrically stimulated hearing ears compared with deaf ears that reduces the hypersynchronization of electrically-evoked activity. The findings suggest the possibility of balancing the information provided by acoustic and electric input using stimulus intensity. Absence of distorting acoustic-electric interactions allows exploiting these clinical benefits of electroacoustic stimulation.

  3. Unraveling the cellular and molecular mechanisms of repetitive magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Florian eMüller-Dahlhaus

    2013-12-01

    Full Text Available Despite numerous clinical studies, which have investigated the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS in various brain diseases, our knowledge of the cellular and molecular mechanisms underlying rTMS-based therapies remains limited. Thus, a deeper understanding of rTMS-induced neural plasticity is required to optimize current treatment protocols. Studies in small animals or appropriate in vitro preparations (including models of brain diseases provide highly useful experimental approaches in this context. State-of-the-art electrophysiological and live-cell imaging techniques that are well established in basic neuroscience can help answering some of the major questions in the field, such as (i which neural structures are activated during TMS, (ii how does rTMS induce Hebbian plasticity, and (iii are other forms of plasticity (e.g., metaplasticity, structural plasticity induced by rTMS? We argue that data gained from these studies will support the development of more effective and specific applications of rTMS in clinical practice.

  4. Channelled scaffolds for engineering myocardium with mechanical stimulation.

    Science.gov (United States)

    Zhang, Ting; Wan, Leo Q; Xiong, Zhuo; Marsano, Anna; Maidhof, Robert; Park, Miri; Yan, Yongnian; Vunjak-Novakovic, Gordana

    2012-10-01

    The characteristics of the matrix (composition, structure, mechanical properties) and external culture environment (pulsatile perfusion, physical stimulation) of the heart are important characteristics in the engineering of functional myocardial tissue. This study reports on the development of chitosan-collagen scaffolds with micropores and an array of parallel channels (~ 200 µm in diameter) that were specifically designed for cardiac tissue engineering using mechanical stimulation. The scaffolds were designed to have similar structural and mechanical properties of those of native heart matrix. Scaffolds were seeded with neonatal rat heart cells and subjected to dynamic tensile stretch using a custom designed bioreactor. The channels enhanced oxygen transport and facilitated the establishment of cell connections within the construct. The myocardial patches (14 mm in diameter, 1-2 mm thick) consisted of metabolically active cells that began to contract synchronously after 3 days of culture. Mechanical stimulation with high tensile stress promoted cell alignment, elongation, and expression of connexin-43 (Cx-43). This study confirms the importance of scaffold design and mechanical stimulation for the formation of contractile cardiac constructs.

  5. Channeled Scaffolds for Engineering Myocardium with Mechanical Stimulation

    Science.gov (United States)

    Zhang, Ting; Wan, Leo Q.; Xiong, Zhuo; Marsano, Anna; Maidhof, Robert; Park, Miri; Yan, Yongnian; Vunjak-Novakovic, Gordana

    2011-01-01

    The characteristics of the matrix (composition, structure, mechanical properties) and external culture environment (pulsatile perfusion, physical stimulation) are critically important for engineering functional myocardial tissue. We report the development of chitosan-collagen scaffolds with micro-pores and an array of parallel channels (~200 μm in diameter) that were specifically designed for cardiac tissue engineering with mechanical stimulation. The scaffolds were designed to have the structural and mechanical properties similar to those of the native human heart matrix. Scaffolds were seeded with neonatal rat heart cells and subjected to dynamic tensile stretch using a custom-designed bioreactor. The channels enhanced oxygen transport and facilitated the establishment of cell connections within the construct. The myocardial patches (14 mm in diameter, 1–2 mm thick) consisted of metabolically active cells and started to contract synchronously after 3 days of culture. Mechanical stimulation with high tensile stresses promoted cell alignment, elongation, and the expression of connexin-43 (Cx-43). This study confirms the importance of scaffold design and mechanical stimulation for the formation of contractile cardiac constructs. PMID:22081518

  6. Mechanism of orientation of stimulating currents in magnetic brain stimulation (abstract)

    Science.gov (United States)

    Ueno, S.; Matsuda, T.

    1991-04-01

    We made a functional map of the human motor cortex related to the hand and foot areas by stimulating the human brain with a focused magnetic pulse. We observed that each functional area in the cortex has an optimum direction for which stimulating currents can produce neural excitation. The present report focuses on the mechanism which is responsible for producing this anisotropic response to brain stimulation. We first obtained a functional map of the brain related to the left ADM (abductor digiti minimi muscles). When the stimulating currents were aligned in the direction from the left to the right hemisphere, clear EMG (electromyographic) responses were obtained only from the left ADM to magnetic stimulation of both hemisphere. When the stimulating currents were aligned in the direction from the right to the left hemisphere, clear EMG signals were obtained only from the right ADM to magnetic stimulation of both hemisphere. The functional maps of the brain were sensitive to changes in the direction of the stimulating currents. To explain the phenomena obtained in the experiments, we developed a model of neural excitation elicited by magnetic stimulation. When eddy currents which are induced by pulsed magnetic fields flow in the direction from soma to the distal part of neural fiber, depolarized area in the distal part are excited, and the membrane excitation propagates along the nerve fiber. In contrast, when the induced currents flow in the direction from the distal part to soma, hyperpolarized parts block or inhibit neural excitation even if the depolarized parts near the soma can be excited. The model explains our observation that the orientation of the induced current vectors reflect both the functional and anatomical organization of the neural fibers in the brain.

  7. Mimosa pudica: Electrical and mechanical stimulation of plant movements.

    Science.gov (United States)

    Volkov, Alexander G; Foster, Justin C; Ashby, Talitha A; Walker, Ronald K; Johnson, Jon A; Markin, Vladislav S

    2010-02-01

    Thigmonastic movements in the sensitive plant Mimosa pudica L., associated with fast responses to environmental stimuli, appear to be regulated through electrical and chemical signal transductions. The thigmonastic responses of M. pudica can be considered in three stages: stimulus perception, electrical signal transmission and induction of mechanical, hydrodynamical and biochemical responses. We investigated the mechanical movements of the pinnae and petioles in M. pudica induced by the electrical stimulation of a pulvinus, petiole, secondary pulvinus or pinna by a low electrical voltage and charge. The threshold value was 1.3-1.5 V of applied voltage and 2 to 10 microC of charge for the closing of the pinnules. Both voltage and electrical charge are responsible for the electro-stimulated closing of a leaf. The mechanism behind closing the leaf in M. pudica is discussed. The hydroelastic curvature mechanism closely describes the kinetics of M. pudica leaf movements.

  8. Whisking recovery after automated mechanical stimulation during facial nerve regeneration.

    NARCIS (Netherlands)

    Kleiss, I.J.; Knox, C.J.; Malo, J.S.; Marres, H.A.M.; Hadlock, T.A.; Heaton, J.T.

    2014-01-01

    IMPORTANCE Recovery from facial nerve transection is typically poor, but daily mechanical stimulation of the face in rats has been reported to remarkably enhance functional recovery after facial nerve transection and suture repair. This phenomenon needs additional investigation because of its import

  9. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes.

    Science.gov (United States)

    Herrmann, Christoph S; Rach, Stefan; Neuling, Toralf; Strüber, Daniel

    2013-01-01

    Brain oscillations of different frequencies have been associated with a variety of cognitive functions. Convincing evidence supporting those associations has been provided by studies using intracranial stimulation, pharmacological interventions and lesion studies. The emergence of novel non-invasive brain stimulation techniques like repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) now allows to modulate brain oscillations directly. Particularly, tACS offers the unique opportunity to causally link brain oscillations of a specific frequency range to cognitive processes, because it uses sinusoidal currents that are bound to one frequency only. Using tACS allows to modulate brain oscillations and in turn to influence cognitive processes, thereby demonstrating the causal link between the two. Here, we review findings about the physiological mechanism of tACS and studies that have used tACS to modulate basic motor and sensory processes as well as higher cognitive processes like memory, ambiguous perception, and decision making.

  10. Neuro-stimulation Techniques for the Management of Anxiety Disorders: An Update

    Science.gov (United States)

    Kar, Sujita Kumar; Sarkar, Siddharth

    2016-01-01

    Neuro-stimulation techniques have gradually evolved over the decades and have emerged potential therapeutic modalities for the treatment of psychiatric disorders, especially treatment refractory cases. The neuro-stimulation techniques involves modalities like electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), vagus nerve stimulation (VNS) and others. This review discusses the role of neuro-stimulation techniques in the treatment of anxiety disorders. The various modalities of neuro-stimulation techniques are briefly discussed. The evidence base relating to use of these techniques in the treatment of anxiety disorders is discussed further. The review then highlights the challenges in conducting research in relation to the use of neuro-stimulation techniques with reference to patients with anxiety disorders. The review provides the future directions of research and aimed at expanding the evidence base of treatment of anxiety disorders and providing neuro-stimulation techniques as promising effective and acceptable alternative in select cases. PMID:27776384

  11. Generalized Borel transform technique in quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Marucho, M

    2003-03-13

    We present the Generalized Borel Transform (GBT). This new approach allows one to obtain approximate solutions of Laplace/Mellin transform valid in both, perturbative and non-perturbative regimes. We compare the results provided by the GBT for a solvable model of quantum mechanics with those provided by standard techniques, as the conventional Borel sum, or its modified versions. We found that our approach is very efficient for obtaining both the low and the high energy behavior of the model.

  12. Multi-axial mechanical stimulation of tissue engineered cartilage: Review

    Directory of Open Access Journals (Sweden)

    S D Waldman

    2007-04-01

    Full Text Available The development of tissue engineered cartilage is a promising new approach for the repair of damaged or diseased tissue. Since it has proven difficult to generate cartilaginous tissue with properties similar to that of native articular cartilage, several studies have used mechanical stimuli as a means to improve the quantity and quality of the developed tissue. In this study, we have investigated the effect of multi-axial loading applied during in vitro tissue formation to better reflect the physiological forces that chondrocytes are subjected to in vivo. Dynamic combined compression-shear stimulation (5% compression and 5% shear strain amplitudes increased both collagen and proteoglycan synthesis (76 ± 8% and 73 ± 5%, respectively over the static (unstimulated controls. When this multi-axial loading condition was applied to the chondrocyte cultures over a four week period, there were significant improvements in both extracellular matrix (ECM accumulation and the mechanical properties of the in vitro-formed tissue (3-fold increase in compressive modulus and 1.75-fold increase in shear modulus. Stimulated tissues were also significantly thinner than the static controls (19% reduction suggesting that there was a degree of ECM consolidation as a result of long-term multi-axial loading. This study demonstrated that stimulation by multi-axial forces can improve the quality of the in vitro-formed tissue, but additional studies are required to further optimize the conditions to favour improved biochemical and mechanical properties of the developed tissue.

  13. Ineffective cough and mechanical mucociliary clearance techniques.

    Science.gov (United States)

    Fernández-Carmona, A; Olivencia-Peña, L; Yuste-Ossorio, M E; Peñas-Maldonado, L

    2017-06-12

    Cough is a fundamental defense mechanism for keeping the airway free of foreign elements. Life-threatening situations may arise when cough proves ineffective as a result of muscle weakness or altered mucociliary function. When a patient is unable to cough effectively, techniques are required to either reinforce or replace cough capacity. The use of mechanical systems that facilitate or substitute cough function is increasingly common in Intensive Care Units, where it is relatively frequent to find situations of ineffective cough due to different clinical causes. This review examines the current clinical practice recommendations referred to the indication and use of mechanical cough assist and intrapulmonary percussive ventilation systems. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  14. Uterine responses to three techniques of breast stimulation.

    Science.gov (United States)

    Curtis, P; Evens, S; Resnick, J; Rimer, R; Lynch, K; Carlson, J R

    1986-01-01

    Uterine contractions produced by three methods of breast stimulation and a placebo were compared in 202 high-risk women between 35 and 44 weeks' gestation during contraction stress tests. Manual stimulation produced significantly more successful responses of three or more contractions within ten minutes than did a heating pad or a placebo, but did not show significant differences when compared with a breast pump. The placebo group showed an increase in contractions over a resting state. Of the women with successful contraction stress tests, over 50% demonstrated exaggerated uterine activity (a hypertonic contraction of greater than 90 seconds, or five or more contractions in a ten-minute period).

  15. Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms

    Directory of Open Access Journals (Sweden)

    Andrea Antal

    2016-01-01

    Full Text Available Background. Transcranial alternating current stimulation (tACS is a relatively recent method suited to noninvasively modulate brain oscillations. Technically the method is similar but not identical to transcranial direct current stimulation (tDCS. While decades of research in animals and humans has revealed the main physiological mechanisms of tDCS, less is known about the physiological mechanisms of tACS. Method. Here, we review recent interdisciplinary research that has furthered our understanding of how tACS affects brain oscillations and by what means transcranial random noise stimulation (tRNS that is a special form of tACS can modulate cortical functions. Results. Animal experiments have demonstrated in what way neurons react to invasively and transcranially applied alternating currents. Such findings are further supported by neural network simulations and knowledge from physics on entraining physical oscillators in the human brain. As a result, fine-grained models of the human skull and brain allow the prediction of the exact pattern of current flow during tDCS and tACS. Finally, recent studies on human physiology and behavior complete the picture of noninvasive modulation of brain oscillations. Conclusion. In future, the methods may be applicable in therapy of neurological and psychiatric disorders that are due to malfunctioning brain oscillations.

  16. Control of directional change after mechanical stimulation in Drosophila

    Directory of Open Access Journals (Sweden)

    Zhou Yating

    2012-10-01

    Full Text Available Abstract Background Proper adjustment of moving direction after external mechanical stimulation is essential for animals to avoid danger (e.g. predators, and thus is vital for survival. This process involves sensory inputs, central processing and motor outputs. Recent studies have made considerable progress in identifying mechanosensitive neurons and mechanosensation receptor proteins. Our understandings of molecular and cellular mechanisms that link mechanosensation with the changes in moving direction, however, remain limited. Results In this study, we investigate the control of movement adjustment in Drosophila. In response to gentle touch at the anterior segments, Drosophila larvae reorient and select a new direction for forward movement. The extent of change in moving direction is correlated with the intensity of tactile stimuli. Sensation of gentle touch requires chordotonal organs and class IV da neurons. Genetic analysis indicates an important role for the evolutionarily conserved immunoglobulin (Ig superfamily protein Turtle (Tutl to regulate touch-initiated directional change. Tutl is required specifically in post-mitotic neurons at larval stage after the completion of embryonic development. Circuit breaking analysis identified a small subset of Tutl-positive neurons that are involved in the adjustment of moving direction. Conclusion We identify Tutl and a small subset of CNS neurons in modulating directional change in response to gentle touch. This study presents an excellent starting point for further dissection of molecular and cellular mechanisms controlling directional adjustment after mechanical stimulation.

  17. Sputtering. [as deposition technique in mechanical engineering

    Science.gov (United States)

    Spalvins, T.

    1976-01-01

    This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.

  18. Sputtering. [as deposition technique in mechanical engineering

    Science.gov (United States)

    Spalvins, T.

    1976-01-01

    This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.

  19. Generation of Articulated Mechanisms by Optimization Techniques

    DEFF Research Database (Denmark)

    Kawamoto, Atsushi

    2004-01-01

    that handles topological variations. In this thesis the technique is also extended so as to design the shape as well as the topology of the truss using cross-sectional areas and nodal positions as design variables. This leads to a technique for simultaneous type and dimensional synthesis of articulated...... optimization [Paper 2] 3. Branch and bound global optimization [Paper 3] 4. Path-generation problems [Paper 4] In terms of the objective of the articulated mechanism design problems, the first to third papers deal with maximization of output displacement, while the fourth paper solves prescribed path...... generation problems. From a mathematical programming point of view, the methods proposed in the first and third papers are categorized as deterministic global optimization, while those of the second and fourth papers are categorized as gradient-based local optimization. With respect to design variables, only...

  20. Berberine stimulates glucose transport through a mechanism distinct from insulin.

    Science.gov (United States)

    Zhou, Libin; Yang, Ying; Wang, Xiao; Liu, Shangquan; Shang, Wenbin; Yuan, Guoyue; Li, Fengying; Tang, Jinfeng; Chen, Mingdao; Chen, Jialun

    2007-03-01

    Berberine exerts a hypoglycemic effect, but the mechanism remains unknown. In the present study, the effect of berberine on glucose uptake was characterized in 3T3-L1 adipocytes. It was revealed that berberine stimulated glucose uptake in 3T3-L1 adipocytes in a dose- and time-dependent manner with the maximal effect at 12 hours. Glucose uptake was increased by berberine in 3T3-L1 preadipocytes as well. Berberine-stimulated glucose uptake was additive to that of insulin in 3T3-L1 adipocytes, even at the maximal effective concentrations of both components. Unlike insulin, the effect of berberine on glucose uptake was insensitive to wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and SB203580, an inhibitor of p38 mitogen-activated protein kinase. Berberine activated extracellular signal-regulated kinase (ERK) 1/2, but PD98059, an ERK kinase inhibitor, only decreased berberine-stimulated glucose uptake by 32%. Berberine did not induce Ser473 phosphorylation of Akt nor enhance insulin-induced phosphorylation of Akt. Meanwhile, the expression and cellular localization of glucose transporter 4 (GLUT4) were not altered by berberine. Berberine did not increase GLUT1 gene expression. However, genistein, a tyrosine kinase inhibitor, completely blocked berberine-stimulated glucose uptake in 3T3-L1 adipocytes and preadipocytes, suggesting that berberine may induce glucose transport via increasing GLUT1 activity. In addition, berberine increased adenosine monophosphate-activated protein kinase and acetyl-coenzyme A carboxylase phosphorylation. These findings suggest that berberine increases glucose uptake through a mechanism distinct from insulin, and activated adenosine monophosphate-activated protein kinase seems to be involved in the metabolic effect of berberine.

  1. SQL Injection Attacks: Techniques and Protection Mechanisms

    Directory of Open Access Journals (Sweden)

    Santosh Soni

    2011-01-01

    Full Text Available When an internet user interacts in web environment by surfing the Net, sending electronic mail messages and participating in online forums lot of data is generated which may have user’s private information. If this information is captured by third party tools and techniques; it may cause a breach in end user privacy. In the Web environment, end user privacy is one of the most controversial legal issues. In this paper issues related to information leakage through SQL injection attacks are presented and protection mechanisms are also discussed.

  2. Mechanical Design Optimization Using Advanced Optimization Techniques

    CERN Document Server

    Rao, R Venkata

    2012-01-01

    Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational ...

  3. Stimulation Techniques Used In Enhanced Geothermal Systems: Perspectives From Geomechanics and Rock Physics

    Energy Technology Data Exchange (ETDEWEB)

    Stephen L. Karner; Joel Renner

    2005-01-01

    Understanding the processes that enhance fluid flow in crustal rocks is a key step towards extracting sustainable thermal energy from the Earth. To achieve this, geoscientists need to identify the fundamental parameters that govern how rocks respond to stimulation techniques, as well as the factors that control the evolution of permeability networks. These parameters must be assessed over variety of spatial scales: from microscopic rock properties (such as petrologic, mechanical, and diagenetic characteristics) to macroscopic crustal behavior (such as tectonic and hydro-dynamic properties). Furthermore, these factors must be suitably monitored and/or characterized over a range of temporal scales before the evolutionary behavior of geothermal fields can be properly assessed. I am reviewing the procedures currently employed for reservoir stimulation of geothermal fields. The techniques are analyzed in the context of the petrophysical characteristics of reservoir lithologies, studies of wellbore data, and research on regional crustal properties. I determine common features of geothermal fields that can be correlated to spatiotemporal evolution of reservoirs, with particular attention to geomechanics and petrophysical properties. The study of these correlations can then help guide procedures employed when targeting new prospective geothermal resources.

  4. Aerobic rice mechanization: techniques for crop establishment

    Science.gov (United States)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  5. A Mechanism for Stimulated AGN Feedback in Massive Galaxies

    CERN Document Server

    McNamara, B R; Nulsen, P E J; Hogan, M T; Fabian, A C; Pulido, F; Edge, A C

    2016-01-01

    Observation shows that cooling instabilities leading to nebular emission, molecular gas, and star formation in giant galaxies are formed behind buoyantly-rising X-ray bubbles inflated by radio jets launched from massive nuclear black holes. We propose a model where molecular clouds condense from hot but relatively low entropy gas lifted by X-ray bubbles to an altitude where its cooling time is shorter than the time required for it to fall to its equilibrium location in the galaxy i.e., t_c/t_I <~1$. Here the infall time can exceed the free-fall time, t_ff, by factors of a few. This mechanism, which we refer to as stimulated feedback, is motivated by recent ALMA observations of central galaxies in clusters and groups revealing molecular clouds apparently forming in the wakes of rising X-ray bubbles and with surprisingly low cloud velocities. Supported by recent numerical simulations, our model would naturally sustain a continual feedback-loop in galaxies fuelled by cooling gas stimulated by radio-mechanical...

  6. A Novel bioreactor with mechanical stimulation for skeletal tissue engineering

    Directory of Open Access Journals (Sweden)

    M. Petrović

    2009-01-01

    Full Text Available The provision of mechanical stimulation is believed to be necessary for the functional assembly of skeletal tissues, which are normally exposed to a variety of biomechanical signals in vivo. In this paper, we present a development and validation of a novel bioreactor aimed for skeletal tissue engineering that provides dynamic compression and perfusion of cultivated tissues. Dynamic compression can be applied at frequencies up to 67.5 Hz and displacements down to 5 m thus suitable for the simulation of physiological conditions in a native cartilage tissue (0.1-1 Hz, 5-10 % strain. The bioreactor also includes a load sensor that was calibrated so to measure average loads imposed on tissue samples. Regimes of the mechanical stimulation and acquisition of load sensor outputs are directed by an automatic control system using applications developed within the LabView platform. In addition, perfusion of tissue samples at physiological velocities (10–100 m/s provides efficient mass transfer, as well as the possibilities to expose the cells to hydrodynamic shear and simulate the conditions in a native bone tissue. Thus, the novel bioreactor is suited for studies of the effects of different biomechanical signals on in vitro regeneration of skeletal tissues, as well as for the studies of newly formulated biomaterials and cell biomaterial interactions under in vivo-like settings.

  7. Fish Spoilage Mechanisms and Preservation Techniques: Review

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2010-01-01

    Full Text Available Problem statement: Spoilage of food products is due to chemical, enzymatic or microbial activities One-fourth of the worlds food supply and 30% of landed fish are lost through microbial activity alone. With the ever growing world population and the need to store and transport the food from one place to another where it is needed, food preservation becomes necessary in order to increase its shelf life and maintain its nutritional value, texture and flavor. The freshness and quality of fish have always gained the attention by Food Regulatory Agencies and Food Processing Industry. Proper handling, pretreatment and preservation techniques can improve the quality fish and fish products and increase their shelf life. Methodology: Historically salting, drying, smoking, fermentation and canning were the methods to prevent fish spoilage and extend its shelf life. In response to consumer demand for texture, appearance and taste, new methods were developed including: Cooling, freezing and chemical preservation. A comprehensive review of the literature on the subject of fish spoilage and modern preservation techniques was carried out. Conclusion: Fish spoilage results from three basic mechanisms: Enzymatic autolysis, oxidation, microbial growth. Low temperature storage and chemical techniques for controlling water activity, enzymatic, oxidative and microbial spoilage are the most common in the industry today. A process involving the addition of an EDTA (1 mM-TBHQ (0.02% combination and ascorbic acid and storage at refrigerated temperatures (5°C in darkness can be the most positive for controlling the spoilage of fish and fish product. The suggested process would address antimicrobial activity as well as destructive oxidation of the desired lipids and fats. However, more efforts are required to understand the role of proximate composition of fish, post harvest history, environmental conditions, initial microbial load, type and nature of bacteria and their

  8. Relactation-I. Proposal of a Technique to Facilitate Stimulation of Lactation.

    Science.gov (United States)

    Filho, Jose Martins; And Others

    1984-01-01

    Describes a relactation technique mainly based on intense psychological help and counseling, frequent and repeated suctions of the nipple to stimulate the production of prolactin, and complementary feeding to reinforce suction. (RH)

  9. Double electrodes simultaneous stimulation and implantation technique in deep brain stimulation

    Institute of Scientific and Technical Information of China (English)

    BIAN Liu-guan; W Tirakotai; DK Schulte; H Bertalanffy; D Hellwig

    2005-01-01

    @@ Posttraumatic tremor is often one of the causes of disability in head injury patients. Usually, pharmacotherapy for this type of tremor is not effective. Since early 1970s, surgical ablation of the ventral thalamus has been used to treat various types of tremor.1 Nowadays, deep brain stimulation (DBS) confirms its efficacy in alleviating different forms of tremor, including posttraumatic tremor.2,3 Such therapy has been reported achieving around 80% success rate in the treatment of posttraumatic tremor.

  10. [Nutritional management of intestinal failure and potential stimulation mechanisms].

    Science.gov (United States)

    Pérez de la Cruz, A J; Moreno-Torres Herrera, R; Pérez Roca, C

    2007-05-01

    Severe forms of intestinal failure represent one of the most complex pathologies to manage, in both children and adults. In adults, the most common causes are chronic intestinal pseudo-obstruction and severe short bowel syndrome following large intestinal resections, particularly due to massive mesenteric ischemic, within the context of cardiopathies occurring with atrial fibrillation. The essential management after stabilizing the patient consists in nutritional support, either by parenteral or enteral routes, with tolerance to oral diet being the final goal of intestinal adaptation in these pathologies. Surgery may be indicated in some cases to increase the absorptive surface area. Parenteral nutrition is an essential support measure that sometimes has to be maintained for long time, even forever, except for technique-related complications or unfavorable clinical course that would lead to extreme surgical alternatives such as intestinal transplantation. Hormonal therapy with trophism-stimulating factors opens new alternatives that are already being tried in humans.

  11. Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques

    Institute of Scientific and Technical Information of China (English)

    Michela Balconi

    2013-01-01

    The ability to recall and recognize facts we experienced in the past is based on a complex mechanism in which several cerebral regions are implicated.Neuroimaging and lesion studies agree in identifying the frontal lobe as a crucial structure for memory processes,and in particular for working memory and episodic memory and their relationships.Furthermore,with the introduction of transcranial magnetic stimulation (TMS) a new way was proposed to investigate the relationships between brain correlates,memory functions and behavior.The aim of this review is to present the main findings that have emerged from experiments which used the TMS technique for memory analysis.They mainly focused on the role of the dorsolateral prefrontal cortex in memory process.Furthermore,we present state-of-the-art evidence supporting a possible use of TMS in the clinic.Specifically we focus on the treatment of memory deficits in depression and anxiety disorders.

  12. Mechanisms of mRNA translation of interferon stimulated genes.

    Science.gov (United States)

    Joshi, Sonali; Kaur, Surinder; Kroczynska, Barbara; Platanias, Leonidas C

    2010-01-01

    Over the last two decades, a lot of research work has been focused on the interferon (IFN)-regulated JAK-STAT pathway and understanding the mechanisms governing the transcription of interferon stimulated genes (ISGs). Evidence suggests that the JAK-STAT pathway alone does not account in its entirety for mediating cellular responses to IFNs. There is emerging evidence that non-Stat pathways play important roles in mediating signals for the generation of IFN-responses. Various studies have underscored the importance of mitogen activated protein kinases (MAPKs), especially p38 and ERK1/2, as well as the PI 3'K/AKT pathway in transmitting signals that are of critical importance for the biological effects of IFNs. Besides regulating the transcription of ISGs in some cases, engagement of these signaling pathways by the IFN-receptor (IFNR) associated complexes also plays an important role in mediating the translation of ISGs. The mechanisms regulating mRNA translation of ISGs is an area of ongoing active research and a lot more efforts will be required to complete our understanding of the various cellular elements involved in this process. In this review we highlight the mechanisms regulating translation of ISGs. We focus on the proteins regulated by the PI 3'K/AKT pathway, their role in mediating mRNA translation of ISGs and the functional consequences of this regulation. In addition, MAPKs are known to regulate the phosphorylation of various eukaryotic initiation factors and we summarize the roles of eIF4B and eIF4E phosphorylations on the translation of ISGs. The emerging roles of microRNAs in mRNA translation of ISGs are also discussed.

  13. A novel approach to mechanical foot stimulation during human locomotion under body weight support.

    Science.gov (United States)

    Gravano, S; Ivanenko, Y P; Maccioni, G; Macellari, V; Poppele, R E; Lacquaniti, F

    2011-04-01

    Input from the foot plays an essential part in perceiving support surfaces and determining kinematic events in human walking. To simulate adequate tactile pressure inputs under body weight support (BWS) conditions that represent an effective form of locomotion training, we here developed a new method of phasic mechanical foot stimulation using light-weight pneumatic insoles placed inside the shoes (under the heel and metatarsus). To test the system, we asked healthy participants to walk on a treadmill with different levels of BWS. The pressure under the stimulated areas of the feet and subjective sensations were higher at high levels of BWS and when applied to the ball and toes rather than heels. Foot stimulation did not disturb significantly the normal motor pattern, and in all participants we evoked a reliable step-synchronized triggering of stimuli for each leg separately. This approach has been performed in a general framework looking for "afferent templates" of human locomotion that could be used for functional sensory stimulation. The proposed technique can be used to imitate or partially restore surrogate contact forces under body weight support conditions.

  14. Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes

    Directory of Open Access Journals (Sweden)

    Christoph S Herrmann

    2013-06-01

    Full Text Available Brain oscillations of different frequencies have been associated with a variety of cognitive functions. Convincing evidence supporting those associations has been provided by studies using intracranial stimulation, pharmacological interventions and lesion studies. The emergence of novel non-invasive brain stimulation techniques like repetitive transcranial magnetic stimulation (rTMS and transcranial alternating current stimulation (tACS now allows to modulate brain oscillations directly. Particularly, tACS offers the unique opportunity to causally link brain oscillations of a specific frequency range to cognitive processes, because it uses sinusoidal currents that are bound to one frequency only. Using tACS allows to modulate brain oscillations and in turn to influence cognitive processes, thereby demonstrating the causal link between the two. Here, we review findings about the physiological mechanism of tACS and studies that have used tACS to modulate basic motor and sensory processes as well as higher cognitive processes like memory, ambiguous perception, and decision making.

  15. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  16. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  17. POSSIBLE MECHANISMS UNDERLYING THE THERAPEUTIC EFFECTS OF TRANSCRANIAL MAGNETIC STIMULATION

    Directory of Open Access Journals (Sweden)

    Alexander eChervyakov

    2015-06-01

    Full Text Available Transcranial magnetic stimulation (TMS is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson's disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation (LTP and long-term depression (LTD. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor (BDNF concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals. It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.

  18. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes

    OpenAIRE

    Herrmann, Christoph S; Rach, Stefan; Neuling, Toralf; Strüber, Daniel

    2013-01-01

    Brain oscillations of different frequencies have been associated with a variety of cognitive functions. Convincing evidence supporting those associations has been provided by studies using intracranial stimulation, pharmacological interventions and lesion studies. The emergence of novel non-invasive brain stimulation techniques like repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) now allows to modulate brain oscillations directly. Pa...

  19. Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson's disease.

    Science.gov (United States)

    Chang, Jing-Yu; Shi, Li-Hong; Luo, Fei; Zhang, Wang-Ming; Woodward, Donald J

    2008-01-01

    Several rodent models of deep brain stimulation (DBS) have been developed in recent years. Electrophysiological and neurochemical studies have been performed to examine the mechanisms underlying the effects of DBS. In vitro studies have provided deep insights into the role of ion channels in response to brain stimulation. In vivo studies reveal neural responses in the context of intact neural circuits. Most importantly, recording of neural responses to behaviorally effective DBS in freely moving animals provides a direct means for examining how DBS modulates the basal ganglia thalamocortical circuits and thereby improves motor function. DBS can modulate firing rate, normalize irregular burst firing patterns and reduce low frequency oscillations associated with the Parkinsonian state. Our current efforts are focused on elucidating the mechanisms by which DBS effects on neural circuitry improve motor performance. New behavioral models and improved recording techniques will aide researchers conducting future DBS studies in a variety of behavioral modalities and enable new treatment strategies to be explored, such as closed-loop stimulations based on real time computation of ensemble neural activity.

  20. Noninvasive Brain Stimulation for Motor Recovery after Stroke: Mechanisms and Future Views

    Directory of Open Access Journals (Sweden)

    Naoyuki Takeuchi

    2012-01-01

    Full Text Available Repetitive transcranial magnetic stimulation and transcranial direct current stimulation are noninvasive brain stimulation (NIBS techniques that can alter excitability of the human cortex. Considering the interhemispheric competition occurring after stroke, improvement in motor deficits can be achieved by increasing the excitability of the affected hemisphere or decreasing the excitability of the unaffected hemisphere. Many reports have shown that NIBS application improves motor function in stroke patients by using their physiological peculiarity. For continuous motor improvement, it is important to impart additional motor training while NIBS modulates the neural network between both hemispheres and remodels the disturbed network in the affected hemisphere. NIBS can be an adjuvant therapy for developed neurorehabilitation strategies for stroke patients. Moreover, recent studies have reported that bilateral NIBS can more effectively facilitate neural plasticity and induce motor recovery after stroke. However, the best NIBS pattern has not been established, and clinicians should select the type of NIBS by considering the NIBS mechanism. Here, we review the underlying mechanisms and future views of NIBS therapy and propose rehabilitation approaches for appropriate cortical reorganization.

  1. Transcutaneous mechanical nerve stimulation using perineal vibration: a novel method for the treatment of female stress urinary incontinence

    DEFF Research Database (Denmark)

    Sønksen, Jens; Ohl, Dana A; Bonde, Birthe;

    2007-01-01

    We defined basic guidelines for transcutaneous mechanical nerve stimulation in modifying pelvic floor responses in women and determined the efficacy of transcutaneous mechanical nerve stimulation in treating stress urinary incontinence.......We defined basic guidelines for transcutaneous mechanical nerve stimulation in modifying pelvic floor responses in women and determined the efficacy of transcutaneous mechanical nerve stimulation in treating stress urinary incontinence....

  2. Optically stimulated luminescence from quartz measured using the linear modulation technique

    DEFF Research Database (Denmark)

    Bulur, E.; Bøtter-Jensen, L.; Murray, A.S.

    2000-01-01

    The optically stimulated luminescence (OSL) from heated natural quartz has been investigated using the linear modulation technique (LMT), in which the excitation light intensity is increased linearly during stimulation. In contrast to conventional stimulation, which usually produces a monotonically...... stimulated component occurs at a shorter time. This allows the separation of the overlapping OSL components, which are assumed to originate from different traps. The LM-OSL curve from quartz shows an initial peak Followed by a broad one. Deconvolution using curve fitting has shown that the composite OSL...... curve from quartz can be approximated well by using a linear combination of first-order peaks. In addition to the three known components, i.e. fast, medium and slow components from continuous-wave-OSL studies, an additional slow component is also identified for the first time. The dose responses...

  3. Mechanical stimulation increases proliferation, differentiation and protein expression in culture

    DEFF Research Database (Denmark)

    Grossi, Alberto; Yadav, Kavita; Lawson, Moira Ann

    2007-01-01

    Myogenesis is a complex sequence of events, including the irreversible transition from the proliferation-competent myoblast stage into fused, multinucleated myotubes. Myogenic differentiation is regulated by positive and negative signals from surrounding tissues. Stimulation due to stretch- or lo...

  4. Dental adhesion: mechanism, techniques and durability.

    Science.gov (United States)

    Manuja, N; Nagpal, R; Pandit, I K

    2012-01-01

    Contemporary dental adhesives show favorable immediate results in terms of bonding effectiveness. However, the durability of resin-dentin bonds is their major problem. It appears that simplification of adhesive techniques is rather detrimental to the long-term stability of resin-tooth interface. The hydrostatic pulpal pressure, the dentinal fluid flow and the increased dentinal wetness in vital dentin can affect the intimate interaction of certain dentin adhesives with dentinal tissue. Bond degradation occurs via water sorption, hydrolysis of ester linkages of methacrylate resins, and activation of endogenous dentin matrix metalloproteinases. The three-step etch-and-rinse adhesives still remain the gold standard in terms of durability. This review discusses the fundamental process of adhesion to enamel and dentin with different adhesive techniques, factors affecting the long-term bonding performance of modern adhesives and addresses the current perspectives for improving bond durability.

  5. Multimedia Techniques To Teach Mechanical Skills.

    Science.gov (United States)

    Johns, Janet Faye; Brander, Julianne Marie

    1997-01-01

    Discusses the use of multimedia computer-based training to effectively teach mechanical skills. Gives an example of teaching shaft alignment tasks that combines three-dimensional animations, simulations, and user interactions to allow the trainee to practice recognition and manipulation skills. (Author/LRW)

  6. Inhibitory Effect and Possible Mechanism of Intraurethral Stimulation on Overactive Bladder in Female Rats.

    Science.gov (United States)

    Tian, Yu; Liao, Limin; Wyndaele, Jean Jacques

    2015-09-01

    To investigate the inhibitory effect and possible mechanism of intraurethral stimulation on overactive bladder (OAB) induced by acetic acid irritation. Cystometry was performed in 13 urethane-anesthetized female rats. Intravesical infusion of 0.5% acetic acid was used to irritate the bladder and induce OAB. Multiple cystometrograms were performed with mirabegron, continuous stimulation, mirabegron plus continuous stimulation, and β3-adrenoceptor antagonist plus continuous stimulation to determine the mechanism underlying the inhibitory effect by intraurethral stimulation. Infusion of acetic acid significantly decreased bladder capacity. Intraurethral stimulation at 2.5 Hz plus mirabegron significantly increased bladder capacity and decreased the nonvoiding contraction count. The changes were strongly inhibited after the β3-adrenoceptor antagonist was administered. Activation of urethral afferent nerves can reverse OAB, which activates C-fiber afferent nerves. This animal study indicates that intraurethral stimulation may interfere with OAB through hypogastric nerve activation and pudendal nerve neuromodulation.

  7. A signal analysis technique of vestibulo-ocular reflex stimulated with impulsive head movements.

    Science.gov (United States)

    Juhola, Martti; Aalto, Heikki; Hirvonen, Timo

    2006-07-01

    Eye movements have been investigated in several areas of medicine and also elsewhere, such as in psychology or even in the development of human-computer interfaces. In the last few years we have designed a technique to stimulate, measure and analyze vestibulo-ocular reflex eye movements. In the otoneurological literature these are seen as a novel and promising means of revealing certain disorders and diseases associated with vertigo. Vestibulo-ocular reflex is stimulated by impulsive head movements. We developed the present pattern recognition technique to detect the stimulus (impulsive head movements) and the vestibulo-ocular reflex (response eye movements) generated from signals and to compute the latency and the gain values between them. Using our technique to calculate these attributes, we obtained clearly different results for a group of 22 dizzy patients than for a group of 30 healthy subjects.

  8. Measurement of CFA-induced hyperalgesia and morphine-induced analgesia in rats: dorsal vs plantar mechanical stimulation of the hindpaw.

    Science.gov (United States)

    Soignier, R Denis; Taylor, Bradley K; Baiamonte, Brandon A; Lee, Frank A; Paul, Dennis; Gould, Harry J

    2011-03-01

    To compare the sensitivity of stimulating the plantar and dorsal hindpaw surfaces in the detection of mechanical allodynia and morphine analgesia. Several approaches are used to assess nociceptive reactivity to mechanical stimulation in animal models of pain. Although certain techniques seem to be favored for studying specific nociceptive conditions, the differences between techniques have not been directly compared and characterized. We chose to compare methods employing stimulation applied to the dorsum of the paw with stimulation of the plantar surface to demonstrate the utility of each approach in determining baseline nociceptive thresholds, changes in those thresholds after injury, and analgesic efficacy. Withdrawal thresholds from mechanical stimulation applied to the dorsal and plantar surface of the hindpaw were measured in rats treated with morphine after receiving subcutaneous injections of complete Freund's adjuvant (CFA) using Semmes-Weinstein (S-W) monofilaments and electro von Frey (EVF) stimulation. In contrast to stimulation of the dorsal surface, plantar hindpaw stimulation seldom elicited an aversive withdrawal response. Differences in withdrawal response from baseline were only detectable within the first 5 hours post-CFA and only with EVF stimulation. No significant differences in stimulation techniques were observed after the initial 5-hour window. Effective dose 50 (ED(50)) for analgesic efficacy was consistently lower using dorsal stimulation. Stimulation of the plantar surface of the paw is superior for detecting small changes in paw sensitivity at very low stimulus intensities, whereas stimulation of the dorsal surface is superior for delineating baseline pain thresholds and for detecting robust analgesia. Reliable and sensitive assessment of animal pain behaviors is critical to translational pain research. This study demonstrates the importance of using proper test protocols in animal studies and its implication in preclinical screening of

  9. Mechanical Stimulation Protocols of Human Derived Cells in Articular Cartilage Tissue Engineering - A Systematic Review.

    Science.gov (United States)

    Khozoee, Baktash; Mafi, Pouya; Mafi, Reza; Khan, Wasim S

    2017-01-01

    Mechanical stimulation is a key factor in articular cartilage generation and maintenance. Bioreactor systems have been designed and built in order to deliver specific types of mechanical stimulation. The focus has been twofold, applying a type of preconditioning in order to stimulate cell differentiation, and to simulate in vivo conditions in order to gain further insight into how cells respond to different stimulatory patterns. Due to the complex forces at work within joints, it is difficult to simulate mechanical conditions using a bioreactor. The aim of this review is to gain a deeper understanding of the complexities of mechanical stimulation protocols by comparing those employed in bioreactors in the context of tissue engineering for articular cartilage, and to consider their effects on cultured cells. Allied and Complementary Medicine 1985 to 2016, Ovid MEDLINE[R] 1946 to 2016, and Embase 1974 to 2016 were searched using key terms. Results were subject to inclusion and exclusion criteria, key findings summarised into a table and subsequently discussed. Based on this review it is overwhelmingly clear that mechanical stimulation leads to increased chondrogenic properties in the context of bioreactor articular cartilage tissue engineering using human cells. However, given the variability and lack of controlled factors between research articles, results are difficult to compare, and a standardised method of evaluating stimulation protocols proved challenging. With improved standardisation in mechanical stimulation protocol reporting, bioreactor design and building processes, along with a better understanding of joint behaviours, we hope to perform a meta-analysis on stimulation protocols and methods.

  10. Developments in optically stimulated luminescence techniques for dating and retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Murray, A.S.

    1999-01-01

    Optically stimulated luminescence signals from natural quartz and feldspar are now used routinely in dating geological and archaeological materials. More recently they have also been employed in accident dosimetry, i.e. the retrospective assessment of doses received as a result of a nuclear...... accident. Since 1990, the exploration of this wide variety of applications has driven an intensive investigation and development programme at Riso in measurement facilities and techniques. This paper reviews some of the outcomes of this programme, including (i) optimisation of stimulation and emission...... windows, and detection sensitivity, (ii) experience with various stimulation light sources, including filtered incandescent lamps and high intensity light emitting diodes and laser diodes (infrared at 830-850 nm, blue-green at 420-550 nm and blue at 470 nm). Also discussed are recently developed high...

  11. THE GAME TECHNIQUE NTCHNIQUE STIMULATING LEARNING ACTIVITY OF JUNIOR STUDENTS SPECIALIZING IN ECONOMICS

    Directory of Open Access Journals (Sweden)

    Juri. S. Ezrokh

    2014-01-01

    Full Text Available The research is aimed at specifying and developing the modern control system of current academic achievements of junior university students; and the main task is to find the adequate ways for stimulating the junior students’ learning activities, and estimating their individual achievements.Methods: The author applies his own assessment method for estimating and stimulating students’ learning outcomes, based on the rating-point system of gradually obtained points building up a student’s integrated learning outcomes.Results: The research findings prove that implementation of the given method can increase the motivational, multiplicative and controlling components of the learning process.Scientific novelty: The method in question is based on the new original game approach to controlling procedures and stimulation of learning motivation of the economic profile students.Practical significance: The recommended technique can intensify the incentivebased training activities both in and outside a classroom, developing thereby students’ professional and personal qualities.

  12. Mechanical Coupling of Smooth Muscle Cells Using Microengineered Substrates and Local Stimulation

    Science.gov (United States)

    Copeland, Craig; Hunter, David; Tung, Leslie; Chen, Christopher; Reich, Daniel

    2013-03-01

    Mechanical stresses directly affect many cellular processes, including signal transduction, growth, differentiation, and survival. Cells can themselves generate such stresses by activating myosin to contract the actin cytoskeleton, which in turn can regulate both cell-substrate and cell-cell interactions. We are studying mechanical forces at cell-cell and cell-substrate interactions using arrays of selectively patterned flexible PDMS microposts combined with the ability to apply local chemical stimulation. Micropipette ``spritzing'', a laminar flow technique, uses glass micropipettes mounted on a microscope stage to deliver drugs to controlled regions within a cellular construct while cell traction forces are recorded via the micropost array. The pipettes are controlled by micromanipulators allowing for rapid and precise movement across the array and the ability to treat multiple constructs within a sample. This technique allows for observing the propagation of a chemically induced mechanical stimulus through cell-cell and cell-substrate interactions. We have used this system to administer the acto-myosin inhibitors Blebbistatin and Y-27632 to single cells and observed the subsequent decrease in cell traction forces. Experiments using trypsin-EDTA have shown this system to be capable of single cell manipulation through removal of one cell within a pair configuration while leaving the other cell unaffected. This project is supported in part by NIH grant HL090747

  13. A zero-voltage switching technique for minimizing the current-source power of implanted stimulators.

    Science.gov (United States)

    Çilingiroğlu, Uğur; İpek, Sercan

    2013-08-01

    The current-source power of an implanted stimulator is reduced almost to the theoretical minimum by driving the electrodes directly from the secondary port of the inductive link with a dedicated zero-voltage switching power supply. A feedback loop confined to the secondary of the inductive link adjusts the timing and conduction angle of switching to provide just the right amount of supply voltage needed for keeping the current-source voltage constant at or slightly above the compliance limit. Since drive is based on current rather than voltage, and supply-voltage update is near real-time, the quality of the current pulses is high regardless of how the electrode impedance evolves during stimulation. By scaling the switching frequency according to power demand, the technique further improves overall power consumption of the stimulator. The technique is implemented with a very simple control circuitry comprising a comparator, a Schmitt trigger and a logic gate of seven devices in addition to an on-chip switch and an off-chip capacitor. The power consumed by the proposed supply circuit itself is no larger than what the linear regulator of a conventional supply typically consumes for the same stimulation current. Still, the sum of supply and current-source power is typically between 20% and 75% of the conventional source power alone. Functionality of the proposed driver is verified experimentally on a proof-of-concept prototype built with 3.3 V devices in a 0.18 μm CMOS technology.

  14. Resveratrol stimulates mitochondrial fusion by a mechanism requiring mitofusin-2.

    Science.gov (United States)

    Robb, Ellen L; Moradi, Fereshteh; Maddalena, Lucas A; Valente, Andrew J F; Fonseca, Joao; Stuart, Jeffrey A

    2017-04-01

    Resveratrol (RES) is a plant-derived stilbene associated with a wide range of health benefits. Mitochondria are a key downstream target of RES, and in some cell types RES promotes mitochondrial biogenesis, altered cellular redox status, and a shift toward oxidative metabolism. Mitochondria exist as a dynamic network that continually remodels via fusion and fission processes, and the extent of fusion is related to cellular redox status and metabolism. We investigated RES's effects on mitochondrial network morphology in several cell lines using a quantitative approach to measure the extent of network fusion. 48 h continuous treatment with 10-20 μM RES stimulated mitochondrial fusion in C2C12 myoblasts, PC3 cancer cells, and mouse embryonic fibroblasts stimulated significant increases in fusion in all instances, resulting in larger and more highly branched mitochondrial networks. Mitofusin-2 (Mfn2) is a key protein facilitating mitochondrial fusion, and its expression was also stimulated by RES. Using Mfn2-null cells we demonstrated that RES's effects on mitochondrial fusion, cellular respiration rates, and cell growth are all dependent upon the presence of Mfn2. Taken together, these results demonstrate that Mfn2 and mitochondrial fusion are affected by RES in ways that appear to relate to RES's known effects on cellular metabolism and growth.

  15. Optimal inter-stimulus interval for interpolated twitch technique when using double pulse stimulation

    OpenAIRE

    Karimpour, Rana

    2013-01-01

    Interpolated twitch technique is a method frequently used to assess voluntary activa- tion. This method uses electrically evoked twitch superimposed on the voluntary activi- ty and its comparison with the twitch in rested muscle i.e. control twitch, to evaluate completeness of muscle activation. The purpose of this study was to investigate the ef- fect of interval in paired stimulation on control twitch in young and elderly individuals with bent and flexed knee positions. Supramaximal electri...

  16. Sensory stimulation (TENS): effects of parameter manipulation on mechanical pain thresholds in healthy human subjects.

    Science.gov (United States)

    Chesterton, Linda S; Barlas, Panos; Foster, Nadine E; Lundeberg, Thomas; Wright, Christine C; Baxter, G David

    2002-09-01

    Transcutaneous electrical nerve stimulation (TENS) is a popular form of electrostimulation. Despite an extensive research base, there remains no consensus regarding the parameter selection required to achieve maximal hypoalgesic effects. The aim of this double blind, sham-controlled study was to investigate the relative hypoalgesic effects of different TENS parameters (frequency, intensity and stimulation site) upon experimentally induced mechanical pain. Two hundred and forty participants were recruited in order to provide statistical analysis with 80% power at alpha = 0.05. Subjects were randomised to one of the six TENS groups, a control, and a sham TENS group (n = 30, 15 males, 15 females, per group). TENS groups differed in their combinations of stimulation; frequency (4 or 110 Hz), intensity ('to tolerance' or 'strong but comfortable') and stimulation site (segmental--over the distribution of the radial nerve or, extrasegmental--over acupuncture point 'gall bladder 34', or a combination of both segmental and extrasegmental). Pulse duration was fixed at 200 micros. Stimulation was delivered for 30 min and subjects were then monitored for a further 30 min. Mechanical pain threshold (MPT) was measured using a pressure algometer and taken from the first dorsal interosseous muscle of the dominant hand, ipsilateral to the stimulation site. MPT measures were taken, at baseline, and at 10-min intervals for 60 min. Difference scores were analysed using repeated measures and one-way ANOVA and relevant post hoc tests. Low frequency, high intensity, extrasegmental stimulation produced a rapid onset hypoalgesic effect, which increased during the stimulation period (P < 0.0005 control and sham) and was sustained for 30 min post-stimulation (P < 0.0005(control), P = 0.024(sham)). Whilst high frequency, 'strong but comfortable' intensity, segmental stimulation produced comparable hypoalgesic levels during stimulation, this effect was not sustained post-stimulation

  17. THE MECHANISM OF CEREBRAL EVOKED POTENTIALS BYREPETITIVE MAGNETIC STIMULATION OF GASTROCNEMIUS MUSCLE IN DUCHENNE MUSCULAR DYSTROPHY

    Institute of Scientific and Technical Information of China (English)

    管宇宙; 崔丽英; 汤晓芙; 李本红; 杜华

    2001-01-01

    Objective. To study the features and mechanism of the cerebral evoked potentials by repetitive stimulation of calf muscle in Duchenne muscular dystrophy (DMD) patients with obvious muscular dystrophy and psuedohypertrophy. Methods. Cerebral evoked potentials by stimulation of calf muscles and somatusensory evoked potentials(SEPs) by the stimulation of posterior tibial nerves at ankle were measured in 10 patients with DMD and 10 norreal controls matched with gender and age. The intensity of the magnetic stimulation was at 30% of maximal output (2. 1 Tesla, MagPro magnetic stimulator, Dantec) and the frequency was 1 Hz. The low intensity of magnet-ic stimulation was just sufficient to produce a contraction of the muscle belly underneath the coil. Recording electrode was placed at 2 cm posterior to the Cz, reference to Fpz. The latencies of N33, P38, N48 and P55 and ampli-tude (P38 - N48) were recorded. SEPs were recorded by routine methods. Results. In normal subjects, the amphtudes of cerebral evoked potentials by magnetic stimulation of calf mus-cle was 40% lower than that by electrical stimulation of the posterior tibial nerves at ankle. The latency of P38 was 2. 9 ± 2. 1 ms longer compared with electrical stimulation of the posterior tibial nerves at ankle. In 6 patients, P38 latency from magnetic stimulation was remarkably prolonged ( P < 0. 01), and in 4 patients, there was no remarkable response. SEPs evoked by electrical stimulation were normal in all of the patients. Conclusion. DMD is an available model for the study of mechanism of cerebral evoked potentials by magnetic stimulating muscle. We can conclude that the responses from magnetic stimulation were produced by muscle input. The abnormal responses in patients may relate to decreased input of muscle by stimulating dystrophic and psedohypertrophic muscle.

  18. Preceptor use of classroom assessment techniques to stimulate higher-order thinking in the clinical setting.

    Science.gov (United States)

    Davidson, Judy E

    2009-03-01

    The purpose of this article is to provide examples of learning activities to be used as formative (interim) evaluation of an in-hospital orientation or cross-training program. Examples are provided in the form of vignettes that have been derived from strategies described in the literature as classroom assessment techniques. Although these classroom assessment techniques were originally designed for classroom experiences, they are proposed as methods for preceptors to stimulate the development of higher-order thinking such as synthesizing information, solving problems, and learning how to learn.

  19. Testing techniques for mechanical characterization of rapidly solidified materials

    Science.gov (United States)

    Koch, C. C.

    1986-01-01

    Mechanical property testing techniques are reviewed for rapidly solidified materials. Mechanical testing of rapidly solidified materials is complicated by the fact that in most cases at least one dimension of the material is very small (less than 100 microns). For some geometries, i.e., powder or thin surface layers, microhardness is the only feasible mechanical test. The ribbon geometry which is obtained by the melt-spinning method, however, has been used for a variety of mechanical property measurements including elastic properties, tensile properties, fracture toughness, creep, and fatigue. These techniques are described with emphasis placed on the precautions required by the restricted geometry of rapidly solidified specimens.

  20. Magnetic versus electrical stimulation in the interpolation twitch technique of elbow flexors.

    Science.gov (United States)

    Lampropoulou, Sofia I; Nowicky, Alexander V; Marston, Louise

    2012-01-01

    The study compared peripheral magnetic with electrical stimulation of the biceps brachii m. (BB) in the single pulse Interpolation Twitch Technique (ITT). 14 healthy participants (31±7 years) participated in a within-subjects repeated-measures design study. Single, constant-current electrical and magnetic stimuli were delivered over the motor point of BB with supramaximal intensity (20% above maximum) at rest and at various levels of voluntary contraction. Force measurements from right elbow isometric flexion and muscle electromyograms (EMG) from the BB, the triceps brachii m. (TB) and the abductor pollicis brevis m. (APB) were obtained. The twitch forces at rest and maximal contractions, the twitch force-voluntary force relationship, the M-waves and the voluntary activation (VA) of BB between magnetic and electrical stimulation were compared. The mean amplitude of the twitches evoked at MVC was not significantly different between electrical (0.62 ± 0.49 N) and magnetic (0.81 ± 0.49 N) stimulation (p > 0.05), and the maximum VA of BB was comparable between electrical (95%) and magnetic (93%) stimulation (p > 0. 05). No differences (p >0.05) were revealed in the BB M-waves between electrical (13.47 ± 0.49 mV.ms) and magnetic (12.61 ± 0.58 mV.ms) stimulation. The TB M-waves were also similar (p > 0.05) but electrically evoked APB M-waves were significantly larger than those evoked by magnetic stimulation (p twitch-voluntary force relationship over the range of MVCs was best described by non-linear functions for both electrical and magnetic stimulation. The electrically evoked resting twitches were consistently larger in amplitude than the magnetically evoked ones (mean difference 3.1 ± 3.34 N, p twitch amplitude by 6.5 ± 6.2 N (p < 0.05). The fundamental similarities in voluntary activation assessment of BB with peripheral electrical and magnetic stimulation point towards a promising new application of peripheral magnetic stimulation as an alternative to the

  1. MAGNETIC VERSUS ELECTRICAL STIMULATION IN THE INTERPOLATION TWITCH TECHNIQUE OF ELBOW FLEXORS

    Directory of Open Access Journals (Sweden)

    Sofia I. Lampropoulou

    2012-12-01

    Full Text Available The study compared peripheral magnetic with electrical stimulation of the biceps brachii m. (BB in the single pulse Interpolation Twitch Technique (ITT. 14 healthy participants (31±7 years participated in a within-subjects repeated-measures design study. Single, constant-current electrical and magnetic stimuli were delivered over the motor point of BB with supramaximal intensity (20% above maximum at rest and at various levels of voluntary contraction. Force measurements from right elbow isometric flexion and muscle electromyograms (EMG from the BB, the triceps brachii m. (TB and the abductor pollicis brevis m. (APB were obtained. The twitch forces at rest and maximal contractions, the twitch force-voluntary force relationship, the M-waves and the voluntary activation (VA of BB between magnetic and electrical stimulation were compared. The mean amplitude of the twitches evoked at MVC was not significantly different between electrical (0.62 ± 0.49 N and magnetic (0.81 ± 0.49 N stimulation (p > 0.05, and the maximum VA of BB was comparable between electrical (95% and magnetic (93% stimulation (p > 0. 05. No differences (p >0.05 were revealed in the BB M-waves between electrical (13.47 ± 0.49 mV.ms and magnetic (12.61 ± 0.58 mV.ms stimulation. The TB M-waves were also similar (p > 0.05 but electrically evoked APB M-waves were significantly larger than those evoked by magnetic stimulation (p < 0.05. The twitch-voluntary force relationship over the range of MVCs was best described by non-linear functions for both electrical and magnetic stimulation. The electrically evoked resting twitches were consistently larger in amplitude than the magnetically evoked ones (mean difference 3.1 ± 3.34 N, p < 0.05. Reduction of the inter-electrodes distance reduced the twitch amplitude by 6.5 ± 6.2 N (p < 0.05. The fundamental similarities in voluntary activation assessment of BB with peripheral electrical and magnetic stimulation point towards a promising

  2. Animal models of transcranial direct current stimulation: Methods and mechanisms.

    Science.gov (United States)

    Jackson, Mark P; Rahman, Asif; Lafon, Belen; Kronberg, Gregory; Ling, Doris; Parra, Lucas C; Bikson, Marom

    2016-11-01

    The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: (1) transcranial stimulation; (2) direct cortical stimulation in vivo and (3) in vitro models. In each case advantages and disadvantages for translational research are discussed including dose translation and the overarching "quasi-uniform" assumption, which underpins translational relevance in all animal models of tDCS. Terminology such as anode, cathode, inward current, outward current, current density, electric field, and uniform are defined. Though we put key animal experiments spanning decades in perspective, our goal is not simply an exhaustive cataloging of relevant animal studies, but rather to put them in context of ongoing efforts to improve tDCS. Cellular targets, including excitatory neuronal somas, dendrites, axons, interneurons, glial cells, and endothelial cells are considered. We emphasize neurons are always depolarized and hyperpolarized such that effects of DCS on neuronal excitability can only be evaluated within subcellular regions of the neuron. Findings from animal studies on the effects of DCS on plasticity (LTP/LTD) and network oscillations are reviewed extensively. Any endogenous phenomena dependent on membrane potential changes are, in theory, susceptible to modulation by DCS. The relevance of morphological changes (galvanotropy) to tDCS is also considered, as we suggest microscopic migration of axon terminals or dendritic spines may be relevant during tDCS. A majority of clinical studies using tDCS employ a simplistic dose strategy where excitability is singularly increased or decreased under the anode and cathode, respectively. We discuss how this strategy, itself based on classic animal studies, cannot account for the

  3. Efficacy of Manual and Mechanical Instrumentation Techniques for ...

    African Journals Online (AJOL)

    2016-02-29

    Feb 29, 2016 ... Efficacy of Manual and Mechanical Instrumentation Techniques for. Removal of .... hypochlorite (NaOCl) between the application of each file ..... Efficacy of automated versus hand instrumentation during root canal retreatment: ...

  4. External Ca(2+) is essential for chloroplast movement induced by mechanical stimulation but not by light stimulation.

    Science.gov (United States)

    Sato, Y; Wada, M; Kadota, A

    2001-10-01

    In the fern Adiantum capillus-veneris, chloroplast movement is induced by mechanical stimulation as well as by light stimulation. Directional movement of both types depends on an actin-based motile system. To investigate the physiological relationship between mechanical and light signaling in the regulation of chloroplast movement, we examined the mechano-response of chloroplasts whose motility had been already restricted after photo-relocation. Chloroplast mechano-avoidance movement was induced under all of the photo-relocation conditions tested, indicating that mechano-specific signals generated by mechanical stimulation dominate over the light signals and reactivate the motility of chloroplasts. When the effects of external Ca(2+) on the induction of mechano- and light responses were examined, strikingly different requirements of external Ca(2+) were found for each. In medium without Ca(2+), the mechano-response was suppressed but no effects were observed on photo-response. Mechano-relocation movement of chloroplasts was inhibited by 100 microM lanthanum (La(3+)), a plasma membrane calcium channel blocker, and by 10 microM gadolinium (Gd(3+)), a stretch-activated channel blocker. However, the same concentrations of these drugs did not affect the photo-relocation movement at all. These results suggest that the influx of external Ca(2+) is crucial for the early signaling step of chloroplast mechano-relocation but not for that of photo-relocation. This is the first report showing the separation of signaling pathways in mechano- and photo-relocation of chloroplasts.

  5. Transcutaneous mechanical nerve stimulation using perineal vibration: a novel method for the treatment of female stress urinary incontinence

    DEFF Research Database (Denmark)

    Sønksen, Jens; Ohl, Dana A; Bonde, Birthe

    2007-01-01

    We defined basic guidelines for transcutaneous mechanical nerve stimulation in modifying pelvic floor responses in women and determined the efficacy of transcutaneous mechanical nerve stimulation in treating stress urinary incontinence....

  6. Neural mechanisms underlying transcranial direct current stimulation in aphasia: A feasibility study.

    Directory of Open Access Journals (Sweden)

    Lena eUlm

    2015-10-01

    Full Text Available Little is known about the neural mechanisms by which transcranial direct current stimulation (tDCS impacts on language processing in post-stroke aphasia. This was addressed in a proof-of-principle study that explored the effects of tDCS application in aphasia during simultaneous functional magnetic resonance imaging (fMRI. We employed a single subject, cross-over, sham-tDCS controlled design and the stimulation was administered to an individualized perilesional stimulation site that was identified by a baseline fMRI scan and a picture naming task. Peak activity during the baseline scan was located in the spared left inferior frontal gyrus (IFG and this area was stimulated during a subsequent cross-over phase. tDCS was successfully administered to the target region and anodal- vs. sham-tDCS resulted in selectively increased activity at the stimulation site. Our results thus demonstrate that it is feasible to precisely target an individualized stimulation site in aphasia patients during simultaneous fMRI which allows assessing the neural mechanisms underlying tDCS application. The functional imaging results of this case report highlight one possible mechanism that may have contributed to beneficial behavioural stimulation effects in previous clinical tDCS trials in aphasia. In the future, this approach will allow identifying distinct patterns of stimulation effects on neural processing in larger cohorts of patients. This may ultimately yield information about the variability of tDCS-effects on brain functions in aphasia.

  7. Neural Mechanisms Underlying Perilesional Transcranial Direct Current Stimulation in Aphasia: A Feasibility Study

    Science.gov (United States)

    Ulm, Lena; McMahon, Katie; Copland, David; de Zubicaray, Greig I.; Meinzer, Marcus

    2015-01-01

    Little is known about the neural mechanisms by which transcranial direct current stimulation (tDCS) impacts on language processing in post-stroke aphasia. This was addressed in a proof-of-principle study that explored the effects of tDCS application in aphasia during simultaneous functional magnetic resonance imaging (fMRI). We employed a single subject, cross-over, sham-tDCS controlled design, and the stimulation was administered to an individualized perilesional stimulation site that was identified by a baseline fMRI scan and a picture naming task. Peak activity during the baseline scan was located in the spared left inferior frontal gyrus and this area was stimulated during a subsequent cross-over phase. tDCS was successfully administered to the target region and anodal- vs. sham-tDCS resulted in selectively increased activity at the stimulation site. Our results thus demonstrate that it is feasible to precisely target an individualized stimulation site in aphasia patients during simultaneous fMRI, which allows assessing the neural mechanisms underlying tDCS application. The functional imaging results of this case report highlight one possible mechanism that may have contributed to beneficial behavioral stimulation effects in previous clinical tDCS trials in aphasia. In the future, this approach will allow identifying distinct patterns of stimulation effects on neural processing in larger cohorts of patients. This may ultimately yield information about the variability of tDCS effects on brain functions in aphasia. PMID:26500522

  8. Mechanism of attenuation of leptin signaling under chronic ligand stimulation

    Directory of Open Access Journals (Sweden)

    Bamberg-Lemper Simone

    2010-01-01

    Full Text Available Abstract Background Leptin is an adipocyte-derived hormone that acts via its hypothalamic receptor (LEPRb to regulate energy balance. A downstream effect essential for the weight-regulatory action of leptin is the phosphorylation and activation of the latent transcription factor STAT3 by LEPRb-associated Janus kinases (JAKs. Obesity is typically associated with chronically elevated leptin levels and a decreased ability of LEPRb to activate intracellular signal transduction pathways (leptin resistance. Here we have studied the roles of the intracellular tyrosine residues in the negative feedback regulation of LEPRb-signaling under chronic leptin stimulation. Results Mutational analysis showed that the presence of either Tyr985 and Tyr1077 in the intracellular domain of LEPRb was sufficient for the attenuation of STAT3 phosphorylation, whereas mutation of both tyrosines rendered LEPRb resistant to feedback regulation. Overexpression and RNA interference-mediated downregulation of suppressor of cytokine signaling 3 (SOCS3 revealed that both Tyr985 and Tyr1077 were capable of supporting the negative modulatory effect of SOCS3 in reporter gene assays. In contrast, the inhibitory effect of SOCS1 was enhanced by the presence of Tyr985 but not Tyr1077. Finally, the reduction of the STAT-phosphorylating activity of the LEPRb complex after 2 h of leptin stimulation was not accompanied by the dephosphorylation or degradation of LEPRb or the receptor-associated JAK molecule, but depended on Tyr985 and/or Tyr1077. Conclusions Both Tyr985 and Tyr1077 contribute to the negative regulation of LEPRb signaling. The inhibitory effects of SOCS1 and SOCS3 differ in the dependence on the tyrosine residues in the intracellular domain of LEPRb.

