WorldWideScience

Sample records for mechanical dielectric piezoelectric

  1. Fundamentals of piezoelectric sensorics mechanical, dielectric, and thermodynamical properties of piezoelectric materials

    CERN Document Server

    Tichý, Jan; Kittinger, Erwin; Prívratská, Jana; Privatska, Jana; Janovec, Vaclav

    2010-01-01

    This book presents the physics of piezoleletric sensors in a straight-forward and easy-to-grasp way, from the fundamentals of phenomenological crystal physics through more complex concepts, to its explanation of several important piezoelectric materials.

  2. Dielectric loss against piezoelectric power harvesting

    Science.gov (United States)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-09-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems.

  3. Advanced Mechanics of Piezoelectricity

    CERN Document Server

    Qin, Qing-Hua

    2013-01-01

    "Advanced Mechanics of Piezoelectricity" presents a comprehensive treatment of piezoelectric materials using linear electroelastic theory, symplectic models, and Hamiltonian systems. It summarizes the current state of practice and presents the most recent research findings in piezoelectricity. It is intended for researchers and graduate students in the fields of applied mechanics, material science and engineering, computational engineering, and aerospace engineering. Dr. Qinghua Qin is a professor at the School of Engineering, Australian National University, Australia.

  4. Hybrid energy harvesting systems, using piezoelectric elements and dielectric polymers

    Science.gov (United States)

    Cornogolub, Alexandru; Cottinet, Pierre-Jean; Petit, Lionel

    2016-09-01

    Interest in energy harvesting applications has increased a lot during recent years. This is especially true for systems using electroactive materials like dielectric polymers or piezoelectric materials. Unfortunately, these materials despite multiple advantages, present some important drawbacks. For example, many dielectric polymers demonstrated high energy densities; they are cheap, easy to process and can be easily integrated in many different structures. But at the same time, dielectric polymer generators require an external energy supply which could greatly compromise their autonomy. Piezoelectric systems, on the other hand, are completely autonomous and can be easily miniaturized. However, most common piezoelectric materials present a high rigidity and are brittle by nature and therefore their integration could be difficult. This paper investigates the possibility of using hybrid systems combining piezoelectric elements and dielectric polymers for mechanical energy harvesting applications and it is focused mainly on the problem of electrical energy transfer. Our objective is to show that such systems can be interesting and that it is possible to benefit from the advantages of both materials. For this, different configurations were considered and the problem of their optimization was addressed. The experimental work enabled us to prove the concept and identify the main practical limitations.

  5. Giant piezoelectric response in piezoelectric/dielectric superlattices due to flexoelectric effect

    Science.gov (United States)

    Liu, Chang; Wu, Huaping; Wang, Jie

    2016-11-01

    Flexoelectricity describes the linear response of electrical polarization to a strain gradient, which can be used to enhance the piezoelectric effect of piezoelectric material or realize the piezoelectric effect in nonpiezoelectric materials. Here, we demonstrate from thermodynamics theory that a giant piezoelectric effect exists in piezoelectric/dielectric superlattices due to flexoelectric effect. The apparent piezoelectric coefficient is calculated from the closed-form of analytical expression of the polarization distribution in the piezoelectric/dielectric superlattice subjected to a normal stress, in which the flexoelectric effect is included. It is found that there exists a strong nonlinear coupling between the flexoelectric and piezoelectric effects, which significantly enhances the apparent piezoelectric coefficient in the piezoelectric/dielectric superlattice. For a specific thickness ratio of the piezoelectric and dielectric layers, the enhanced apparent piezoelectric coefficient in the superlattice is ten times larger than that of its pure piezoelectric counterpart. The present work suggests an effective way to obtain giant apparent piezoelectric effect in piezoelectric/dielectric superlattices through flexoelectric effect.

  6. Effect of Lanthanum Substitution on the Structural, dielectric, Ferroelectric and Piezoelectric Properties of Mechanically Activated PZt Electroceramics

    Directory of Open Access Journals (Sweden)

    Ajeet Kumar

    2016-06-01

    Full Text Available Different compositions of (Pb1-xLax (Zr0.60Ti0.40O3 (abbreviated as PLZT x/60/40; x=0, 0.07, 0.08 and 0.10 ceramics were prepared by a combinatorial approach by high energy mechano-chemical ball milling and cold isostatic pressing (CIP. X-ray diffraction patterns and transmission as well as scanning electron microscope were used for the micro-structural and morphological studies. The average particle size of PLZT milled powders was measured from the TEM images and was found to be in the nm range.XRD patterns of the sintered PLZT x/60/40 ceramics confirm the perovskite phase formation after heat treatment. SEM of sintered PLZT x/60/40 ceramics show a close packed dense structure. PLZT 8/60/40 ceramics show the fine grains (~1.3 µm with density ~97 per cent. Dielectric constant and loss were measured as a function of temperature. PLZT 8/60/40 ceramics shows the highest value of room temperature dielectric constant ~2480 at 1 kHz. Ferroelectric studies were done with the help of polarisation (P-E and strain (S-E vs. electric field measurements. PLZT 8/60/40 ceramics shows the maximum value of remnant polarisation (~36 µC/cm2 and strain (~0.27 per cent, respectively. PLZT x/60/40 ceramic samples were poled at optimized poling conditions. The measured values of piezoelectric charge coefficient (d33 and electromechanical coupling factor (kp of PLZT 8/60/40 ceramics were found to be, ~690 pC/N and ~71 per cent, respectively.

  7. TECHNICAL NOTE: Dielectric and piezoelectric properties of piezoelectric ceramic sulphoaluminate cement composites

    Science.gov (United States)

    Cheng, Xin; Huang, Shifeng; Chang, Jun; Lu, Lingchao; Liu, Futian; Ye, Zengmao; Wang, Shoude

    2005-10-01

    Using cement as the matrix of piezoelectric smart composites can solve the problem of mismatch of smart composites and concrete structure in civil engineering. 0 3 cement based piezoelectric composites were fabricated by a compression technique using PMN and sulphoaluminate cement as raw materials. The influence of the PMN content on the dielectric and piezoelectric properties of the composites was investigated. The temperature dependence of the dielectric properties of the composites was discussed in detail. The results indicate that the dielectric constants are almost constant in the temperature range from -30 to 50 °C, which shows excellent dielectric temperature stability. With increasing PMN content, the piezoelectric and dielectric properties of the composites increase. The theoretical values of the dielectric constants show good agreement with the experimental values for the composites.

  8. Study of dielectric and piezoelectric properties of CNT reinforced PZT-PVA 0-3 composite

    Science.gov (United States)

    Vyas, Prince; Prajapat, Rampratap; Manmeeta, Saxena, Dhiraj

    2016-05-01

    Ferroelectric ceramic/polymer composites have the compliance of polymers which overcome the problems of brittleness in ceramics. By imbedding piezoelectric ceramic powder into a polymer matrix, 0-3 composites with good mechanical properties and high dielectric breakdown strength can be developed. The obtained composites of 0-3 connectivity exhibit the piezoelectric properties of ceramics and flexibility, strength and lightness of polymer. These composites can be used in vibration sensing and transducer applications specially as piezoelectric sensors. A potential way to improve piezoelectric& dielectric properties of theses composites is by inclusion of another conductive phase in these composites as reported in the literature. In present work, we prepared PZT-PVA 0-3 composites with 60% ceramic volume fraction reinforced with CNTs with volume ranging from 0 to 1.5 vol%. These CNT reinforced composites were obtained using hot press method with thickness of 200 µm having 0-3 conductivity. These composites were poled applying DC voltage. Dielectric properties of these samples were obtained in a wide frequency range (100 Hz to 1 Mhz) at room temperature. The piezoelectric properties of these composites were analyzed by measuring piezoelectric charge constants (d33). The dielectric and piezoelectric properties of these composites were studied as a function of CNT volume content. In these reinforced composites, CNTs act as a conductive filler dispersed in the matrix which in turn facilitates poling and results in an increase of the piezoelectric properties of the composite due to formation of percolation path through the composites. With a CNT content of 0.3 vol.% in PZT/PVA/CNTs, an increase of 61.3 % was observed in piezoelectric strain factors (d33). In these CNT reinforced composites, a substantial increase (approx. 67%) was also observed in dielectric constant and approximately 89% increase was observed in dielectric loss factor. Results so obtained are in the good

  9. Dielectric and Piezoelectric Properties of 0-3 PZT/PVDF Composite Doped with Polyaniline

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Lead zirconate titanate (PZT)/polyvinylidenc fluoride (PVDF) 0- 3 piezoelectric composites doped with polyaniline (PANI) were obtained by hot-press method.The polarization properties of the composites were characterized by XRD and P- E hysteresis loops at room temperature.And the dielectric and piezoelectric properties were also measured.The results show that the poling of PZT could be effectively carried out and the dielectric constant εr and dissipation tanδ increase monotonously by increasing the voltme fraction of PANI in the composite.The piezoelectric constant d33, and the planar electromechanical coupling factor kp increase while the mechanical quality factor Qm decreases with the increase in the content of PANI.The d33 , kp and Qm show the extremum valnes at 8 vol%-10 vol% PANI.

  10. Analysis of a permeable interface crack in elastic dielectric/piezoelectric bimaterials

    Institute of Scientific and Technical Information of China (English)

    Qun Li; Yiheng Chen

    2007-01-01

    A permeable interface crack between elastic dielectric material and piezoelectric material is studied based on the extended Stroh's formalism. Motivated by strong engi-neering demands to design new composite materials, the authors perform numerical analysis of interface crack tip sin-gularities and the crack tip energy release rates for 35 types of dissimilar bimaterials, respectively, which are constructed by five kinds of elastic dielectric materials: Epoxy, Poly-mer, A1203, SiC, and Si3N4 and seven kinds of practical piezoelectric ceramics: PZT-4, BaTiO3, PZT-5H, PZT-6B,PZT-7A, P-7, and PZT-PIC 151, respectively. The elastic dielectric material with much smaller permittivity than com-mercial piezoelectric ceramics is treated as a special trans-versely isotropic piezoelectric material with extremely small piezoelectricity. The present investigation shows that the structure of the singular field near the permeable interface crack tip consists of three singularities: r-1/2±iε and r-1/2,which is quite different from that in the impermeable inter-face crack. It can be concluded that different far field load-ing cases have significant influence on the near-tip fracture behaviors of the permeable interface crack. Based on the present theoretical treatment and numerical analysis, the elec-tric field induced crack growth is well explained, which pro-vides a better understanding of the failure mechanism induced from interface crack growth in elastic dielectric/piezoelectric bimaterials.

  11. Influence of La in xPBBiN of ternary nanoceramic composite (1-x0.5PMN-0.5PZT-xPBBiN system by mechanic al activatio n technique for dielectric and piezoelectric properties

    Directory of Open Access Journals (Sweden)

    K. CHANDRAMOULI

    2011-06-01

    Full Text Available (1-x[0.5Pb(Mg0.33Nb0.67O3-0.5Pb(Zr0.53Ti0.47O3]-x[Pb0.557Ba0.38La0.022Bi0.02Nb2O6] with both perovskite and tungsten bronze structured composite have been synthesized through mechanical activation technique. The strong influence of lanthanum addition to the lead-barium-bismuth-niobate (xPBLBiN ceramics in perovskite structured (1-xPMN-PZT on structural and functional properties is confirmed. X-ray diffraction patterns studies showed that these complex composites consisted of perovskite Cubic with tungsten bronze Orthorhombic phases. La modification in PBBiN of a ternary system (1-xPMN-PZTxPBBiN revealed intensified orthorhombicity. As La increased the dielectric and piezoelectric properties tremendously increased in (1-xPMN-PZT-xPBLBiN nanoceramic composite. The optimum dielectric and piezoelectric properties (εRT = 2931, kp = 0.461 and d33 = 428 pC/N were found in x =0.4 composite. We achieved novel nanocomposites synthesized by high energy ball milling method and having binary structures in a single composite with excellent functional properties that can be used for energy harvesting applications.

  12. Dielectric properties of piezoelectric 3–0 composites of lithium ferrite/barium titanate

    Indian Academy of Sciences (India)

    P Sarah; S V Suryanarayana

    2003-12-01

    Piezoelectric 3–0 composite ceramics are prepared from a mixture of barium titanate and lithium ferrite phase constituents. Dielectric properties of composites are affected by a number of parameters that include electrical properties, size, shape and amount of constituent phases. The frequency dependent measurements can provide additional insight into mechanisms controlling electrical response. Frequency dependence of dielectric constant plots of lithium ferrite/barium titanate composites will be given and the relevance of trends seen in them will be discussed. Connectivity in composites developed is studied.

  13. Application review of dielectric electroactive polymers (DEAPs) and piezoelectric materials for vibration energy harvesting

    Science.gov (United States)

    Yuan, Xuan; Changgeng, Shuai; Yan, Gao; Zhenghong, Zhao

    2016-09-01

    This paper reviews recent advances in vibration energy harvesting with particular emphasis on the solutions by using dielectric electroactive polymers (DEAPs) and piezoelectric materials. These smart materials are in essence capable of converting wasted vibration energy in the environment to usable electrical energy. Much previous researches have been devoted to studying the technology of harvesting mechanical energy using piezoelectric materials. The recent introduction of the DEAPs that exhibits large displacements under electric activation has led to their consideration as promising replacement for conventional piezoelectric materials. The properties of the two materials are described in this paper together with a comparison of their performance in relation with energy harvesting. Finally comparisons are made in the applications of vibration energy harvesting using these two materials. This paper has been written with reference to a large number of published papers listed in the reference section.

  14. Size-dependent theories of piezoelectricity: Comparisons and further developments for centrosymmetric dielectrics

    CERN Document Server

    Hadjesfandiari, Ali R

    2014-01-01

    Here the recently developed size-dependent piezoelectricity and the strain gradient theory of flexoelectricity are compared. In the course of this investigation, the strain gradient theory of flexoelectricity is shown to violate fundamental rules of mathematics, continuum mechanics and electromagnetism. The major difficulties are associated with ill-posed boundary conditions, the missing angular (moment) equilibrium equation and the appearance of a non-physical extraneous vectorial electrostatic law. Therefore, the strain gradient flexoelectricity must be classified as an inconsistent theory. The present investigation further reveals that the new size-dependent piezoelectricity is the more consistent theory to describe linear electromechanical coupling in dielectrics. Some new aspects of this theory are presented for isotropic and centrosymmetric cubic dielectric materials, whose coupling effect is described by only one parameter.

  15. Piezoelectric and dielectric properties of nanoporous polyvinylidence fluoride (PVDF) films

    Science.gov (United States)

    Zhao, Ping; Wang, Shifa; Kadlec, Alec

    2016-04-01

    A nanoporous polyvinylidene Fluoride (PVDF) thin film was developed for applications in energy harvesting, medical surgeries, and industrial robotics. This sponge-like nanoporous PVDF structure dramatically enhanced the piezoelectric effect because it yielded considerably large deformation under a small force. A casting-etching method was adopted to make films, which is effective to control the porosity, flexibility, and thickness of the film. The films with various Zinc Oxide (ZnO) mass fractions ranging from 10 to 50% were fabricated to investigate the porosity effect. The piezoelectric coefficient d33 as well as dielectric constant and loss of the films were characterized. The results were analyzed and the optimal design of the film with the right amount of ZnO nanoparticles was determined.

  16. Dielectric and Piezoelectric Properties of Sodium Bismuth Titanate Ceramics with KCe Substitution

    Institute of Scientific and Technical Information of China (English)

    XU Jian-Xiu; ZHAO Liang; ZHANG Cheng-Ju

    2008-01-01

    @@ The piezoelectric properties of the (KCe)-substituted sodium bismuth titanate (Na0.5Bi4.5 Ti4O15, NBT) piezo-electric ceramics are investigated. The piezoelectric properties of NBT ceramics are significantly enhanced by (KCe) substitution. The Curie temperature Tc, and piezoelectric coefficient d33 for the (KCe)-substituted NBT are found to be 663°C, and 27pC/N, respectively. Dielectric and annealing spectroscopy present that the (KCe) co-substituted NBT piezoelectric ceramics possess stable piezoelectric properties.

  17. Beneficial and detrimental fatigue effects of dielectric barrier discharges on the piezoelectricity of polypropylene ferroelectrets

    Science.gov (United States)

    Qiu, Xunlin; Wirges, Werner; Gerhard, Reimund

    2011-07-01

    Cellular polypropylene (PP) ferroelectrets combine a large piezoelectricity with mechanical flexibility and elastic compliance. Their charging process represents a series of dielectric barrier discharges (DBDs) that generate a cold plasma with numerous active species and thus modify the inner polymer surfaces of the foam cells. Both the threshold for the onset of DBDs and the piezoelectricity of ferroelectrets are sensitive to repeated DBDs in the voids. It is found that the threshold voltage is approximately halved and the charging efficiency is clearly improved after only 103 DBD cycles. However, plasma modification of the inner surfaces from repeated DBDs deteriorates the chargeability of the voids, leading to a significant reduction of the piezoelectricity in ferroelectrets. After a significant waiting period, the chargeability of previously fatigued voids shows a partial recovery. The plasma modification is, however, detrimental to the stability of the deposited charges and thus also of the macroscopic dipoles and of the piezoelectricity. Fatigue from only 103 DBD cycles already results in significantly less stable piezoelectricity in cellular PP ferroelectrets. The fatigue rate as a function of the number of voltage cycles follows a stretched exponential. Fatigue from repeated DBDs can be avoided if most of the gas molecules inside the voids are removed via a suitable evacuation process.

  18. Effects of the poling process on dielectric, piezoelectric, and ferroelectric properties of lead zirconate titanate

    Science.gov (United States)

    Prewitt, Anderson D.