  9. Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine.

    Science.gov (United States)

    Kuhre, Rune E; Frost, Charlotte R; Svendsen, Berit; Holst, Jens J

    2015-02-01

    Glucose is an important stimulus for glucagon-like peptide 1 (GLP-1) secretion, but the mechanisms of secretion have not been investigated in integrated physiological models. We studied glucose-stimulated GLP-1 secretion from isolated perfused rat small intestine. Luminal glucose (5% and 20% w/v) stimulated the secretion dose dependently, but vascular glucose was without significant effect at 5, 10, 15, and 25 mmol/L. GLP-1 stimulation by luminal glucose (20%) secretion was blocked by the voltage-gated Ca channel inhibitor, nifedipine, or by hyperpolarization with diazoxide. Luminal administration (20%) of the nonmetabolizable sodium-glucose transporter 1 (SGLT1) substrate, methyl-α-D-glucopyranoside (α-MGP), stimulated release, whereas the SGLT1 inhibitor phloridzin (luminally) abolished responses to α-MGP and glucose. Furthermore, in the absence of luminal NaCl, luminal glucose (20%) did not stimulate a response. Luminal glucose-stimulated GLP-1 secretion was also sensitive to luminal GLUT2 inhibition (phloretin), but in contrast to SGLT1 inhibition, phloretin did not eliminate the response, and luminal glucose (20%) stimulated larger GLP-1 responses than luminal α-MGP in matched concentrations. Glucose transported by GLUT2 may act after metabolization, closing KATP channels similar to sulfonylureas, which also stimulated secretion. Our data indicate that SGLT1 activity is the driving force for glucose-stimulated GLP-1 secretion and that KATP-channel closure is required to stimulate a full-blown glucose-induced response.

  10. Biochemical analysis of the response in rat bone marrow cell cultures to mechanical stimulation.

    Science.gov (United States)

    Yoshikawa, T; Peel, S A; Gladstone, J R; Davies, J E

    1997-01-01

    Bone marrow cells obtained from rat femora were subjected to primary culture with 15% fetal bovine serum in the presence of 10(-8) M dexamethasone, and following trypsin treatment 5 days later were seeded on Petriperm dishes which have a flexible bottom. After a 2-day subculture, a cyclic stress consisting of a 1 s stretch (0.3% strain. 0.5 Hz) and a 1 s relaxation for 30 min every day was started. Culture tissue was removed on day 2 of the subculture (immediately prior to start of stimulation), and then on days 5 and 8 (3 and 6 days after the start of stimulation, respectively), at which times dry weight, DNA, alkaline phosphatase (ALP) activity, and bone Gla protein (BGP, osteocalcin) were measured. Both the dry weight and DNA showed a significant increase in the stimulated group by day 8, while the ALP activity showed a significant increase by day 5. The BGP began to increase in the stimulated group on day 5 in contrast to the control group in which it only increased on day 8. These results support the contention that mechanical stimulation promotes the differentiation of osteogenic cells and enhances bone formation. Since in this experimental model the acceleration of bone formation by mechanical stimulation can be reproduced in vitro, it is extremely useful for investigating the mechanisms underlying mechanical stimulation.

  11. Dosimetric characterisation of Brazilian natural stones using the thermally stimulated exoelectron emission technique

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, F.D.G.; Cecatti, S.G.P.; Caldas, L.V.E

    2002-07-01

    A thermally stimulated exoelectron emission (TSEE) measuring system developed and constructed at IPEN was used to verify the feasibility of the use of Brazilian natural semi-precious stones, such as jasper, amethyst, agate (blue and rose) and quartz (rose and white) for gamma and X radiation detection. Its counting system consists of a 2p windowless gas-flow proportional counter, and the heating system is formed by a temperature programmer that provides linear heating of the samples. The samples were tested in gamma and in X radiation beams and evaluated in relation to their main dosimetric characteristics, as TSEE glow curves, calibration curves and energy dependence. The TSEE results are compared with those of thermoluminescence. The results obtained show the usefulness of Brazilian natural stones as dosimetric materials, using the thermoluminescence and thermally stimulated exoelectron emission techniques. (author)

  12. Stimulant Paste Preparation and Bark Streak Tapping Technique for Pine Oleoresin Extraction.

    Science.gov (United States)

    Füller, Thanise Nogueira; de Lima, Júlio César; de Costa, Fernanda; Rodrigues-Corrêa, Kelly C S; Fett-Neto, Arthur G

    2016-01-01

    Tapping technique comprises the extraction of pine oleoresin, a non-wood forest product consisting of a complex mixture of mono, sesqui, and diterpenes biosynthesized and exuded as a defense response to wounding. Oleoresin is used to produce gum rosin, turpentine, and their multiple derivatives. Oleoresin yield and quality are objects of interest in pine tree biotechnology, both in terms of environmental and genetic control. Monitoring these parameters in individual trees grown in the field provides a means to examine the control of terpene production in resin canals, as well as the identification of genetic-based differences in resinosis. A typical method of tapping involves the removal of bark and application of a chemical stimulant on the wounded area. Here we describe the methods for preparing the resin-stimulant paste with different adjuvants, as well as the bark streaking process in adult pine trees.

  13. Mechanical stimulation in the engineering of heart muscle.

    Science.gov (United States)

    Liaw, Norman Yu; Zimmermann, Wolfram-Hubertus

    2016-01-15

    Recreating the beating heart in the laboratory continues to be a formidable bioengineering challenge. The fundamental feature of the heart is its pumping action, requiring considerable mechanical forces to compress a blood filled chamber with a defined in- and outlet. Ventricular output crucially depends on venous loading of the ventricles (preload) and on the force generated by the preloaded ventricles to overcome arterial blood pressure (afterload). The rate of contraction is controlled by the spontaneously active sinus node and transmission of its electrical impulses into the ventricles. The underlying principles for these physiological processes are described by the Frank-Starling mechanism and Bowditch phenomenon. It is essential to consider these principles in the design and evaluation of tissue engineered myocardium. This review focuses on current strategies to evoke mechanical loading in hydrogel-based heart muscle engineering.

  14. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  15. HDAC inhibitors stimulate viral transcription by multiple mechanisms

    Directory of Open Access Journals (Sweden)

    Milavetz Barry

    2008-03-01

    Full Text Available Abstract Background The effects of histone deacetylase inhibitor (HDACi treatment on SV40 transcription and replication were determined by monitoring the levels of early and late expression, the extent of replication, and the percentage of SV40 minichromosomes capable of transcription and replication following treatment with sodium butyrate (NaBu and trichostatin A (TSA. Results The HDACi treatment was found to maximally stimulate early transcription at early times and late transcription at late times through increased numbers of minichromosomes which carry RNA polymerase II (RNAPII transcription complexes and increased occupancy of the transcribing minichromosomes by RNAPII. HDACi treatment also partially relieved the normal down-regulation of early transcription by T-antigen seen later in infection. The increased recruitment of transcribing minichromosomes at late times was correlated to a corresponding reduction in SV40 replication and the percentage of minichromosomes capable of replication. Conclusion These results suggest that histone deacetylation plays a critical role in the regulation of many aspects of an SV40 lytic infection.

  16. Vagus nerve stimulation: Surgical technique of implantation and revision and related morbidity.

    Science.gov (United States)

    Giordano, Flavio; Zicca, Anna; Barba, Carmen; Guerrini, Renzo; Genitori, Lorenzo

    2017-04-01

    Indications for vagus nerve stimulation (VNS) therapy include focal, multifocal epilepsy, drop attacks (tonic/atonic seizures), Lennox-Gastaut syndrome, tuberous sclerosis complex (TSC)-related multifocal epilepsy, and unsuccessful resective surgery. Surgical outcome is about 50-60% for seizures control, and may also improve mood, cognition, and memory. On this basis, VNS has also been proposed for the treatment of major depression and Alzheimer's' disease. The vagus nerve stimulator must be implanted with blunt technique on the left side to avoid cardiac side effects through the classic approach for anterior cervical discectomy. The actual device is composed of a wire with three helical contacts (two active contacts, one anchoring) and a one-pin battery. VNS is usually started 2 weeks after implantation with recommended settings of stimulation (1.0-2.0 mA; 500 μs pulse width; 20-30 Hz; 30 s ON, 5 min OFF). The complications of VNS therapy are early (related to surgery) and late (related to the device and to stimulation of the vagus nerve). Early complications include the following: intraoperative bradycardia and asystole during lead impedance testing, peritracheal hematoma, infections (3-8%), and vagus nerve injury followed by hoarseness, dyspnea, and dysphagia because of left vocal cord paralysis. Delayed morbidity due to the device includes late infections or problems in wound healing; other more rare events are due to late injury of the nerve. Late complications due to nerve stimulation include delayed arrhythmias, laryngopharyngeal dysfunction (hoarseness, dyspnea, and coughing), obstructive sleep apnea, stimulation of phrenic nerve, tonsillar pain mimicking glossopharyngeal neuralgia, and vocal cord damage during prolonged endotracheal intubation. The laryngopharyngeal dysfunction occurs in about 66% of patients and is usually transitory and due to the stimulation of the inferior (recurrent) laryngeal nerve. A true late paralysis of the left vocal cord

  17. Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P C [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Correia, L [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Salvador, R [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Basser, P J [Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, MD 20892-1428 (United States)

    2007-09-21

    We investigate the heterogeneity of electrical conductivity as a new mechanism to stimulate excitable tissues via applied electric fields. In particular, we show that stimulation of axons crossing internal boundaries can occur at boundaries where the electric conductivity of the volume conductor changes abruptly. The effectiveness of this and other stimulation mechanisms was compared by means of models and computer simulations in the context of transcranial magnetic stimulation. While, for a given stimulation intensity, the largest membrane depolarization occurred where an axon terminates or bends sharply in a high electric field region, a slightly smaller membrane depolarization, still sufficient to generate action potentials, also occurred at an internal boundary where the conductivity jumped from 0.143 S m{sup -1} to 0.333 S m{sup -1}, simulating a white-matter-grey-matter interface. Tissue heterogeneity can also give rise to local electric field gradients that are considerably stronger and more focal than those impressed by the stimulation coil and that can affect the membrane potential, albeit to a lesser extent than the two mechanisms mentioned above. Tissue heterogeneity may play an important role in electric and magnetic 'far-field' stimulation.

  18. A novel biphasic-current-pulse calibration technique for electrical neural stimulation.

    Science.gov (United States)

    Maohua Ren; Jinyong Zhang; Lei Wang; Zhenyu Wang

    2014-01-01

    One of the major challenge in neural prosthetic device design is to ensure charge-balanced stimulation. This paper presents a new calibration technique to minimize the mismatch between anodic and cathodic current amplitudes. The proposed circuit mainly consists of a digital and an analog calibration, where a successive approximation register (SAR) logic and a comparator are used in digital calibration while a source follower is adopted in analog calibration. With a 0.18 μm high voltage CMOS process, the simulation shows that the maximum current mismatch is 45 nA (<0.05%).

  19. Computational Modeling and Analysis of Mechanically Painful Stimulations

    DEFF Research Database (Denmark)

    Manafi Khanian, Bahram

    to expand the current knowledge on the mechanical influences of cuff algometry on deep-tissue nociceptors. Additionally, this is one of the pioneering projects utilizing the finite element simulation as a computationally reliable method of modelling in pain research field. The present findings are highly...... relevant to biomechanical studies for defining a valid methodology to appropriately activate deep-tissue nociceptors and hence to develop biomedical devices used for pain sensitivity assessment....

  20. A Comparison of Vicarious and Written Training Techniques Applied to Early Stimulation by Parents of Their Down Syndrome Babies.

    Science.gov (United States)

    Sanz, M. T.

    1996-01-01

    Compared effectiveness of vicarious and written training techniques to teach parents an early stimulation program for infants with Downs Syndrome. Found that infants whose parents were trained through observing a clinician stimulate their child had higher average developmental quotients in gross motor and language development between 6 and 24…

  1. Perception of electrical and mechanical stimulation of the skin: implications for electrotactile feedback

    Science.gov (United States)

    Marcus, Patrick L.; Fuglevand, Andrew J.

    2009-12-01

    Spinal cord injury is often accompanied by impaired tactile and proprioceptive sensations. Normally, somatosensensory information derived from such sensations is important in the formation of voluntary motor commands. Therefore, as a preliminary step toward the development of an electrotactile feedback system to restore somatosensation, psychophysical methods were used to characterize perceptual attributes associated with electrical stimulation of the skin on the back of the neck in human subjects. These data were compared to mechanical stimulation of the skin on the back of neck and on the distal pad of the index finger. Spatial acuity of the neck, evaluated using two-point thresholds, was not significantly different for electrical (37 ± 14 mm) or mechanical stimulation (39 ± 10 mm). The exponent (β) of the best fitting power function relating perceived intensity to applied stimulus strength was used to characterize perceptual sensitivity to mechanical and electrical stimuli. For electrical stimuli, both current amplitude-modulated and frequency-modulated trains of pulses were tested. Perceptual sensitivity was significantly greater for current amplitude modulation (β = 1.14 ± 0.37) compared to frequency modulation (β = 0.57 ± 0.24) and mechanical stimulation (0.51 ± 0.12). Finally, based on the data gathered here, we derive a transfer function that could be used in the future to convert mechanical stimuli detected with artificial sensors placed on the fingers into electrotactile signals that evoke perceptions similar to those arising from normal mechanical stimulation of the skin.

  2. Transcranial direct current stimulation in Parkinson's disease: Neurophysiological mechanisms and behavioral effects.

    Science.gov (United States)

    Broeder, Sanne; Nackaerts, Evelien; Heremans, Elke; Vervoort, Griet; Meesen, Raf; Verheyden, Geert; Nieuwboer, Alice

    2015-10-01

    Recent research has highlighted the potential of transcranial direct current stimulation (tDCS) to complement rehabilitation effects in the elderly and in patients with neurological diseases, including Parkinson's disease (PD). TDCS can modulate cortical excitability and enhance neurophysiological mechanisms that compensate for impaired learning in PD. The objective of this systematic review is to provide an overview of the effects of tDCS on neurophysiological and behavioral outcome measures in PD patients, both as a stand-alone and as an adjunctive therapy. We systematically reviewed the literature published throughout the last 10 years. Ten studies were included, most of which were sham controlled. Results confirmed that tDCS applied to the motor cortex had significant results on motor function and to a lesser extent on cognitive tests. However, the physiological mechanism underlying the long-term effects of tDCS on cortical excitability in the PD brain are still unclear and need to be clarified in order to apply this technique optimally to a wider population in the different disease stages and with different medication profiles.

  3. Molecular Mechanisms of Glucose-Stimulated GLP-1 Secretion From Perfused Rat Small Intestine

    DEFF Research Database (Denmark)

    Kuhre, Rune E.; Frost, Charlotte R.; Svendsen, Berit;

    2015-01-01

    Glucose is an important stimulus for glucagon-like peptide 1 (GLP-1) secretion, but the mechanisms of secretion have not been investigated in integrated physiological models. We studied glucose-stimulated GLP-1 secretion from isolated perfused rat small intestine. Luminal glucose (5% and 20% w...... (20%) of the nonmetabolizable sodium-glucose transporter 1 (SGLT1) substrate, methyl-α-d-glucopyranoside (α-MGP), stimulated release, whereas the SGLT1 inhibitor phloridzin (luminally) abolished responses to α-MGP and glucose. Furthermore, in the absence of luminal NaCl, luminal glucose (20%) did...... not stimulate a response. Luminal glucose-stimulated GLP-1 secretion was also sensitive to luminal GLUT2 inhibition (phloretin), but in contrast to SGLT1 inhibition, phloretin did not eliminate the response, and luminal glucose (20%) stimulated larger GLP-1 responses than luminal α-MGP in matched concentrations...

  4. Detection of irradiated spices using photo-stimulated luminescence technique (PSL)

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi [Faculty of Science and Technology, National University of Malaysia, Bangi, 43000 Kajang, Selangor (Malaysia); Othman, Zainon; Abdullah, Wan Saffiey Wan [Malaysian Nuclear Agency, Bangi 43000 Kajang, Selangor (Malaysia)

    2014-09-03

    Photo-stimulated luminescence (PSL) technique was applied to detect irradiated black pepper (Piper nigrum), cinnamon (Cinnamomum verum) and turmeric (Curcuma longa) after dark storage for 1 day, 3 and 6 months. Using screening and calibrated PSL, all samples were correctly discriminated between non-irradiated and spices irradiated with doses 1, 5 and 10 kGy. The PSL photon counts (PCs) of irradiated spices increased with increasing dose, with turmeric showing highest sensitivity index to irradiation compared to black pepper and cinnamon. The differences in response are possibly attributed to the varying quantity and quality of silicate minerals present in each spice sample. PSL signals of all irradiated samples reduced after 3 and 6 months storage. The results of this study provide a useful database on the applicability of PSL technique for the detection of Malaysian irradiated spices.

  5. Detection of irradiated spices using photo-stimulated luminescence technique (PSL)

    Science.gov (United States)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-09-01

    Photo-stimulated luminescence (PSL) technique was applied to detect irradiated black pepper (Piper nigrum), cinnamon (Cinnamomum verum) and turmeric (Curcuma longa) after dark storage for 1 day, 3 and 6 months. Using screening and calibrated PSL, all samples were correctly discriminated between non-irradiated and spices irradiated with doses 1, 5 and 10 kGy. The PSL photon counts (PCs) of irradiated spices increased with increasing dose, with turmeric showing highest sensitivity index to irradiation compared to black pepper and cinnamon. The differences in response are possibly attributed to the varying quantity and quality of silicate minerals present in each spice sample. PSL signals of all irradiated samples reduced after 3 and 6 months storage. The results of this study provide a useful database on the applicability of PSL technique for the detection of Malaysian irradiated spices.

  6. Deep brain stimulation mechanisms: the control of network activity via neurochemistry modulation.

    Science.gov (United States)

    McIntyre, Cameron C; Anderson, Ross W

    2016-10-01

    Deep brain stimulation (DBS) has revolutionized the clinical care of late-stage Parkinson's disease and shows promise for improving the treatment of intractable neuropsychiatric disorders. However, after over 25 years of clinical experience, numerous questions still remain on the neurophysiological basis for the therapeutic mechanisms of action. At their fundamental core, the general purpose of electrical stimulation therapies in the nervous system are to use the applied electric field to manipulate the opening and closing of voltage-gated sodium channels on neurons, generate stimulation induced action potentials, and subsequently, control the release of neurotransmitters in targeted pathways. Historically, DBS mechanisms research has focused on characterizing the effects of stimulation on neurons and the resulting impact on neuronal network activity. However, when electrodes are placed within the central nervous system, glia are also being directly (and indirectly) influenced by the stimulation. Mounting evidence shows that non-neuronal tissue can play an important role in modulating the neurochemistry changes induced by DBS. The goal of this review is to evaluate how DBS effects on both neuronal and non-neuronal tissue can potentially work together to suppress oscillatory activity (and/or information transfer) between brain regions. These resulting effects of ~ 100 Hz electrical stimulation help explain how DBS can disrupt pathological network activity in the brain and generate therapeutic effects in patients. Deep brain stimulation is an effective clinical technology, but detailed therapeutic mechanisms remain undefined. This review provides an overview of the leading hypotheses, which focus on stimulation-induced disruption of network oscillations and integrates possible roles for non-neuronal tissue in explaining the clinical response to therapeutic stimulation. This article is part of a special issue on Parkinson disease.

  7. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Robert T. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); O' Brien, Fergal J. [Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (Ireland); Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland (Ireland); Hoey, David A., E-mail: david.hoey@ul.ie [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin (Ireland); Dept. of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); The Centre for Applied Biomedical Engineering Research, University of Limerick (Ireland); Materials & Surface Science Institute, University of Limerick (Ireland)

    2015-03-27

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting

  8. Can endurance sports stimulate immune mechanisms against cancer and metastasis?

    Science.gov (United States)

    Uhlenbruck, G; Order, U

    1991-06-01

    Proceeding from a brief historical contemplation of the problematic nature of "exercise and malignancy" a training investigation (running on a treadmill) with animals is presented. By means of the experimental tumor model fibrosarcoma L-1 of BALB/c mice differences in growth, size, and metastatic spreading have been proven depending upon the mode and more significantly on the intensity of training and upon the mode of application and inoculation of tumor cells. Accordingly the best cancer protective effect could be observed when the animals performed a pre- and a post-running training before and after inoculation. More over mechanisms of the acute phase response of human athletes are discussed in relation to possible prophylactic effects on the prevention of infections and on the development of cancer.

  9. Mechanical Hemostasis Techniques in Nonvariceal Upper Gastrointestinal Bleeding.

    Science.gov (United States)

    Brock, Andrew S; Rockey, Don C

    2015-07-01

    One of the most important advances in gastroenterology has been the use of endoscopic hemostasis techniques to control nonvariceal upper gastrointestinal bleeding, particularly when high-risk stigmata are present. Several options are available, including injection therapy, sprays/topical agents, electrocautery, and mechanical methods. The method chosen depends on the nature of the lesion and experience of the endoscopist. This article reviews the available mechanical hemostatic modalities. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Vagal stimulation modulates inflammation through a ghrelin mediated mechanism in traumatic brain injury

    OpenAIRE

    Bansal, V; Ryu, SY; Lopez, N; Allexan, S; Krzyzaniak, M; Eliceiri, B; Baird, A.; Coimbra, R

    2012-01-01

    Traumatic brain injury (TBI) releases a cascade of inflammatory cytokines. Vagal nerve stimulation (VNS) and ghrelin have known anti-inflammatory effects; furthermore, ghrelin release is stimulated by acetylcholine. We hypothesized VNS decreases post-TBI inflammation through a ghrelin-mediated mechanism. TBI was created in five groups of mice: sham, TBI, TBI/ghrelin, TBI/VNS, and TBI/VNS/ghrelin receptor antagonist (GRa). Serum and tissue ghrelin, and serum TNF-αwere measured. Ghrelin increas...

  11. Mechanical Properties, Purifying Techniques and Processing Methods of Metal Yttrium

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The mechanical properties of metal yttrium such as strength, plasticity, hardness and elasticity were introduced. The purifying techniques of yttrium were discussed in detail. The processing methods for metal yttrium including extruding, forging, rolling, wiredrawing and welding were also introduced. Finally, the potential use of yttrium and its alloys were prospected.

  12. Entry of large nanoparticles into cells aided by nanoscale mechanical stimulation

    Science.gov (United States)

    Vaidyanathan, Ramanathan; Curtis, Adam; Mullin, Margaret

    2011-10-01

    Nanoparticle entry into the cell depends on the surface charge and also on their size. Here, we report the entry of large magnetic nanoparticles (500 nm mean diameter) into the cell, being mediated by a mechanical stimulus supplied to the culture flasks. Investigations were carried out at 2-10 Hz frequency range with the vertical excursions ranging from 5 to 20 nm. Mechanical stimulation was found to aid the entry of both positive and negatively charged nanoparticles over a frequency range of 2-10 Hz. Transmission electron microscopy analysis indicated that, the stimulated samples could possibly mediate particle uptake through membrane invaginations, while the control samples indicated particles at the cell periphery, just outside the cell membrane. Mechanical stimulation had no significant effect on the cell morphology. Bromodeoxyuridine incorporation resulted in an increase in the proportion of S-phase in the stimulated samples compared with the controls, suggesting a reduction in the cell cycle duration. Mechanical stimulation could very well extend its effects to nanoscale cellular movements, and also facilitate the entry of large magnetic nanoparticle. This could be an interesting prospect for nanoparticle mediated drug delivery.

  13. Membrane potential and mechanical responses of the opossum esophagus to vagal stimulation and swallowing.

    Science.gov (United States)

    Rattan, S; Gidda, J S; Goyal, R K

    1983-10-01

    Studies were performed in anesthetized opossums. The electrical changes, recorded using a suction electrode applied to the outside of the esophagus, and mechanical activity, recorded by an intraluminal catheter, were monitored from 5 cm above the lower esophageal sphincter. Swallowing was associated with membrane hyperpolarization followed by depolarization and spike burst. Electrical stimulation of the decentralized vagus also caused a prompt hyperpolarization followed by an overshoot depolarization. Single pulses of stimulation caused primarily hyperpolarization. The amplitude and duration of hyperpolarization increased with increasing frequencies of vagal stimulation. Spike burst occurred as the membrane potential was recovering from the peak hyperpolarization and moving toward peak depolarization. The latency of onset of spike burst decreased with increasing frequency of vagal stimulation. The muscle contraction occurred after a latency. The latency of contractions, like the latency of spike burst, decreased with increased frequency of vagal stimulation. These studies show that (a) membrane hyperpolarization is present during the latent period of contraction associated with swallowing, suggesting that swallow-induced esophageal response may be mediated by vagal inhibitory pathway to the esophagus and (b) spike bursts can be temporally dissociated from depolarization by changing the vagal stimulation frequency, suggesting that spike burst and depolarization may be mediated by different excitatory mechanisms.

  14. Mechanisms for chelator stimulation of microbial Fe(III) -oxide reduction

    Science.gov (United States)

    Lovley, D.R.; Woodward, J.C.

    1996-01-01

    The mechanisms by which nitrilotriacetic acid (NTA) stimulated Fe(III) reduction in sediments from a petroleum-contaminated aquifer were investigated in order to gain insight into how added Fe(III) chelators stimulate the activity of hydrocarbon-degrading, Fe(III)-reducing microorganisms in these sediments, and how naturally occurring Fe(III) chelators might promote Fe(III) reduction in aquatic sediments. NTA solubilized Fe(III) from the aquifer sediments. NTA stimulation of microbial Fe(III) reduction did not appear to be the result of making calcium, magnesium, potassium, or trace metals more available to the microorganisms. Stimulation of Fe(III) reduction could not be attributed to NTA serving as a source of carbon or fixed nitrogen for Fe(III)-reducing bacteria as NTA was not degraded in the sediments. Studies with the Fe(III)-reducing microorganism, Geobacter metallireducens, and pure Fe(III)-oxide forms, demonstrated that NTA stimulated the reduction of a variety of Fe(III) forms, including highly crystalline Fe(III)-oxides such as goethite and hematite. The results suggest that NTA solubilization of insoluble Fe(III)-oxide is an important mechanism for the stimulation of Fe(III) reduction by NTA in aquifer sediments.

  15. The Effectiveness of the Stereotactic Burr Hole Technique for Deep Brain Stimulation.

    Science.gov (United States)

    Toyoda, Keisuke; Urasaki, Eiichirou; Umeno, Tetsuya; Sakai, Waka; Nagaishi, Akiko; Nakane, Shunya; Fukudome, Takayasu; Yamakawa, Yuzo

    2015-01-01

    Deep brain stimulation (DBS) is performed by burr hole surgery. In microelectrode recording by multi-channel parallel probe, because all microelectrodes do not always fit in the burr hole, additional drilling to enlarge the hole is occasionally required, which is time consuming and more invasive. We report a stereotactic burr hole technique to avoid additional drilling, and the efficacy of this novel technique compared with the conventional procedure. Ten patients (20 burr holes) that received DBS were retrospectively analyzed (5 in the conventional burr hole group and 5 in the stereotactic burr hole group). In the stereotactic burr hole technique, the combination of the instrument stop slide of a Leksell frame and the Midas Rex perforator with a 14-mm perforator bit was attached to the instrument carrier slide of the arc in order to trephine under stereoguidance. The efficacy of this technique was assessed by the number of additional drillings. Factors associated with additional drilling were investigated including the angle and skull thickness around the entry points. Four of the 10 burr holes required additional drilling in the conventional burr hole group, whereas no additional drilling was required in the stereotactic burr hole group (p = 0.043). The thicknesses in the additional drilling group were 10.9 ± 0.9 mm compared to 9.1 ± 1.2 mm (p = 0.029) in the non-additional drilling group. There were no differences in the angles between the two groups. The stereotactic burr hole technique contributes to safe and exact DBS, particularly in patients with thick skulls.

  16. Noninvasive brain stimulation and auditory verbal hallucinations: new techniques and future directions

    Directory of Open Access Journals (Sweden)

    Peter eMoseley

    2016-01-01

    Full Text Available Auditory verbal hallucinations (AVHs are the experience of hearing a voice in the absence of any speaker. Results from recent attempts to treat AVHs with neurostimulation (rTMS or tDCS to the left temporoparietal junction have not been conclusive, but suggest that it may be a promising treatment option for some individuals. Some evidence suggests that the therapeutic effect of neurostimulation on AVHs may result from modulation of cortical areas involved in the ability to monitor the source of self-generated information. Here, we provide a brief overview of cognitive models and neurostimulation paradigms associated with treatment of AVHs, and discuss techniques that could be explored in the future to improve the efficacy of treatment, including alternating current and random noise stimulation. Technical issues surrounding the use of neurostimulation as a treatment option are discussed (including methods to localise the targeted cortical area, and the state-dependent effects of brain stimulation, as are issues surrounding the acceptability of neurostimulation for adolescent populations and individuals who experience qualitatively different types of AVH.

  17. Acoustic Emission Technique Applied in Textiles Mechanical Characterization

    Directory of Open Access Journals (Sweden)

    Rios-Soberanis Carlos Rolando

    2017-01-01

    Full Text Available The common textile architecture/geometry are woven, braided, knitted, stitch boded, and Z-pinned. Fibres in textile form exhibit good out-of-plane properties and good fatigue and impact resistance, additionally, they have better dimensional stability and conformability. Besides the nature of the textile, the architecture has a great role in the mechanical behaviour and mechanisms of damage in textiles, therefore damage mechanisms and mechanical performance in structural applications textiles have been a major concern. Mechanical damage occurs to a large extent during the service lifetime consequently it is vital to understand the material mechanical behaviour by identifying its mechanisms of failure such as onset of damage, crack generation and propagation. In this work, textiles of different architecture were used to manufacture epoxy based composites in order to study failure events under tensile load by using acoustic emission technique which is a powerful characterization tool due to its link between AE data and fracture mechanics, which makes this relation a very useful from the engineering point of view.

  18. Medulla Oblongata Mechanism of Inhibitory Effect of Thermal Stimulation to Nociceptive Colorectal Distention in Rats

    Institute of Scientific and Technical Information of China (English)

    Liang Li; Pei-Jing Rong; Xin-Yan Gao; Hui Ben; Hong Cai; Bing Zhu

    2016-01-01

    Objective: To discuss mechanism of moxibustion (thermal stimulation) effect and best moxibustion stimulus parameter. Methods: Experiments were performed on 48 male Sprague-Dawley rats. Unit discharges from individual single neuron were recorded extracellularly with glass-microelectrode in Subnucleus Reticularis Dorsalis (SRD). Visceral-intrusive stimulation is done by colorectal distension. Thermal stimulation with different temperature (40°C, 42°C, 44°C, 46°C, 48°C, 50°C, 52°C) and different stimulus area (diameter of circle:1.0 cm, 1.5 cm, 2.0 cm, 2.5 cm, 3.0 cm, 3.5 cm, 4.0cm) was applied around RN12 during nociceptive colorectal distension. Results: SRD neurons could be activated by visceral stimulation within noxious range. Under low temperature of stimulus, especially under 45°C of pain threshold to ordinary people, visceral nociceptive afferent facilitated thermal stimulus from the body surface. While after thermal stimulation reached a harmful degree, the thermal stimulus will inhibit visceral nociceptive afferent. Moreover, statistics show that the higher the temperature is, the smaller the size of stimulation area is needed, and they correlate with each other negatively. Conclusion: Visceral nociception could be inhibited by somatic thermal stimulation with specific parameter at medulla level. According to our finding, best thermal stimulation temperature is around 48°C and the best size of stimulation area is around 3.14-7.07cm2 (with 2.0-3.0cm diameter).

  19. Biofilms and mechanics: a review of experimental techniques and findings

    Science.gov (United States)

    Gordon, Vernita D.; Davis-Fields, Megan; Kovach, Kristin; Rodesney, Christopher A.

    2017-06-01

    Biofilms are developmentally-dynamic communities of sessile microbes that adhere to each other and, often, to other structures in their environment. The cohesive mechanical forces binding microbes to each other confer mechanical and structural stability on the biofilm and give rise to biofilm viscoelasticity. The adhesive mechanical forces binding microbes to other structures in their environment can promote biofilm initiation and mechanosensing that leads to changes in biological activity. Thus, physical mechanics is intrinsic to characteristics that distinguish biofilms from free-swimming or free-floating microbes in liquid culture. However, very little is known about the specifics of what mechanical traits characterize different types of biofilms at different stages of development. Even less is known about how mechanical inputs impact microbial biology and how microbes can adjust their mechanical coupling to, and interaction with, their environment. These knowledge gaps arise, in part, from the challenges associated with experimental measurements of microbial and biofilm biomechanics. Here, we review extant experimental techniques and their most-salient findings to date. At the end of this review we indicate areas where significant advances in the state-of-the art are heading.

  20. Neuronal Activity Stimulated by Liquid Substrates Injection at Zusanli (ST36 Acupoint: The Possible Mechanism of Aquapuncture

    Directory of Open Access Journals (Sweden)

    Chun-Yen Chen

    2014-01-01

    Full Text Available Aquapuncture is a modified acupuncture technique and it is generally accepted that it has a greater therapeutic effect than acupuncture because of the combination of the acupoint stimulation and the pharmacological effect of the drugs. However, to date, the mechanisms underlying the effects of aquapuncture remain unclear. We hypothesized that both the change in the local spatial configuration and the substrate stimulation of aquapuncture would activate neuronal signaling. Thus, bee venom, normal saline, and vitamins B1 and B12 were injected into a Zusanli (ST36 acupoint as substrate of aquapuncture, whereas a dry needle was inserted into ST36 as a control. After aquapuncture, activated neurons expressing Fos protein were mainly observed in the dorsal horn of the spinal cord in lumbar segments L3–5, with the distribution nearly identical among all groups. However, the bee venom injection induced significantly more Fos-expressing neurons than the other substrates. Based on these data, we suggest that changes in the spatial configuration of the acupoint activate neuronal signaling and that bee venom may further strengthen this neuronal activity. In conclusion, the mechanisms for the effects of aquapuncture appear to be the spatial configuration changes occurring within the acupoint and the ability of injected substrates to stimulate neuronal activity.

  1. Jitter suppression techniques for mechanical cryocooler-induced disturbances

    Science.gov (United States)

    Wolfe, D. W.; Kirkconnell, C. S.; Fleischman, G. L.; Sunada, W. H.

    2008-08-01

    Closed-cycle mechanical cryogenic refrigerators, or cryocoolers, are an enabling technology for next generation infrared (IR) sensors. Passive cryoradiators and stored cryogen systems have been used successfully in the past, but the increased cooling requirements for emerging systems cannot practically be met with these passive techniques. Modern systems are employing much larger focal plane arrays that dissipate more energy and have higher parasitic thermal loads than in the past. Additional "on chip" FPA data processing capability, such as time delay and integration (TDI) and analog-to-digital conversion (ADC), is further driving up the heat loads. While loads are going up, temperatures are going down. The desire to operate at long wave infrared (LWIR) wavelengths (>9 microns) for a broader range of remote sensing missions is driving the need for 35-40 K refrigeration, significantly colder than past systems that operated at shorter wavelengths. Unfortunately, the use of a mechanical rather than passive cryocooler introduces an additional jitter source that must be properly mitigated. Techniques include the use of inherently low vibration cryocoolers, closedloop active vibration cancellation servo systems, damping struts, soft mounts, or a combination of these techniques. Implementation of these techniques within a proper system engineering context is presented.

  2. Comparison of peripheral nerve stimulator versus ultrasonography guided axillary block using multiple injection technique

    Directory of Open Access Journals (Sweden)

    Alok Kumar

    2014-01-01

    Full Text Available Background: The established methods of nerve location were based on either proper motor response on nerve stimulation (NS or ultrasound guidance. In this prospective, randomised, observer-blinded study, we compared ultrasound guidance with NS for axillary brachial plexus block using 0.5% bupivacaine with the multiple injection techniques. Methods : A total of 120 patients receiving axillary brachial plexus block with 0.5% bupivacaine, using a multiple injection technique, were randomly allocated to receive either NS (group NS, n = 60, or ultrasound guidance (group US, n = 60 for nerve location. A blinded observer recorded the onset of sensory and motor blocks, skin punctures, needle redirections, procedure-related pain and patient satisfaction. Results: The median (range number of skin punctures were 2 (2-4 in group US and 3 (2-5 in group NS (P =0.27. Insufficient block was observed in three patient (5% of group US and four patients (6.67% of group NS (P > =0.35. Patient acceptance was similarly good in the two groups. Conclusion: Multiple injection axillary blocks with ultrasound guidance provided similar success rates and comparable incidence of complications as compared with NS guidance with 20 ml 0.5% bupivacaine.

  3. Comparison of peripheral nerve stimulator versus ultrasonography guided axillary block using multiple injection technique

    Science.gov (United States)

    Kumar, Alok; Sharma, DK; Sibi, Maj. E; Datta, Barun; Gogoi, Biraj

    2014-01-01

    Background: The established methods of nerve location were based on either proper motor response on nerve stimulation (NS) or ultrasound guidance. In this prospective, randomised, observer-blinded study, we compared ultrasound guidance with NS for axillary brachial plexus block using 0.5% bupivacaine with the multiple injection techniques. Methods: A total of 120 patients receiving axillary brachial plexus block with 0.5% bupivacaine, using a multiple injection technique, were randomly allocated to receive either NS (group NS, n = 60), or ultrasound guidance (group US, n = 60) for nerve location. A blinded observer recorded the onset of sensory and motor blocks, skin punctures, needle redirections, procedure-related pain and patient satisfaction. Results: The median (range) number of skin punctures were 2 (2–4) in group US and 3 (2–5) in group NS (P =0.27). Insufficient block was observed in three patient (5%) of group US and four patients (6.67%) of group NS (P > =0.35). Patient acceptance was similarly good in the two groups. Conclusion: Multiple injection axillary blocks with ultrasound guidance provided similar success rates and comparable incidence of complications as compared with NS guidance with 20 ml 0.5% bupivacaine. PMID:25624532

  4. Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations.

    Science.gov (United States)

    Wang, Bo; Wang, Guangjun; To, Filip; Butler, J Ryan; Claude, Andrew; McLaughlin, Ronald M; Williams, Lakiesha N; de Jongh Curry, Amy L; Liao, Jun

    2013-09-03

    Recently, we developed an optimal decellularization protocol to generate 3D porcine myocardial scaffolds, which preserve the natural extracellular matrix structure, mechanical anisotropy, and vasculature templates and also show good cell recellularization and differentiation potential. In this study, a multistimulation bioreactor was built to provide coordinated mechanical and electrical stimulation for facilitating stem cell differentiation and cardiac construct development. The acellular myocardial scaffolds were seeded with mesenchymal stem cells (10(6) cells/mL) by needle injection and subjected to 5-azacytidine treatment (3 μmol/L, 24 h) and various bioreactor conditioning protocols. We found that after 2 days of culturing with mechanical (20% strain) and electrical stimulation (5 V, 1 Hz), high cell density and good cell viability were observed in the reseeded scaffold. Immunofluorescence staining demonstrated that the differentiated cells showed a cardiomyocyte-like phenotype by expressing sarcomeric α-actinin, myosin heavy chain, cardiac troponin T, connexin-43, and N-cadherin. Biaxial mechanical testing demonstrated that positive tissue remodeling took place after 2 days of bioreactor conditioning (20% strain + 5 V, 1 Hz); passive mechanical properties of the 2 day and 4 day tissue constructs were comparable to those of the tissue constructs produced by stirring reseeding followed by 2 weeks of static culturing, implying the effectiveness and efficiency of the coordinated simulations in promoting tissue remodeling. In short, the synergistic stimulations might be beneficial not only for the quality of cardiac construct development but also for patients by reducing the waiting time in future clinical scenarios.

  5. The cell-stretcher: A novel device for the mechanical stimulation of cell populations

    Science.gov (United States)

    Seriani, S.; Del Favero, G.; Mahaffey, J.; Marko, D.; Gallina, P.; Long, C. S.; Mestroni, L.; Sbaizero, O.

    2016-08-01

    Mechanical stimulation appears to be a critical modulator for many aspects of biology, both of living tissue and cells. The cell-stretcher, a novel device for the mechanical uniaxial stimulation of populations of cells, is described. The system is based on a variable stroke cam-lever-tappet mechanism which allows the delivery of cyclic stimuli with frequencies of up to 10 Hz and deformation between 1% and 20%. The kinematics is presented and a simulation of the dynamics of the system is shown, in order to compute the contact forces in the mechanism. The cells, following cultivation and preparation, are plated on an ad hoc polydimethylsiloxane membrane which is then loaded on the clamps of the cell-stretcher via force-adjustable magnetic couplings. In order to show the viability of the experimentation and biocompatibility of the cell-stretcher, a set of two in vitro tests were performed. Human epithelial carcinoma cell line A431 and Adult Mouse Ventricular Fibroblasts (AMVFs) from a dual reporter mouse were subject to 0.5 Hz, 24 h cyclic stretching at 15% strain, and to 48 h stimulation at 0.5 Hz and 15% strain, respectively. Visual analysis was performed on A431, showing definite morphological changes in the form of cellular extroflections in the direction of stimulation compared to an unstimulated control. A cytometric analysis was performed on the AMVF population. Results show a post-stimulation live-dead ratio deviance of less than 6% compared to control, which proves that the environment created by the cell-stretcher is suitable for in vitro experimentation.

  6. Complementary home mechanical ventilation techniques. SEPAR Year 2014.

    Science.gov (United States)

    Chiner, Eusebi; Sancho-Chust, José N; Landete, Pedro; Senent, Cristina; Gómez-Merino, Elia

    2014-12-01

    This is a review of the different complementary techniques that are useful for optimizing home mechanical ventilation (HMV). Airway clearance is very important in patients with HMV and many patients, particularly those with reduced peak cough flow, require airway clearance (manual or assisted) or assisted cough techniques (manual or mechanical) and suctioning procedures, in addition to ventilation. In the case of invasive HMV, good tracheostomy cannula management is essential for success. HMV patients may have sleep disturbances that must be taken into account. Sleep studies including complete polysomnography or respiratory polygraphy are helpful for identifying patient-ventilator asynchrony. Other techniques, such as bronchoscopy or nutritional support, may be required in patients on HMV, particularly if percutaneous gastrostomy is required. Information on treatment efficacy can be obtained from HMV monitoring, using methods such as pulse oximetry, capnography or the internal programs of the ventilators themselves. Finally, the importance of the patient's subjective perception is reviewed, as this may potentially affect the success of the HMV. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  7. Damage detection technique by measuring laser-based mechanical impedance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeonseok; Sohn, Hoon [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (Daehak-ro 291, Yuseong-gu, Daejeon 305-701) (Korea, Republic of)

    2014-02-18

    This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.

  8. Potential mechanisms supporting the value of motor cortex stimulation to treat chronic pain syndromes

    Directory of Open Access Journals (Sweden)

    Marcos Fabio DosSantos

    2016-02-01

    Full Text Available Throughout the first years of the twenty-first century, neurotechnologies such as motor cortex stimulation (MCS, transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS have attracted scientific attention and been considered as potential tools to centrally modulate chronic pain, especially for those conditions more difficult to manage and refractory to all types of available pharmacological therapies. Interestingly, although the role of the motor cortex in pain has not been fully clarified, it is one of the cortical areas most commonly targeted by invasive and non-invasive neuromodulation technologies. Recent studies have provided significant advances concerning the establishment of the clinical effectiveness of primary motor cortex stimulation to treat different chronic pain syndromes. Concurrently, the neuromechanisms related to each method of primary motor cortex (M1 modulation have been unveiled. In this respect, the most consistent scientific evidence originates from MCS studies, which indicate the activation of top-down controls driven by M1 stimulation. This concept has also been applied to explain M1-TMS mechanisms. Nevertheless, activation of remote areas in the brain, including cortical and subcortical structures, has been reported with both invasive and non-invasive methods and the participation of major neurotransmitters (e.g. glutamate, GABA and serotonin as well as the release of endogenous opioids has been demonstrated. In this critical review, the putative mechanisms underlying the use of motor cortex stimulation to provide relief from chronic migraine and other types of chronic pain are discussed. Emphasis is placed on the most recent scientific evidence obtained from chronic pain research studies involving MCS and non-invasive neuromodulation methods (e.g. tDCS and TMS, which are analyzed comparatively.

  9. Revealing −1 Programmed Ribosomal Frameshifting Mechanisms by Single-Molecule Techniques and Computational Methods

    Directory of Open Access Journals (Sweden)

    Kai-Chun Chang

    2012-01-01

    Full Text Available Programmed ribosomal frameshifting (PRF serves as an intrinsic translational regulation mechanism employed by some viruses to control the ratio between structural and enzymatic proteins. Most viral mRNAs which use PRF adapt an H-type pseudoknot to stimulate −1 PRF. The relationship between the thermodynamic stability and the frameshifting efficiency of pseudoknots has not been fully understood. Recently, single-molecule force spectroscopy has revealed that the frequency of −1 PRF correlates with the unwinding forces required for disrupting pseudoknots, and that some of the unwinding work dissipates irreversibly due to the torsional restraint of pseudoknots. Complementary to single-molecule techniques, computational modeling provides insights into global motions of the ribosome, whose structural transitions during frameshifting have not yet been elucidated in atomic detail. Taken together, recent advances in biophysical tools may help to develop antiviral therapies that target the ubiquitous −1 PRF mechanism among viruses.

  10. Cyclic mechanical deformation stimulates human lung fibroblast proliferation and autocrine growth factor activity.

    Science.gov (United States)

    Bishop, J E; Mitchell, J J; Absher, P M; Baldor, L; Geller, H A; Woodcock-Mitchell, J; Hamblin, M J; Vacek, P; Low, R B

    1993-08-01

    Cellular hypertrophy and hyperplasia and increased extracellular matrix deposition are features of tissue hypertrophy resulting from increased work load. It is known, for example, that mechanical forces play a critical role in lung development, cardiovascular remodeling following pressure overload, and skeletal muscle growth. The mechanisms involved in these processes, however, remain unclear. Here we examined the effect of mechanical deformation on fibroblast function in vitro. IMR-90 human fetal lung fibroblasts grown on collagen-coated silastic membranes were subjected to cyclical mechanical deformation (10% increase in culture surface area; 1 Hz) for up to 5 days. Cell number was increased by 39% after 2 days of deformation (1.43 +/- .01 x 10(5) cells/membrane compared with control, 1.03 +/- 0.02 x 10(5) cells; mean +/- SEM; P < 0.02) increasing to 163% above control by 4 days (2.16 +/- 0.16 x 10(5) cells compared with 0.82 +/- 0.03 x 10(5) cells; P < 0.001). The medium from mechanically deformed cells was mitogenic for IMR-90 cells, with maximal activity in the medium from cells mechanically deformed for 2 days (stimulating cell replication by 35% compared with media control; P < 0.002). These data suggest that mechanical deformation stimulates human lung fibroblast replication and that this effect is mediated by the release of autocrine growth factors.

  11. Inhibitory mechanisms following electrical stimulation of tendon and cutaneous afferents in the lower limb.

    Science.gov (United States)

    Khan, Serajul I; Burne, John A

    2010-01-13

    Electrical stimulation of the Achilles tendon (TES) produced strong reflex depression (duration>250 ms) of a small background contraction in both heads of gastrocnemius (GA) via large diameter electrodes localized to the tendon. The inhibitory responses were produced without electrical (M wave) or mechanical (muscle twitch) signs of direct muscle stimulation. In this study, the contribution of presynaptic and postsynaptic mechanisms to the depression was investigated by studying conditioning effects of tendon afferent stimulation on the mechanical tendon reflex (TR) and magnetic motor evoked potential (MEP). TES completely inhibited the TR over an ISI of 300 ms that commenced before and continued during and after the period of voluntary EMG depression. Tendon afferent conditioning stimuli also partially inhibited the MEP, but over a short time course confined to the period of voluntary EMG depression. The strength and extended time course of tendon afferent conditioning of the TR and its failure to produce a similar depression of the MEP are consistent with a mechanism involving presynaptic inhibition of Ia terminals. Cutaneous (sural nerve) afferent conditioning partially inhibited the TR and MEP over a short time course (ISI voluntary EMG. This was consistent with the postsynaptic origin of cutaneous inhibition of the motoneurons.

  12. Features of follicle-stimulating hormone-stimulated follicles in a sheep model: keys to elucidate embryo failure in assisted reproductive technique cycles.

    Science.gov (United States)

    Veiga-Lopez, Almudena; Dominguez, Veronica; Souza, Carlos J H; Garcia-Garcia, Rosa M; Ariznavarreta, Carmen; Tresguerres, Jesus A F; McNeilly, Alan S; Gonzalez-Bulnes, Antonio

    2008-05-01

    To evaluate the individual functionality of gonadotropin-stimulated preovulatory follicles, for understanding embryo failure in assisted reproductive technique cycles, in a sheep model. Observational, model study. Public research unit. Fifteen adult Manchega ewes. Synchronization of the estrous cycle with intravaginal progestagens and ovarian stimulation with FSH; evaluation of reproductive activity, plasma sampling, ovarian ultrasonography, and ovariectomies. Determination of estrus behavior, plasma and intrafollicular concentrations of E(2) and inhibin A, number and size of ovarian follicles, and developmental competence of oocytes. These results support the usefulness of serial measurements of plasma inhibin A for assessment of follicular growth during the FSH treatment, rather than of E(2) assays commonly used. Functionality of FSH-stimulated preovulatory follicles is clearly disturbed, as confirmed by a negative correlation between follicular size and intrafollicular concentrations of inhibin A and E(2) in preovulatory follicles after individual dissection; moreover, the ability of their oocytes to resume meiosis was diminished. Functionality of follicles in controlled ovarian stimulation (COS), and developmental competence of their oocytes, is disturbed by the high doses of gonadotropin supplied and finally determined by follicular sizes at starting FSH treatment.

  13. [M. sternocleidomastoideus mechanical stimulation produces lateralized effect on body schema perception].

    Science.gov (United States)

    Zartor, A S; Mikheev, M M; Popov, P V; Afanas'ev, S V

    2014-09-01

    Neck muscles play important role in body schema perception, pose and motor control. The mechanical neck muscles stimulation can influence these processes. On present investigation the kinesiology tape (KT) application was used as a local mechanical stimulation for M. sternocleidomastoideus. The results confirmed the influence of the KT application on the body schema perception. Moreover, the influence effect was lateralized in dependence on the side of the KT application. In most of the subjects the KT left application diminished the reaction time in the body schema mental rotation task. The right the KT application has not shown this effect. The possible causes of the KT application lateralized effect can be the proprioceptive asymmetry in neck muscles or the hemispheric functional asymmetry of the body schema perception process. The results may be useful for understanding the neurological nature of asymmetric body schema perception impairments as well as for the development of sport training methods.

  14. On-chip microrobot for investigating the response of aquatic microorganisms to mechanical stimulation.

    Science.gov (United States)

    Kawahara, Tomohiro; Sugita, Masakuni; Hagiwara, Masaya; Arai, Fumihito; Kawano, Hiroyuki; Shihira-Ishikawa, Ikuko; Miyawaki, Atsushi

    2013-03-21

    In this paper, we propose a novel, magnetically driven microrobot equipped with a frame structure to measure the effects of stimulating aquatic microorganisms. The design and fabrication of the force-sensing structure with a displacement magnification mechanism based on beam deformation are described. The microrobot is composed of a Si-Ni hybrid structure constructed using micro-electro-mechanical system (MEMS) technologies. The microrobots with 5 μm-wide force sensors are actuated in a microfluidic chip by permanent magnets so that they can locally stimulate the microorganisms with the desired force within the stable environment of the closed microchip. They afford centimetre-order mobility (untethered drive) and millinewton-order forces (high power) as well as force-sensing. Finally, we apply the developed microrobots for the quantitative evaluation of the stimuation of Pleurosira laevis (P. laevis) and determine the relationship between the applied force and the response of a single cell.

  15. Mechanical forces and their second messengers in stimulating cell growth in vitro

    Science.gov (United States)

    Vandenburgh, Herman H.

    1992-01-01

    Mechanical forces play an important role in modulating the growth of a number of different tissues including skeletal muscle, smooth muscle, cardiac muscle, bone, endothelium, epithelium, and lung. As interest increases in the molecular mechanisms by which mechanical forces are transduced into growth alterations, model systems are being developed to study these processes in tissue culture. This paper reviews the current methods available for mechanically stimulating tissue cultured cells. It then outlines some of the putative 'mechanogenic' second messengers involved in altering cell growth. Not surprisingly, many mechanogenic second messengers are the same as those involved in growth factor-induced cell growth. It is hypothesized that from an evolutionary standpoint, some second messenger systems may have initially evolved for unicellular organisms to respond to physical forces such as gravity and mechanical perturbation in their environment. As multicellular organisms came into existence, they appropriated these mechanogenic second messenger cascades for cellular regulation by growth factors.

  16. The effect of oscillatory mechanical stimulation on osteoblast attachment and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Aryaei, Ashkan [Department of Mechanical Engineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Jayasuriya, Ambalangodage C., E-mail: a.jayasuriya@utoledo.edu [Department of Orthopaedic Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614 (United States)

    2015-07-01

    The aim of this paper is to investigate the effect of the magnitude and duration of oscillatory mechanical stimulation on osteoblast attachment and proliferation as well as the time gap between seeding and applying the stimulation. Cells were exposed to three levels of speed at two different conditions. For the first group, mechanical shear stress was applied after 20 min of cell seeding. For the second group there was no time gap between cell seeding and applying mechanical stimulation. The total area subjected to shear stress was divided into three parts and for each part a comparative study was conducted at defined time points. Our results showed that both shear stress magnitude and the time gap between cell seeding and applying shear stress, are important in further cell proliferation and attachment. The effect of shear stress was not significant at lower speeds for both groups at earlier time points. However, a higher percentage of area was covered by cells at later time points under shear stress. In addition, the time gap can also improve osteoblast attachment. For the best rate of cell attachment and proliferation, the magnitude of shear stress and time gap should be optimized. The results of this paper can be utilized to improve cell attachment and proliferation in bioreactors. - Highlights: • The effect of oscillatory mechanical stimulation on osteoblast functions was studied. • Cells were exposed at three levels of speed to attach cells. • Shear stress magnitude and time gap are important for cell functions. • Cells start developing extracellular components at the early stage of seeding.

  17. Meat Spoilage Mechanisms and Preservation Techniques: A Critical Review

    Directory of Open Access Journals (Sweden)

    D. Dave

    2011-01-01

    Full Text Available Problem statement: Extremely perishable meat provides favorable growth condition for various microorganisms. Meat is also very much susceptible to spoilage due to chemical and enzymatic activities. The breakdown of fat, protein and carbohydrates of meat results in the development of off-odors, off-flavor and slim formation which make the meat objectionable for human consumption. It is, therefore, necessary to control meat spoilage in order to increase its shelf life and maintain its nutritional value, texture and flavor. Approach: A comprehensive literature review was performed on the spoliage mechanisms of meat and meat products and preservation techniques. Results: Historical data reveals that salting, drying, smoking, fermentation and canning were the traditional methods used to prevent meat spoilage and extend its shelf life. However, in order to prevent wholesomeness, appearance, composition, tenderness, flavor, juiciness and nutritive value, new methods were developed. These included: cooling, freezing and chemical preservation. Wide range of physical and chemical reactions and actions of microorganisms or enzymes are responsible for the meat spoilage. Microbial growth, oxidation and enzymatic autolysis are three basic mechanisms responsible for spoilage of meat. Microbial growth and metabolism depends on various factors including: pre-slaughter husbandry practices, age of the animal at the time of slaughtering, handling during slaughtering, evisceration and processing, temperature controls during slaughtering, processing and distribution, preservation methods, type of packaging and handling and storage by consumer. Microbial spoilage causes pH change, slime formation, structural components degradation, off odors and appearance change. Autoxidation of lipids and the production of free radicals are natural processes which affect fatty acids and lead to oxidative deterioration of meat and off-flavour development. Lipid hydrolysis can take

  18. Action mechanisms of transcranial direct current stimulation in Alzheimer´s disease and memory loss

    Directory of Open Access Journals (Sweden)

    Niels eHansen

    2012-05-01

    Full Text Available The pharmacological treatment of Alzheimer´s disease (AD is often limited and accompanied by drug side effects. Thus alternative therapeutic strategies such as non-invasive brain stimulation are needed. Few studies have demonstrated that transcranial direct current stimulation (tDCS, a method of neuromodulation with consecutive robust excitability changes within the stimulated cortex area, is beneficial in AD. There is also evidence that tDCS enhances memory function in cognitive rehabilitation in depressive patients, Parkinson´s disease and stroke. TDCS improves working and visual recognition memory in humans and object-recognition learning in the elderly. Neurobiological mechanisms of AD comprise changes in neuronal activity and the cerebral blood flow caused by altered microvasculature, synaptic dysregulation from ß-amyloid peptide accumulation, altered neuromodulation by degeneration of modulatory amine transmitter systems, altered brain oscillations, and changes in network connectivity. tDCS alters (i neuronal activity and (ii human cerebral blood flow, (iii has synaptic and non-synaptic after-effects (iv, can modify neurotransmitters polarity-dependently, (v and alter oscillatory brain activity and (vi functional connectivity patterns in the brain. It thus is reasonable to use tDCS as a therapeutic instrument in AD as it improves cognitive function in manner based on a disease mechanism. Moreover, it might prove valuable in other types of dementia. Future large-scale clinical and mechanism-oriented studies may enable to identify its therapeutic validity in other types of demential disorders.

  19. A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering.

    Science.gov (United States)

    Spitters, Tim W G M; Leijten, Jeroen C H; Deus, Filipe D; Costa, Ines B F; van Apeldoorn, Aart A; van Blitterswijk, Clemens A; Karperien, Marcel

    2013-10-01

    In cartilage, tissue engineering bioreactors can create a controlled environment to study chondrocyte behavior under mechanical stimulation or produce chondrogenic grafts of clinically relevant size. Here we present a novel bioreactor that combines mechanical stimulation with a two compartment system through which nutrients can be supplied solely by diffusion from opposite sides of a tissue-engineered construct. This design is based on the hypothesis that creating gradients of nutrients, growth factors, and growth factor antagonists can aid in the generation of zonal tissue-engineered cartilage. Computational modeling predicted that the design facilitates the creation of a biologically relevant glucose gradient. This was confirmed by quantitative glucose measurements in cartilage explants. In this system, it is not only possible to create gradients of nutrients, but also of anabolic or catabolic factors. Therefore, the bioreactor design allows control over nutrient supply and mechanical stimulation useful for in vitro generation of cartilage constructs that can be used for the resurfacing of articulated joints or as a model for studying osteoarthritis disease progression.

  20. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    Science.gov (United States)

    Xiao, Xueliang; Hu, Jinlian

    2016-05-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.

  1. Dichloroacetate Stimulates Glycogen Accumulation in Primary Hepatocytes through an Insulin-Independent Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lingohr, Melissa K.(Washington State University); Bull, Richard J.(SELF-EMPLOYED CONSULTANTS); Kato-Weinstein, Junko (UNIVERSITY PROGRAMS); Thrall, Brian D.(BATTELLE (PACIFIC NW LAB))

    2002-01-01

    Dichloroacetate (DCA), a by-product of water chlorination, causes liver cancer in B6C3F1 mice. A hallmark response observed in mice exposed to carcinogenic doses of DCA is an accumulation of hepatic glycogen content. To distinguish whether the in vivo glycogenic effect of DCA was dependent on insulin and insulin signaling proteins, experiments were conducted in isolated hepatocytes where insulin concentrations could be controlled. In hepatocytes isolated from male B6C3F1 mice, DCA increased glycogen levels in a dose-related manner, independently of insulin. The accumulation of hepatocellular glycogen induced by DCA was not the result of decreased glycogenolysis, since DCA had no effect on the rate of glucagon-stimulated glycogen breakdown. Glycogen accumulation caused by DCA treatment was not hindered by inhibitors of extracellular-regulated protein kinase kinase (Erk1/2 kinase or MEK) or p70 kDa S6 protein kinase (p70(S6K)), but was completely blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitors, LY294002 and wortmannin. Similarly, insulin-stimulated glycogen deposition was not influenced by the Erk1/2 kinase inhibitor, PD098509, or the p70(S6K) inhibitor, rapamycin. Unlike DCA-stimulated glycogen deposition, PI3K-inhibition only partially blocked the glycogenic effect of insulin. DCA did not cause phosphorylation of the downstream PI3K target protein, protein kinase B (PKB/Akt). The phosphorylation of PKB/Akt did not correlate to insulin-stimulated glycogenesis either. Similar to insulin, DCA in the medium decreased IR expression in isolated hepatocytes. The results indicate DCA increases hepatocellular glycogen accumulation through a PI3K-dependent mechanism that does not involve PKB/Akt and is, at least in part, different from the classical insulin-stimulated glycogenesis pathway. Somewhat surprisingly, insulin-stimulated glycogenesis also appears not to involve PKB/Akt in isolated murine hepatocytes.

  2. Endotoxin-stimulated Rat Hepatic Stellate Cells Induce Autophagy in Hepatocytes as a Survival Mechanism.

    Science.gov (United States)

    Dangi, Anil; Huang, Chao; Tandon, Ashish; Stolz, Donna; Wu, Tong; Gandhi, Chandrashekhar R

    2016-01-01

    Bacterial lipopolysaccharide (LPS)-stimulated hepatic stellate cells (HSCs) produce many cytokines including IFNβ, TNFα, and IL6, strongly inhibit DNA synthesis, but induce apoptosis of a small number of hepatocytes. In vivo administration of LPS (up to 10 mg/mL) causes modest inflammation and weight loss in rats but not mortality. We determined whether LPS-stimulated HSCs instigate mechanisms of hepatocyte survival. Rats received 10 mg/kg LPS (i.p.) and determinations were made at 6 h. In vitro, HSCs were treated with 100 ng/mL LPS till 24 h. The medium was transferred to hepatocytes, and determinations were made at 0-12 h. Controls were HSC-conditioned medium or medium-containing LPS. LPS treatment of rats caused autophagy in hepatocytes, a physiological process for clearance of undesirable material including injured or damaged organelles. This was accompanied by activation of c-Jun NH2 terminal kinase (JNK) and apoptosis of ~4-5% of hepatocytes. In vitro, LPS-conditioned HSC medium (LPS/HSC) induced autophagy in hepatocytes but apoptosis of only ~10% of hepatocytes. While LPS/HSC stimulated activation of JNK (associated with cell death), it also activated NFkB and ERK1/2 (associated with cell survival). LPS-stimulated HSCs produced IFNβ, and LPS/HSC-induced autophagy in hepatocytes and their apoptosis were significantly inhibited by anti-IFNβ antibody. Blockade of autophagy, on the other hand, strongly augmented hepatocyte apoptosis. While LPS-stimulated HSCs cause apoptosis of a subpopulation of hepatocytes by producing IFNβ, they also induce cell survival mechanisms, which may be of critical importance in resistance to liver injury during endotoxemia.

  3. Stimulation of bone repair with ultrasound: a review of the possible mechanic effects.

    Science.gov (United States)

    Padilla, Frédéric; Puts, Regina; Vico, Laurence; Raum, Kay

    2014-07-01

    In vivo and in vitro studies have demonstrated the positive role that ultrasound can play in the enhancement of fracture healing or in the reactivation of a failed healing process. We review the several options available for the use of ultrasound in this context, either to induce a direct physical effect (LIPUS, shock waves), to deliver bioactive molecules such as growth factors, or to transfect cells with osteogenic plasmids; with a main focus on LIPUS (or Low Intensity Pulsed Ultrasound) as it is the most widespread and studied technique. The biological response to LIPUS is complex as numerous cell types respond to this stimulus involving several pathways. Known to-date mechanotransduction pathways involved in cell responses include MAPK and other kinases signaling pathways, gap-junctional intercellular communication, up-regulation and clustering of integrins, involvement of the COX-2/PGE2, iNOS/NO pathways and activation of ATI mechanoreceptor. The mechanisms by which ultrasound can trigger these effects remain intriguing. Possible mechanisms include direct and indirect mechanical effects like acoustic radiation force, acoustic streaming, and propagation of surface waves, fluid-flow induced circulation and redistribution of nutrients, oxygen and signaling molecules. Effects caused by the transformation of acoustic wave energy into heat can usually be neglected, but heating of the transducer may have a potential impact on the stimulation in some in-vitro systems, depending on the coupling conditions. Cavitation cannot occur at the pressure levels delivered by LIPUS. In-vitro studies, although not appropriate to identify the overall biological effects, are of great interest to study specific mechanisms of action. The diversity of current experimental set-ups however renders this analysis very complex, as phenomena such as transducer heating, inhomogeneities of the sound intensity in the near field, resonances in the transmission and reflection through the culture

  4. Influence of mechanical stimulation on human dermal fibroblasts derived from different body sites.

    Science.gov (United States)

    Kuang, Ruixia; Wang, Zhiguo; Xu, Quanchen; Liu, Su; Zhang, Weidong

    2015-01-01

    Mechanical stimulation is highly associated with pathogenesis of human hypertrophic scar. Although much work has focused on the influence of mechanical stress on fibroblast populations from various tissues and organs in the human body, their effects on cultured dermal fibroblasts by the area of the body have not been as well studied. In this study, cultures of skin fibroblasts from two different body sites were subjected to cyclic mechanical stimulation with a 10% stretching amplitude at a frequency of 0.1 Hz for 24, 36 and 48 hours, respectively, and thereafter harvested for experimental assays. Fibroblasts from scapular upper back skin, subjected to mechanical loads for 36 and 48 hours, respectively, were observed to proliferate at a higher rate and reach confluent more rapidly during in vitro culturing, had higher expression levels of mRNA and protein production of integrin β1, p130Cas and TGF β1 versus those from medial side of upper arm. These data indicate that skin fibroblasts, with regard to originated body sites studied in the experiments, display a diversity of mechanotransduction properties and biochemical reactions in response to applied mechanical stress, which contributes to the increased susceptibility to hypertrophic scars formation at certain areas of human body characterized by higher skin and muscle tension.

  5. Cyclic mechanical stimulation rescues achilles tendon from degeneration in a bioreactor system.

    Science.gov (United States)

    Wang, Tao; Lin, Zhen; Ni, Ming; Thien, Christine; Day, Robert E; Gardiner, Bruce; Rubenson, Jonas; Kirk, Thomas B; Smith, David W; Wang, Allan; Lloyd, David G; Wang, Yan; Zheng, Qiujian; Zheng, Ming H

    2015-12-01

    Physiotherapy is one of the effective treatments for tendinopathy, whereby symptoms are relieved by changing the biomechanical environment of the pathological tendon. However, the underlying mechanism remains unclear. In this study, we first established a model of progressive tendinopathy-like degeneration in the rabbit Achilles. Following ex vivo loading deprivation culture in a bioreactor system for 6 and 12 days, tendons exhibited progressive degenerative changes, abnormal collagen type III production, increased cell apoptosis, and weakened mechanical properties. When intervention was applied at day 7 for another 6 days by using cyclic tensile mechanical stimulation (6% strain, 0.25 Hz, 8 h/day) in a bioreactor, the pathological changes and mechanical properties were almost restored to levels seen in healthy tendon. Our results indicated that a proper biomechanical environment was able to rescue early-stage pathological changes by increased collagen type I production, decreased collagen degradation and cell apoptosis. The ex vivo model developed in this study allows systematic study on the effect of mechanical stimulation on tendon biology.

  6. The acute effects of flotation restricted environmental stimulation technique on recovery from maximal eccentric exercise.

    Science.gov (United States)

    Morgan, Paul M; Salacinski, Amanda J; Stults-Kolehmainen, Matthew A

    2013-12-01

    Flotation restricted environmental stimulation technique (REST) involves compromising senses of sound, sight, and touch by creating a quiet dark environment. The individual lies supine in a tank of Epsom salt and water heated to roughly skin temperature (34-35° C). This study was performed to determine if a 1-hour flotation REST session would aid in the recovery process after maximal eccentric knee extensions and flexions. Twenty-four untrained male students (23.29 ± 2.1 years, 184.17 ± 6.85 cm, 85.16 ± 11.54 kg) participated in a randomized, repeated measures crossover study. The participants completed 2 exercise and recovery protocols: a 1-hour flotation REST session and a 1-hour seated control (passive recovery). After isometric muscle strength testing, participants were fatigued with eccentric isokinetic muscle contractions (50 repetitions at 60°·s) of the nondominant knee extensors and flexors. Blood lactate, blood glucose, heart rate, OMNI-rating of perceived exertion for resistance exercise (OMNI-RPE), perceived pain, muscle soreness, and isometric strength were collected before exercise, after treatment, and 24 and 48 hours later. A multivariate analysis of covariance found that treatment had a significant main effect on blood lactate, whereas subsequent univariate analyses of variance found statistical significance with the immediate posttreatment blood lactate measures. The results indicate that flotation REST appears to have a significant impact on blood lactate and perceived pain compared with a 1-hour passive recovery session in untrained healthy men. No difference was found between conditions for muscle strength, blood glucose, muscle soreness, heart rate, or OMNI-RPE. Flotation REST may be used for recreational and professional athletes to help reduce blood lactate levels after eccentric exercise.

  7. Investigation of mechanism of fade of gastrin-stimulated gastric acid secretion in the cat.

    Science.gov (United States)

    Hirst, B H

    1988-01-01

    1. In conscious cats prepared with gastric fistulae gastric acid secretion in response to pentagastrin was found to reach a maximum after 45 min of stimulation, and to fade thereafter. Over the period 45-150 min of stimulation the fade was 5.4-7.8% of the maximum response per 15 min. 2. Once the response to pentagastrin had declined, acid secretion could not be restored by doubling the dose of pentagastrin, although an equisecretory dose of histamine could restore it. 3. Low doses of histamine were additive to the pentagastrin acid secretory response; they tended to prolong the peak response, but did not alter the subsequent fade of acid secretion. The histamine H1-receptor antagonist mepyramine did not affect maximal acid secretion or the fade of the pentagastrin response. 4. The beta-adrenoreceptor antagonist propranolol increased the secretory response to pentagastrin, whilst the alpha-adrenoreceptor antagonist phentolamine was without effect. Neither agent altered the fade of the pentagastrin response. Isoprenaline tended to inhibit pentagastrin-stimulated acid secretion and increase the rate of fade of the response. 5. The 5-hydroxytryptamine (5-HT) receptor antagonist methylsergide slightly enhanced the acid secretory response to pentagastrin, but did not alter the fade of the response. A low dose of 5-HT did not alter pentagastrin-stimulated acid secretion, whilst a higher dose of 5-HT inhibited it. 6. Tetra-, penta- and pentadecagastrin demonstrated tachyphylaxis, i.e. progressively reduced responses upon repeated stimulation, whilst histamine did not. A low dose of histamine did not prevent tachyphylaxis of the pentagastrin response. 7. It is concluded that fade of pentagastrin-stimulated acid secretion in the conscious cat cannot be satisfactorily explained by the failure of the acid secretory mechanism, depletion of histamine, release of 5-HT, or activation of histamine H1-, alpha- or beta-adreno-, or 5-HT-receptors. The similar characteristics of fade

  8. Identification of organic acids in wine that stimulate mechanisms of gastric acid secretion.

    Science.gov (United States)

    Liszt, Kathrin Ingrid; Walker, Jessica; Somoza, Veronika

    2012-07-18

    Wine may cause stomach irritation due to its stimulatory effect on gastric acid secretion, although the mechanisms by which wine or components thereof activate pathways of gastric acid secretion are poorly understood. Gastric pH was measured with a noninvasive intragastric probe, demonstrating that administration of 125 mL of white or red wine to healthy volunteers stimulated gastric acid secretion more potently than the administration of equivalent amounts of ethanol. Between both beverages, red wine showed a clear trend for being more active in stimulating gastric acid secretion than white wine (p = 0.054). Quantification of the intracellular proton concentration in human gastric tumor cells (HGT-1), a well-established indicator of proton secretion and, in turn, stomach acid formation in vivo, confirmed the stronger effect of red wine as compared to white wine. RT-qPCR experiments on cells exposed to red wine also revealed a more pronounced effect than white wine on the fold change expression of genes associated with gastric acid secretion. Of the quantitatively abundant organic acids in wine, malic acid and succinic acid most actively stimulated proton secretion in vitro. However, addition of ethanol to individual organic acids attenuated the secretory effect of tartaric acid, but not that of the other organic acids. It was concluded that malic acid for white wine and succinic acid for red wine are key organic acids that contribute to gastric acid stimulation.

  9. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques.

    Science.gov (United States)

    Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E

    2013-04-01

    Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress.

  10. INTERIM REPORT ON CONCRETE DEGRADATION MECHANISMS AND ONLINE MONITORING TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran; Agarwal, Vivek; Neal, Kyle; Kosson, David; Adams, Douglas

    2014-09-01

    The existing fleets of nuclear power plants in the United States have initial operating licenses of 40 years, though most these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. The online monitoring of concrete structure conducted under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability program at Idaho National Laboratory will develop and demonstrate concrete structures health monitoring capabilities. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code margins of safety. Therefore, the structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. Through this research project, several national laboratories and Vanderbilt University proposes to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses available techniques and ongoing challenges in each of the four elements of the proposed framework with emphasis on degradation mechanisms and online monitoring techniques.

  11. Interim Report on Concrete Degradation Mechanisms and Online Monitoring Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neal, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The existing nuclear power plants in the United States have initial operating licenses of 40 years, though most of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. The research on online monitoring of concrete structures conducted under the Advanced Instrumentation, Information, and Control Systems Technologies Pathway of the Light Water Reactor Sustainability Program at Idaho National Laboratory will develop and demonstrate concrete structures health monitoring capabilities. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code margins of safety. Therefore, structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses available techniques and ongoing challenges in each of the four elements of the proposed framework with emphasis on degradation mechanisms and online monitoring techniques.

  12. Retinoic acid and 1,25-dihydroxyvitamin D3 stimulate osteoclast formation by different mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Scheven, B.A.; Hamilton, N.J. (Rowett Research Institute, Bucksburn, Aberdeen (Scotland))

    1990-01-01

    The effects of retinoic acid (RA) and 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on osteoclast formation were examined in intact fetal long bones of different ages/developmental stages maintained in organ culture using a chemically defined medium with or without the presence of serum. Besides stimulating bone resorption, RA and 1,25-(OH)2D3 increased the number of osteoclasts in 19-day-old fetal rat tibiae. Likewise, these bone-resorbing agents induced and stimulated osteoclast formation in 19- and 18-day-old metatarsal bones which were osteoclast-free at the beginning of the culture. The response to 1,25-(OH)2D3 was greatly enhanced by 10% fetal bovine serum (FBS) irrespective of the developmental stage of the long bone. The response to RA was not. Light microscopic autoradiography after labeling of the cultures with tritiated thymidine showed that both RA and 1,25-(OH)2D3 induced osteoclast differentiation from proliferating and postmitotic precursors. However, neither agent was able to stimulate proliferation of osteoclast progenitor cells in the older bones (19 days). Studies on the formation of osteoclast-like (tartrate-resistant acid phosphatase positive) cells in bone marrow cultures indicated that FBS was a potent inducer of osteoclast-like cell formation. In the presence of FBS, 1,25-(OH)2D3 significantly stimulated this response, but RA did not. The results demonstrate that although both RA and 1,25-(OH)2D3 stimulate osteoclast formation from proliferating and postmitotic precursors in long bones in vitro, they do so by different mechanisms.

  13. Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator

    Science.gov (United States)

    Vandenburgh, Herman H.; Karlisch, Patricia

    1989-01-01

    A tissue-culture model system for growing skeletal-muscle cells under more dynamic conditions than found in normal tissue-culture environments is described. A computerized device presented allows mechanical stimulation of the cell's substratum by 300 to 400 pct in length in the horizontal plane. Cell growth rates and skeletal-muscle organogenesis are stimulated in this in vitro system. It is noted that longitudinal myotube growth observed is accompanied by increased rates of cell proliferation and myoblast fusion. Prestretching the collagen-coated substratum before cell plating is shown to lead to increased cell proliferation, myotube orientation, and longitudinal myotube growth. The effects of substratum stretching on myogenesis in the model system are also assessed and attributed to alterations in the cell's extracellular matrix.

  14. Source mechanism characterization and integrated interpretation of microseismic data monitoring two hydraulic stimulations in pouce coupe field, Alberta

    Science.gov (United States)

    Lindholm, Garrison J.

    The study of the Pouce Coupe Field is a joint effort between the Reservoir Characterization Project (RCP) and Talisman Energy Inc. My study focuses on the hydraulic stimulation of two horizontal wells within the Montney Formation located in north-western Alberta. The Montney is an example of a modern-day tight, engineering-driven play in which recent advances in drilling of horizontal wells and hydraulic fracturing have made shale gas exploitation economical. The wells were completed in December 2008 and were part of a science driven project in which a multitude of data were collected including multicomponent seismic, microseismic, and production logs. Since this time, a number of studies have been performed by students at Colorado School of Mines to better understand the effects the completions have had on the reservoir. This thesis utilizes the microseismic data that were recorded during the stimulation of the two horizontal wells in order to understand the origin of the microseismic events themselves. The data are then used to understand and correlate to the well production. To gain insight into the source of the microseismic events, amplitude ratios of recorded seismic modes (P, Sh and Sv) for the microseismic events are studied. By fitting trends of simple end member source mechanisms (strike-slip, dip-slip, and tensile) to groups of amplitude ratio data, the events are found to be of strike-slip nature. By comparing the focal mechanisms to other independent natural fracture determination techniques (shear-wave splitting analysis, FMI log), it is shown that the source of recorded microseismic events is likely to be a portion of the shear slip along existing weak planes (fractures) within a reservoir. The technique described in this work is one that is occasionally but increasingly used but offers the opportunity to draw further information from microseismic data using results that are already part of a typical processing workflow. The microseismic events are

  15. Local Mechanical Stimulation of Mardin-Darby Canine Kidney Cell Sheets on Temperature-Responsive Hydrogel

    Directory of Open Access Journals (Sweden)

    Toshihiro Akaike

    2012-01-01

    Full Text Available Collective motion of cell sheets plays a role not only in development and repair, but also in devastating diseases such as cancer. However, unlike single-cell motility, collective motion of cell sheets involves complex cell-cell communication during migration; therefore, its mechanism is largely unknown. To elucidate propagation of signaling transduced by cell-cell interaction, we designed a hydrogel substrate that can cause local mechanical stretching of cell sheets. Poly (N-isopropyl acrylamide (PNIPAAm hydrogel is a temperature-responsive polymer gel whose volume changes isotropically in response to temperature changes below 37 °C. We designed a combined hydrogel substrate consisting of collagen-immobilized PNIPAAm as the local stimulation side and polyacrylamide (PAAm as the non-stimulation side to assess propagation of mechanical transduction. Mardin-Darby canine kidney (MDCK cells adhered to the collagen-immobilized PNIPAAm gel increased it area and were flattened as the gel swelled with temperature decrease. E-cadherin in these cells became undetectable in some domains, and actin stress fibers were more clearly observed at the cell base. In contrast, E-cadherin in cells adhered to the collagen-immobilized PAAm side was equally stained as that in cells adhered to the collagen-immobilized PAAm side even after temperature decrease. ERK1/2 MAPK activation of cells on the non-stimulated substrate occurred after partial stretching of the cell sheet suggesting the propagation of signaling. These results indicate that a change in the balance of mechanical tension induced by partial stretching of cell sheets leads to activation and propagation of the cell signaling.

  16. Conditioning stimulation techniques for enhancement of transcranially elicited evoked motor responses

    NARCIS (Netherlands)

    Journee, H. -L.; Polak, H. E.; De Kleuver, M.

    2007-01-01

    Introduction. - In spite of the use of multipulse, transcranial electrical stimulation (TES) is still insufficient in a subgroup of patients to elicit motor-evoked potentials during intraoperative neurophysiological monitoring (IONM). Classic facilitation methods used in awake patients are precluded

  17. Postoperative Displacement of Deep Brain Stimulation Electrodes Related to Lead-Anchoring Technique

    NARCIS (Netherlands)

    Contarino, M. Fiorella; Bot, Maarten; Speelman, Johannes D.; de Bie, Rob M. A.; Tijssen, Marina A.; Denys, Damiaan; Bour, Lo J.; Schuurman, P. Richard; van den Munckhof, Pepijn

    2013-01-01

    BACKGROUND: Displacement of deep brain stimulation (DBS) electrodes may occur after surgery, especially due to large subdural air collections, but other factors might contribute. OBJECTIVE: To investigate factors potentially contributing to postoperative electrode displacement, in particular,

  18. Potential Mechanisms Supporting the Value of Motor Cortex Stimulation to Treat Chronic Pain Syndromes

    Science.gov (United States)

    DosSantos, Marcos F.; Ferreira, Natália; Toback, Rebecca L.; Carvalho, Antônio C.; DaSilva, Alexandre F.

    2016-01-01

    Throughout the first years of the twenty-first century, neurotechnologies such as motor cortex stimulation (MCS), transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS) have attracted scientific attention and been considered as potential tools to centrally modulate chronic pain, especially for those conditions more difficult to manage and refractory to all types of available pharmacological therapies. Interestingly, although the role of the motor cortex in pain has not been fully clarified, it is one of the cortical areas most commonly targeted by invasive and non-invasive neuromodulation technologies. Recent studies have provided significant advances concerning the establishment of the clinical effectiveness of primary MCS to treat different chronic pain syndromes. Concurrently, the neuromechanisms related to each method of primary motor cortex (M1) modulation have been unveiled. In this respect, the most consistent scientific evidence originates from MCS studies, which indicate the activation of top-down controls driven by M1 stimulation. This concept has also been applied to explain M1-TMS mechanisms. Nevertheless, activation of remote areas in the brain, including cortical and subcortical structures, has been reported with both invasive and non-invasive methods and the participation of major neurotransmitters (e.g., glutamate, GABA, and serotonin) as well as the release of endogenous opioids has been demonstrated. In this critical review, the putative mechanisms underlying the use of MCS to provide relief from chronic migraine and other types of chronic pain are discussed. Emphasis is placed on the most recent scientific evidence obtained from chronic pain research studies involving MCS and non-invasive neuromodulation methods (e.g., tDCS and TMS), which are analyzed comparatively. PMID:26903788

  19. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism

    Science.gov (United States)

    Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.

    1999-01-01

    The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.

  20. Tendon response to pharmaco-mechanical stimulation of the chronically retracted rotator cuff in sheep.

    Science.gov (United States)

    Wieser, Karl; Farshad, Mazda; Meyer, Dominik C; Conze, Philipp; von Rechenberg, Brigitte; Gerber, Christian

    2015-02-01

    Chronic tearing of tendons is associated with molecular and structural alterations causing biomechanical changes, which compromise musculotendinous function and become limiting factors for tendon repair. This study investigated the histological response of chronically retracted sheep rotator cuff tendons to mechanical and pharmacological stimulation in view of tendon repair. Sixteen weeks after experimental release of the infraspinatus tendon in 20 sheep, the retracted musculotendinous unit was subjected to continuous traction either with [anabolic steroids (nandrolone) group/insulin-like growth factor (IGF) group] or without (control group) additional pharmacological treatment during 6 weeks. A new degeneration score for tendinous tissues (DSTT), based on established knowledge on histological changes associated with tendon degeneration, was used for histological analysis at the time of tendon release, at the beginning of continuous re-lengthening and at repair in all animals. The DSTT score (inter-observer correlation: r = 0.83), quantifiably representing tendon degeneration, improved from 15.5 (SD 1.3) points before to 9.8 (SD 3.8) points after re-lengthening. It improved in a qualitatively and quantitatively similar fashion if pharmacological stimulation was added. The nandrolone group improved from 13.7 (SD 1.6) to 9.8 (SD 1.9) and the IGF group from 13.3 (SD 3.6) to 8.8 (SD 1.8) points. Mechanical stimulation significantly reduced tissue degeneration. However, the addition of a pharmacological stimulation with anabolic steroids or IGF had neither a measurable positive nor negative effect on the degenerative process. Therefore, this investigation does neither support the additional pharmacological use of the anabolic steroid nandrolone or of IGF decanoate for restoration of tendon degeneration, nor otherwise provide evidence for additional tendon damage, if those substances are used to alter the muscular metabolism.

  1. THE MECHANISM OF CEREBRAL EVOKED POTENTIALS BY REPETITIVE MAGNETIC STIMULATION OF GASTROCNEMIUS MUSCLE IN DUCHENNE MUSCULAR DYSTROPHY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective. To study the features and mechanism of the cerebral evoked potentials by repetitive stimulation of calf muscle in Duchenne muscular dystrophy (DMD) patients with obvious muscular dystrophy and psuedohypertrophy. Methods. Cerebral evoked potentials by stimulation of calf muscles and somatosensory evoked potentials (SEPs) by the stimulation of posterior tibial nerves at ankle were measured in 10 patients with DMD and 10 normal controls matched with gender and age. The intensity of the magnetic stimulation was at 30% of maximal output (2.1 Tesla, MagPro magnetic stimulator, Dantec) and the frequency was 1 Hz. The low intensity of magnetic stimulation was just sufficient to produce a contraction of the muscle belly underneath the coil. Recording electrode was placed at 2 cm posterior to the Cz, reference to Fpz. The latencies of N33, P38, N48 and P55 and amplitude (P38- N48) were recorded. SEPs were recorded by routine methods. Results. In normal subjects, the amplitudes of cerebral evoked potentials by magnetic stimulation of calf muscle was 40% lower than that by electrical stimulation of the posterior tibial nerves at ankle. The latency of P38 was 2.9± 2.1 ms longer compared with electrical stimulation of the posterior tibial nerves at ankle. In 6 patients, P38 latency from magnetic stimulation was remarkably prolonged (P<0.01), and in 4 patients, there was no remarkable response. SEPs evoked by electrical stimulation were normal in all of the patients.? Conclusion. DMD is an available model for the study of mechanism of cerebral evoked potentials by magnetic stimulating muscle. We can conclude that the responses from magnetic stimulation were produced by muscle input. The abnormal responses in patients may relate to decreased input of muscle by stimulating dystrophic and psedohypertrophic muscle.

  2. First permanent human implant of the Stimulus Router System, a novel neuroprosthesis: preliminary testing of a polarity reversing stimulation technique.

    Science.gov (United States)

    Gan, Liu Shi; Ravid, Einat N; Kowalczewski, Jan; Gauthier, Michel; Olson, Jaret; Morhart, Michael; Prochazka, Arthur

    2011-01-01

    Neuroprostheses (NPs) are electrical stimulators that help to restore sensory or motor functions lost as a result of neural damage. The Stimulus Router System (SRS) is a new type of NP developed in our laboratory. The system uses fully implanted, passive leads to "capture" and "route" some of the current flowing between pairs of surface electrodes to the vicinity of the target nerves, hence eliminating the need for an implanted stimulator. In June 2008, 3 SRS leads were implanted in a tetraplegic man for restoration of grasp and release. To reduce the size of the external wristlet and thereby optimize usability, we recently implemented a polarity reversing stimulation technique that allowed us to eliminate a reference electrode. Selective activation of three target muscles was achieved by switching the polarities of the stimulus current delivered between pairs of surface electrodes located over the pick-up terminals of the implanted leads and reducing the amplitude of the secondary phases of the stimulus pulses.

  3. Gene Expression Responses to Mechanical Stimulation of Mesenchymal Stem Cells Seeded on Calcium Phosphate Cement

    Science.gov (United States)

    Gharibi, Borzo; Cama, Giuseppe; Capurro, Marco; Thompson, Ian; Deb, Sanjukta; Di Silvio, Lucy

    2013-01-01

    Introduction The aim of the study reported here was to investigate the molecular responses of human mesenchymal stem cells (MSC) to loading with a model that attempts to closely mimic the physiological mechanical loading of bone, using monetite calcium phosphate (CaP) scaffolds to mimic the biomechanical properties of bone and a bioreactor to induce appropriate load and strain. Methods Human MSCs were seeded onto CaP scaffolds and subjected to a pulsating compressive force of 5.5±4.5 N at a frequency of 0.1 Hz. Early molecular responses to mechanical loading were assessed by microarray and quantitative reverse transcription-polymerase chain reaction and activation of signal transduction cascades was evaluated by western blotting analysis. Results The maximum mechanical strain on cell/scaffolds was calculated at around 0.4%. After 2 h of loading, a total of 100 genes were differentially expressed. The largest cluster of genes activated with 2 h stimulation was the regulator of transcription, and it included FOSB. There were also changes in genes involved in cell cycle and regulation of protein kinase cascades. When cells were rested for 6 h after mechanical stimulation, gene expression returned to normal. Further resting for a total of 22 h induced upregulation of 63 totally distinct genes that were mainly involved in cell surface receptor signal transduction and regulation of metabolic and cell division processes. In addition, the osteogenic transcription factor RUNX-2 was upregulated. Twenty-four hours of persistent loading also markedly induced osterix expression. Mechanical loading resulted in upregulation of Erk1/2 phosphorylation and the gene expression study identified a number of possible genes (SPRY2, RIPK1, SPRED2, SERTAD1, TRIB1, and RAPGEF2) that may regulate this process. Conclusion The results suggest that mechanical loading activates a small number of immediate-early response genes that are mainly associated with transcriptional

  4. Models of intracellular mechanisms of plant bioelectrical potentials caused by combined stimulation

    Directory of Open Access Journals (Sweden)

    D. V. Chernetchenko

    2014-10-01

    Full Text Available This paper deals with bioelectrical potentials of the plants recorded during different types of stimuli and combined stimulus as well. All registrations were observed on the leaves of the corn. We used different stimuli, such as cold, heat, photo- and electrical stimulation, and certain combination of this stimuli. Hardware and software system for automated recording of bioelectrical potentials has been successfully used in this work. We proposed the universal pattern of bioelectrical potentials’ recording which allowed to detect the response of the biological object to different stimuli and various combinations of these stimuli. This pattern can be used for the deeper understanding of biological mechanisms of electrical potentials’ generation in cells and discovering of processes of accommodation of whole organisms to these stimuli. Integrated system of recording and biometrical processing was used for analysis of corn leaves electrical responses to the thermal stimuli. The dynamics of these potentials was studied, with the quantitative analysis of the potential level stabilization.We calculated the ratio of amplitude of response potentials to the first response amplitude. Mathematical models of the plant cell were used for studying of intracellular mechanisms of biopotentials gereration. As a result of modeling, we revealed that electrical response of the cells was based on selectiveconductivity of cell membrane for Н+ and Ca2+ ions. Therefore, we showed the biophysical relation of plant potentials to underlying intracellular biophysical mechanisms during thermal and combined stimulation.

  5. Direct Mechanical Stimulation of Stem Cells: A Beating Electromechanically Active Scaffold for Cardiac Tissue Engineering.

    Science.gov (United States)

    Gelmi, Amy; Cieslar-Pobuda, Artur; de Muinck, Ebo; Los, Marek; Rafat, Mehrdad; Jager, Edwin W H

    2016-06-01

    The combination of stem cell therapy with a supportive scaffold is a promising approach to improving cardiac tissue engineering. Stem cell therapy can be used to repair nonfunctioning heart tissue and achieve myocardial regeneration, and scaffold materials can be utilized in order to successfully deliver and support stem cells in vivo. Current research describes passive scaffold materials; here an electroactive scaffold that provides electrical, mechanical, and topographical cues to induced human pluripotent stem cells (iPS) is presented. The poly(lactic-co-glycolic acid) fiber scaffold coated with conductive polymer polypyrrole (PPy) is capable of delivering direct electrical and mechanical stimulation to the iPS. The electroactive scaffolds demonstrate no cytotoxic effects on the iPS as well as an increased expression of cardiac markers for both stimulated and unstimulated protocols. This study demonstrates the first application of PPy as a supportive electroactive material for iPS and the first development of a fiber scaffold capable of dynamic mechanical actuation.

  6. Heart Rate Changes in Response to Mechanical Pressure Stimulation of Skeletal Muscles Are Mediated by Cardiac Sympathetic Nerve Activity

    Science.gov (United States)

    Watanabe, Nobuhiro; Hotta, Harumi

    2017-01-01

    Stimulation of mechanoreceptors in skeletal muscles such as contraction and stretch elicits reflexive autonomic nervous system changes which impact cardiovascular control. There are pressure-sensitive mechanoreceptors in skeletal muscles. Mechanical pressure stimulation of skeletal muscles can induce reflex changes in heart rate (HR) and blood pressure, although the neural mechanisms underlying this effect are unclear. We examined the contribution of cardiac autonomic nerves to HR responses induced by mechanical pressure stimulation (30 s, ~10 N/cm2) of calf muscles in isoflurane-anesthetized rats. Animals were artificially ventilated and kept warm using a heating pad and lamp, and respiration and core body temperature were maintained within physiological ranges. Mechanical stimulation was applied using a stimulation probe 6 mm in diameter with a flat surface. Cardiac sympathetic and vagus nerves were blocked to test the contribution of the autonomic nerves. For sympathetic nerve block, bilateral stellate ganglia, and cervical sympathetic nerves were surgically sectioned, and for vagus nerve block, the nerve was bilaterally severed. In addition, mass discharges of cardiac sympathetic efferent nerve were electrophysiologically recorded. Mechanical stimulation increased or decreased HR in autonomic nerve-intact rats (range: −56 to +10 bpm), and the responses were negatively correlated with pre-stimulus HR (r = −0.65, p = 0.001). Stimulation-induced HR responses were markedly attenuated by blocking the cardiac sympathetic nerve (range: −9 to +3 bpm, p mechanical stimulation increased, or decreased the frequency of sympathetic nerve activity in parallel with HR (r = 0.77, p = 0.0004). Furthermore, the changes in sympathetic nerve activity were negatively correlated with its tonic level (r = −0.62, p = 0.0066). These results suggest that cardiac sympathetic nerve activity regulates HR responses to muscle mechanical pressure stimulation and the direction of HR

  7. The Role of ATP in Mechanically Stimulated Rapid Closure of the Venus's Flytrap.

    Science.gov (United States)

    Jaffe, M J

    1973-01-01

    When the midribs of untreated traps of Dionaea muscipula are frozen in liquid nitrogen after rapid closure, they contain significantly less ATP than those frozen before closure. Exogenous ATP causes a significant increase in the rate of mechanically stimulated trap closure. Illuminated traps close faster than those kept in the dark. The traps of plants placed in 100% O(2) close much faster than do air controls, while 100% CO(2) inhibits closure. It is concluded that ATP is probably the native source of potential energy for contraction of the trap's midrib, and that if the endogenous ATP titer is increased by oxidative phosphorylation or an exogenous source, the trap will close faster.

  8. Mechanisms of amino acid-stimulated insulin secretion in congenital hyperinsulinism

    OpenAIRE

    Zhang, Tingting; Li, Changhong

    2012-01-01

    The role of amino acids in the regulation of insulin secretion in pancreatic beta-cells is highlighted in three forms of congenital hyperinsulinism (HI), namely gain-of-function mutations of glutamate dehydrogenase (GDH), loss-of-function mutations of ATP-dependent potassium channels, and a deficiency of short-chain 3-hydroxyacyl-CoA dehydrogenase. Studies on disease mouse models of HI suggest that amino acid oxidation and signaling effects are the major mechanisms of amino acid-stimulated in...

  9. [Mechanism of stimulation of angiogenesis in ischemic myocardium with the help of adipose tissue stromal cells].

    Science.gov (United States)

    Rubina, K A; Kalinina, N I; Efimenko, A Iu; Lopatina, T V; Melikhova, V S; Tsokolaeva, Z I; Sysoeva, V Iu; Tkachuk, V A; Parfenova, E V

    2010-01-01

    Stromal cells from subcutaneous adipose tissue (adipose derived stromal cells - ASCs) are perspective for cell therapy of ischemic states because of ability to stimulate growth of vessels. For the elucidation of mechanisms of angiogenic action of ASCs we used the model of co-cultivation of ASCs with cells isolated from postnatal hearts (fraction of cardiomyocutes - CMC). CMC fraction contained mature cardiomyocytes, endothelial and progenitor cells. On the 2-nd day spontaneously beating colonies of CMC with growing from them CD31-positive capillary-like structures were formed in CMC culture. Observed structures were unstable and came apart after 5 days of cultivation. At co-cultivation of CMC with ASCs formation of stable ramified CD31-positive structures was observed. Using the method of co-cultivation of CMC with mitomycin C treated ASCs and the method of immune magnetic depletion for removal of epithelial cells from the CMC fraction we found that ASCs stimulates formation of capillary like structure at the account of secretion of angiogenic factors, stabilization of forming CD31-positive structures at the account of intercellular contacts and stimulation of endothelial differentiation of progenitor cells present in CMC fraction.

  10. Restoring cognitive functions using non-invasive brain stimulation techniques in patients with cerebellar disorders

    Directory of Open Access Journals (Sweden)

    Paul A Pope

    2014-04-01

    Full Text Available Numerous studies have highlighted the possibility of modulating the excitability of cerebro-cerebellar circuits bi-directionally using transcranial electrical brain stimulation, in a manner akin to that observed using magnetic stimulation protocols. It has been proposed that cerebellar stimulation activates Purkinje cells in the cerebellar cortex, leading to inhibition of the dentate nucleus, which exerts a tonic facilitatory drive onto motor and cognitive regions of cortex through a synaptic relay in the ventral-lateral thalamus. Some cerebellar deficits present with cognitive impairments if damage to non-motor regions of the cerebellum disrupts the coupling with cerebral cortical areas for thinking and reasoning. Indeed, white matter changes in the dentato-rubral tract correlate with cognitive assessments in patients with Friedreich ataxia, suggesting that this pathway is one component of the anatomical substrate supporting a cerebellar contribution to cognition. An understanding of the physiology of the cerebro-cerebellar pathway previously helped us to constrain our interpretation of results from two recent studies in which we showed cognitive enhancements in healthy participants during tests of arithmetic after electrical stimulation of the cerebellum, but only when task demands were high. Others studies have also shown how excitation of the prefrontal cortex can enhance performance in a variety of working memory tasks. Thus, future efforts might be guided towards neuro-enhancement in certain patient populations, using what is commonly termed 'non-invasive brain stimulation' as a cognitive rehabilitation tool to modulate cerebro-cerebellar circuits, or for stimulation over the cerebral cortex to compensate for decreased cerebellar drive to this region. This article will address these possibilities with a review of the relevant literature covering ataxias and cerebellar cognitive affective disorders, which are characterized by thalamo

  11. Restoring cognitive functions using non-invasive brain stimulation techniques in patients with cerebellar disorders.

    Science.gov (United States)

    Pope, Paul A; Miall, R Chris

    2014-01-01

    Numerous studies have highlighted the possibility of modulating the excitability of cerebro-cerebellar circuits bi-directionally using transcranial electrical brain stimulation, in a manner akin to that observed using magnetic stimulation protocols. It has been proposed that cerebellar stimulation activates Purkinje cells in the cerebellar cortex, leading to inhibition of the dentate nucleus, which exerts a tonic facilitatory drive onto motor and cognitive regions of cortex through a synaptic relay in the ventral-lateral thalamus. Some cerebellar deficits present with cognitive impairments if damage to non-motor regions of the cerebellum disrupts the coupling with cerebral cortical areas for thinking and reasoning. Indeed, white matter changes in the dentato-rubral tract correlate with cognitive assessments in patients with Friedreich ataxia, suggesting that this pathway is one component of the anatomical substrate supporting a cerebellar contribution to cognition. An understanding of the physiology of the cerebro-cerebellar pathway previously helped us to constrain our interpretation of results from two recent studies in which we showed cognitive enhancements in healthy participants during tests of arithmetic after electrical stimulation of the cerebellum, but only when task demands were high. Others studies have also shown how excitation of the prefrontal cortex can enhance performance in a variety of working memory tasks. Thus, future efforts might be guided toward neuro-enhancement in certain patient populations, using what is commonly termed "non-invasive brain stimulation" as a cognitive rehabilitation tool to modulate cerebro-cerebellar circuits, or for stimulation over the cerebral cortex to compensate for decreased cerebellar drive to this region. This article will address these possibilities with a review of the relevant literature covering ataxias and cerebellar cognitive affective disorders, which are characterized by thalamo-cortical disturbances.

  12. Investigation of mechanical properties of pavement through electromagnetic techniques

    Science.gov (United States)

    Benedetto, Andrea; Tosti, Fabio; D'Amico, Fabrizio

    2014-05-01

    Ground-penetrating radar (GPR) is considered as one of the most flexible geophysical tools that can be effectively and efficiently used in many different applications. In the field of pavement engineering, GPR can cover a wide range of uses, spanning from physical to geometrical inspections of pavements. Traditionally, such inferred information are integrated with mechanical measurements from other traditional (e.g. plate bearing test) or non-destructive (e.g. falling weight deflectometer) techniques, thereby resulting, respectively, in time-consuming and low-significant measurements, or in a high use of technological resources. In this regard, the new challenge of retrieving mechanical properties of road pavements and materials from electromagnetic measurements could represent a further step towards a greater saving of economic resources. As far as concerns unpaved and bound layers it is well-known that strength and deformation properties are mostly affected, respectively, by inter-particle friction and cohesion of soil particles and aggregates, and by bitumen adhesion, whose variability is expressed by the Young modulus of elasticity. In that respect, by assuming a relationship between electromagnetic response (e.g. signal amplitudes) and bulk density of materials, a reasonable correlation between mechanical and electric properties of substructure is therefore expected. In such framework, a pulse GPR system with ground-coupled antennae, 600 MHz and 1600 MHz centre frequencies was used over a 4-m×30-m test site composed by a flexible pavement structure. The horizontal sampling resolution amounted to 2.4×10-2 m. A square regular grid mesh of 836 nodes with a 0.40-m spacing between the GPR acquisition tracks was surveyed. Accordingly, a light falling weight deflectometer (LFWD) was used for measuring the elastic modulus of pavement at each node. The setup of such instrument consisted of a 10-kg falling mass and a 100-mm loading plate so that the influence domain

  13. Orbital mechanics and astrodynamics techniques and tools for space missions

    CERN Document Server

    Hintz, Gerald R

    2015-01-01

    This textbook covers fundamental and advanced topics in orbital mechanics and astrodynamics to expose the student to the basic dynamics of space flight. The engineers and graduate students who read this class-tested text will be able to apply their knowledge to mission design and navigation of space missions. Through highlighting basic, analytic and computer-based methods for designing interplanetary and orbital trajectories, this text provides excellent insight into astronautical techniques and tools. This book is ideal for graduate students in Astronautical or Aerospace Engineering and related fields of study, researchers in space industrial and governmental research and development facilities, as well as researchers in astronautics. This book also: ·       Illustrates all key concepts with examples ·       Includes exercises for each chapter ·       Explains concepts and engineering tools a student or experienced engineer can apply to mission design and navigation of space missions ·�...

  14. Effect of thermal cutaneous stimulation on the gastric motor activity: Study of the mechanism of action

    Institute of Scientific and Technical Information of China (English)

    Ahmed Shafik; Ali A Shafik; Olfat El Sibai; Ismail A Shafik

    2008-01-01

    AIM: To investigate the mechanism of action of thermal cutaneous stimulation on the gastric motor inhibition.METHODS: The gastric tone of 33 healthy volunteers (20 men, mean age 36.7 ±8.4 years) was assessed by a barostat system consisting of a balloon-ended tube connected to a strain gauge and air-injection system. The tube was introduced into the stomach and the balloon was inflated with 300 mL of air. The skin temperature was elevated in increments of 3℃ up to 49℃ and the gastric tone was simultaneously assessed by recording the balloon volume variations expressed as the percentage change from the baseline volume. The test was repeated after separate anesthetization of the skin and stomach with lidocaine and after using normal saline instead of lidocaine.RESULTS: Thermal cutaneous stimulation resulted in a significant decrease of gastric tone 61.2% ±10.3% of the mean baseline volume. Mean latency was 25.6 ± 1.2 ms.After 20 min of individual anesthetization of the skin and stomach, thermal cutaneous stimulation produced no significant change in gastric tone.CONCLUSION: Decrease in the gastric tone in response to thermal cutaneous stimulation suggests a reflex relationship which was absent on individual anesthetization of the 2 possible arms of the reflex arc:the skin and the stomach. We call this relationship the "cutaneo-gastric inhibitory reflex". This reflex may have the potential to serve as an investigative tool in the diagnosis of gastric motor disorders, provided further studies are performed in this respect.

  15. Concanavalin A as a probe for studying the mechanism of metabolic stimulation of leukocytes.

    Science.gov (United States)

    Romeo, D; Zabucchi, G; Jug, M; Miani, N; Soranzo, M R

    1975-01-01

    The disruption of the molecular organization of the plasma membrane of leukocytes by phagocytosable particles, or by agents such as surfactants, antibodies, phospholipase C, fatty acids and chemotactic factors, leads to a stimulation of the phagocyte oxidative metabolism. Concanavalin A (Con A) has been used as a tool to study the mechanism of this metabolic regulation. The binding of Con A to the surface of polymorphonuclear leukocytes (PMNL) or macrophages produces a rapid enhancement of oxygen uptake and glucose oxidation through the hexose monophosphate pathway (HMP). This is explained by an activation of the granular NADPH oxidase, the key enzyme in the metabolic stimulation. The effect of Con A is not due to endocytosed lectin, since Con A covalently coupled to large sepharose beads still acts as stimulant. The metabolic changes caused by Con A are reversible. If, after the onset of stimulation, sugars with high affinity for Con A are added to the leukocyte suspension, the activity of granular NADPH oxidase and the rate of respiration and glucose oxidation return to their resting values. The metabolic burst, while partially supressed by treatment of PMNL with iodoacetate, sodium flouride and cytochalasin B, is slightly increased by colchicine. Con A induces a selective release of granular enzymes (beta-glucuronidase, peroxidase, alkaline phosphatase) from PMNL, whereas no leakage of cytoplasmic enzymes is observed. The enzyme release is inhibited by iodoacetate and by drugs known to increase cell levels of cyclic AMP. Based on a current view of the mode of interaction between Con A and cell surfaces, a model of the metabolic disruption of leukocytes is presented.

  16. A Simple fMRI Compatible Robotic Stimulator to Study the Neural Mechanisms of Touch and Pain.

    Science.gov (United States)

    Riillo, F; Bagnato, C; Allievi, A G; Takagi, A; Fabrizi, L; Saggio, G; Arichi, T; Burdet, E

    2016-08-01

    This paper presents a simple device for the investigation of the human somatosensory system with functional magnetic imaging (fMRI). PC-controlled pneumatic actuation is employed to produce innocuous or noxious mechanical stimulation of the skin. Stimulation patterns are synchronized with fMRI and other relevant physiological measurements like electroencephalographic activity and vital physiological parameters. The system allows adjustable regulation of stimulation parameters and provides consistent patterns of stimulation. A validation experiment demonstrates that the system safely and reliably identifies clusters of functional activity in brain regions involved in the processing of pain. This new device is inexpensive, portable, easy-to-assemble and customizable to suit different experimental requirements. It provides robust and consistent somatosensory stimulation, which is of crucial importance to investigating the mechanisms of pain and its strong connection with the sense of touch.

  17. Developments in optically stimulated luminescence techniques for dating and retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Murray, A.S.

    1999-01-01

    Optically stimulated luminescence signals from natural quartz and feldspar are now used routinely in dating geological and archaeological materials. More recently they have also been employed in accident dosimetry, i.e. the retrospective assessment of doses received as a result of a nuclear accid...

  18. A fast simulation tool for evaluation of novel well stimulation techniques for tight gas reservoirs

    NARCIS (Netherlands)

    Egberts, P.J.P.; Peters, E.

    2015-01-01

    For stimulation of tight fields, alternatives to hydraulic fracturing based on hydraulic jetting are becoming available. With hydraulic jetting many (10 to 20) laterals can be created in a (sub-) vertical well. The laterals are 100 to 200 m long, typically 4 laterals are applied with a small

  19. Neuronal mechanisms during repetitive trigemino-nociceptive stimulation in migraine patients.

    Science.gov (United States)

    Aderjan, David; Stankewitz, Anne; May, Arne

    2010-10-01

    Habituation deficits in various sensory modalities have been observed in migraine patients in several experimental designs. The underlying neuronal mechanisms are, however, still unknown. Past studies have used electrophysiological measures and focussed on habituation behaviour during one single session. We were interested in how repeated painful stimulation over several days is processed, perceived and modulated in migraineurs. Fifteen migraine patients and 15 healthy controls were stimulated daily with a 20 min trigeminal pain paradigm for eight consecutive days, using functional MRI performed on days one and eight and one follow-up measurement three months later. The results demonstrate that migraine patients did not differ in behavioural pain ratings compared to the controls at any time. However, functional imaging data revealed a significant difference in several brain areas over time. The activity level in the prefrontal cortex (PFC) and the rostral anterior cingulate cortex (rACC) increased in healthy control subjects from day one to day eight, whereas it decreased in migraine patients. These data suggest that several brain areas known to be involved in endogenous pain control show a completely opposite behaviour in migraine patients compared to healthy controls. These brain networks seem not to be disrupted per se in migraine patients but changed activity over time responding to repetitive nociceptive input. The alteration of pain inhibitory circuits may be the underlying mechanism responsible for the dys-functional neuronal filters of sensory input.

  20. Sonic hedgehog stimulates neurite outgrowth in a mechanical stretch model of reactive-astrogliosis.

    Science.gov (United States)

    Berretta, Antonio; Gowing, Emma K; Jasoni, Christine L; Clarkson, Andrew N

    2016-02-23

    Although recovery following a stroke is limited, undamaged neurons under the right conditions can establish new connections and take on-board lost functions. Sonic hedgehog (Shh) signaling is integral for developmental axon growth, but its role after injury has not been fully examined. To investigate the effects of Shh on neuronal sprouting after injury, we used an in vitro model of glial scar, whereby cortical astrocytes were mechanically traumatized to mimic reactive astrogliosis observed after stroke. This mechanical trauma impaired neurite outgrowth from post-natal cortical neurons plated on top of reactive astrocytes. Addition of Shh to the media, however, resulted in a concentration-dependent increase in neurite outgrowth. This response was inhibited by cyclopamine and activated by oxysterol 20(S)-hydroxycholesterol, both of which modulate the activity of the Shh co-receptor Smoothened (Smo), demonstrating that Shh-mediated neurite outgrowth is Smo-dependent. In addition, neurite outgrowth was not associated with an increase in Gli-1 transcription, but could be inhibited by PP2, a selective inhibitor of Src family kinases. These results demonstrate that neurons exposed to the neurite growth inhibitory environment associated with a glial scar can be stimulated by Shh, with signaling occurring through a non-canonical pathway, to overcome this suppression and stimulate neurite outgrowth.

  1. Mechanical loading prevents the stimulating effect of IL-1{beta} on osteocyte-modulated osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Rishikesh N.; Bakker, Astrid D.; Everts, Vincent [Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Amsterdam (Netherlands); Klein-Nulend, Jenneke, E-mail: j.kleinnulend@acta.nl [Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Amsterdam (Netherlands)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Osteocyte incubation with IL-1{beta} stimulated osteocyte-modulated osteoclastogenesis. Black-Right-Pointing-Pointer Conditioned medium from IL-1{beta}-treated osteocytes increased osteoclastogenesis. Black-Right-Pointing-Pointer IL-1{beta} upregulated RANKL and downregulated OPG gene expression by osteocytes. Black-Right-Pointing-Pointer CYR61 is upregulated in mechanically stimulated osteocytes. Black-Right-Pointing-Pointer Mechanical loading of osteocytes may abolish IL-1{beta}-induced osteoclastogenesis. -- Abstract: Inflammatory diseases such as rheumatoid arthritis are often accompanied by higher plasma and synovial fluid levels of interleukin-1{beta} (IL-1{beta}), and by increased bone resorption. Since osteocytes are known to regulate bone resorption in response to changes in mechanical stimuli, we investigated whether IL-1{beta} affects osteocyte-modulated osteoclastogenesis in the presence or absence of mechanical loading of osteocytes. MLO-Y4 osteocytes were pre-incubated with IL-1{beta} (0.1-1 ng/ml) for 24 h. Cells were either or not subjected to mechanical loading by 1 h pulsating fluid flow (PFF; 0.7 {+-} 0.3 Pa, 5 Hz) in the presence of IL-1{beta} (0.1-1 ng/ml). Conditioned medium was collected after 1 h PFF or static cultures. Subsequently mouse bone marrow cells were seeded on top of the IL-1{beta}-treated osteocytes to determine osteoclastogenesis. Conditioned medium from mechanically loaded or static IL-1{beta}-treated osteocytes was added to co-cultures of untreated osteocytes and mouse bone marrow cells. Gene expression of cysteine-rich protein 61 (CYR61/CCN1), receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) by osteocytes was determined immediately after PFF. Incubation of osteocytes with IL-1{beta}, as well as conditioned medium from static IL-1{beta}-treated osteocytes increased the formation of osteoclasts. However, conditioned medium from mechanically loaded IL

  2. Inactivation of mechano-sensitive dilatation upon repetitive mechanical stimulation of the musculo-vascular network in the rabbit.

    Science.gov (United States)

    Turturici, M; Roatta, S

    2013-06-01

    Mechano-sensitivity of the vascular network is known to be implicated in the rapid dilatation at the onset of exercise, however, it is not known how this mechanism responds to repetitive mechanical stimulation. This study tests the hypothesis that the mechanically-induced hyperaemia undergoes some attenuation upon repetitive stimulation. Muscle blood flow was recorded from 9 masseteric arteries (5 right, 4 left) in 6 anesthetized rabbits. Two mechanical stimuli, masseter muscle compression (MC) and occlusion of the masseteric artery (AO), were provided in different combinations: A) repeated stimulation (0.5 Hz, for 40 s); B) single stimuli delivered at decreasing inter-stimulus interval (ISI) from 4 min to 2 s, C) single AO delivered before and immediately after a series of 20 MCs at 0.5 Hz, and vice-versa. Repetitive AO stimulation at 0.5 Hz produced a transient hyperaemia (378 ±189%) peaking at 4.5 ±1.4 s and then decaying before the end of stimulation. The hyperaemic response to individual AOs progressively decreased by 74 ±39% with decreasing ISI from 4 min to 2 s (p<0.01). Non significant differences were observed between AO and MC stimulation. Decreased response to AO was also provoked by previous repetitive MC stimulation, and vice-versa. The results provide evidence that the mechano-sensitivity of the vascular network is attenuated by previous mechanical stimulation. It is suggested that the mechano-sensitive dilatory mechanisms undergoes some inactivation whose recovery time is in the order of a few minutes.

  3. Working mechanism and numerical simulation of assembly coastal building techniques

    Institute of Scientific and Technical Information of China (English)

    陈育民; 刘汉龙; 陈泽

    2008-01-01

    A new coastal technique, named as assembly coastal building, was introduced. The main concept of the technique was the assembling components which could be combined and locked together to form a large caisson. The assembly coastal building technique was used in a sea access road in Zhuanghai 4X1 well, Dagang Oilfield. The design plans and in-situ tests in the sea access road project were introduced in detail. According to the Zhuanghai project, the numerical simulation method of assembly coastal building technique was proposed. 2D numerical simulations were performed in FLAC to analyze the displacement and stability of the technique in the construction process and post-construction period. The settlement calculated is close to the in-situ results, which proves that the proposed numerical method is reasonable. Results show that the assembly coastal building technique has large safety factor under the gravity loading and wave loadings.

  4. Pressure stimulated currents in rocks and their correlation with mechanical properties

    Directory of Open Access Journals (Sweden)

    I. Stavrakas

    2004-01-01

    Full Text Available The spontaneous electrification of marble samples was studied while they were subjected to uniaxial stress. The Pressure Stimulated Current (PSC technique was applied to measure the charge released from compressed Dionysos marble samples, while they were subjected to cyclic loading. The experimental results demonstrate that, in the linear elastic region of the sample, no PSC is recorded, while beyond the stress limit (s>0.60, observable variations appear, which increase considerably in the vicinity of sample failure, reaching a maximum value just before the failure. The emitted current is reduced on each loading cycle and it has a reciprocal dependence to the normalized Young modulus. The MCD model, applied out of the vicinity of sample failure explains successfully the above findings. The existence of a 'memory-like' behavior of the sample, could justify the weakness or absence of electrical earthquake precursors, during an aftershock sequence.

  5. Mechanical stimulation induces mTOR signaling via an ERK-independent mechanism: implications for a direct activation of mTOR by phosphatidic acid.

    Directory of Open Access Journals (Sweden)

    Jae Sung You

    Full Text Available Signaling by mTOR is a well-recognized component of the pathway through which mechanical signals regulate protein synthesis and muscle mass. However, the mechanisms involved in the mechanical regulation of mTOR signaling have not been defined. Nevertheless, recent studies suggest that a mechanically-induced increase in phosphatidic acid (PA may be involved. There is also evidence which suggests that mechanical stimuli, and PA, utilize ERK to induce mTOR signaling. Hence, we reasoned that a mechanically-induced increase in PA might promote mTOR signaling via an ERK-dependent mechanism. To test this, we subjected mouse skeletal muscles to mechanical stimulation in the presence or absence of a MEK/ERK inhibitor, and then measured several commonly used markers of mTOR signaling. Transgenic mice expressing a rapamycin-resistant mutant of mTOR were also used to confirm the validity of these markers. The results demonstrated that mechanically-induced increases in p70(s6k T389 and 4E-BP1 S64 phosphorylation, and unexpectedly, a loss in total 4E-BP1, were fully mTOR-dependent signaling events. Furthermore, we determined that mechanical stimulation induced these mTOR-dependent events, and protein synthesis, through an ERK-independent mechanism. Similar to mechanical stimulation, exogenous PA also induced mTOR-dependent signaling via an ERK-independent mechanism. Moreover, PA was able to directly activate mTOR signaling in vitro. Combined, these results demonstrate that mechanical stimulation induces mTOR signaling, and protein synthesis, via an ERK-independent mechanism that potentially involves a direct interaction of PA with mTOR. Furthermore, it appears that a decrease in total 4E-BP1 may be part of the mTOR-dependent mechanism through which mechanical stimuli activate protein synthesis.

  6. Mechanical stimulation induces mTOR signaling via an ERK-independent mechanism: implications for a direct activation of mTOR by phosphatidic acid.

    Science.gov (United States)

    You, Jae Sung; Frey, John W; Hornberger, Troy A

    2012-01-01

    Signaling by mTOR is a well-recognized component of the pathway through which mechanical signals regulate protein synthesis and muscle mass. However, the mechanisms involved in the mechanical regulation of mTOR signaling have not been defined. Nevertheless, recent studies suggest that a mechanically-induced increase in phosphatidic acid (PA) may be involved. There is also evidence which suggests that mechanical stimuli, and PA, utilize ERK to induce mTOR signaling. Hence, we reasoned that a mechanically-induced increase in PA might promote mTOR signaling via an ERK-dependent mechanism. To test this, we subjected mouse skeletal muscles to mechanical stimulation in the presence or absence of a MEK/ERK inhibitor, and then measured several commonly used markers of mTOR signaling. Transgenic mice expressing a rapamycin-resistant mutant of mTOR were also used to confirm the validity of these markers. The results demonstrated that mechanically-induced increases in p70(s6k) T389 and 4E-BP1 S64 phosphorylation, and unexpectedly, a loss in total 4E-BP1, were fully mTOR-dependent signaling events. Furthermore, we determined that mechanical stimulation induced these mTOR-dependent events, and protein synthesis, through an ERK-independent mechanism. Similar to mechanical stimulation, exogenous PA also induced mTOR-dependent signaling via an ERK-independent mechanism. Moreover, PA was able to directly activate mTOR signaling in vitro. Combined, these results demonstrate that mechanical stimulation induces mTOR signaling, and protein synthesis, via an ERK-independent mechanism that potentially involves a direct interaction of PA with mTOR. Furthermore, it appears that a decrease in total 4E-BP1 may be part of the mTOR-dependent mechanism through which mechanical stimuli activate protein synthesis.

  7. Compressive nonlinearity in the hair bundle's active response to mechanical stimulation.

    Science.gov (United States)

    Martin, P; Hudspeth, A J

    2001-12-04

    The auditory system's ability to interpret sounds over a wide range of amplitudes rests on the nonlinear responsiveness of the ear. Whether measured by basilar-membrane vibration, nerve-fiber activity, or perceived loudness, the ear is most sensitive to small signals and grows progressively less responsive as stimulation becomes stronger. Seeking a correlate of this behavior at the level of mechanoelectrical transduction, we examined the responses of hair bundles to direct mechanical stimulation. As reported by the motion of an attached glass fiber, an active hair bundle from the bullfrog's sacculus oscillates spontaneously. Sinusoidal movement of the fiber's base by as little as +/-1 nm, corresponding to the application at the bundle's top of a force of +/-0.3 pN, causes detectable phase-locking of the bundle's oscillations to the stimulus. Although entrainment increases as the stimulus grows, the amplitude of the hair-bundle movement does not rise until phase-locking is nearly complete. A bundle is most sensitive to stimulation at its frequency of spontaneous oscillation. Far from that frequency, the sensitivity of an active hair bundle resembles that of a passive bundle. Over most of its range, an active hair bundle's response grows as the one-third power of the stimulus amplitude; the bundle's sensitivity declines accordingly in proportion to the negative two-thirds power of the excitation. This scaling behavior, also found in the response of the mammalian basilar membrane to sound, signals the operation of an amplificatory process at the brink of an oscillatory instability, a Hopf bifurcation.

  8. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering.

    Science.gov (United States)

    Fahy, Niamh; Alini, Mauro; Stoddart, Martin J

    2017-08-01

    Articular cartilage is a load-bearing tissue playing a crucial mechanical role in diarthrodial joints, facilitating joint articulation, and minimizing wear. The significance of biomechanical stimuli in the development of cartilage and maintenance of chondrocyte phenotype in adult tissues has been well documented. Furthermore, dysregulated loading is associated with cartilage pathology highlighting the importance of mechanical cues in cartilage homeostasis. The repair of damaged articular cartilage resulting from trauma or degenerative joint disease poses a major challenge due to a low intrinsic capacity of cartilage for self-renewal, attributable to its avascular nature. Bone marrow-derived mesenchymal stem cells (MSCs) are considered a promising cell type for cartilage replacement strategies due to their chondrogenic differentiation potential. Chondrogenesis of MSCs is influenced not only by biological factors but also by the environment itself, and various efforts to date have focused on harnessing biomechanics to enhance chondrogenic differentiation of MSCs. Furthermore, recapitulating mechanical cues associated with cartilage development and homeostasis in vivo, may facilitate the development of a cellular phenotype resembling native articular cartilage. The goal of this review is to summarize current literature examining the effect of mechanical cues on cartilage homeostasis, disease, and MSC chondrogenesis. The role of biological factors produced by MSCs in response to mechanical loading will also be examined. An in-depth understanding of the impact of mechanical stimulation on the chondrogenic differentiation of MSCs in terms of endogenous bioactive factor production and signaling pathways involved, may identify therapeutic targets and facilitate the development of more robust strategies for cartilage replacement using MSCs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society

  9. Growth hormone stimulation of serum insulin concentration in cattle: nutritional dependency and potential mechanisms.

    Science.gov (United States)

    Feng, J; Gu, Z; Wu, M; Gwazdauskas, F C; Jiang, H

    2009-08-01

    Previous studies on the effect of growth hormone (GH) on serum insulin concentration in cattle had generated seemingly conflicting results, and little was known about the mechanism by which GH affects serum insulin concentration in cattle, if it does. In this study, we determined whether the effect of GH on serum insulin concentration in cattle could be affected by the nutritional levels of the animal and whether GH increased serum insulin concentration in cattle by directly stimulating insulin release or insulin gene expression in the pancreatic islets. Administration of recombinant bovine GH increased serum insulin concentration in nonlactating, nonpregnant beef cows fed a daily concentrate meal in addition to ad libitum hay, but it had no effect in those cows fed hay only. Both GH treatments for 1 and 24h increased insulin concentrations in cultures of pancreatic islets isolated from growing cattle. Growth hormone treatment for 24h increased insulin mRNA expression in cultured bovine pancreatic islets. Growth hormone treatment for 16h increased reporter gene expression directed by a approximately 1,500-bp bovine insulin gene promoter in a rat insulin-producing beta cell line. Taken together, these results suggest that exogenous GH can increase serum insulin concentration in cattle, but this effect depends on the nutritional levels of fed cattle, and that GH increases serum insulin concentration in cattle by stimulating both insulin release and insulin gene expression in the pancreatic islets.

  10. Short-distance sensory stimulation technique in the early diagnosis of carpal tunnel syndrome

    Directory of Open Access Journals (Sweden)

    Betül Çevik

    2013-12-01

    Full Text Available Aim. Normal results obtained from nerve conduction studies do not exclude the diagnosis of carpal tunnel syndrome (CTS. We intended to increase diagnostic sensitivity of nerve conduction studies in the early stage CTS by stimulating shorter palm-wrist segment, and excluding distal region outside the entrapment site of the median nerve which is unaffected from pathologic changes. Methods. In this prospective study, 41 patients (66 hands with clinically diagnosed CTS with normal conventional electrophysiologic examinations were stimulated with electrodes placed at 8, 7, 6, 5, 4 cm from the distal wrist crease (DWC on the palm-wrist segment, and the conduction velocities, latencies, and the differential latencies (conduction delay were compared with those of 34 patients (68 hands in the control group. Results. Conduction delay recorded between 4-5, 5-6, 6-7, 7-8 cm. away from DWC of both groups was statistically insignificant (p>0.1, while the conduction velocities and the latencies obtained from the electrodes placed on 4, 5, 6, 7, and 8 cm away from DWC differed statistically significantly between two groups (p<0.001. Conclusion. In electrophysiologic examinations performed to confirm the diagnosis of CTS, assessment of shorter palm-wrist segment, and stimulation of a predetermined location 4 or 5 cm distal to DWC are sufficient to detect a slight and localized conduction delay in the carpal tunnel. This method eliminated slowing-down effect of distal segment on normal nerve conduction velocities yielding higher degrees of (up to 92.4 % sensitivity.

  11. Enhanced Soft Tissue Attachment and Fixation Using a Mechanically-Stimulated Cytoselective Tissue-Specific ECM Coating

    Science.gov (United States)

    2013-01-01

    appropriate scaffold for the tendon to bone interface, characterizing the co-culture behavior on the selected scaffold, developing a mechanical bioreactor to...correlate data. Finally, a customizable bioreactor was designed to selectively mechanically stimulate tendon-to-bone tissue engineering co-cultured...scaffolds. 15. SUBJECT TERMS Scaffold, Tissue Engineering, Bioreactor , Tendon, Bone, Biomaterial, Extracellular Matrix, Animal model 16. SECURITY

  12. The Role of ATP in Mechanically Stimulated Rapid Closure of the Venus's Flytrap 1

    Science.gov (United States)

    Jaffe, M. J.

    1973-01-01

    When the midribs of untreated traps of Dionaea muscipula are frozen in liquid nitrogen after rapid closure, they contain significantly less ATP than those frozen before closure. Exogenous ATP causes a significant increase in the rate of mechanically stimulated trap closure. Illuminated traps close faster than those kept in the dark. The traps of plants placed in 100% O2 close much faster than do air controls, while 100% CO2 inhibits closure. It is concluded that ATP is probably the native source of potential energy for contraction of the trap's midrib, and that if the endogenous ATP titer is increased by oxidative phosphorylation or an exogenous source, the trap will close faster. PMID:16658280

  13. Mechanism of stimulated Hawking radiation in a laboratory Bose-Einstein condensate

    Science.gov (United States)

    Wang, Yi-Hsieh; Jacobson, Ted; Edwards, Mark; Clark, Charles W.

    2017-08-01

    We model a sonic black-hole analog in a quasi-one-dimensional Bose-Einstein condensate, using a Gross-Pitaevskii equation matching the configuration of a recent experiment by Steinhauer [Nat. Phys. 10, 864 (2014), 10.1038/nphys3104]. The model agrees well with important features of the experimental observations, demonstrating their hydrodynamic nature. We find that a zero-frequency bow wave is generated at the inner (white-hole) horizon, which grows in proportion to the square of the background condensate density. The relative motion of the black- and white-hole horizons produces a Doppler shift of the bow wave at the black hole, where it stimulates the emission of monochromatic Hawking radiation. The mechanism is confirmed using temporal and spatial windowed Fourier spectra of the condensate. Mean field behavior similar to that in the experiment can thus be fully explained without the presence of self-amplifying Hawking radiation.

  14. Revisiting Fenton Hill Phase I reservoir creation and stimulation mechanisms through the GTO code comparison effort

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Pengcheng; Mcclure, Mark; Shiozawa, Sogo; White, Mark D.

    2016-06-27

    A series of experiments performed at the Fenton Hill hot dry rock site after stage 2 drilling of Phase I reservoir provided intriguing field observations on the reservoir’s responses to injection and venting under various conditions. Two teams participating in the US DOE Geothermal Technologies Office (GTO)’s Code Comparison Study (CCS) used different numerical codes to model these five experiments with the objective of inferring the hydraulic stimulation mechanism involved. The codes used by the two teams are based on different numerical principles, and the assumptions made were also different, due to intrinsic limitations in the codes and the modelers’ personal interpretations of the field observations. Both sets of models were able to produce the most important field observations and both found that it was the combination of the vertical gradient of the fracture opening pressure, injection volume, and the use/absence of proppant that yielded the different outcomes of the five experiments.

  15. Use of flow, electrical, and mechanical stimulation to promote engineering of striated muscles.

    Science.gov (United States)

    Rangarajan, Swathi; Madden, Lauran; Bursac, Nenad

    2014-07-01

    The field of tissue engineering involves design of high-fidelity tissue substitutes for predictive experimental assays in vitro and cell-based regenerative therapies in vivo. Design of striated muscle tissues, such as cardiac and skeletal muscle, has been particularly challenging due to a high metabolic demand and complex cellular organization and electromechanical function of the native tissues. Successful engineering of highly functional striated muscles may thus require creation of biomimetic culture conditions involving medium perfusion, electrical and mechanical stimulation. When optimized, these external cues are expected to synergistically and dynamically activate important intracellular signaling pathways leading to accelerated muscle growth and development. This review will discuss the use of different types of tissue culture bioreactors aimed at providing conditions for enhanced structural and functional maturation of engineered striated muscles.

  16. Mechanisms of amino acid-stimulated insulin secretion in congenital hyperinsulinism

    Institute of Scientific and Technical Information of China (English)

    Tingting Zhang; Changhong Li

    2013-01-01

    The role of amino acids in the regulation of insulin secretion in pancreatic beta-cells is highlighted in three forms of congenital hyperinsulinism (HI),namely gain-of-function mutations of glutamate dehydrogenase (GDH),loss-of-function mutations of ATP-dependent potassium channels,and a deficiency of short-chain 3-hydroxyacyl-CoA dehydrogenase.Studies on disease mouse models of HI suggest that amino acid oxidation and signaling effects are the major mechanisms of amino acid-stimulated insulin secretion.Amino acid oxidation via GDH produces ATP and triggers insulin secretion.The signaling effect of amino acids amplifies insulin release after beta-cell depolarization and elevation of cytosolic calcium.

  17. Does mechanical stimulation really protect the architecture of trabecular bone? A simulation study.

    Science.gov (United States)

    Maurer, Manfred M; Weinkamer, Richard; Müller, Ralph; Ruffoni, Davide

    2015-08-01

    Although it is beyond doubt that mechanical stimulation is crucial to maintain bone mass, its role in preserving bone architecture is much less clear. Commonly, it is assumed that mechanics helps to conserve the trabecular network since an "accidental" thinning of a trabecula due to a resorption event would result in a local increase of load, thereby activating bone deposition there. However, considering that the thin trabecula is part of a network, it is not evident that load concentration happens locally on the weakened trabecula. The aim of this work was to clarify whether mechanical load has a protective role for preserving the trabecular network during remodeling. Trabecular bone is made dynamic by a remodeling algorithm, which results in a thickening/thinning of trabeculae with high/low strain energy density. Our simulations show that larger deviations from a regular cubic lattice result in a greater loss of trabeculae. Around lost trabeculae, the remaining trabeculae are on average thinner. More generally, thin trabeculae are more likely to have thin trabeculae in their neighborhood. The plausible consideration that a thin trabecula concentrates a higher amount of strain energy within itself is therefore only true when considering a single isolated trabecula. Mechano-regulated remodeling within a network-like architecture leads to local concentrations of thin trabeculae.