    Smart materials are widely used in many of today's relevant technologies such as nano and micro electromechanical systems (NEMS and MEMS), sensors, actuators, nonvolatile memory, and solid state devices. Many of these systems rely heavily on the electromechanical properties of certain smart materials, such as piezoelectricity and ferroelectricity. By definition, piezoelectricity is a mechanical stress in a material that produces an electric displacement (known as the direct piezoelectric effect) or electrical charge in a material which produces a mechanical strain (known as the converse piezoelectric effect). Ferroelectricity is a sub-class of piezoelectricity in which the polarization occurs spontaneously and the dipoles can be reoriented. Domain walls are the nanoscale regions separating two finite distinctively polarized areas in a ferroelectric. The reorientation of polarization in a material is called the poling process and many factors can influence the effectiveness of this process. A more fundamental understanding of how electrical and mechanical loading changes the domain structure of these materials could lead to enhanced properties such as increased energy transduction and decreased nonlinear behavior. This research demonstrates the influence of mechanical pressure and electrical field during and after the poling process on domain walls. The effects of strong mechanical forces on large-scale domain switching and weak cyclic forces on small-scale domain wall motion are investigated to show how they affect the macroscopic behavior of these materials. Commercial lead zirconate titanate ceramics were studied under various poling conditions and the effect of domain wall motion on the piezoelectric, dielectric, and ferroelectric properties was investigated. Polarization and strain measurements from samples poled at specific conditions and converse piezoelectric coefficient and dielectric permittivity data was extracted and interpreted in the context of

  19. Iron oxide nanoparticles as dielectric and piezoelectric enhancers for silicone elastomers

    Science.gov (United States)

    Iacob, Mihail; Tugui, Codrin; Tiron, Vasile; Bele, Adrian; Vlad, Stelian; Vasiliu, Tudor; Cazacu, Maria; Vasiliu, Ana-Lavinia; Racles, Carmen

    2017-10-01

    Iron oxide nanoparticles were prepared using an alkaline precipitation method to tune the reaction time so as to afford ferrihydrite with spherical morphology or goethite nanorods. These two nanoparticle types, surface-treated with a surfactant (Pluronic L81), were each incorporated in 10, 20 and 30 wt% within a polydimethylsiloxane-α,ω-diol (Mn = 60 000 g mol‑1). The mixtures were processed as films and crosslinked by condensation with tetraethoxysilane at room temperature. The aged films were investigated concerning filler distribution (by SEM coupled with an energy-dispersive x-ray spectroscopy module), mechanical (tensile strength, elongation and Young’s modulus), and dielectric properties (permittivity, loss, conductivity and strength). The results show that the fillers have a relatively homogeneous distribution within the matrix and, dependent on the filler nature and amount, generally manifest a mechanical reinforcing effect and act as dielectric permittivity and strength enhancers. In addition, it has been found that the crystalline nanoparticles induce a piezoelectric response, emphasized by piezoelectric force microscopy. The improved properties of the composites make them suitable for applications in mechanical/electrical energy conversion, as theoretical estimates showed.

  20. Dielectric relaxation dynamics of high-temperature piezoelectric polyimide copolymers

    Science.gov (United States)

    Maceiras, A.; Costa, C. M.; Lopes, A. C.; San Sebastián, M.; Laza, J. M.; Vilas, J. L.; Ribelles, J. L. Gómez; Sabater i Serra, R.; Andrio Balado, A.; Lanceros-Méndez, S.; León, L. M.

    2015-08-01

    Polyimide copolymers have been prepared based on different diamines as comonomers: a diamine without CN groups and a novel synthesized diamine with two CN groups prepared by polycondensation reaction followed by thermal cyclodehydration. Dielectric spectroscopy measurements were performed, and the dielectric complex function, ac conductivity and electric modulus of the copolymers were investigated as a function of CN group content in the frequency range from 0.1 to 107 Hz at temperatures from 25 to 260 °C. For all samples and temperatures above 150 °C, the dielectric constant increases with increasing temperature due to increasing conductivity. The α-relaxation is just detected for the sample without CN groups, being this relaxation overlapped by the electrical conductivity contributions in the remaining samples. For the copolymer samples and the polymer with CN groups, an important Maxwell-Wagner-Sillars contribution is detected. The mechanisms responsible for the dielectric relaxation, conduction process and electric modulus response have been discussed as a function of the CN group content present in the samples.

  1. Piezoelectric, dielectric, and ferroelectric properties of 0-3 ceramic/cement composites

    Science.gov (United States)

    Xin, Cheng; Shifeng, Huang; Jun, Chang; Zongjin, Li

    2007-05-01

    The sulphoaluminate cement and a piezoelectric ceramic, 0.08Pb(Li1/4Nb3/4)O3.0.47PbTiO3.0.45PbZrO3[P(LN)ZT], were used to fabricate 0-3 cement based piezoelectric composites. The piezoelectric, dielectric, and ferroelectric properties of the composites were mainly investigated. The results indicate that the piezoelectric strain factor d33 increases as the P(LN)ZT volume fraction increases, which follows the cube model well. The dielectric constant ɛx and dielectric loss tan δ show similar trends with the d33. In the frequency range of 40-100 kHz, the dielectric constants of the composites decrease sharply, which is mainly attributed to interfacial polarization in the composite. Above 200 kHz, the cement-based piezoelectric composites exhibit good dielectric-frequency stability. Hysteresis measurements indicate that the composites exhibit typical ferroelectric hysteresis loops at room temperature. The remanent polarization Pr and the coercive field Ec of the composites increase as the P(LN)ZT volume fraction increases. Meanwhile, the remnant polarizations Pr shows little asymmetric characterization.

  2. Fracture mechanics of piezoelectric and ferroelectric solids

    CERN Document Server

    Fang, Daining

    2013-01-01

    Fracture Mechanics of Piezoelectric and Ferroelectric Solids presents a systematic and comprehensive coverage of the fracture mechanics of piezoelectric/ferroelectric materials, which includes the theoretical analysis, numerical computations and experimental observations. The main emphasis is placed on the mechanics description of various crack problems such static, dynamic and interface fractures as well as the physical explanations for the mechanism of electrically induced fracture. The book is intended for postgraduate students, researchers and engineers in the fields of solid mechanics, applied physics, material science and mechanical engineering. Dr. Daining Fang is a professor at the School of Aerospace, Tsinghua University, China; Dr. Jinxi Liu is a professor at the Department of Engineering Mechanics, Shijiazhuang Railway Institute, China.

  3. Temperature dependences of piezoelectric, elastic and dielectric constants of L-alanine crystal

    Science.gov (United States)

    Tylczyński, Z.; Sterczyńska, A.; Wiesner, M.

    2011-09-01

    Temperature changes in the components of piezoelectric, elastic and dielectric tensors were studied in L-alanine crystals in the range 100-300 K. A jumpwise increase in the c55 component of the elastic stiffness accompanied by maxima in damping of all face-shear modes observed at 199 K in L-alanine crystal were interpreted as a result of changes in the NH3+ vibrations occurring through electron-phonon coupling. All components of the piezoelectric tensor show small anomalies in this temperature range. The components of the electromechanical coupling coefficient determined indicate that L-alanine is a weak piezoelectric.

  4. The effect of transverse electric fields on dielectric, piezoelectric, elastic and thermal properties of the Rochelle salt NaKC4H4O6 · 4H2O

    Directory of Open Access Journals (Sweden)

    R.R. Levitskii

    2009-01-01

    Full Text Available Modified four-sublattice model for Rochelle salt by taking into account piezoelectric interactions with shear strain ε4 , ε5 and ε6 is proposed. Components of polarization vector and static dielectric permittivity tensor for both mechanically clamped and free crystals, their piezoelectric characteristics and elastic modules are derived in the mean field approximation. A comprehensive study of transverse field effect on phase transition temperatures, dielectric and elastic properties of Rochelle salt has been performed for the first time.

  5. Piezoelectric and dielectric properties of polymer-ceramic composites for sensors

    NARCIS (Netherlands)

    James, N.K.

    2015-01-01

    The main objective of this PhD thesis is to develop new routes and concepts for manufacturing piezoelectric ceramic-polymer composites with adequate piezoelectric properties while retaining ease of manufacturing and mechanical flexibility and explore new possibilities to maximize especially the volt

  6. Determination of mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal.

    Science.gov (United States)

    Soluch, Waldemar; Brzozowski, Ernest; Lysakowska, Magdalena; Sadura, Jolanta

    2011-11-01

    Mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal were determined. Mass density was obtained from the measured ratio of mass to volume of a cuboid. The dielectric constants were determined from the measured capacitances of an interdigital transducer (IDT) deposited on a Z-cut plate and from a parallel plate capacitor fabricated from this plate. The elastic and piezoelectric constants were determined by comparing the measured and calculated SAW velocities and electromechanical coupling coefficients on the Z- and X-cut plates. The following new constants were obtained: mass density p = 5986 kg/m(3); relative dielectric constants (at constant strain S) ε(S)(11)/ε(0) = 8.6 and ε(S)(11)/ε(0) = 10.5, where ε(0) is a dielectric constant of free space; elastic constants (at constant electric field E) C(E)(11) = 349.7, C(E)(12) = 128.1, C(E)(13) = 129.4, C(E)(33) = 430.3, and C(E)(44) = 96.5 GPa; and piezoelectric constants e(33) = 0.84, e(31) = -0.47, and e(15) = -0.41 C/m(2).

  7. Measurements along the growth direction of PMN-PT crystals: dielectric, piezoelectric, and elastic properties.

    Science.gov (United States)

    Tian, Jian; Han, Pengdi; Payne, David A

    2007-09-01

    Property measurements are reported for Pb(Mg1/3Nb2/3)03-PbTiO3 (PMN-PT) single crystals grown along (001) by a seeded-melt method. Chemical segregation occurs during crystal growth, leading to property changes along the growth direction. Variations in dielectric, piezoelectric, and elastic properties were evaluated for specimens selected from the crystals. Room-temperature data are correlated with Tc and composition that ranged from 27 to 32% PT, i.e., in the vicinity of the morphotropic phase boundary (MPB). While there was little change in the high electromechanical coupling factor k33 (0.87-0.92), both the piezoelectric charge coefficient d33 (1100-1800 pC/N) and the free dielectric constant K3 (4400-7000) were found to vary significantly with position. Increases in d33 and KT33 were relatively offsetting in that the ratio yielded a relatively stable piezoelectric voltage coefficient g33 (27-31 x 10(-3) Vm/N). Values are also reported for the elastic compliance (3.3-6.3 x 10(-11) m2/N) determined from resonance measurements. Enhancements in d33 and K(T)33 were associated with lattice softening (increasing sE33) as the composition approached the MPB. Details are reported for the piezoelectric, dielectric, and elastic properties as a function of growth direction, Tc, and composition. The results are useful for an understanding of properties in PMN-PT crystals and for the design of piezoelectric devices.

  8. Piezoelectric and mechanical properties of structured PZT-epoxy composites

    NARCIS (Netherlands)

    James, N.K.; Ende, D.A. van den; Lafont, U.; Zwaag, S. van der; Groen, W.A.

    2013-01-01

    Structured lead zirconium titanate (PZT)-epoxy composites are prepared by dielectrophoresis. The piezoelectric and dielectric properties of the composites as a function of PZT volume fraction are investigated and compared with the corresponding unstructured composites. The effect of poling voltage o

  9. Piezoelectric and mechanical properties of structured PZT–epoxy composites

    NARCIS (Netherlands)

    Kunnamkuzhakkal James, N.; Van den Ende, D.; Lafont, U.; Van der Zwaag, S.; Groen, W.A.

    2013-01-01

    Structured lead zirconium titanate (PZT)–epoxy composites are prepared by dielectrophoresis. The piezoelectric and dielectric properties of the composites as a function of PZT volume fraction are investigated and compared with the corresponding unstructured composites. The effect of poling voltage o

  10. The study of dielectric, pyroelectric and piezoelectric properties on hot pressed PZT-PMN systems

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Geetika; Umarji, A. M. [Materials Research Centre, Indian Institute of Science, Bangalore-560 012 (India); Maglione, Mario [ICMCB, Universite de Bordeaux,-CNRS, 87, Av Dr Schweitzer 33806 Pessac (France)

    2012-12-15

    Hot uniaxial pressing technique has been adopted for the densification of PZT-PMN system with an aim to yield dense ceramics and to lower the sintering temperature and time for achieving better and reproducible electronic properties. The ceramics having >97% theoretical density and micron size grains are investigated for their dielectric, pyroelectric and piezoelectric properties. The effect of Li and Mn addition has also been studied.

  11. The study of dielectric, pyroelectric and piezoelectric properties on hot pressed PZT-PMN systems

    Directory of Open Access Journals (Sweden)

    Geetika Srivastava

    2012-12-01

    Full Text Available Hot uniaxial pressing technique has been adopted for the densification of PZT-PMN system with an aim to yield dense ceramics and to lower the sintering temperature and time for achieving better and reproducible electronic properties. The ceramics having >97% theoretical density and micron size grains are investigated for their dielectric, pyroelectric and piezoelectric properties. The effect of Li and Mn addition has also been studied.

  12. Dielectric, piezoelectric, and ferroelectric properties of lanthanum-modified PZTFN ceramics

    Institute of Scientific and Technical Information of China (English)

    ArvindKumar; S.K.Mishra

    2014-01-01

    Specimens of Pb1-1.5xLax(Zr0.53Ti0.47)1-y-zFeyNbzO3 (x=0, 0.004, 0.008, 0.012, and 0.016, y=z=0.01) (PZTFN) ceramics were synthesized by a semi-wet route. In the present study, the effect of La doping was investigated on the structural, microstructural, dielectric, piezoelectric, and ferroelectric properties of the ceramics. The results show that, the tetragonal (space group P4mm) and rhombohedral (space group R3c) phases are observed to coexist in the sample at x=0.012. Microstructural investigations of all the samples reveal that La doping inhibits grain growth. Doping of La into PZTFN improves the dielectric, ferroelectric, and piezoelectric properties of the ceramics. The hys-teresis loops of all specimens exhibit nonlinear behavior. The dielectric, piezoelectric and ferroelectric properties show a maximum response at x≥0.012, which corresponds to the morphotropic phase boundary (MPB).

  13. A comparative approach to predicting effective dielectric, piezoelectric and elastic properties of PZT/PVDF composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Zeeshan [University Department of Physics, T.M. Bhagalpur University, Bhagalpur 812007 (India); Prasad, Ashutosh, E-mail: apd.phy@gmail.co [University Department of Physics, T.M. Bhagalpur University, Bhagalpur 812007 (India); Prasad, K., E-mail: k.prasad65@gmail.co [University Department of Physics, T.M. Bhagalpur University, Bhagalpur 812007 (India)

    2009-11-01

    The present study addresses the problem of quantitative prediction of effective relative permittivity, dielectric loss factor, piezoelectric charge coefficient, and Young's modulus of PZT/PVDF diphasic ceramic-polymer composite as a function of volume fraction of PZT in the different compositions. Theoretical results for effective relative permittivity derived from several dielectric mixture equations like those of Knott, Rother-Lichtenecker, Bruggeman, Maxwell-Wagner-Webmann-Skipetrov or Dias-Dasgupta, Furukawa, Lewin, Wiener, Jayasundere-Smith, Modified Cule-Torquato, Taylor, Poon-Shin and Rao et al. were fitted to the experimental data taken from previous works of Yamada et al. Similarly, the results for effective piezoelectric coefficient and Young's modulus, derived from different appropriate equations were fitted to the corresponding experimental data taken from the literature. The study revealed that only a few equations like modified Rother-Lichtenecker equation, Dias-Dasgupta equation and Rao equation for dielectric and piezoelectric properties while the four new equations developed in the present study of elastic property (Young's modulus) well fitted the corresponding experimental results. Further, the acceptable data put to various regression analyses showed that in most of the cases the third order polynomial regression analysis provided more acceptable fits.

  14. Piezoelectric and dielectric properties of Cr-doped PSN-PZN-PZT quaternary piezoelectric ceramics

    Institute of Scientific and Technical Information of China (English)

    SUN Qingchi; WANG Lifeng; LIU Ping; NIE Qiang

    2005-01-01

    PSN-PZN-PZT + x wt.%Cr2O3, x = 0.0-0.9, were prepared by conventional mixed oxide techniques at sintering temperatures of 1220℃-1300℃ for 2 h. The effect of sintering temperature on the microstructure and the piezoelectric properties was investigated by XRD, SEM, and other conventional measurement. The result indicated that with temperature increasing, the valence of Cr ion from Cr5+ or Cr6+ changes into Cr3+, and the piezoelectric properties turn hard. With increasing Cr2O3 content, the amount of rhombohedral phases increases and the morphotropic boundary phase is correspondingly shifts to rhombohedral phase. A uniform microstructure and excellent comprehensive properties were obtained at 1240C as the amount of Cr2O3 is 0.5 wt.%.

  15. Structural, spectral and dielectric properties of piezoelectric-piezomagnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, O.M., E-mail: omhemeda@yahoo.co.uk [Physics Department, Faculty of Science, Taif University, Al-Hawiah, P.O. Box 888, Taif 21974 (Saudi Arabia); Physics Department, Faculty of Science, Tanta University (Egypt); Tawfik, A.; Amer, M.A. [Physics Department, Faculty of Science, Tanta University (Egypt); Kamal, B.M.; El Refaay, D.E. [Physics Department, Faculty of Science, Suez Canal University (Egypt)

    2012-10-15

    Composite materials of spinel ferrite (SF) NiZnFe{sub 2}O{sub 4} (NZF) and barium titanate (BT) BaTiO{sub 3} were prepared by double sintering ceramic technique. X-ray diffraction patterns for the composite system (1-x) NZF+x BT, showed the presence of mainly of 2 phases, hence confirming the successful preparation of the composite. Some structural and microstructural parameters like porosity, X-ray density, particle size and lattice constant were deduced from the analysis of X-ray data for both phases. Scan electron microscope (SEM) analysis shows nearly a homogeneous microstructure with good dispersion of BT grains as well as the presence of some pores. There was also an enlargement of BT grains with increasing its content. Infra red (IR) spectra of the composite system indicate that BT content affects the intermolecular character of the SF phase. A rise in the dielectric constant occurred at high temperature which was attributed to the effect of space change resulting from the increase of the change carriers in the paramagnetic region. The dielectric loss (tan {delta}) decreased by increasing BT content. - Highlights: Black-Right-Pointing-Pointer Double phase NZF-BT composite has a high magnetoelectric coefficient compared with other materials. Black-Right-Pointing-Pointer This makes it strongly candidates for electromagnetic wave sensors. Black-Right-Pointing-Pointer Addition of BT phase enhance dielectric constant which make it very useful for capacitor industry. Black-Right-Pointing-Pointer Ni ferrite shifts the transition temperature of BT from 120 Degree-Sign C near room temperature. Black-Right-Pointing-Pointer Decrease of dielectric loss which supply with good material with law eddy current loss for cores of t ransformers at microwave frequency.

  16. Transformation of acoustic waves in periodic metal grating sandwiched between piezoelectric and dielectric.

    Science.gov (United States)

    Naumenko, Natalya F; Abbott, Benjamin P

    2011-10-01

    The mechanism of SAW transformation with variation of film thickness is investigated in a piezoelectric substrate with a metal grating overlaid by a dielectric film, via simulation and visualization of the acoustic fields. By way of example, two orientations of lithium niobate substrates are analyzed, YX-LN and 128°YX-LN, with a Cu grating and an isotropic silica glass overlay. The motions, which follow the wave propagation in the sagittal plane, are visualized within two periods of the grating, with added contour plots showing the shear horizontal displacements. The continuous transformation of the wave's nature is investigated for each wave propagating in the analyzed material structures when the film thickness is increased from zero to a few wavelengths. The examples of the SAW transformation into boundary waves and into plate modes of different polarization have been found and investigated. The behavior of the SAW characteristics in the grating is correlated with transformation of the wave structure with increasing overlay thickness.

  17. Piezoelectric and dielectric characterization of corona and contact poled PZT-epoxy-MWCNT bulk composites

    Science.gov (United States)

    Banerjee, S.; Cook-Chennault, K. A.; Du, W.; Sundar, U.; Halim, H.; Tang, A.