  18. Mechanisms of human motor cortex facilitation induced by subthreshold 5-Hz repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Sommer, Martin; Rummel, Milena; Norden, Christoph; Rothkegel, Holger; Lang, Nicolas; Paulus, Walter

    2013-06-01

    Our knowledge about the mechanisms of human motor cortex facilitation induced by repetitive transcranial magnetic stimulation (rTMS) is still incomplete. Here we used pharmacological conditioning with carbamazepine, dextrometorphan, lorazepam, and placebo to elucidate the type of plasticity underlying this facilitation, and to probe if mechanisms reminiscent of long-term potentiation are involved. Over the primary motor cortex of 10 healthy subjects, we applied biphasic rTMS pulses of effective posterior current direction in the brain. We used six blocks of 200 pulses at 5-Hz frequency and 90% active motor threshold intensity and controlled for corticospinal excitability changes using motor-evoked potential (MEP) amplitudes and latencies elicited by suprathreshold pulses before, in between, and after rTMS. Target muscle was the dominant abductor digiti minimi muscle; we coregistered the dominant extensor carpi radialis muscle. We found a lasting facilitation induced by this type of rTMS. The GABAergic medication lorazepam and to a lesser extent the ion channel blocker carbamazepine reduced the MEP facilitation after biphasic effective posteriorly oriented rTMS, whereas the N-methyl-d-aspartate receptor-antagonist dextrometorphan had no effect. Our main conclusion is that the mechanism of the facilitation induced by biphasic effective posterior rTMS is more likely posttetanic potentiation than long-term potentiation. Additional findings were prolonged MEP latency under carbamazepine, consistent with sodium channel blockade, and larger MEP amplitudes from extensor carpi radialis under lorazepam, suggesting GABAergic involvement in the center-surround balance of excitability.

  19. Glucagon stimulates hepatic FGF21 secretion through a PKA- and EPAC-dependent posttranscriptional mechanism.

    Directory of Open Access Journals (Sweden)

    Holly A Cyphert

    Full Text Available Previous studies have shown that whole body deletion of the glucagon receptor suppresses the ability of starvation to increase hepatic fibroblast growth factor 21 (FGF21 expression and plasma FGF21 concentration. Here, we investigate the mechanism by which glucagon receptor activation increases hepatic FGF21 production. Incubating primary rat hepatocyte cultures with glucagon, dibutyryl cAMP or forskolin stimulated a 3-4-fold increase in FGF21 secretion. The effect of these agents on FGF21 secretion was not associated with an increase in FGF21 mRNA abundance. Glucagon induction of FGF21 secretion was additive with the stimulatory effect of a PPARα activator (GW7647 on FGF21 secretion. Inhibition of protein kinase A (PKA and downstream components of the PKA pathway [i.e. AMP-activated protein kinase and p38 MAPK] suppressed glucagon activation of FGF21 secretion. Incubating hepatocytes with an exchange protein directly activated by cAMP (EPAC-selective cAMP analog [i.e. 8-(4-chlorophenylthio-2'-O-methyladenosine-3', 5'-cyclic monophosphate (cpTOME], stimulated a 3.9-fold increase FGF21 secretion, whereas inhibition of the EPAC effector, Rap1, suppressed glucagon activation of FGF21 secretion. Treatment of hepatocytes with insulin also increased FGF21 secretion. In contrast to glucagon, insulin activation of FGF21 secretion was associated with an increase in FGF21 mRNA abundance. Glucagon synergistically interacted with insulin to stimulate a further increase in FGF21 secretion and FGF21 mRNA abundance. These results demonstrate that glucagon increases hepatic FGF21 secretion via a posttranscriptional mechanism and provide evidence that both the PKA branch and EPAC branch of the cAMP pathway play a role in mediating this effect. These results also identify a novel synergistic interaction between glucagon and insulin in the regulation of FGF21 secretion and FGF21 mRNA abundance. We propose that this insulin/glucagon synergism plays a role in

  20. Spatio-temporal PLC activation in parallel with intracellular Ca2+ wave propagation in mechanically stimulated single MDCK cells.

    Science.gov (United States)

    Tsukamoto, Akira; Hayashida, Yasunori; Furukawa, Katsuko S; Ushida, Takashi

    2010-03-01

    Intracellular Ca2+ transients are evoked either by the opening of Ca2+ channels on the plasma membrane or by phospholipase C (PLC) activation resulting in IP3 production. Ca2+ wave propagation is known to occur in mechanically stimulated cells; however, it remains uncertain whether and how PLC activation is involved in intracellular Ca2+ wave propagation in mechanically stimulated cells. To answer these questions, it is indispensable to clarify the spatio-temporal relations between intracellular Ca2+ wave propagation and PLC activation. Thus, we visualized both cytosolic Ca2+ and PLC activation using a real-time dual-imaging system in individual Mardin-Darby Canine Kidney (MDCK) cells. This system allowed us to simultaneously observe intracellular Ca2+ wave propagation and PLC activation in a spatio-temporal manner in a single mechanically stimulated MDCK cell. The results showed that PLC was activated not only in the mechanically stimulated region but also in other subcellular regions in parallel with intracellular Ca2+ wave propagation. These results support a model in which PLC is involved in Ca2+ signaling amplification in mechanically stimulated cells.

  1. Electrochemical mechanical micromachining based on confined etchant layer technique.

    Science.gov (United States)

    Yuan, Ye; Han, Lianhuan; Zhang, Jie; Jia, Jingchun; Zhao, Xuesen; Cao, Yongzhi; Hu, Zhenjiang; Yan, Yongda; Dong, Shen; Tian, Zhong-Qun; Tian, Zhao-Wu; Zhan, Dongping

    2013-01-01

    The confined etchant layertechnique (CELT) has been proved an effective electrochemical microfabrication method since its first publication at Faraday Discussions in 1992. Recently, we have developed CELT as an electrochemical mechanical micromachining (ECMM) method by replacing the cutting tool used in conventional mechanical machining with an electrode, which can perform lathing, planing and polishing. Through the coupling between the electrochemically induced chemical etching processes and mechanical motion, ECMM can also obtain a regular surface in one step. Taking advantage of CELT, machining tolerance and surface roughness can reach micro- or nano-meter scale.

  2. Studies of ground-state dynamics in isolated species by ionization-detected stimulated Raman techniques

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P.M. [Univ. of California, Los Angeles (United States)

    1993-12-01

    First, the author aims to develop methods of nonlinear Raman spectroscopy for application in studies of sparse samples. Second, the author wishes to apply such methods to structural and dynamical studies of species (molecules, complexes, and clusters) in supersonic molecular beams. In the past year, the author has made progress in several areas. The first pertains to the application of mass-selective ionization-detected stimulated Raman spectroscopies (IDSRS) to the size-specific vibrational spectroscopy of solute-solvent{sub n} clusters. The second involves the application of IDSRS methods to studies of jet-cooled benzene clusters. The third pertains to the use of IDSRS methods in the study of intermolecular vibrational transitions in van der Waals complexes.

  3. Cavitation-based hydro-fracturing technique for geothermal reservoir stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John; Wang, Hong; Ren, Fei; Cox, Thomas S.

    2017-02-21

    A rotary shutter valve 500 is used for geothermal reservoir stimulation. The valve 500 includes a pressure chamber 520 for holding a working fluid (F) under pressure. A rotatable shutter 532 is turned with a powering device 544 to periodically align one or more windows 534 with one or more apertures 526 in a bulkhead 524. When aligned, the pressurized working fluid (F) flows through the bulkhead 524 and enters a pulse cavity 522, where it is discharged from the pulse cavity 522 as pressure waves 200. The pressure wave propagation 200 and eventual collapse of the bubbles 202 can be transmitted to a target rock surface 204 either in the form of a shock wave 206, or by micro jets 208, depending on the bubble-surface distance. Once cavitation at the rock face begins, fractures are initiated in the rock to create a network of micro-fissures for enhanced heat transfer.

  4. Auger decay mechanism in photon-stimulated desorption of ions from surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Parks, C.C.

    1983-11-01

    Photon-stimulated desorption (PSD) of positive ions was studied with synchrotron radiation using an angle-integrating time-of-flight mass spectrometer. Ion yields as functions of photon energy near core levels were measured from condensed gases, alkali fluorides, and other alkali and alkaline earth halides. These results are compared to bulk photoabsorption measurements with emphasis on understanding fundamental desorption mechanisms. The applicability of the Auger decay mechanism, in which ion desorption is strictly proportional to surface absorption, is discussed in detail. The Auger decay model is developed in detail to describe Na/sup +/ and F/sup +/ desorption from NaF following Na(1s) excitation. The major decay pathways of the Na(1s) hole leading to desorption are described and equations for the energetics of ion desorption are developed. Ion desorption spectra of H/sup +/, Li/sup +/, and F/sup +/ are compared to bulk photoabsorption near the F(2s) and Li(1s) edges of LiF. A strong photon beam exposure dependence of ion yields from alkali fluorides is revealed, which may indicate the predominance of metal ion desorption from defect sites. The large role of indirect mechanisms in ion desorption condensed N/sub 2/-O/sub 2/ multilayers is demonstrated and discussed. Ion desorption spectra from several alkali halides and alkaline earth halides are compared to bulk photoabsorption spectra. Relative ion yields from BaF/sub 2/ and a series of alkali halides are discussed in terms of desorption mechanisms.

  5. Scratch This! The IF-AT as a Technique for Stimulating Group Discussion and Exposing Misconceptions

    Science.gov (United States)

    Cotner, Sehoya; Baepler, Paul; Kellerman, Anne

    2008-01-01

    Frequent and immediate feedback is critical for learning and retaining content as well as developing effective learning teams (Michaelson, Knight, and Fink 2004). The Immediate Feedback Assessment Technique (IF-AT) provides a single and efficient way for learners to self-assess their progress in a course and to structure significant small-group…

  6. Analysis of propagation mechanisms of stimulation-induced fractures in rocks

    Science.gov (United States)

    Krause, Michael; Renner, Joerg

    2016-04-01

    Effectivity of geothermal energy production depends crucially on the heat exchange between the penetrated hot rock and the circulating water. Hydraulic stimulation of rocks at depth intends to create a network of fractures that constitutes a large area for exchange. Two endmembers of stimulation products are typically considered, tensile hydro-fractures that propagate in direction of the largest principal stress and pre-existing faults that are sheared when fluid pressure reduces the effective normal stress acting on them. The understanding of the propagation mechanisms of fractures under in-situ conditions is still incomplete despite intensive research over the last decades. Wing-cracking has been suggested as a mechanism of fracture extension from pre-existent faults with finite length that are induced to shear. The initiation and extension of the wings is believed to be in tensile mode. Open questions concern the variability of the nominal material property controlling tensile fracture initiation and extension, the mode I facture toughness KIC, with in-situ conditions, e.g., its mean-stress dependence. We investigated the fracture-propagation mechanism in different rocks (sandstones and granites) under varying conditions mimicking those representative for geothermal systems. To determine KIC-values we performed 3-point bending experiments. We varied the confining pressure, the piston velocity, and the position of the chevron notch relative to the loading configuration. Additional triaxial experiments at a range of confining pressures were performed to study wing crack propagation from artificial flaws whose geometrical characteristics, i.e., length, width, and orientation relative to the axial load are varied. We monitored acoustic emissions to constrain the spacio-temporal evolution of the fracturing. We found a significant effect of the length of the artificial flaw and the confining pressure on wing-crack initiation but did not observe a systematic dependence

  7. Molecular and cellular mechanisms of muscle aging and sarcopenia and effects of electrical stimulation in seniors

    Directory of Open Access Journals (Sweden)

    Laura Barberi

    2015-08-01

    Full Text Available The prolongation of skeletal muscle strength in aging and neuromuscular disease has been the objective of numerous studies employing a variety of approaches. It is generally accepted that cumulative failure to repair damage related to an overall decrease in anabolic processes is a primary cause of functional impairment in muscle. The functional performance of skeletal muscle tissues declines during post- natal life and it is compromised in different diseases, due to an alteration in muscle fiber composition and an overall decrease in muscle integrity as fibrotic invasions replace functional contractile tissue. Characteristics of skeletal muscle aging and diseases include a conspicuous reduction in myofiber plasticity (due to the progressive loss of muscle mass and in particular of the most powerful fast fibers, alteration in muscle-specific transcriptional mechanisms, and muscle atrophy. An early decrease in protein synthetic rates is followed by a later increase in protein degradation, to affect biochemical, physiological, and morphological parameters of muscle fibers during the aging process. Alterations in regenerative pathways also compromise the functionality of muscle tissues. In this review we will give an overview of the work on molecular and cellular mechanisms of aging and sarcopenia and the effects of electrical stimulation in seniors.

  8. Comparative proteomic analysis of liver antioxidant mechanisms in Megalobrama amblycephala stimulated with dietary emodin.

    Science.gov (United States)

    Song, Changyou; Liu, Bo; Xie, Jun; Ge, Xianping; Zhao, Zhenxin; Zhang, Yuanyuan; Zhang, Huimin; Ren, Mingchun; Zhou, Qunlan; Miao, Linghong; Xu, Pao; Lin, Yan

    2017-01-13

    Oxidative stress is a toxicological endpoint that correlates with the nutrition status of fish through cellular damage, inflammation, and apoptosis. In order to understand the antioxidant mechanism induced by dietary emodin in Megalobrama amblycephala liver, a comparative proteomic analysis was performed to investigate the proteome alteration under emodin administration. 27 altered protein spots were separated under 30 mg kg(-1) emodin stimulation based on 2-DE, and were all successfully identified using MALDI-TOF/TOF, representing 17 unique proteins. These proteins were functionally classified into antioxidant, metabolism, cytoskeleton, chaperone, signal transduction and cofactor groups. Network interaction and Gene Ontology annotation indicated 10 unique proteins were closely related to antioxidation and directly regulated by each other. Compared with the control group, administration of 30 mg kg(-1) emodin significantly increased the antioxidant-related mRNA expressions of GPx1, GSTm and HSP70, but decreased the mRNA expressions of GAPDH and Sord, which was consistent with the protein expression. Nevertheless, Pgk1 and Aldh8a1 were up- and down-regulated, and ALDOB was down- and up-regulated at the mRNA and protein levels, respectively. These results revealed that the altered proteins enhanced antioxidation via complex regulatory mechanisms, and 30 mg kg(-1) emodin was a suitable immunostimulant for M. amblycephala.

  9. Molecular and Cellular Mechanisms of Muscle Aging and Sarcopenia and Effects of Electrical Stimulation in Seniors.

    Science.gov (United States)

    Barber, Laura; Scicchitano, Bianca Maria; Musaro, Antonio

    2015-08-24

    The prolongation of skeletal muscle strength in aging and neuromuscular disease has been the objective of numerous studies employing a variety of approaches. It is generally accepted that cumulative failure to repair damage related to an overall decrease in anabolic processes is a primary cause of functional impairment in muscle. The functional performance of skeletal muscle tissues declines during post- natal life and it is compromised in different diseases, due to an alteration in muscle fiber composition and an overall decrease in muscle integrity as fibrotic invasions replace functional contractile tissue. Characteristics of skeletal muscle aging and diseases include a conspicuous reduction in myofiber plasticity (due to the progressive loss of muscle mass and in particular of the most powerful fast fibers), alteration in muscle-specific transcriptional mechanisms, and muscle atrophy. An early decrease in protein synthetic rates is followed by a later increase in protein degradation, to affect biochemical, physiological, and morphological parameters of muscle fibers during the aging process. Alterations in regenerative pathways also compromise the functionality of muscle tissues. In this review we will give an overview of the work on molecular and cellular mechanisms of aging and sarcopenia and the effects of electrical stimulation in seniors..

  10. Mechanism of stimulated Hawking radiation in a laboratory Bose-Einstein condensate

    Science.gov (United States)

    Jacobson, Ted; Wang, Yi-Hsieh; Edwards, Mark; Clark, Charles W.

    2017-01-01

    Analog black/white hole pairs have been achieved in recent experiment by J. Steinhauer, using an elongated Bose-Einstein condensate. He reported observations of self-amplifying Hawking radiation, via a lasing mechanism operating between the black and white hole horizons. Through the simulations using the 1D Gross-Pitaevskii equation, we find that the experimental observations should be attributed not to the black hole laser effect, but rather to a growing zero-frequency bow wave, generated at the white-hole horizon. The relative motion of the black and white hole horizons produces a Doppler shift of the bow wave at the black hole, where it stimulates the emission of monochromatic Hawking radiation. This mechanism is confirmed using temporal and spatial windowed Fourier spectra of the condensate. We also find that shot-to-shot atom number variations, of the type normally realized in ultracold-atom experiments, and quantum fluctuations of condensates, as computed in the Bogoliubov-De Gennes approximation, give density-density correlations consistent with those reported in the experiments. In particular, atom number variations can produce a spurious correlation signal.

  11. A proof-of-concept study on the combination of repetitive transcranial magnetic stimulation and relaxation techniques in chronic tinnitus.

    Science.gov (United States)

    Kreuzer, Peter M; Poeppl, Timm B; Bulla, Jan; Schlee, Winfried; Lehner, Astrid; Langguth, Berthold; Schecklmann, Martin

    2016-10-01

    Interference of ongoing neuronal activity and brain stimulation motivated this study to combine repetitive transcranial magnetic stimulation (rTMS) and relaxation techniques in tinnitus patients. Forty-two patients were enrolled in this one-arm proof-of-concept study to receive ten sessions of rTMS applied to the left dorsolateral prefrontal cortex and temporo-parietal cortex. During stimulation, patients listened to five different kinds of relaxation audios. Variables of interest were tinnitus questionnaires, tinnitus numeric rating scales, depressivity, and quality of life. Results were compared to results of historical control groups having received the same rTMS protocol (active control) and sham treatment (placebo) without relaxation techniques. Thirty-eight patients completed the treatment, drop-out rates and adverse events were low. Responder rates (reduction in tinnitus questionnaire (TQ) score ≥5 points 10 weeks after treatment) were 44.7 % in the study, 27.8 % in the active control group, and 21.7 % in the placebo group, differing between groups on a near significant level. For the tinnitus handicap inventory (THI), the main effect of group was not significant. However, linear mixed model analyses showed that the relaxation/rTMS group differed significantly from the active control group showing steeper negative THI trend for the relaxation/rTMS group indicating better amelioration over the course of the trial. Deepness of relaxation during rTMS and selection of active relaxation vs. passive listening to music predicted larger TQ. All remaining secondary outcomes turned out non-significant. This combined treatment proved to be a safe, feasible and promising approach to enhance rTMS treatment effects in chronic tinnitus.

  12. The effect of electrical stimulation in combination with Bobath techniques in the prevention of shoulder subluxation in acute stroke patients.

    Science.gov (United States)

    Fil, Ayla; Armutlu, Kadriye; Atay, Ahmet Ozgur; Kerimoglu, Ulku; Elibol, Bulent

    2011-01-01

    To examine the efficiency of electrical stimulation in combination with Bobath techniques in the prevention of inferior and anterior shoulder subluxation in acute stroke patients. A prospective randomized controlled trial. Intensive care unit and inpatient clinics of neurology in a university hospital. Forty-eight patients with acute stroke, divided equally into control and study groups. Subjects in both groups were treated in accordance with the Bobath concept during the early hospitalization period. In addition to Bobath techniques, electrical stimulation was also applied to the supraspinatus muscle, mid and posterior portions of the deltoid muscle of patients in the study group. Two radiological methods were used to measure the horizontal, vertical and total asymmetry and vertical distance values of the shoulder joint. Motor functions of the arm were evaluated with the Motor Assessment Scale. The hospitalization period was 12.62 ± 2.24 days for the control group and 11.66 ± 1.88 days for the study group. Shoulder subluxation occurred in 9 (37.5%) subjects in the control group, whereas it was not observed in the study group. All shoulder joint displacement values were higher in the control group than in the study group (horizontal asymmetry P = 0.0001, vertical asymmetry P = 0.0001, total asymmetry P = 0.0001, vertical range P = 0.002). Application of electrical stimulation combined with the Bobath approach proved to be efficient in preventing inferior and anterior shoulder subluxation in the acute stages of stroke.

  13. Vibroacoustic Stimulation of the Fetus Using a Conventional Mechanical Alarm Clock.

    Science.gov (United States)

    Brezinka; Lechner; Stephan; Pfeiffer

    1998-12-01

    > Objective: For more than 20 years, vibroacoustic stimulation testing (VAST) using an artificial larynx has been used worldwide when fetal heart rate monitoring produced patterns with absent or very low variability. In addition to the artificial larynx many other appliances have been used to stimulate a seemingly dormant fetus, but these have rarely been evaluated properly. In this study we tried to evaluate the use of standard mechanical wind-up alarm clocks for VAST. Methods: VAST with an alarm clock was performed successfully in 80 women with normal pregnancies from 36 weeks to term. It was tested by placing the alarm clock on the maternal abdomen just above the fetal head or on the controlateral side of the maternal abdomen to see whether position made any difference and whether coupling with ultrasound gel applied between the alarm clock and the maternal abdomen would affect the degree of fetal reaction to VAST as expressed in heart rate acceleration. Similarly, the effect of the alarm clock VAST on subjective and objective fetal movement patterns as registered by kineto-cardiotocotraphy (K-CTG) in addition to heart rate patterns was investigated. Results: All fetuses showed heart rate acceleration, an increase in heart variability, and increase in movement patterns in the 6 min after the application of alarm clock VAST. No statistically significant difference was found which would favor a particular placement of the alarm clock on the maternal abdomen or the use of ultrasound coupling gel. When K-CTG was performed, patient-perceived fetal movements as expressed with an event marker showed agreement with the machine-registered movements only when patients could see the tracing during registration and no accordance when the K-CTG was turned toward the wall during registation. Conclusion: In keeping with the ALARA principle a conventional wind-up alarm clock appears to be an inexpensive and effective alternative to the electrolarynx.

  14. Transferrin iron uptake is stimulated by ascorbate via an intracellular reductive mechanism.

    Science.gov (United States)

    Lane, Darius J R; Chikhani, Sherin; Richardson, Vera; Richardson, Des R

    2013-06-01

    Although ascorbate has long been known to stimulate dietary iron (Fe) absorption and non-transferrin Fe uptake, the role of ascorbate in transferrin Fe uptake is unknown. Transferrin is a serum Fe transport protein supplying almost all cellular Fe under physiological conditions. We sought to examine ascorbate's role in this process, particularly as cultured cells are typically ascorbate-deficient. At typical plasma concentrations, ascorbate significantly increased (59)Fe uptake from transferrin by 1.5-2-fold in a range of cells. Moreover, ascorbate enhanced ferritin expression and increased (59)Fe accumulation in ferritin. The lack of effect of cycloheximide or the cytosolic aconitase inhibitor, oxalomalate, on ascorbate-mediated (59)Fe uptake from transferrin indicate increased ferritin synthesis or cytosolic aconitase activity was not responsible for ascorbate's activity. Experiments with membrane-permeant and -impermeant ascorbate-oxidizing reagents indicate that while extracellular ascorbate is required for stimulation of (59)Fe uptake from (59)Fe-citrate, only intracellular ascorbate is needed for transferrin (59)Fe uptake. Additionally, experiments with l-ascorbate analogs indicate ascorbate's reducing ene-diol moiety is necessary for its stimulatory activity. Importantly, neither N-acetylcysteine nor buthionine sulfoximine, which increase or decrease intracellular glutathione, respectively, affected transferrin-dependent (59)Fe uptake. Thus, ascorbate's stimulatory effect is not due to a general increase in cellular reducing capacity. Ascorbate also did not affect expression of transferrin receptor 1 or (125)I-transferrin cellular flux. However, transferrin receptors, endocytosis, vacuolar-type ATPase activity and endosomal acidification were required for ascorbate's stimulatory activity. Therefore, ascorbate is a novel modulator of the classical transferrin Fe uptake pathway, acting via an intracellular reductive mechanism.

  15. The HSV-1 exonuclease, UL12, stimulates recombination by a single strand annealing mechanism.

    Science.gov (United States)

    Schumacher, April J; Mohni, Kareem N; Kan, Yinan; Hendrickson, Eric A; Stark, Jeremy M; Weller, Sandra K

    2012-01-01

    Production of concatemeric DNA is an essential step during HSV infection, as the packaging machinery must recognize longer-than-unit-length concatemers; however, the mechanism by which they are formed is poorly understood. Although it has been proposed that the viral genome circularizes and rolling circle replication leads to the formation of concatemers, several lines of evidence suggest that HSV DNA replication involves recombination-dependent replication reminiscent of bacteriophages λ and T4. Similar to λ, HSV-1 encodes a 5'-to-3' exonuclease (UL12) and a single strand annealing protein [SSAP (ICP8)] that interact with each other and can perform strand exchange in vitro. By analogy with λ phage, HSV may utilize viral and/or cellular recombination proteins during DNA replication. At least four double strand break repair pathways are present in eukaryotic cells, and HSV-1 is known to manipulate several components of these pathways. Chromosomally integrated reporter assays were used to measure the repair of double strand breaks in HSV-infected cells. Single strand annealing (SSA) was increased in HSV-infected cells, while homologous recombination (HR), non-homologous end joining (NHEJ) and alternative non-homologous end joining (A-NHEJ) were decreased. The increase in SSA was abolished when cells were infected with a viral mutant lacking UL12. Moreover, expression of UL12 alone caused an increase in SSA, which was completely eliminated when a UL12 mutant lacking exonuclease activity was expressed. UL12-mediated stimulation of SSA was decreased in cells lacking the cellular SSAP, Rad52, and could be restored by coexpressing the viral SSAP, ICP8, indicating that an SSAP is also required. These results demonstrate that UL12 can specifically stimulate SSA and that either ICP8 or Rad52 can function as an SSAP. We suggest that SSA is the homology-mediated repair pathway utilized during HSV infection.

  16. The HSV-1 exonuclease, UL12, stimulates recombination by a single strand annealing mechanism.

    Directory of Open Access Journals (Sweden)

    April J Schumacher

    Full Text Available Production of concatemeric DNA is an essential step during HSV infection, as the packaging machinery must recognize longer-than-unit-length concatemers; however, the mechanism by which they are formed is poorly understood. Although it has been proposed that the viral genome circularizes and rolling circle replication leads to the formation of concatemers, several lines of evidence suggest that HSV DNA replication involves recombination-dependent replication reminiscent of bacteriophages λ and T4. Similar to λ, HSV-1 encodes a 5'-to-3' exonuclease (UL12 and a single strand annealing protein [SSAP (ICP8] that interact with each other and can perform strand exchange in vitro. By analogy with λ phage, HSV may utilize viral and/or cellular recombination proteins during DNA replication. At least four double strand break repair pathways are present in eukaryotic cells, and HSV-1 is known to manipulate several components of these pathways. Chromosomally integrated reporter assays were used to measure the repair of double strand breaks in HSV-infected cells. Single strand annealing (SSA was increased in HSV-infected cells, while homologous recombination (HR, non-homologous end joining (NHEJ and alternative non-homologous end joining (A-NHEJ were decreased. The increase in SSA was abolished when cells were infected with a viral mutant lacking UL12. Moreover, expression of UL12 alone caused an increase in SSA, which was completely eliminated when a UL12 mutant lacking exonuclease activity was expressed. UL12-mediated stimulation of SSA was decreased in cells lacking the cellular SSAP, Rad52, and could be restored by coexpressing the viral SSAP, ICP8, indicating that an SSAP is also required. These results demonstrate that UL12 can specifically stimulate SSA and that either ICP8 or Rad52 can function as an SSAP. We suggest that SSA is the homology-mediated repair pathway utilized during HSV infection.

  17. Mechanical muscle fibre conduction velocity of the biceps as measured by a new seismic technique.

    Science.gov (United States)

    Journée, H L; de Jonge, A B; van Calker, R; Gräler, G

    1995-01-01

    A recently-developed technique, called seismic myography (SMG) has the characteristic of recording fast micro-mechanical response times. These times can be determined with sub-millisecond accuracy. The response times can be compared to response times of EMG recordings. The "muscular electro-seismic response" (MESR) latencies, due to direct electrical stimulation of the biceps muscle, are used for explorative measurements of the mechanical conduction velocity of the muscle fibres. The measurements are performed by means of a general-purpose physiological multimeter which is equiped with the micro-seismic function. Measurements are performed on two healthy subjects, aged 22 years. The MESR-latencies are measured along a medial and a lateral trajectory on their biceps muscles. The MESR-latencies at stimulus-cathodal to seismic transducer distances of 2,0-3,5 cm, are in the range of 2.0-3.8 ms, while at distances in the range of 7.5-8.9 cm the MESR-latencies varied between 3.4 and 4.7 ms. The calculated mechanical muscle fibre conduction velocities (MMFCV) are in the range between 36 and 89 m/s. There is a reproducability error of maximum 20%. The MMFCV's of the lateral and medial trajectory do not differ within the accuracy of the present method. However, the MMFCV's are considerably higher than the electrical muscle fibre conduction velocities of MUAPS ((E)MFCV). Some aspects of the MMFCV and possible consequences to surface EMG recordings are discussed. It is concluded that this seismic method for measuring MMFCV is a new accessible and simple to handle tool for the description of muscle function, and offers an interesting new contribution in experimental muscular research.

  18. Comparing thermal stimulation techniques in infrared thermographic inspection of corrosion in steel

    Science.gov (United States)

    Chulkov, A. O.; Vavilov, V. P.

    2015-04-01

    Remote detection of corrosion in metals is a developing application area of active thermal nondestructive testing. In this study, emphasis is made on the optimization of heating techniques that is of a major interest in practical surveys. Some popular data processing techniques, such as Fourier transform, correlation and principal component analysis, are also quantitatively compared in application to corrosion detection in 1-2 mm thick steel by applying a criterion of signal-to-noise ratio. The best inspection results have been obtained by using powerful halogen lamps and air blowers. Material loss of about 25% with lateral dimensions greater than 10×10 mm can be reliably identified in practical tests. The use of Xenon flash tubes is inefficient because of significant steel thickness. LED panels have not provided expected results due to low absorption of LED quasi-monochromatic radiation.

  19. Model-free causality analysis of cardiovascular variability detects the amelioration of autonomic control in Parkinson's disease patients undergoing mechanical stimulation.

    Science.gov (United States)

    Bassani, Tito; Bari, Vlasta; Marchi, Andrea; Tassin, Stefano; Dalla Vecchia, Laura; Canesi, Margherita; Barbic, Franca; Furlan, Raffaello; Porta, Alberto

    2014-07-01

    We tested the hypothesis that causality analysis, applied to the spontaneous beat-to-beat variability of heart period (HP) and systolic arterial pressure (SAP), can identify the improvement of autonomic control linked to plantar mechanical stimulation in patients with Parkinson's disease (PD). A causality index, measuring the strength of the association from SAP to HP variability, and derived according to the Granger paradigm (i.e. SAP causes HP if the inclusion of SAP into the set of signals utilized to describe cardiovascular interactions improves the prediction of HP series), was calculated using both linear model-based (MB) and nonlinear model-free (MF) approaches. Univariate HP and SAP variability indices in time and frequency domains, and bivariate descriptors of the HP-SAP variability interactions were computed as well. We studied ten PD patients (age range: 57-78 years; Hoehn-Yahr scale: 2-3; six males, four females) without orthostatic hypotension or symptoms of orthostatic intolerance and 'on-time' according to their habitual pharmacological treatment. PD patients underwent recordings at rest in a supine position and during a head-up tilt before, and 24 h after, mechanical stimulation was applied to the plantar surface of both feet. The MF causality analysis indicated a greater involvement of baroreflex in regulating HP-SAP variability interactions after mechanical stimulation. Remarkably, MB causality and more traditional univariate or bivariate techniques could not detect changes in cardiovascular regulation after mechanical stimulation, thus stressing the importance of accounting for nonlinear dynamics in PD patients. Due to the higher statistical power of MF causality we suggest its exploitation to monitor the baroreflex control improvement in PD patients, and we encourage the clinical application of the Granger causality approach to evaluate the modification of the autonomic control in relation to the application of a pharmacological treatment, a

  20. Siquieros accidental painting technique: a fluid mechanics point of view

    CERN Document Server

    Zetina, Sandra

    2012-01-01

    This is an entry for the Gallery of Fluid Motion of the 65th Annual Meeting of the APS-DFD (fluid dynamics video). This video shows an analysis of the 'accidental painting' technique developed by D.A. Siqueiros, a famous Mexican muralist. We reproduced the technique that he used: pouring layers of paint of different colors on top of each other. We found that the layers mix, creating aesthetically pleasing patterns, as a result of a Rayleigh-Taylor instability. Due to the pigments used to give paints their color, they can have different densities. When poured on top of each other, if the top layer is denser than the lower one, the viscous gravity current undergoes unstable as it spread radially. We photograph the process and produced slowed-down video to visualize the process.

  1. Reservoir stimulation techniques to minimize skin factor of Longwangmiao Fm gas reservoirs in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guo Jianchun

    2014-10-01

    Full Text Available The Lower Cambrian Longwangmiao Fm carbonatite gas reservoirs in the Leshan-Longnüsi Paleouplift in the Sichuan Basin feature strong heterogeneity, well-developed fractures and caverns, and a high content of H2S, so these reservoirs are prone to reservoir damages caused by the invasion of drilling fluid or the improper well completion, so to minimize the reservoir skin factor is key to achieving high yield of oil and gas in this study area. Therefore, based on the geological characteristics of the Longwangmiao reservoirs, the binomial productivity equation was applied to demonstrate the possibility and scientificity of minimizing the skin factor. According to the current status of reservoir stimulation, the overall skin factors of reservoir damage caused by drilling fluid invasion, improper drilling and completion modes etc were analyzed, which shows there is still potential for skin factor reduction. Analysis of reservoir damage factors indicates that the main skin factor of Longwangmiao Fm reservoirs consists of that caused by drilling fluid and by improper completion modes. Along with the minimization of skin factor caused by drilling and improper completion, a fracture-network acidizing process to achieve “non-radial & network-fracture” plug-removal by making good use of natural fractures was proposed according to the characteristics of Longwangmiao Fm carbonatite reservoirs.

  2. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    Directory of Open Access Journals (Sweden)

    Zhen Feng

    2015-01-01

    Full Text Available In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.

  3. Resuscitation therapy for traumatic brain injury-induced coma in rats:mechanisms of median nerve electrical stimulation

    Institute of Scientific and Technical Information of China (English)

    Zhen Feng; Ying-jun Zhong; Liang Wang; Tian-qi Wei

    2015-01-01

    In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually in-creased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our ifndings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the pre-frontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.

  4. Mechanisms of deep brain stimulation for obsessive compulsive disorder: effects upon cells and circuits

    Directory of Open Access Journals (Sweden)

    Sarah Kathleen Bourne

    2012-06-01

    Full Text Available Deep brain stimulation (DBS has emerged as a safe, effective, and reversible treatment for a number of movement disorders. This has prompted investigation of its use for other applications including psychiatric disorders. In recent years, DBS has been introduced for the treatment of obsessive-compulsive disorder (OCD, which is characterized by recurrent unwanted thoughts or ideas (obsessions and repetitive behaviors or mental acts performed in order to relieve these obsessions (compulsions. Abnormal activity in cortico-striato-thalamo-cortical (CSTC circuits including the orbitofrontal cortex, anterior cingulate cortex, ventral striatum, and mediodorsal thalamus has been implicated in OCD. To this end a number of DBS targets including the anterior limb of the internal capsule, ventral capsule/ventral striatum, ventral caudate nucleus, subthalamic nucleus, nucleus accumbens, and the inferior thalamic peduncle have been investigated for the treatment of OCD. Despite its efficacy and widespread use in movement disorders, the mechanism of DBS is not fully understood, especially as it relates to psychiatric disorders. While initially thought to create a functional lesion akin to ablative procedures, it is increasingly clear that DBS may induce clinical benefit through activation of axonal fibers spanning the CSTC circuits, alteration of oscillatory activity within this network, and/or release of critical neurotransmitters. In this article we review how the use of DBS for OCD informs our understanding of both the mechanisms of DBS and the circuitry of OCD. We review the literature on DBS for OCD and discuss potential mechanisms of action at the neuronal level as well as the broader circuit level.

  5. Copper chemical mechanical polishing using a slurry-free technique

    NARCIS (Netherlands)

    Nguyen, V.H.; Hof, A.J.; Kranenburg, van H.; Woerlee, P.H.; Weimar, F.

    2001-01-01

    A study of the chemical mechanical polishing (CMP) of thin copper films using fixed-abrasive pads is presented. The composition of the polishing solution is optimized by investigating the impact of both the oxidizer concentration and the pH of the solution on the polishing characteristics of copper.

  6. Electrical stimulation of the vagus nerve protects against cerebral ischemic injury through an anti-infammatory mechanism

    Directory of Open Access Journals (Sweden)

    Yao-xian Xiang

    2015-01-01

    Full Text Available Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlusion method, and the right vagus nerve was given electrical stimulation (constant current of 0.5 mA; pulse width, 0.5 ms; frequency, 20 Hz; duration, 30 seconds; every 5 minutes for a total of 60 minutes 30 minutes, 12 hours, and 1, 2, 3, 7 and 14 days after surgery. Electrical stimulation of the vagus nerve substantially reduced infarct volume, improved neurological function, and decreased the expression levels of tumor necrosis factor-and interleukin- 6 in rats with focal cerebral ischemia. The experimental findings indicate that the neuroprotective effect of vagus nerve stimulation following cerebral ischemia may be associated with the inhibition of tumor necrosis factor- and interleukin-6 expression.

  7. electrical stimulation of the vagus nerve protects against cerebral ischemic injury through an anti-inlfammatory mechanism

    Institute of Scientific and Technical Information of China (English)

    Yao-xian Xiang; Wen-xin Wang; Zhe Xue; Lei Zhu; Sheng-bao Wang; Zheng-hui Sun

    2015-01-01

    Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlusion method, and the right vagus nerve was given electrical stimula-tion (constant current of 0.5 mA; pulse width, 0.5 ms; frequency, 20 Hz; duration, 30 seconds; every 5 minutes for a total of 60 minutes) 30 minutes, 12 hours, and 1, 2, 3, 7 and 14 days after surgery. Electrical stimulation of the vagus nerve substantially reduced infarct volume, improved neurological function, and decreased the expression levels of tumor necrosis factor-α and in-terleukin-6 in rats with focal cerebral ischemia. The experimental findings indicate that the neuroprotective effect of vagus nerve stimulation following cerebral ischemia may be associated with the inhibition of tumor necrosis factor-α and interleukin-6 expression.

  8. Mechanical stimulation of C2C12 cells increases m-calpain expression, focal adhesion plaque protein degradation

    DEFF Research Database (Denmark)

    Grossi, Alberto; Karlsson, Anders H; Lawson, Moira Ann

    2008-01-01

    reorganization due to the activity of the ubiquitous proteolytic enzymes, calpains, has been reported. Whether there is a link between stretch- or load-induced signaling and calpain expression and activation is not known. Using a magnetic bead stimulation assay and C2C12 mouse myoblasts cell population, we have...... demonstrated that mechanical stimulation via laminin receptors leads to an increase in m-calpain expression, but no increase in the expression of other calpain isoforms. Our study revealed that after a short period of stimulation, m-calpain relocates into focal adhesion complexes and is followed by a breakdown...... of specific focal adhesion proteins previously identified as substrates for this enzyme. We show that stimulation also leads to an increase in calpain activity in these cells. These data support the pivotal role for m-calpain in the control of muscle precursor cell differentiation and thus strengthen the idea...

  9. Optically stimulated luminescence techniques in retrospective dosimetry using single grains of quartz extracted from unheated materials

    Energy Technology Data Exchange (ETDEWEB)

    Joerkov Thomsen, Kristina

    2004-02-01

    This work investigates the possibility of applying optically stimulated luminescence (OSL) in retrospective dose determinations using unheated materials. It focuses on identifying materials suitable for use in assessment of doses absorbed as a consequence of radiation accidents (i.e. accident dosimetry). Special attention has been paid to quartz extracted from unheated building materials such as concrete and mortar. The single-aliquot regeneration-dose (SAR) protocol has been used to determine absorbed doses in small aliquots as well as single grains of quartz. It is shown that OSL measurements of single grains of quartz extracted from poorly-bleached building materials can provide useful information on radiation accident doses, even when the luminescence sensitivity is low. Sources of variance in well-bleached single grain dose distributions have been investigated in detail and it is concluded that the observed variability in the data is consistent with the sum (in quadrature) of a component, which depends on the number of photons detected from each grain, and a fixed component independent of light level. Dose depth profiles through laboratory irradiated concrete bricks have successfully been measured and minimum detection limits of less than 100 mGy are derived. Measurements of thermal transfer in single grains of poorly-bleached quartz show that thermal transfer is variable on a grain-to-grain basis and that it can be a source of variance in single-grain dose distributions. Furthermore, the potential of using common household and workplace chemicals, such as table salt, washing powder and water softener, in retrospective dosimetry has been investigated. It is concluded that such materials should be considered as retrospective dosimeters in the event of a radiation accident. (au)

  10. A new leptin-mediated mechanism for stimulating fatty acid oxidation: a pivotal role for sarcolemmal FAT/CD36.

    Science.gov (United States)

    Momken, Iman; Chabowski, Adrian; Dirkx, Ellen; Nabben, Miranda; Jain, Swati S; McFarlan, Jay T; Glatz, Jan F C; Luiken, Joost J F P; Bonen, Arend

    2017-01-01

    Leptin stimulates fatty acid oxidation in muscle and heart; but, the mechanism by which these tissues provide additional intracellular fatty acids for their oxidation remains unknown. We examined, in isolated muscle and cardiac myocytes, whether leptin, via AMP-activated protein kinase (AMPK) activation, stimulated fatty acid translocase (FAT/CD36)-mediated fatty acid uptake to enhance fatty acid oxidation. In both mouse skeletal muscle and rat cardiomyocytes, leptin increased fatty acid oxidation, an effect that was blocked when AMPK phosphorylation was inhibited by adenine 9-β-d-arabinofuranoside or Compound C. In wild-type mice, leptin induced the translocation of FAT/CD36 to the plasma membrane and increased fatty acid uptake into giant sarcolemmal vesicles and into cardiomyocytes. In muscles of FAT/CD36-KO mice, and in cardiomyocytes in which cell surface FAT/CD36 action was blocked by sulfo-N-succinimidyl oleate, the leptin-stimulated influx of fatty acids was inhibited; concomitantly, the normal leptin-stimulated increase in fatty acid oxidation was also prevented, despite the normal leptin-induced increase in AMPK phosphorylation. Conversely, in muscle of AMPK kinase-dead mice, leptin failed to induce the translocation of FAT/CD36, along with a failure to stimulate fatty acid uptake and oxidation. Similarly, when siRNA was used to reduce AMPK in HL-1 cardiomyocytes, leptin failed to induce the translocation of FAT/CD36. Our studies have revealed a novel mechanism of leptin-induced fatty acid oxidation in muscle tissue; namely, this process is dependent on the activation of AMPK to induce the translocation of FAT/CD36 to the plasma membrane, thereby stimulating fatty acid uptake. Without increasing this leptin-stimulated, FAT/CD36-dependent fatty acid uptake process, leptin-stimulated AMPK phosphorylation does not enhance fatty acid oxidation. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  11. Evaluation of mechanical abuse techniques in lithium ion batteries

    Science.gov (United States)

    Lamb, Joshua; Orendorff, Christopher J.

    2014-02-01

    Mechanical tests are a commonly used method for evaluating the safety performance of batteries. The mechanical blunt rod testing method, as well as sharp nail penetration, was performed on commercially available cells. Evaluation was carried out on different cell constructions as well as varying test conditions. Results obtained at ambient conditions were found to differ little from traditional sharp nail penetration testing. When tested at elevated temperatures it was observed that the results became heavily dependent upon the internal construction of the cell. Computed Tomography (CT) imaging confirmed this, showing differences in behavior depending on whether or not a solid core was used in the cylindrical cell construction. Pouch cells were tested as well, showing that a full penetration of the cell was necessary to initiate a failure event within the cell.

  12. Action Mechanisms of Transcranial Direct Current Stimulation in Alzheimer’s Disease and Memory Loss

    OpenAIRE

    Hansen, Niels

    2012-01-01

    The pharmacological treatment of Alzheimer’s disease (AD) is often limited and accompanied by drug side effects. Thus alternative therapeutic strategies such as non-invasive brain stimulation are needed. Few studies have demonstrated that transcranial direct current stimulation (tDCS), a method of neuromodulation with consecutive robust excitability changes within the stimulated cortex area, is beneficial in AD. There is also evidence that tDCS enhances memory function in cognitive rehabilita...

  13. Transcutaneous auricular vagal nerve stimulation (taVNS) might be a mechanism behind the analgesic effects of auricular acupuncture.

    Science.gov (United States)

    Usichenko, Taras; Hacker, Henriette; Lotze, Martin

    2017-08-02

    Randomized clinical trials (RCT) demonstrated that auricular acupuncture (AA) is effective in treatment of acute and chronic pain, although the mechanisms behind AA are not elucidated. The data concerning the localization of AA points, which are commonly used to treat pain, were extracted from the meta-analysis of 17 RCTs and evaluated using the anatomical map of auricular afferent nerve supply. Fifteen out of 20 specific AA points, used in the treatment of pain, are situated in areas innervated mostly by the auricular branch of the vagal nerve (ABVN), whereas sham stimulation was applied at the helix of the auricle, innervated by cervical nerves. Considering the clinical data relating to the anatomy of neural pathways and experimental findings of the mechanisms of transcutaneous auricular vagal nerve stimulation, the analgesic effects of AA may be explained by stimulation of ABVN. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications

    Directory of Open Access Journals (Sweden)

    Pradhan A

    2008-01-01

    Full Text Available During the last 10 years, optically stimulated luminescence (OSL has emerged as a formidable competitor not only to thermoluminescence dosimetry (TLD but also to several other dosimetry systems. Though a large number of materials have been synthesized and studied for OSL, Al 2 O 3 :C continues to dominate the dosimetric applications. Re-investigations of OSL in BeOindicate that this material might provide an alternative to Al 2 O 3 :C. Study of OSL of electronic components of mobile phones and ID cards appears to have opened up a feasibility of dosimetry and dose reconstruction using the electronic components of gadgets of everyday use in the events of unforeseen situations of radiological accidents, including the event of a dirty bomb by terrorist groups. Among the newly reported materials, a very recent development of NaMgF 3 :Eu 2+ appears fascinating because of its high OSL sensitivity and tolerable tissue equivalence. In clinical dosimetry, an OSL as a passive dosimeter could do all that TLD can do, much faster with a better or at least the same efficiency; and in addition, it provides a possibility of repeated readout unlike TLD, in which all the dose information is lost in a single readout. Of late, OSL has also emerged as a practical real-time dosimeter for in vivo measurements in radiation therapy (for both external beams and brachytherapy and in various diagnostic radiological examinations including mammography and CT dosimetry. For in vivo measurements, a probe of Al 2 O 3 :C of size of a fraction of a millimeter provides the information on both the dose rate and the total dose from the readout of radioluminescence and OSL signals respectively, from the same probe. The availability of OSL dosimeters in various sizes and shapes and their performance characteristics as compared to established dosimeters such as plastic scintillation dosimeters, diode detectors, MOSFET detectors, radiochromic films, etc., shows that OSL may soon become

  15. Evolution of pore fluid pressures in a stimulated geothermal reservoir inferred from earthquake focal mechanisms

    Science.gov (United States)

    Terakawa, T.; Deichmann, N.

    2014-12-01

    We developed an inversion method to estimate the evolution of pore fluid pressure fields from earthquake focal mechanism solutions based on the Bayesian statistical inference and Akaike's Bayesian information criterion (ABIC). This method's application to induced seismicity in the Basel enhanced geothermal system in Switzerland shows the evolution of pore fluid pressures in response to fluid injection experiments. For a few days following the initiation of the fluid injection, overpressurized fluids are concentrated around the borehole and then anisotropically propagate within the reservoir until the bleed-off time. Then, the pore fluid pressure in the vicinity of the borehole drastically decreases, and overpressurized fluids become isolated in a few major fluid pockets. The pore fluid pressure in these pockets gradually decreases with time. The pore fluid pressure in the reservoir is less than the minimum principal stress at each depth, indicating that the hydraulic fracturing did not occur during stimulation. This suggests that seismic events may play an important role to promote the development of permeable channels, particularly southeast of the borehole where the largest seismic event (ML 3.4) occurred. This is not directly related to a drastic decrease in fault strength at the hypocenter, but rather the positive feedback between permeability enhancement and poro-elastic and stress transfer loading from slipping interfaces. These processes likely contribute to this event's nucleation.

  16. Molecular mechanisms for activation of the agouti-related protein and stimulation of appetite.

    Science.gov (United States)

    Ilnytska, Olha; Stütz, Adrian M; Park-York, MieJung; York, David A; Ribnicky, David M; Zuberi, Aamir; Cefalu, William T; Argyropoulos, George

    2011-01-01

    The agouti-related protein (Agrp) is a powerful orexigenic peptide, but little is known about its transcriptional regulation. The objective of this study was to determine molecular mechanisms for the activation of hypothalamic Agrp and identify compounds that stimulate appetite. We used promoter analyses methods, hypothalamic cell culture and transfection, immunohistochemistry, luciferase-expressing transgenic mice, in vivo bioluminescence, anitisense RNA, mouse feeding studies, indirect calorimetry, real-time PCR, and Western blots. We found that the Krüppel-like factor 4 (Klf4) is a potent activator of Agrp by binding to a specific CACCC-box in its minimal promoter. We also found that an extract of tarragon, termed PMI-5011, activated hypothalamic Klf4 and Agrp. In vivo, PMI-5011 increased Agrp promoter activity in luciferase-expressing transgenic mice, increased hypothalamic Klf4 and Agrp expression, increased hypothalamic Orexin and melanin-concentrating hormone, increased food intake, reduced circulating insulin and leptin levels, attenuated energy expenditure, and enhanced body weight but only when using a high-fat diet. These data show that Klf4 augmented hypothalamic Agrp by binding to a specific CACCC-box onto its minimal promoter. In addition, the tarragon extract PMI-5011 activated Klf4 and orexigenic neuropeptides and reduced peripheral insulin and leptin levels leading to positive energy balance.

  17. Mechanical Stimulation (Pulsed Electromagnetic Fields "PEMF" and Extracorporeal Shock Wave Therapy "ESWT") and Tendon Regeneration: A Possible Alternative.

    Science.gov (United States)

    Rosso, Federica; Bonasia, Davide E; Marmotti, Antonio; Cottino, Umberto; Rossi, Roberto

    2015-01-01

    The pathogenesis of tendon degeneration and tendinopathy is still partially unclear. However, an active role of metalloproteinases (MMP), growth factors, such as vascular endothelial growth factor (VEGF) and a crucial role of inflammatory elements and cytokines was demonstrated. Mechanical stimulation may play a role in regulation of inflammation. In vitro studies demonstrated that both pulsed electromagnetic fields (PEMF) and extracorporeal shock wave therapy (ESWT) increased the expression of pro-inflammatory cytokine such as interleukin (IL-6 and IL-10). Moreover, ESWT increases the expression of growth factors, such as transforming growth factor β(TGF-β), (VEGF), and insulin-like growth factor 1 (IGF1), as well as the synthesis of collagen I fibers. These pre-clinical results, in association with several clinical studies, suggest a potential effectiveness of ESWT for tendinopathy treatment. Recently PEMF gained popularity as adjuvant for fracture healing and bone regeneration. Similarly to ESWT, the mechanical stimulation obtained using PEMFs may play a role for treatment of tendinopathy and for tendon regeneration, increasing in vitro TGF-β production, as well as scleraxis and collagen I gene expression. In this manuscript the rational of mechanical stimulations and the clinical studies on the efficacy of extracorporeal shock wave (ESW) and PEMF will be discussed. However, no clear evidence of a clinical value of ESW and PEMF has been found in literature with regards to the treatment of tendinopathy in human, so further clinical trials are needed to confirm the promising hypotheses concerning the effectiveness of ESWT and PEMF mechanical stimulation.

  18. Interindividual Variability and Intraindividual Reliability of Intermittent Theta Burst Stimulation-induced Neuroplasticity Mechanisms in the Healthy Brain

    NARCIS (Netherlands)

    Schilberg, Lukas; Schuhmann, Teresa; Sack, Alexander T

    2017-01-01

    We combined patterned TMS with EMG in several sessions of a within-subject design to assess and characterize intraindividual reliability and interindividual variability of TMS-induced neuroplasticity mechanisms in the healthy brain. Intermittent theta burst stimulation (iTBS) was applied over M1 to

  19. Evaluation of Mechanical Modal Characteristics Using Optical Techniques

    Science.gov (United States)

    Lekki, John; Adamovsky, Grigory; Flanagan, Patrick; Weiland, Ken

    2002-01-01

    In this paper the sensitivity of embedded fiber optic sensors to changes in modal characteristics of plates is discussed. In order to determine the feasibility of embedded fiber Bragg gratings for the detection of modal shapes and modal frequencies, a comparison of holographically imaged modes and the detected dynamic strain from embedded fiber optic Bragg gratings is made. Time averaged optical holography is used for the detection of mechanical defects, or damage, in various aerospace components. The damage is detected by measuring an alteration in structural dynamics, which is visually apparent when using time-averaged holography. These shifts in the mode shapes, both in frequency of the resonance and spatial location of vibration nodes, are caused by changes in parameters that affect the structure's mechanical impedance, such as stiffness, mass and damping, resulting from cracks or holes. It is anticipated that embedded fiber optic sensor arrays may also be able to detect component damage by sensing these changes in modal characteristics. This work is designed to give an initial indication to the feasibility of damage detection through the monitoring of modal frequencies and mode shapes with fiber optic sensors.

  20. Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vrigneaud, Jean-Marc; Courteau, Alan; Oudot, Alexandra; Collin, Bertrand [Department of Nuclear Medicine, Centre Georges-François Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex (France); Ranouil, Julien [Landauer Europe, 33 avenue du Général Leclerc, Fontenay-aux-Roses 92266 Cedex (France); Morgand, Loïc; Raguin, Olivier [Oncodesign, 20 rue Jean Mazen, Dijon 21076 Cedex (France); Walker, Paul [LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France); Brunotte, François [Department of Nuclear Medicine, Centre Georges-François Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex, France and LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France)

    2013-12-15

    Purpose: Micro-CT is considered to be a powerful tool to investigate various models of disease on anesthetized animals. In longitudinal studies, the radiation dose delivered by the micro-CT to the same animal is a major concern as it could potentially induce spurious effects in experimental results. Optically stimulated luminescence dosimeters (OSLDs) are a relatively new kind of detector used in radiation dosimetry for medical applications. The aim of this work was to assess the dose delivered by the CT component of a micro-SPECT (single-photon emission computed tomography)/CT camera during a typical whole-body mouse study, using commercially available OSLDs based on Al{sub 2}O{sub 3}:C crystals.Methods: CTDI (computed tomography dose index) was measured in micro-CT with a properly calibrated pencil ionization chamber using a rat-like phantom (60 mm in diameter) and a mouse-like phantom (30 mm in diameter). OSLDs were checked for reproducibility and linearity in the range of doses delivered by the micro-CT. Dose measurements obtained with OSLDs were compared to those of the ionization chamber to correct for the radiation quality dependence of OSLDs in the low-kV range. Doses to tissue were then investigated in phantoms and cadavers. A 30 mm diameter phantom, specifically designed to insert OSLDs, was used to assess radiation dose over a typical whole-body mouse imaging study. Eighteen healthy female BALB/c mice weighing 27.1 ± 0.8 g (1 SD) were euthanized for small animal measurements. OLSDs were placed externally or implanted internally in nine different locations by an experienced animal technician. Five commonly used micro-CT protocols were investigated.Results: CTDI measurements were between 78.0 ± 2.1 and 110.7 ± 3.0 mGy for the rat-like phantom and between 169.3 ± 4.6 and 203.6 ± 5.5 mGy for the mouse-like phantom. On average, the displayed CTDI at the operator console was underestimated by 1.19 for the rat-like phantom and 2.36 for the mouse

  1. Novel platinum black electroplating technique improving mechanical stability.

    Science.gov (United States)

    Kim, Raeyoung; Nam, Yoonkey

    2013-01-01

    Platinum black microelectrodes are widely used as an effective neural signal recording sensor. The simple fabrication process, high quality signal recording and proper biocompatibility are the main advantages of platinum black microelectrodes. When microelectrodes are exposed to actual biological system, various physical stimuli are applied. However, the porous structure of platinum black is vulnerable to external stimuli and destroyed easily. The impedance level of the microelectrode increases when the microelectrodes are damaged resulting in decreased recording performance. In this study, we developed mechanically stable platinum black microelectrodes by adding polydopamine. The polydopamine layer was added between the platinum black structures by electrodeposition method. The initial impedance level of platinum black only microelectrodes and polydopamine added microelectrodes were similar but after applying ultrasonication the impedance value dramatically increased for platinum black only microelectrodes, whereas polydopamine added microelectrodes showed little increase which were nearly retained initial values. Polydopamine added platinum black microelectrodes are expected to extend the availability as neural sensors.

  2. Development of excretion stimulating techniques for radioactive materials via complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Takaya, Haruo; Uchiumi, Akira; Takatsu, Akiko [National Inst. of Materials and Chemical Research, Tsukuba, Ibaraki (Japan)

    1998-02-01

    With an aim to establish an effective technique to eliminate RI metals incorporated into an organism through rapid excretion out of the body, development of complex forming agents which fill the following conditions was attempted; (1) it is able to form a stable complex with RI metal ion targetted, (2) the cell toxicity is low and (3) it has no effects on the physiologically essential metal ions. As such complex-foaming agents which allow to excrete Ni and Cd incorporated, several sugar-formazan derivatives were synthesized by introducing various functional groups into 4-0-{alpha}-D-glucopyranosyl {beta}-D-glucopyranose, a reducing disaccharide. First, maltose-phenylhydrazine was synthesized from phenylhydrazine and maltose, and its solution in ethylacetate-pyridine was added with diazotized o-aminophenol. Thus, maltose-formazan was obtained. Six kinds of formazan derivatives were able to foam the respective complexes with Co, Ni, Cu, Zn and Cd, but not with Mg, Ca, Fe, etc., suggesting that these derivatives are usable as an excreting agent for Ni and Cd. (M.N.)

  3. Electrical stimulation of the primate lateral habenula suppresses saccadic eye movement through a learning mechanism.

    Directory of Open Access Journals (Sweden)

    Masayuki Matsumoto

    Full Text Available The lateral habenula (LHb is a brain structure which represents negative motivational value. Neurons in the LHb are excited by unpleasant events such as reward omission and aversive stimuli, and transmit these signals to midbrain dopamine neurons which are involved in learning and motivation. However, it remains unclear whether these phasic changes in LHb neuronal activity actually influence animal behavior. To answer this question, we artificially activated the LHb by electrical stimulation while monkeys were performing a visually guided saccade task. In one block of trials, saccades to one fixed direction (e.g., right direction were followed by electrical stimulation of the LHb while saccades to the other direction (e.g., left direction were not. The direction-stimulation contingency was reversed in the next block. We found that the post-saccadic stimulation of the LHb increased the latencies of saccades in subsequent trials. Notably, the increase of the latency occurred gradually as the saccade was repeatedly followed by the stimulation, suggesting that the effect of the post-saccadic stimulation was accumulated across trials. LHb stimulation starting before saccades, on the other hand, had no effect on saccade latency. Together with previous studies showing LHb activation by reward omission and aversive stimuli, the present stimulation experiment suggests that LHb activity contributes to learning to suppress actions which lead to unpleasant events.

  4. Fine coal dewatering enhancement using mechanical thermal techniques

    Energy Technology Data Exchange (ETDEWEB)

    Patwardhan, A.; Mondal, K.; Chugh, Y.P.; Ping, H.; Singh, N. [Southern Illinois University-Carbondale, Carbondale, IL (USA). Department of Mining & Mineral Resources Engineering

    2002-07-01

    Studies were conducted in a laboratory pressure filter to evaluate and enhance the dewatering potential of thickener underflow samples from two operating coal mines in Illinois mining the No. 6 and No. 5 seams. Physical properties such as, size distribution, zeta potential variation with pH, microstructure and particle shape and ash content were characterized. In addition cake microstructure data was obtained through scanning electron microscopy. Experiments were conducted at a pressure of 42 psig. The initial solids content was varied from 8 to 30% to determine the impact of initial solids concentration on dewatering performance. A host of chemical treatments involving different surfactants and electrolytes were evaluated. In addition, mechanical agitation of cake and hot water treatment of the slurry was attempted. The introduction of copper ions into the slurry resulted in enhanced filtration rates due to reduced specific resistance to filtrate flow and increased porosity of the cake. Use of cationic and anionic surfactants reduced the total residual moisture by over 4%. The combined effect of a surfactant and copper ion resulted in further reduction in cake moisture along with significant improvement in dewatering rates. Elevating the temperature of the slurry to 55{degree}C showed only a slight improvement in filtration rate but produced the most compact cake with the lowest moisture content. Significant improvement in the dewatering kinetics from addition of electrolytes was also observed for the Illinois No. 5 seam sample. Statistical analysis of experimental data indicates dewatering enhancements as a result of electrolyte addition, hot water treatment and mechanical agitation. 20 refs., 5 figs., 7 tabs.

  5. Mechanical Micronization of Lipoaspirates: Squeeze and Emulsification Techniques.

    Science.gov (United States)

    Mashiko, Takanobu; Wu, Szu-Hsien; Feng, Jingwei; Kanayama, Koji; Kinoshita, Kaori; Sunaga, Ataru; Narushima, Mitsunaga; Yoshimura, Kotaro

    2017-01-01

    Condensation of grafted fat has been considered a key for achieving better outcomes after fat grafting. The authors investigated the therapeutic potential of two mechanical tissue micronizing procedures: squeeze and emulsification. Human aspirated fat was centrifuged (centrifuged fat) and fragmented with an automated slicer (squeezed fat). Alternatively, centrifuged fat was emulsified by repeated transfer between two syringes through a small-hole connecter and then separated by mesh filtration into two portions: residual tissue of emulsified fat and filtrated fluid of emulsified fat. The four products were examined for cellular components. Histologic and electron microscopic analyses revealed that squeezed fat and residual tissue of emulsified fat contained broken adipocytes and fragmented capillaries. Compared with centrifuged fat, the squeezed fat and residual fat products exhibited increased specific gravity and increased numbers of adipose-derived stem/stromal cells and endothelial cells per volume, suggesting successful cell/tissue condensation in both squeezed fat and residual tissue of emulsified fat. Although cell number and viability in the stromal vascular fraction were well maintained in both squeezed fat and residual fat, stromal vascular fraction culture assay showed that adipose-derived stromal cells were relatively damaged in residual tissue of emulsified fat but not in squeezed fat. By contrast, no adipose-derived stromal cells were cultured from filtrated fluid of emulsified fat. The authors' results demonstrated that mechanical micronization is easily conducted as a minimal manipulation procedure, which can condense the tissue by selectively removing adipocytes without damaging key components, such as adipose-derived stromal cells and endothelial cells. Depending on the extent of adipocyte removal, the product may be a useful therapeutic tool for efficient tissue volumization or therapeutic revitalization/fertilization. Therapeutic, V.

  6. [Mechanical stimulation of soles' support zones: non-invasive method of activation of generators of stepping movements in man].

    Science.gov (United States)

    Tomilovskaia, E S; Moshonkina, T R; Gorodnichev, R M; Shigueva, T A; Zakirova, A Z; Pivovarova, E A; Savokhin, A A; Selionov, V A; Semenov, Iu S; Brevnov, V V; Kitov, V V; Gerasimenko, Iu P; Kozlovskaia, I B

    2013-01-01

    The effects of mechanical stimulation of the soles' support zones in regimens of slow and fastwalking (75 and 120 steps per minute) were studied using the model of supportlessness (legs suspension). 20 healthy subjects participated in the study. EMG activity of hip and shin muscles was recorded. Kinematic of leg movements was assessed with the use of videoanalysis system. Support stimulation was followed by leg movements in 80% of cases, in 53% it was a locomotion-like movement. EMG bursts accompanied the movements. Involvement order and alteration of bursts in muscles were similar to voluntary walking. EMG activity occurred with a delay of 5.17 ± 1.08 seconds for hip muscles and 14.01 ± 2.82 seconds for shin muscles, frequency of bursts differed from stimulation frequency. Support stimulation was followed by leg movements in 80% of cases, in 53% of which they had characteristics of locomotions being accompanied by the burst-like electromyographic activities. Involvement order of the leg muscles and organization of antagonistic muscles activities were analogous to that of voluntary walking. The latencies of electromyographic activity in hip muscles composed 5.17 ± 1.083 s and 14.01 ± 2.82 s - for shin muscles, frequency of bursts differed significantly from stimulation frequency. In 31% of cases the electromyographical activity following the stimulation of the soles' support zones was not burst-like. Its amplitude rose smoothly reaching a certain level that was subsequently maintained. Results of the study showed that soles' support zones stimulation in regimen of locomotion can activate a locomotor generator and that effect evoked by this stimulation includes not only rhythmical but also non-rhythmical (probably postural) components of walking.