    2016-11-01

    Three-phase lead zirconate titanate (PZT, PbZr0.52Ti0.48O3)-epoxy-multi-walled carbon nanotube (MWCNT) bulk composites were prepared, where the volume fraction of PZT was held constant at 30%, while the volume fraction of the MWCNTs was varied from 1.0%-10%. The samples were poled using either a parallel plate contact or contactless (corona) poling technique. The piezoelectric strain coefficient (d 33), dielectric constant (ɛ), and dielectric loss tangent (tan δ) of the samples were measured at 110 Hz, and compared as a function of poling technique and volume fraction of MWCNTs. The highest values for dielectric constant and piezoelectric strain coefficients were 465.82 and 18.87 pC/N for MWCNT volume fractions of 10% and 6%, respectively. These values were obtained for samples that were poled using the corona contactless method. The impedance and dielectric spectra of the composites were recorded over a frequency range of 100 Hz-20 MHz. The impedance values observed for parallel-plate contact poled samples are higher than that of corona poled composites. The fractured surface morphology and distribution of the PZT particles and MWCNTs were observed with the aid of electron dispersion spectroscopy and a scanning electron microscope. The surface morphology of the MWCNTs was observed with the aid of a field emission transmission electron microscope.

  18. Multi-mechanism vibration harvester combining inductive and piezoelectric mechanisms

    Science.gov (United States)

    Marin, Anthony; Priya, Shashank

    2012-04-01

    With increasing demand for wireless sensor nodes in automobile, aircraft and rail applications, the need for energy harvesters has been growing. In these applications, energy harvesters provide a more robust and inexpensive power solution than batteries. In order to enhance the power density of existing energy harvesters, a variety of multimodal energy harvesting techniques have been proposed. Multi-modal energy harvesters can be categorized as: (i) Multi-Source Energy Harvester (MSEH), (ii) Multi-Mechanism Energy Harvester (MMEH), and (iii) Single Source Multi-Mode Energy Harvester (S2M2EH). In this study, we focus on developing MMEH which combines the inductive and piezoelectric mechanisms. The multi-mechanism harvester was modeled using FEM techniques and theoretically analyzed to optimize the performance and reduce the overall shape and size similar to that of AA battery. The theoretical model combining analytical and FEM modeling techniques provides the system dynamics and output power for specific generator and cymbal geometry at various source conditions. In the proposed design, a cylindrical tube contains a magnetic levitation cavity where a center magnet oscillates through a copper coil. Piezoelectric cymbal transducers were mounted on the top and bottom sections of the cylindrical shell. In response to the external vibrations, electrical energy was harvested from the relative motion between magnet and coil through Faraday's effect and from the piezoelectric material through the direct piezoelectric effect. Experimental results validate the predictions from theoretical model and show the promise of multimodal harvester for powering wireless sensor nodes in automobile, aircraft, and rail applications.

  19. Mechanical properties of metal-core piezoelectric fiber

    Science.gov (United States)

    Sato, Hiroshi; Nagamine, Masaru

    2005-05-01

    In the previous conference, we produced a new metal core-containing piezoelectric ceramics fiber by the hydrothermal method and extrusion method. The insertion of metal core is significant in view of its greater strength than ceramics materials, and electrodes are not required in the fiber's sensor and actuator applications. A new smart board was designed by mounting these piezoelectric fibers onto the surface of a CFRP composite. After that, this board is able to use this board to a sensor, actuator and vibration suppression. In this paper, we measured s mechanical properties of metal core piezoelectric fiber. We examined the tension test of a piezo-electric fiber, and measured the Young's modulus and breaking strength. Moreover, the expansion in the fiber unit was measured, and the displacement of the direction of d31 was measured. In addition, a piezo-electric fiber that used lead free material (BNT-BT-BKT) to correspond to environmental problems in recent years was made.

  20. Dielectric and piezoelectric properties of neodymium oxide doped lead zirconate titanate ceramics

    Indian Academy of Sciences (India)

    Janardan Singh; N C Soni; S L Srivastava

    2003-06-01

    The dielectric and electromechanical properties of lead zirconate titanate [Pb(Zr, Ti)O3] ceramic added with neodymium oxide have been systematically studied employing the vector impedance spectroscopic (VIS) technique. The specimens were prepared using the mixed oxide route by adding different mol% of Nd2O3 (0.1 to 7 mol%) in [Pb(Zr, Ti)O3] near morphotropic phase boundary. Piezoelectric equivalent circuit parameters , , $C_a$ in series and $C_b$ in parallel have been determined by simulating /Z/ and plots. Electromechanical coupling coefficients and strain constants for the radial modes show a peak at about 3 mol%, the dielectric constant peaks at about 1 mol% and voltage constants peak at about 0.75 mol% of Nd2O3.

  1. Piezoelectric and Dielectric Properties of Fe2O3-Doped 0.57Pb(Sc1/2Nb1/2)O3 0.43PbTiO3 Ceramic Materials

    Science.gov (United States)

    Kim, Jin-Soo; Kim, So-Jung; Kim, Ho-Gi; Lee, Duck-Chool; Uchino, Kenji

    1999-03-01

    High-power piezoelectric materials are presently being extensively developed for applications such as ultrasonic motors and piezoelectric transformers. In this study, the piezoelectric and dielectric properties of Fe2O3-doped 0.57Pb(Sc1/2Nb1/2)O3 0.43PbTiO3 (hereafter 0.57PSN 0.43PT), which is the morphotropic phase boundary composition of the PSN PT system, were investigated. The maximum dielectric constant (ɛ33/ɛ0=2551) and the minimum dielectric loss (tanδ=0.51%) at room temperature were obtained at Fe2O3 additions of 0.1 wt% and 0.3 wt%, respectively. The temperature dependence of the dielectric constant and the dielectric loss was measured between room temperature and 350°C. With the addition of Fe2O3, the piezoelectric constant d33 and electromechanical coupling factor kp were slightly decreased, but the mechanical quality factor Qm was significantly increased. The highest mechanical quality factor (Qm=297) was obtained at 0.3 wt% Fe2O3, which is 4.4 times higher than that of nondoped 0.57PSN 0.43PT ceramics. The P E and S E loops of the samples at room temperature and at 1.0 Hz were measured at the same time using an automated polarization measuring system.

  2. Evaluation of Effective Elastic, Piezoelectric, and Dielectric Properties of SU8/ZnO Nanocomposite for Vertically Integrated Nanogenerators Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Neelam Mishra

    2017-01-01

    Full Text Available A nanogenerator is a nanodevice which converts ambient mechanical energy into electrical energy. A piezoelectric nanocomposite, composed of vertical arrays of piezoelectric zinc oxide (ZnO nanowires, encapsulated in a compliant polymeric matrix, is one of most common configurations of a nanogenerator. Knowledge of the effective elastic, piezoelectric, and dielectric material properties of the piezoelectric nanocomposite is critical in the design of a nanogenerator. In this work, the effective material properties of a unidirectional, unimodal, continuous piezoelectric composite, consisting of SU8 photoresist as matrix and vertical array of ZnO nanowires as reinforcement, are systematically evaluated using finite element method (FEM. The FEM simulations were carried out on cubic representative volume elements (RVEs. Four different types of arrangements of ZnO nanowires and three sizes of RVEs have been considered. The volume fraction of ZnO nanowires is varied from 0 to a maximum of 0.7. Homogeneous displacement and electric potential are prescribed as boundary conditions. The material properties are evaluated as functions of reinforcement volume fraction. The values obtained through FEM simulations are compared with the results obtained via the Eshelby-Mori-Tanaka micromechanics. The results demonstrate the significant effects of ZnO arrangement, ZnO volume fraction, and size of RVE on the material properties.

  3. Dielectric and electromechanical properties of rare earth calcium oxyborate piezoelectric crystals at high temperatures.

    Science.gov (United States)

    Yu, Fapeng; Zhang, Shujun; Zhao, Xian; Yuan, Duorong; Qin, Lifeng; Wang, Qing-Ming; Shrout, Thomas R

    2011-04-01

    The electrical resistivity, dielectric, and electromechanical properties of ReCa(4)O(BO(3))(3) (ReCOB; Re = Er, Y, Gd, Sm, Nd, Pr, and La) piezoelectric crystals were investigated as a function of temperature up to 1000 °C. Of the studied crystals, ErCOB and YCOB were found to possess extremely high resistivity (p): p > 3 × 10(7) ω.cm at 1000 °C. The property variation in ReCOB crystals is discussed with respect to their disordered structure. The highest electromechanical coupling factor κ(26) and piezoelectric coefficient d(26) at 1000°C, were achieved in PrCOB crystals, with values being on the order of 24.7% and 13.1 pC/N, respectively. The high thermal stability of the electromechanical properties, with variation less than 25%, together with the low dielectric loss (factor (>1500) at elevated temperatures of 1000 °C, make ErCOB, YCOB, and GdCOB crystals promising for ultrahigh temperature electromechanical applications.

  4. Mechanism of Striation in Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    FENG Shuo; HE Feng; OUYANG Ji-Ting

    2007-01-01

    @@ The mechanism of striations in dielectric barrier discharge in pure neon is studied by a two-dimensional particlein-cell/Monte Carlo collision (PIC-MCC) model. It is shown that the striations appear in the plasma background,and non-uniform electrical field resulting from ionization and the negative wall charge appear on the dielectric layer above the anode. The sustainment of striations is a non-local kinetic effect of electrons in a stratified field controlled by non-elastic impact with neutral gases. The striations in the transient dielectric barrier discharge are similar to those in dc positive column discharge.

  5. Effects of Sr2+substitution on the structural, dielectric, and piezoelectric properties of PZT-PMN ceramics

    Institute of Scientific and Technical Information of China (English)

    Arvind Kumar; S.K. Mishra

    2014-01-01

    This study described the structural, dielectric, and piezoelectric behavior of Pb1-xSrx[(Zr0.52Ti0.48)0.95(Mn1/3Nb2/3)0.05]O3 ceramics (PSZT-PMN, x=0, 0.025, 0.050, and 0.075), prepared by a semi-wet route. X-ray diffraction, dielectric, and piezoelectric investigations were carried out to analyze the crystal structure. The relative dielectric constant and dielectric loss were both calculated as the functions of temperature. The room-temperature dielectric constant reaches a maximum for a Sr2+-modified PZT-PMN ceramic with an x value of 0.050, which corresponds to the morphotropic phase boundary (MPB). Raman spectroscopy studies also confirm the existence of this MPB for x=0.050. The piezoelectric strain coefficients (d33) value shows a maximum response for this composition. In addition, the phase transition temperature decreases significantly when the Sr2+concentration increases in the PZT-PMN ceramics.

  6. Low voltage driven dielectric electro active polymer actuator with integrated piezoelectric transformer based driver

    DEFF Research Database (Denmark)

    Andersen, Thomas; Rødgaard, Martin Schøler; Thomsen, Ole Cornelius

    2011-01-01

    Today’s Dielectric Electro Active Polymer (DEAP) actuators utilize high voltage (HV) in the range of kilo volts to fully stress the actuator. The requirement of HV is a drawback for the general use in the industry due to safety concerns and HV regulations. In order to avoid the HV interface to DEAP...... actuators, a low voltage solution is developed by integrating the driver electronic into a 110 mm tall cylindrical coreless Push InLastor actuator. To decrease the size of the driver, a piezoelectric transformer (PT) based solution is utilized. The PT is essentially an improved Rosen type PT...... with interleaved sections. Furthermore, the PT is optimized for an input voltage of 24 V with a gain high enough to achieve a DEAP voltage of 2.5 kV. The PT is simulated and verified through measurements on a working prototype. With the adapted hysteretic based control system; output voltage wave forms of both...

  7. Structural, dielectric and piezoelectric properties of aluminium doped PLZT ceramics prepared by sol-gel route

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Soma [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)]. E-mail: dutta_som@yahoo.co.in; Choudhary, R.N.P. [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Sinha, P.K. [Department of Aerospace Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2007-03-14

    Nanosized piezoelectric ceramics for vibration sensor applications have been prepared by mixing the ferroelectric PLZT (8:60:40) with variable doping fractions of trivalent aluminium ion (Al{sup 3+}). Samples have been prepared through a standard sol-gel route. X-ray diffraction and scanning electron microscopy (SEM) have been used to determine the phase and morphological modifications. Transmission electron microscopy (TEM) studies reveal the microstructure with nanosized well-dispersed homogeneous spherical particles. The vibrational infra-red (IR) spectroscopy record is taken to locate the position of the doping Al{sup 3+} ion. Using electrical impedance spectroscopy, the resonance and anti-resonance frequencies of the Al modified PLZT system have been determined and analysed. Al addition in PLZT has left a profound effect in its dielectric and piezoelectric properties. An interpretation of the role of Al addition is proposed in terms of structure modification. The sensing power of the investigated material was found useful for the vibration control of a cantilever beam.

  8. Elastic, dielectric, and piezoelectric properties of ceramic lead zirconate titanate/α-Al2O3 composites

    Science.gov (United States)

    Rybyanets, A. N.; Konstantinov, G. M.; Naumenko, A. A.; Shvetsova, N. A.; Makar'ev, D. I.; Lugovaya, M. A.

    2015-03-01

    The technology of producing ceramic lead zirconate titanate/α-Al2O3 composites has been developed. Elements of piezoactive composites containing from 0 to 60 vol % α-Al2O3 have been prepared. The elastic, dielectric, and piezoelectric parameters of the synthesized ceramic composites have been measured, and their microstructure has been studied. It has been found that the concentration dependences of the elastic and piezoelectric properties exhibit anomalies. The obtained data have been interpreted based on the percolation theory and the concept of microstructural constructing polycrystalline composition materials.

  9. Correlation of Bulk Dielectric and Piezoelectric Properties to the Local Scale Phase Transformations, Domain Morphology, and Crystal Structure Modified

    Energy Technology Data Exchange (ETDEWEB)

    Priya, Shashank [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Viehland, Dwight [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-12-14

    Three year program entitled “Correlation of bulk dielectric and piezoelectric properties to the local scale phase transformations, domain morphology, and crystal structure in modified lead-free grain-textured ceramics and single crystals” was supported by the Department of Energy. This was a joint research program between D. Viehland and S. Priya at Virginia Tech. Single crystal and textured ceramics have been synthesized and characterized. Our goals have been (i) to conduct investigations of lead-free piezoelectric systems to establish the local structural and domain morphologies that result in enhanced properties, and (ii) to synthesize polycrystalline and grain oriented ceramics for understanding the role of composition, microstructure, and anisotropy

  10. Theoretical and experimental research on the influence of multiple piezoelectric effects on physical parameters of piezoelectric actuator

    Directory of Open Access Journals (Sweden)

    Liping Shi

    2015-04-01

    Full Text Available Compared with the traditional actuator of machinery and electricity, the piezoelectric actuator has the advantages of a compact structure, small volume, no mechanical friction, athermancy and no electromagnetic interference. Therefore, it has high application value in the fields of MEMS, bioengineering, medical science and so on. This article draws conclusions from the influence of multiple piezoelectric effects on the physical parameters (dielectric coefficient, equivalent capacity, energy conversion and piezoelectric coefficient of piezoelectric actuators. These data from theoretical and experimental research show the following: (1 The rate between the dielectric coefficient of piezoelectric in mechanical freedom and clamping is obtained from the secondary direct piezoelectric effect, which enhances the dielectric property, increases the dielectric coefficient and decreases the coefficient of dielectric isolation; (2 Under external field, E n ( ex = E 1 , exterior stress T = 0, that is to say, under the boundary condition of mechanical freedom, piezoelectric can store electric energy and elasticity, which obtains power density, elastic density and an electromechanical coupling factor; (3 According to the piezoelectric strain S i ( 1 , piezoelectric displacement D m ( 2 and piezoelectric strain S i ( 3 of multiple piezoelectric effects, when the dielectric coefficient of the first converse piezoelectric effect ε33 is 1326 and the dielectric coefficient of the secondary direct piezoelectric effect increases to 3336, the dielectric coefficient of the ceramic chip increases. When the piezoelectric coefficient of the first converse piezoelectric effect d33 is 595 and the piezoelectric coefficient of the secondary direct piezoelectric effect decreases to 240, the piezoelectric coefficient of the ceramic chip will decrease. It is of major significance both in the applications and in basic theory to research the influence of multiple piezoelectric

  11. Dielectric materials for electrical engineering

    CERN Document Server

    Martinez-Vega, Juan

    2013-01-01

    Part 1 is particularly concerned with physical properties, electrical ageing and modeling with topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and life end models and dielectric experimental characterization. Part 2 concerns some applications specific to dielectric materials: insulating oils for transformers, electrorheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric poly

  12. PZT thin films for piezoelectric MEMS mechanical energy harvesting

    Science.gov (United States)

    Yeager, Charles

    This thesis describes the optimization of piezoelectric Pb(ZrxTi 1-x)O3 (PZT) thin films for energy generation by mechanical energy harvesting, and self-powered micro-electro-mechanical systems (MEMS). For this purpose, optimization of the material was studied, as was the incorporation of piezoelectric films into low frequency mechanical harvesters. A systematic analysis of the energy harvesting figure of merit was made. As a figure of merit (e31,ƒ)2/epsilon r (transverse piezoelectric coefficient squared over relative permittivity) was utilized. PZT films of several tetragonal compositions were grown on CaF2, MgO, SrTiO3, and Si substrates, thereby separating the dependence of composition on domain orientation. To minimize artifacts associated with composition gradients, and to extend the temperature growth window, PZT films were grown by metal organic chemical vapor deposition (MOCVD). Using this method, epitaxial {001} films achieved c-domain textures above 90% on single crystal MgO and CaF2 substrates. This could be tailored via the thermal stresses established by the differences in thermal expansion coefficients of the film and the substrate. The single-domain e31,ƒ for PZT thin films was determined to exceed -12 C/m2 in the tetragonal phase field for x ≥ 0.19, nearly twice the phenomenologically modeled value. The utilization of c-domain PZT films is motivated by a figure of merit above 0.8 C2/m4 for (001) PZT thin films. Increases to the FoM via doping and hot poling were also quantified; a 1% Mn doping reduced epsilonr by 20% without decreasing the piezoelectric coefficient. Hot poling a device for one hour above 120°C also resulted in a 20% reduction in epsilonr ; furthermore, 1% Mn doping reduced epsilonr by another 12% upon hot poling. Two methods for fabricating thin film mechanical energy harvesting devices were investigated. It was found that phosphoric acid solutions could be used to pattern MgO crystals, but this was typically accompanied by

  13. Dielectric and piezoelectric properties of (110) oriented Pb(Zr1-x Ti x )O3 thin films

    Science.gov (United States)

    Jian-Hua, Qiu; Zhi-Hui, Chen; Xiu-Qin, Wang; Ning-Yi, Yuan; Jian-Ning, Ding

    2016-05-01

    A phenomenological Landau-Devonshire theory is developed to investigate the ferroelectric, dielectric, and piezoelectric properties of (110) oriented Pb(Zr1-x Ti x )O3 (x = 0.4, 0.5, 0.6, and 0.7) thin films. At room temperature, the tetragonal a 1 phase, the orthorhombic a 2 c phase, the triclinic γ 1 phase, and the triclinic γ 2 phase are stable. The appearance of the negative polarization component P 2 in the a 2 c phase and the γ 1 phase is attributed to the nonlinear coupling terms in the thermodynamic potential. The γ phase of the Pb(Zr1-x Ti x )O3 thin films has better dielectric and piezoelectric properties than the a 2 c phase and the a 1 phase. The largest dielectric and piezoelectric coefficients are obtained in the Pb(Zr0.5Ti0.5)O3 thin film. The piezoelectric coefficient of 110-150 pm/V is obtained in the (110) oriented Pb(Zr0.5Ti0.5)O3 thin film, and the Pb(Zr0.3Ti0.7)O3 thin film has the remnant polarization and relative dielectric constant of 50 μC/cm2 and 100, respectively, which are in agreement with the experimental measurements reported in the literature. Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Research Fund of Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, China, Major Projects of Natural Science Research in Jiangsu Province, China (Grant No. 15KJA43002), and Qing Lan Project of Education Department of Jiangsu Province, China.

  14. Piezoelectricity

    CERN Document Server

    Lubitz, Karl

    2008-01-01

    Piezoelectric materials play a key role in an innovative market. Advances in applications derive from new materials and their development, as well as to new market requirements. This report elucidates these developments by a broad spectrum of examples, comprising ultrasound in medicine and defence industry, and frequency control.

  15. Dielectric and piezoelectric properties of CeO2-added nonstoichiometric (Na0.5K0.5)0.97(Nb0.96Sb0.04)O3 ceramics for piezoelectric energy harvesting device applications.

    Science.gov (United States)

    Oh, Youngkwang; Noh, Jungrae; Yoo, Juhyun; Kang, Jinhee; Hwang, Larkhoon; Hong, Jaeil

    2011-09-01

    In this study, nonstoichiometric (Na(0.5)K(0.5))(0.97)(Nb(0.96)Sb(0.04))O(3) ceramics were fabricated and their dielectric and piezoelectric properties were investigated according to the CeO(2) addition. In this ceramic composition, CeO(2) addition improved sinterability, electromechanical coupling factor k(p), mechanical quality factor Q(m), piezoelectric constant d(33), and g(33). At the sintering temperature of 1100°C, for the 0.2wt% CeO(2) added specimen, the optimum values of density = 4.359 g/cm(3), k(p) = 0.443, Q(m) = 588, ε(r) = 444, d(33) = 159 pC/N, and g(33) = 35 × 10(-3) V·m/N, were obtained. A piezoelectric energy harvesting device using 0.2 wt% CeO(2)- added lead-free (K(0.5)Na(0.5))(0.97)(Nb(0.96)Sb(0.04))O(3) ceramics and a rectifying circuit for energy harvesting were fabricated and their electrical characteristics were investigated. Under an external vibration acceleration of 0.7 g, when the mass, the frequency of vibration generator, and matching load resistance were 2.4 g, 70 Hz, and 721 Ω, respectively, output voltage and power of piezoelectric harvesting device indicated the optimum values of 24.6 mV(rms) and 0.839 μW, respectively-suitable for application as the electric power source of a ubiquitous sensor network (USN) sensor node.

  16. Piezoelectric resonators with mechanical damping and resistance in current conduction

    Institute of Scientific and Technical Information of China (English)

    Yook-Kong; YONG; Mihir; S; PATEL

    2007-01-01

    A novel design method for high Q piezoelectric resonators was presented and proposed using the 3-D equations of linear piezoelectricity with quasi-electrostatic approximation which include losses attributed to mechanical damping in solid and resistance in current conduction. There is currently no finite element software for estimating the Q of a resonator without apriori assumptions of the resonator impedance or damping. There is a necessity for better and more realistic modeling of resonators and filters due to miniaturization and the rapid advances in frequency ranges in telecommunication.We presented new three-dimensional finite element models of quartz and barium titanate resonators with mechanical damping and resistance in current conduction. Lee, Liu and Ballato's 3-D equations of linear piezoelectricity with quasi-electro- static approximation which include losses attributed to mechanical damping in solid and resistance in current conduction were formulated in a weak form and implemented in COMSOL. The resulting finite element model could predict the Q and other electrical parameters for any piezoelectric resonator without apriori assumptions of damping or resistance. Forced and free vibration analyses were performed and the results for the Q and other electrical parameters were obtained. Comparisons of the Q and other electrical parameters obtained from the free vibration analysis with their corresponding values from the forced vibration analysis were found to be in excellent agreement. Hence, the frequency spectra obtained from the free vibration analysis could be used for designing high Q resonators. Results for quartz thickness shear AT-cut and SC-cut resonators and thickness stretch poled barium titanate resonators were presented. An unexpected benefit of the model was the prediction of resonator Q with energy losses via the mounting supports.

  17. A review of mechanical and electromechanical properties of piezoelectric nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, Horacio D.; Bernal, Rodrigo A.; Minary-Jolandan, Majid [Department of Mechanical Engineering, Northwestern University, Evanston, IL (United States)

    2012-09-04

    Piezoelectric nanowires are promising building blocks in nanoelectronic, sensing, actuation and nanogenerator systems. In spite of great progress in synthesis methods, quantitative mechanical and electromechanical characterization of these nanostructures is still limited. In this article, the state-of-the art in experimental and computational studies of mechanical and electromechanical properties of piezoelectric nanowires is reviewed with an emphasis on size effects. The review covers existing characterization and analysis methods and summarizes data reported in the literature. It also provides an assessment of research needs and opportunities. Throughout the discussion, the importance of coupling experimental and computational studies is highlighted. This is crucial for obtaining unambiguous size effects of nanowire properties, which truly reflect the effect of scaling rather than a particular synthesis route. We show that such a combined approach is critical to establish synthesis-structure-property relations that will pave the way for optimal usage of piezoelectric nanowires. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Piezoelectric, elastic, structural and dielectric properties of the Si(1-x)Ge(x)O(2) solid solution: a theoretical study.

    Science.gov (United States)

    El-Kelany, Kh E; Erba, A; Carbonnière, P; Rérat, M

    2014-05-21

    We apply first principles quantum mechanical techniques to the study of the solid solution Si1-xGexO2 of α-quartz where silicon atoms are progressively substituted with germanium atoms, to different extents, as a function of the substitutional fraction x. For the first time, the whole range of the substitution (x = 0.0, 0.1[Formula: see text], 0.[Formula: see text], 0.5, 0.[Formula: see text], 0.8[Formula: see text], 1.0), including pure end-members α-SiO2 and α-GeO2, is explored. An elongated supercell (doubled along the c crystallographic axis) is built with respect to the unit cell of pure α-quartz and a set of 13 symmetry-independent configurations is considered. Their structural, energetic, dielectric, elastic and piezoelectric properties are computed and analyzed. All the calculations are performed using the CRYSTAL14 program with a Gaussian-type function basis set with pseudopotentials, and the hybrid functional PBE0; all geometries are fully optimized at this level of theory. In particular, for each configuration, fourth-rank elastic and compliance tensors and third-rank direct and converse piezoelectric tensors are computed. It has already been shown that the structural distortion of the solid solution increases, almost linearly, as the substitutional fraction x increases. The piezoelectric properties of the Si1-xGexO2 solid solution are found to increase with x, with a similar quasi-linear behavior. The electromechanical coupling coefficients are enhanced as well and the linear trend recently predicted by Ranieri et al (2011 Inorg. Chem. 50 4632) can be confirmed from first principles calculations. These doped crystals do represent good candidates for technological applications requiring high piezoelectric coupling and high thermal stability.

  19. A nonlinear piezoelectric energy harvester for various mechanical motions

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Kangqi, E-mail: kangqifan@gmail.com [School of Mechano-Electronic Engineering, Xidian University, Xi' an 710071 (China); Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G 2V4 (Canada); Chang, Jianwei; Liu, Zhaohui; Zhu, Yingmin [School of Mechano-Electronic Engineering, Xidian University, Xi' an 710071 (China); Pedrycz, Witold [Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G 2V4 (Canada)

    2015-06-01

    This study presents a nonlinear piezoelectric energy harvester with intent to scavenge energy from diverse mechanical motions. The harvester consists of four piezoelectric cantilever beams, a cylindrical track, and a ferromagnetic ball, with magnets integrated to introduce the magnetic coupling between the ball and the beams. The experimental results demonstrate that the harvester is able to collect energy from various directions of vibrations. For the vibrations perpendicular to the ground, the maximum peak voltage is increased by 3.2 V and the bandwidth of the voltage above 4 V is increased by more than 4 Hz compared to the results obtained when using a conventional design. For the vibrations along the horizontal direction, the frequency up-conversion is realized through the magnetic coupling. Moreover, the proposed design can harvest energy from the sway motion around different directions on the horizontal plane. Harvesting energy from the rotation motion is also achieved with an operating bandwidth of approximately 6 Hz.

  20. Elastic, dielectric and piezoelectric characterization of single domain PIN-PMN-PT: Mn crystals.

    Science.gov (United States)

    Huo, Xiaoqing; Zhang, Shujun; Liu, Gang; Zhang, Rui; Luo, Jun; Sahul, Raffi; Cao, Wenwu; Shrout, Thomas R

    2012-12-15

    Mn modified 0.26Pb(In(1/2)Nb(1/2))O(3)-0.42Pb(Mg(1/3)Nb(2/3))O(3)-0.32PbTiO(3) (PIN-PMN-PT:Mn) single crystals with orthorhombic perovskite crystal structure were polarized along [011] direction, resulting in the single domain state "1O." The complete set of material constants was determined using the combined resonance and ultrasonic methods. The thickness shear piezoelectric coefficient d(15) and electromechanical coupling factor k(15) were found to be on the order of 3100 pC/N and 94%, respectively, much higher than longitudinal d(33) ∼ 270 pC/N and k(33) ∼ 70%. Using the single domain data, the rotated value of d(33)* along [001] direction was found to be 1230 pC/N, in agreement with the experimentally determined d(33) value of 1370 pC/N, conferring extrinsic contributions being about 10%, which was also confirmed using the Rayleigh analysis. In addition, the mechanical quality factors Q(m) were evaluated for different "1O" vibration modes, where the longitudinal Q(m) was found to be ∼1200, much higher than the value for "4O" crystals, ∼300.

  1. Mechanically Amplified Piezoelectric Tunable 3D Microwave Superconducting Cavity

    CERN Document Server

    Carvalho, N C; Tobar, M E

    2016-01-01

    In the context of hybrid quantum systems, there is a demand for superconducting tunable devices able to operate in the single-photon regime. In this work, we developed a 3D microwave reentrant cavity with such characteristics ready to provide a very fine-tuning of a high-Q resonant mode over a large dynamic range. This system has an electronic tuning mechanism based on a mechanically amplified piezoelectric actuator, which can set the cavity resonance with a large dynamic range of order 1 GHz at 10 mK. At elevated microwave power, nonlinear thermal e effects were observed to destroy the superconductivity of the cavity due to the large electric fields generated in the small gap of the reentrant cavity.

  2. Fracture mechanics of piezoelectric solids with interface cracks

    CERN Document Server

    Govorukha, Volodymyr; Loboda, Volodymyr; Lapusta, Yuri

    2017-01-01

    This book provides a comprehensive study of cracks situated at the interface of two piezoelectric materials. It discusses different electric boundary conditions along the crack faces, in particular the cases of electrically permeable, impermeable, partially permeable, and conducting cracks. The book also elaborates on a new technique for the determination of electromechanical fields at the tips of interface cracks in finite sized piezoceramic bodies of arbitrary shape under different load types. It solves scientific problems of solid mechanics in connection with the investigation of electromechanical fields in piezoceramic bodies with interface cracks, and develops calculation models and solution methods for plane fracture mechanical problems for piecewise homogeneous piezoceramic bodies with cracks at the interfaces. It discusses the “open” crack model, which leads to a physically unrealistic oscillating singularity at the crack tips, and the contact zone model for in-plane straight interface cracks betw...

  3. Mechanical and Vibration Testing of Carbon Fiber Composite Material with Embedded Piezoelectric Sensors

    Science.gov (United States)

    Duffy, Kirsten P.; Lerch, Bradley A.; Wilmoth, Nathan G.; Kray, Nicholas; Gemeinhardt, Gregory

    2012-01-01

    Piezoelectric materials have been proposed as a means of decreasing turbomachinery blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite (PMFC) blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. Before implementation of a piezoelectric element within a PMFC blade, the effect on PMFC mechanical properties needs to be understood. This study attempts to determine how the inclusion of a packaged piezoelectric patch affects the material properties of the PMFC. Composite specimens with embedded piezoelectric patches were tested in four-point bending, short beam shear, and flatwise tension configurations. Results show that the embedded piezoelectric material does decrease the strength of the composite material, especially in flatwise tension, attributable to failure at the interface or within the piezoelectric element itself. In addition, the sensing properties of the post-cured embedded piezoelectric materials were tested, and performed as expected. The piezoelectric materials include a non-flexible patch incorporating solid piezoceramic material, and two flexible patch types incorporating piezoelectric fibers. The piezoceramic material used in these patches was Navy Type-II PZT.

  4. Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity

    Science.gov (United States)

    Liang, Xu; Hu, Shuling; Shen, Shengping

    2017-03-01

    Due to the electromechanical coupling effect, mechanical energy can be converted into electrical energy in certain materials. A theoretical framework is established to investigate the circuit voltage, electric power of nanoscale mechanical energy harvesting, in which the mechanical vibration energy was converted into electrical energy by piezoelectric and flexoelectric effects. Analytical solutions for the maximum electric potential, circuit voltage and electric power generated in bent BaTiO3 (BT), ZnO nanowires (NWs) and Pb(Mg1/3Nb2/3)O3 (PMN) nanofilms (NFs) were derived. Static and dynamic analyses are conducted to obtain the fundamental information of these mechanical energy harvestings. Different from the previous studies, the flexoelectric-mechanism are included in the fundamental mechanical frameworks. The maximum electric potential generated in the BT, ZnO NWs and PMN NF is found to be enhanced by flexoelectricity in the static case, meanwhile the circuit voltage and electric power are dramatic enhanced by flexoelectricity when the geometric dimensions shrinks to dozens of nanometers. The mechanical limitation condition is employed to calculate the practical maximum electric potential, circuit voltage and electric power. This work tries to provide a comprehensive understanding of the mechanical energy harvesting capability of these nanoscale structures and provide valuable information for designing flexoelectricity-based nanogenerator devices.

  5. Piezoelectric Response of Ferroelectric Ceramics Under Mechanical Stress

    Science.gov (United States)

    2015-09-17

    and piezoelectric [eg] moduli that are provided by the user for the particular material are transformed into Voight- Mandel representations [C̃g] and...problem coordinates elastic [C̃G], piezoelectric [ẽG], and permittivity [K G] moduli, using the Voight- Mandel orthogonal rotation matrices [51]. The...final step of the setup phase is transforming the global Voight- Mandel representations of the elastic [C̃G], and piezoelectric [ẽG] moduli into the

  6. Longitudinal relaxation of mechanically free KH2PO4 type crystals. Piezoelectric resonance and sound attenuation

    Directory of Open Access Journals (Sweden)

    R.R.Levitskii

    2008-09-01

    Full Text Available Within the framework of proton model with taking into account the piezoelectric interaction with the shear strain ε6, a dynamic dielectric response of KD2PO4 type ferroelectrics is considered. Experimentally observed phenomena of crystal clamping by high frequency electric field, piezoelectric resonance and microwave dispersion are described. Ultrasound velocity and attenuation are calculated, peculiarities of their temperature dependence at the Curie points are described. Existence of a cut-off frequency in the frequency dependence of attenuation is predicted.

  7. Systematic modeling for free stators of rotary - Piezoelectric ultrasonic motors

    DEFF Research Database (Denmark)

    Mojallali, Hamed; Amini, Rouzbeh; Izadi-Zamanabadi, Roozbeh

    2007-01-01

    An equivalent circuit model with complex elements is presented in this paper to describe the free stator model of traveling wave piezoelectric motors. The mechanical, dielectric and piezoelectric losses associated with the vibrator are considered by introducing the imaginary part to the equivalent...

  8. Electrical Response of Cement-Based Piezoelectric Ceramic Composites under Mechanical Loadings

    Directory of Open Access Journals (Sweden)

    Biqin Dong

    2011-01-01

    Full Text Available Electrical responses of cement-based piezoelectric ceramic composites under mechanical loadings are studied. A simple high order model is presented to explain the nonlinear phenomena, which is found in the electrical response of the composites under large mechanical loadings. For general situation, this nonlinear piezoelectric effect is quite small, and the composite is suitable for dynamic mechanical sensor as holding high static stability. The experimental results are consistent with the relationship quite well. The study shows that cement-based piezoelectric composite is suitable for potential application as dynamic mechanical sensor with excellent dynamic response and high static stability.

  9. Determination of elastic, piezoelectric, and dielectric constants of an R: BaTiO3 single crystal by Brillouin scattering

    Institute of Scientific and Technical Information of China (English)

    He Xiao-Kang; Zeng Li-Bo; Wu Qiong-Shui; Zhang Li-Yan; Zhu Ke; Liu Yu-Long

    2012-01-01

    From the sound velocity measured using the Brillouin scattering technique,the elastic,piezoelectric,and dielectric constants of a high-quality monodomain tetragonal Rh:BaTiO3 single crystal are determined at room temperature.The elastic constants are in fairly good agreement with those of the BaTiO3 single crystal,measured previously by Brillouin scattering and the low-frequency equivalent circuit methods.However,their electromechanical properties are significantly different.Based on the sound propagation equations and these results,the directional dependence of the compressional modulus and the shear modulus of Rh:BaTiO3 in the (010) plane is investigated.Some properties of sound propagation and electromechanical coupling in the crystal are discussed.

  10. Thickness-dependent piezoelectric behaviour and dielectric properties of lanthanum modified BiFeO3 thin films

    Directory of Open Access Journals (Sweden)

    Glenda Biasotto

    2011-03-01

    Full Text Available Bi0.85La0.15FeO3 (BLFO thin films were deposited on Pt(111/Ti/SiO2 /Si substrates by the soft chemical method. Films with thicknesses ranging from 140 to 280 nm were grown on platinum coated silicon substrates at 500°C for 2 hours. The X-ray diffraction analysis of BLFO films evidenced a hexagonal structure over the entire thickness range investigated. The grain size of the film changes as the number of the layers increases, indicating thickness dependence. It is found that the piezoelectric response is strongly influenced by the film thickness. It is shown that the properties of BiFeO3 thin films, such as lattice parameter, dielectric permittivity, piezoeletric coefficient etc., are functions of misfit strains.