  7. Memory effects on mechanically stimulated electric signal; diversification of stimuli impact on material memory and comments on the observed features

    Science.gov (United States)

    Kyriazis, Panagiotis; Stavrakas, Ilias; Anastasiadis, Cimon; Triantis, Dimos; Stonham, John

    2010-05-01

    Memory is defined as the ability of marble and generally of brittle geomaterials to retain 'imprints' from previous treatments and to reproduce information about these treatments under certain conditions, by analogy to the memory of human beings. Memory effects have been observed in the evolution of a variety of physical properties like the acoustic emissions of brittle materials during fracture. The existence of memory effects for the mechanically stimulated electric signal, either by Pressure (PSC) or by Bending (BSC), is examined in this work, alongside with an attempt to distinguish between the two different manifestations of 'memory' based on the electrification mechanism that is triggered at different levels of externally applied load on samples. Having identified two main mechanisms (i.e. the dynamic and the cracking) and following the human memory model, we suggest the separation of memory of a material specimen into two levels i.e. the short or temporary and long or permanent memory. For the observation and analysis of the short memory of brittle materials we have conducted experiments using the PSC technique in marble specimens. The materials are imposed to cyclic stepwise loading of the same level, scheme and direction (axial stress - unchanged position of material) in order to comply with the conditions that are proposed as suitable for memory effects study by other researchers. We have also conducted experimental tests of cyclic high level stepwise loading on amphibolite rock specimens in order to verify and study the existence of permanent memory effects. Modelling the signal recordings and studying the effects of memory on the signals, we have identified certain trends manifestation for the two types of memory that are summarised to the following points. (a) Both types of memory influence the PSC peaks evolution (exponential decrease) in cyclic loadings of the same level. (b) Permanent memory cannot be erased and affects PSC signal permanently and

  8. Development of excretion stimulating techniques for radioactive materials via complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Takaya, Haruo; Utsumi, Akira; Takatsu, Akiko [National Inst. of materials and Chemical Research, Tsukuba, Ibaraki (Japan)

    1999-02-01

    This research project aimed to establish a technique for rapid excretion of RI metals (Ni, Cd, Pb) incorporated into human body and here, development of removing agents which allow complex formation with metals was attempted. The reactivities of those agents with metals such as Ni, Cd were investigated. The gluco-formazan derivatives produced in the previous year; PF, PCF, PHF, PPF, PPCF and PPHF were investigated in the respect of reactivities with various metals. Those formazan derivatives were mixed with a metal ion (alkaline earth metals, lanthanoids, 1st transition metal) in buffered sodium-perchlorate solution to determine the chelating activity and the stability of metal chelation was estimated by spectrophotometric method. In formazan derivative with glucose, mannose or galactose, N atom of imino, azo and pyridyl groups, and O atoms of carboxyl and hydroxy groups possibly mediate the bonding with a metal ion. These chelate agents were little reactive for alkali metals, alkaline earth metals (Mg, Sr, Ba) or lanthanoid elements, but their affinities to Zn, Cd, Ni and Co were very high. It was demonstrated that either of the formazan derivatives was able to make chelate complex, suggesting that those are usable for excretion of RI metal ({sup 63}Ni and {sup 109}Cd). These gluco-formazan thus obtained were able to excrete these RI metals in the human body without affecting the metabolism of physiologically indispensable metals such as Ca, Mg, Fe etc. Furthermore, it seems necessary to make pharmacokinetic study on absorption, distribution, metabolism, excretion of the gluco-formazan derivatives. (M.N.)

  9. Comparing maximum rate and sustainability of pacing by mechanical vs. electrical stimulation in the Langendorff-perfused rabbit heart.

    Science.gov (United States)

    Quinn, T Alexander; Kohl, Peter

    2016-12-01

    Mechanical stimulation (MS) represents a readily available, non-invasive means of pacing the asystolic or bradycardic heart in patients, but benefits of MS at higher heart rates are unclear. Our aim was to assess the maximum rate and sustainability of excitation by MS vs. electrical stimulation (ES) in the isolated heart under normal physiological conditions. Trains of local MS or ES at rates exceeding intrinsic sinus rhythm (overdrive pacing; lowest pacing rates 2.5±0.5 Hz) were applied to the same mid-left ventricular free-wall site on the epicardium of Langendorff-perfused rabbit hearts. Stimulation rates were progressively increased, with a recovery period of normal sinus rhythm between each stimulation period. Trains of MS caused repeated focal ventricular excitation from the site of stimulation. The maximum rate at which MS achieved 1:1 capture was lower than during ES (4.2±0.2 vs. 5.9±0.2 Hz, respectively). At all overdrive pacing rates for which repetitive MS was possible, 1:1 capture was reversibly lost after a finite number of cycles, even though same-site capture by ES remained possible. The number of MS cycles until loss of capture decreased with rising stimulation rate. If interspersed with ES, the number of MS to failure of capture was lower than for MS only. In this study, we demonstrate that the maximum pacing rate at which MS can be sustained is lower than that for same-site ES in isolated heart, and that, in contrast to ES, the sustainability of successful 1:1 capture by MS is limited. The mechanism(s) of differences in MS vs. ES pacing ability, potentially important for emergency heart rhythm management, are currently unknown, thus warranting further investigation. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  10. Cutaneous nociceptors lack sensitisation, but reveal μ-opioid receptor-mediated reduction in excitability to mechanical stimulation in neuropathy

    Directory of Open Access Journals (Sweden)

    Schmidt Yvonne

    2012-11-01

    Full Text Available Abstract Background Peripheral nerve injuries often trigger a hypersensitivity to tactile stimulation. Behavioural studies demonstrated efficient and side effect-free analgesia mediated by opioid receptors on peripheral sensory neurons. However, mechanistic approaches addressing such opioid properties in painful neuropathies are lacking. Here we investigated whether opioids can directly inhibit primary afferent neuron transmission of mechanical stimuli in neuropathy. We analysed the mechanical thresholds, the firing rates and response latencies of sensory fibres to mechanical stimulation of their cutaneous receptive fields. Results Two weeks following a chronic constriction injury of the saphenous nerve, mice developed a profound mechanical hypersensitivity in the paw innervated by the damaged nerve. Using an in vitro skin-nerve preparation we found no changes in the mechanical thresholds and latencies of sensory fibres from injured nerves. The firing rates to mechanical stimulation were unchanged or reduced following injury. Importantly, μ-opioid receptor agonist [D-Ala2,N-Me-Phe4,Gly5]-ol-enkephalin (DAMGO significantly elevated the mechanical thresholds of nociceptive Aδ and C fibres. Furthermore, DAMGO substantially diminished the mechanically evoked discharges of C nociceptors in injured nerves. These effects were blocked by DAMGO washout and pre-treatment with the selective μ-opioid receptor antagonist Cys2-Tyr3-Orn5-Pen7-amide. DAMGO did not alter the responses of sensory fibres in uninjured nerves. Conclusions Our findings suggest that behaviourally manifested neuropathy-induced mechanosensitivity does not require a sensitised state of cutaneous nociceptors in damaged nerves. Yet, nerve injury renders nociceptors sensitive to opioids. Prevention of action potential generation or propagation in nociceptors might represent a cellular mechanism underlying peripheral opioid-mediated alleviation of mechanical hypersensitivity in neuropathy.

  11. [Stimulation of mitochondrial oxidative enzymes in acute cooling and its catecholamine mechanisms].

    Science.gov (United States)

    Kulinskiĭ, V I; Medvedev, A I; Kuntsevich, A K

    1986-01-01

    Acute cooling of rats led to stimulation of NAD+-dependent isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH) and NAD(P)+-transhydrogenase (TH) but did not affect the NADP+-ICDH activity in liver, heart and skeletal muscle mitochondria. After pretreatment of the animals with propranolol the stimulating effect was decreased, thus suggesting that endogenous catecholamines and beta-adrenoreceptors are of importance in activation of NAD+-ICDH, SDH and TH. The effects of cooling, noradrenaline and cAMP did not summarize. Role of catecholamines in stimulation of mitochondrial oxidative enzymes under conditions of cooling is discussed.

  12. Leucine Supplementation After Mechanical Stimulation Activates Protein Synthesis via L-type Amino Acid Transporter 1 In Vitro.

    Science.gov (United States)

    Nakai, Naoya; Kawano, Fuminori; Murakami, Taro; Nakata, Ken; Higashida, Kazuhiko

    2017-08-30

    Branched-chain amino acid supplements consumed following exercise are widely used to increase muscle mass. Although both exercise (i.e., mechanical stimulation) and branched-chain amino acid leucine supplementation have been reported to stimulate muscle protein synthesis by activating the mammalian target of rapamycin (mTOR) signaling pathway independently, the mechanisms underlying their synergistic effects are largely unknown. Utilizing cultured differentiated C2C12 myotubes, we established a combination treatment model in which the cells were subjected to cyclic uniaxial mechanical stretching (4 h, 15%, 1 Hz) followed by stimulation with 2 mM leucine for 45 min. Phosphorylation of p70 S6 kinase (p70S6K), an mTOR-regulated marker of protein translation initiation, was significantly increased following mechanical stretching alone but returned to the baseline after 4 h. Leucine supplementation further increased p70S6K phosphorylation, with a greater increase observed in the stretched cells than in the non-stretched cells. Notably, the expression of L-type amino acid transporter 1 (LAT1), a stimulator of the mTOR pathway, was also increased by mechanical stretching, and siRNA-mediated knockdown partially attenuated leucine-induced p70S6K phosphorylation. These results suggest that mechanical stretching promotes LAT1 expression and, consequently, amino acid uptake, leading to enhanced leucine-induced activation of protein synthesis. LAT1 has been demonstrated to be a point of crosstalk between exercise- and nutrition-induced skeletal muscle growth. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. The development and use of a drug-induced immunosuppressed rat-model to screen Phela for mechanism of immune stimulation.

    Science.gov (United States)

    Lekhooa, Makhotso Rose; Walubo, Andrew; du Plessis, Jan B; Matsabisa, Motlalepula Gilbert

    2017-07-12

    Phela, is code name for a medicinal product made from four South African traditional medicinal plants (Clerodendrum glabrum E. Mey, Polianthes tuberosa (Linn.), Rotheca myricoides (Hochst.) Steane & Mabb. and Senna occidentalis (L.) Link). All these plants have established traditional use in a wide spectrum of diseases. Phela is under development for use as an immune booster in immunocompromised patients, which includes patients with the human immunodeficiency virus (HIV). Already several studies, both pre-clinical and clinical, have shown that Phela is a safe and effective immune booster. Despite some studies on the action of Phela, the mechanism of action by Phela is still not known. Understanding the mechanism of action will enable safer and effective use of the drug for the right indications. Unfortunately, there is no well characterized test-system for screening products for immune stimulant activity. Therefore, the objective of this study was to use Phela as the test article, to develop and validate a rat-model (test system) by which to screen medicines for immune stimulant activity. First, the batch of Phela used was authenticated by high performance liquid chromatography (HPLC) techniques; analytical methods for the immunosuppressant drugs, cyclosporine A (CsA), cyclophosphamide (CP) and dexamethasone (Dex) were developed and validated; and a slide-A-Lyzer dialysis was used to test for potential interactions in rat plasma of Phela with CsA, CP and Dex. Thereafter, using Sprague Dawley (SD) rats and in separate experiments, the effective dose of Phela in the study animals was determined in a dose ranging study with levamisole, a known immune stimulant as the positive control; the appropriate doses for immunosuppression by CsA, CP and Dex were determined; the time to reach 'established immunosuppression' with each drug was determined (it was also the time for intervention with Phela); and eventually, the effect of Phela on the immune system was tested

  14. Norgestrel and gestodene stimulate breast cancer cell growth through an oestrogen receptor mediated mechanism.

    OpenAIRE

    Catherino, W. H.; Jeng, M. H.; Jordan, V.C.

    1993-01-01

    There is great concern over the long-term influence of oral contraceptives on the development of breast cancer in women. Oestrogens are known to stimulate the growth of human breast cancer cells, and this laboratory has previously reported (Jeng & Jordan, 1991) that the 19-norprogestin norethindrone could stimulate the proliferation of MCF-7 human breast cancer cells. We studied the influence of the 19-norprogestins norgestrel and gestodene compared to a 'non' 19-norprogestin medroxyprogester...

  15. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation.

    Science.gov (United States)

    Wu, Shaohua; Wang, Ying; Streubel, Philipp N; Duan, Bin

    2017-10-15

    synergize the multiple cell interaction and mechanical stimulation for promoting tendon regeneration. Tendon grafts are essential for the treatment of various tendon-related conditions due to the inherently poor healing capacity of native tendon tissues. In this study, we combined electrospun nanofiber yarns with textile manufacturing strategies to fabricate nanofibrous woven biotextiles with hierarchical features, aligned fibrous topography, and sufficient mechanical properties as tendon tissue engineered scaffolds. Comparing to traditional electrospun random or aligned meshes, our novel nanofibrous woven fabrics possess strong tensile and suture-retention strengths and larger pore size. We also demonstrated that the incorporation of tendon cells and vascular cells promoted the tenogenic differentiation of the engineered tendon constructs, especially under dynamic stretch. This study not only presents a novel tissue engineered tendon scaffold fabrication technique but also provides a useful strategy to promote tendon differentiation and regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Development of optically stimulated luminescence techniques using natural minerals and ceramics, and their application to retrospective dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Boetter-Jensen, L

    2000-09-01

    This thesis summarises research and development of optically stimulated luminescence (OSL) and its applications by the author at Risoe National Laboratory, up to 1999. These developments have been directed primarily at retrospective accident dosimetry and luminescence dating. Experimental investigations include the studies of OSL properties of the natural minerals quartz and feldspars and the artificial materials porcelain and aluminium oxide (Al{sub 2}O{sub 3}). Blue light emitting diodes and infrared laser diodes are shown to provide simple and practical alternatives to broad-band light and visible laser stimulation. The development of OSL apparatus designed for the rapid measurement of single grains of phosphors also opens up a new area of luminescence measurement, allowing the detailed examination of dose distributions within a multiple-grain sample. This is of particular importance to the studies of incompletely reset geological sediments, and to accident dosimetry measurements using unheated materials. Al{sub 2}O{sub 3}:C single crystals are tested as environmental OSL dosemeters for assessing both the natural background photon radiation dose rates in the field and the natural dose rates inside bricks collected for accident dose evaluation. Environmental doses of the order of few {mu}Gy are measured with high precision. UV photo-stimulated luminescence spectra obtained from porcelain samples are used to confirm that the main component responsible for the OSL signal from porcelain is Al{sub 2}O{sub 3}. OSL single-aliquot regenerative-dose (SAR) techniques are used with quartz extracted from Chernobyl bricks to determine the accrued dose after the accident. This has improved the measurement precision significantly, from about 5-6 % using traditional methods to now less than 2 %. Depth-dose profiles measured in Chernobyl bricks are compared with those obtained in the laboratory using different gamma sources and these comparisons show that the average energy of

  17. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tongsong, E-mail: jiangtongsong@sina.com [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China); Department of Mathematics, Heze University, Heze, Shandong 274015 (China); Jiang, Ziwu; Zhang, Zhaozhong [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China)

    2015-08-15

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.

  18. Nanomaterial-enabled neural stimulation

    Directory of Open Access Journals (Sweden)

    Yongchen eWang

    2016-03-01

    Full Text Available Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed.

  19. Nanomaterial-Enabled Neural Stimulation.

    Science.gov (United States)

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed.

  20. Mechanisms in bradykinin stimulated arachidonate release and synthesis of prostaglandin and platelet activating factor

    Directory of Open Access Journals (Sweden)

    D. Ricupero

    1992-01-01

    Full Text Available Regulatory mechanisms in bradykinin (BK activated release of arachidonate (ARA and synthesis of prostaglandin (PG and platelet activating factor (PAF were studied in bovine pulmonary artery endothelial cells (BPAEC. A role for GTP binding protein (G-protein in the binding of BK to the cells was determined. Guanosine 5-O- (thiotriphosphate, (GTPτS, lowered the binding affinity for BK and increased the Kd for the binding from 0.45 to 1.99 nM. The Bmax remained unaltered at 2.25 × 10-11 mole. Exposure of the cells to aluminium fluoride also reduced the affinity for BK. Bradykinin-induced release of ARA proved pertussis toxin (PTX sensitive, with a maximum sensitivity at 10 ug/ml PTX. GTPτS at 100 μM increased the release of arachidonate. The effect of GTPτS and BK was additive at suboptimal doses of BK up to 0.5 nM but never exceeded the levels of maximal BK stimulation at 50 nM. PTX also inhibited the release of ARA induced by the calcium ionophore, A23187. Phorbol 12-myristate 13-acetate or more commonly known as tetradecanoyl phorbol acetate (TPA itself had little effect on release by the intact cells. However, at 100 nM it augmented the BK activated release. This was downregulated by overnight exposure to TPA and correlated with down-regulation of protein kinase C (PKC activity. The down-regulation only affected the augmentation of ARA release by TPA but not the original BK activated release. TPA displayed a similar, but more potent amplification of PAF synthesis in response to both BK or the calcium ionophore A23187. These results taken together point to the participation of G-protein in the binding of BK to BPAEC and its activation of ARA release. Possibly two types of G-protein are involved, one associated with the receptor, the other activated by Ca2+ and perhaps associated with phospholipase A2 (PLA2. Our results further suggest that a separate route of activation, probably also PLA2 related, takes place through a PKC catalysed

  1. Mechanisms of the Stimulation of Import Substitution in the Construction Industry

    Directory of Open Access Journals (Sweden)

    Svetlana Nikolayevna Kotlyarova

    2016-12-01

    Full Text Available The issues of the dependence on imports and import substitution are the major factors in the development of the domestic economy. The subject matter of the research is the dependence of construction industry on imports in the area of foreign technology, it is aimed at identifying the scope of the problem and justifying the mechanisms to overcome it. The article substantiates the relevance and importance of import substitution in the production of construction materials and equipment. Import substitution in the construction industry can be implemented in two main ways, requiring different approaches in supporting and encouraging. Firstly, there is the substitution of products used in construction, aimed at minimizing the risk of disruption of the supply of imported products for construction purposes and the predominant use of domestic analogues of imported products for construction purposes. Secondly, there is the substitution in the technologies of production of goods used in construction, focused on stimulating the development of the domestic production of competitive products and technological and managerial modernization of the construction materials industry, construction industry. The process of import substitution in the construction industry have a number of limitations. In this connection, the article discusses the opportunities and constraints for import substitution. A special attention is paid to the practice of the formation of regional construction clusters as a tool of implementing the policy of import substitution. The purposes and principles of the development of clusters, sources of initiatives, used systems of transfer and knowledge and innovations are considered critically. The conclusion is made about the need for the strategic development of new products for the construction market and domestic research and development projects within the framework of cross-sectoral clusters. The basic forms of state support required for the

  2. Fracture mechanisms in biopolymer films using coupling of mechanical analysis and high speed visualization technique

    NARCIS (Netherlands)

    Paes, S.S.; Yakimets, I.; Wellner, N.; Hill, S.E.; Wilson, R.H.; Mitchell, J.R.

    2010-01-01

    The aim of this study was to provide a detailed description of the fracture mechanisms in three different biopolymer thin materials: gelatin, hydroxypropyl cellulose (HPC) and cassava starch films. That was achieved by using a combination of fracture mechanics methodology and in situ visualization w

  3. Infrastructure Development as a Condition for Improving the Mechanism of Innovative Activity Stimulation (on the Example of Southern Federal District Subjects

    Directory of Open Access Journals (Sweden)

    Nadezhda Nikolaevna Lebedeva

    2015-12-01

    Full Text Available The article discusses the concept of the mechanism of innovative activity stimulation, which represents a system consisting of actors with their goals; formal regulations (legislation; informal regulations and rules (business culture, adopted by the economic community; incentives and constraints (economic and non-economic in nature. The authors specify the understanding of infrastructure as a condition of the mechanism functioning, compare rating assessments (by the NAIDIT technique of innovation activity of subjects of the Southern Federal District (SFD and reveal significant inconsistencies. The comparative analysis of the main existing infrastructure elements of the innovation sphere (Krasnodar, Volgograd and Rostov regions let make conclusions about their sufficiency or insufficiency in different subjects of the macro-region. The negative trends of innovative infrastructure development include: the lack of a unified information and analytical database and system for the promotion and support of innovative projects; the lack of consolidated data to assess the development level of the regional innovative infrastructure in formal source; the failure and the need for development elements, such as clusters and science-technology parks, support funds and the creation of extensive networks of centers for collective use. Directions of improvement of innovation activity are presented on the basis of comparing its peculiar indicators as well as analyzing and identifying missing infrastructure elements of the innovation system (scientific and investment, information and analytical, organizational and communicative with the aim of increasing the efficiency of existing mechanisms of innovation stimulation in the regions. Scientific and practical significance of this work consists in the future use of its provisions and conclusions as additional theoretical and methodological substantiation of scientific developments in research of innovative activity

  4. Compound Stimulation Techniques for Heavy Oil Reservoirs with Bottom Water%底水稠油油藏水平井复合增产技术

    Institute of Scientific and Technical Information of China (English)

    杜勇

    2016-01-01

    针对桩西油田强底水稠油油藏水平井单井产液量高、含水率高、开发效果差、剩余油动用难度大的问题,进行了底水稠油油藏复合增产技术研究。利用水平井二氧化碳吞吐可视化试验,分析了底水油藏水平井二氧化碳吞吐提高采收率的机理,同时针对单一二氧化碳驱易指进的问题,优选发泡剂和稳泡剂,研制了增黏型泡沫体系,并配制了乳化沥青堵水剂以封堵高渗透通道,形成了包括二氧化碳吞吐、增黏型泡沫体系和乳化沥青堵水剂的水平井复合增产技术。复合增产技术在桩1块底水稠油油藏应用7井次,平均含水率降低27.5百分点,累计增油量3205 t ,取得了明显的降水增油效果。现场应用表明,复合增产技术可以解决底水稠油油藏水平井含水率高、剩余油动用难度大的问题。%In the Zhuangxi Oilfield ,horizontal wells in heavy oil reservoirs with strong bottom water are characterized by high liquid production ,high water cut ,poor development output and difficulty in pro-ducing the remaining .In order to solve these problems ,a series of studies was carried out to develop com-pound stimulation techniques for heavy oil reservoirs with bottom water .First ,the mechanisms of carbon dioxide huff and puff for improving oil recovery of horizontal wells with bottom-water were analyzed through visualization experiments .Secondly ,a viscosity increasing foam system was prepared by optimi-zing foaming agent and foam stabilizer so as to deal with carbon dioxide flooding fingering .And thirdly e-mulsified asphalt blocking agent was prepared by optimizing emulsifier so as to blocking high-permeability paths .The compound stimulation techniques were designed based on carbon dioxide huff and puff ,viscosi-ty increasing foam system and the development of an emulsified asphalt blocking agent .T hese techniques were applied seven times in heavy oil reservoirs

  5. Mechanical stimulation (pulsed electromagnetic fields "PEMF" and extracorporeal shock wave therapy "ESWT" and tendon regeneration: a possible alternative.

    Directory of Open Access Journals (Sweden)

    Federica eRosso

    2015-11-01

    Full Text Available The pathogenesis of tendon degeneration and tendinopathy is still partially unclear. However, an active role of metalloproteinases (MMP, growth factors, such as vascular endothelial growth factor (VEGF and a crucial role of inflammatory elements and cytokines was demonstrated. Mechanical stimulation may play a role in regulation of inflammation. In vitro studies demonstrated that both pulsed electromagnetic fields (PEMF and extracorporeal shock wave therapy (ESWT increased the expression of pro-inflammatory cytokine such as interleukin (IL-6 and IL-10. Moreover ESWT increases the expression of growth factors, such as transforming growth factor beta (TGF-beta, Vascular Endothelial Growth Factor (VEGF, and insulin-like growth factor 1 (IGF1, as well as the synthesis of collagen I fibers. These pre-clinical results, in association with several clinical studies, suggest a potential effectiveness of ESWT for tendinopathy treatment. Recently PEMF gained popularity as adjuvant for fracture healing and bone regeneration. Similarly to ESWT, the mechanical stimulation obtained using PEMFs may play a role for treatment of tendinopathy and for tendon regeneration, increasing in-vitro TGF-beta production, as well as scleraxis and collagen I gene expression. In this manuscript the rational of mechanical stimulations and the clinical studies on the efficacy of extracorporeal shock wave (ESW and PEMF will be discussed. However, no clear evidence of a clinical value of ESW and PEMF has been found in literature with regards to the treatment of tendinopathy in human, so further clinical trials are needed to confirm the promising hypotheses concerning the effectiveness of ESWT and PEMF mechanical stimulation.

  6. Wheelchair propulsion technique and mechanical efficiency after 3 wk of practice

    NARCIS (Netherlands)

    De Groot, Sonja; Veeger, Dirkan H E J; Hollander, A Peter; Van der Woude, Lucas H V

    2002-01-01

    PURPOSE: Differences in gross mechanical efficiency between experienced and inexperienced wheelchair users may be brought about by differences in propulsion technique. The purpose of this experiment was to study changes in propulsion technique (defined by force application, left-right symmetry, inte

  7. Wheelchair propulsion technique and mechanical efficiency after 3 wk of practice

    NARCIS (Netherlands)

    De Groot, Sonja; Veeger, Dirkan H E J; Hollander, A Peter; Van der Woude, Lucas H V

    2002-01-01

    PURPOSE: Differences in gross mechanical efficiency between experienced and inexperienced wheelchair users may be brought about by differences in propulsion technique. The purpose of this experiment was to study changes in propulsion technique (defined by force application, left-right symmetry, inte

  8. Identification of the Scale of Changes in Personnel Motivation Techniques at Mechanical-Engineering Enterprises

    OpenAIRE

    Melnyk Olga G.; Bodaretska Olha M.

    2016-01-01

    The method for identification of the scale of changes in personnel motivation techniques at mechanical-engineering enterprises based on structural and logical sequence of implementation of relevant stages (identification of the mission, strategy and objectives of the enterprise; forecasting the development of the enterprise business environment; SWOT-analysis of actual motivation techniques, deciding on the scale of changes in motivation techniques, choosing providers for ch...

  9. Low-level lasers: their role in the mechanisms of the stimulation of the reparative processes

    Science.gov (United States)

    Yeliseenko, Vladimir I.

    1994-08-01

    The transformation of light energy into thermal energy with extremely high temperatures, the evaporation of interstitial and intracellular fluids, and the cytoplasmic proteins coagulation are the most important factors in the mechanism of high-power lasers effect on biological tissues. A set of dystrophic disorders develops in tissues as a result, up to the coagulative necrosis, which lays in the basis of the laser thermal crust at incised edges. With CO2 laser the damage is evident from the first cell layers. Its size is in the linear correlation with exposure time. The Nd:YAG and argon lasers' light penetrates the superficial cell layers without damage practically and realizes in deeper well vascularized tissue layers, the submucous layer of the gastrointestinal hollow organs, in particular. It depends on the closeness of the irradiation spectrum of absorption of hemoglobin and result in blood coagulation in the vascular lumine with formation of the `coagulative laser thrombi.' That explains a wide use of laser irradiation in urgent endoscopy for arresting acute gastrointestinal hemorrhages. For these reasons Nd:YAG laser `contact scalpel' technique with sapphire tips is used for incisions on parenchymatous organs with simultaneous blood coagulation in vessels lumina with good hemostasis and holestasis (hepatobiliar surgery), and for pancreas and thyroid surgery, in gynecology and other surgical areas.

  10. Modelling the thermal quenching mechanism in quartz based on time-resolved optically stimulated luminescence

    DEFF Research Database (Denmark)

    Pagonis, V.; Ankjærgaard, Christina; Murray, Andrew

    2010-01-01

    . As the temperature of the sample is increased, more electrons are removed from the excited state via the non-radiative pathway. This reduction in the number of available electrons leads to both a decrease of the intensity of the luminescence signal and to a simultaneous decrease of the luminescence lifetime. Several...... simulations are carried out of time-resolved optically stimulated luminescence (TR-OSL) experiments, in which the temperature dependence of luminescence lifetimes in quartz is studied as a function of the stimulation temperature. Good quantitative agreement is found between the simulation results and new...

  11. Increased aerobic glycolysis through beta2 stimulation is a common mechanism involved in lactate formation during shock states.

    Science.gov (United States)

    Levy, Bruno; Desebbe, Olivier; Montemont, Chantal; Gibot, Sebastien

    2008-10-01

    During septic shock, muscle produces lactate by way of an exaggerated NaK-adenosine triphosphatase (ATPase)-stimulated aerobic glycolysis associated with epinephrine stimulation possibly through beta2 adrenoreceptor involvement. It therefore seems logical that a proportion of hyperlactatemia in low cardiac output states would be also related to this mechanism. Thus, in low-flow and normal-to-high-flow models of shock, we investigate (1) whether muscle produces lactate and (2) whether muscle lactate production is linked to beta2 adrenergic stimulation and Na+K+-ATPase. We locally modulated the adrenergic pathway and Na+K+-ATPase activity in male Wistar rats' skeletal muscle using microdialysis with nonselective and selective beta blockers and ouabain in different models of rodent shock (endotoxin, peritonitis, and hemorrhage). Blood flow at the probe site was evaluated by ethanol clearance. We measured the difference between muscle lactate and blood lactate concentration, with a positive gradient indicating muscle lactate or pyruvate production. Epinephrine levels were elevated in all shock groups. All models were associated with hypotension and marked hyperlactatemia. Muscle lactate concentrations were consistently higher than arterial levels, with a mean gradient of 2.5+/-0.3 in endotoxic shock, 2.1+/-0.2 mM in peritonitis group, and 0.9+/-0.2 mM in hemorrhagic shock (Pshock, 210+/-30 microM in peritonitis group, and 90+/-10 microM in hemorrhagic shock (Pshock mechanism. This demonstrates that lactate production during shock states is related, at least in part, to increased NaK-ATPase activity under beta2 stimulation. In shock state associated with a reduced or maintained blood flow, an important proportion of muscle lactate release is regulated by a beta2 receptor stimulation and not secondary to a reduced oxygen availability.

  12. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery

    Directory of Open Access Journals (Sweden)

    Samar M Hatem

    2016-09-01

    Full Text Available Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients’ mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed.At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation.

  13. Treating Stress-Related Pain with the Flotation Restricted Environmental Stimulation Technique: Are There Differences between Women and Men?

    Directory of Open Access Journals (Sweden)

    Sven Å Bood

    2009-01-01

    Full Text Available The aim of the present study was to explore, for the first time, sex differences among patients diagnosed with stress-related pain before and after flotation restricted environmental stimulation technique (REST treatment, delivered 12 times during seven weeks. The present study included 88 patients (69 women, 19 men from three different studies (post hoc analysis. They had been diagnosed by a physician as having chronic stress-related muscle tension pain. The analyses indicated that the flotation-REST treatment had beneficial effects on stress, anxiety, depression, sleep quality and pain and that there were few sex differences. Women were more depressed than men before treatment, but after treatment there was no difference between sexes. However, there was a sex difference in the ability to endure experimentally induced pain, suggesting that men exhibited greater endurance both before and after the flotation-REST treatment. The results also showed, for the first time, that both sexes improved their ability to endure experimentally induced pain (higher scores for upper pain threshold following the successful flotation-REST pain treatment.

  14. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery

    Science.gov (United States)

    Hatem, Samar M.; Saussez, Geoffroy; della Faille, Margaux; Prist, Vincent; Zhang, Xue; Dispa, Delphine; Bleyenheuft, Yannick

    2016-01-01

    Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients' mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training, and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning, and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation. PMID:27679565

  15. Theory and technique of permeability enhancement and coal mine gas extraction by fracture network stimulation of surrounding beds and coal beds

    Directory of Open Access Journals (Sweden)

    Ma Geng

    2014-12-01

    Full Text Available The existing reservoir stimulating technologies are only applicable to hard coal but helpless for soft coal, which is one of the main factors hindering the CBM industrialization in China. Therefore, it is urgent to develop a universal stimulating technology which can increase the permeability in various coal reservoirs. Theoretical analysis and field tests were used to systematically analyze the mechanical mechanisms causing the formation of various levels and types of fractures, such as radial tensile fractures, peripheral tensile fractures, and shear fractures in hydraulic fracturing, and reveal the mechanism of permeability enhancement by fracture network stimulating in surrounding beds and coal reservoirs. The results show that multi-staged perforation fracturing of horizontal wells, hydraulic-jet staged fracturing, four-variation hydraulic fracturing and some auxiliary measures are effective technical approaches to fracture network stimulation, especially the four-variation hydraulic fracturing can stimulate the fracture network in vertical and cluster wells. It is concluded that the fracture network stimulating technology for surrounding beds has significant advantages, such as safe drilling operation, strong stimulation effect, strong adaptability to stress-sensitive and velocity-sensitive beds, and is suitable for coal reservoirs of any structure. Except for the limitation in extremely water-sensitive and high water-yield surrounding beds, the technology can be universally used in all other beds. The successful industrial tests in surface coal bed methane and underground coal mines gas extraction prove that the theory and technical system of fracture network stimulating in surrounding beds and coal reservoirs, as a universally applicable measure, will play a role in the CBM development in China.

  16. Bloom syndrome helicase stimulates RAD51 DNA strand exchange activity through a novel mechanism.

    Science.gov (United States)

    Bugreev, Dmitry V; Mazina, Olga M; Mazin, Alexander V

    2009-09-25

    Loss or inactivation of BLM, a helicase of the RecQ family, causes Bloom syndrome, a genetic disorder with a strong predisposition to cancer. Although the precise function of BLM remains unknown, genetic data has implicated BLM in the process of genetic recombination and DNA repair. Previously, we demonstrated that BLM can disrupt the RAD51-single-stranded DNA filament that promotes the initial steps of homologous recombination. However, this disruption occurs only if RAD51 is present in an inactive ADP-bound form. Here, we investigate interactions of BLM with the active ATP-bound form of the RAD51-single-stranded DNA filament. Surprisingly, we found that BLM stimulates DNA strand exchange activity of RAD51. In contrast to the helicase activity of BLM, this stimulation does not require ATP hydrolysis. These data suggest a novel BLM function that is stimulation of the RAD51 DNA pairing. Our results demonstrate the important role of the RAD51 nucleoprotein filament conformation in stimulation of DNA pairing by BLM.

  17. Studies Regarding Design and Optimization of Mechanisms Using Modern Techniques of CAD and CAE

    Directory of Open Access Journals (Sweden)

    Marius Tufoi

    2010-01-01

    Full Text Available The paper presents applications of modern techniques of CAD (Computer Aided Design and CAE (Computer Aided Engineering to design and optimize the mechanisms used in mechanical engineering. The use exemplification of these techniques was achieved by designing and optimizing parts of a drawing installation for horizontal continuous casting of metals. By applying these design methods and using finite element method at simulations on designed mechanisms results a number of advantages over traditional methods of drawing and design: speed in drawing, design and optimization of parts and mechanisms, kinematic analysis option, kinetostatic and dynamic through simulation, without requiring physical realization of the part or mechanism, the determination by finite element method of tension, elongations, travel and safety factor and the possibility of optimization for these sizes to ensure the mechanical strength of each piece separately. Achieving these studies was possible using SolidWorks 2009 software suite.

  18. The Effect of Mechanical Vibration Stimulation of Perception Subthreshold on the Muscle Force and Muscle Reaction Time of Lower Leg

    Directory of Open Access Journals (Sweden)

    Huigyun Kim

    2016-01-01

    Full Text Available The objective of this study is to investigate the effect of mechanical vibration stimulation on the muscle force and muscle reaction time of lower leg according to perception threshold and vibration frequency. A vibration stimulation with perception threshold intensity was applied on the Achilles tendon and tibialis anterior tendon. EMG measurement and analysis system were used to analyze the change of muscle force and muscle reaction time according to perception threshold and vibration frequency. A root-mean-square (RMS value was extracted using analysis software and Maximum Voluntary Contraction (MVC and Premotor Time (PMT were analyzed. The measurement results showed that perception threshold was different from application sites of vibration frequency. Also, the muscle force and muscle reaction time showed difference according to the presence of vibration, frequency, and intensity. This result means that the vibration stimulation causes the change on the muscle force and muscle reaction time and affects the muscles of lower leg by the characteristics of vibration stimulation.

  19. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    DEFF Research Database (Denmark)

    Stief, P.

    2013-01-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-micr...... that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.......Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal......-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen...

  20. Basic mechanism leading to stimulation of glycogenolysis by isoproterenol, EGF, elevated extracellular K+ concentrations, or GABA.

    Science.gov (United States)

    Xu, Junnan; Song, Dan; Bai, Qiufang; Cai, Liping; Hertz, Leif; Peng, Liang

    2014-04-01

    Glycogenolysis, in brain parenchyma an astrocyte-specific process, has changed from being envisaged as an emergency procedure to playing central roles during brain response to whisker stimulation, memory formation, astrocytic K(+) uptake and stimulated release of ATP. It is activated by several transmitters and by even very small increases in extracellular K(+) concentration, and to be critically dependent upon an increase in free cytosolic Ca(2+) concentration ([Ca(2+)]i), whereas cAMP plays only a facilitatory role together with increased [Ca(2+)]i. Detailed knowledge about the signaling pathways eliciting glycogenolysis is therefore of interest and was investigated in the present study in well differentiated cultures of mouse astrocytes. The β-adrenergic agonist isoproterenol stimulated glycogenolysis by a β1-adrenergic effect, which initiated a pathway in which cAMP/protein kinase A activated a Gi/Gs shift, leading to Ca(2+)-activated glycogenolysis. Inhibition of this pathway downstream of cAMP but upstream of the Gi/Gs shift abolished the glycogenolysis. However, inhibitors operating downstream of the Ca(2+)-sensitive step, but preventing transactivation-mediated epidermal growth factor (EGF) receptor stimulation, a later step in the activated pathway, also caused inhibition of glycogenolysis. For this reason the effect of EGF was investigated and it was found to be glycogenolytic. Large increases in extracellular K(+) activated glycogenolysis by a nifedipine-inhibited L-channel opening allowing influx of Ca(2+), known to be glycogenolysis-dependent. Small increases (addition of 5 mM KCl) caused a smaller effect by a similarly glycogenolysis-reliant opening of an IP3 receptor-dependent ouabain signaling pathway. The same pathway could be activated by GABA (also in brain slices) due to its depolarizing effect in astrocytes.

  1. Stability of Neural Firing in the Trigeminal Nuclei under Mechanical Whisker Stimulation

    Directory of Open Access Journals (Sweden)

    Valeri A. Makarov

    2010-01-01

    Full Text Available Sensory information handling is an essentially nonstationary process even under a periodic stimulation. We show how the time evolution of ridges in the wavelet spectrum of spike trains can be used for quantification of the dynamical stability of the neuronal responses to a stimulus. We employ this method to study neuronal responses in trigeminal nuclei of the rat provoked by tactile whisker stimulation. Neurons from principalis (Pr5 and interpolaris (Sp5i show the maximal stability at the intermediate (50 ms stimulus duration, whereas Sp5o cells “prefer” shorter (10 ms stimulation. We also show that neurons in all three nuclei can perform as stimulus frequency filters. The response stability of about 33% of cells exhibits low-pass frequency dynamics. About 57% of cells have band-pass dynamics with the optimal frequency at 5 Hz for Pr5 and Sp5i, and 4 Hz for Sp5o, and the remaining 10% show no prominent dependence on the stimulus frequency. This suggests that the neural coding scheme in trigeminal nuclei is not fixed, but instead it adapts to the stimulus characteristics.

  2. Amelioration of iron toxicity: A mechanism for aluminum-induced growth stimulation in tea plants.

    Science.gov (United States)

    Hajiboland, Roghieh; Barceló, Juan; Poschenrieder, Charlotte; Tolrà, Roser

    2013-11-01

    Tea plants (Camellia sinensis) are well adapted to acid soils with high Al availability. These plants not only accumulate high leaf Al concentrations, but also respond to Al with growth stimulation. Decreased oxidative stress has been associated with this effect. Why tea plants not exposed to Al suffer from oxidative stress has not been clarified. In this study, hydroponically grown tea plants treated with 0 to 300 μM Al were analyzed for growth, Al and Fe accumulation, and Al distribution by means of morin and hematoxylin staining. Roots of control plants stained black with hematoxylin. This indicates the formation of a Fe-hematoxylin complex. Young leaves of controls accumulated more than 1000 mg Fe kg(-1) dry weight. This concentration is above the Fe-toxicity threshold in most species. Supply of Al stimulated growth and reduced Fe uptake and transport. These results indicate that Al-induced growth stimulation might be due to alleviation of a latent Fe toxicity occurring in tea plants without Al supply.

  3. Pharmacological analysis for mechanisms of GPI-80 release from tumour necrosis factor-alpha-stimulated human neutrophils.

    Science.gov (United States)

    Nitto, Takeaki; Araki, Yoshihiko; Takeda, Yuji; Sendo, Fujiro

    2002-10-01

    1 GPI-80, a glycosylphosphatidylinositol (GPI)-anchored protein initially identified on human neutrophils, plays a role(s) in the regulation of beta2 integrin function. Previous studies have shown that GPI-80 is sublocated in secretory vesicles. It is also found in soluble form in the synovial fluid of rheumatoid arthritis patients, and in the culture supernatant of formyl-methionyl-leucyl-phenylalanine-stimulated neutrophils. To understand the behaviour of GPI-80 under conditions of stimulation, we investigated the effects of tumour necrosis factor (TNF)-alpha on its expression and release. We also probed the mechanism of its release with various pharmacologic tools. 2 TNF-alpha induced the release of GPI-80 from human neutrophils in a concentration- and time-dependent manner (in the range of 1-100 u ml(-1) and 30-120 min, respectively), but did not affect surface GPI-80 levels. 3 Cytochalasin B, genistein, and SB203580 but not PD98059 inhibited TNF-alpha-stimulated GPI-80 release and neutrophil adherence at the same concentration. In addition, TNF-alpha-induced GPI-80 release was inhibited by blocking monoclonal antibodies specific to components of Mac-1 (CD11b and CD18). 4 Antioxidants (pyrrolidine dithiocarbamate and N-acetyl-L-cysteine) inhibited GPI-80 release by TNF-alpha stimulation, but superoxide dismutase did not. Antioxidants but not superoxide dismutase reduced an intracellular oxidation state. 5 These findings indicate that TNF-alpha-stimulated GPI-80 release from human neutrophils depends upon adherence via beta2 integrins. They also suggest that cytochalasin B, genistein, and SB203580 inhibit GPI-80 release by suppressing signals for cell adherence, rather than by a direct effect on its secretion. Finally, we suggest that GPI-80 release involves an intracellular change in a redox state.

  4. New numerical model for thermal quenching mechanism in quartz based on two-stage thermal stimulation of thermoluminescence model

    Directory of Open Access Journals (Sweden)

    Ahmed Kadari

    2015-11-01

    Full Text Available The effect of thermal quenching plays an important role in the thermoluminescence (TL of quartz on which many applications of TL are based. The studies of the stability and kinetics of the 325 °C thermoluminescence peak in quartz are described by Wintle (1975, which show the occurrence of thermal quenching, the decrease in luminescence efficiency with rise in temperature. The thermal quenching of thermoluminescence in quartz was studied experimentally by several authors. The simulations work presented in the literature is based on the single-stage thermal stimulation model of thermoluminescence, in spite of that the mechanisms of this effect remain incomplete. This paper presents a new numerical model for thermal quenching in quartz, using the previously published two-stage thermal stimulation of thermoluminescence model.

  5. Mechanical loading stimulates BMP7, but not BMP2, production by osteocytes

    NARCIS (Netherlands)

    Santos, A.; Bakker, A.D.; Willems, H.M.E.; Bravenboer, N.; Bronckers, A.L.J.J.; Klein-Nulend, J.

    2011-01-01

    Bone mechanical adaptation is a cellular process that allows bones to adapt their mass and structure to mechanical loading. This process is governed by the osteocytes, which in response to mechanical loading produce signaling molecules that affect osteoblasts and osteoclasts. Bone morphogenic protei

  6. Development of Numerical Analysis Techniques Based on Damage Mechanics and Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoon Suk; Lee, Dock Jin; Choi, Shin Beom; Kim, Sun Hye; Cho, Doo Ho; Lee, Hyun Boo [Sungkyunkwan University, Seoul (Korea, Republic of)

    2010-04-15

    The scatter of measured fracture toughness data and transferability problems among different crack configurations as well as geometry and loading conditions are major obstacles for application of fracture mechanics. To address these issues, recently, concerns on the local approach employing reliable micro-mechanical damage models are being increased again in connection with a progress of computational technology. In the present research, as part of development of fracture mechanical evaluation model for material degradation of reactor pressure boundary, several investigations on fracture behaviors were carried out. Especially, a numerical scheme to determine key parameters consisting both cleavage and ductile fracture estimate models was changed efficiently by incorporating a genetic algorithm. Also, with regard to the well-known master curve, newly reported methods such as bimodal master curve, randomly inhomogeneous master curve and single point estimation were reviewed to deal with homogeneous and inhomogeneous material characteristics. A series of preliminary finite element analyses was conducted to examine the element size effect on micro-mechanical models. Then, a new thickness correction equation was derived from parametric three-dimensional numerical simulations, which was founded on the current test standard, ASTM E1921, but could lead to get more realistic fracture toughness values. As a result, promising modified master curves as well as fracture toughness diagrams to convert data between pre-cracked V-notched and compact tension specimens were generated. Moreover, a user-subroutine in relation to GTN(Gurson-Tvergaard-Needleman) model was made by adopting Hill's 48 yield potential theory. By applying GTN model combined with the subroutine to small punch specimens, the effect of inhomogeneous properties on fracture behaviors of miniature specimens was confirmed. Therefore, it is anticipated that the aforementioned enhanced research results can be

  7. Effect of the number of pins and inter-pin distance on somatosensory evoked magnetic fields following mechanical tactile stimulation.

    Science.gov (United States)

    Onishi, Hideaki; Sugawara, Kazuhiro; Yamashiro, Koya; Sato, Daisuke; Suzuki, Makoto; Kirimoto, Hikari; Tamaki, Hiroyuki; Murakami, Hiroatsu; Kameyama, Shigeki

    2013-10-16

    Magnetoencephalography (MEG) recordings were collected to investigate the effect of the number of mechanical pins and inter-pin distance on somatosensory evoked magnetic fields (SEFs) following mechanical stimulation (MS). We used a 306-ch whole-head MEG system. SEFs were elicited through tactile stimuli with 1-, 2-, 3-, 4- and 8-pins using healthy participants. Tactile stimuli were applied to the tip of the right index finger. SEF following electrical stimulation of the index finger was recorded in order to compare the activity in the primary somatosensory cortex (S1) following MS. Prominent SEFs were recorded from the contralateral hemisphere approximately 54 ms (P50m) and 125 ms (P100m) after MS regardless of the number of pins. Equivalent current dipoles were located in the S1. The source activities for P50m and P100m significantly increased in tandem with the number of pins for MS. However, the increased ratios for the source activities according to the increase in the number of pins were significantly smaller than that induced by electrical stimulation, and when the number of the pins doubled from 1-pin to 2-pins, from 2-pins to 4-pins, and from 4-pins to 8-pins, S1 activities increased by only 130%. Additionally, source activities significantly increased when the inter-pin distance increased from 2.4 to 7.2 mm. The number of stimulated receptors was considered to have increased with an increase in the inter-pin distance as well as an increase in the number of pins. These findings clarified the effect of the number of pins and inter-pin distance for MS on SEFs.

  8. Ultrasonography-guided percutaneous nephrolithotomy with Chinese one-shot tract dilation technique based on stimulated diuresis: A report of 67 cases.

    Science.gov (United States)

    Shi, Ying; Liang, Hua-Geng; Yang, Xiong; Hai, Bo; Wang, Liang; Xing, Yi-Fei; Ju, Wen; Zeng, Fu-Qing; Zhang, Xiao-Ping; Li, Wen-Cheng

    2016-12-01

    The safety and effectiveness of a novel Chinese one-shot dilation technique based on stimulated diuresis for percutaneous nephrolithotomy (PCNL) were investigated. After the feasibility of the Chinese one-shot dilation based on stimulated diuresis was verified by an animal study, this technique was applied in the clinical practice. A total of 67 patients in our department underwent the modified PCNL from July 2014 to June 2015. After the renal infundibulum was distended by stimulated diuresis, the kidney was punctured under the ultrasonographic guidance via the fornix of the target calyx. The working channel was dilated using a special designed pencil-shaped fascial dilator. The successful access rate, nephrostomy tract creation time, pre- and postoperative hemoglobin values and serum creatinine concentrations, stone-free rate and complications were recorded and analyzed. The renal infundibulum was successfully distended in all of the patients by the diuresis treatment. Under the ultrasonographic guidance, the successful access rate was 100% and the mean tract creation time was 2.0 min (range: 1.5-5.0 min). The stone-free rate right after surgery was 91.0%. Although the postoperative hemoglobin was significantly reduced (P0.05). No severe complication occurred during or after the PCNL. It was suggested that this Chinese one-shot dilation technique based on stimulated diuresis is an efficient and safe innovation for PCNL, and is even helpful for those patients with non-dilated pelvicaliceal systems.

  9. Creation of a bioreactor for the application of variable amplitude mechanical stimulation of fibrin gel-based engineered cardiac tissue.

    Science.gov (United States)

    Morgan, Kathy Y; Black, Lauren D

    2014-01-01

    This chapter details the creation of three-dimensional fibrin hydrogels as an engineered myocardial tissue and introduces a mechanical stretch bioreactor system that allows for the cycle-to-cycle variable amplitude mechanical stretch of the constructs as a method of conditioning the constructs to be more similar to native tissue. Though mechanical stimulation has been established as a standard method of improving construct development, most studies have been performed under constant frequency and constant amplitude, even though variability is a critical aspect of healthy cardiac physiology. The introduction of variability in other organ systems has demonstrated beneficial effects to cell function in vitro. We hypothesize that the introduction of variability in engineered cardiac tissue could have a similar effect.

  10. 7th International Symposium on Applications of Laser Techniques to Fluid Mechanics, volume 2

    Science.gov (United States)

    1994-07-01

    The proceedings volumes 1 and 2 comprise the papers that were accepted for presentation at the Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics held at The Calouste Gulbenkian Foundation in Lisbon, during the period of July 11 to 14, 1994. The prime objective of this Seventh Symposium is to provide a forum for the presentation of the most advanced research on laser techniques for flow measurements, and reveal significant results to fluid mechanics. The applications of laser techniques to scientific and engineering fluid flow research is emphasized, but contributions to the theory and practice of laser methods are also considered where they facilitate new improved fluid mechanic research. Attention is focused on laser-Doppler anemometry, particle sizing and other methods for the measurement of velocity and scalars such as particle image velocimetry and laser induced fluorescence.

  11. 7th International Symposium on Applications of Laser Techniques to Fluid Mechanics, volume 1

    Science.gov (United States)

    1994-07-01

    The proceedings volumes 1 and 2 comprise the papers that were accepted for presentation at the Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics held at The Calouste Gulbenkian Foundation in Lisbon, during the period of July 11 to 14, 1994. The prime objective of this Seventh Symposium is to provide a forum for the presentation of the most advanced research on laser techniques for flow measurements, and reveal significant results to fluid mechanics. The applications of laser techniques to scientific and engineering fluid flow research is emphasized, but contributions to the theory and practice of laser methods are also considered where they facilitate new improved fluid mechanics research. Attention is focused on laser-Doppler anemometry, particle sizing and other methods for the measurement of velocity and scalars such as particle image velocimetry and laser induced fluorescence.

  12. THE RESEARCH TECHNIQUES FOR ANALYSIS OF MECHANICAL AND TRIBOLOGICAL PROPERTIES OF COATING-SUBSTRATE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Kinga CHRONOWSKA-PRZYWARA

    2014-06-01

    Full Text Available The article presents research techniques for the analysis of both mechanical and tribological properties of thin coatings applied on highly loaded machine elements. In the Institute of Machine Design and Exploitation, AGH University of Science and Technology students of the second level of Mechanical Engineering study tribology attending laboratory class. Students learn on techniques for mechanical and tribological testing of thin, hard coatings deposited by PVD and CVD technologies. The program of laboratories contains micro-, nanohardness and Young's modulus measurements by instrumental indentations and analysys of coating to substrate adhesion by scratch testing. The tribological properties of the coating-substrate systems are studied using various techniques, mainly in point contact load conditions with ball-on-disc and block-on-ring tribomiters as well as using ball cratering method in strongly abrasive suspensions.

  13. Progress in phototaxis mechanism research and micromanipulation techniques of algae cells

    Institute of Scientific and Technical Information of China (English)

    WEN Chenglu; LI Heng; WANG Pengbo; LI Wei; ZHAO Jingquan

    2007-01-01

    Phototactic movement is a characteristic of some microorganisms' response to light environment. Most of the algae have dramatically phototactic responses, underlying the complicated biological, physical and photochemical mechanisms are involved. With the development of the micro/nano and sensor techniques, great progress has been made in the research of the algae phototaxis. This review article summarizes the progress made in the research on the functional phototactic structures, the mechanisms of photo-response process and photodynamics of phototaxis in algae, and describes the latest developed micro-tracking technique and micromanipulation technique.Moreover, based on our own research results, the potential correlation between the phototaxis and photosynthesis is discussed, and the directions for future research of the phototactic mechanism are proposed.

  14. Patch Clamp: A Powerful Technique for Studying the Mechanism of Acupuncture

    Directory of Open Access Journals (Sweden)

    D. Zhang

    2012-01-01

    Full Text Available Cellular and molecular events can be investigated using electrophysiological techniques. In particular, the patch-clamp method provides detailed information. In addition, the patch-clamp technique has become a powerful method for investigating the mechanisms underlying the effects of acupuncture. In this paper, recent researches on how acupuncture might modulate electrophysiological responses in the central nervous system (CNS and affect peripheral structures are reviewed.

  15. Nicotine stimulates nerve growth factor in lung fibroblasts through an NFκB-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Cherry Wongtrakool

    Full Text Available Airway hyperresponsiveness (AHR is classically found in asthma, and persistent AHR is associated with poor asthma control. Although airway smooth muscle (ASM cells play a critical pathophysiologic role in AHR, the paracrine contributions of surrounding cells such as fibroblasts to the contractile phenotype of ASM cells have not been examined fully. This study addresses the hypothesis that nicotine promotes a contractile ASM cell phenotype by stimulating fibroblasts to increase nerve growth factor (NGF secretion into the environment.Primary lung fibroblasts isolated from wild type and α7 nicotinic acetylcholine receptor (α7 nAChR deficient mice were treated with nicotine (50 µg/ml in vitro for 72 hours. NGF levels were measured in culture media and in bronchoalveolar lavage (BAL fluid from asthmatic, smoking and non-smoking subjects by ELISA. The role of the NFκB pathway in nicotine-induced NGF expression was investigated by measuring NFκB nuclear translocation, transcriptional activity, chromatin immunoprecipitation assays, and si-p65 NFκB knockdown. The ability of nicotine to stimulate a fibroblast-mediated, contractile ASM cell phenotype was confirmed by examining expression of contractile proteins in ASM cells cultured with fibroblast-conditioned media or BAL fluid.NGF levels were elevated in the bronchoalveolar lavage fluid of nicotine-exposed mice, current smokers, and asthmatic children. Nicotine increased NGF secretion in lung fibroblasts in vitro in a dose-dependent manner and stimulated NFκB nuclear translocation, p65 binding to the NGF promoter, and NFκB transcriptional activity. These responses were attenuated in α7 nAChR deficient fibroblasts and in wild type fibroblasts following NFκB inhibition. Nicotine-treated, fibroblast-conditioned media increased expression of contractile proteins in ASM cells.Nicotine stimulates NGF release by lung fibroblasts through α7 nAChR and NFκB dependent pathways. These novel findings

  16. Mechanism of stimulated Hawking radiation in a laboratory Bose-Einstein condensate

    CERN Document Server

    Wang, Yi-Hsieh; Edwards, Mark; Clark, Charles W

    2016-01-01

    We model a sonic black hole analog in a quasi one-dimensional Bose-Einstein condensate, using a Gross-Pitaevskii equation matching the configuration of a recent experiment by Steinhauer. The model agrees well with the experimental observations, with no adjustable parameters, demonstrating their hydrodynamic nature. With enhanced but experimentally feasible parameters we establish by spectral analysis that a growing bow wave is generated at the inner (white hole) horizon, stimulating the emission of Hawking radiation. The black hole laser effect plays no role.

  17. Mechanical stimulated reaction of metal/polymer mixed powders; Kinzoku/kobunshi kongo funmatsu no kikaiteki reiki hanno

    Energy Technology Data Exchange (ETDEWEB)

    Tobita, M.; Sakakibara, A.; Takemoto, Y. [Okayama University, Okayama (Japan). Faculty of Engineering; Iwabu, H. [Kurare Co. Ltd., Osaka (Japan)

    1999-12-15

    Mechanical grinding (MG) with mechanically stimulated reaction was performed on metal/polymer mixed powders. The starting materials used in this study were the metals of Mg, Ti and Mg{sub 2}Ni powders, arid polymer of PTFE, PVC and PE powders. The MG process was investigated using XRD, IR, SEM and TEM. According to XRD results, magnesium fluoride (MgF{sub 2}, TiF{sub 2}) and chloride (MgCl{sub 2}) were detected from MG products of the Mg/PTFE, Ti/PTFE and Mg/PVC blending systems, respectively. Explosive reaction was found during MG of both Mg/PTFE and Ti/PTFE. It was also confirmed by XRD results that the production of MgF{sub 2} had already been formed just before the explosive reaction in Mg/PTFE system. It was found from IR analysis that C-C single bond in the polymers, not only both in PTFE and PVC but also in PE, changed to double bond C=C. Hydrogen produced due to decomposition of PE on blending Mg{sub 2}Ni/PE was absorbed into C-Mg{sub 2}Ni-H as amorphous solutes. These mechanically stimulated reaction was powerful method for decomposition of engineering plastics. (author)

  18. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Science.gov (United States)

    Nishitani, Wagner Shin; Alencar, Adriano Mesquita; Wang, Yingxiao

    2015-01-01

    A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7) expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount) and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment) and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  19. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  20. Effect of quenching techniques on the mechanical properties of low carbon structural steel

    Directory of Open Access Journals (Sweden)

    K. Miernik

    2010-07-01

    Full Text Available The paper presents the results of the impact of incomplete quenching technique on the mechanical properties of low carbon structural steel.Significant influence of the heating method to the α + γ field was observed on the strength and plasticity after hardening process. The best combination of mechanical properties was obtained for the 3th technique consisting of pre-heating the material to the austenite field, next cooling to the appropriate temperature in the α + γ and hardening from that dual phase region. The high level of toughness with relatively high strength were observed, compared to the properties obtained for the two other ways to quench annealing (incomplete hardening.

  1. Short-term adaptations in spinal cord circuits evoked by repetitive transcranial magnetic stimulation: possible underlying mechanisms

    DEFF Research Database (Denmark)

    Perez, Monica A.; Lungholt, Bjarke K.S.; Nielsen, Jens Bo

    2005-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been shown to induce adaptations in cortical neuronal circuitries. In the present study we investigated whether rTMS, through its effect on corticospinal pathways, also produces adaptations at the spinal level, and what the neuronal mechanisms...... that the depression of the H-reflex by rTMS can be explained, at least partly, by an increased presynaptic inhibition of soleus Ia afferents. In contrast, rTMS had no effect on disynaptic reciprocal Ia inhibition from ankle dorsiflexors to plantarflexors. We conclude that a train of rTMS may modulate transmission...

  2. Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism

    Institute of Scientific and Technical Information of China (English)

    YUAN Wu-Jie; LUO Xiao-Shu; JIANG Pin-Qun

    2007-01-01

    In this paper,we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism.Then we study excitement properties of the model under alternating current (AC) stimulation.The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli,such as refractory period and the brain neural excitement response induced by different intensities of nolse and coupling.The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.

  3. Mechanisms responsible for the effect of median nerve electrical stimulation on traumatic brain injury-induced coma: orexin-A-mediated N-methyl-D-aspartate receptor subunit NR1 upregulation

    Directory of Open Access Journals (Sweden)

    Zhen Feng

    2016-01-01

    Full Text Available Electrical stimulation of the median nerve is a noninvasive technique that facilitates awakening from coma. In rats with traumatic brain injury-induced coma, median nerve stimulation markedly enhances prefrontal cortex expression of orexin-A and its receptor, orexin receptor 1. To further understand the mechanism underlying wakefulness mediated by electrical stimulation of the median nerve, we evaluated its effects on the expression of the N-methyl-D-aspartate receptor subunit NR1 in the prefrontal cortex in rat models of traumatic brain injury-induced coma, using immunohistochemistry and western blot assays. In rats with traumatic brain injury, NR1 expression increased with time after injury. Rats that underwent electrical stimulation of the median nerve (30 Hz, 0.5 ms, 1.0 mA for 15 minutes showed elevated NR1 expression and greater recovery of consciousness than those without stimulation. These effects were reduced by intracerebroventricular injection of the orexin receptor 1 antagonist SB334867. Our results indicate that electrical stimulation of the median nerve promotes recovery from traumatic brain injury-induced coma by increasing prefrontal cortex NR1 expression via an orexin-A-mediated pathway.

  4. Boron nitride nanotube-mediated stimulation modulates F/G-actin ratio and mechanical properties of human dermal fibroblasts

    Science.gov (United States)

    Ricotti, Leonardo; das Neves, Ricardo Pires; Ciofani, Gianni; Canale, Claudio; Nitti, Simone; Mattoli, Virgilio; Mazzolai, Barbara; Ferreira, Lino; Menciassi, Arianna

    2014-02-01

    F/G-actin ratio modulation is known to have an important role in many cell functions and in the regulation of specific cell behaviors. Several attempts have been made in the latest decades to finely control actin production and polymerization, in order to promote certain cell responses. In this paper we demonstrate the possibility of modulating F/G-actin ratio and mechanical properties of normal human dermal fibroblasts by using boron nitride nanotubes dispersed in the culture medium and by stimulating them with ultrasound transducers. Increasing concentrations of nanotubes were tested with the cells, without any evidence of cytotoxicity up to 10 μg/ml concentration of nanoparticles. Cells treated with nanoparticles and ultrasound stimulation showed a significantly higher F/G-actin ratio in comparison with the controls, as well as a higher Young's modulus. Assessment of Cdc42 activity revealed that actin nucleation/polymerization pathways, involving Rho GTPases, are probably influenced by nanotube-mediated stimulation, but they do not play a primary role in the significant increase of F/G-actin ratio of treated cells, such effect being mainly due to actin overexpression.

  5. Molecular Mechanisms That Underlie the Dynamic Adaptation of Innate Monocyte Memory to Varying Stimulant Strength of TLR Ligands.

    Science.gov (United States)

    Yuan, Ruoxi; Geng, Shuo; Li, Liwu

    2016-01-01

    In adaptation to rising stimulant strength, innate monocytes can be dynamically programed to preferentially express either pro- or anti-inflammatory mediators. Such dynamic innate adaptation or programing may bear profound relevance in host health and disease. However, molecular mechanisms that govern innate adaptation to varying strength of stimulants are not well understood. Using lipopolysaccharide (LPS), the model stimulant of toll-like-receptor 4 (TLR4), we reported that the expressions of pro-inflammatory mediators are preferentially sustained in monocytes adapted by lower doses of LPS, and suppressed/tolerized in monocytes adapted by higher doses of LPS. Mechanistically, monocytes adapted by super-low dose LPS exhibited higher levels of transcription factor, interferon regulatory factor 5 (IRF5), and reduced levels of transcriptional modulator B lymphocyte-induced maturation protein-1 (Blimp-1). Intriguingly, the inflammatory monocyte adaptation by super-low dose LPS is dependent upon TRAM/TRIF but not MyD88. Similar to LPS, we also observed biphasic inflammatory adaptation and tolerance in monocytes challenged with varying dosages of TLR7 agonist. In sharp contrast, rising doses of TLR3 agonist preferentially caused inflammatory adaptation without inducing tolerance. At the molecular level, the differential regulation of IRF5 and Blimp-1 coincides with unique monocyte adaptation dynamics by TLR4/7 and TLR3 agonists. Our study provides novel clue toward the understanding of monocyte adaptation and memory toward distinct TLR ligands.

  6. Nondestructive techniques for characterizing mechanical properties of structural materials - An overview

    Science.gov (United States)

    Vary, A.; Klima, S. J.

    1986-01-01

    An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural materials. The purpose is to review NDE techniques that go beyond the usual emphasis on flow detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor entrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts.

  7. Nondestructive techniques for characterizing mechanical properties of structural materials: An overview

    Science.gov (United States)

    Vary, A.; Klima, S. J.

    1985-01-01

    An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural materials. The purpose is to review NDE techniques that go beyond the usual emphasis on flaw detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor entrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts.

  8. Barrier and uptake mechanisms in the cerebrovascular response to noradrenaline. [/sup 133/Xe tracer technique, baboons

    Energy Technology Data Exchange (ETDEWEB)

    McCalden, T.A.; Eidelman, B.H.; Mendelow, A.D.

    1977-10-01

    Cerebral blood flow (CBF) was measured in 20 baboons by the intra-arterial xenon-133 injection method. The CBF responses to intra-arterial infusions of noradrenaline (NA) were determined. These responses were normally found to be vasodilator and mediated by beta adrenoreceptors. After infusion of substances blocking extraneuronal uptake of NA or opening of the blood-brain barrier, this vasodilation was either abolished or converted to an alpha-receptor mediated vasoconstriction. This suggests that normally the cerebral circulation is protected against noradrenergic vasoconstriction by mechanisms reducing the concentration of NA in the tunica media to below threshold for alpha-adrenoreceptor stimulation.

  9. Intrastriatal grafts of fetal ventral mesencephalon improve allodynia-like withdrawal response to mechanical stimulation in a rat model of Parkinson's disease.