  11. Dielectric and piezoelectric properties of (Li, Ce) modified NaBi5Ti5O18composite ceramics

    Institute of Scientific and Technical Information of China (English)

    MA Lei; ZHAO Kun; LI Jixia; WU Qi; ZHAO Minglei; WANG Chunlei

    2009-01-01

    Nominal (Li0.5Ce0.5)x(Na0.5Bi0.5)(1-x)Na0.5Bi4.5Ti5O18 composite ceramics were fabricated using conventional solid-state reaction method. The coexistence of bismuth layer-structured phase and perovskite phase was determined in these ceramics using XRD technique. At room temperature, the x=0.11 sample showed the largest piezoelectric constant, d33, of about 26.5 pC/N and the largest electromechanical coupling factor, kt, of about 30%. Even after annealing at 500 ℃, the value of d33 was still about 19 pC/N, in x=0.08-0.11 samples. Moreover, these composite ceramics showed low temperature coefficients of dielectric constant and high electrical resistivity in the temperature region of 450-550 ℃. These results indicated that (Li, Ce) modified NaBi5Ti5O18 composite ceramics were promising piezoelectric materials for high-temperature applications.

  12. Piezoelectric compliant mechanism energy harvesters under large base excitations

    Science.gov (United States)

    Ma, Xiaokun; Trolier-McKinstry, Susan; Rahn, Christopher D.

    2016-09-01

    A piezoelectric compliant mechanism (PCM) energy harvester is designed, modeled, and analyzed that consists of a polyvinylidene diflouoride, PVDF unimorph clamped at its base and attached to a compliant mechanism at its tip. The compliant hinge stiffness is carefully tuned to approach a low frequency first mode with an efficient (nearly quadratic) shape that provides a uniform strain distribution. A nonlinear model of the PCM energy harvester under large base excitation is derived to determine the maximum power that can be generated by the device. Experiments with a fabricated PCM energy harvester prototype show that the compliant mechanism introduces a stiffening effect and a much wider bandwidth than a benchmark proof mass cantilever design. The PCM bridge structure self-limits the displacement and maximum strain at large excitations compared with the proof mass cantilever, improving the device robustness. The PCM outperforms the cantilever in both average power and power-strain sensitivity at high accelerations due to the PCM axial stretching effect and its more uniform strain distribution.

  13. A classical mechanics model for the interpretation of piezoelectric property data

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Andrew J., E-mail: a.j.bell@leeds.ac.uk [Institute for Materials Research, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2015-12-14

    In order to provide a means of understanding, the relationship between the primary electromechanical coefficients and simple crystal chemistry parameters for piezoelectric materials, a static analysis of a 3 atom, dipolar molecule has been undertaken to derive relationships for elastic compliance s{sup E}, dielectric permittivity ε{sup X}, and piezoelectric charge coefficient d in terms of an effective ionic charge and two inter-atomic force constants. The relationships demonstrate the mutual interdependence of the three coefficients, in keeping with experimental evidence from a large dataset of commercial piezoelectric materials. It is shown that the electromechanical coupling coefficient k is purely an expression of the asymmetry in the two force constants or bond compliances. The treatment is extended to show that the quadratic electrostriction relation between strain and polarization, in both centrosymmetric and non-centrosymmetric systems, is due to the presence of a non-zero 2nd order term in the bond compliance. Comparison with experimental data explains the counter-intuitive, positive correlation of k with s{sup E} and ε{sup X} and supports the proposition that high piezoelectric activity in single crystals is dominated by large compliance coupled with asymmetry in the sub-cell force constants. However, the analysis also shows that in polycrystalline materials, the dielectric anisotropy of the constituent crystals can be more important for attaining large charge coefficients. The model provides a completely new methodology for the interpretation of piezoelectric and electrostrictive property data and suggests methods for rapid screening for high activity in candidate piezoelectric materials, both experimentally and by novel interrogation of ab initio calculations.

  14. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure

    Directory of Open Access Journals (Sweden)

    Liying Jiang

    2011-12-01

    Full Text Available In this work, the problem of a curved functionally graded piezoelectric (FGP actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  15. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure.

    Science.gov (United States)

    Yan, Zhi; Zaman, Mostafa; Jiang, Liying

    2011-12-12

    In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  16. Mechanisms Responsible for Microwave Properties in High Performance Dielectric Materials

    Science.gov (United States)

    Zhang, Shengke

    Microwave properties of low-loss commercial dielectric materials are optimized by adding transition-metal dopants or alloying agents (i.e. Ni, Co, Mn) to tune the temperature coefficient of resonant frequency (tau f) to zero. This occurs as a result of the temperature dependence of dielectric constant offsetting the thermal expansion. At cryogenic temperatures, the microwave loss in these dielectric materials is dominated by electron paramagnetic resonance (EPR) loss, which results from the spin-excitations of d-shell electron spins in exchange-coupled clusters. We show that the origin of the observed magnetically-induced shifts in the dielectric resonator frequency originates from the same mechanism, as described by the Kramers-Kronig relations. The temperature coefficient of resonator frequency, tauf, is related to three material parameters according to the equation, tau f = - (½ tauepsilon + ½ taumu + alphaL), where tauepsilon, taumu , and alphaL are the temperature coefficient of dielectric constant, magnetic permeability, and lattice constant, respectively. Each of these parameters for dielectric materials of interest are measured experimentally. These results, in combination with density functional simulations, developed a much improved understanding of the fundamental mechanisms responsible for tau f. The same experimental methods have been used to characterize in-situ the physical nature and concentration of performance-degrading point defects in the dielectrics of superconducting planar microwave resonators.

  17. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    Science.gov (United States)

    Yan, Zhi; Jiang, Liying

    2017-01-01

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented. PMID:28336861

  18. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Zhi Yan

    2017-01-01

    Full Text Available Piezoelectric nanomaterials (PNs are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  19. Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites

    Science.gov (United States)

    James, N. K.; Lafont, U.; van der Zwaag, S.; Groen, W. A.

    2014-05-01

    Piezoelectric ceramic-polymer composites with 0-3 connectivity were fabricated using lead zirconium titanate (PZT) powder dispersed in an ionomer (Zn ionomer) and its reference ethylene methacrylic acid copolymer (EMAA) polymer matrix. The PZT-Zn ionomer and PZT-EMAA composites were prepared by melt extrusion followed by hot pressing. The effects of poling conditions such as temperature, time and electric field on the piezoelectric properties of the composites were investigated. The experimentally observed piezoelectric charge coefficient and dielectric constant of the composites were compared with theoretical models. The results show that PZT-Zn ionomer composites have better piezoelectric properties compared to PZT-EMAA composites. The static and fatigue properties of the composites were investigated. The PZT-Zn ionomer composites were found to have excellent fatigue resistance even at strain levels of 4%. Due to the self-healing capabilities of the ionomer matrix, the loss of piezoelectric properties after high strain tensile cyclic loading could be partially recovered by thermal healing.

  20. Effect of gradient dielectric coefficient in a functionally graded material (FGM) substrate on the propagation behavior of love waves in an FGM-piezoelectric layered structure.

    Science.gov (United States)

    Cao, Xiaoshan; Shi, Junping; Jin, Feng

    2012-06-01

    The propagation behavior of Love waves in a layered structure that includes a functionally graded material (FGM) substrate carrying a piezoelectric thin film is investigated. Analytical solutions are obtained for both constant and gradient dielectric coefficients in the FGM substrate. Numerical results show that the gradient dielectric coefficient decreases phase velocity in any mode, and the electromechanical coupling factor significantly increases in the first- and secondorder modes. In some modes, the difference in Love waves' phase velocity between these two types of structure might be more than 1%, resulting in significant differences in frequency of the surface acoustic wave devices.

  1. Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates

    Science.gov (United States)

    Saravanos, Dimitris A.; Heyliger, Paul R.; Hopkins, Dale A.

    1996-01-01

    Laminate and structural mechanics for the analysis of laminated composite plate structures with piezoelectric actuators and sensors are presented. The theories implement layerwise representations of displacements and electric potential, and can model both the global and local electromechanical response of smart composite laminates. Finite-element formulations are developed for the quasi-static and dynamic analysis of smart composite structures containing piezoelectric layers. Comparisons with an exact solution illustrate the accuracy, robustness and capability of the developed mechanics to capture the global and local response of thin and/or thick laminated piezoelectric plates. Additional correlations and numerical applications demonstrate the unique capabilities of the mechanics in analyzing the static and free-vibration response of composite plates with distributed piezoelectric actuators and sensors.

  2. Mathematical model and characteristic analysis of hybrid photovoltaic/piezoelectric actuation mechanism

    Science.gov (United States)

    Jiang, Jing; Li, Xiaonan; Ding, Jincheng; Yue, Honghao; Deng, Zongquan

    2016-12-01

    Photovoltaic materials can turn light energy into electric energy directly, and thus have the advantages of high electrical output voltages and the ability to realize remote or non-contact control. When high-energy ultraviolet light illuminates polarized PbLaZrTi (PLZT) materials, high photovoltages will be generated along the spontaneous polarization direction due to the photovoltaic effect. In this paper, a novel hybrid photovoltaic/piezoelectric actuation mechanism is proposed. PLZT ceramics are used as a photovoltaic generator to drive a piezoelectric actuator. A mathematical model is established to define the time history of the actuation voltage between two electrodes of the piezoelectric actuator, which is experimentally validated by the test results of a piezoelectric actuator with different geometrical parameters under irradiation at different light intensities. Some important characteristics of this novel actuation mechanism are analyzed and it can be concluded that (1) it is experimentally validated that there is no hysteresis between voltage and deformation which exists in a PLZT actuator; (2) the saturated voltage and response speed can be improved by using a multi-patch PLZT generator to drive the piezoelectric actuator; and (3) the initial voltage of the piezoelectric actuator can be acquired by controlling the logical switch between the PLZT and the piezoelectric actuator while the initial voltages increase with the rise of light intensity.

  3. Bulk crystal growth, optical, mechanical and ferroelectric properties of new semiorganic nonlinear optical and piezoelectric Lithium nitrate monohydrate oxalate single crystal

    Science.gov (United States)

    Dalal, Jyoti; Kumar, Binay

    2016-01-01

    New semiorganic nonlinear optical single crystals of Lithium nitrate oxalate monohydrate (LNO) were grown by slow evaporation solution technique. Single crystal X-ray diffraction study indicated that LNO crystal belongs to the triclinic system with space group P1. Various functional groups present in the material were identified by FTIR and Raman analysis. UV-vis study showed the high transparency of crystals with a wide band gap 5.01 eV. Various Optical constants i.e. Urbach energy (Eu), extinction coefficient (K), refractive index, optical conductivity, electric susceptibility with real and imaginary parts of dielectric constant were calculated using the transmittance data which have applications in optoelectronic devices. A sharp emission peak was found at 438 nm in photoluminescence measurement, which revealed suitability of crystal for fabricating violet lasers. In dielectric studies, a peak has been observed at 33 °C which is due to ferroelectric to paraelectric phase transition. Piezoelectric charge coefficients (d33 = 9.2 pC/N and g33) have been calculated, which make it a suitable for piezoelectric devices applications. In ferroelectric studies, a saturated loop was found in which the values of coercive field and remnant polarization were found to be 2.18 kV/cm and 0.39 μC/cm2, respectively. Thermal behavior was studied by TGA and DSC studies. The relative SHG efficiency of LNO was found to be 1.2 times that of KDP crystal. In microhardness study, Meyer's index value was found to be 1.78 which revealed its soft nature. These optical, dielectric, piezoelectric, ferroelectric, mechanical and non-linear optical properties of grown crystal establish the usefulness of this material for optoelectronics, non-volatile memory and piezoelectric devices applications.

  4. Pressure and electric field effects on piezoelectric responses of KNbO3

    Science.gov (United States)

    Liang, Linyun; Li, Y. L.; Xue, Fei; Chen, Long-Qing

    2012-09-01

    The dielectric and piezoelectric properties of a KNbO3 single crystal under applied hydrostatic pressure and positive bias electric field are investigated using phenomenological Landau-Ginzburg-Devonshire thermodynamic theory. It is shown that the hydrostatic pressure effect on the dielectric and piezoelectric properties is similar to temperature, suggesting a common underlying mechanism for the piezoelectric anisotropy and its enhancement. The stable phase diagram of KNbO3 as a function of temperature and positive bias electric field is constructed. The maximum piezoelectric coefficient d33o* varying with temperature and electric field is calculated.

  5. Structural, dielectric and piezoelectric study of Ca-, Zr-modified BaTiO$_3$ lead-free ceramics

    Indian Academy of Sciences (India)

    H MSOUNI; A TACHAFINE; M EL AATMANI; D FASQUELLE; J C CARRU; M EL HAMMIOUI; M RGUITI; A ZEGZOUTI; A OUTZOURHIT; M DAOUD

    2017-09-01

    We prepared a lead-free ceramic (Ba$_{0.85}$Ca$_{0.15}$)(Ti$_{1−x}$Zr$_x$ )O$_3$ (BCTZ) using the conventional mixed oxide technique. The samples were prepared by an ordinary mixing and sintering technique. In this study we investigated howsmall amounts of Zr$^{4+}$ can affect the crystal structure and microstructure as well as dielectric and piezoelectric propertiesof BaTiO$_3$. X-ray diffraction analysis results indicate that no secondary phase is formed in any of the BCTZ powders for$0 \\leq x \\leq 0.1$, suggesting that Zr$^{4+}$ diffuses into BaTiO$_3$ lattices to form a solid solution. Scanning electron microscopy micrographs revealed that the average grain size gradually increased with Zr$^{4+}$ content from 9.5 $\\mu$m for $x = 0.02$ to 13.5 $\\mu$m for $x = 0.1$; Curie temperature decreased due to the small tetragonality caused by Zr$^{4+}$ addition. Owing to the polymorphic phase transition from orthorhombic to tetragonal phase around room temperature, it was found that the composition $x = 0.09$ showed improved electrical properties and reached preferred values of $d_{33} = 148$ pC N$^{−1}$ and $K_p = 27$%.

  6. Ferroelectric, piezoelectric, and dielectric properties of BiScO3-PbTiO3-Pb(Cd1/3Nb2/3)O3 ternary high temperature piezoelectric ceramics

    Science.gov (United States)

    Zhao, Tian-Long; Chen, Jianguo; Wang, Chun-Ming; Yu, Yang; Dong, Shuxiang

    2013-07-01

    (0.95-x)BiScO3-xPbTiO3-0.05Pb(Cd1/3Nb2/3)O3 (BS-xPT-PCN) high temperature piezoelectric ceramics near the morphotropic phase boundary (MPB) have been synthesized by traditional solid-state reaction methods. The microstructural morphology, phase structure, and electrical properties of BS-xPT-PCN ceramics were investigated in detail. X-ray diffraction analysis indicated BS-xPT-PCN ceramics have a pure perovskite structure. The coexistence of rhombohedral and tetragonal phases at MPB composition enhanced the polarizability by the coupling between two dynamically equivalent energy states, resulting in the improved piezoelectric and ferroelectric properties at MPB vicinity. The BS-xPT-PCN (x = 0.60) ceramics possess the optimal piezoelectric and ferroelectric properties with d33 = 505pC/N, kp = 55.9%, kt = 36.5%, strain = 0.23% (under the electric field 37.5 kV/cm), and Pr = 39.7 μC/cm2. High temperature dielectric behaviors showed diffuse phase transition in BS-xPT-PCN ceramics. The Curie temperature Tc was found to increase from 371 °C to 414 °C with x increasing from 0.58 to 0.62. All these results together with the good thermal stabilities make the BS-xPT-PCN ceramics promising candidates for high temperature piezoelectric applications.

  7. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.

    Science.gov (United States)

    Zu, Hongfei; Wu, Huiyan; Wang, Qing-Ming

    2016-03-01

    In this review paper, nine different types of high-temperature piezoelectric crystals and their sensor applications are overviewed. The important materials' properties of these piezoelectric crystals including dielectric constant, elastic coefficients, piezoelectric coefficients, electromechanical coupling coefficients, and mechanical quality factor are discussed in detail. The determination methods of these physical properties are also presented. Moreover, the growth methods, structures, and properties of these piezoelectric crystals are summarized and compared. Of particular interest are langasite and oxyborate crystals, which exhibit no phase transitions prior to their melting points ∼ 1500 °C and possess high electrical resistivity, piezoelectric coefficients, and mechanical quality factor at ultrahigh temperature ( ∼ 1000 °C). Finally, some research results on surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors developed using this high-temperature piezoelectric crystals are discussed.

  8. Electronic, mechanical and dielectric properties of silicane under tensile strain

    Energy Technology Data Exchange (ETDEWEB)

    Jamdagni, Pooja, E-mail: j.poojaa1228@gmail.com; Sharma, Munish; Ahluwalia, P. K. [Physics Department, Himachal Pradesh University, Shimla, Himachal Pradesh, India 171005 (India); Kumar, Ashok [Physics Department, Panjab University, Chandigarh, India, 160014 (India); Thakur, Anil [Physics Department, Govt. Collage Solan, Himachal Pradesh, India,173212 (India)

    2015-05-15

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.

  9. An efficient finite element with layerwise mechanics for smart piezoelectric composite and sandwich shallow shells

    Science.gov (United States)

    Yasin, M. Yaqoob; Kapuria, S.

    2014-01-01

    In this work, we present a new efficient four-node finite element for shallow multilayered piezoelectric shells, considering layerwise mechanics and electromechanical coupling. The laminate mechanics is based on the zigzag theory that has only seven kinematic degrees of freedom per node. The normal deformation of the piezoelectric layers under the electric field is accounted for without introducing any additional deflection variables. A consistent quadratic variation of the electric potential across the piezoelectric layers with the provision of satisfying the equipotential condition of electroded surfaces is adopted. The performance of the new element is demonstrated for the static response under mechanical and electric potential loads, and for free vibration response of smart shells under different boundary conditions. The predictions are found to be very close to the three dimensional piezoelasticity solutions for hybrid shells made of not only single-material composite substrates, but also sandwich substrates with a soft core for which the equivalent single layer (ESL) theories perform very badly.

  10. Effect of antimony substitution for niobium on the crystal structure, piezoelectric and dielectric properties of (K0.5Na0.5)NbO3 ceramics

    DEFF Research Database (Denmark)

    Mgbemere, H E; Schneider, G A; Stegk, Tobias

    2010-01-01

    The effect of antimony (Sb) substitution for niobium (Nb) on potassium sodium niobate (KNN) ceramic was investigated with respect to the densification behaviour at different sintering temperatures, microstructure and electrical properties. A small amount of Sb5+ was added while simultaneously...... lowering the amount of Nb5+ and in this study of the (K0.5Na0.5)(Nb1-xSbx)O3 system, x content was varied from 0 to 14 mol%. Our results show that Sb5+ slightly increased the optimum sintering temperature for KNN but above 8 mol%, its resistivity and piezoelectric properties decreased. As the amount of Sb5...... temperature. The dielectric loss slightly increases with increasing Sb5+ content up to 200°C. There was an improvement in the piezoelectric properties with ≤ 6 mol% Sb content while optimum properties were obtained with 4 mol% (KP = 0.46, Qm = 6.2, NP = 2296)....

  11. Advanced methodology for measuring the extensive elastic compliance and mechanical loss directly in k31 mode piezoelectric ceramic plates

    Science.gov (United States)

    Majzoubi, Maryam; Shekhani, Husain N.; Bansal, Anushka; Hennig, Eberhard; Scholehwar, Timo; Uchino, Kenji

    2016-12-01

    Dielectric, elastic, and piezoelectric constants, and their corresponding losses are defined under constant conditions of two categories; namely, intensive (i.e., E, electric field or T, stress), and extensive (i.e., D, dielectric displacement or x, strain) ones. So far, only the intensive parameters and losses could be measured directly in a k31 mode sample. Their corresponding extensive parameters could be calculated indirectly using the coupling factor and "K" matrix. However, the extensive loss parameters, calculated through this indirect method, could have large uncertainty, due to the error propagation in calculation. In order to overcome this issue, extensive losses should be measured separately from the measurable intensive ones in lead-zirconate-titanate (PZT) k31 mode rectangular plate ceramics. We propose a new mechanical-excitation methodology, using a non-destructive testing approach by means of a partial electrode configuration, instead of the conventional full electrode configuration. For this purpose, a non-electrode sample was prepared, where the electrode covered only 10% of the top and bottom surfaces at the center to actuate the whole sample, and also monitor the responding vibration. The admittance spectrum of this sample, corresponds to PZT properties under dielectric displacement D constant condition. Furthermore, ceramics with partial-electrodes were also prepared to create short and open circuit boundary conditions, attributing to resonance and anti-resonance modes. In the proposed way, we were able to measure both intensive and extensive elastic compliances and mechanical losses directly for the first time. The accuracy of this new method is compared with the conventional measurements by use of indirect calculations. The preliminary results (by neglecting the 10% actuator part difference at this point) were obtained, which were in good agreements (less than 3% difference) with the previous indirect method.

  12. Piezoelectric Pre-Stressed Bending Mechanism for Impact-Driven Energy Harvester

    Science.gov (United States)

    Abdal, A. M.; Leong, K. S.

    2017-06-01

    This paper experimentally demonstrates and evaluates a piezoelectric power generator bending mechanism based on pre-stressed condition whereby the piezoelectric transducer being bended and remained in the stressed condition before applying a force on the piezoelectric bending structure, which increase the stress on the piezoelectric surface and hence increase the generated electrical charges. An impact force is being exerted onto bending the piezoelectric beam and hence generating electrical power across an external resistive load. The proposed bending mechanism prototype has been manufactured by employing 3D printer technology in order to conduct the evaluation. A free fall test has been conducted as the evaluation method with varying force using a series of different masses and different fall heights. A rectangular piezoelectric harvester beam with the size of 32mm in width, 70mm in length, and 0.55mm in thickness is used to demonstrate the experiment. It can be seen from the experiment that the instantaneous peak to peak AC volt output measured at open-circuit is increasing and saturated at about of 70V when an impact force of about 80N is being applied. It is also found that a maximum power of about 53mW is generated at an impact force of 50N when it is connected to an external resistive load of 0.7KΩ. The reported mechanism is a promising candidate in the application of energy harvesting for powering various wireless sensor nodes (WSN) which is the core of Internet of Things (IoT).

  13. Effects of CeO2 doping on the structure and properties of PSN-PZN-PMS-PZT piezoelectric ceramics

    Institute of Scientific and Technical Information of China (English)

    SUN Qingchi; LU Cuimin; ZHOU Hua

    2005-01-01

    Quinary system piezoelectric ceramics PSN-PZN-PMS-PZT were prepared by using a two-step method. The effects of CeO2 doping on piezoelectric and dielectric properties of the system were investigated at morphotropic phase boundary (MPB). The results reveal that the relative dielectric constant εT33 / ε0, the Curie temperature Tc, the piezoelectric constant d33, the mechanical quality factor Qm, and the electromechanical coupling coefficient Kp are changed with the increase of CeO2 content. On the other hand, the effects of CeO2 doping on the dielectric properties of PSN-PZN-PMS-PZT piezoelectric ceramics at high electric field are consistent with the change at weak electric field. The values of dielectric constant and dielectric loss are enhanced with the increasing of electric field.

  14. Piezoelectric polymer gated OFET: Cutting-edge electro-mechanical transducer for organic MEMS-based sensors

    Science.gov (United States)

    Thuau, Damien; Abbas, Mamatimin; Wantz, Guillaume; Hirsch, Lionel; Dufour, Isabelle; Ayela, Cédric

    2016-12-01

    The growth of micro electro-mechanical system (MEMS) based sensors on the electronic market is forecast to be invigorated soon by the development of a new branch of MEMS-based sensors made of organic materials. Organic MEMS have the potential to revolutionize sensor products due to their light weight, low-cost and mechanical flexibility. However, their sensitivity and stability in comparison to inorganic MEMS-based sensors have been the major concerns. In the present work, an organic MEMS sensor with a cutting-edge electro-mechanical transducer based on an active organic field effect transistor (OFET) has been demonstrated. Using poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) piezoelectric polymer as active gate dielectric in the transistor mounted on a polymeric micro-cantilever, unique electro-mechanical properties were observed. Such an advanced scheme enables highly efficient integrated electro-mechanical transduction for physical and chemical sensing applications. Record relative sensitivity over 600 in the low strain regime (organic MEMS-based sensors.

  15. Reliability Analysis of Piezoelectric Truss Structures Under Joint Action of Electric and Mechanical Loading

    Institute of Scientific and Technical Information of China (English)

    YANG Duo-he; AN Wei-guang; ZHU Rong-rong; MIAO Han

    2006-01-01

    Based on the finite element method(FEM) for the dynamical analysis of piezoelectric truss structures, the expressions of safety margins of strength fracture and damage electric field in the structure element are given considering electromechanical coupling effect under the joint action of electric and mechanical load. By importing the stochastic FEM,reliability of piezoelectric truss structures is analyzed by solving for partial derivative in the process of solving dynamical response of structure system with mode-superposition method. The influence of electromechanical coupling effect to reliability index is then analyzed through an example.

  16. Ferroelectric, piezoelectric, and dielectric properties of BiScO{sub 3}-PbTiO{sub 3}-Pb(Cd{sub 1/3}Nb{sub 2/3})O{sub 3} ternary high temperature piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Tianlong [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Chen Jianguo; Dong Shuxiang [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Wang Chunming [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Yu Yang [Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062 (China)

    2013-07-14

    (0.95-x)BiScO{sub 3}-xPbTiO{sub 3}-0.05Pb(Cd{sub 1/3}Nb{sub 2/3})O{sub 3} (BS-xPT-PCN) high temperature piezoelectric ceramics near the morphotropic phase boundary (MPB) have been synthesized by traditional solid-state reaction methods. The microstructural morphology, phase structure, and electrical properties of BS-xPT-PCN ceramics were investigated in detail. X-ray diffraction analysis indicated BS-xPT-PCN ceramics have a pure perovskite structure. The coexistence of rhombohedral and tetragonal phases at MPB composition enhanced the polarizability by the coupling between two dynamically equivalent energy states, resulting in the improved piezoelectric and ferroelectric properties at MPB vicinity. The BS-xPT-PCN (x = 0.60) ceramics possess the optimal piezoelectric and ferroelectric properties with d{sub 33} = 505pC/N, k{sub p} = 55.9%, k{sub t} = 36.5%, strain = 0.23% (under the electric field 37.5 kV/cm), and P{sub r} = 39.7 {mu}C/cm{sup 2}. High temperature dielectric behaviors showed diffuse phase transition in BS-xPT-PCN ceramics. The Curie temperature T{sub c} was found to increase from 371 Degree-Sign C to 414 Degree-Sign C with x increasing from 0.58 to 0.62. All these results together with the good thermal stabilities make the BS-xPT-PCN ceramics promising candidates for high temperature piezoelectric applications.

  17. Improved dielectric constant and breakdown strength of γ-phase dominant super toughened polyvinylidene fluoride/TiO2 nanocomposite film: an excellent material for energy storage applications and piezoelectric throughput

    Science.gov (United States)

    Mehebub Alam, Md; Ghosh, Sujoy Kumar; Sarkar, Debabrata; Sen, Shrabanee; Mandal, Dipankar

    2017-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) embedded γ-phase containing polyvinylidene fluoride (PVDF) nanocomposite (PNC) film turns to an excellent material for energy storage application due to an increased dielectric constant (32 at 1 kHz), enhanced electric breakdown strength (400 MV m-1). It also exhibits a high energy density of 4 J cm-3 which is 25 times higher than that of virgin PVDF. 98% of the electroactive γ-phase has been acheived by the incorporation of TiO2 NPs and the resulting PNC behaves like a super-toughened material due to a dramatic improvement (more than 80%) in the tensile strength. Owing to their electroactive nature and extraordinary mechanical properties, PNC films have a strong ability to fabricate the piezoelectric nanogenerators (PNGs) that have recently been an area of focus regarding mechanical energy harvesting. The feasibility of piezoelectric voltage generation from PNGs is demostrated under the rotating fan that also promises further utility such as rotational speed (RPM) determination.

  18. Improved dielectric constant and breakdown strength of γ-phase dominant super toughened polyvinylidene fluoride/TiO2 nanocomposite film: an excellent material for energy storage applications and piezoelectric throughput.

    Science.gov (United States)

    Alam, Md Mehebub; Ghosh, Sujoy Kumar; Sarkar, Debabrata; Sen, Shrabanee; Mandal, Dipankar

    2017-01-06

    Titanium dioxide (TiO2) nanoparticles (NPs) embedded γ-phase containing polyvinylidene fluoride (PVDF) nanocomposite (PNC) film turns to an excellent material for energy storage application due to an increased dielectric constant (32 at 1 kHz), enhanced electric breakdown strength (400 MV m(-1)). It also exhibits a high energy density of 4 J cm(-3) which is 25 times higher than that of virgin PVDF. 98% of the electroactive γ-phase has been acheived by the incorporation of TiO2 NPs and the resulting PNC behaves like a super-toughened material due to a dramatic improvement (more than 80%) in the tensile strength. Owing to their electroactive nature and extraordinary mechanical properties, PNC films have a strong ability to fabricate the piezoelectric nanogenerators (PNGs) that have recently been an area of focus regarding mechanical energy harvesting. The feasibility of piezoelectric voltage generation from PNGs is demostrated under the rotating fan that also promises further utility such as rotational speed (RPM) determination.

  19. Piezoelectric particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Mark A.; Jongewaard, Erik N.; Haase, Andrew A.; Franzi, Matthew

    2017-08-29

    A particle accelerator is provided that includes a piezoelectric accelerator element, where the piezoelectric accelerator element includes a hollow cylindrical shape, and an input transducer, where the input transducer is disposed to provide an input signal to the piezoelectric accelerator element, where the input signal induces a mechanical excitation of the piezoelectric accelerator element, where the mechanical excitation is capable of generating a piezoelectric electric field proximal to an axis of the cylindrical shape, where the piezoelectric accelerator is configured to accelerate a charged particle longitudinally along the axis of the cylindrical shape according to the piezoelectric electric field.

  20. Linear Analytical Solutions of Mechanical Sensitivity in Large Deflection of Unsymmetrically Layered Piezoelectric Plate under Pretension

    Directory of Open Access Journals (Sweden)

    Chun-Fu Chen

    2014-03-01

    Full Text Available Linear analytical study on the mechanical sensitivity in large deflection of unsymmetrically layered and laterally loaded piezoelectric plate under pretension is conducted. von Karman plate theory for large deflection is utilized but extended to the case of an unsymmetrically layered plate embedded with a piezoelectric layer. The governing equations thus obtained are simplified by omitting the arising nonlinear terms, yielding a Bessel or modified Bessel equation for the lateral slope. Depending on the relative magnitude of the piezoelectric effect, for both cases, analytical solutions of various geometrical responses are developed and formulated via Bessel and modified Bessel functions. The associated ultimate radial stresses are further derived following lamina constitutive law to evaluate the mechanical sensitivity of the considered plate. For a nearly monolithic plate under a very low applied voltage, the results are in good agreement with those for a single-layered case due to pure mechanical load available in literature, and thus the present approach is checked. For a two-layered unsymmetric plate made of typical silicon-based materials, a sound piezoelectric effect is illustrated particularly in a low pretension condition.

  1. High-efficiency piezoelectric micro harvester for collecting low-frequency mechanical energy

    Science.gov (United States)

    Li, Xin; Song, Jinhui; Feng, Shuanglong; Xie, Xiong; Li, Zhenhu; Wang, Liang; Pu, Yayun; Kah Soh, Ai; Shen, Jun; Lu, Wenqiang; Liu, Shuangyi

    2016-12-01

    A single-layer zinc oxide (ZnO) nanorod array-based micro energy harvester was designed and integrated with a piezoelectric metacapacitor. The device presents outstanding low-frequency (1-10 Hz) mechanical energy harvesting capabilities. When compared with conventional pristine ZnO nanostructured piezoelectric harvesters or generators, both open-circuit potential and short-circuit current are significantly enhanced (up to 3.1 V and 124 nA cm-2) for a single mechanical knock (˜34 kPa). Higher electromechanical conversion efficiency (1.3 pC/Pa) is also observed. The results indicate that the integration of the piezoelectric metacapacitor is a crucial factor for improving the low-frequency energy harvesting performance. A double piezoelectric-driven mechanism is proposed to explain current higher output power, in which the metacapacitor plays the multiple roles of charge pumping, storing and transferring. An as-fabricated prototype device for lighting an LED demonstrates high power transference capability, with over 95% transference efficiency to the external load.

  2. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huaping, E-mail: wuhuaping@gmail.com, E-mail: hpwu@zjut.edu.cn [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Ma, Xuefu; Zhang, Zheng; Zeng, Jun; Chai, Guozhong [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); Wang, Jie [Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110) orientation leads to a lower symmetry and more complicated phase transition than the (111) orientation in BaTiO{sub 3} films. The increase of compressive strain will dramatically enhance the Curie temperature T{sub C} of (110)-oriented BaTiO{sub 3} films, which matches well with previous experimental data. The polarization components experience a great change across the boundaries of different phases at room temperature in both (110)- and (111)-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.

  3. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO3 thin films

    Directory of Open Access Journals (Sweden)

    Huaping Wu

    2016-01-01

    Full Text Available The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO3 thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110 orientation leads to a lower symmetry and more complicated phase transition than the (111 orientation in BaTiO3 films. The increase of compressive strain will dramatically enhance the Curie temperature TC of (110-oriented BaTiO3 films, which matches well with previous experimental data. The polarization components experience a great change across the boundaries of different phases at room temperature in both (110- and (111-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.

  4. Transduction mechanisms and their applications in micromechanical devices

    NARCIS (Netherlands)

    Elwenspoek, M.; Blom, F.R.; Bouwstra, S.; Lammerink, T.S.J.; Pol, van de F.C.M.; Tilmans, H.A.C.; Popma, Th.J.A.; Fluitman, J.H.J.

    1989-01-01

    Transduction mechanisms and their applications in micromechanical actuators and resonating sensors are presented. They include piezoelectric, dielectric, electro-thermo-mechanic, opto-thermo-mechanic, and thermo-pneumatic mechanisms. Advantages and disadvantages with respect to technology and perfor

  5. Dielectric, piezoelectric, and ferroelectric properties of MnCO3-added 74(Bi(1/2)Na(1/2)) TiO3-20.8(Bi(1/2)K(1/2))TiO3-5.2BaTiO3 lead-free piezoelectric ceramics.

    Science.gov (United States)

    Hu, Hanchen; Zhu, Mankang; Hou, Yudong; Yan, Hui

    2009-05-01

    74(Bi(1/2)Na(1/2))TiO3-20.8(Bi(1/2)K(1/2))TiO3-5.2BaTiO3-x MnCO3 lead-free piezoelectric ceramics were synthesized by conventional solid oxide routine. The tetragonal 74(Bi(1/2)Na(1/2))TiO3-20.8(Bi(1/2)K(1/2))TiO3-5.2 BaTiO3 (BNKB) exhibits high depolarization temperature T(d) of 195 degrees C; however, its properties are far from satisfactory for practical application and need to be improved. The experiments show that the addition of MnCO3 reduces the tetragonality c/a and increases the cell volume. In addition, it revealed that the suitable addition of MnCO3 promotes the sintering and increases the densities of BNKB ceramics. The addition of MnCO3 also enhances the relaxor behavior of BNKB ceramics due to the reconstruct of the disorder arrays. Due to the effect of the crystal lattice, grain growth, and relaxor behavior, the optimal electric properties were realized at MnCO3 addition x of 0.16: the dielectric permittivity epsilon(r) = 1047, dielectric dissipation tandelta = 0.022, piezoelectric strain d33 = 140 pC/N, mechanical coupling k(p) = 0.18, mechanical quality Q(m) = 89 while the depolarization temperature T(d) stays relatively high at 175 degrees C. The effect and mechanism of Mn doping on the electrical properties were discussed in detail.

  6. Ferroelectricity, Piezoelectricity, and Dielectricity of 0.06PMnN-0.94PZT(45/55 Thin Film on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-01-01

    Full Text Available The high piezoelectricity and high quality factor ferroelectric thin films are important for electromechanical applications especially the micro electromechanical system (MEMS. The ternary compound ferroelectric thin films 0.06Pb(Mn1/3, Nb2/3O3 + 0.94Pb(Zr0.45, Ti0.55O3 (0.06PMnN-0.94PZT(45/55 were deposited on silicon(100 substrates by RF magnetron sputtering method considering that Mn and Nb doping will improve PZT properties in this research. For comparison, nondoped PZT(45/55 films were also deposited. The results show that both of thin films show polycrystal structures with the main (111 and (101 orientations. The transverse piezoelectric coefficients are e31,eff=−4.03 C/m2 and e31,eff=-3.5 C/m2, respectively. These thin films exhibit classical ferroelectricity, in which the coercive electric field intensities are 2Ec=147.31 kV/cm and 2Ec=135.44 kV/cm, and the saturation polarization Ps=30.86 μC/cm2 and Ps=17.74 μC/cm2, and the remnant polarization Pr=20.44 μC/cm2 and Pr=9.87 μC/cm2, respectively. Moreover, the dielectric constants and loss are εr=681 and D=5% and εr=537 and D=4.3%, respectively. In conclusion, 0.06PMnN-0.94PZT(45/55 thin films act better than nondoped films, even though their dielectric constants are higher. Their excellent ferroelectricity, piezoelectricity, and high power and energy storage property, especially the easy fabrication, integration realizable, and potentially high quality factor, make this kind of thin films available for the realistic applications.