    Science.gov (United States)

    Takeda, Ryuichiro; Ishida, Yasushi; Ebihara, Kosuke; Abe, Hiroshi; Matsuo, Hisae; Ikeda, Tetsuya; Koganemaru, Go; Kuramashi, Aki; Funahashi, Hideki; Magata, Yasuhiro; Kawai, Keiichi; Nishimori, Toshikazu

    2014-06-24

    We previously reported that a unilateral 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease showed allodynia-like withdrawal response to mechanical stimulation of the ipsilateral side of the rat hindpaw. The goal of this study was to investigate the effect of intrastriatal grafts of fetal ventral mesencephalon (VM) on the withdrawal response in 6-OHDA rats. The withdrawal threshold in response to the mechanical stimulation of the rat hindpaw was measured using von Frey filaments. In the ipsilateral side of the 6-OHDA lesions, the withdrawal threshold in response to mechanical stimulation significantly increased in 6-OHDA rats with VM grafts compared with those with sham grafts, but did not change in the contralateral side at 5 weeks after transplantation. The present results suggest that the intrastriatal grafts of fetal VM may relieve pain sensation induced by mechanical stimulation in 6-OHDA rats. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Gonadotropin-releasing hormone stimulates prolactin release from lactotrophs in photoperiodic species through a gonadotropin-independent mechanism.

    Science.gov (United States)

    Henderson, Helen L; Hodson, David J; Gregory, Susan J; Townsend, Julie; Tortonese, Domingo J

    2008-02-01

    Previous studies have provided evidence for a paracrine interaction between pituitary gonadotrophs and lactotrophs. Here, we show that GnRH is able to stimulate prolactin (PRL) release in ovine primary pituitary cultures. This effect was observed during the breeding season (BS), but not during the nonbreeding season (NBS), and was abolished by the application of bromocriptine, a specific dopamine agonist. Interestingly, GnRH gained the ability to stimulate PRL release in NBS cultures following treatment with bromocriptine. In contrast, thyrotropin-releasing hormone, a potent secretagogue of PRL, stimulated PRL release during both the BS and NBS and significantly enhanced the PRL response to GnRH during the BS. These results provide evidence for a photoperiodically modulated functional interaction between the GnRH/gonadotropic and prolactin axes in the pituitary gland of a short day breeder. Moreover, the stimulation of PRL release by GnRH was shown not to be mediated by the gonadotropins, since immunocytochemical, Western blotting, and PCR studies failed to detect pituitary LH or FSH receptor protein and mRNA expressions. Similarly, no gonadotropin receptor expression was observed in the pituitary gland of the horse, a long day breeder. In contrast, S100 protein, a marker of folliculostellate cells, which are known to participate in paracrine mechanisms within this tissue, was detected throughout the pituitaries of both these seasonal breeders. Therefore, an alternative gonadotroph secretory product, a direct effect of GnRH on the lactotroph, or another cell type, such as the folliculostellate cell, may be involved in the PRL response to GnRH in these species.

  11. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS.

    Science.gov (United States)

    De Geeter, N; Crevecoeur, G; Leemans, A; Dupré, L

    2015-01-21

    In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically, it is the component of this field parallel to the neuron's local orientation, the so-called effective electric field, that can initiate neuronal stimulation. Deeper insights on the stimulation mechanisms can be acquired through extensive TMS modelling. Most models study simple representations of neurons with assumed geometries, whereas we embed realistic neural trajectories computed using tractography based on diffusion tensor images. This way of modelling ensures a more accurate spatial distribution of the effective electric field that is in addition patient and case specific. The case study of this paper focuses on the single pulse stimulation of the left primary motor cortex with a standard figure-of-eight coil. Including realistic neural geometry in the model demonstrates the strong and localized variations of the effective electric field between the tracts themselves and along them due to the interplay of factors such as the tract's position and orientation in relation to the TMS coil, the neural trajectory and its course along the white and grey matter interface. Furthermore, the influence of changes in the coil orientation is studied. Investigating the impact of tissue anisotropy confirms that its contribution is not negligible. Moreover, assuming isotropic tissues lead to errors of the same size as rotating or tilting the coil with 10 degrees. In contrast, the model proves to be less sensitive towards the not well-known tissue conductivity values.

  12. Identification of the Scale of Changes in Personnel Motivation Techniques at Mechanical-Engineering Enterprises

    Directory of Open Access Journals (Sweden)

    Melnyk Olga G.

    2016-02-01

    Full Text Available The method for identification of the scale of changes in personnel motivation techniques at mechanical-engineering enterprises based on structural and logical sequence of implementation of relevant stages (identification of the mission, strategy and objectives of the enterprise; forecasting the development of the enterprise business environment; SWOT-analysis of actual motivation techniques, deciding on the scale of changes in motivation techniques, choosing providers for changing personnel motivation techniques, choosing an alternative to changing motivation techniques, implementation of changes in motivation techniques; control over changes in motivation techniques. It has been substantiated that the improved method enables providing a systematic and analytical justification for management decisionmaking in this field and choosing the best for the mechanical-engineering enterprise scale and variant of changes in motivation techniques. The method for identification of the scale of changes in motivation techniques at mechanical-engineering enterprises takes into account the previous, current and prospective character. Firstly, the approach is based on considering the past state in the motivational sphere of the mechanical-engineering enterprise; secondly, the method involves identifying the current state of personnel motivation techniques; thirdly, within the method framework the prospective, which is manifested in strategic vision of the enterprise development as well as in forecasting the development of its business environment, is taken into account. The advantage of the proposed method is that the level of its specification may vary depending on the set goals, resource constraints and necessity. Among other things, this method allows integrating various formalized and non-formalized causal relationships in the sphere of personnel motivation at machine-building enterprises and management of relevant processes. This creates preconditions for a

  13. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation.

    Directory of Open Access Journals (Sweden)

    Sang-Hyug Park

    Full Text Available Adipose tissue-derived stem cells (ASCs are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen and integrin (CD11b and CD31 expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1 and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation.

  14. Mechanism of the melanogenesis stimulation activity of (-)-cubebin in murine B16 melanoma cells.

    Science.gov (United States)

    Hirata, Noriko; Naruto, Shunsuke; Ohguchi, Kenji; Akao, Yukihiro; Nozawa, Yoshinori; Iinuma, Munekazu; Matsuda, Hideaki

    2007-07-15

    (-)-Cubebin showed a melanogenesis stimulation activity in a concentration-dependent manner in murine B16 melanoma cells without any significant effects on cell proliferation. Tyrosinase activity was increased at 24-72 h after addition of cubebin to B16 cells, and then intracellular melanin amount was increased at 48-96 h after the treatment. The expression levels of tyrosinase were time-dependently enhanced after the treatment with cubebin. At the same time, the expression levels of tyrosinase mRNA were also increased after addition of cubebin. Furthermore Western blot analysis revealed that cubebin elevated the level of phosphorylation of p38 mitogen-activated protein kinase (MAPK). SB203580, a selective inhibitor of p38 MAPK, completely blocked cubebin-induced expression of tyrosinase mRNA in B16 cells. These results suggested that cubebin increased melanogenesis in B16 cells through the enhancement of tyrosinase expression mediated by activation of p38 MAPK.

  15. Mechanisms of body weight gain in patients with Parkinson's disease after subthalamic stimulation.

    Science.gov (United States)

    Montaurier, C; Morio, B; Bannier, S; Derost, P; Arnaud, P; Brandolini-Bunlon, M; Giraudet, C; Boirie, Y; Durif, F

    2007-07-01

    Chronic bilateral subthalamic stimulation leads to a spectacular clinical improvement in patients with motor complications. However, the post-operative body weight gain involved may limit the benefits of surgery and induce critical metabolic disorders. Twenty-four Parkinsonians (61.1 +/- 1.4 years) were examined 1 month before (M - 1) and 3 months after (M + 3) surgery. Body composition and energy expenditure (EE) were measured (1) over 36 h in calorimetric chambers (CC) with rigorous control of food intakes and activities [sleep metabolic rate, resting activities, meals, 3 or 4 sessions of 20 min on a training bicycle at 13 km/h and daily EE] and (2) in resting conditions (basal metabolic rate) during an acute L-dopa challenge (M - 1) or according to acute 'off' and 'on' stimulation (M + 3). Before surgery, EE was compared between the Parkinsonian patients and healthy subjects matched for height and body composition (metabolic rate during sleep, daily EE) or matched to predicted values (basal metabolic rate). Before surgery, in Parkinsonian men but not women, (1) daily EE was higher while sleep metabolic rate was lower compared to healthy matched men (+9.2 +/- 3.9 and -8.2 +/- 2.3%, respectively, P weight gain. Parkinson's disease is associated with profound alterations in the central control of energy metabolism. Normalization of energy metabolism after DBS-STN implantation may favour body weight gain, of which quality was gender specific. As men gained primarily fat-free mass, a reasonable weight gain may be tolerated, in contrast with women who gained only fat. Other factors such as changes in free-living physical activity may help to limit body weight gain in some patients.

  16. Recombinant acylation stimulating protein administration to C3-/- mice increases insulin resistance via adipocyte inflammatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Mercedes Nancy Munkonda

    Full Text Available BACKGROUND: Complement 3 (C3, a key component of the innate immune system, is involved in early inflammatory responses. Acylation stimulating protein (ASP; aka C3adesArg, a C3 cleavage product, is produced in adipose tissue and stimulates lipid storage. We hypothesized that, depending on the diet, chronic ASP administration in C3(-/- mice would affect lipid metabolism and insulin sensitivity via an adaptive adipose tissue inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: C3(-/- mice on normal low fat diet (ND or high fat diet (HFD were chronically administered recombinant ASP (rASP for 25 days via an osmotic mini-pump. While there was no effect on food intake, there was a decrease in activity, with a relative increase in adipose tissue weight on ND, and a shift in adipocyte size distribution. While rASP administration to C3(-/- mice on a ND increased insulin sensitivity, on a HFD, rASP administration had the opposite effect. Specifically, rASP administration in C3(-/- HFD mice resulted in decreased gene expression of IRS1, GLUT4, SREBF1 and NFκB in muscle, and decreased C5L2 but increased JNK, CD36, CD11c, CCR2 and NFκB gene expression in adipose tissue as well as increased secretion of proinflammatory cytokines (Rantes, KC, MCP-1, IL-6 and G-CSF. In adipose tissue, although IRS1 and GLUT4 mRNA were unchanged, insulin response was reduced. CONCLUSION: The effects of chronic rASP administration are tissue and diet specific, rASP administration enhances the HFD induced inflammatory response leading to an insulin-resistant state. These results suggest that, in humans, the increased plasma ASP associated with obesity and cardiovascular disease could be an additional factor directly contributing to development of metabolic syndrome, insulin resistance and diabetes.

  17. Quantum Mechanics Version of Wavelet Transform Studied by Virtue of IWOP Technique

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; L(U) Jian-Feng

    2004-01-01

    Using the technique of integral within an ordered product (IWOP) of operators we show that the wavelet transform can be recasted to a matrix element of squeezing-displacing operator between the mother wavelet state vector and the state vector to be transformed in the context of quantum mechanics. In this way many quantum optical states'wavelet transform can be easily derived.

  18. Using High Speed Smartphone Cameras and Video Analysis Techniques to Teach Mechanical Wave Physics

    Science.gov (United States)

    Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano

    2017-01-01

    We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses…

  19. Effects of weak transcranial Alternating Current Stimulation on brain activity – a review of known mechanisms from animal studies

    Directory of Open Access Journals (Sweden)

    Davide eReato

    2013-10-01

    Full Text Available Rhythmic neuronal activity is ubiquitous in the human brain. These rhythms originate from a variety of different network mechanisms, which give rise to a wide-ranging spectrum of oscillation frequencies. In the last few years an increasing number of clinical research studies have explored transcranial alternating current stimulation (tACS with weak current as a tool for affecting brain function. The premise of these interventions is that tACS will interact with ongoing brain oscillations. However, the exact mechanisms by which weak currents could affect neuronal oscillations at different frequency bands are not well known and this, in turn, limits the rational optimization of human experiments. Here we review the available in vitro and in vivo animal studies that attempt to provide mechanistic explanations. The findings can be summarized into a few generic principles, such as periodic modulation of excitability, shifts in spike timing, modulation of firing rate, and shifts in the balance of excitation and inhibition. These effects result from weak but simultaneous polarization of a large number of neurons. Whether this can lead to an entrainment or a modulation of brain oscillations, or whether AC currents have no effect at all, depends entirely on the specific dynamic that gives rise to the different brain rhythms, as discussed here for slow wave oscillations (~1 Hz and gamma oscillations (~30 Hz. We conclude with suggestions for further experiments to investigate the role of AC stimulation for other physiologically relevant brain rhythms.

  20. Influence of a pre-stimulation with chronic low-dose UVB on stress response mechanisms in human skin fibroblasts.

    Science.gov (United States)

    Drigeard Desgarnier, Marie-Catherine; Fournier, Frédéric; Droit, Arnaud; Rochette, Patrick J

    2017-01-01

    Exposure to solar ultraviolet type B (UVB), through the induction of cyclobutane pyrimidine dimer (CPD), is the major risk factor for cutaneous cancer. Cells respond to UV-induced CPD by triggering the DNA damage response (DDR) responsible for signaling DNA repair, programmed cell death and cell cycle arrest. Underlying mechanisms implicated in the DDR have been extensively studied using single acute UVB irradiation. However, little is known concerning the consequences of chronic low-dose of UVB (CLUV) on the DDR. Thus, we have investigated the effect of a CLUV pre-stimulation on the different stress response pathways. We found that CLUV pre-stimulation enhances CPD repair capacity and leads to a cell cycle delay but leave residual unrepaired CPD. We further analyzed the consequence of the CLUV regimen on general gene and protein expression. We found that CLUV treatment influences biological processes related to the response to stress at the transcriptomic and proteomic levels. This overview study represents the first demonstration that human cells respond to chronic UV irradiation by modulating their genotoxic stress response mechanisms.

  1. 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics

    CERN Document Server

    Adrian, R J; Heitor, M V; Maeda, M; Tropea, C; Whitelaw, J H

    2002-01-01

    This volume includes revised and extended versions of selected papers presented at the Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics held at the Calouste Gulbenkian Foundation in Lisbon, during the period of July 10 to 13, 2000. The papers describe instrumentation developments for Velocity, Scalar and Multi-Phase Flows and results of measurements of Turbulent Flows, and Combustion and Engines. The papers demonstrate the continuing and healthy interest in the development of understanding of new methodologies and implementation in terms of new instrumentation. The prime objective of the Tenth Symposium was to provide a forum for the presentation of the most advanced research on laser techniques for flow measurements, and communicate significant results to fluid mechanics. The application of laser techniques to scientific and engineering fluid flow research was emphasized, but contributions to the theory and practice of laser methods were also considered where they facilita...

  2. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV Fracturing in Tight Oil Reservoirs.

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    Full Text Available Stimulated reservoir volume (SRV fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM, mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  3. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs.

    Science.gov (United States)

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  4. Assessment of strain measurement techniques to characterise mechanical properties of structural steel

    Directory of Open Access Journals (Sweden)

    H.B. Motra

    2014-12-01

    Full Text Available Strain measurement is important in mechanical testing. A wide variety of techniques exists for measuring strain in the tensile test; namely the strain gauge, extensometer, stress and strain determined by machine crosshead motion, Geometric Moire technique, optical strain measurement techniques and others. Each technique has its own advantages and disadvantages. The purpose of this study is to quantitatively compare the strain measurement techniques. To carry out the tensile test experiments for S 235, sixty samples were cut from the web of the I-profile in longitudinal and transverse directions in four different dimensions. The geometry of samples are analysed by 3D scanner and vernier caliper. In addition, the strain values were determined by using strain gauge, extensometer and machine crosshead motion. Three techniques of strain measurement are compared in quantitative manner based on the calculation of mechanical properties (modulus of elasticity, yield strength, tensile strength, percentage elongation at maximum force of structural steel. A statistical information was used for evaluating the results. It is seen that the extensometer and strain gauge provided reliable data, however the extensometer offers several advantages over the strain gauge and crosshead motion for testing structural steel in tension. Furthermore, estimation of measurement uncertainty is presented for the basic material parameters extracted through strain measurement.

  5. [Methodology and Implementation of Forced Oscillation Technique for Respiratory Mechanics Measurement].

    Science.gov (United States)

    Zhang, Zhengbo; Ni, Lu; Liu, Xiaoli; Li, Deyu; Wang, Weidong

    2015-11-01

    The forced oscillation technique (FOT) is a noninvasive method for respiratory mechanics measurement. For the FOT, external signals (e.g. forced oscillations around 4-40 Hz) are used to drive the respiratory system, and the mechanical characteristic of the respiratory system can be determined with the linear system identification theory. Thus, respiratory mechanical properties and components at different frequency and location of the airway can be explored by specifically developed forcing waveforms. In this paper, the theory, methodology and clinical application of the FOT is reviewed, including measure ment theory, driving signals, models of respiratory system, algorithm for impedance identification, and requirement on apparatus. Finally, the future development of this technique is also discussed.

  6. Pharmacological Mechanisms of Cortical Enhancement Induced by the Repetitive Pairing of Visual/Cholinergic Stimulation.

    Directory of Open Access Journals (Sweden)

    Jun-Il Kang

    Full Text Available Repetitive visual training paired with electrical activation of cholinergic projections to the primary visual cortex (V1 induces long-term enhancement of cortical processing in response to the visual training stimulus. To better determine the receptor subtypes mediating this effect the selective pharmacological blockade of V1 nicotinic (nAChR, M1 and M2 muscarinic (mAChR or GABAergic A (GABAAR receptors was performed during the training session and visual evoked potentials (VEPs were recorded before and after training. The training session consisted of the exposure of awake, adult rats to an orientation-specific 0.12 CPD grating paired with an electrical stimulation of the basal forebrain for a duration of 1 week for 10 minutes per day. Pharmacological agents were infused intracortically during this period. The post-training VEP amplitude was significantly increased compared to the pre-training values for the trained spatial frequency and to adjacent spatial frequencies up to 0.3 CPD, suggesting a long-term increase of V1 sensitivity. This increase was totally blocked by the nAChR antagonist as well as by an M2 mAChR subtype and GABAAR antagonist. Moreover, administration of the M2 mAChR antagonist also significantly decreased the amplitude of the control VEPs, suggesting a suppressive effect on cortical responsiveness. However, the M1 mAChR antagonist blocked the increase of the VEP amplitude only for the high spatial frequency (0.3 CPD, suggesting that M1 role was limited to the spread of the enhancement effect to a higher spatial frequency. More generally, all the drugs used did block the VEP increase at 0.3 CPD. Further, use of each of the aforementioned receptor antagonists blocked training-induced changes in gamma and beta band oscillations. These findings demonstrate that visual training coupled with cholinergic stimulation improved perceptual sensitivity by enhancing cortical responsiveness in V1. This enhancement is mainly mediated by n

  7. Considerations Regarding the Opportunity of Using Psychological Techniques to Stimulate Solutions Characterized by Novelty and Inventive Step in TISR Transformers and Electric Motors with Shorted Moving Coil

    Directory of Open Access Journals (Sweden)

    Georgescu Daniel Ștefan

    2014-09-01

    Full Text Available This paper presents the appreciations and contributions regarding the use of psychological techniques to stimulate technical creativity with special reference to consonant association technique and inversion technique. The study is performed in the field of TISR transformers and electric motors with limited movement, starting from the analogy between a transformer and an electric motor with shorted coil. It approached a particular aspect of inversion technique in relation with the transformation of negative effects and results of laws, phenomena and processes into useful applications. The matter reffered to is related to the question: ,,why disadvantages and no advantages ?". At the end of the paper are presented and discussed some experimental models produced and studied by the authors in the Research Laboratory of Machines, Equipment and Drives at the University of Suceava and are exposed conclusions drawn from the experimental study and directions for future research.

  8. Bryostatin-1 stimulates the transcription of cyclooxygenase-2: evidence for an activator protein-1-dependent mechanism.

    Science.gov (United States)

    De Lorenzo, Mariana S; Yamaguchi, Kentaro; Subbaramaiah, Kotha; Dannenberg, Andrew J

    2003-10-15

    Bryostatin-1 (bryostatin) is a macrocyclic lactone derived from Bugula neritina, a marine bryozoan. On the basis of the strength of in vitro and animal studies, bryostatin is being investigated as a possible treatment for a variety of human malignancies. Severe myalgias are a common dose-limiting side effect. Because cyclooxygenase-2 (COX-2)-derived prostaglandins can cause pain, we investigated whether bryostatin induced COX-2. Bryostatin (1-10 nM) induced COX-2 mRNA, COX-2 protein, and prostaglandin biosynthesis. These effects were observed in macrophages as well as in a series of human cancer cell lines. Transient transfections localized the stimulatory effects of bryostatin to the cyclic AMP response element of the COX-2 promoter. Electrophoretic mobility shift assays and supershift experiments revealed a marked increase in the binding of activator protein-1 (AP-1)(c-Jun/c-Fos) to the cyclic AMP response element of the COX-2 promoter. Pharmacological and transient transfection studies indicated that bryostatin stimulated COX-2 transcription via the protein kinase C-->mitogen-activated protein kinase-->AP-1 pathway. All-trans-retinoic acid, a prototypic AP-1 antagonist, blocked bryostatin-mediated induction of COX-2. Taken together, these results suggest that bryostatin-mediated induction of COX-2 can help to explain the myalgias that are commonly associated with treatment. Moreover, it will be worthwhile to evaluate whether the addition of a selective COX-2 inhibitor can increase the antitumor activity of bryostatin.

  9. Mechanism of interferon-gamma production by monocytes stimulated with myeloperoxidase and neutrophil extracellular traps.

    Science.gov (United States)

    Yamaguchi, Rui; Kawata, Jin; Yamamoto, Toshitaka; Ishimaru, Yasuji; Sakamoto, Arisa; Ono, Tomomichi; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-08-01

    Neutrophil extracellular traps (NETs) have an important role in antimicrobial innate immunity and release substances that may modulate the immune response. We investigated the effects of soluble factors from NETs and neutrophil granule proteins on human monocyte function by using the Transwell system to prevent cell-cell contact. NET formation was induced by exposing human neutrophils to phorbol myristate acetate (PMA). When monocytes were incubated with PMA alone, expression of interleukin (IL)-4, IL-6, IL-8, and tumor necrosis factor (TNF)-alpha mRNA was upregulated, but IL-10, IL-12, and interferon (IFN)-gamma mRNA were not detected. Incubation of monocytes with NETs enhanced the expression of IL-10 and IFN-gamma mRNA, but not IL-12 mRNA. Myeloperoxidase stimulated IFN-gamma production by monocytes in a dose-dependent manner. Both a nuclear factor-kappaB inhibitor (PDTC) and an intracellular calcium antagonist (TMB-8) prevented upregulation of IFN-gamma production. Neither a combined p38alpha and p38beta inhibitor (SB203580) nor an extracellular signal-regulated kinase inhibitor (PD98059) suppressed IFN-gamma production. Interestingly, a combined p38gamma and p38delta inhibitor (BIRB796) significantly decreased IFN-gamma production. These findings suggest that myeloperoxidase induces IFN-gamma production by monocytes via p38gamma/delta mitogen-activated protein kinase.

  10. Neurophysiological mechanisms of formation of non-chemical dependence through self-stimulation of positive emotiogenic areas of rats’ brains

    Directory of Open Access Journals (Sweden)

    O. G. Berchenko

    2016-05-01

    Full Text Available The aim of our research was to study the limbic-neocortical mechanisms of addictive behaviour in rats formed throughthe arousal of intense emotions on the model of self-stimulation reaction of the brain. We carried out investigations by conducting a chronic experiment on 15 nonlinear laboratory male rats weighing 250 to 320 grams, at the ages of 5 to 6 months. As a model of receiving positive emotions we used the behaviour of animals held in a Skinner box which was formed through self stimulation of the positive emotional zones of the posterior ventrolateral hypothalamus. We registered the frequency of self-stimulation reactions of the ventrolateral hypothalamus daily for 4 days and on the 7th day after its ccessation (state of deprivation. We performed visual and spectral analysis of the electrical activity of the brain using "Neuron-spektr.net" software. We assessed the absolute spectral density of the power of rhythm signals of the following frequency bands: delta (0.5–4.0 Hz, theta (4.0–7.0 Hz, alpha (8.0–12.0 Hz and low frequency beta (14.0–20.0 Hz. The formation of behaviour dependent on receiving intense emotions as a result of self-stimulation of the positive zones of the ventrolateral hypothalamus is caused by the initial high level of need for positive emotional reinforcement and further growth in the implementation of desire and is associated with activation of emotional memory mechanisms, changes in electrogenesis in the hippocampus and the reticular formation in the form of decrease in the spectral power of rhythms of alpha and beta bands and increased spectral power of biopotentials of the delta range in the hippocampus and theta range in the reticular formation with severe manifestations of seizure and paroxysmal activity components and increased activity of the sympatho-adrenal system. The syndrome of withdrawal fromthe receiving of positive emotions in some rats with implementation of a programme of a phobic character

  11. Microtrauma stimulates rat Achilles tendon healing via an early gene expression pattern similar to mechanical loading

    DEFF Research Database (Denmark)

    Hammerman, Malin; Aspenberg, Per; Eliasson, Pernilla

    2014-01-01

    . Sixteen of the 19 genes were regulated after 3 h, in the same way as after loading. In conclusion, needling increased strength, and there was a striking similarity between the gene expression response to needling and mechanical loading. This suggests that the response to loading in early tendon healing...

  12. Mechanical properties of ultra thin metallic films revealed by synchrotron techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Patric Alfons

    2007-07-20

    A prerequisite for the study of the scaling behavior of mechanical properties of ultra thin films is a suitable testing technique. Therefore synchrotron-based in situ testing techniques were developed and optimized in order to characterize the stress evolution in ultra thin metallic films on compliant polymer substrates during isothermal tensile tests. Experimental procedures for polycrystalline as well as single crystalline films were established. These techniques were used to systematically investigate the influence of microstructure, film thickness (20 to 1000 nm) and temperature (-150 to 200 C) on the mechanical properties. Passivated and unpassivated Au and Cu films as well as single crystalline Au films on polyimide substrates were tested. Special care was also dedicated to the microstructural characterization of the samples which was very important for the correct interpretation of the results of the mechanical tests. Down to a film thickness of about 100 to 200 nm the yield strength increased for all film systems (passivated and unpassivated) and microstructures (polycrystalline and singlecrystalline). The influence of different interfaces was smaller than expected. This could be explained by a dislocation source model based on the nucleation of perfect dislocations. For polycrystalline films the film thickness as well as the grain size distribution had to be considered. For smaller film thicknesses the increase in flow stress was weaker and the deformation behavior changed because the nucleation of perfect dislocations became unfavorable. Instead, the film materials used alternative mechanisms to relieve the high stresses. For regular and homogeneous deformation the total strain was accommodated by the nucleation and motion of partial dislocations. If the deformation was localized due to initial cracks in a brittle interlayer or local delamination, dislocation plasticity was not effective enough to relieve the stress concentration and the films showed

  13. FACTORS AFFECTING THE MECHANICAL PROPERTIES OF COMPACT BONE AND MINIATURE SPECIMEN TEST TECHNIQUES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Vandana Chittibabu

    2016-12-01

    Full Text Available This paper presents the review concerning mechanical properties of bone and the miniature specimen test techniques. For developing a realistic understanding of how factors such as moisture content, mineralization, age, species, location, gender, rate of deformation etc. affect the mechanical properties of bone, it is critical to understand the role of these factors. A general survey on existing research work is presented on this aspect. The essential features of miniature specimen test techniques are described, along with the application of small punch test method to evaluate the mechanical behavior of materials. The procedure for the determination of tensile and fracture properties, such as: yield strength, ultimate strength, ductility, fracture toughness etc. using small punch test technique have been described. The empirical equations proposed by various investigators for the prediction of tensile and fracture properties are presented and discussed. In some cases, the predictions of material properties have been essentially made through the finite element simulation. The finite element simulation of miniature specimen test technique is also covered in this review. The use of inverse finite element procedure for the prediction of uniaxial tensile constitutive behaviour of materials is also presented

  14. A CHROMATIN MODIFYING ENZYME, SDG8, IS REQUIRED FOR MORPHOLOGICAL, GENE EXPRESSION, AND EPIGENETIC RESPONSES TO MECHANICAL STIMULATION

    Directory of Open Access Journals (Sweden)

    Christopher Ian Cazzonelli

    2014-10-01

    Full Text Available Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3, which encodes a calmodulin-like protein (CML12. The gene neighbouring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis.

  15. Neural stimulation and recording electrodes.

    Science.gov (United States)

    Cogan, Stuart F

    2008-01-01

    Electrical stimulation of nerve tissue and recording of neural electrical activity are the basis of emerging prostheses and treatments for spinal cord injury, stroke, sensory deficits, and neurological disorders. An understanding of the electrochemical mechanisms underlying the behavior of neural stimulation and recording electrodes is important for the development of chronically implanted devices, particularly those employing large numbers of microelectrodes. For stimulation, materials that support charge injection by capacitive and faradaic mechanisms are available. These include titanium nitride, platinum, and iridium oxide, each with certain advantages and limitations. The use of charge-balanced waveforms and maximum electrochemical potential excursions as criteria for reversible charge injection with these electrode materials are described and critiqued. Techniques for characterizing electrochemical properties relevant to stimulation and recording are described with examples of differences in the in vitro and in vivo response of electrodes.

  16. Strain Rate Dependency of Bronze Metal Matrix Composite Mechanical Properties as a Function of Casting Technique

    Science.gov (United States)

    Brown, Lloyd; Joyce, Peter; Radice, Joshua; Gregorian, Dro; Gobble, Michael

    2012-07-01

    Strain rate dependency of mechanical properties of tungsten carbide (WC)-filled bronze castings fabricated by centrifugal and sedimentation-casting techniques are examined, in this study. Both casting techniques are an attempt to produce a functionally graded material with high wear resistance at a chosen surface. Potential applications of such materials include shaft bushings, electrical contact surfaces, and brake rotors. Knowledge of strain rate-dependent mechanical properties is recommended for predicting component response due to dynamic loading or impact events. A brief overview of the casting techniques for the materials considered in this study is followed by an explanation of the test matrix and testing techniques. Hardness testing, density measurement, and determination of the volume fraction of WC particles are performed throughout the castings using both image analysis and optical microscopy. The effects of particle filling on mechanical properties are first evaluated through a microhardness survey of the castings. The volume fraction of WC particles is validated using a thorough density survey and a rule-of-mixtures model. Split Hopkinson Pressure Bar (SHPB) testing of various volume fraction specimens is conducted to determine strain dependence of mechanical properties and to compare the process-property relationships between the two casting techniques. The baseline performances of C95400 bronze are provided for comparison. The results show that the addition of WC particles improves microhardness significantly for the centrifugally cast specimens, and, to a lesser extent, in the sedimentation-cast specimens, largely because the WC particles are more concentrated as a result of the centrifugal-casting process. Both metal matrix composites (MMCs) demonstrate strain rate dependency, with sedimentation casting having a greater, but variable, effects on material response. This difference is attributed to legacy effects from the casting process, namely

  17. [Molecular repair mechanisms using the Intratissue Percutaneous Electrolysis technique in patellar tendonitis].

    Science.gov (United States)

    Abat, F; Valles, S L; Gelber, P E; Polidori, F; Stitik, T P; García-Herreros, S; Monllau, J C; Sanchez-Ibánez, J M

    2014-01-01

    To investigate the molecular mechanisms of tissue response after treatment with the Intratissue Percutaneous Electrolysis (EPI(®)) technique in collagenase-induced tendinopathy in Sprague-Dawley rats. Tendinopathy was induced by injecting 50 μg of type i collagenase into the patellar tendon of 24 Sprague Dawley rats of 7 months of age and weighting 300 g. The sample was divided into 4 groups: the control group, collagenase group, and two EPI(®) technique treatment groups of 3 and 6 mA, respectively. An EPI(®) treatment session was applied, and after 3 days, the tendons were analysed using immunoblotting and electrophoresis techniques. An analysis was also made of cytochrome C protein, Smac/Diablo, vascular endothelial growth factor and its receptor 2, as well as the nuclear transcription factor peroxisome proliferator-activated receptor gamma. A statistically significant increase, compared to the control group, was observed in the expression of cytochrome C, Smac/Diablo, vascular endothelial growth factor, its receptor 2 and peroxisome proliferator-activated receptor gamma in the groups in which the EPI(®) technique was applied. EPI(®) technique produces an increase in anti-inflammatory and angiogenic molecular mechanisms in collagenase-induced tendon injury in rats. Copyright © 2013 SECOT. Published by Elsevier Espana. All rights reserved.

  18. Curcumin Stimulates Biochemical Mechanisms of Apis Mellifera Resistance and Extends the Apian Life-Span

    Directory of Open Access Journals (Sweden)

    Strachecka Aneta J.

    2015-06-01

    Full Text Available We examined the influence of curcumin-supplemented feeding on worker lifespan, Nosema resistance, key enzyme activities, metabolic compound concentrations and percentage of the global DNA methylation. Two worker groups (Apis mellifera were set up: 1 control group; workers were fed ad libitum with sucrose syrup; 2 workers were fed with the syrup with the addition of curcumin. Dead workers were removed every two days and the Nosema spp. infection levels were assessed. Hemolymph was taken from living workers for biochemical analyses. The global DNA methylation level was analysed using DNA from worker heads and thoraces. The bees that consumed curcumin lived longer and were less infested with Nosema spp. The curcumin-treated workers had higher concentrations of proteins, non-enzymatic biomarkers (triglycerides, glucose, cholesterol, Mg2+ and Ca2+, uric acid and creatinine, as well as elevated activities of antioxidant enzymes (SOD , GPx, CAT , GST , neutral proteases, protease inhibitors, enzymatic biomarkers (AST , ALT , ALP . The concentrations of albumin and urea, and the activities of acidic and alkaline proteases were higher in the control group. Curcumin decreased global DNA methylation levels especially in older bees in which the natural, age-related level increase was observed. Most of the parameters increased over the apian youth and adulthood, and decreased in older bees. The decrease was markedly delayed in the bees fed with curcumin. Curcumin appeared to be an unexpectedly effective natural bio-stimulator, improving apian health and vitality. This multifactorial effect is caused by the activation of many biochemical processes involved in the formation of apian resistance.

  19. Dissipative structure of mechanically stimulated reaction; Kikaiteki reiki hanno ni okeru san`itsu kozo

    Energy Technology Data Exchange (ETDEWEB)

    Hida, M. [Okayama Univ., Okayama (Japan). Faculty of Engineering

    1994-12-20

    Recently various studies have been conducted concerning the state changes of materials obtained through mechanical alloying (MA) or mechano-chemical (MC) processing. What is noticeable is the quasi-steady state of almost all the materials obtained through various processes including MA and MC, and that the super cooling, supersaturating and high residue distortion realized under unbalanced conditions have not been clarified. In other words, the tracing capability to the external binding conditions is low. In this report, the appearance of the high temperature phase and high pressure phase obtained through MA or MC processing, the forming of amorphous, the mesomerism of the amorphous materials, the interesting phenomena generated by combination between the mechanical disturbance and chemical reactions were discussed with concrete examples, and a steady dissipative organization theory was approached from the viewpoint of dissipative structure development which is equal to the forming process of the quasi-steady phase. 34 refs., 2 figs.

  20. Mechanical stimulation of the foot sole in a supine position for ground reaction force simulation

    OpenAIRE

    2014-01-01

    Background:\\ud To promote early rehabilitation of walking, gait training can start even when patients are on bed rest. Supine stepping in the early phase after injury is proposed to maximise the beneficial effects of gait restoration. In this training paradigm, mechanical loading on the sole of the foot is required to mimic the ground reaction forces that occur during overground walking. A pneumatic shoe platform was developed to produce adjustable forces on the heel and the forefoot with an ...

  1. Experimental Techniques for the Measurement of Mechanical Properties of Materials Used in Microelectromechanical Systems

    Directory of Open Access Journals (Sweden)

    Samir V. Kamat

    2009-11-01

    Full Text Available The knowledge of mechanical properties of materials used in microelectromechanical systems (MEMS devices is critical not only in designing structures such as cantilevers and beams but also for ensuring their reliability during operation of these devices. It has been established that the mechanical properties are scaleand-process-dependent, and hence it is essential to measure the mechanical properties of these materials at the same length scale and using the same process as that used in their usage in MEMS devices. The various experimental techniques in vogue to measure the mechanical properties of these materials are briefly reviewed. The facilities established at the Defence Metallurgical Research Laboratory, Hyderabad, and their capabilities are also highlighted.Defence Science Journal, 2009, 59(6, pp.605-615, DOI:http://dx.doi.org/10.14429/dsj.59.1565

  2. Paramecium tetraurelia growth stimulation under low-level chronic irradiation: investigations on a possible mechanism. [/sup 60/Co

    Energy Technology Data Exchange (ETDEWEB)

    Croute, F.; Soleilhavoup, J.P.; Vidal, S.; Dupouy, D.; Planel, H.

    1982-12-01

    Experiments were carried out to demonstrate the effects of low-level chronic irradiation on Paramecium tetraurelia proliferation. Biological effects were strongly dependent on the bacterial density of culture medium and more exactly on the catalase content of the medium. Significant growth stimulation was found under /sup 60/Co chronic irradiation at a dose rate of 2 rad/year when paramecia were grown in a medium containing a high bacterial concentration (2.5 x 10/sup 2/ cells/m) or supplemented with catalase (300 U/ml). In a medium with a low bacterial density (1 x 10/sup 6/ cell/ml) or supplemented with a catalase activity inhibitor, growth simulation was preceded by a transitory inhibiting effect which could be correlated with extracellularly radioproduced H/sub 2/O/sub 2/. H/sub 2/O/sub 2/ addition appeared to be able to simulate the biological effects of chronic irradiation. A possible mechanism is discussed.We proposed that the stimulating effects were the result of intracellular enzymatic scavenging of radioproduced H/sub 2/O/sub 2/.

  3. Desensitization of brain opiate receptor mechanisms by gonadal steroid treatments that stimulate luteinizing hormone secretion.

    Science.gov (United States)

    Berglund, L A; Derendorf, H; Simpkins, J W

    1988-06-01

    We studied the effects of two ovarian steroid treatments that induce proestrous-like surges in LH secretion on responsiveness to morphine sulfate (MS), as measured by induced hypothermic, antinociceptive, behavioral, and LH secretory changes. Ovariectomized rats received no steroids (OVX), 7.5 micrograms estradiol benzoate 2 days before the experiment (EB), or EB and then 5 mg progesterone 48 h later (EBP). MS administration coincided with the steroid-induced LH hypersecretion that occurs in the EB and EBP rats at 1530-1630 h. Serum LH concentrations were determined 30 min after administration of MS. In OVX and EB rats, MS caused a dose-dependent decrease in serum LH, but even 20 mg/kg MS did not alter serum LH during the EBP-induced LH surge. Brain-mediated morphine-induced analgesia was evaluated in the three steroid treatment groups from measurement of latency to pawlick on a hot plate. EB and EBP rats were less responsive than OVX rats to MS-induced antinociception. EB and EBP rats were also less responsive than OVX animals to the spinal cord-mediated analgesia due to MS, as calculated by tail-flick latency. MS-induced hypothermia revealed a responsiveness order of OVX greater than EB greater than EBP. Whereas MS caused a dose-dependent reduction in locomotor activity in OVX and EB rats, EBP rats showed marked hyperactivity at low MS doses and were less responsive to the suppression of locomotor activity at higher doses. These marked steroid-induced changes in MS responsiveness could not be explained by altered pharmacokinetic disposition of morphine. These data indicate that treatment with EBP, which stimulates a preovulatory-like LH surge, decreases the ability of MS to induce hypothermic, antinociceptive, and behavioral responses and abolishes its capacity to suppress LH release. These effects of gonadal steroids were not observed before the LH surge, which suggests that this surge is linked to the decline in MS sensitivity. Further, the diminished response

  4. Sensory-motor responses to mechanical stimulation of the esophagus after sensitization with acid

    Institute of Scientific and Technical Information of China (English)

    Asbj(ф)rn Mlohr Drewes; Hariprasad Reddy; Camilla Staahl; Jan Pedersen; Peter Funch-Jensen; Lars Arendt-Nielsen; Hans Gregersen

    2005-01-01

    AIM: Sensitization most likely plays an important role in chronic pain disorders, and such sensitization can be mimicked by experimental acid perfusion of the esophagus.The current study systematically investigated the sensory and motor responses of the esophagus to controlled mechanical stimuli before and after sensitization.METHODS: Thirty healthy subjects were included.Distension of the distal esophagus with a balloon was performed before and after perfusion with 0.1 mol/L hydrochloric acid for 30 min. An impedance planimetry system was used to measure cross-sectional area,volume, pressure, and tension during the distensions. A new model allowed evaluation of the phasic contractions by the tension during contractions as a function of the initial muscle length before the contraction (comparable to the Frank-Starling law for the heart). Length-tension diagrams were used to evaluate the muscle tone before and after relaxation of the smooth muscle with butylscopolamine.RESULTS: The sensitization resulted in allodynia and hyperalgesia to the distension volumes, and the degree of sensitization was related to the infused volume of acid. Furthermore, a nearly 50% increase in the evoked referred pain was seen after sensitization. The mechanical analysis demonstrated hyper-reactivity of the esophagus following acid perfusion, with an increased number and force of the phasic contractions, but the muscle tone did not change.CONCLUSION: Acid perfusion of the esophagus sensitizes the sensory pathways and facilitates secondary contractions.The new model can be used to study abnormal sensorymotor mechanisms in visceral organs.

  5. Magnetically actuated tissue engineered scaffold: insights into mechanism of physical stimulation

    Science.gov (United States)

    Sapir-Lekhovitser, Yulia; Rotenberg, Menahem Y.; Jopp, Juergen; Friedman, Gary; Polyak, Boris; Cohen, Smadar

    2016-02-01

    Providing the right stimulatory conditions resulting in efficient tissue promoting microenvironment in vitro and in vivo is one of the ultimate goals in tissue development for regenerative medicine. It has been shown that in addition to molecular signals (e.g. growth factors) physical cues are also required for generation of functional cell constructs. These cues are particularly relevant to engineering of biological tissues, within which mechanical stress activates mechano-sensitive receptors, initiating biochemical pathways which lead to the production of functionally mature tissue. Uniform magnetic fields coupled with magnetizable nanoparticles embedded within three dimensional (3D) scaffold structures remotely create transient physical forces that can be transferrable to cells present in close proximity to the nanoparticles. This study investigated the hypothesis that magnetically responsive alginate scaffold can undergo reversible shape deformation due to alignment of scaffold's walls in a uniform magnetic field. Using custom made Helmholtz coil setup adapted to an Atomic Force Microscope we monitored changes in matrix dimensions in situ as a function of applied magnetic field, concentration of magnetic particles within the scaffold wall structure and rigidity of the matrix. Our results show that magnetically responsive scaffolds exposed to an externally applied time-varying uniform magnetic field undergo a reversible shape deformation. This indicates on possibility of generating bending/stretching forces that may exert a mechanical effect on cells due to alternating pattern of scaffold wall alignment and relaxation. We suggest that the matrix structure deformation is produced by immobilized magnetic nanoparticles within the matrix walls resulting in a collective alignment of scaffold walls upon magnetization. The estimated mechanical force that can be imparted on cells grown on the scaffold wall at experimental conditions is in the order of 1 pN, which

  6. Using high speed smartphone cameras and video analysis techniques to teach mechanical wave physics

    Science.gov (United States)

    Bonato, Jacopo; Gratton, Luigi M.; Onorato, Pasquale; Oss, Stefano

    2017-07-01

    We propose the use of smartphone-based slow-motion video analysis techniques as a valuable tool for investigating physics concepts ruling mechanical wave propagation. The simple experimental activities presented here, suitable for both high school and undergraduate students, allows one to measure, in a simple yet rigorous way, the speed of pulses along a spring and the period of transverse standing waves generated in the same spring. These experiments can be helpful in addressing several relevant concepts about the physics of mechanical waves and in overcoming some of the typical student misconceptions in this same field.

  7. Large Volume, Optical and Opto-Mechanical Metrology Techniques for ISIM on JWST

    Science.gov (United States)

    Hadjimichael, Theo

    2015-01-01

    The final, flight build of the Integrated Science Instrument Module (ISIM) element of the James Webb Space Telescope is the culmination of years of work across many disciplines and partners. This paper covers the large volume, ambient, optical and opto-mechanical metrology techniques used to verify the mechanical integration of the flight instruments in ISIM, including optical pupil alignment. We present an overview of ISIM's integration and test program, which is in progress, with an emphasis on alignment and optical performance verification. This work is performed at NASA Goddard Space Flight Center, in close collaboration with the European Space Agency, the Canadian Space Agency, and the Mid-Infrared Instrument European Consortium.

  8. Regenerating sprouts of axotomized cat muscle afferents express characteristic firing patterns to mechanical stimulation.

    Science.gov (United States)

    Johnson, R D; Munson, J B

    1991-12-01

    1. In cats, we studied the physiological properties of regenerating sprouts of muscle afferent fibers and compared them with sprouts from cutaneous afferent fibers. 2. Muscle nerves to the triceps surae and cutaneous sural nerves were axotomized in the popliteal fossa, and the proximal ends were inserted into nerve cuffs. Six days later, we recorded action potentials from single Groups I and II muscle and mostly Group II cutaneous afferents driven by mechanostimulation of the cuff. 3. Most muscle afferent sprouts (91%) had a regular slowly adapting discharge in response to sustained mechanical displacement of the cuff, particularly to sustained stretch stimuli, whereas most cutaneous afferents (92%) did not. Muscle afferents were more likely to have a spontaneous discharge and afterdischarge. 4. Group II muscle afferent sprouts had lower stretch thresholds and a higher incidence of spontaneous discharge compared with Group I fiber sprouts, whereas Group I fibers had a higher incidence of high-frequency afterdischarge to mechanical stimuli. 5. We conclude that, 6 days after axotomy, regenerating sprouts of muscle afferents, particularly Group II afferents, have become mechanosensitive in the absence of a receptor target and exhibit physiological properties similar to those found when innervating their native muscle but significantly different from sprouts of cutaneous afferents. Expression of these native muscle afferent firing patterns after the inappropriate reinnervation of hairy skin may be due to inherent properties of the muscle afferent fiber.

  9. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Zhaobin Zhang

    2016-08-01

    Full Text Available The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network.

  10. Engineering molecular mechanics: an efficient static high temperature molecular simulation technique.

    Science.gov (United States)

    Subramaniyan, Arun K; Sun, C T

    2008-07-16

    Inspired by the need for an efficient molecular simulation technique, we have developed engineering molecular mechanics (EMM) as an alternative molecular simulation technique to model high temperature (T>0 K) phenomena. EMM simulations are significantly more computationally efficient than conventional techniques such as molecular dynamics simulations. The advantage of EMM is achieved by converting the dynamic atomistic system at high temperature (T>0 K) into an equivalent static system. Fundamentals of the EMM methodology are derived using thermal expansion to modify the interatomic potential. Temperature dependent interatomic potentials are developed to account for the temperature effect. The efficiency of EMM simulations is demonstrated by simulating the temperature dependence of elastic constants of copper and nickel and the thermal stress developed in a confined copper system.

  11. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review.

    Science.gov (United States)

    Chemat, Farid; Rombaut, Natacha; Sicaire, Anne-Gaëlle; Meullemiestre, Alice; Fabiano-Tixier, Anne-Sylvie; Abert-Vian, Maryline

    2017-01-01

    This review presents a complete picture of current knowledge on ultrasound-assisted extraction (UAE) in food ingredients and products, nutraceutics, cosmetic, pharmaceutical and bioenergy applications. It provides the necessary theoretical background and some details about extraction by ultrasound, the techniques and their combinations, the mechanisms (fragmentation, erosion, capillarity, detexturation, and sonoporation), applications from laboratory to industry, security, and environmental impacts. In addition, the ultrasound extraction procedures and the important parameters influencing its performance are also included, together with the advantages and the drawbacks of each UAE techniques. Ultrasound-assisted extraction is a research topic, which affects several fields of modern plant-based chemistry. All the reported applications have shown that ultrasound-assisted extraction is a green and economically viable alternative to conventional techniques for food and natural products. The main benefits are decrease of extraction and processing time, the amount of energy and solvents used, unit operations, and CO2 emissions.

  12. Mechanical Stimulation of C2C12 Cells Increases m-Calpain Expression and Activity, Focal Adhesion Plaque Degradation and Cell Fusion

    DEFF Research Database (Denmark)

    Grossi, Alberto; Lawson, Moira Ann; Karlsson, Anders H

    Abstract Mechanical Stimulation of C2C12 Cells Increases m-calpain Expression and Activity, Focal Adhesion Plaque Degradation and Cell Fusion A. Grossi, A. H. Karlsson, M. A. Lawson; Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark...... to the activity of ubiquitous proteolytic enzymes known as calpains has been reported. Whether there is a link between stretch- or load induced signaling and calpain expression and activation is not known. Using a magnetic bead stimulation assay and C2C12 mouse myoblasts cell population, we have demonstrated...... that mechanical stimulation via laminin receptors leads to an increase in m-calpain expression, but no increase in the expression of other calpain isoforms. Our study revealed that after a short period of stimulation, m-calpain relocates into focal adhesion complexes and is followed by a breakdown of specific...

  13. Usefulness of the Pain Tracking Technique in Acute Mechanical Low Back Pain

    Science.gov (United States)

    Bravo Acosta, Tania; Martín Cordero, Jorge E.; Hernández Tápanes, Solangel; Pedroso Morales, Isis; Fernández Cuesta, José Ignacio; Leyva Serrano, Maritza

    2015-01-01

    Objective. To evaluate the usefulness of the pain tracking technique in acute mechanical low back pain. Method. We performed an experimental prospective (longitudinal) explanatory study between January 2011 and September 2012. The sample was randomly divided into two groups. Patients were assessed at the start and end of the treatment using the visual analogue scale and the Waddell test. Treatment consisted in applying the pain tracking technique to the study group and interferential current therapy to the control group. At the end of treatment, cryotherapy was applied for 10 minutes. The Wilcoxon signed-rank test and the Mann Whitney test were used. They were performed with a predetermined significance level of p ≤ 0.05. Results. Pain was triggered by prolonged static posture and intense physical labor and intensified through trunk movements and when sitting and standing. The greatest relief was reported in lateral decubitus position and in William's position. The majority of the patients had contracture. Pain and disability were modified with the rehabilitation treatment in both groups. Conclusions. Both the pain tracking and interferential current techniques combined with cryotherapy are useful treatments for acute mechanical low back pain. The onset of analgesia is faster when using the pain tracking technique. PMID:26240758

  14. Usefulness of the Pain Tracking Technique in Acute Mechanical Low Back Pain

    Directory of Open Access Journals (Sweden)

    Tania Bravo Acosta

    2015-01-01

    Full Text Available Objective. To evaluate the usefulness of the pain tracking technique in acute mechanical low back pain. Method. We performed an experimental prospective (longitudinal explanatory study between January 2011 and September 2012. The sample was randomly divided into two groups. Patients were assessed at the start and end of the treatment using the visual analogue scale and the Waddell test. Treatment consisted in applying the pain tracking technique to the study group and interferential current therapy to the control group. At the end of treatment, cryotherapy was applied for 10 minutes. The Wilcoxon signed-rank test and the Mann Whitney test were used. They were performed with a predetermined significance level of p≤0.05. Results. Pain was triggered by prolonged static posture and intense physical labor and intensified through trunk movements and when sitting and standing. The greatest relief was reported in lateral decubitus position and in William’s position. The majority of the patients had contracture. Pain and disability were modified with the rehabilitation treatment in both groups. Conclusions. Both the pain tracking and interferential current techniques combined with cryotherapy are useful treatments for acute mechanical low back pain. The onset of analgesia is faster when using the pain tracking technique.

  15. Study of mechanically stimulated ferroelectric domain formation using scanning probe microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J H; Baek, J; Khim, Z G [School of Physics and Nano-Systems Institute, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2007-03-15

    The stress-related ferroelectric properties have been studied on the Triglycine sulfate (TGS) by scanning probe microscope (SPM). Together with normal stress of the tip, the lateral stress is applied to the sample with piezoelectric transducers. With this study, we characterized the way the ferroelectricity of TGS responds to the axis-specific stress. Specially, the b-directional stress applicable to the surface can amount to several GPa such that the polarization switching by mechanical stress is observable. Although the lateral stress is not strong enough to view such phenomena, a-axis(c-axis) stress still affects the polarization value so as to fortify (lessen) the electric field inside, respectively. These contrasting results can be explained by the sign relation of piezo-coefficients about the individual axis. This work can be a touchstone of future researches in characterizing the electromechanical properties of more popular ferroelectrics such as PZT or BTO.

  16. Pulsed magnetic stimulation modifies amplitude of action potentials in vitro via ionic channels-dependent mechanism.

    Science.gov (United States)

    Ahmed, Zaghloul; Wieraszko, Andrzej

    2015-07-01

    This paper investigates the influence of pulsed magnetic fields (PMFs) on amplitude of evoked, compound action potential (CAP) recorded from the segments of sciatic nerve in vitro. PMFs were applied for 30 min at frequency of 0.16 Hz and intensity of 15 mT. In confirmation of our previous reports, PMF exposure enhanced amplitude of CAPs. The effect persisted beyond PMF activation period. As expected, CAP amplitude was attenuated by antagonists of sodium channel, lidocaine, and tetrodotoxin. Depression of the potential by sodium channels antagonists was reversed by subsequent exposure to PMFs. The effect of elevated potassium concentration and veratridine on the action potential was modified by exposure to PMFs as well. Neither inhibitors of protein kinase C and protein kinase A, nor known free radicals scavengers had any effects on PMF action. Possible mechanisms of PMF action are discussed.

  17. Study of the mechanical properties of CeO{sub 2} layers with the nanoindentation technique

    Energy Technology Data Exchange (ETDEWEB)

    Roa, J.J., E-mail: joanjosep_roa@ub.ed [Centro DIOPMA, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Quimica, Universidad de Barcelona, C/Marti i Franques, 1, 08028, Barcelona (Spain); Gilioli, E.; Bissoli, F.; Pattini, F.; Rampino, S. [IMEM-CNR, Area delle Scienze 37/A, 43010 Fontanini-Parma (Italy); Capdevila, X.G.; Segarra, M. [Centro DIOPMA, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Quimica, Universidad de Barcelona, C/Marti i Franques, 1, 08028, Barcelona (Spain)

    2009-11-02

    The mechanical properties of CeO{sub 2} layers that are undoped or doped with other elements (e.g. Zr and Ta) are a topic of special interest specially in the manufacturing of superconductor buffer layers by pulsed electron deposition. Nowadays, the trend is to produce small devices (i.e. coated conductors), and the correct mechanical characterization is critical. In this sense, nanoindentation is a powerful technique widely employed to determine the mechanical properties of small volumes. In this study, the nanoindentation technique allow us determine the hardness (H) and Young's modulus (E) by sharp indentation of different buffer layers to explore the deposition process of CeO{sub 2} that is undoped or doped with Zr and Ta, and deposited on Ni-5%W at room temperature. This study was carried out on various samples at different ranges of applied loads (from 0.5 to 500 mN). Scanning electron microscopy images show no cracking for CeO{sub 2} doped with Zr, as the doping agent increases the toughness fracture of the CeO{sub 2} layer. This system, presents better mechanical stability than the other studied systems. Thus, the H for Zr-CeO{sub 2} is around 2.75 . 10{sup 6} Pa, and the elastic modulus calculated using the Bec et al. and Rar et al. models equals 249 . 10{sup 6} Pa and 235 . 10{sup 6} Pa respectively.

  18. Anesthesia Technique and Outcomes of Mechanical Thrombectomy in Patients With Acute Ischemic Stroke.

    Science.gov (United States)

    Bekelis, Kimon; Missios, Symeon; MacKenzie, Todd A; Tjoumakaris, Stavropoula; Jabbour, Pascal

    2017-02-01

    The impact of anesthesia technique on the outcomes of mechanical thrombectomy for acute ischemic stroke remains an issue of debate. We investigated the association of general anesthesia with outcomes in patients undergoing mechanical thrombectomy for ischemic stroke. We performed a cohort study involving patients undergoing mechanical thrombectomy for ischemic stroke from 2009 to 2013, who were registered in the New York Statewide Planning and Research Cooperative System database. An instrumental variable (hospital rate of general anesthesia) analysis was used to simulate the effects of randomization and investigate the association of anesthesia technique with case-fatality and length of stay. Among 1174 patients, 441 (37.6%) underwent general anesthesia and 733 (62.4%) underwent conscious sedation. Using an instrumental variable analysis, we identified that general anesthesia was associated with a 6.4% increased case-fatality (95% confidence interval, 1.9%-11.0%) and 8.4 days longer length of stay (95% confidence interval, 2.9-14.0) in comparison to conscious sedation. This corresponded to 15 patients needing to be treated with conscious sedation to prevent 1 death. Our results were robust in sensitivity analysis with mixed effects regression and propensity score-adjusted regression models. Using a comprehensive all-payer cohort of acute ischemic stroke patients undergoing mechanical thrombectomy in New York State, we identified an association of general anesthesia with increased case-fatality and length of stay. These considerations should be taken into account when standardizing acute stroke care. © 2017 American Heart Association, Inc.

  19. Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: role of tumor necrosis factor alpha and apoptosis.

    Science.gov (United States)

    Garraway, Sandra M; Woller, Sarah A; Huie, J Russell; Hartman, John J; Hook, Michelle A; Miranda, Rajesh C; Huang, Yung-Jen; Ferguson, Adam R; Grau, James W

    2014-11-01

    We previously showed that peripheral noxious input after spinal cord injury (SCI) inhibits beneficial spinal plasticity and impairs recovery of locomotor and bladder functions. These observations suggest that noxious input may similarly affect the development and maintenance of chronic neuropathic pain, an important consequence of SCI. In adult rats with a moderate contusion SCI, we investigated the effect of noxious tail stimulation, administered 1 day after SCI on mechanical withdrawal responses to von Frey stimuli from 1 to 28 days after treatment. In addition, because the proinflammatory cytokine tumor necrosis factor alpha (TNFα) is implicated in numerous injury-induced processes including pain hypersensitivity, we assessed the temporal and spatial expression of TNFα, TNF receptors, and several downstream signaling targets after stimulation. Our results showed that unlike sham surgery or SCI only, nociceptive stimulation after SCI induced mechanical sensitivity by 24h. These behavioral changes were accompanied by increased expression of TNFα. Cellular assessments of downstream targets of TNFα revealed that nociceptive stimulation increased the expression of caspase 8 and the active subunit (12 kDa) of caspase 3, indicative of active apoptosis at a time point consistent with the onset of mechanical allodynia. In addition, immunohistochemical analysis revealed distinct morphological signs of apoptosis in neurons and microglia at 24h after stimulation. Interestingly, expression of the inflammatory mediator NFκB was unaltered by nociceptive stimulation. These results suggest that noxious input caudal to the level of SCI can increase the onset and expression of behavioral responses indicative of pain, potentially involving TNFα signaling.

  20. Earliest mechanical evidence of cross-bridge activity after stimulation of single skeletal muscle fibers.

    Science.gov (United States)

    Claflin, D R; Morgan, D L; Julian, F J

    1990-03-01

    The stiffness of single fibers from frog skeletal muscle was measured by the application of small 2-kHz sinusoidal length oscillations during twitch and tetanic contractions at a range of initial sarcomere lengths. The earliest mechanical signs of activation were a fall in tension (latency relaxation) and a rise in stiffness. The earliest stiffness increase and the earliest tension fall occurred simultaneously at all sarcomere lengths. This suggests a cross-bridge origin for the latency relaxation. The lead of stiffness over tension seen during the rise of tension was substantially established during the latent period. Reducing the size of the twitch by reducing calcium release with D-600 (methoxyverapamil) reduced the latency relaxation and the stiffness development during latency much less than it reduced the twitch tension. For very small twitches the peak of the stiffness response occurred during the latent period and the times of onset of both latency relaxation and stiffness rise were delayed, but remained coincident. This suggests a strong connection between the latency relaxation and the rise of stiffness during the latent period, whereas the connection between these events and positive tension generation appears to be less strong.

  1. Mechanical, dielectric and optical assessment of glass composites prepared using milling technique

    Indian Academy of Sciences (India)

    Gurbinder Kaur; G Pickrell; V Kumar; O P Pandey; K Singh; S K Arya

    2015-08-01

    In the present investigation, mechanical and spectroscopic properties of glass composites have been investigated. The glass composites have been prepared by the milling technique instead of using any filler particle. Due to the presence of different alkaline earth modifiers in composites, marked difference in their strength and optical properties is observed. The band gap, Urbach energy and the extinction coefficient of the glass composites have been calculated using UV–visible spectroscopy. Moreover, the real and imaginary dielectric constants have also been calculated for all the composites in addition to the Weibull statistics and cumulative probability of failure. The results have been discussed in light of comparison between the glass composites and the individual glasses. The mechanical and optical properties indicate marked effect on the mechanical strength, band gap and Urbach energy for glass composites as compared with the individual glasses.

  2. Damage and deterioration mechanism and curing technique of concrete structure in main coal cleaning plants

    Institute of Scientific and Technical Information of China (English)

    LV Heng-lin; ZHAO Cheng-ming; SONG Lei; MA Ying; XU Chun-hua

    2009-01-01

    Concrete structures in main coal cleaning plants have been rebuilt and reinforced in the coal mines of the Shanghai Da-tun Energy Sources Co. Ltd., the first colliery of the Pingdingshan Coal Co. Ltd. and the Sanhejian mine of the Xuzhou Mining Group Co. Ltd. In these projects, the operating environment and reliability of concrete structures in the main plants of the three companies were investigated and the safety of the structures inspected. Qualitative and quantitative analyses were made on the spe-cial natural, technological and mechanical environments around the structures. On the basis of these analyses, we discuss the long-term, combined actions of the harsh natural (corrosive gases, liquids and solids) and mechanical environments on concrete structures and further investigated the damage and deteriorating mechanisms and curing techniques of concrete structures in the main coal cleaning plants. Our study can provide a theoretical basis for ensuring the reliability of concrete structures in main coal cleaning plants.

  3. Strength and Aerobic Exercises Improve Spatial Memory in Aging Rats Through Stimulating Distinct Neuroplasticity Mechanisms.

    Science.gov (United States)

    Vilela, Thais Ceresér; Muller, Alexandre Pastoris; Damiani, Adriani Paganini; Macan, Tamires Pavei; da Silva, Sabrina; Canteiro, Paula Bortoluzzi; de Sena Casagrande, Alisson; Pedroso, Giulia Dos Santos; Nesi, Renata Tiscoski; de Andrade, Vanessa Moraes; de Pinho, Ricardo Aurino

    2016-11-22

    Aging is associated with impaired cognition and memory and increased susceptibility to neurodegenerative disorders. Physical exercise is neuroprotective; however, the major evidence of this effect involves studies of only aerobic training in young animals. The benefits of other exercise protocols such as strength training in aged animals remains unknown. Here, we investigated the effect of aerobic and strength training on spatial memory and hippocampal plasticity in aging rats. Aging Wistar rats performed aerobic or strength training for 50 min 3 to 4 days/week for 8 weeks. Spatial memory and neurotrophic and glutamatergic signaling in the hippocampus of aged rats were evaluated after aerobic or strength training. Both aerobic and strength training improved cognition during the performance of a spatial memory task. Remarkably, the improvement in spatial memory was accompanied by an increase in synaptic plasticity proteins within the hippocampus after exercise training, with some differences in the intracellular functions of those proteins between the two exercise protocols. Moreover, neurotrophic signaling (CREB, BDNF, and the P75(NTR) receptor) increased after training for both exercise protocols, and aerobic exercise specifically increased glutamatergic proteins (NMDA receptor and PSD-95). We also observed a decrease in DNA damage after aerobic training. In contrast, strength training increased levels of PKCα and the proinflammatory factors TNF-α and IL-1β. Overall, our results show that both aerobic and strength training improved spatial memory in aging rats through inducing distinct molecular mechanisms of neuroplasticity. Our findings extend the idea that exercise protocols can be used to improve cognition during aging.

  4. Mechanisms of nerve capping technique in prevention of painful neuroma formation.

    Directory of Open Access Journals (Sweden)

    Hede Yan

    Full Text Available Nerve capping techniques have been introduced as a promising treatment modality for the treatment of painful neuroma with varied outcomes; however, its exact mechanism is still unknown. RhoA is one of the members of the RAS superfamily of GTPases that operate as molecular switches and plays an important role in peripheral nerve regeneration. Our aim was to investigate the structural and morphologic mechanisms by which the nerve capping technique prevents the formation of painful neuromas after neuroectomy. We also hoped to provide a theoretical basis for this treatment approach. An aligned nanofiber conduit was used for the capping procedure and the sciatic nerve of Sprague-Dawley rats was selected as the animal model. Behavioral analysis, extent of neuroma formation, histological assessment, expressions of pain markers of substance P and c-fos, molecular biological changes as well as ultrastructural features were investigated and compared with the findings in a no-capping control group. The formation of traumatic neuromas was significantly inhibited in the capping group with relatively "normal" structural and morphological features and no occurrence of autotomy and significantly lower expression of pain markers compared to the no-capping group. The gene expression of RhoA was consistently in a higher level in the capping group within 8 weeks after surgery. This study shows that capping technique will alter the regeneration state of transected nerves and reduce painful neuroma formation, indicating a promising approach for the treatment of painful neuroma. The initiation of the "regenerative brake" induced by structural as well as morphological improvements in the severed nerve is theorized to be most likely a key mechanism for the capping technique in the prevention of painful neuroma formation.

  5. Mechanical loading by fluid shear stress of myotube glycocalyx stimulates growth factor expression and nitric oxide production.

    Science.gov (United States)

    Juffer, Petra; Bakker, Astrid D; Klein-Nulend, Jenneke; Jaspers, Richard T

    2014-07-01

    Skeletal muscle fibers have the ability to increase their size in response to a mechanical overload. Finite element modeling data suggest that mechanically loaded muscles in vivo may experience not only tensile strain but also shear stress. However, whether shear stress affects biological pathways involved in muscle fiber size adaptation in response to mechanical loading is unknown. Therefore, our aim was twofold: (1) to determine whether shear stress affects growth factor expression and nitric oxide (NO) production by myotubes, and (2) to explore the mechanism by which shear stress may affect myotubes in vitro. C2C12 myotubes were subjected to a laminar pulsating fluid flow (PFF; mean shear stress 0.4, 0.7 or 1.4 Pa, 1 Hz) or subjected to uni-axial cyclic strain (CS; 15 % strain, 1 Hz) for 1 h. NO production during 1-h PFF or CS treatment was quantified using Griess reagent. The glycocalyx was degraded using hyaluronidase, and stretch-activated ion channels (SACs) were blocked using GdCl3. Gene expression was analyzed immediately after 1-h PFF (1.4 Pa, 1 Hz) and at 6 h post-PFF treatment. PFF increased IGF-I Ea, MGF, VEGF, IL-6, and COX-2 mRNA, but decreased myostatin mRNA expression. Shear stress enhanced NO production in a dose-dependent manner, while CS induced no quantifiable increase in NO production. Glycocalyx degradation and blocking of SACs ablated the shear stress-stimulated NO production. In conclusion, shear stress activates signaling pathways involved in muscle fiber size adaptation in myotubes, likely via membrane-bound mechanoreceptors. These results suggest that shear stress exerted on myofiber extracellular matrix plays an important role in mechanotransduction in muscle.