  7. Thermal, dynamic mechanical, and dielectric analyses of some polyurethane biocomposites.

    Science.gov (United States)

    Macocinschi, Doina; Filip, Daniela; Vlad, Stelian; Cristea, Mariana; Musteata, Valentina; Ibanescu, Sorin

    2012-08-01

    Polymer biocomposites based on segmented poly(ester urethane) and extracellular matrix components have been prepared for the development of tissue engineering applications with improved biological characteristics of the materials in contact with blood and tissues for long periods. Thermal, dynamical, and dielectrical analyses were employed to study the molecular dynamics of these materials and the influence of changing the physical network morphology and hydrogen bond interactions accompanied by phase transitions, interfacial effects, and polarization or conductivity. All phenomena that concur in the tested materials are evaluated by cross-examination of the dynamic mechanical characteristic properties (storage modulus, loss modulus, and loss factor) and dielectric properties (relative permittivity, relative loss factor, and loss tangent) as a function of temperature. Comparative aspects were elucidated by calculating the apparent activation energies of multiplex experiments.

  8. Theoretical and experimental research on the influence of multiple piezoelectric effects on physical parameters of piezoelectric actuator

    OpenAIRE

    Liping Shi; Haimin Zhou; Jie Huang; Jiliang Tan

    2015-01-01

    Compared with the traditional actuator of machinery and electricity, the piezoelectric actuator has the advantages of a compact structure, small volume, no mechanical friction, athermancy and no electromagnetic interference. Therefore, it has high application value in the fields of MEMS, bioengineering, medical science and so on. This article draws conclusions from the influence of multiple piezoelectric effects on the physical parameters (dielectric coefficient, equivalent capacity, energy c...

  9. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    OpenAIRE

    Zhi Yan; Liying Jiang

    2017-01-01

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characteri...

  10. Derivation of Piezoelectric Losses from Admittance Spectra

    Science.gov (United States)

    Zhuang, Yuan; Ural, Seyit O.; Rajapurkar, Aditya; Tuncdemir, Safakcan; Amin, Ahmed; Uchino, Kenji

    2009-04-01

    High power density piezoelectrics are required to miniaturize devices such as ultrasonic motors, transformers, and sound projectors. The power density is limited by the heat generation in piezoelectrics, therefore, clarification of the loss mechanisms is necessary. This paper provides a methodology to determine the electromechanical losses, i.e., dielectric, elastic and piezoelectric loss factors in piezoelectrics by means of a detailed analysis of the admittance/impedance spectra. This method was applied to determine the piezoelectric losses for lead zirconate titanate ceramics and lead magnesium niobate-lead titanate single crystals. The analytical solution provides a new method for obtaining the piezoelectric loss factor, which is usually neglected in practice by transducer designers. Finite element simulation demonstrated the importance of piezoelectric losses to yield a more accurate fitting to the experimental data. A phenomenological model based on two phase-shifts and the Devonshire theory of a polarizable-deformable insulator is developed to interpret the experimentally observed magnitudes of the mechanical quality factor at resonance and anti-resonance.

  11. Dependency of working temperature and equivalent constant of concentric disk-type piezoelectric transformer

    Science.gov (United States)

    Chou, I.-Mu; Lai, Yi-Ying; Wu, Wen-Jong; Lee, Chih-Kung

    2011-03-01

    This paper presents the effect of equivalent constant and output power on working temperature of concentric disk-type piezoelectric transformer. To analyze the energy loss in the piezoelectric transformer, the equivalent circuit model was built. Losses in the piezoelectric transformer are considered generally having two different parts: dielectric loss and mechanical loss. First of all, a measurement circuit based on an impedance analyzer was built. Then, the circuit simulation software PSIM was employed to verify the experimental results obtained. Secondly, according to the experimental results, temperature and input voltage are the two factors which influenced the energy loss in a piezoelectric transformer. As the input voltage and temperature increased, the energy loss rises, as well. In addition, when the input voltage is low, the temperature becomes the main influencing factor for energy loss of the piezoelectric transformer. On the other hand, when the input voltage is high, the main factor for energy loss of the piezoelectric transformer is the input voltage other than the temperature. Furthermore, the control loop that dealt with the energy loss of the piezoelectric transformer was proposed. At different temperatures, the variations of losses of the piezoelectric transformer are presented in this paper. Finally, the dielectric loss and mechanical loss are combined to analyze the losses within piezoelectric transformers. Then, the relationship between the output power of the piezoelectric transformer and the temperature was revealed. The result showed that as the temperature increased, the output power decreased.

  12. Effect of Fe and Fe-Ba substitution on the piezoelectric and dielectric properties of lead zirconate titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sangawar, S.R., E-mail: sudhirsangawar85@gmail.com [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India); Praveenkumar, B.; Kumar, H.H.; Kharat, D.K. [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India)

    2011-02-25

    Polycrystalline samples of Fe and Fe-Ba doped lead zirconate titanate (PZT) ceramics near the morphotrophic phase boundary have been synthesized by a solid-state reaction technique. Preliminary X-ray analysis of the compound confirms that there is no change in the crystal structure of PZT on co-doping with Fe and Ba. The maximum mechanical quality factor Q{sub m} was found to be 1000 for Fe doped material and 880 for Fe-Ba doped material. The electromechanical coupling factor for Fe and Fe-Ba doped samples were 0.535 and 0.495 respectively. The corresponding values for the piezoelectric charge constant d{sub 33} were 135 and 250 pC/N respectively. These results are discussed in terms of position occupied by dopants in to the lattice and their corresponding microstructures. These Fe-Ba doped PZT materials could be likely candidates for high power ultrasonic and underwater SONAR transducer systems.

  13. Integrating a piezoelectric actuator with mechanical and hydraulic devices to control camless engines

    Science.gov (United States)

    Mercorelli, Paolo; Werner, Nils

    2016-10-01

    The paper deals with some interdisciplinary aspects and problems concerning the actuation control which occur in the integration of a piezoelectric structure in an aggregate actuator consisting of a piezoelectric, a stroke ratio displacement, a mechanical and a hydraulic part. Problems like compensation of the piezo hysteresis effect, scaling force-position to obtain an adequate displacement of the actuator and finally the control of such a complex aggregate system are considered and solved. Even though this work considers a particular application, the solutions proposed in the paper are quite general. In fact, the considered technical aspects occurring in systems which utilize piezoelectric technologies can be used in a variegated gamma of actuators integrating piezoelectric technologies. A cascade controller is proposed to combine a Feedforward action with an internal and an external PI-Controller. The Feedforward Controller is based on the model of the whole actuator, so particular attention is paid to the model structure. The resulting Feedforward action is an adaptive one to compensate hydraulic pressure faults. Real measurements are shown.

  14. Tunability, dielectric, and piezoelectric properties of Ba(1-x)CaxTi(1-y)ZryO3 ferroelectric thin films

    Science.gov (United States)

    Daumont, C. J. M.; Simon, Q.; Le Mouellic, E.; Payan, S.; Gardes, P.; Poveda, P.; Negulescu, B.; Maglione, M.; Wolfman, J.

    2016-03-01

    Tunable ferroelectric capacitors, which exhibit a decrease of the dielectric permittivity (ɛ) under electric field, are widely used in electronics for RF tunable applications (e.g., antenna impedance matching). Current devices use barium strontium titanate as the tunable dielectric, and the need for performance enhancement of the tunable element is the key for device improvement. We report here on libraries of Ba0.97Ca0.03Ti1-xZrxO3 thin films (0 ≤ x ≤ 27%) with a thickness of about 130 nm deposited on IrO2/SiO2/Si substrates using combinatorial pulsed laser deposition allowing for gradients of composition on one sample. A total of 600 capacitors on a single sample were characterized in order to statistically investigate the dielectric properties. We show that the tunabilty is maximum at intermediate compositions, reaching values up to 60% for an electric field of about 400 kV cm-1. We attribute the high tunability in the intermediate compositions to the paraelectric-ferroelectric phase transition, which is brought down to room temperature by the addition of Zr. In addition, the piezoelectric coefficient is found to be decreasing with increasing Zr content.

  15. The effect of oxygen-plasma treatment on the mechanical and piezoelectrical properties of ZnO nanorods

    Science.gov (United States)

    Hussain, Mushtaque; Khan, Azam; Nur, Omer; Willander, Magnus; Broitman, Esteban

    2014-07-01

    We have studied the effect of oxygen plasma treatment on piezoelectric response and on the mechanical stability of ZnO nanorods synthesized on FTO by using ACG method. XRD and SEM techniques have shown highly dense and uniformly distributed nanorods. The piezoelectric properties and mechanical stability of as-grown and oxygen plasma treated samples were investigated by using nanoindentation technique. The comparison of load-displacement curves showed that the oxygen plasma treated samples are much stiffer and show higher generated piezo-voltage. This study demonstrates that the oxygen-plasma treatment is a good option to fabricate reliable and efficient nanodevices for enhanced generation of piezoelectricity.

  16. Development of a tilt-positioning mechanism driven by flextensional piezoelectric actuators

    Science.gov (United States)

    Jing, Zijian; Xu, Minglong; Wu, Tonghui; Tian, Zheng

    2016-08-01

    Tilt-positioning mechanisms are required in optical systems for diverse applications. Compared to electromagnetic tilt-positioning mechanisms, piezoelectric tilters are superior with regard to high positioning resolution, cost-effectiveness, and no electromagnetic interference issues. But their applications are limited by small motion ranges. To overcome this problem, a novel piezoelectric tilt-positioning mechanism is proposed and developed in this paper, aiming to achieve a large output range in compact size. Serving this purpose, flextensional piezoelectric actuators (FPAs) are employed in this mechanism and their optimal structure is pursued. The existing approach to model and analyze the structure of FPAs is not perfect, making it challenging to exactly characterize and optimize actuator performance for its applications. To address this problem, a hybrid-body model of the FPAs is developed and based on this model, a governing equation is established to exactly and comprehensively characterize their kinematic performance. This equation allows the application requirement to be readily related to the actuator design, enabling the optimization of tilter design and the actuators. Using the optimized parameters, an experimental prototype is fabricated. This specimen achieved more than 15 mrad of angular travel at a small size of 35 × 42 × 42 mm, and the error between the analytical model and the experiment was less than 5%. These results support the accuracy of the hybrid-body model and indicate that the proposed tilter is very promising for practical applications.

  17. Piezoelectric polymer foams: transducer mechanism and preparation as well as touch-sensor and ultrasonic-transducer properties

    Science.gov (United States)

    Wegener, M.

    2010-04-01

    Different materials provide a mechanical-electrical energy conversion and are thus interesting candidates for piezoelectric sensors and actuators. Beside ferroelectric ceramics and polymers, also polymer foams, so-called ferroelectrets, are developed as piezoelectric active materials. Their piezoelectricity originates from optimized structural and elastic-foam properties accompanied with an optimized charge trapping at the polymer layers within the foam structure. The piezoelectric activity arises if mechanical stimuli lead to a thickness variation of the electrically charged voids which results in an electrical signal between the connected electrodes on the film surfaces due to the change of internal electric fields. The concept of such a piezoelectric transducer was developed by investigating cellular polypropylene films with different foam structures and thus different elastic properties. Recently, ferroelectrets were prepared from other polymers following the same concept. Different kind of new foaming procedures are developed in order to broaden the range of usable materials as well as to optimize the adjustment of piezoelectric and ultrasonictransducer properties. The paper provides an overview about ferroelectrets, their underlying working mechanism as well as their preparation possibilities. In detail, piezoelectric properties of polypropylene ferroelectrets are described which are usable for pushbutton or touch-pad applications as well as in ultrasonic-transducer applications.

  18. A control model for hysteresis based on microscopic polarization mechanisms in piezoelectric actuator

    Institute of Scientific and Technical Information of China (English)

    RU Chang-hai; SUN Li-ning; RONG Wei-bin

    2008-01-01

    Aiming at the limitation of control accuracy caused by hysteresis and creep for a piezoelectric actuator, the hysteresis phenomenon is explained based on the microscopic polarization mechanism and domain wall theory. Then a control model based on polarization is established, which can reduce the hysteresis and creep remarkablely. The experimental results show that the polarization control method is with more linearity and less hysteresis compared with the voltage control method.

  19. Electricity Generation Characteristics of Energy-Harvesting System with Piezoelectric Element Using Mechanical-Acoustic Coupling

    Directory of Open Access Journals (Sweden)

    Hirotarou Tsuchiya

    2016-01-01

    Full Text Available This paper describes the electricity generation characteristics of a new energy-harvesting system with piezoelectric elements. The proposed system is composed of a rigid cylinder and thin plates at both ends. The piezoelectric elements are installed at the centers of both plates, and one side of each plate is subjected to a harmonic point force. In this system, vibration energy is converted into electrical energy via electromechanical coupling between the plate vibration and piezoelectric effect. In addition, the plate vibration excited by the point force induces a self-sustained vibration at the other plate via mechanical-acoustic coupling between the plate vibrations and an internal sound field into the cylindrical enclosure. Therefore, the electricity generation characteristics should be considered as an electromechanical-acoustic coupling problem. The characteristics are estimated theoretically and experimentally from the electric power in the electricity generation, the mechanical power supplied to the plate, and the electricity generation efficiency that is derived from the ratio of both power. In particular, the electricity generation efficiency is one of the most appropriate factors to evaluate a performance of electricity generation systems. Thus, the effect of mechanical-acoustic coupling is principally evaluated by examining the electricity generation efficiency.

  20. A novel variable stiffness mechanism for dielectric elastomer actuators

    Science.gov (United States)

    Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-08-01

    In this paper, a novel variable stiffness mechanism is proposed for the design of a variable stiffness dielectric elastomer actuator (VSDEA) which combines a flexible strip with a DEA in a dielectric elastomer minimum energy structure. The DEA induces an analog tuning of the transverse curvature of the strip, thus conveniently providing a voltage-controllable flexural rigidity. The VSDEA tends to be a fully flexible and compact structure with the advantages of simplicity and fast response. Both experimental and theoretical investigations are carried out to reveal the variable stiffness performances of the VSDEA. The effect of the clamped location on the bending stiffness of the VSDEA is analyzed, and then effects of the lengths, the loading points and the applied voltages on the bending stiffness are experimentally investigated. An analytical model is developed to verify the availability of this variable stiffness mechanism, and the theoretical results demonstrate that the bending stiffness of the VSDEA decreases as the applied voltage increases, which agree well with the experimental data. Moreover, the experimental results show that the maximum change of the relative stiffness can reach about 88.80%. It can be useful for the design and optimization of active variable stiffness structures and DEAs for soft robots, vibration control, and morphing applications.

  1. Competition between inverse piezoelectric effect and deformation potential mechanism in undoped GaAs revealed by ultrafast acoustics

    Directory of Open Access Journals (Sweden)

    Pezeril T.

    2013-03-01

    Full Text Available By using the picosecond ultrasonics technique, piezoelectric effect in GaAs undoped sample at both faces (A[111] and B[-1-1-1] is experimentally studied. We demonstrate that piezoelectric generation of sound can dominate in GaAs material over the deformation potential mechanism even in the absence of static externally applied or built-in electric field in the semiconductor material. In that case, the Dember field, caused by the separation of photo-generated electrons and holes in the process of supersonic diffusion, is sufficient for the dominance of the piezoelectric mechanism during the optoacoustic excitation. The experimental results on the sample at both faces reveal that in one case (A face, the two mechanisms, piezoelectric effect and deformation potential, can compensate each other leading to a large decrease of the measured Brillouin oscillation magnitude.

  2. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack

    Science.gov (United States)

    Feenstra, Joel; Granstrom, Jon; Sodano, Henry

    2008-04-01

    Over the past few decades, the use of portable and wearable electronics has grown steadily. These devices are becoming increasingly more powerful, however, the gains that have been made in the device performance has resulted in the need for significantly higher power to operate the electronics. This issue has been further complicated due to the stagnate growth of battery technology over the past decade. In order to increase the life of these electronics, researchers have begun investigating methods of generating energy from ambient sources such that the life of the electronics can be prolonged. Recent developments in the field have led to the design of a number of mechanisms that can be used to generate electrical energy, from a variety of sources including thermal, solar, strain, inertia, etc. Many of these energy sources are available for use with humans, but their use must be carefully considered such that parasitic effects that could disrupt the user's gait or endurance are avoided. This study develops a novel energy harvesting backpack that can generate electrical energy from the differential forces between the wearer and the pack. The goal of this system is to make the energy harvesting device transparent to the wearer such that his or her endurance and dexterity is not compromised. This will be accomplished by replacing the strap buckle with a mechanically amplified piezoelectric stack actuator. Piezoelectric stack actuators have found little use in energy harvesting applications due to their high stiffness which makes straining the material difficult. This issue will be alleviated using a mechanically amplified stack which allows the relatively low forces generated by the pack to be transformed to high forces on the piezoelectric stack. This paper will develop a theoretical model of the piezoelectric buckle and perform experimental testing to validate the model accuracy and energy harvesting performance.

  3. A piezoelectric six-DOF vibration energy harvester based on parallel mechanism: dynamic modeling, simulation, and experiment

    Science.gov (United States)

    Yuan, G.; Wang, D. H.

    2017-03-01

    Multi-directional and multi-degree-of-freedom (multi-DOF) vibration energy harvesting are attracting more and more research interest in recent years. In this paper, the principle of a piezoelectric six-DOF vibration energy harvester based on parallel mechanism is proposed to convert the energy of the six-DOF vibration to single-DOF vibrations of the limbs on the energy harvester and output voltages. The dynamic model of the piezoelectric six-DOF vibration energy harvester is established to estimate the vibrations of the limbs. On this basis, a Stewart-type piezoelectric six-DOF vibration energy harvester is developed and explored. In order to validate the established dynamic model and the analysis results, the simulation model of the Stewart-type piezoelectric six-DOF vibration energy harvester is built and tested with different vibration excitations by SimMechanics, and some preliminary experiments are carried out. The results show that the vibration of the limbs on the piezoelectric six-DOF vibration energy harvester can be estimated by the established dynamic model. The developed Stewart-type piezoelectric six-DOF vibration energy harvester can harvest the energy of multi-directional linear vibration and multi-axis rotating vibration with resonance frequencies of 17 Hz, 25 Hz, and 47 Hz. Moreover, the resonance frequencies of the developed piezoelectric six-DOF vibration energy harvester are not affected by the direction changing of the vibration excitation.

  4. APPLICABILITY OF THE CRACK FACE ELECTRICAL BOUNDARY CONDITIONS IN PIEZOELECTRIC MECHANICS

    Institute of Scientific and Technical Information of China (English)

    WangBaolin; HanJiecai; DuShanyi

    2004-01-01

    The electrical boundary conditions on the crack faces and their applicability in piezoelectric materials are discussed. A slit crack and a notch of finite thickness in piezoelectric materials subjected to combined mechanical and electrical loads is considered. Here, a crack is defined as a notch without thickness, which is filled with air or vacuum. The crack or notch is perpendicular to the poling direction of the medium. The ideal crack face electrical boundary conditions, i.e., the electrically permeable crack and the electrically impermeable crack, are investigated first. Then dependence of the field intensity factors on notch thickness at the notch tips is analyzed to obtain a closed-form. The results are compared with the ideal crack solutions.Some useful results are found.