  6. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering.

    Science.gov (United States)

    Hilz, Florian M; Ahrens, Philipp; Grad, Sibylle; Stoddart, Martin J; Dahmani, Chiheb; Wilken, Frauke L; Sauerschnig, Martin; Niemeyer, Philipp; Zwingmann, Jörn; Burgkart, Rainer; von Eisenhart-Rothe, Rüdiger; Südkamp, Norbert P; Weyh, Thomas; Imhoff, Andreas B; Alini, Mauro; Salzmann, Gian M

    2014-02-01

    Articular cartilage, once damaged, has very low regenerative potential. Various experimental approaches have been conducted to enhance chondrogenesis and cartilage maturation. Among those, non-invasive electromagnetic fields have shown their beneficial influence for cartilage regeneration and are widely used for the treatment of non-unions, fractures, avascular necrosis and osteoarthritis. One very well accepted way to promote cartilage maturation is physical stimulation through bioreactors. The aim of this study was the investigation of combined mechanical and electromagnetic stress affecting cartilage cells in vitro. Primary articular chondrocytes from bovine fetlock joints were seeded into three-dimensional (3-D) polyurethane scaffolds and distributed into seven stimulated experimental groups. They either underwent mechanical or electromagnetic stimulation (sinusoidal electromagnetic field of 1 mT, 2 mT, or 3 mT; 60 Hz) or both within a joint-specific bioreactor and a coil system. The scaffold-cell constructs were analyzed for glycosaminoglycan (GAG) and DNA content, histology, and gene expression of collagen-1, collagen-2, aggrecan, cartilage oligomeric matrix protein (COMP), Sox9, proteoglycan-4 (PRG-4), and matrix metalloproteinases (MMP-3 and -13). There were statistically significant differences in GAG/DNA content between the stimulated versus the control group with highest levels in the combined stimulation group. Gene expression was significantly higher for combined stimulation groups versus static control for collagen 2/collagen 1 ratio and lower for MMP-13. Amongst other genes, a more chondrogenic phenotype was noticed in expression patterns for the stimulated groups. To conclude, there is an effect of electromagnetic and mechanical stimulation on chondrocytes seeded in a 3-D scaffold, resulting in improved extracellular matrix production.

  7. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering.

    Science.gov (United States)

    Parvizi, Mojtaba; Bolhuis-Versteeg, Lydia A M; Poot, André A; Harmsen, Martin C

    2016-07-01

    Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived stromal cells (ASC) to engineer bioartificial arteries. Biochemical induction of cultured ASC to SMC was done with TGF-β1 for 7d. Phenotype and function were assessed by qRT-PCR, immunodetection and collagen contraction assays. The influence of mechanical stimulation on non-differentiated and pre-differentiated ASC, loaded in porous tubular PTMC scaffolds, was assessed after culturing under pulsatile flow for 14d. Assays included qRT-PCR, production of extracellular matrix and scanning electron microscopy. ASC adhesion and TGF-β1-driven differentiation to contractile SMC on PTMC did not differ from tissue culture polystyrene controls. Mesenchymal and SMC markers were increased compared to controls. Interestingly, pre-differentiated ASC had only marginal higher contractility than controls. Moreover, in 3D PTMC scaffolds, mechanical stimulation yielded well-aligned ASC-derived SMC which deposited ECM. Under the same conditions, pre-differentiated ASC-derived SMC maintained their SMC phenotype. Our results show that mechanical stimulation can replace TGF-β1 pre-stimulation to generate SMC from ASC and that pre-differentiated ASC keep their SMC phenotype with increased expression of SMC markers.

  8. Sunlight Triggers Cutaneous Lupus through a Colony Stimulating Factor-1 (CSF-1) Dependent Mechanism in MRL-Faslpr mice

    Science.gov (United States)

    Menke, Julia; Hsu, Mei-Yu; Byrne, Katelyn T.; Lucas, Julie A.; Rabacal, Whitney A.; Croker, Byron P.; Zong, Xiao-Hua; Stanley, E. Richard; Kelley, Vicki R.

    2008-01-01

    Sunlight (UVB) triggers cutaneous (CLE) and systemic lupus through an unknown mechanism. We tested the hypothesis that UVB triggers CLE through a CSF-1-dependent, macrophage (Mø) -mediated mechanism in MRL-Faslpr mice. By constructing mutant MRL-Faslpr strains expressing varying levels of CSF-1 (high, intermediate, none), and use of an ex-vivo gene transfer to deliver CSF-1 intra-dermally, we determined that CSF-1 induces CLE in lupus-susceptible, MRL-Faslpr mice, but not in lupus-resistant, BALB/c mice. Notably, UVB incites an increase in Mø, apoptosis in the skin and CLE in MRL-Faslpr, but not in CSF-1-deficient MRL-Faslpr mice. Furthermore, UVB did not induce CLE in BALB/c mice. Probing further, UVB stimulates CSF-1 expression by keratinocytes leading to recruitment and activation of Mø that, in turn, release mediators, which induce apoptosis in keratinocytes. Thus, sunlight triggers a CSF-1-dependent, Mø-mediated destructive inflammation in the skin leading to CLE in lupus-susceptible MRL-Faslpr, but not lupus-resistant BALB/c mice. Taken together, we envision CSF-1 as the “match” and lupus-susceptibility as the “tinder” leading to CLE. PMID:18981160

  9. Interictal inhibitory mechanisms in patients with cryptogenic motor cortex epilepsy: a study of the silent period following transcranial magnetic stimulation.

    Science.gov (United States)

    Cincotta, M; Borgheresi, A; Lori, S; Fabbri, M; Zaccara, G

    1998-07-01

    The silent period (SP) following transcranial magnetic stimulation (TMS) of the motor cortex is mainly due to cortical inhibitory mechanisms. The aim of the present study was to investigate these inhibitory phenomena in primary motor cortex epilepsy. We studied the TMS-induced SP in both the first dorsal interosseous (FDI) muscles in 8 patients who suffered from cryptogenic partial epilepsy with seizures starting with clonic movements of the right upper limb. All patients were on chronic medication with antiepileptic drugs. Therefore, besides contrasting the results with 16 age-matched normal controls, we also studied 10 patients receiving similar antiepileptic treatments who suffered from cryptogenic partial epilepsy with seizures characterised by the absence of clonic manifestations. The duration of the SP was bilaterally increased in the patients with clonic seizures when compared with the two other groups of subjects. The SP was longer in the left FDI muscle (contralateral to the side of the clonic manifestation in all the patients). Our findings likely indicate enhanced interictal inhibitory mechanisms in patients with partial epilepsy involving the primary motor cortex. The resulting inhibitory effect could be greater in the intact hemisphere rather than in the affected one, in which the hyperexcitability of the epileptic focus had to be counterbalanced.

  10. The effect of nutrition on the neural mechanisms potentially involved in melatonin-stimulated LH secretion in female Mediterranean goats.

    Science.gov (United States)

    Zarazaga, Luis A; Celi, Irma; Guzmán, José Luis; Malpaux, Benoît

    2011-12-01

    This research examines which neural mechanisms among the endogenous opioid, dopaminergic, serotonergic and excitatory amino acid systems are involved in the stimulation of LH secretion by melatonin implantation and their modulation by nutritional level. Female goats were distributed to two experimental groups that received either 1.1 (group H; n=24) or 0.7 (group L; n=24) times their nutritional maintenance requirements. Half of each group was implanted with melatonin after a long-day period. Plasma LH concentrations were measured twice per week. The effects of i.v. injections of naloxone, pimozide, cyproheptadine and N-methyl-d,l-aspartate (NMDA) on LH secretion were assessed the day before melatonin implantation and again on days 30 and 45. The functioning of all but the dopaminergic systems was clearly modified by the level of nutrition, melatonin implantation and time elapsed since implantation. Thirty days after implantation, naloxone increased LH concentrations irrespective of the level of nutrition (Pgoats (HM; Pnutritional level and melatonin implantation. Endogenous opioids seem to be most strongly involved in the inhibition of LH secretion on days 30 and 45 after melatonin implantation. However, the serotonergic mechanism appears to be most influenced by nutritional level.

  11. New mechanisms for non-porative ultrasound stimulation of cargo delivery to cell cytosol with targeted perfluorocarbon nanoparticles

    Science.gov (United States)

    Soman, N. R.; Marsh, J. N.; Lanza, G. M.; Wickline, S. A.

    2008-05-01

    The cell membrane constitutes a major barrier for non-endocytotic intracellular delivery of therapeutic molecules from drug delivery vehicles. Existing approaches to breaching the cell membrane include cavitational ultrasound (with microbubbles), electroporation and cell-penetrating peptides. We report the use of diagnostic ultrasound for intracellular delivery of therapeutic bulky cargo with the use of molecularly targeted liquid perfluorocarbon (PFC) nanoparticles. To demonstrate the concept, we used a lipid with a surrogate polar head group, nanogold-DPPE, incorporated into the nanoparticle lipid monolayer. Melanoma cells were incubated with nanogold particles and this was followed by insonication with continuous wave ultrasound (2.25 MHz, 5 min, 0.6 MPa). Cells not exposed to ultrasound showed gold particles partitioned only in the outer bilayer of the cell membrane with no evidence of the intracellular transit of nanogold. However, the cells exposed to ultrasound exhibited numerous nanogold-DPPE components inside the cell that appeared polarized inside intracellular vesicles demonstrating cellular uptake and trafficking. Further, ultrasound-exposed cells manifested no incorporation of calcein or the release of lactate dehydrogenase. These observations are consistent with a mechanism that suggests that ultrasound is capable of stimulating the intracellular delivery of therapeutic molecules via non-porative mechanisms. Therefore, non-cavitational adjunctive ultrasound offers a novel paradigm in intracellular cargo delivery from PFC nanoparticles.

  12. Cough augmentation techniques for extubation or weaning critically ill patients from mechanical ventilation.

    Science.gov (United States)

    Rose, Louise; Adhikari, Neill Kj; Leasa, David; Fergusson, Dean A; McKim, Douglas

    2017-01-11

    There are various reasons why weaning and extubation failure occur, but ineffective cough and secretion retention can play a significant role. Cough augmentation techniques, such as lung volume recruitment or manually- and mechanically-assisted cough, are used to prevent and manage respiratory complications associated with chronic conditions, particularly neuromuscular disease, and may improve short- and long-term outcomes for people with acute respiratory failure. However, the role of cough augmentation to facilitate extubation and prevent post-extubation respiratory failure is unclear. Our primary objective was to determine extubation success using cough augmentation techniques compared to no cough augmentation for critically-ill adults and children with acute respiratory failure admitted to a high-intensity care setting capable of managing mechanically-ventilated people (such as an intensive care unit, specialized weaning centre, respiratory intermediate care unit, or high-dependency unit).Secondary objectives were to determine the effect of cough augmentation techniques on reintubation, weaning success, mechanical ventilation and weaning duration, length of stay (high-intensity care setting and hospital), pneumonia, tracheostomy placement and tracheostomy decannulation, and mortality (high-intensity care setting, hospital, and after hospital discharge). We evaluated harms associated with use of cough augmentation techniques when applied via an artificial airway (or non-invasive mask once extubated/decannulated), including haemodynamic compromise, arrhythmias, pneumothorax, haemoptysis, and mucus plugging requiring airway change and the type of person (such as those with neuromuscular disorders or weakness and spinal cord injury) for whom these techniques may be efficacious. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; Issue 4, 2016), MEDLINE (OvidSP) (1946 to April 2016), Embase (OvidSP) (1980 to April 2016), CINAHL (EBSCOhost) (1982

  13. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering.

    Science.gov (United States)

    Xu, Yuan; Dong, Shiwu; Zhou, Qiang; Mo, Xiumei; Song, Lei; Hou, Tianyong; Wu, Jinglei; Li, Songtao; Li, Yudong; Li, Pei; Gan, Yibo; Xu, Jianzhong

    2014-03-01

    Mechanical stimulation plays an important role in the development and remodeling of tendons. Tendon-derived stem cells (TDSCs) are an attractive cell source for tendon injury and tendon tissue engineering. However, these cells have not yet been fully explored for tendon tissue engineering application, and there is also lack of understanding to the effect of mechanical stimulation on the maturation of TDSCs-scaffold construct for tendon tissue engineering. In this study, we assessed the efficacy of TDSCs in a poly(L-lactide-co-ε-caprolactone)/collagen (P(LLA-CL)/Col) scaffold under mechanical stimulation for tendon tissue engineering both in vitro and in vivo, and evaluated the utility of the transplanted TDSCs-scaffold construct to promote rabbit patellar tendon defect regeneration. TDSCs displayed good proliferation and positive expressed tendon-related extracellular matrix (ECM) genes and proteins under mechanical stimulation in vitro. After implanting into the nude mice, the fluorescence imaging indicated that TDSCs had long-term survival, and the macroscopic evaluation, histology and immunohistochemistry examinations showed high-quality neo-tendon formation under mechanical stimulation in vivo. Furthermore, the histology, immunohistochemistry, collagen content assay and biomechanical testing data indicated that dynamically cultured TDSCs-scaffold construct could significantly contributed to tendon regeneration in a rabbit patellar tendon window defect model. TDSCs have significant potential to be used as seeded cells in the development of tissue-engineered tendons, which can be successfully fabricated through seeding of TDSCs in a P(LLA-CL)/Col scaffold followed by mechanical stimulation.

  14. Mechanisms involved in abdominal nociception induced by either TRPV1 or TRPA1 stimulation of rat peritoneum.

    Science.gov (United States)

    Trevisan, Gabriela; Rossato, Mateus F; Hoffmeister, Carin; Oliveira, Sara M; Silva, Cássia R; Matheus, Filipe C; Mello, Gláucia C; Antunes, Edson; Prediger, Rui D S; Ferreira, Juliano

    2013-08-15

    Abdominal pain is a frequent symptom of peritoneal cavity irritation, but little is known about the role of the receptors for irritant substances, transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), in this painful condition. Thus, we investigated the abdominal nociception caused by peritoneal stimulation with TRPV1 (capsaicin) and TRPA1 (allyl isothiocyanate, AITC) agonists and their mechanisms in rats. The intraperitoneal (i.p.) injection of either capsaicin or AITC (0.03-10 mg/kg) induced short-term (up to 20 min) and dose-dependent abdominal nociception, and also produced c-fos expression in spinal afferents of the dorsal horn. TRPV1 antagonism prevented (94 ± 4% inhibition) nociception induced by capsaicin but not by AITC. In contrast, the TRPA1 antagonism almost abolished AITC-induced nociception (95 ± 2% inhibition) without altering the capsaicin response. Moreover, nociception induced by either capsaicin or AITC was reduced by the desensitisation of TRPV1-positive sensory fibres with resiniferatoxin (73 ± 18 and 76 ± 15% inhibitions, respectively) and by the NK1 receptor antagonist aprepitant (56 ± 5 and 53 ± 8% inhibitions, respectively). Likewise, the i.p. injections of capsaicin or AITC increased the content of substance P in the peritoneal fluid. Nevertheless, neither the mast cell membrane stabiliser cromoglycate, nor the H1 antagonist promethazine, nor depletion of peritoneal macrophages affected abdominal nociception induced either by capsaicin or AITC. Accordingly, neither capsaicin nor AITC increased the histamine content in the peritoneal fluid or provoked peritoneal mast cell degranulation in vitro. Collectively, our findings suggest that TRPV1 and TRPA1 stimulation in the peritoneum produces abdominal nociception that is mediated by sensory fibres activation.

  15. Gait models and mechanical energy in three cross-country skiing techniques.

    Science.gov (United States)

    Pellegrini, Barbara; Zoppirolli, Chiara; Bortolan, Lorenzo; Zamparo, Paola; Schena, Federico

    2014-11-01

    Fluctuations in mechanical energy of the body center of mass (COM) have been widely analyzed when investigating different gaits in human and animal locomotion. We applied this approach to estimate the mechanical work in cross-country skiing and to identify the fundamental mechanisms of this particular form of locomotion. We acquired movements of body segments, skis, poles and plantar pressures for eight skiers while they roller skied on a treadmill at 14 km h(-1) and a 2 deg slope using three different techniques (diagonal stride, DS; double poling, DP; double poling with kick, DK). The work associated with kinetic energy (KE) changes of COM was not different between techniques; the work against gravity associated with potential energy (PE) changes was higher for DP than for DK and was lowest for DS. Mechanical work against the external environment was 0.87 J m(-1) kg(-1) for DS, 0.70 J m(-1) kg(-1) for DP and 0.79 J m(-1) kg(-1) for DK. The work done to overcome frictional forces, which is negligible in walking and running, was 17.8%, 32.3% and 24.8% of external mechanical work for DS, DP and DK, respectively. The pendulum-like recovery (R%) between PE and KE was ~45%, ~26% and ~9% for DP, DK and DS, respectively, but energy losses by friction are not accounted for in this computation. The pattern of fluctuations of PE and KE indicates that DS can be described as a 'grounded running', where aerial phases are substituted by ski gliding phases, DP can be described as a pendular gait, whereas DK is a combination of both.

  16. Core competency in mechanical ventilation: development of educational objectives using the Delphi technique.

    Science.gov (United States)

    Goligher, Ewan C; Ferguson, Niall D; Kenny, Lisa P

    2012-10-01

    We sought to identify and standardize the core clinical knowledge and skills required to care for patients receiving mechanical ventilation. Prospective survey reaching consensus by the Delphi technique. North American survey conducted anonymously by electronic e-mail. International experts in mechanical ventilation, frontline resident educators, medical education experts, and community intensivists were recruited to participate Fourteen panelists participated (ten content experts, three resident educators, one medical education expert, zero community intensivists). Individual panelists generated a total of 200 educational objectives, of which 109 were duplicates. Of the remaining 91 items, 56 met predefined consensus criteria for inclusion in the final set of educational objectives. The educational objectives spanned a broad range of categories, including respiratory physiology, noninvasive ventilation, lung protective ventilation, weaning, and withholding and withdrawing mechanical ventilation. Agreement among panelists on the items included was high (median proportion supporting item inclusion was 88%, range 70%-100%). There is a consensus that general resident core competency in mechanical ventilation requires a broad range of knowledge application and skill. These educational objectives may help identify and standardize the educational outcomes related to mechanical ventilation that residents should achieve.

  17. Effect of aging on mechanical properties of 6063 Al-alloy using instrumented ball indentation technique

    Energy Technology Data Exchange (ETDEWEB)

    Das, G.; Das, Mousumi; Ghosh, Sabita; Dubey, Paritosh [Materials Science and Technology Division, National Metallurgical Laboratory (CSIR), PO-Burmamines, Jamshedpur 831007 (India); Ray, A.K., E-mail: asokroy@nmlindia.org [Materials Science and Technology Division, National Metallurgical Laboratory (CSIR), PO-Burmamines, Jamshedpur 831007 (India)

    2010-03-15

    One of the most important issues of standard conventional test methods for determining mechanical properties of ductile materials is that the requirement of test materials should be adequate and it cannot be applied to in-service components. Therefore, in this study, an instrumented ball indentation technique has been applied to determine a few mechanical properties of a 6063 Al alloy in order to establish a correlation between microstructure and its mechanical properties. The as-received 6063 alloy sample was in cast and homogenized condition. It was solutionized at 520 deg. C with two aging treatments. It was found that solutionized material with subsequent aging at 220 deg. C for 3 h does not produce any noticeable variation in mechanical properties. Whereas, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) on solutionized samples after 7 h aging at 220 deg. C of the same material revealed precipitation of sub-micron size (of the order of 60 nm) Mg{sub 2}Si phase and this subsequently resulted in variation in the mechanical properties of the alloy.

  18. Photoelasticity and DIC as optical techniques for monitoring masonry specimens under mechanical loads

    Science.gov (United States)

    Colla, C.; Gabrielli, E.

    2017-01-01

    To evaluate the complex behaviour of masonry structures under mechanical loads, numerical models are developed and continuously implemented at diverse scales, whilst, from an experimental viewpoint, laboratory standard mechanical tests are usually carried out by instrumenting the specimens via traditional measuring devices. Extracted values collected in the few points where the tools were installed are assumed to represent the behaviour of the whole specimen but this may be quite optimistic or approximate. Optical monitoring techniques may help in overcoming some of these limitations by providing full-field visualization of mechanical parameters. Photoelasticity and the more recent DIC, employed to monitor masonry columns during compression tests are here presented and a lab case study is compared listing procedures, data acquisitions, advantages and limitations. It is shown that the information recorded by traditional measuring tools must be considered limited to the specific instrumented points. Instead, DIC in particular among the optical techniques, is proving both a very precise global and local picture of the masonry performance, opening new horizons towards a deeper knowledge of this complex construction material. The applicability of an innovative DIC procedure to cultural heritage constructions is also discussed.

  19. Influence of different processing techniques on the mechanical properties of used tires in embankment construction.

    Science.gov (United States)

    Edinçliler, Ayşe; Baykal, Gökhan; Saygili, Altug

    2010-06-01

    Use of the processed used tires in embankment construction is becoming an accepted way of beneficially recycling scrap tires due to shortages of natural mineral resources and increasing waste disposal costs. Using these used tires in construction requires an awareness of the properties and the limitations associated with their use. The main objective of this paper is to assess the different processing techniques on the mechanical properties of used tires-sand mixtures to improve the engineering properties of the available soil. In the first part, a literature study on the mechanical properties of the processed used tires such as tire shreds, tire chips, tire buffings and their mixtures with sand are summarized. In the second part, large-scale direct shear tests are performed to evaluate shear strength of tire crumb-sand mixtures where information is not readily available in the literature. The test results with tire crumb were compared with the other processed used tire-sand mixtures. Sand-used tire mixtures have higher shear strength than that of the sand alone and the shear strength parameters depend on the processing conditions of used tires. Three factors are found to significantly affect the mechanical properties: normal stress, processing techniques, and the used tire content.

  20. Ultrasound Imaging Techniques for Spatiotemporal Characterization of Composition, Microstructure, and Mechanical Properties in Tissue Engineering.

    Science.gov (United States)

    Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P

    2016-08-01

    Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.

  1. PMN-PT single crystal focusing transducer fabricated using a mechanical dimpling technique.

    Science.gov (United States)

    Lam, K H; Chen, Y; Cheung, K F; Dai, J Y

    2012-01-01

    A ∼5MHz focusing PMN-PT single crystal ultrasound transducer has been fabricated utilizing a mechanical dimpling technique, where the dimpled crystal wafer was used as an active element of the focusing transducer. For the dimpled focusing transducer, the effective electromechanical coupling coefficient was enhanced significantly from 0.42 to 0.56. The dimpled transducer also yields a -6dB bandwidth of 63.5% which is almost double the bandwidth of the plane transducer. An insertion loss of the dimpled transducer (-18.1dB) is much lower than that of the plane transducer. Finite element simulation also reveals specific focused beam from concave crystal surface. These promising results show that the dimpling technique can be used to develop high-resolution focusing single crystal transducers.

  2. High frequency PMN-PT single crystal focusing transducer fabricated by a mechanical dimpling technique.

    Science.gov (United States)

    Chen, Y; Lam, K H; Zhou, D; Cheng, W F; Dai, J Y; Luo, H S; Chan, H L W

    2013-02-01

    High frequency (∼30MHz and ∼80MHz) focusing ultrasound transducers were fabricated using a PMN-0.28PT single crystal by a mechanical dimpling technique. The dimpled single crystal was used as an active element for the focusing transducer. Compared with a plane transducer, the focusing transducer fabricated with a dimpled active element exhibits much broader bandwidth and higher sensitivity. Besides, a high quality image can be obtained by the 30MHz focusing transducer, in which the -6dB axial and lateral resolution is 27μm and 139μm, respectively. These results prove that the dimpling technique is capable to fabricate the high frequency focusing transducers with excellent performance for imaging applications.

  3. Bridge Maintenance Robotic Arm:Mechanical Technique to Reduce the Nozzle Force of a Sandblastine Rig

    Institute of Scientific and Technical Information of China (English)

    Nathan Kirchner; Gavin Paul; D.K. Liu

    2006-01-01

    This paper describes a mechanical technique to reduce the nozzle reaction force of a sandblasting rig. A theoretical evaluation of the magnitudes and direction of action of typical sandblasting nozzle forces has been conducted and a technique for exploiting available energy in order to reduce the magnitude of the forces at the nozzle has been developed.Experimental results from a variety of tests in different configurations have confirmed the theoretically determined force magnitude's accuracy and shown that forces of up to 106N can be present in typical sandblasting operations. The results have also shown that an up to 77% reduction of force at the nozzle can be achieved by applying the developed mechanicaltechnique.

  4. Cellular mechanisms by which oxytocin stimulates uterine PGF2 alpha synthesis in bovine endometrium: roles of phospholipases C and A2.

    Science.gov (United States)

    Burns, P D; Graf, G A; Hayes, S H; Silvia, W J

    1997-05-01

    The objective of these experiments was to identify the cellular mechanisms by which oxytocin stimulates prostaglandin (PG) F2 alpha synthesis in bovine endometrial tissue. Uteri were collected on the day after spontaneous luteal regression. Caruncular endometrial explants were dissected and incubated in vitro to assess PGF2 alpha release or phospholipase (PL) C activity. Oxytocin (10(-6) M) stimulated PGF2 alpha release and PLC activity within 30 min of incubation (P 0.10). By comparing the time course of stimulation and dose-response relationships between PGF2 alpha and PLC activity, it appears that oxytocin may stimulate PGF2 alpha secretion by activating PLC. The effects of melittin and aristolochic acid indicate that PLA2 may play a role in mediating the stimulatory effect of oxytocin on PGF2 alpha secretion, as well.

  5. Mechanical state assessment using lamb wave technique in static tensile tests

    Science.gov (United States)

    Burkov, M. V.; Shah, R. T.; Eremin, A. V.; Byakov, A. V.; Panin, S. V.

    2016-11-01

    The paper deals with the investigation of Lamb wave ultrasonic technique for damage (or mechanical state) evaluation of AA7068T3 specimens in the course of tensile testing. Two piezoelectric transducers (PZT), one of which is used as an actuator and the other as sensor, were adhesively bonded on the specimen surface using epoxy. Two frequencies of testing signals (60 kHz and 350 kHz) were used. The set of static tensile tests were performed. The recorded signals were processed to calculate the informative parameters in order to evaluate the changes in stress-strain state of the specimens and their microstructure.

  6. Lifetimes of organic photovoltaics: Combining chemical and physical characterisation techniques to study degradation mechanisms

    DEFF Research Database (Denmark)

    Norrman, K.; Larsen, N.B.; Krebs, Frederik C

    2006-01-01

    Degradation mechanisms of a photovoltaic device with an Al/C-60/C-12-PSV/PEDOT:PSS/ITO/glass geometry was studied using a combination of in-plane physical and chemical analysis techniques: TOF-SIMS, AFM, SEM, interference microscopy and fluorescence microscopy. A comparison was made between...... a device being stored in darkness in air and a device that had been subjected to illumination under simulated sunlight (1000 Wm(-2), AM1.5) in air. It was found that oxygen diffuses through pinholes in the aluminium electrode. If stored in air in the dark the oxidation is limited to the C-60 layer...

  7. Experimental approach and techniques for the evaluation of wet flue gas desulfurization scrubber fluid mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Strock, T.W. [Babcock and Wilcox Co., Alliance, OH (United States). Research and Development Div.; Gohara, W.F. [Babcock and Wilcox Co., Barberton, OH (United States)

    1994-12-01

    The fluid mechanics within wet flue desulfurization (FGD) scrubbers involve several complex two-phase gas/liquid interactions. The fluid flow directly affects scrubber pressure drop, mist eliminator water removal, and the SO{sub 2} mass transfer/chemical reaction process. Current industrial efforts to develop cost-effective high-efficiency wet FGD scrubbers are focusing, in part, on optimizing the fluid mechanics. The development of an experimental approach and test facility for understanding and optimizing wet scrubber flow characteristics is discussed in this paper. Specifically, scaling procedures for downsizing a wet scrubber for the laboratory environment with field data comparisons are summarized. Furthermore, experimental techniques for the measurement of wet scrubber flow distribution, pressure drop, spray nozzle droplet size characteristics and wet scrubber liquid-to-gas ratio are discussed. Finally, the characteristics and capabilities of a new hydraulic test facility for wet FGD scrubbers are presented. (author)

  8. Identification of the mechanical behaviour of biopolymer composites using multistart optimisation technique

    KAUST Repository

    Brahim, Elhacen

    2013-10-01

    This paper aims at identifying the mechanical behaviour of starch-zein composites as a function of zein content using a novel optimisation technique. Starting from bending experiments, force-deflection response is used to derive adequate mechanical parameters representing the elastic-plastic behaviour of the studied material. For such a purpose, a finite element model is developed accounting for a simple hardening rule, namely isotropic hardening model. A deterministic optimisation strategy is implemented to provide rapid matching between parameters of the constitutive law and the observed behaviour. Results are discussed based on the robustness of the numerical approach and predicted tendencies with regards to the role of zein content. © 2013 Elsevier Ltd.

  9. Experimental analysis of mechanical response of stabilized occipitocervical junction by 3D mark tracking technique

    Directory of Open Access Journals (Sweden)

    Brémand F.

    2010-06-01

    Full Text Available This study is about a biomechanical comparison of some stabilization solutions for the occipitocervical junction. Four kinds of occipito-cervical fixations are analysed in this work: lateral plates fixed by two kinds of screws, lateral plates fixed by hooks and median plate. To study mechanical rigidity of each one, tests have been performed on human skulls by applying loadings and by studying mechanical response of fixations and bone. For this experimental analysis, a specific setup has been developed to impose a load corresponding to the flexion-extension physiological movements. 3D mark tracking technique is employed to measure 3D displacement fields on the bone and on the fixations. Observations of displacement evolution on the bone according to the fixation show different rigidities given by each solution.

  10. Experimental analysis of mechanical response of stabilized occipitocervical junction by 3D mark tracking technique

    Science.gov (United States)

    Germaneau, A.; Doumalin, P.; Dupré, J. C.; Brèque, C.; Brémand, F.; D'Houtaud, S.; Rigoard, P.

    2010-06-01

    This study is about a biomechanical comparison of some stabilization solutions for the occipitocervical junction. Four kinds of occipito-cervical fixations are analysed in this work: lateral plates fixed by two kinds of screws, lateral plates fixed by hooks and median plate. To study mechanical rigidity of each one, tests have been performed on human skulls by applying loadings and by studying mechanical response of fixations and bone. For this experimental analysis, a specific setup has been developed to impose a load corresponding to the flexion-extension physiological movements. 3D mark tracking technique is employed to measure 3D displacement fields on the bone and on the fixations. Observations of displacement evolution on the bone according to the fixation show different rigidities given by each solution.

  11. Mechanical characterization of TiO{sub 2} nanofibers produced by different electrospinning techniques

    Energy Technology Data Exchange (ETDEWEB)

    Vahtrus, Mikk [Institute of Physics, University of Tartu, Ravila 14c, 50412 Tartu (Estonia); Šutka, Andris [Institute of Physics, University of Tartu, Ravila 14c, 50412 Tartu (Estonia); Institute of Silicate Materials, Riga Technical University, P. Valdena 3/7, Riga LV-1048 (Latvia); Institute of Technical Physics, Riga Technical University, P. Valdena 3, Riga LV-1048 (Latvia); Vlassov, Sergei, E-mail: vlassovs@ut.ee [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Šutka, Anna [Institute of Textile Technology and Design, Riga Technical University, Riga LV-1048 (Latvia); Laboratory of Biomass Eco-Efficient Conversation, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga LV-1006 (Latvia); Polyakov, Boris [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Saar, Rando; Dorogin, Leonid; Lõhmus, Rünno [Institute of Physics, University of Tartu, Ravila 14c, 50412 Tartu (Estonia); Materials Technologies Competence Centre, Riia 185b, 51014 Tartu (Estonia)

    2015-02-15

    In this work TiO{sub 2} nanofibers produced by needle and needleless electrospinning processes from the same precursor were characterized and compared using Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and in situ SEM nanomechanical testing. Phase composition, morphology, Young's modulus and bending strength values were found. Weibull statistics was used to evaluate and compare uniformity of mechanical properties of nanofibers produced by two different methods. It is shown that both methods yield nanofibers with very similar properties. - Graphical abstract: Display Omitted - Highlights: • TiO{sub 2} nanofibers were produced by needle and needleless electrospinning processes. • Structure was studied by Raman spectroscopy and electron microscopy methods. • Mechanical properties were measured using advanced in situ SEM cantilevered beam bending technique. • Both methods yield nanofibers with very similar properties.

  12. Fabrication of Al–TiC composites by hot consolidation technique: its microstructure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Sangita Mohapatra

    2016-04-01

    Full Text Available Al-based metal matrix composites reinforced with different volume fraction of TiC particles as reinforcement was synthesized by the hot consolidation process. The titanium carbide used in this study was synthesized directly from the titanium ore (ilmenite, FeTiO3 by carbothermic reduction process through thermal plasma technique. The field emission scanning electron micrographs (FESEM reveals the homogeneous distribution of TiC particles in the Al-matrix. Enhanced Young's modulus and mechanical properties with appreciable ductility were observed in the composite samples. The significant increases in the mechanical properties of the composites demonstrate the effectiveness of the low-density TiC reinforcement.

  13. Oral contraceptive pill, progestogen or estrogen pre-treatment for ovarian stimulation protocols for women undergoing assisted reproductive techniques (Review)

    NARCIS (Netherlands)

    Smulders, B.; Oirschot, S.M. van; Farquhar, C.; Rombauts, L.; Kremer, J.A.M.

    2010-01-01

    BACKGROUND: For many subfertile women, assisted reproductive techniques (ART) is the only hope for a pregnancy and live birth. The combined oral contraceptive pill (OCP) given prior to the hormone therapy in an IVF cycle may result in better pregnancy outcomes of ART. OBJECTIVES: To assess whether p

  14. Oral contraceptive pill, progestogen or estrogen pre-treatment for ovarian stimulation protocols for women undergoing assisted reproductive techniques (Review)

    NARCIS (Netherlands)

    Smulders, B.; Oirschot, S.M. van; Farquhar, C.; Rombauts, L.; Kremer, J.A.M.

    2010-01-01

    BACKGROUND: For many subfertile women, assisted reproductive techniques (ART) is the only hope for a pregnancy and live birth. The combined oral contraceptive pill (OCP) given prior to the hormone therapy in an IVF cycle may result in better pregnancy outcomes of ART. OBJECTIVES: To assess whether p

  15. Glucose stimulates neurotensin secretion from the rat small intestine by mechanisms involving SGLT1 and GLUT2, leading to cell depolarization and calcium influx.

    Science.gov (United States)

    Kuhre, Rune Ehrenreich; Bechmann, Louise Ellegaard; Wewer Albrechtsen, Nicolai Jacob; Hartmann, Bolette; Holst, Jens Juul

    2015-06-15

    Neurotensin (NT) is a neurohormone produced in the central nervous system and in the gut epithelium by the enteroendocrine N cell. NT may play a role in appetite regulation and may have potential in obesity treatment. Glucose ingestion stimulates NT secretion in healthy young humans, but the mechanisms involved are not well understood. Here, we show that rats express NT in the gut and that glucose gavage stimulates secretion similarly to oral glucose in humans. Therefore, we conducted experiments on isolated perfused rat small intestine with a view to characterize the cellular pathways of secretion. Luminal glucose (20% wt/vol) stimulated secretion but vascular glucose (5, 10, or 15 mmol/l) was without effect. The underlying mechanisms depend on membrane depolarization and calcium influx, since the voltage-gated calcium channel inhibitor nifedipine and the KATP channel opener diazoxide, which causes hyperpolarization, eliminated the response. Luminal inhibition of the sodium-glucose cotransporter 1 (SGLT1) (by phloridzin) eliminated glucose-stimulated release as well as secretion stimulated by luminal methyl-α-D-glucopyranoside (20% wt/vol), a metabolically inactive SGLT1 substrate, suggesting that glucose stimulates secretion by initial uptake by this transporter. However, secretion was also sensitive to GLUT2 inhibition (by phloretin) and blockage of oxidative phosphorylation (2-4-dinitrophenol). Direct KATP channel closure by sulfonylureas stimulated secretion. Therefore, glucose stimulates NT secretion by uptake through SGLT1 and GLUT2, both causing depolarization either as a consequence of sodium-coupled uptake (SGLT1) or by closure of KATP channels (GLUT2 and SGLT1) secondary to the ATP-generating metabolism of glucose.

  16. Effects of flotation-restricted environmental stimulation technique on stress-related muscle pain: what makes the difference in therapy--attention-placebo or the relaxation response?

    Science.gov (United States)

    Bood, Sven A; Sundequist, Ulf; Kjellgren, Anette; Nordstrom, Gun; Norlander, Torsten

    2005-01-01

    The purpose of the present study was to examine the potential effects of attention-placebo on flotation tank therapy. Flotation-restricted environmental stimulation technique is a method whereby an individual lies in a floating tank and all stimuli are reduced to a minimum. Thirty-two patients were diagnosed as having stress-related muscular pain. In addition, 16 of the participants had received the diagnosis of burnout depression. The patients were treated with flotation-restricted environmental stimulation technique for six weeks. One-half of the patients were also given special attention for 12 weeks (high attention), while the remainder received attention for only six weeks (normal attention). The participants exhibited lowered blood pressure, reduced pain, anxiety, depression, stress and negative affectivity, as well as increased optimism, energy and positive affectivity. The results were largely unaffected by the degree of attention-placebo or diagnosis. It was concluded that flotation therapy is an effective, noninvasive method for treating stress-related pain, and that the method is not more affected by placebo than by other methods currently used in pain treatment. The treatment of both burnout depression and pain related to muscle tension constitutes a major challenge for the patient as well as the care provider, an area in which great gains can be made if the treatment is effective. Flotation therapy may constitute an integral part of such treatment.

  17. Enteral feeding without pancreatic stimulation

    DEFF Research Database (Denmark)

    Kaushik, Neeraj; Pietraszewski, Marie; Holst, Jens Juul

    2005-01-01

    OBJECTIVE: All forms of commonly practiced enteral feeding techniques stimulate pancreatic secretion, and only intravenous feeding avoids it. In this study, we explored the possibility of more distal enteral infusions of tube feeds to see whether activation of the ileal brake mechanism can result...... in enteral feeding without pancreatic stimulation, with particular reference to trypsin, because the avoidance of trypsin stimulation may optimize enteral feeding in acute pancreatitis. METHODS: The pancreatic secretory responses to feeding were studied in 36 healthy volunteers by standard double......-lumen duodenal perfusion/aspiration techniques over 6 hours. Subjects were assigned to no feeding (n = 7), duodenal feeding with a polymeric diet (n = 7) or low-fat elemental diet (n = 6), mid-distal jejunal feeding (n = 11), or intravenous feeding (n = 5). All diets provided 40 kcal/kg ideal body weight/d and 1...

  18. A novel optical coherence tomography-based micro-indentation technique for mechanical characterization of hydrogels.

    Science.gov (United States)

    Yang, Ying; Bagnaninchi, Pierre O; Ahearne, Mark; Wang, Ruikang K; Liu, Kuo-Kang

    2007-12-22

    Depth-sensing micro-indentation has been well recognized as a powerful tool for characterizing mechanical properties of solid materials due to its non-destructive approach. Based on the depth-sensing principle, we have developed a new indentation method combined with a high-resolution imaging technique, optical coherence tomography, which can accurately measure the deformation of hydrogels under a spherical indenter at constant force. The Hertz contact theory has been applied for quantitatively correlating the indentation force and the deformation with the mechanical properties of the materials. Young's moduli of hydrogels estimated by the new method are comparable with those measured by conventional depth-sensing micro-indentation. The advantages of this new method include its capability to characterize mechanical properties of bulk soft materials and amenability to perform creeping tests. More importantly, the measurement can be performed under sterile conditions allowing non-destructive, in situ and real-time investigations on the changes in mechanical properties of soft materials (e.g. hydrogel). This unique character can be applied for various biomechanical investigations such as monitoring reconstruction of engineered tissues.

  19. High efficiency and simple technique for controlling mechanisms by EMG signals

    Science.gov (United States)

    Dugarte, N.; Álvarez, A.; Balacco, J.; Mercado, G.; Gonzalez, A.; Dugarte, E.; Javier, F.; Ceballos, G.; Olivares, A.

    2016-04-01

    This article reports the development of a simple and efficient system that allows control of mechanisms through electromyography (EMG) signals. The novelty about this instrument is focused on individual control of each motion vector mechanism through independent electronic circuits. Each of electronic circuit does positions a motor according to intensity of EMG signal captured. This action defines movement in one mechanical axis considered from an initial point, based on increased muscle tension. The final displacement of mechanism depends on individual’s ability to handle the levels of muscle tension at different body parts. This is the design of a robotic arm where each degree of freedom is handled with a specific microcontroller that responds to signals taken from a defined muscle. The biophysical interaction between the person and the final positioning of the robotic arm is used as feedback. Preliminary tests showed that the control operates with minimal positioning error margins. The constant use of system with the same operator showed that the person adapts and progressively improves at control technique.

  20. Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques

    Directory of Open Access Journals (Sweden)

    Kunjachan Sijumon

    2010-01-01

    Full Text Available We focused on qualitatively exploring the basic mechanisms involved in the Ionic gelation (IG process, a method quite frequently used for synthesis of chitosan (CS microparticles (MPs and nanoparticles (NPs. We synthesized CS MPs and NPs using the Ionic gelation and microemulsion methods, and characterized the CS NPs and MPs at different stages of formulation using scanning electron microscopy (SEM and fluorescence microscopy. Fourier Transform Infrared (FTIR analysis was carried out to confirm effective cross-linking. Moreover, for the first time, we reported the mechanisms of IG technique for CS NP and MP synthesis with qualitative proof: (1 Complex formation of long chain oligomers with polyanions (long beaded structures (2 cleavages at weak sites on addition of acid (HCl (3 formation of CS NPs on chain scission. The versatility of IG for the synthesis of CS MPs and NPs was proved and compared with the microemulsion technique, thereby enhancing the wide spectrum of its use in therapeutics and biomedical applications.

  1. The Parkinsonian Gait Spatiotemporal Parameters Quantified by a Single Inertial Sensor before and after Automated Mechanical Peripheral Stimulation Treatment

    Directory of Open Access Journals (Sweden)

    Ana Kleiner

    2015-01-01

    Full Text Available This study aims to evaluate the change in gait spatiotemporal parameters in subjects with Parkinson’s disease (PD before and after Automated Mechanical Peripheral Stimulation (AMPS treatment. Thirty-five subjects with PD and 35 healthy age-matched subjects took part in this study. A dedicated medical device (Gondola was used to administer the AMPS. All patients with PD were treated in off levodopa phase and their gait performances were evaluated by an inertial measurement system before and after the intervention. The one-way ANOVA for repeated measures was performed to assess the differences between pre- and post-AMPS and the one-way ANOVA to assess the differences between PD patients and the control group. Spearman’s correlations assessed the associations between patients with PD clinical status (H&Y and the percentage of improvement of the gait variables after AMPS (α<0.05 for all tests. The PD group had an improvement of 14.85% in the stride length; 14.77% in the gait velocity; and 29.91% in the gait propulsion. The correlation results showed that the higher the H&Y classification, the higher the stride length percentage of improvement. The treatment based on AMPS intervention seems to induce a better performance in the gait pattern of PD patients, mainly in intermediate and advanced stages of the condition.

  2. Cerebellar Fastigial Nucleus Electrical Stimulation Alleviates Depressive-Like Behaviors in Post-Stroke Depression Rat Model and Potential Mechanisms

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-03-01

    Full Text Available Objective: To identify the molecular mechanism of post-stroke depression (PSD, and observe the therapeutic effects of cerebellar fastigial nucleus electrical stimulation (FNS on the behaviors and regional cerebral blood flow (rCBF in a PSD rat model. Methods: Healthy SD rats were randomly divided into four groups (sham, stroke, post-stroke depress and FNS group. Sham group (n = 6 underwent sham operation. The other three groups (n = 6*3 underwent MCAO. Rats were examined twice a week in open filed test. Moreover, neuroprotective effect on cerebellar Purkinje cells and expression of cytokines in hippocampal tissue were examined. Results: The PSD group showed a significant weight loss, decreased consumption of sucrose water, reduced rearing and locomotor activities. The FNS significantly alleviates the body weight loss and sucrose preference, locomotor and rearing activities. The bilateral rCBF was also restored after FNS treatment. Moreover, FNS improved the neuroprotection via suppressing apoptosis of cerebellar Purkinje cells. And the inflammatory cytokines mRNA level in hippocampus was significantly decreased. Conclusion: FNS treatment alleviates depressive-like behaviors and rCBF in PSD rats model, which could be attributed to its ability to protect cerebellar Purkinje cells and decrease the mRNA level of inflammatory cytokines.

  3. Mechanisms of Nifedipine-Downregulated CD40L/sCD40L Signaling in Collagen Stimulated Human Platelets.

    Directory of Open Access Journals (Sweden)

    Tso-Hsiao Chen

    Full Text Available The platelet-derived soluble CD40L (sCD40L release plays a critical role in the development of atherosclerosis. Nifedipine, a dihydropyridine-based L-type calcium channel blocker (CCB, has been reported to have an anti-atherosclerotic effect beyond its blood pressure-lowering effect, but the molecular mechanisms remain unclear. The present study was designed to investigate whether nifedipine affects sCD40L release from collagen-stimulated human platelets and to determine the potential role of peroxisome proliferator-activated receptor-β/-γ (PPAR-β/-γ. We found that treatment with nifedipine significantly inhibited the platelet surface CD40L expression and sCD40L release in response to collagen, while the inhibition was markedly reversed by blocking PPAR-β/-γ activity with specific antagonist such as GSK0660 and GW9662. Meanwhile, nifedipine also enhanced nitric oxide (NO and cyclic GMP formation in a PPAR-β/-γ-dependent manner. When the NO/cyclic GMP pathway was suppressed, nifedipine-mediated inhibition of sCD40L release was abolished significantly. Collagen-induced phosphorylation of p38MAPK, ERK1/2 and HSP27, matrix metalloproteinase-2 (MMP-2 expression/activity and reactive oxygen species (ROS formation were significantly inhibited by nifedipine, whereas these alterations were all attenuated by co-treatment with PPAR-β/-γ antagonists. Collectively, these results demonstrate that PPAR-β/-γ-dependent pathways contribute to nifedipine-mediated downregulation of CD40L/sCD40L signaling in activated platelets through regulation of NO/ p38MAPK/ERK1/2/HSP27/MMP-2 signalings and provide a novel mechanism regarding the anti-atherosclerotic effect of nifedipine.

  4. Contribution of opioid and metabotropic glutamate receptor mechanisms to inhibition of bladder overactivity by tibial nerve stimulation.

    Science.gov (United States)

    Matsuta, Yosuke; Mally, Abhijith D; Zhang, Fan; Shen, Bing; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2013-07-15

    The contribution of metabotropic glutamate receptors (mGluR) and opioid receptors to inhibition of bladder overactivity by tibial nerve stimulation (TNS) was investigated in cats under α-chloralose anesthesia using LY341495 (a group II mGluR antagonist) and naloxone (an opioid receptor antagonist). Slow infusion cystometry was used to measure the volume threshold (i.e., bladder capacity) for inducing a large bladder contraction. After measuring the bladder capacity during saline infusion, 0.25% acetic acid (AA) was infused to irritate the bladder, activate the nociceptive C-fiber bladder afferents, and induce bladder overactivity. AA significantly (P < 0.0001) reduced bladder capacity to 26.6 ± 4.7% of saline control capacity. TNS (5 Hz, 0.2 ms) at 2 and 4 times the threshold (T) intensity for inducing an observable toe movement significantly increased bladder capacity to 62.2 ± 8.3% at 2T (P < 0.01) and 80.8 ± 9.2% at 4T (P = 0.0001) of saline control capacity. LY341495 (0.1-5 mg/kg iv) did not change bladder overactivity, but completely suppressed the inhibition induced by TNS at a low stimulus intensity (2T) and partially suppressed the inhibition at high intensity (4T). Following administration of LY341495, naloxone (0.01 mg/kg iv) completely eliminated the high-intensity TNS-induced inhibition. However, without LY341495 treatment a 10 times higher dose (0.1 mg/kg) of naloxone was required to completely block TNS inhibition. These results indicate that interactions between group II mGluR and opioid receptor mechanisms contribute to TNS inhibition of AA-induced bladder overactivity. Understanding neurotransmitter mechanisms underlying TNS inhibition of bladder overactivity is important for the development of new treatments for bladder disorders.

  5. Corrosion Inhibition Mechanism of Rare Earth Metal on LC4 Al Alloy with Spilt Cell Technique

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new method of studying the corrosion inhibition mechanism of rare earth metal(REM) on LC4 Al alloy with the spilt cell technique was studied. The principle and experimental method of the spilt cell technique were analyzed. By measuring the change of net-electric current between the two electrodes caused by the change of the amount of oxygen in the solution and the addition of CeCl3, the influence of corrosive performance of CeCl3 on LC4 super-power aluminum alloy in the 0.1 mol*L-1 NaCl solution was investigated. Meanwhile, the conditional changes of pH values, CeCl3 solution, additire and time of performance were also studied. Finally, the features of electrode surface were revealed by using SEM and X-ray energy-dispersive spectrometry (EDS). By combining these with other electric chemical techniques, such as potential-time curve, polarization curve et al.

  6. Glucose stimulates neurotensin secretion from the rat small intestine by mechanisms involving SGLT1 and GLUT2 leading to cell depolarization and calcium influx

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Bechmann, Louise Ellegaard; Hartmann, Bolette

    2015-01-01

    , but the mechanisms involved are not well understood. Here, we show that rats express NT in the gut and that glucose gavage stimulates secretion similarly to oral glucose in humans. Therefore, we conducted experiments on isolated perfused rat small intestine with a view to characterize the cellular pathways...

  7. Electrical stimulation of the substantia nigra reticulata : Detection of neuronal extracellular GABA in the ventromedial thalamus and its regulatory mechanism using microdialysis in awake rats

    NARCIS (Netherlands)

    Timmerman, W; Westerink, BHC

    1997-01-01

    A combination of electrical stimulation and microdialysis was used to study the nigrothalamic gamma aminobutyric acid (GABA)ergic system and its regulatory mechanisms in awake rats. Extracellular GABA levels in the ventromedial nucleus of the thalamus were detected in S-min fractions collected befor

  8. Effects of mechanical stimulating treatment on self-organization phenomena of materials; Kikaiteki reiki shori. Zairyo no jiko soshikia gensho ni oyobosu sono koka

    Energy Technology Data Exchange (ETDEWEB)

    Hida, M. [Okayama University, Okayama (Japan). Faculty of Mechanical Engineering

    1999-03-31

    The atoms and atom clusters around dislocation cores in crystals or surface layer deformed by mechanical energy are locally excited so as to give rise some chemical reactions and to self-organize their products into a kind of Spatial-Temporal Pattern Formation as a dissipative structure. A famous coupling phenomenon between mechanical and chemical process in solid materials must have been mechanical alloing. This report explains that various mechano-chemical treatments are powerfull method for entraining the solid system into non-equilibrium states and interesting phenomena stimulated by the mechanical self-catalysis reaction causing self-organization. (author)

  9. An Approach to Acoustic Emission Technique Applications to Evaluate Damage Mechanisms in Composite Materials

    Directory of Open Access Journals (Sweden)

    Rios-Soberanis C.R.

    2015-01-01

    Full Text Available Acoustic Emission technique is a versatile method for characterization in materials science. It is considered to be a “passive” non-destructive method since damage can be only evaluated when de defects are being developed during the test which, at the end of the day, it is considered an advantage because failure mechanisms and damage process can be monitored and identified during the load history. When a failure mechanism is activated due to a discontinuity in the material such as crack propagation, part of the total strain energy is dissipated as an elastic waves that propagate from the damage source through the medium. Therefore, this released energy can be detected by piezoelectric sensors that perceive the emitted signal from the damage notation site by the surface dynamic movement and convert it in an electrical response. Acoustic emission signals can be correlated with the onset of damage process occurring in the tested materials and also to de diverse failure mechanisms such as matrix cracking, interface damage, fiber fracture, etc. This paper proposes to discuss our information and results on acoustic emission materials characterization undertaken on different types of materials.

  10. DISTINCTION OF MECHANICALLY PROCESSED WOOD SURFACES WITH SIMILAR QUALITIES USING SUNSET LASER TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Anna Carolina de Almeida Andrade

    2016-06-01

    Full Text Available The ASTM D 1666-11 (2011 norm classifies the quality of wood surface pieces after its mechanical processing. Although this classification is difficult to achieve visually, the use of some tools, such as solid state laser, can facilitate this classification. The aim of this work was to evaluate the use of sunset laser to qualify mechanically processed surfaces with similar visual qualities. We used a log from the base of a Khaya ivorensis tree and one from a K. senegalensis tree, both 11 years old. 22 specimens of dimensions 600x140x30 mm (CxLxE were made of each species. The specimens were flattened with speeds of 2400, 3600 and 4000 min-1 and advanced speeds were predetermined in 6 and 15 m.min-1. Then the samples were illuminated with sunset laser and photographed at high resolution, the images were transferred to the software Image J. To evaluate the sunset laser, areas of defects in wood that are classified as regular and bad by ASTM D 1666-11 (2011 were used. There was a difference in classification of wood defects between the two methods used, from the 31 specimens classified as regularly by visual analysis, 8 of them were classified as bad by the laser method. The use of solid-state laser in the sunset laser technique was more efficient in evaluating small differences in mechanically processed wood defects compared to visual evaluation.

  11. Overexpression of transcription factor AP-2 stimulates the PA promoter of the human uracil-DNA glycosylase (UNG) gene through a mechanism involving derepression

    DEFF Research Database (Denmark)

    Aas, Per Arne; Pena Diaz, Javier; Liabakk, Nina Beate

    2009-01-01

    within the region of DNA marked by PA. Footprinting analysis and electrophoretic mobility shift assays of PA and putative AP-2 binding regions with HeLa cell nuclear extract and recombinant AP-2alpha protein indicate that AP-2 transcription factors are central in the regulated expression of UNG2 m......alpha, lacking the activation domain but retaining the DNA binding and dimerization domains, stimulated PA to a level approaching that of full-length AP-2, suggesting that AP-2 overexpression stimulates PA activity by a mechanism involving derepression rather than activation, possibly by neutralizing...

  12. The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique.

    LENUS (Irish Health Repository)

    Curtis, Andrew R

    2009-02-01

    To assess the mechanical properties of discrete filler particles representative of several inorganic fillers in modern dental resin-based composites (RBCs) and to assess the validity of a novel micromanipulation technique.

  13. Predictions of precipitation reaction mechanisms for 7xxx series aluminum alloys cast by CDS technique

    Science.gov (United States)

    Sobrino, Luca

    The need to reduce the fleet fuel consumption is pushing the automotive industry to reduce vehicles weight. In this context high strength aluminum alloys are a viable alternative to the heavier steel currently adopted. In particular 7xxx series wrought alloys, thanks to their excellent strength to weight ratio, are drawing the attention of carmakers. The development of the Controlled Diffusion Solidification (CDS) technique allows now the casting of these alloys into near net shapes, thus reducing all the costs related to the manufacturing process and making them attractive. Because of the completely different microstructure resulting from the CDS process, a new design of the heat treatments is required to achieve the best mechanical properties. This project therefore evaluates the macro and microhardness evolution of CDS cast 7xxx alloys in T4 and T6 conditions to predict their precipitation sequence, thus providing useful information for the heat treatments design.

  14. Study of multilayer packaging delamination mechanisms using different surface analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Garrido-Lopez, Alvaro [Department of Chemistry, University of La Rioja, C/Madre de Dios 51, E-26006 Logrono, La Rioja (Spain); Tena, Maria Teresa, E-mail: maria-teresa.tena@unirioja.es [Department of Chemistry, University of La Rioja, C/Madre de Dios 51, E-26006 Logrono, La Rioja (Spain)

    2010-04-01

    Multilayer packaging, consisting of different layers joined by using an adhesive or an extrusion process, is widely used to promote different products, such as food, cosmetics, etc. The main disadvantage in using this form of packaging is the delamination process. In this work, different surface techniques (X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy) are used to analyse the delaminated surfaces in order to study the mechanisms that cause delamination of multilayer packaging. According to our results, the reaction of migrated molecules with adhesive-aluminium bonds is the main cause of the chemical delamination process. In contrast, the delamination of extruded materials would seem to be caused by the breaking of Van der Waals bonds.

  15. Exploring the assembly mechanism of tetrapeptide oligomers using the Activation-Relaxation Technique

    Science.gov (United States)

    Wei, Guanghong; Mousseau, Normand; Derreumaux, Philippe

    2004-03-01

    Alzheimer's disease and Parkinson's disease are associated with formation of amyloid fibrils. All amyloid fibrils seem to share a common cross β-sheet structure. Experimental studies have shown that peptides as short as 4 amino acids can form amyloid fibrils. It has also been shown that the oligomers that form early in the aggregation process of even non-disease-related proteins may be cytotoxic. We report a detailed study of the assembly mechanisms of the tetrapeptides into different size oligomers: trimers, hexamers and more. The assembly of the oligomers, in which the peptides form β-sheets through interpeptide interactions, are studied using the activation-relaxation technique (ART) in combination with a reduced off-lattice energy model (OPEP). We also describe the multiple pathways of oligomerization as well as categorize the various oligomeric intermediates, providing information of the early events of β-sheet formation.

  16. High resolution shallow geologic characterization of a late Pleistocene eolian environment using ground penetrating radar and optically stimulated luminescence techniques: North Carolina, USA

    Science.gov (United States)

    Mallinson, D.; Mahan, S.; Moore, Christine

    2008-01-01

    Geophysical surveys, sedimentology, and optically-stimulated luminescence age analyses were used to assess the geologic development of a coastal system near Swansboro, NC. This area is a significant Woodland Period Native American habitation and is designated the "Broad Reach" archaeological site. 2-d and 3-d subsurface geophysical surveys were performed using a ground penetrating radar system to define the stratigraphic framework and depositional facies. Sediment samples were collected and analyzed for grain-size to determine depositional environments. Samples were acquired and analyzed using optically stimulated luminescence techniques to derive the depositional age of the various features. The data support a low eolian to shallow subtidal coastal depositional setting for this area. Li-DAR data reveal ridge and swale topography, most likely related to beach ridges, and eolian features including low-relief, low-angle transverse and parabolic dunes, blowouts, and a low-relief eolian sand sheet. Geophysical data reveal dominantly seaward dipping units, and low-angle mounded features. Sedimentological data reveal mostly moderately-well to well-sorted fine-grained symmetrical to coarse skewed sands, suggesting initial aqueous transport and deposition, followed by eolian reworking and bioturbation. OSL data indicate initial coastal deposition prior to ca. 45,000 yBP, followed by eolian reworking and low dune stabilization at ca. 13,000 to 11,500 yBP, and again at ca. 10,000 yBP (during, and slightly after the Younger Dryas chronozone).

  17. Mechanical stimulation of C2C12 cells increases m-calpain expression, focal adhesion plaque protein degradation and cell differentiation

    DEFF Research Database (Denmark)

    Grossi, Alberto; Lawson, Moira Ann

    Abstract Mechanical stimulation of C2C12 cells increases m-calpain expression, focal adhesion plaque protein degradation and cell differentiation. A. Grossi, M. A. Lawson; Department of Food Science, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark The process of muscle...... development and growth is a complex sequence of events whereby muscle cells respond to a number of stimuli in order to form organised muscle tissue. Increase in muscle mass is greatly influenced by the rate of skeletal muscle protein synthesis and degradation, processes that can be altered by mechanical...... forces. Stretch- or load-induced signaling is now beginning to be understood as a factor which affects the mass and phenotype of muscles as well as the expression of a number of proteins within muscle cells. Use of magnetic field to produce mechanical forces to stimulate cell populations has been well...

  18. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    Science.gov (United States)

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  19. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion.

    Directory of Open Access Journals (Sweden)

    Nicolás M Kouyoumdzian

    Full Text Available The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP on organic cation transporters (OCTs expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T, ANP, dopamine (DA, D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects.

  20. Phthalates stimulate the epithelial to mesenchymal transition through an HDAC6-dependent mechanism in human breast epithelial stem cells.

    Science.gov (United States)

    Hsieh, Tsung-Hua; Tsai, Cheng-Fang; Hsu, Chia-Yi; Kuo, Po-Lin; Lee, Jau-Nan; Chai, Chee-Yin; Hou, Ming-Feng; Chang, Chia-Cheng; Long, Cheng-Yu; Ko, Ying-Chin; Tsai, Eing-Mei

    2012-08-01

    Phthalates are environmental hormone-like molecules that are associated with breast cancer risk and are involved in metastasis, a process that requires the epithelial-mesenchymal transition (EMT). However, few studies have addressed the potential effects of phthalates on stem cells. Here we tested the hypothesis that phthalates such as butyl benzyl phthalate and di-n-butyl phthalate induce EMT in R2d cells, a stem cell-derived human breast epithelial cell line that is responsive to estradiol for tumor development. We observed that phthalates induced EMT as evidenced by morphological changes concomitant with increased expression of mesenchymal markers and decreased expression of epithelial markers. Molecular mechanism studies revealed that histone deacetylase 6 (HDAC6) is required for phthalate-induced cell migration and invasion during EMT in vitro and metastasis into the lungs of nude mice. We also constructed a series of mutant HDAC6 promoter fragments and found that the transcription factor AP-2a plays a novel role in regulating the HDAC6 promoter. Furthermore, phthalates stimulated estrogen receptors and triggered the downstream EGFR-PKA signaling cascade, leading to increased expression of AP-2a in the nucleus. We also observed that phthalates increased expression of the PP1/HDAC6 complex and caused Akt activation and GSK3β inactivation, leading to transcriptional activation of vimentin through the β-catenin-TCF-4/LEF1 pathway. Understanding the signaling cascades of phthalates that activate EMT through HDAC6 in breast epithelial stem cells provides the identification of novel therapeutic target for human breast cancer.

  1. Evaluation of intrastromal corneal ring segments for treatment of keratoconus with a mechanical implantation technique

    Directory of Open Access Journals (Sweden)

    Zeki Tunc

    2013-01-01

    Full Text Available Purpose: To evaluate the clinical outcomes of intrastromal corneal ring segment (ICRS implantation in patients with keratoconus using a mechanical implantation technique. Materials and Methods: Thirty eyes of 17 patients with keratoconus were enrolled. ICRSs (Keraring were implanted after dissection of the tunnel using Tunc′s specially designed dissector under suction. A complete ophthalmic examination was performed, including uncorrected distance visual acuity (UDVA, corrected distance visual acuity (CDVA, spherical equivalent, keratometric readings, inferosuperior asymmetry index (ISAI, and ultrasound pachymetry. All 3-, 6-, and 12-month follow-ups were completed, and statistical analysis was performed. Results: The mean preoperative UDVA for all eyes was 1.36 ± 0.64 logMAR. At 12 months, the mean UDVA was 0.51 ± 0.28 logMAR (P = 0.001, and the mean preoperative CDVA was 0.57 ± 0.29 logMAR, which improved to 0.23 ± 0.18 (P = 0.001 at 1 year. There was a significant reduction in spherical equivalent refractive error from -6.42 ± 4.69 diopters (D preoperatively to -1.26 ± 1.45 D (P = 0.001 at 1 year. In the same period, the mean K-readings improved from 49.38 ± 3.72 D to 44.43 ± 3.13 D (P = 0.001, and the mean ISAI improved from 7.92 ± 3.12 to 4.21 ± 1.96 (P = 0.003. No significant changes in mean central corneal thickness were observed postoperatively. There were no major complications during and or after surgery. Conclusion: ICRS implantation using a unique mechanical dissection technique is a safe and effective treatment for keratoconus. All parameters improved by the 1-year follow-up.

  2. Optimizing a Rodent Model of Parkinson's Disease for Exploring the Effects and Mechanisms of Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Karl Nowak

    2011-01-01

    instrumented rats carrying a backpack stimulator and implanted platinum/iridium electrodes. This model is suitable for (1 elucidating the electrochemical processes at the electrode/tissue interface, (2 analyzing the molecular, cellular and behavioral stimulation effects, (3 testing new target regions for DBS, (4 screening for potential neuroprotective DBS effects, and (5 improving the efficacy and safety of the method. An outlook is given on further developments of experimental DBS, including the use of transgenic animals and the testing of closed-loop systems for the direct on-demand application of electric stimulation.

  3. Development of a modified artificial insemination technique combining penile vibration stimulation and the swim-up method in the common marmoset.

    Science.gov (United States)

    Takabayashi, Shuji; Suzuki, Yuiko; Katoh, Hideki

    2015-05-01

    The common marmoset, Callithrix jacchus, is used as a New World monkey species in biomedical studies because of its small body size and good reproduction in captivity. A modified artificial insemination technique was developed in this species to encourage breeding of lines carrying interesting genes and traits. Fresh semen was collected by penile vibratory stimulation. Medium containing highly motile sperm was inseminated into the uterus using a catheter. Seven females were inseminated using freshly prepared sperm from different males every day for 3 days including the expected ovulation day. As a result, four females conceived, and three females delivered six offspring in total (two singletons and one quadruplet). The paternity of the newborns was determined using microsatellite markers to accurately pinpoint the timing of insemination and ovulation. It is expected that our artificial insemination protocol can be effectively used to establish marmoset lines and genetically manage marmoset colonies.

  4. Effect of resination technique on mechanical properties of medium density fiberboard

    Directory of Open Access Journals (Sweden)

    Nadir Ayrilmis

    2013-02-01

    Full Text Available Effects of different resination techniques relative to the mechanical properties of commercially produced thick medium density fiberboard (MDF were investigated. The amount of urea-formaldehyde resin (11 wt% applied to the wood fibers was gradually decreased in the blowline (11, 10.5, 10, and 9.5 wt%, while it was gradually increased in the short-retention blender (0, 0.5, 1, and 1.5. wt%. The internal bond strength of the MDF boards considerably improved as the amount of the resin applied to the fibers in the short-retention blender was increased to 1.5 wt%. In particular, the increase in the IB strength was most pronounced as the resin content increased from 1 to 1.5%. The edge and face screw withdrawal resistances increased by 7.7 and 7.9% as the amount of the resin applied to the fibers in the blender was increased. Similar values were also observed for the flexural properties. Overall, the total resin content in the production of thick MDF can be decreased as blender resination, a means of post-dryer resin addition, is incorporated into the blowline resination technique.

  5. Angiotensin II inhibits insulin-stimulated GLUT4 translocation and Akt activation through tyrosine nitration-dependent mechanisms.

    Directory of Open Access Journals (Sweden)

    Alfredo Csibi

    Full Text Available Angiotensin II (Ang II plays a major role in the pathogenesis of insulin resistance and diabetes by inhibiting insulin's metabolic and potentiating its trophic effects. Whereas the precise mechanisms involved remain ill-defined, they appear to be associated with and dependent upon increased oxidative stress. We found Ang II to block insulin-dependent GLUT4 translocation in L6 myotubes in an NO- and O(2(*--dependent fashion suggesting the involvement of peroxynitrite. This hypothesis was confirmed by the ability of Ang II to induce tyrosine nitration of the MAP kinases ERK1/2 and of protein kinase B/Akt (Akt. Tyrosine nitration of ERK1/2 was required for their phosphorylation on Thr and Tyr and their subsequent activation, whereas it completely inhibited Akt phosphorylation on Ser(473 and Thr(308 as well as its activity. The inhibitory effect of nitration on Akt activity was confirmed by the ability of SIN-1 to completely block GSK3alpha phosphorylation in vitro. Inhibition of nitric oxide synthase and NAD(PHoxidase and scavenging of free radicals with myricetin restored insulin-stimulated Akt phosphorylation and GLUT4 translocation in the presence of Ang II. Similar restoration was obtained by inhibiting the ERK activating kinase MEK, indicating that these kinases regulate Akt activation. We found a conserved nitration site of ERK1/2 to be located in their kinase domain on Tyr(156/139, close to their active site Asp(166/149, in agreement with a permissive function of nitration for their activation. Taken together, our data show that Ang II inhibits insulin-mediated GLUT4 translocation in this skeletal muscle model through at least two pathways: first through the transient activation of ERK1/2 which inhibit IRS-1/2 and second through a direct inhibitory nitration of Akt. These observations indicate that not only oxidative but also nitrative stress play a key role in the pathogenesis of insulin resistance. They underline the role of protein

  6. Anisotropy of mechanical and thermal properties of AZ31 sheets prepared using the ARB technique

    Science.gov (United States)

    Halmešová, K.; Trojanová, Z.; Džugan, J.; Drozd, Z.; Minárik, P.; Knapek, M.

    2017-07-01

    In the accumulative roll bonding (ARB) technique, repeated stacking of material followed by conventional roll-bonding is carried out. For this process the surfaces are cleaned with ethanol and then joined together by rolling. The rolled material is then cut into two halves, again surface treated and roll-bonded. This process may be repeated several times. For the magnesium alloy AZ31 (Mg-3Al-1Zn) rolling at an elevated temperature of 400 °C is necessary for ARB because of the low plasticity of hexagonal magnesium alloys at lower temperatures. Samples for this study were prepared using 1 to 3 ARB passes through the rolling mill. It was found that the ARB substantially refined the grain size of sheets to the micrometer scale. The microstructure and texture of the deformed samples were studied by light and electron microscopy. The mechanical properties of the ARB samples were explored using tensile test-pieces cut from the sheets with the tensile axis taken either parallel or perpendicular to the rolling direction, where a significant anisotropy in both mechanical properties and Young’s modulus was found. Anisotropy is explained on the basis of the specific microstructure and texture formed during the ARB process.

  7. Surrogate-based modeling and dimension reduction techniques for multi-scale mechanics problems

    Institute of Scientific and Technical Information of China (English)

    Wei Shyy; Young-Chang Cho; Wenbo Du; Amit Gupta; Chien-Chou Tseng; Ann Marie Sastry

    2011-01-01

    Successful modeling and/or design of engineering systems often requires one to address the impact of multiple “design variables” on the prescribed outcome.There are often multiple,competing objectives based on which we assess the outcome of optimization.Since accurate,high fidelity models are typically time consuming and computationally expensive,comprehensive evaluations can be conducted only if an efficient framework is available.Furthermore,informed decisions of the model/hardware's overall performance rely on an adequate understanding of the global,not local,sensitivity of the individual design variables on the objectives.The surrogate-based approach,which involves approximating the objectives as continuous functions of design variables from limited data,offers a rational framework to reduce the number of important input variables,i.e.,the dimension of a design or modeling space.In this paper,we review the fundamental issues that arise in surrogate-based analysis and optimization,highlighting concepts,methods,techniques,as well as modeling implications for mechanics problems.To aid the discussions of the issues involved,we summarize recent efforts in investigating cryogenic cavitating flows,active flow control based on dielectric barrier discharge concepts,and lithium (Li)-ion batteries.It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for “scale bridging.”

  8. Cure and mechanical behaviors of cycloaliphatic/DGEBA epoxy blend system using electron-beam technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.; Heo, G.Y.; Park, S.J. [Korea Research Institute of Chemical Technology, Taejeon (Korea)

    2002-05-01

    4-Vinyl-1- cyclohexene diepoxide (VCE)/ diglycidyl ether of bisphenol -A(DGEBA) epoxy blends with benzylquinoxalinium hexafluoroanti-monate were cured using an electron-beam technique. the effect of DGEBA content to VCE on cure behavior, thermal stabilities, and mechanical properties was investigated. The composition of VCE/DGEBA blend system varied within 100:0, 80:20, 60:40. 40:60 20:80, and 0:100wt%. The cure behavior and thermal stability of the cured specimens was monited by near-infrared spectroscopy and thermogravimetric analysis, respectively. Also, the critical stress intensity factor (K{sub 1C}) test of the cured specimens was performed to study the mechanical interfacial properties. As a result, the decreases of short side-chide structure and chain scission were observed in NIR measurements as the DGEBA content increases, resulting in varying the hydroxyl and carbonyl groups. And, the initial decomposition temperature (IDT), temperature of maximum weight loss (T{sub max}), and decomposition activation energy (E{sub d}) as thermal stability factors were increased with increasing the DGEBA content. These results could be explained by mean of decreasing viscosity, stable aromatic ring structure, and grafted interpenetrating polymer network with increasing of DGEBA content. Also, the maximum K{sub 1C} value showed at mixing ratio of 40:60 wt% in this blend system. (author). 22 refs., 2 tabs., 6 figs.

  9. Neonatal total liquid ventilation: is low-frequency forced oscillation technique suitable for respiratory mechanics assessment?

    Science.gov (United States)

    Bossé, Dominick; Beaulieu, Alexandre; Avoine, Olivier; Micheau, Philippe; Praud, Jean-Paul; Walti, Hervé

    2010-08-01

    This study aimed to implement low-frequency forced oscillation technique (LFFOT) in neonatal total liquid ventilation (TLV) and to provide the first insight into respiratory impedance under this new modality of ventilation. Thirteen newborn lambs, weighing 2.5 + or - 0.4 kg (mean + or - SD), were premedicated, intubated, anesthetized, and then placed under TLV using a specially design liquid ventilator and a perfluorocarbon. The respiratory mechanics measurements protocol was started immediately after TLV initiation. Three blocks of measurements were first performed: one during initial respiratory system adaptation to TLV, followed by two other series during steady-state conditions. Lambs were then divided into two groups before undergoing another three blocks of measurements: the first group received a 10-min intravenous infusion of salbutamol (1.5 microg x kg(-1) x min(-1)) after continuous infusion of methacholine (9 microg x kg(-1) x min(-1)), while the second group of lambs was chest strapped. Respiratory impedance was measured using serial single-frequency tests at frequencies ranging between 0.05 and 2 Hz and then fitted with a constant-phase model. Harmonic test signals of 0.2 Hz were also launched every 10 min throughout the measurement protocol. Airway resistance and inertance were starkly increased in TLV compared with gas ventilation, with a resonant frequency ventilation. We show that LFFOT is an effective tool to track respiratory mechanics under TLV.

  10. Research on Cavitation Regions of Upstream Pumping Mechanical Seal Based on Dynamic Mesh Technique

    Directory of Open Access Journals (Sweden)

    Huilong Chen

    2014-08-01

    Full Text Available In order to study the cavitation area of the Upstream Pumping Mechanical Seal, three-dimensional microgap inner flow field of the Upstream Pumping Mechanical Seal was simulated with multiphase flow cavitation model and dynamic mesh technique based on hydrodynamic lubrication theory. Furthermore, the simulated result was compared with the experimental data. The results show that the simulated result with the Zwart-Gerber-Belamri cavitation model was much closer to the experimental data. The area of cavitation inception mainly occurred at the concave side of the spiral groove and surrounding region without spiral grooves, which was nearly covered by the inner diameter to roots of grooves; in addition, the region near the surface of the stationary ring was primary cavitation location. The area of cavitation has little relationship with the medium pressure; however, it became larger following increasing rotating speed in the range of researched operating conditions. Moreover the boundary of cavitated area was transformed from smooth to rough, which occurred in similar film thickness. When cavitation number was decreasing, which was conducive to improving the lubrication performance of sealed auxiliary, it made the sealing stability decline.

  11. Post-Heat Treatment and Mechanical Assessment of Polyvinyl Alcohol Nanofiber Sheet Fabricated by Electrospinning Technique

    Directory of Open Access Journals (Sweden)

    Mahir Es-saheb

    2014-01-01

    Full Text Available Polyvinyl alcohol (PVA sheets based nanofibers were produced by electrospinning technique. Postheat treatment of the produced PVA sheets with temperatures both below and above Tg to improve the mechanical properties of this material is conducted. The morphology, microstructures, and thermal degradation of the nanofibers sheets produced were investigated using scanning electron microscopy (SEM, transmission electron microscope (TEM, and thermal gravimetric analysis (TGA. Produced nanofibers are compact, and entangled with each other, with diameters from around 150 to 210. Some mechanical characteristics of the successfully produced PVA sheets, and heat-treated, are then conducted and assessed employing uniaxial tensile tests at different speeds ranging from 1 mm/min to 100 mm/min. The tensile test results obtained show that the PVA sheets are strain rate sensitive with increasing strength as the speed (i.e., strain rate increases. The yield tensile stress ranges from 2.411 to 6.981 MPa, the ductility (i.e., elongation percent from ∼21 to 60%, and Young modulus ranges from 103 to 0.137 KPa. However, for heat-treated samples, it is found that the yield strength increases almost by ∼35–40% more than the values of untreated cases with values reaching up to about 3.627–9.63 MPa.

  12. Complementary Physical and Mechanical Techniques to Characterise Tooth: A Bone-like Tissue

    Institute of Scientific and Technical Information of China (English)

    Peter Zioupos; Keith D. Rogers

    2006-01-01

    Bone like tissues are biocomposites comprising an organic matrix (mostly collagen) and a reinforcement phase in the form of mineral crystals (poorly stoichiometric apatite). The composite properties are a result of the material characteristics of the two phases, their interaction, the relative composition, the orientation and the micro-architecture of the structure. The inherent spatial heterogeneity of these tissues (a result of evolutionary and functional requirements) and their exposure to various environmental and mechanical influences result in highly variable properties on the microscale, which can only be characterised by modern microanalytical methods. We present here results obtained by the complementary use of the modern nanoindentation and micro-X-ray diffraction techniques, which were used to probe the properties and structure of human dentine and enamel of primary molar teeth. The results show that both the addition and the higher organization of mineral within the organic matrix produce stiffer and harder tissue and that the examination of properties within small tissue volumes can be reliably achieved by use of these two methods in parallel. This opens new avenues in the study of biomaterial in general, and for the local characterisation of regions of teeth that suffered bacterial attack, mechanical wear, fluoridisation, chemical bleaching, or dental treatment such as laser ablation or drilling.

  13. Mast cell tryptase stimulates myoblast proliferation; a mechanism relying on protease-activated receptor-2 and cyclooxygenase-2

    OpenAIRE

    Côté Claude H; Tremblay Marie-Hélène; Duchesne Elise

    2011-01-01

    Abstract Background Mast cells contribute to tissue repair in fibrous tissues by stimulating proliferation of fibroblasts through the release of tryptase which activates protease-activated receptor-2 (PAR-2). The possibility that a tryptase/PAR-2 signaling pathway exists in skeletal muscle cell has never been investigated. The aim of this study was to evaluate whether tryptase can stimulate myoblast proliferation and determine the downstream cascade. Methods Proliferation of L6 rat skeletal m...

  14. Comparison of ultrasound and nerve stimulation techniques for interscalene brachial plexus block for shoulder surgery in a residency training environment: a randomized, controlled, observer-blinded trial.

    Science.gov (United States)

    Thomas, Leslie C; Graham, Sean K; Osteen, Kristie D; Porter, Heather Scuderi; Nossaman, Bobby D

    2011-01-01

    The ability to provide adequate intraoperative anesthesia and postoperative analgesia for orthopedic shoulder surgery continues to be a procedural challenge. Anesthesiology training programs constantly balance the time needed for procedural education versus associated costs. The administration of brachial plexus anesthesia can be facilitated through nerve stimulation or by ultrasound guidance. The benefits of using a nerve stimulator include a high incidence of success and less cost when compared to ultrasonography. Recent studies with ultrasonography suggest high success rates and decreased procedural times, but less is known about the comparison of these procedural times in training programs. We conducted a prospective, randomized, observer-blinded study with inexperienced clinical anesthesia (CA) residents-CA-1 to CA-3-to compare differences in these 2 guidance techniques in patients undergoing interscalene brachial plexus block for orthopedic surgery. In this study, 41 patients scheduled for orthopedic shoulder surgery were randomly assigned to receive an interscalene brachial plexus block guided by either ultrasound (US group) or nerve stimulation (NS group). Preoperative analgesics and sedatives were controlled in both groups. The US group required significantly less time to conduct the block (4.3 ± 1.5 minutes) than the NS group (10 ± 1.5 minutes), P  =  .009. Moreover, the US group achieved a significantly faster onset of sensory block (US group, 12 ± 2 minutes; NS group, 19 ± 2 minutes; P  =  .02) and motor block (US group, 13.5 ± 2.3 minutes; NS group, 20.2 ± 2.1 minutes; P  =  .03). Success rates were high for both techniques and were not statistically different (US group, 95%; NS group, 91%). No differences were found in operative times, postoperative pain scores, need for rescue analgesics, or incidences of perioperative or postdischarge side effects. On the basis of our results with inexperienced residents, we

  15. THE STRESS IMPACT ON MECHANICAL PROPERTIES OF ROCKS IN HYDRO FRACTURING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    B. GURUPRASAD

    2012-02-01

    Full Text Available Ground water is considered to be the best safe protected drinking water source and bore wells are drilled in hard crystalline rock terrains for drinking water, irrigation and industrial purposes. Even after scientific location, some bore wells yield inadequate quantity of water or fail to yield. The success of bore wells depend largely onnumber, length, dilation and interconnectivity of fractures encountered on drilling. Considering the cost factor involved in drilling a new bore well, rejuvenation of failed bore well through some technique is thought off. The innovative technology of ‘hydro fracturing’ is a new interdisciplinary approach of Hydro mechanical tostimulate the bore well to improve the yield by applying water pressure into bore well by using a heavy duty mechanical compressor. The hydro fracturing technique was first used in oil well to increase oil and gas production. In this research paper, the hydraulic pressure applied increases with depth reflecting the rigidness,toughness of rock. The fracture development, propagation of fracture and stress behavior depends on the physical and mechanical properties of rocks. The hydro fracturing process has been conducted in three depth zones ranging from 8 m to 45 m below ground level in Annavasal union of Pudukottai district, Tamil Nadu, India. The Pressure application varies depending on the geological formations. This study pertains to a part of research work. The minimum and maximum pressures applied are 1 and 10 N/mm2 respectively. The maximumpressure of 10 N/mm2 has been recorded in the third zone, where the country rock is charnockite which is generally massive, compact and dense rock. Generally for the igneous rock in the third zone in the depth range of 40 to 50 m, more than 7 N/mm2 of pressure has been applied indicating extremely strong nature with uniaxial compressive strength 100 – 300 N/mm2, tensile strength 7- 25 N/mm2. Out of 37 bore wells 32.4% of bore wells have shown

  16. Influence of mechanical stimulation in the development of a medial equivalent tissue-engineered vascular construct using a gelatin-g-vinyl acetate co-polymer scaffold.

    Science.gov (United States)

    Thomas, Lynda V; Nair, Prabha D

    2012-01-01

    Vascular regeneration in the area of small diameter (vinyl acetate co-polymer (GeVAc) as the scaffold material. GeVAc was synthesized by co-polymerizing gelatin and vinyl acetate monomer in the presence of AIBN as the initiator and subjected to physico-chemical characterization. A porous 3-D scaffold with open interconnected pores was then produced from GeVAc. The scaffold is non-cytotoxic with good smooth muscle cell proliferative capacity and high cell viability. Influence of smooth muscle cell phenotype in response to these scaffolds has been studied under mechanical stimulation. It was found that the cell-seeded tubular GeVAc constructs under mechanical stimulation preferentially supported the contractile phenotype of smooth muscle cells, as evidenced by the elevated expression of contractile protein markers such as alpha-SMA, calponin and SM22α. The mechanical properties and the ECM secretion were also increased on applying the mechanical stimulation. Hence, the results showed the promising potential of the GeVAc scaffolds in the regeneration of the medial equivalent tissue-engineered vascular construct.

  17. Mast cell tryptase stimulates myoblast proliferation; a mechanism relying on protease-activated receptor-2 and cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Côté Claude H

    2011-10-01

    Full Text Available Abstract Background Mast cells contribute to tissue repair in fibrous tissues by stimulating proliferation of fibroblasts through the release of tryptase which activates protease-activated receptor-2 (PAR-2. The possibility that a tryptase/PAR-2 signaling pathway exists in skeletal muscle cell has never been investigated. The aim of this study was to evaluate whether tryptase can stimulate myoblast proliferation and determine the downstream cascade. Methods Proliferation of L6 rat skeletal myoblasts stimulated with PAR-2 agonists (tryptase, trypsin and SLIGKV was assessed. The specificity of the tryptase effect was evaluated with a specific inhibitor, APC-366. Western blot analyses were used to evaluate the expression and functionality of PAR-2 receptor and to assess the expression of COX-2. COX-2 activity was evaluated with a commercial activity assay kit and by measurement of PGF2α production. Proliferation assays were also performed in presence of different prostaglandins (PGs. Results Tryptase increased L6 myoblast proliferation by 35% above control group and this effect was completely inhibited by APC-366. We confirmed the expression of PAR-2 receptor in vivo in skeletal muscle cells and in satellite cells and in vitro in L6 cells, where PAR-2 was found to be functional. Trypsin and SLIGKV increased L6 cells proliferation by 76% and 26% above control, respectively. COX-2 activity was increased following stimulation with PAR-2 agonist but its expression remained unchanged. Inhibition of COX-2 activity by NS-398 abolished the stimulation of cell proliferation induced by tryptase and trypsin. Finally, 15-deoxy-Δ-12,14-prostaglandin J2 (15Δ-PGJ2, a product of COX-2-derived prostaglandin D2, stimulated myoblast proliferation, but not PGE2 and PGF2α. Conclusions Taken together, our data show that tryptase can stimulate myoblast proliferation and this effect is part of a signaling cascade dependent on PAR-2 activation and on the downstream

  18. NIFS workshop on application of micro-indentation technique to evaluation of mechanical properties of fusion materials. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Kurishita, Hiroaki; Katoh, Yutai [eds.] [Tohoku Univ., Oarai, Ibaraki (Japan). Oarai Branch, Inst. for Materials Research

    1996-11-01

    NIFS workshop on `Application of Micro-Indentation Technique to Evaluation of Mechanical Properties of Fusion Materials` were help in Toki on October 9, 1996, as a part of the activity of NIFS collaborative research on `Advanced Technologies for Small-Volume Mechanical Property Testing of Fusion Reactor Materials`. The major topics at the workshop included the application of micro- (and nano-) indentation technique to evaluation of tensile stress-strain property, interfacial mechanical property of composite and joining materials and hardening of this layers in ion-irradiated materials. This report compiles the abstract and viewgraphs for each presentation. (author)

  19. Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three CAD/CAM-Based Processing Techniques

    Directory of Open Access Journals (Sweden)

    Hae Ri Kim

    2016-07-01

    Full Text Available The microstructures and mechanical properties of cobalt-chromium (Co-Cr alloys produced by three CAD/CAM-based processing techniques were investigated in comparison with those produced by the traditional casting technique. Four groups of disc- (microstructures or dumbbell- (mechanical properties specimens made of Co-Cr alloys were prepared using casting (CS, milling (ML, selective laser melting (SLM, and milling/post-sintering (ML/PS. For each technique, the corresponding commercial alloy material was used. The microstructures of the specimens were evaluated via X-ray diffractometry, optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy, and electron backscattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test according to ISO 22674 (n = 6. The microstructure of the alloys was strongly influenced by the manufacturing processes. Overall, the SLM group showed superior mechanical properties, the ML/PS group being nearly comparable. The mechanical properties of the ML group were inferior to those of the CS group. The microstructures and mechanical properties of Co-Cr alloys were greatly dependent on the manufacturing technique as well as the chemical composition. The SLM and ML/PS techniques may be considered promising alternatives to the Co-Cr alloy casting process.

  20. On the respiratory mechanics measured by forced oscillation technique in patients with systemic sclerosis.

    Directory of Open Access Journals (Sweden)

    Ingrid Almeida Miranda

    Full Text Available BACKGROUND: Pulmonary complications are the most common cause of death and morbidity in systemic sclerosis (SSc. The forced oscillation technique (FOT offers a simple and detailed approach to investigate the mechanical properties of the respiratory system. We hypothesized that SSc may introduce changes in the resistive and reactive properties of the respiratory system, and that FOT may help the diagnosis of these abnormalities. METHODOLOGY/PRINCIPAL FINDINGS: We tested these hypotheses in controls (n = 30 and patients with abnormalities classified using spirometry (n = 52 and pulmonary volumes (n = 29. Resistive data were interpreted with the zero-intercept resistance (Ri and the slope of the resistance (S as a function of frequency. Reactance changes were evaluated by the mean reactance between 4 and 32 Hz (Xm and the dynamic compliance (Crs,dyn. The mechanical load was evaluated using the absolute value of the impedance in 4 Hz (Z4Hz. A compartmental model was used to obtain central (R and peripheral (Rp resistances, and alveolar compliance (C. The clinical usefulness was evaluated by investigating the area under the receiver operating characteristic curve (AUC. The presence of expiratory flow limitation (EFL was also evaluated. For the groups classified using spirometry, SSc resulted in increased values in Ri, R, Rp and Z4Hz (p0.90. In groups classified by pulmonary volume, SSc resulted in reductions in S, Xm, C and Crs,dyn (p0.80. It was also observed that EFL is not common in patients with SSc. CONCLUSIONS/SIGNIFICANCE: This study provides evidence that the respiratory resistance and reactance are changed in SSc. This analysis provides a useful description that is of particular significance for understanding respiratory pathophysiology and to ease the diagnosis of respiratory abnormalities in these patients.

  1. Application of Imaging Techniques to Mechanics of Materials and Structures, Volume 4 : Proceedings of the 2010 Annual Conference on Experimental and Applied Mechanics

    CERN Document Server

    2013-01-01

    This the fourth volume of six from the Annual Conference of the Society for Experimental Mechanics, 2010, brings together 58 chapters on Application of Imaging Techniques to Mechanics of Materials and Structure. It presents findings from experimental and computational investigations involving a range of imaging techniques including Recovery of 3D Stress Intensity Factors From Surface Full-field Measurements, Identification of Cohesive-zone Laws From Crack-tip Deformation Fields, Application of High Speed Digital Image Correlation for Vibration Mode Shape Analysis, Characterization of Aluminum Alloys Using a 3D Full Field Measurement, and Low Strain Rate Measurements on Explosives Using DIC.

  2. Functional MR imaging of visual and motor cortex stimulation at high temporal resolution using a FLASH technique on a standard 1.5 Tesla scanner.

    Science.gov (United States)

    Wiener, E; Schad, L R; Baudendistel, K T; Essig, M; Müller, E; Lorenz, W J

    1996-01-01

    Functional magnetic resonance imaging (fMRI) was performed on a conventional 1.5 T scanner by means of a modified FLASH-technique at temporal resolutions of 80 and 320 ms. The method's stability was assessed by phantom measurements and by investigation of three volunteers resulting in a low amplitude (3%) periodic (4 s) signal modulation for the in vivo measurements, which was not observable in the phantom experiments. fMRI activation studies of motor and visual cortices of four adjacent slices were carried out on 12 healthy right-handed volunteers. Stimulation was performed by a triggered single white light flash or single finger-to-thumb opposition movement, respectively. Event-related response of visual and motor activation was traced over 10.24 s with a temporal resolution of 320 ms for the four slice measurements. Brain activation maps were calculated by correlation of measured signal time course with a time-shifted boxcar function. Activation was quantified by calculation of percentual signal change in relation to the baseline. Observed signal magnitudes were about 5-7% in visual and about 8-12% in primary motor cortex. While photic response was delayed by about 2 s, motor stimulation showed an instantaneous increase of the MR signal. MR signal responses for both stimuli had decayed completely after about 5 s. Our results show that event-related fMRI enables mapping of brain function at sufficient spatial resolution with a temporal resolution of up to 80 ms on a conventional scanner.

  3. Investigation into the mechanisms of vagus nerve stimulation for the treatment of intractable epilepsy, using {sup 99m}Tc-HMPAO SPET brain images

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Anna; Chisholm, Jennifer A.; Patterson, James; Wyper, David [Department of Clinical Physics, Institute of Neurological Sciences, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TF (United Kingdom); Duncan, Roderick [Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow (United Kingdom); Lindsay, Kenneth [Department of Neurosurgery, Institute of Neurological Sciences, Southern General Hospital, Glasgow (United Kingdom)

    2003-02-01

    Vagus nerve stimulation (VNS) has gained recognition as a treatment for refractory epilepsies where surgical treatment is not possible. While it appears that this treatment is effective in some patients, the mechanism of action is not clearly understood. The purpose of this study was to clarify findings of other positron emission tomography and single-photon emission tomography (SPET) investigations by measuring the acute effect of VNS on patients who have normal cerebral anatomy on magnetic resonance imaging and who have not previously been exposed to VNS. We investigated six subjects (two males and four females, mean age 29.5 years, range 21-39 years) with intractable epilepsy. One patient had primary generalised epilepsy causing generalised tonic-clonic seizures; the remaining five patients had localisation-related epilepsy causing complex partial seizures. SPET imaging was performed using 250 MBq of {sup 99m}Tc-HMPAO and a four-scan paradigm - two with and two without stimulation. The stimulation began at VNS current levels of 0.25 mA and was increased according to the limit of patients' tolerance, usually defined by coughing or discomfort. The stimulating waveform was of continuous square wave pulses of 500 {mu}s duration at 30 Hz. Image analysis was by SPM99. Reduced perfusion during stimulation was observed in the ipsilateral brain stem, cingulate, amygdala and hippocampus and contralateral thalamus and cingulate. The study provides further evidence of the involvement of the limbic system in the action of vagal nerve stimulation. (orig.)

  4. Statistical Mechanics Ideas and Techniques Applied to Selected Problems in Ecology

    Directory of Open Access Journals (Sweden)

    Hugo Fort

    2013-11-01

    Full Text Available Ecosystem dynamics provides an interesting arena for the application of a plethora concepts and techniques from statistical mechanics. Here I review three examples corresponding each one to an important problem in ecology. First, I start with an analytical derivation of clumpy patterns for species relative abundances (SRA empirically observed in several ecological communities involving a high number n of species, a phenomenon which have puzzled ecologists for decades. An interesting point is that this derivation uses results obtained from a statistical mechanics model for ferromagnets. Second, going beyond the mean field approximation, I study the spatial version of a popular ecological model involving just one species representing vegetation. The goal is to address the phenomena of catastrophic shifts—gradual cumulative variations in some control parameter that suddenly lead to an abrupt change in the system—illustrating it by means of the process of desertification of arid lands. The focus is on the aggregation processes and the effects of diffusion that combined lead to the formation of non trivial spatial vegetation patterns. It is shown that different quantities—like the variance, the two-point correlation function and the patchiness—may serve as early warnings for the desertification of arid lands. Remarkably, in the onset of a desertification transition the distribution of vegetation patches exhibits scale invariance typical of many physical systems in the vicinity a phase transition. I comment on similarities of and differences between these catastrophic shifts and paradigmatic thermodynamic phase transitions like the liquid-vapor change of state for a fluid. Third, I analyze the case of many species interacting in space. I choose tropical forests, which are mega-diverse ecosystems that exhibit remarkable dynamics. Therefore these ecosystems represent a research paradigm both for studies of complex systems dynamics as well as to

  5. Common Practice Lightning Strike Protection Characterization Technique to Quantify Damage Mechanisms on Composite Substrates

    Science.gov (United States)

    Szatkowski, George N.; Dudley, Kenneth L.; Koppen, Sandra V.; Ely, Jay J.; Nguyen, Truong X.; Ticatch, Larry A.; Mielnik, John J.; Mcneill, Patrick A.

    2013-01-01

    heating parameters which occur during lightning attachment. Following guidance defined in the universal common practice LSP test documents, protected and unprotected CFRP panels were evaluated at 20, 40 and 100KAmps. This report presents analyzed data demonstrating the scientific usefulness of the common practice approach. Descriptions of the common practice CFRP test articles, LSP test bed fixture, and monitoring techniques to capture the electrical, mechanical and thermal parameters during lightning attachment are presented here. Two methods of measuring the electrical currents were evaluated, inductive current probes and a newly developed fiberoptic sensor. Two mechanical displacement methods were also examined, optical laser measurement sensors and a digital imaging correlation camera system. Recommendations are provided to help users implement the common practice test approach and obtain LSP test characterizations comparable across data sets.

  6. Bond-slip detection of concrete-encased composite structure using electro-mechanical impedance technique

    Science.gov (United States)

    Liang, Yabin; Li, Dongsheng; Parvasi, Seyed Mohammad; Kong, Qingzhao; Lim, Ing; Song, Gangbing

    2016-09-01

    Concrete-encased composite structure is a type of structure that takes the advantages of both steel and concrete materials, showing improved strength, ductility, and fire resistance compared to traditional reinforced concrete structures. The interface between concrete and steel profiles governs the interaction between these two materials under loading, however, debonding damage between these two materials may lead to severe degradation of the load transferring capacity which will affect the structural performance significantly. In this paper, the electro-mechanical impedance (EMI) technique using piezoceramic transducers was experimentally investigated to detect the bond-slip occurrence of the concrete-encased composite structure. The root-mean-square deviation is used to quantify the variations of the impedance signatures due to the presence of the bond-slip damage. In order to verify the validity of the proposed method, finite element model analysis was performed to simulate the behavior of concrete-steel debonding based on a 3D finite element concrete-steel bond model. The computed impedance signatures from the numerical results are compared with the results obtained from the experimental study, and both the numerical and experimental studies verify the proposed EMI method to detect bond slip of a concrete-encased composite structure.

  7. Characterization of Shape Memory Polymer Estane by Means of Dynamic Mechanical Thermal Analysis Technique

    Directory of Open Access Journals (Sweden)

    Rasa Kazakevičiūtė-Makovska

    2014-01-01

    Full Text Available Commercially available shape memory polymer (SMP Estane (designation: ETE75DT3 NAT022 is investigated by means of dynamic mechanical thermal analysis (DMTA technique in torsion mode using the Modular Compact Rheometer MCR-301 (Anton Paar GmbH. Amplitude sweep tests have been run below and above the glass transition temperature to establish the linear viscoelastic range (LVR in glassy and rubbery phase of this SMP for the correct physical interpretation of DMTA data. Temperature sweep tests were performed at various frequencies to study the influence of this parameter on values of the storage and loss moduli and the storage and loss compliances as well as the viscosities. These tests have been carried out in heating mode with different rates and at different strain amplitudes. The short- and long-term behavior of SMP Estane have been studied by frequency sweep tests performed at different temperatures and data have been transformed into time-domain properties by applying time-temperature superposition principles. All these DMTA data provide the experimental basis for the study of relaxation processes, property-structure relationships, and the shape memory effect in this little-known SMP.

  8. Mechanical characterization of hyperelastic materials with fringe projection and optimization techniques

    Science.gov (United States)

    Genovese, Katia; Lamberti, Luciano; Pappalettere, Carmine

    2006-05-01

    This paper presents a new hybrid technique for mechanical characterization of hyperelastic materials. The research is motivated by the fact that standard identification procedures based on the fitting of strain-stress curves determined experimentally from planar biaxial tests may be inaccurate for non-uniform states of deformation. Therefore, we propose an alternative approach where the difference Ω between the displacement field measured with Projection Moiré and its counterpart predicted by FEM is minimized using non-linear optimization algorithms that finally find unknown material properties. In order to check the feasibility of the new procedure, we considered a thin latex membrane modelling it as a two-parameter Mooney-Rivlin (MR) hyperelastic material. The Ω function is minimized either using optimization routines available in a commercial finite element package and by implementing a global optimizer able to deal with non-linearity and non-convexity included in the identification process. In order to check accuracy of optimization results, target values of MR constants for the latex specimen tested have previously been determined by fitting experimental stress-strain data gathered from a standard planar biaxial tension test. Results indicate that the present hybrid identification procedure can determine accurately properties of the hyperelastic material under investigation. In fact, the average residual error on displacements was less than 1% while the difference between the MR constants found with optimization and their target values was less than 3.5%.

  9. Synthesis, microstructure and mechanical properties of ceria stabilized tetragonal zirconia prepared by spray drying technique

    Indian Academy of Sciences (India)

    S C Sharma; N M Gokhale; Rajiv Dayal; Ramji Lal

    2002-02-01

    Ceria stabilized zirconia powders with ceria concentration varying from 6 to 16 mol% were synthesized using spray drying technique. Powders were characterized for their particle size distribution and specific surface area. The dense sintered ceramics fabricated using these powders were characterized for their microstructure, crystallite size and phase composition. The flexural strength, fracture toughness and microhardness of sintered ceramics were measured. High fracture toughness and flexural strength were obtained for sintered bodies with 12 mol% of CeO2. Flexural strength and fracture toughness were dependent on CeO2 concentration, crystallite size and phase composition of sintered bodies. Correlation of data has indicated that the transformable tetragonal phase is the key factor in controlling the fracture toughness and strength of ceramics. It has been demonstrated that the synthesis method is effective to prepare nanocrystalline tetragonal ceria stabilized zirconia powders with improved mechanical properties. Ce–ZrO2 with 20 wt% alumina was also prepared with flexural strength, 1200 MPa and fracture toughness, 9.2 MPa √m.

  10. New techniques of the mechanical properties assessment for Advanced High Strength Steel (AHSS) in automobile

    Energy Technology Data Exchange (ETDEWEB)

    Fang Jian [Baoshan Iron and Steel Co., Ltd., Shanghai (China)

    2005-07-01

    Based on the mathematical polynomial and differentiate processing onto tensile stress-strain curve, the experimental technique to monitor the trace of working hardening exponent against strain was established, with the hope of linking the characterization of the mechanical properties to the insight into the microstructure behavior of AHSS. The features of a significant strain hardening peak with slow decaying followed was obtained existing on the n value trace of strain during uniform deformation, which may be the predominant contribution to the outstanding combination of strength and plasticity of AHSS. In comparison, for conventional high strength steel as quench and temper prepared, the form of n value trace was changed into the monotonous decreasing tendency within overall uniform extension. As regards the dynamic loading response of AHSS, the recorded impact force-displacement curve by instrumented impact testing with characteristic force points subdivided the absorbed impact energy into distinct components, corresponding to the crack initiation and propagation. Combined with the quasi static tensile, the concept of toughness parameters including J{sub d}, J-{delta}a and so-called ''local strain toughness, LST'' were proposed, which implies that the stable plastic deformation and pronounced energy consumption may lead to the excellent material response against cracking and rupture under various loading conditions. (orig.)

  11. New AFM Techniques for Investigating Molecular Growth Mechanisms of Protein Crystals

    Science.gov (United States)

    Li, Huayu; Nadarajah, Arunan; Konnert, John H.; Pusey, Marc L.

    1998-01-01

    Atomic Force Microscopy (AFM) has emerged as a powerful technique for investigating protein crystal growth. Earlier AFM studies were among the first to demonstrate that these crystals grew by dislocation and 2D nucleation growth mechanisms [1]. These investigations were restricted to the micron range where only surface features, such as dislocation hillocks and 2D islands are visible. Most AFM instruments can scan at higher resolutions and have the potential to resolve individual protein molecules at nanometer ranges. Such scans are essential for determining the molecular packing arrangements on crystal faces and for probing the growth process at the molecular level. However, at this resolution the AFM tip influences the image produced, with the resulting image being a convolution of the tip shape and the surface morphology [2]. In most studies this problem is resolved by deconvoluting the image to obtain the true surface morphology. Although deconvolution routines work reasonably well for simple one- dimensional shapes, for complex surfaces this approach does not produce accurate results. In this study we devised a new approach which takes advantage of the precise molecular order of crystal surfaces, combined with the knowledge of individual molecular shapes from the crystallographic data of the protein and the AFM tip shape. This information is used to construct expected theoretical AFM images by convoluting the tip shape with the constructed crystal surface shape for a given surface packing arrangement. By comparing the images from actual AFM scans with the constructed ones for different possible surface packing arrangements, the correct packing arrangement can be conclusively determined. This approach was used in this study to determine the correct one from two possible packing arrangements on (I 10) faces of tetragonal lysozyme crystals. Another novel AFM technique was also devised to measure the dimension of individual growth units of the crystal faces

  12. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS

    NARCIS (Netherlands)

    De Geeter, N.; Crevecoeur, G.; Leemans, A.; Dupré, L.

    2015-01-01

    In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically,

  13. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS

    NARCIS (Netherlands)

    De Geeter, N.; Crevecoeur, G.; Leemans, A.; Dupré, L.

    2015-01-01

    In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically,

  14. Different mechanisms for the short-term effects of real versus sham transcutaneous electrical nerve stimulation (TENS) in patients with chronic pain: a pilot study.

    Science.gov (United States)

    Oosterhof, Jan; Wilder-Smith, Oliver H; Oostendorp, Rob A; Crul, Ben J

    2012-01-01

    Transcutaneous electrical nerve stimulation (TENS) has existed since the early 1970s. However, randomized placebo controlled studies show inconclusive results in the treatment of chronic pain. These results could be explained by assuming that TENS elicits a placebo response. However, in animal research TENS has been found to decrease hyperalgesia, which contradicts this assumption. The aim of this study is to use quantitative sensory testing to explore changes in pain processing during sham versus real TENS in patients with chronic pain. Patients with chronic pain (N = 20) were randomly allocated to real TENS or sham TENS application. Electrical pain thresholds (EPTs) were determined inside and outside the segment stimulated, before and after the first 20 minutes of the intervention, and after a period of 10 days of daily real/sham TENS application. Pain relief did not differ significantly for real versus sham TENS. However, by comparing time courses of EPTs, it was found that EPT values outside the segment of stimulation increased for sham TENS, whereas for real TENS these values decreased. There were, however, no differences for EPT measurements inside the segment stimulated. These results illustrate the importance of including mechanism-reflecting parameters in addition to symptoms when conducting pain research.

  15. Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/¿-hydroxylase/20-HETE pathways

    DEFF Research Database (Denmark)

    Inoue, Ryuji; Jensen, Lars Jørn; Jian, Zhong

    2009-01-01

    ). Single TRPC6 channel activity evoked by carbachol was also enhanced by a negative pressure added in the patch pipette. Mechanical potentiation of carbachol- or OAG-induced I(TRPC6) was abolished by small interfering RNA knockdown of cytosolic phospholipase A(2) or pharmacological inhibition of omega...... of receptor and mechanical stimulations may synergistically amplify transmembrane Ca(2+) mobilization through TRPC6 activation, thereby enhancing the vascular tone via phospholipase C/diacylglycerol and phospholipase A(2)/omega-hydroxylase/20-HETE pathways.......TRPC6 is a non-voltage-gated Ca(2+) entry/depolarization channel associated with vascular tone regulation and remodeling. Expressed TRPC6 channel responds to both neurohormonal and mechanical stimuli, the mechanism for which remains controversial. In this study, we examined the possible...

  16. Monitoring of muscle and bone recovery in spinal cord injury patients treated with electrical stimulation using three-dimensional imaging and segmentation techniques: methodological assessment.

    Science.gov (United States)

    Gargiulo, Paolo; Helgason, Thordur; Reynisson, Páll Jens; Helgason, Benedikt; Kern, Helmut; Mayr, Winfried; Ingvarsson, Páll; Carraro, Ugo

    2011-03-01

    Muscle tissue composition accounting for the relative content of muscle fibers and intramuscular adipose and loose fibrous tissues can be efficiently analyzed and quantified using images from spiral computed tomography (S-CT) technology and the associated distribution of Hounsfield unit (HU) values. Muscle density distribution, especially when including the whole muscle volume, provides remarkable information on the muscle condition. Different physiological and pathological scenarios can be depicted using the muscle characterization technique based on the HU values and the definition of appropriate intervals and the association of such intervals to different colors. Using this method atrophy, degeneration, and restoration in denervated muscle undergoing electrical stimulation treatments can be clearly displayed and monitored. Moreover, finite element methods are employed to calculate Young's modulus on the patella bone and to analyze correlation between muscle contraction and bone strength changes. The reliability of this tool though depends on S-CT assessment and calibration. To assess imaging quality and the use of HU values to display muscle composition, different S-CT devices are compared using a Quasar body scanner. Density distributions and volumes of various calibration elements such as lung, polyethylene, water equivalent, and trabecular and dense bone are measured with different scanning protocols and at different points of time. The results show that every scanned element undergoes HU variations, which are greater for materials at the extremes of the HU scale, such as dense bone and lung inhale. Moreover, S-CT scanning with low tube voltages (80 KV) produces inaccurate HU values especially in bones. In conclusion, 3-D modeling techniques based on S-CT scanning is a powerful follow-up tool that may provide structural information at the millimeter scale, and thus may drive choice and timing to validate rehabilitation protocols. © 2011, Copyright the

  17. Inspection of thin-walled pipe welds using mechanized ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lozev, M.; Spencer, R. [Edison Welding Inst., Columbus, OH (United States); Hodgkinson, D. [TransCanada PipeLines Ltd., Calgary, AB (Canada)

    2004-07-01

    This paper investigated applications of high-frequency single/multiprobe techniques and phased-array (PA) technology for the inspection of thin-walled pipes welds. Ultrasonic testing (UT), modeling and simulation was used as an effective way of determining that the desired calibration reflectors and flaws in thin-walled pipes can be accurately sized. A laboratory experiment was conducted in which simple or complex flaws were virtually split on several segments. Beam profile monitoring and automated ultrasonic testing was performed for non-focused 5, 10 and 15 MHz single elements, a variety of focused MHz elements, and a 10 MHz 32 element linear PA probe. A Mephisto model was used to examine the various echo-formation mechanisms. Beam interactions and connected planar flaws were examined. Two calibration targets were used: (1) a 1.5 mm diameter side-drilled hole; and (2) a 4 per cent deep notch. A thin-walled pipe sample was designed for the validation of modeling results. A commercially available PA system and computer software program was used to create focal laws, as well as to steer the beam, collect data, and perform the analysis. Results of the notch tilt models showed that inspection angles of approximately 58 to 68 degrees were the least sensitive to tilt. Signal amplitude losses of less than 10 decibels were observed when compared with the reference notch. The PA model for complex flaws showed that signal loss arising from tilt and skew stabilized at approximately 10 degrees due to a loss of amplitude. Larger sound beams resulted in a greater echo-dynamic that increased masking effects. It was concluded that the most accurate UT simulations were achieved using a 10 MHz, 32-element linear PA technology. 4 refs., 2 tabs., 8 figs.

  18. Efficacy of manual and mechanical instrumentation techniques for removal of overextended root canal filling material.

    Science.gov (United States)

    Kesim, B; Üstün, Y; Aslan, T; Topçuoğlu, H S; Şahin, S; Ulusan, Ö

    2017-06-01

    To compare the efficacy of manual and mechanical instrumentation techniques, including ProTaper Universal retreatment system, Mtwo retreatment system, Reciproc system, and Hedström files, regarding removal of overextended root canal filling material. Eighty extracted human mandibular premolar teeth were prepared at the apical foramen level using Revo-S rotary files and subsequently obturated. The root canal filling material was deliberately extruded from the apex. Samples were transferred to glass vials that simulated the periapical area. Eighty samples of overfilled teeth were randomly assigned to four equal groups (n = 20) for removal of the root filling material with ProTaper Universal retreatment files (Group 1), Mtwo retreatment files (Group 2), Reciproc system (Group 3), and hand files (Group 4). Removal of the root canal filling material and additional preparation were performed by individual instruments from each different system up to a #40 size. The external apical surface of the teeth and the surrounding glass vials were checked using a dental operation microscope with ×12.5 magnification. Samples were divided into two groups based on whether removal of the overextended root canal filling material was successful or not. The Fisher's exact test was used to detect any significant difference between the groups (α = 0.05). The success rate for removal of overextended gutta-percha was greater for the Mtwo (30%) and hand files (30%) compared with the ProTaper (20%) and Reciproc (10%). However, no significant statistical differences existed among the experimental groups (P > 0.05). This study demonstrated that all tested systems had similar efficacy in removing overextended root canal filling material.

  19. Mechanical investigation of U(VI) on pyrrhotite by batch, EXAFS and modeling techniques.

    Science.gov (United States)

    Liu, Haibo; Zhu, Yuke; Xu, Bin; Li, Ping; Sun, Yubing; Chen, Tianhu

    2017-01-15

    The interaction mechanism of U(VI) on pyrrhotite was demonstrated by batch, spectroscopic and modeling techniques. Pyrite was selected as control group in this study. The removal of U(VI) on pyrite and pyrrhotite significantly decreased with increasing ionic strength from 0.001 to 0.1mol/L at pH 2.0-6.0, whereas the no effect of ionic strength was observed at pH >6.0. The maximum removal capacity of U(VI) on pyrite and pyrrhotite calculated from Langmuir model was 10.20 and 21.34mgg(-1) at pH 4.0 and 333K, respectively. The XPS analysis indicated the U(VI) was primarily adsorbed on pyrrhotite and pyrite and then approximately 15.5 and 9.8% of U(VI) were reduced to U(IV) by pyrrhotite and pyrite after 20 days, respectively. Based on the XANES analysis, the adsorption edge of uranium-containing pyrrhotite located between U(IV)O2(s) and U(VI)O2(2+) spectra. The EXAFS analysis demonstrated the inner-sphere surface complexation of U(VI) on pyrrhotite due to the occurrence of U-S shell, whereas the U-U shell revealed the reductive co-precipitates of U(VI) on pyrrhotite/pyrite with increasing reaction times. The surface complexation modeling showed that outer- and inner-surface complexation dominated the U(VI) removal at pH5.0, respectively. The findings presented herein play a crucial role in the removal of radionuclides on iron sulfide in environmental cleanup applications.

  20. Momentum resolved electron stimulated desorption ion angular distribution, a new technique, probing the low frequency motion of adsorbed molecules on single crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ahner, J. [Surface Science Center, Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Mocuta, D. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Yates, J.T. Jr. [Surface Science Center, Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States)

    1999-07-01

    A new technique, momentum resolved electron stimulated desorption ion angular distribution (ESDIAD), provides a method for taking snapshots of the zero-point position and lateral momentum of particles adsorbed on crystalline surfaces. By employing state-of-the-art electronics and computer technology it is possible to record for each desorbing particle the desorption direction together with the flight time. High momentum and directional resolved images are obtained, with time-of-flight resolution in the picosecond range and data acquisition rates up to 100 kHz. This enables us to deconvolute spatial and momentum contributions to the ESDIAD pattern and to map the low frequency motion of the adsorbed particles. These maps reflect the adsorbate interactions with the substrate and with neighboring species on the substrate. For selected examples it is demonstrated that by measuring the three dimensional momentum vector for each desorbing particle it is possible to probe the lowest energy states of adsorbed species, as well as to measure the momentum distribution when the adsorbed species gains thermal energy. Such information can be used as a basis for thinking about anisotropies in lateral motion of particles on surfaces. One major opportunity involves the study of dissimilar chemisorbed species which, when imaged together in momentum and real space, give new insights into the first stages of interaction between the species, leading ultimately to a chemical reaction. {copyright} {ital 1999 American Vacuum Society.}

  1. Direct round window stimulation with the Med-El Vibrant Soundbridge: 5 years of experience using a technique without interposed fascia.

    Science.gov (United States)

    Skarzynski, Henryk; Olszewski, Lukasz; Skarzynski, Piotr H; Lorens, Artur; Piotrowska, Anna; Porowski, Marek; Mrowka, Maciej; Pilka, Adam

    2014-03-01

    The objective of this study was to present 5 years of surgical experience, and the extended results of hearing preservation (based on 3-year follow-up), with the Med-El Vibrant Soundbridge (VSB) in which the floating mass transducer (FMT) is placed directly against the round window membrane, and the fascia is used only as covering tissue to keep it in position. A retrospective survey of surgical and audiological data was conducted to evaluate the performance and stability of patient hearing, with audiometric measurements performed over fixed time intervals up to 36 months. 21 patients, aged 19-62 years (mean 48.4), with mixed or conductive, bilateral or unilateral hearing loss were included in this study. Surgical intervention involved monaural implantation of the Med-El VSB between 2006 and 2009. The results were assessed using pure tone audiometry. In 5 years of experience with the technique, no significant complications or device extrusion were observed except for two revision surgeries requiring FMT repositioning. In the 3-year follow-up, we observed stable hearing in the implanted ear. It is concluded that direct round window stimulation without interposed fascia is an alternative for patients with hearing impairment caused by chronic otitis media and/or lack of ossicles, especially after modified radical mastoidectomy. It allows good results in a selected group of patients, although further observation on a larger population is needed to confirm long-term validity and effectiveness.

  2. Correlated analysis of 2 MeV proton-induced radiation damage in CdZnTe crystals using photoluminescence and thermally stimulated current techniques

    Science.gov (United States)

    Gu, Yaxu; Jie, Wanqi; Rong, Caicai; Wang, Yuhan; Xu, Lingyan; Xu, Yadong; Lv, Haoyan; Shen, Hao; Du, Guanghua; Fu, Xu; Guo, Na; Zha, Gangqiang; Wang, Tao

    2016-11-01

    Radiation damage induced by 2 MeV protons in CdZnTe crystals has been studied by means of photoluminescence (PL) and thermally stimulated current (TSC) techniques. A notable quenching of PL intensity is observed in the regions irradiated with a fluence of 6 × 1013 p/cm2, suggesting the increase of non-radiative recombination centers. Moreover, the intensity of emission peak Dcomplex centered at 1.48 eV dominates in the PL spectrum obtained from irradiated regions, ascribed to the increase of interstitial dislocation loops and A centers. The intensity of TSC spectra in irradiated regions decreases compared to the virgin regions, resulting from the charge collection inefficiency caused by proton-induced recombination centers. By comparing the intensity of identified traps obtained from numerical fitting using simultaneous multiple peak analysis (SIMPA) method, it suggests that proton irradiation under such dose can introduce high density of dislocation and A-centers in CdZnTe crystals, consistent with PL results.

  3. A technique for estimating the probability of radiation-stimulated failures of integrated microcircuits in low-intensity radiation fields: Application to the Spektr-R spacecraft

    Science.gov (United States)

    Popov, V. D.; Khamidullina, N. M.

    2006-10-01

    In developing radio-electronic devices (RED) of spacecraft operating in the fields of ionizing radiation in space, one of the most important problems is the correct estimation of their radiation tolerance. The “weakest link” in the element base of onboard microelectronic devices under radiation effect is the integrated microcircuits (IMC), especially of large scale (LSI) and very large scale (VLSI) degree of integration. The main characteristic of IMC, which is taken into account when making decisions on using some particular type of IMC in the onboard RED, is the probability of non-failure operation (NFO) at the end of the spacecraft’s lifetime. It should be noted that, until now, the NFO has been calculated only from the reliability characteristics, disregarding the radiation effect. This paper presents the so-called “reliability” approach to determination of radiation tolerance of IMC, which allows one to estimate the probability of non-failure operation of various types of IMC with due account of radiation-stimulated dose failures. The described technique is applied to RED onboard the Spektr-R spacecraft to be launched in 2007.

  4. Somato stimulation and acupuncture therapy.

    Science.gov (United States)

    Zhao, Jing-Jun; Rong, Pei-Jing; Shi, Li; Ben, Hui; Zhu, Bing

    2016-05-01

    Acupuncture is an oldest somato stimulus medical technique. As the most representative peripheral nerve stimulation therapy, it has a complete system of theory and application and is applicable to a large population. This paper expounds the bionic origins of acupuncture and analyzes the physiological mechanism by which acupuncture works. For living creatures, functionally sound viscera and effective endurance of pain are essential for survival. This paper discusses the way in which acupuncture increases the pain threshold of living creatures and the underlying mechanism from the perspective of bionics. Acupuncture can also help to adjust visceral functions and works most effectively in facilitating the process of digestion and restraining visceral pain. This paper makes an in-depth overview of peripheral nerve stimulation therapy represented by acupuncture. We look forward to the revival of acupuncture, a long-standing somato stimulus medicine, in the modern medical systems.

  5. Palmitate stimulates glucose transport in rat adipocytes by a mechanism involving translocation of the insulin sensitive glucose transporter (GLUT4)

    Science.gov (United States)

    Hardy, R. W.; Ladenson, J. H.; Henriksen, E. J.; Holloszy, J. O.; McDonald, J. M.

    1991-01-01

    In rat adipocytes, palmitate: a) increases basal 2-deoxyglucose transport 129 +/- 27% (p less than 0.02), b) decreases the insulin sensitive glucose transporter (GLUT4) in low density microsomes and increases GLUT4 in plasma membranes and c) increases the activity of the insulin receptor tyrosine kinase. Palmitate-stimulated glucose transport is not additive with the effect of insulin and is not inhibited by the protein kinase C inhibitors staurosporine and sphingosine. In rat muscle, palmitate: a) does not affect basal glucose transport in either the soleus or epitrochlearis and b) inhibits insulin-stimulated glucose transport by 28% (p less than 0.005) in soleus but not in epitrochlearis muscle. These studies demonstrate a potentially important differential role for fatty acids in the regulation of glucose transport in different insulin target tissues.

  6. Fetal and Placental DNA Stimulation of TLR9: A Mechanism Possibly Contributing to the Pro-inflammatory Events During Parturition.

    Science.gov (United States)

    Goldfarb, Ilona Telefus; Adeli, Sharareh; Berk, Tucker; Phillippe, Mark

    2017-01-01

    While there is evidence for a relationship between cell-free fetal DNA (cffDNA) and parturition, questions remain regarding whether cffDNA could trigger a pro-inflammatory response on the pathway to parturition. We hypothesized that placental and/or fetal DNA stimulates toll-like receptor 9 (TLR9) leading to secretion of pro-inflammatory cytokines by macrophage cells. Four in vitro DNA stimulation studies were performed using RAW 264.7 mouse peritoneal macrophage cells incubated in media containing the following DNA particles: an oligodeoxynucleotide (ODN2395), intact genomic DNA (from mouse placentas, fetuses and adult liver), mouse DNA complexed with DOTAP (a cationic liposome forming compound), and telomere-depleted mouse DNA. Interleukin 6 (IL6) secretion was measured in the media by enzyme-linked immunosorbent assay; and the cell pellet was homogenized for protein content (picograms IL6/mg protein). Robust IL6 secretion was observed in response to ODN2395 (a CpG-rich TLR9 agonist), mouse DNA-DOTAP complexes, and telomere-depleted mouse DNA in concentrations of 5 to 15 μg/mL. In contrast, ODN A151 (containing telomere sequence motifs), intact genomic mouse DNA, and restriction enzyme-digested DNA had no effect on IL6 secretion. The IL6 response was significantly inhibited by chloroquine (10 μg/mL), thereby confirming the important role for TLR9 in the response by macrophage cells. DNA derived from mouse placentas and fetuses, and depleted of telomeric sequences, stimulates a robust pro-inflammatory response by macrophage cells, thereby supporting the hypothesis that cffDNA is able to stimulate an innate immune response that could trigger the onset of parturition. These findings are of clinical importance, as we search for effective treatment/prevention of preterm parturition.

  7. Mechanisms of bioelectric activity in electric tissue. I. The response to indirect and direct stimulation of electroplaques of Electrophorus electricus.

    Science.gov (United States)

    ALTAMIRANO, M; COATES, C W; GRUNDFEST, H; NACHMANSOHN, D

    1953-09-01

    1. A preparation is described consisting of one or several layers of innervated cells of the electric organ of Electrophorus electricus. 2. Each plaque is multiply innervated and only at its caudal face. The nerve fibers may derive from two or more different nerve trunks. 3. During activity the innervated face becomes negative relative to the non-innervated. 4. The first electrical response of the cell to an increasing neural volley is graded and has the character of a prepotential. At a critical size of the prepotential the cell discharges with an all-or-nothing spike. 5. Both responses have durations of about 2 msec. 6. A neural volley which does not cause the spike discharge facilitates the discharge of the cell by a second subsequent volley in the same nerve (temporal facilitation). 7. The period of facilitation lasts ca. 900 msec. During the first 100 msec., the facilitation is large enough to cause a spike. In the later portion only the prepotential is facilitated. No electrical concomitant has been detected. 8. Neural volleys reaching the plaque from different trunks interact at the cell to produce a period of facilitation lasting only about 2 msec. This interaction is interpreted as spatial summation. 9. In a population of cells, simultaneous stimulation of 2 nerves causes a smaller discharge than the sum of the two isolated responses (occlusion). 10. Cells denervated for 7 weeks or more can be excited directly, but only by a current flow outward through the caudal face. 11. Weak direct stimulation causes a prepotential in the denervated plaque. On increasing the stimulus the prepotential increases to a critical size when a spike develops. The duration of both responses is about 2 msec. 12. The absolutely refractory period of the denervated cell is about 1.5 msec. and relative refractoriness lasts about 15 msec. 13. Direct stimulation causes slight facilitation lasting as long as 200 msec. 14. Repetitive stimulation of the nerve at low frequencies (2 to 3

  8. Usefulness of ultrasonic strain measurement-based mechanical properties imaging technique: toward realization of short time diagnosis/treatment

    Science.gov (United States)

    Sumi, Chikayoshi; Kubota, Mitsuhiro; Wakabayashi, Gou; Tanabe, Minoru

    2003-06-01

    For various soft tissues (e.g., liver, breast, etc.), we are developing the ultrasonic strain measurement-based mechanical properties (shear modulus, visco-shear modulus, etc.) reconstruction/imaging technique. To clarify the limitation of our quantitative reconstruction/imaging technique as a diagnostic tool for differentiating malignancies, together with improving the spatial resolution and the dynamic range we are collecting the clinical reconstruction image data. Furthermore, we are applying our technique as a monitoring technique for the effectiveness of chemical therapy (e.g., anticancer drug, ethanol, etc.), thermal therapy (e.g., micro, and rf electromagnetic wave, HIFU, LASER, etc.), and cryotherapy. As soft tissues are deformed in 3-D space due to externally situated quasi-static and/or low frequency mechanical sources, multidimensional signal processing improves strain measurement accuracy and reduces inhomogeneity-dependent modulus reconstruction artifacts. These have been verified by us through simulations and phantom/animal in vitro experiments. Briefly, here we discuss the limitations of low dimensional signal processing. Moreover, we exhibit the superiority both on differential diagnosis for these human in vivo malignancies and monitoring for these therapies of our quasi-real time imaging (using conventional US equipment) to conventional B-mode imaging. Our technique is available as a clinical visualization technique both for diagnosis and treatment, and monitored mechanical properties data can also be effectively utilized as the measure for controlling the therapy, i.e., the exposure energy, the foci, the exposure interval, etc. In the near future, suitable combination of various simple and low-invasive therapy techniques with our imaging technique will open up a new clinical style allowing diagnosis and the subsequently immediate treatment. This must substantially reduce the total medical expenses.

  9. Visualization of Ins(1,4,5)P3 dynamics in living cells: two distinct pathways for Ins(1,4,5)P3 generation following mechanical stimulation of HSY-EA1 cells.

    Science.gov (United States)

    Nezu, Akihiro; Tanimura, Akihiko; Morita, Takao; Tojyo, Yosuke

    2010-07-01

    In the present study, the contribution of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3)] generation on the mechanical-stimulation-induced Ca(2+) response was investigated in HSY-EA1 cells. Mechanical stimulation induced a local increase in the cytosolic concentration of Ins(1,4,5)P(3) ([IP(3)](i)), as indicated by the Ins(1,4,5)P(3) biosensor LIBRAvIII. The area of this increase expanded like an intracellular Ins(1,4,5)P(3) wave as [IP(3)](i) increased in the stimulated region. A small transient [IP(3)](i) increase was subsequently seen in neighboring cells. The phospholipase C inhibitor U-73122 abolished these Ins(1,4,5)P(3) responses and resultant Ca(2+) releases. The purinergic receptor blocker suramin completely blocked increases in [IP(3)](1) and the Ca(2+) release in neighboring cells, but failed to attenuate the responses in mechanically stimulated cells. These results indicate that generation of Ins(1,4,5)P(3) in response to mechanical stimulation is primarily independent of extracellular ATP. The speed of the mechanical-stimulation-induced [IP(3)](i) increase was much more rapid than that induced by a supramaximal concentration of ATP (1 mM). The contribution of the Ins(1,4,5)P(3)-induced Ca(2+) release was larger than that of Ca(2+) entry in the Ca(2+) response to mechanical stimulation in HSY-EA1 cells.

  10. Monoassociation with Lactobacillus acidophilus UFV-H2b20 stimulates the immune defense mechanisms of germfree mice

    Directory of Open Access Journals (Sweden)

    Neumann E.

    1998-01-01

    Full Text Available Probiotics are formulations containing live microorganisms or microbial stimulants that have some beneficial influence on the maintenance of a balanced intestinal microbiota and on the resistance to infections. The search for probiotics to be used in prevention or treatment of enteric infections, as an alternative to antibiotic therapy, has gained significant impulse in the last few years. Several studies have demonstrated the beneficial effects of lactic acid bacteria in controlling infection by intestinal pathogens and in boosting the host's nonspecific immune response. Here, we studied the use of Lactobacillus acidophilus UFV-H2b20, a lactic acid bacterium isolated from a human newborn from Viçosa, Minas Gerais, Brazil, as a probiotic. A suspension containing 108 cells of Lactobacillus acidophilus UFV-H2b20 was inoculated into groups of at least five conventional and germfree Swiss mice to determine its capacity to stimulate the host mononuclear phagocytic activity. We demonstrate that this strain can survive the stressing conditions of the intestinal tract in vivo. Moreover, the monoassociation of germfree mice with this strain for seven days improved the host's macrophage phagocytic capacity, as demonstrated by the clearance of a Gram-negative bacterium inoculated intravenously. Monoassociated mice showed an undetectable number of circulating E. coli, while 0.1% of the original inoculum was still present in germfree animals. Mice treated with viable or heat-killed Lactobacillus acidophilus UFV-H2b20 presented similarly improved clearance capacity when compared with germfree controls. In addition, monoassociated mice had twice the amount of Kupffer cells, which are responsible for the clearance of circulating bacteria, compared to germfree controls. These results suggest that the L. acidophilus strain used here stimulates a nonspecific immune response and is a strong candidate to be used as a probiotic.

  11. Study on mechanisms of hypertension in rat adult offspring following prenatal exposure to immuno-inflammatory stimulants

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jian-zhi; LI Xiao-hui

    2008-01-01

    Objective Essential hypertension (EH) is one of the most common cardiovascular disease and the main causes of human fatility. Recently significant progress has been made in our lab, it was found that exterior stimulation during pregnancy may play a key role in chronicle adult disease. However, what factors affect the growth of fetus after those exterior stimulation and why has not been reported. Based on our previous finding, this study intends to investigate how immuno-inflammatory stimulation affect the development of embryo. Methods 1. Sprague-Dawley (SD) rats, dams in each group received i.p. injections of 0.79 mg· kg-1 LPS, 8 mg·kg-1 zymosan or sterile saline respectively on their gestational days 8, 10, and 12.2. The serums were collected in tail nick at 2 h after the last injection, and the amniotic fluid was mixed at 2, 12, 24,48 h after the last injection. TNF-α and IL-6 levels of serum and amniotic fluid were measured by RIA method. 3. TNF-α and IL-6 mRNA levels were quantitated in amnion, placenta, amniotic fluid, Embryo and maerophage by real-time fluorescent quantitative-PCR. Results 1. The serum level of TNF-α and IL-6 in LPS group and zymosan group was higher than that in control group (P<0.01). It showed that there was immuno-imflammatory response after LPS or zymosan injection in rats. The mRNA levels of TNF-α and IL-6 was very higher in macrophage than in other organization. 2. In embryo, the mRNA level of IL-6 was more than other organization, but the mRNA level of TNF-α was lower than other organization. However, the IL-6 mRNA level of LPS group and zymosan group was higher several dozens times than control group on 24 h and 48 h. Conclusions It suggested that IL-