  5. Mechanical, piezoelectric and some thermal properties of (B3) BP under pressure

    Institute of Scientific and Technical Information of China (English)

    S.DAOUD; N.BIOUD; N.LEBGAA

    2014-01-01

    Some compounds of group III-V semiconductor materials exhibit very good piezoelectric, mechanical, and thermal properties and their use in surface acoustic wave (SAW) devices operating specially at GHz frequencies. These materials have been appreciated for a long time due to their high acoustic velocities, which are important parameters for active microelectromechanical systems (MEMS) devices. For this object, first-principles calculations of the anisotropy and the hydrostatic pressure effect on the mechanical, piezoelectric and some thermal properties of the (B3) boron phosphide are presented, using the density functional perturbation theory (DFPT). The independent elastic and compliance constants, the Reuss modulus, Voigt modulus, and the shear modulus, the Kleinman parameter, the Cauchy and Born coefficients, the elastic modulus, and the Poisson ratio for directions within the important crystallographic planes of this compound under pressure are obtained. The direct and converse piezoelectric coefficients, the longitudinal, transverse, and average sound velocity, the Debye temperature, and the Debye frequency of (B3) boron phosphide under pressure are also presented and compared with available experimental and theoretical data of the literature.

  6. Piezoelectric and dielectric properties of Lix(K0.46Na0.54)1-xNb0.86Ta0.1Sb0.04O3 lead-free ceramics

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-wu; HU Jian-qiang

    2008-01-01

    Lead-free piezoelectric ceramics Lix(K0.46Na0.54)1-xNb0.86Ta0.1Sb0.04O3 (with x ranging from 0 to 0.1) were synthesized by conventional solid state sintering method.The effect of cationic substitution of Li for K and Na in the A sites of perovskite lattice on the structure,phase transition behavior and electrical properties were investigated.Morphotropic phase boundaries (MPB) between orthorhombic and tetragonal phase are found in the composition range of 0.06≤x≤0.08.Analogous to Pb (Zr,Ti) O3,the dielectric and piezoelectric properties are enhanced for the composition near the morphotropic phase boundary.The Li0.06 (K0.46Na0.54)0.94-Nb0 86Ta0.1Sb0.04O3 ceramics show excellent electrical properties,that is,piezoelectric constant,d33=215 pC/N,planar electromechanical coupling factor kp=41%,dielectric constant εT33/ε0=1303,and dielectric loss tanδ=2.45%.The results indicate that Lix (K0.46Na0.54)1-xNb0.86Ta0.1Sb0.04O3 ceramic is a promising lead-free piezoelectric material.

  7. Effect of mechanical parameters on dielectric elastomer minimum energy structures

    Science.gov (United States)

    Shintake, Jun; Rosset, Samuel; Floreano, Dario; Shea, Herbert R.

    2013-04-01

    Soft robotics may provide many advantages compared to traditional robotics approaches based on rigid materials, such as intrinsically safe physical human-robot interaction, efficient/stable locomotion, adaptive morphology, etc. The objective of this study is to develop a compliant structural actuator for soft a soft robot using dielectric elastomer minimum energy structures (DEMES). DEMES consist of a pre-stretched dielectric elastomer actuator (DEA) bonded to an initially planar flexible frame, which deforms into an out-of-plane shape which allows for large actuation stroke. Our initial goal is a one-dimensional bending actuator with 90 degree stroke. Along with frame shape, the actuation performance of DEMES depends on mechanical parameters such as thickness of the materials and pre-stretch of the elastomer membrane. We report here the characterization results on the effect of mechanical parameters on the actuator performance. The tested devices use a cm-size flexible-PCB (polyimide, 50 μm thickness) as the frame-material. For the DEA, PDMS (approximately 50 μm thickness) and carbon black mixed with silicone were used as membrane and electrode, respectively. The actuators were characterized by measuring the tip angle and the blocking force as functions of applied voltage. Different pre-stretch methods (uniaxial, biaxial and their ratio), and frame geometries (rectangular with different width, triangular and circular) were used. In order to compare actuators with different geometries, the same electrode area was used in all the devices. The results showed that the initial tip angle scales inversely with the frame width, the actuation stroke and the blocking force are inversely related (leading to an interesting design trade-off), using anisotropic pre-stretch increased the actuation stroke and the initial bending angle, and the circular frame shape exhibited the highest actuation performance.

  8. Miniature Piezoelectric Shaker Mechanism for Autonomous Distribution of Unconsolidated Sample to Instrument Cells

    Science.gov (United States)

    Sherrit, Stewart; Frankovich, Kent; Bao, Xiaoqi; Tucker, Curtis

    2009-01-01

    To perform in-situ measurements on Mars or other planetary bodies many instruments require powder produced using some sampling technique (drilling/coring) or sample processing technique (core crushing) to be placed in measurement cells. This usually requires filling a small sample cell using an inlet funnel. In order to minimize cross contamination with future samples and ensure the sample is transferred from the funnel to the test cell with minimal residual powder the funnel is shaken. The shaking assists gravity by fluidizing the powder and restoring flow of the material. In order to counter cross contamination or potential clogging due to settling during autonomous handling a piezoelectric shaking mechanism was designed for the deposition of sample fines in instrument inlet funnels. This device was designed to be lightweight, consume low power and demonstrated to be a resilient solid state actuator that can be mechanically and electrically tuned to shake the inlet funnel. In the final design configuration tested under nominal Mars Ambient conditions the funnel mechanism is driven by three symmetrically mounted piezoelectric flexure actuators that are out of the funnel support load path. The frequency of the actuation can be electrically controlled and monitored and mechanically tuned by the addition of tuning mass on the free end of the actuator. Unlike conventional electromagnetic motors these devices are solid state and can be designed with no macroscopically moving parts. This paper will discuss the design and testing results of these shaking mechanisms.

  9. Characterization of hard piezoelectric lead-free ceramics.

    Science.gov (United States)

    Zhang, Shujun; Lim, Jong Bong; Lee, Hyeong Jae; Shrout, Thomas R

    2009-08-01

    K4CuNb8O23 doped K(0.45)Na(0.55)NbO3(KNNKCN) ferroelectric ceramics were found to exhibit asymmetrical polarization hysteresis loops, related to the development of an internal bias field. The internal bias field is believed to be the result of defect dipoles of acceptor ions and oxygen vacancies, which lead to piezoelectric "hardening" effect, by stabilizing and pinning of the domain wall motion. The dielectric loss for the hard lead-free piezoelectric ceramic was found to be 0.6%, with mechanical quality factors Q on the order of >1500. Furthermore, the piezoelectric properties were found to decrease and the coercive field increased, when compared with the undoped material, exhibiting a typical characteristic of "hard" behavior. The temperature usage range was limited by the polymorphic phase transition temperature, being 188 degrees C. The full set of material constants was determined for the KNN-KCN materials. Compared with conventional hard PZT ceramics, the lead-free possessed lower dielectric and piezoelectric properties; however, comparable values of mechanical Q, dielectric loss, and coercive fields were obtained, making acceptor modified KNN based lead-free piezoelectric material promising for high-power applications, where leadfree materials are desirable.

  10. Dielectric study on membrane adsorption and release:Relaxation mechanism and diffusion dynamics

    Institute of Scientific and Technical Information of China (English)

    LI YuHong; ZHAO KongShuang; HAN Ying

    2008-01-01

    Dielectric monitoring of the adsorption or release process of salicylic acid (SA) by chitosan membrane shows that the dielectric spectra of the chitosan membrane/SA solution systems change regularly in the adsorption or release process. By analyzing the regularity, a new mechanism for the relaxations is proposed. The concentration polarization layer (CPL) caused by SA adsorption or release is confirmed to be essential for the dielectric relaxations. The changes of the spectra with time are explained by account of the relationship between CPL properties and dielectric strength. Based on this relaxation mechanism, a theoretical method can be established to calculate dynamical parameters of inner structure of the adsorption or release systems from their dielectric spectra. Therefore, dielectric spec-troscopy is demonstrated to be a promising method for estimating interfacial distribution of ionic sub-stances and their binding to membrane in a non-invasive way.

  11. Dielectric study on membrane adsorption and release: Relaxation mechanism and diffusion dynamics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Dielectric monitoring of the adsorption or release process of salicylic acid (SA) by chitosan membrane shows that the dielectric spectra of the chitosan membrane/ SA solution systems change regularly in the adsorption or release process. By analyzing the regularity, a new mechanism for the relaxations is proposed. The concentration polarization layer (CPL) caused by SA adsorption or release is confirmed to be essential for the dielectric relaxations. The changes of the spectra with time are explained by account of the relationship between CPL properties and dielectric strength. Based on this relaxation mechanism, a theoretical method can be established to calculate dynamical parameters of inner structure of the adsorption or release systems from their dielectric spectra. Therefore, dielectric spec- troscopy is demonstrated to be a promising method for estimating interfacial distribution of ionic sub- stances and their binding to membrane in a non-invasive way.

  12. Thermo-electro-mechanical postbuckling of piezoelectric FG-CNTRC beams with geometric imperfections

    Science.gov (United States)

    Wu, Helong; Kitipornchai, Sritawat; Yang, Jie

    2016-09-01

    This paper presents thermo-electro-mechanical postbuckling analysis of geometrically imperfect functionally graded carbon nanotube-reinforced composite (FG-CNTRC) hybrid beams that are integrated with surface-bonded piezoelectric actuators. The material properties of FG-CNTRCs are assumed to be temperature-dependent and graded in the thickness direction. By using a generic imperfection function, various possible imperfections with different shapes and locations in the beam are considered. The theoretical formulations are based on the first-order shear deformation beam theory with von-Kármán nonlinearity. A differential quadrature approximation based iteration process is employed to obtain the postbuckling equilibrium path of piezoelectric FG-CNTRC hybrid beams under thermo-electro-mechanical loading. Parametric studies are conducted to examine the effect of geometric imperfection, distribution pattern and volume fraction of carbon nanotubes, temperature rise, actuator voltage, beam geometry and boundary conditions on the thermo-electro-mechanical postbuckling behaviour. The results show that the thermo-electro-mechanical postbuckling is considerably affected by the imperfection mode, half-wave number, location and amplitude, as well as the temperature rise and boundary conditions. The effect of applied actuator voltage is much less pronounced but tends to be relatively more noticeable as the slenderness ratio increases.

  13. Development of a piezoelectric bone substitute material

    CERN Document Server

    Al-Bader, Y A

    2000-01-01

    The thesis deals with the preparation and testing of ceramic compositions to be used as bone substitute. The proposed composition consisted of calcium enriched calcium phosphate, kaolin and barium titanate in different ratios. The homogeneous powder mixture was dry pressed at different pressures and fired at temperatures up to 1350 degC for different soaking times. The physical properties of the fired compacts that were tested are bulk density and porosity. These were determined as function of pressing pressure, firing temperature and soaking time for different compositions. The mechanical properties investigated were the ultimate compressive strength and Young's modulus, which were determined for different compositions and forming pressures. The electrical properties investigated were D.C. characteristics (resistivity) and A.C. characteristics (A.C. resistivity, dielectric constant, dielectric loss and loss tangent). The piezoelectric behaviour of the fired compacts was investigated and the piezoelectric coe...

  14. Imaging mechanical shear waves induced by piezoelectric ceramics in magnetic resonance elastography

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Magnetic Resonance Elastography (MRE) is a noninvasive technique to measure elasticity of tissues in vivo. In this paper, a mechanical shear wave MR imaging system experiment is set for MRE. A novel actuator is proposed to generate mechanical shear waves propagating inside a gel phantom. The actuator is made of piezoelectric ceramics, and fixed on a plexiglass bracket. Both of the gel phantom and the actuator are put into a head coil inside the MR scanner's bore. The actuator works synchronously with an MR imaging sequence running on the MR scanner. The sequence is modified from a FLASH sequence into a motion-sensitizing phase- contrast sequence for shear wave MR imaging. Shear wave images are presented, and these effects on the shear wave MR imaging system, including the stiffness of phantoms, the frequency of the actuator, the parameters of the motion-sensitizing gradient, and the oscillation of the patient bed, are discussed.

  15. A piezoelectric actuator-driven loading device for mechanical condition during bone tissue engineering

    Science.gov (United States)

    Zhang, C. Q.; Wu, H.; Dong, X.

    2008-10-01

    Bone cells live in an environment heavily influenced by mechanical forces. The researches of bone cell responses in hard scaffolds under differently mechanical conditions will be greatly beneficial to elucidating the mechanisms of bone mechanotransduction as well as applications of mechanical condition in bone tissue engineering. However, the appropriate device for the experiments is prerequisite. A loading device suitable to hard scaffold for study on mechanical responses of bone cells was made by usage of a kind of long-travel, high-load piezoelectric actuator. The device, which is so small enough to work in a standard incubator, can cause hard scaffolds with directly uniaxial compressive strains with more magnitudes, frequency components, and waveforms, including bone physiologically mechanical state, precisely controlled by a computer. The device achieves precise mechanical conditions by testing verification. The device may produce a model that will be suitable for investigating the influences of mechanical responses on bone cells in 3D hard scaffolds in vitro matching that in cancellous bone in vivo and may be applied during bone tissue engineering culture.

  16. Enhanced mechanical stability of interlayer dielectrics with self-organized molecular pores

    Science.gov (United States)

    Pandey, Akanksha

    In order to reduce resistance-capacitance delays in interconnect structures, ultralow-k films are used as interlayer dielectric materials. In most cases the preferred method to achieve the lower dielectric constant is the use of porous carbon doped silicon oxide (p-SiCOH) dielectrics. A downside of porosity in a dielectric layer during device fabrication is that it reduces the mechanical reliability of the dielectric and increases the susceptibility to adsorption of damaging materials. To overcome this and produce a material which can sustain the rigorous processes of fabrication, it is necessary to optimize the mechanical, thermal and chemical properties along with the electrical properties of the dielectric. Processes like CMP that involve high stresses during device fabrication can cause dielectric cracking and delamination. In order to survive these processes dielectric should have sufficient mechanical strength. Apart from this, exposure to high temperature and oxidative plasma during device fabrication can damage and cause failure of the dielectric layer. As per research conducted in our group previously, oxidative plasma environment can make the film hydrophilic and consequently assist in moisture uptake within the film. This increases the dielectric constant of the film substantially and, in essence, nullifies the effort that was put to reduce the dielectric constant in the first place. Also, treatments like annealing or plasma etching can break the long range crosslinking in the material, making it more susceptible towards viscoplastic deformation. In order to achieve the required optimization between the electrical, mechanical, thermal and chemical properties it is necessary to focus on various ways of reducing the dielectric constant and not just the end result of achieving the lower dielectric constant. During the course of this thesis, it has been explained how subtle changes in the fabrication method can cause dramatic changes in the properties of the

  17. A piezoelectric transformer

    Science.gov (United States)

    Won, C. C.

    1993-01-01

    This work describes a modeling and design method whereby a piezoelectric system is formulated by two sets of second-order equations, one for the mechanical system, and the other for the electrical system, coupled through the piezoelectric effect. The solution to this electromechanical coupled system gives a physical interpretation of the piezoelectric effect as a piezoelectric transformer that is a part of the piezoelectric system, which transfers the applied mechanical force into a force-controlled current source, and short circuit mechanical compliance into capacitance. It also transfers the voltage source into a voltage-controlled relative velocity input, and free motional capacitance into mechanical compliance. The formulation and interpretation simplify the modeling of smart structures and lead to physical insight that aids the designer. Due to its physical realization, the smart structural system can be unconditional stable and effectively control responses. This new concept has been demonstrated in three numerical examples for a simple piezoelectric system.

  18. Transmission electron microscopy investigation of the microstructural mechanisms for the piezoelectricity in lead-free perovskite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Cheng [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Lead-free materials with superior piezoelectricity are in increasingly urgent demand in the current century, because the industrial standard Pb(Zr,Ti)O3-based piezoelectrics, which contain over 60 weight% of the toxic element lead, pose severe environmental hazards. Although significant research efforts have been devoted in the past decade, no effective lead-free substitute for Pb(Zr,Ti)O3 has been identified yet. One of the primary hindrances to the development of lead-free piezoelectrics lies in the ignorance of the microstructural mechanism for the electric-field-induced strains in the currently existing compositions. In this dissertation, the microstructural origin for the high piezoelectricity in (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 [(1-x)BNT-xBT], the most widely studied lead-free piezoelectric system, has been elucidated.

  19. Сontrollability range of dielectric inhomogeneity located between the metal planes

    Directory of Open Access Journals (Sweden)

    Prokopenko Yu. V.

    2012-12-01

    Full Text Available Controllability assessment of the characteristics of dielectric inhomogeneity, located between the metal planes, as part of micromechanically controlled microwave devices has been obtained. It is shown that with the micromovements of the metal plane over the dielectric, the effective dielectric constant of heterogeneity varies from the relative permeability value to one. The authors obtained smallness criteria of the thickness of dielectric or the frequency, at which the dielectric effect is not observed. The results can be used in design of electro-mechanically controlled microwave devices using piezoelectric and electrostrictive actuators and microelectromechanical system.

  20. Precise Measurement of Losses in Piezoelectric Transducer and Its Application to Evaluation of Piezoelectric Transformer Efficiency

    Science.gov (United States)

    Endow, Tsutomu; Hirose, Seiji; Kanno, Tomoyuki

    2004-05-01

    Mechanical and dielectric losses were measured by the measurement method proposed in this paper in a piezoelectric transducer with input and output terminals. These losses must be considered in designing piezoelectric transformers used as power sources. In the method proposed here, the losses can be obtained using the experimental results of resonance angular frequency, quality factor and the resistive component of input impedance when the output terminals are short-circuited and opened, and using the measured phase angle difference between current and voltage when the output terminals are opened. In the method, a resonance frequency tracking circuit is utilized. Hence, there is an advantage that the measurement can be performed easily and in a short time. The results obtained by this method have also been used in the evaluation of the efficiency of piezoelectric transformers.

  1. A Novel Arch-Shape Nanogenerator Based on Piezoelectric and Triboelectric Mechanism for Mechanical Energy Harvesting.

    Science.gov (United States)

    Xue, Chenyang; Li, Junyang; Zhang, Qiang; Zhang, Zhibo; Hai, Zhenyin; Gao, Libo; Feng, Ruiting; Tang, Jun; Liu, Jun; Zhang, Wendong; Sun, Dong

    2014-12-26

    A simple and cost-effective approach was developed to fabricate piezoelectric and triboelectric nanogenerator (P-TENG) with high electrical output. Additionally, pyramid micro structures fabricated atop a polydimethylsiloxane (PDMS) surface were employed to enhance the device performance. Furthermore, piezoelectric barium titanate (BT) nanoparticles and multiwalled carbon nanotube (MWCNT) were mixed in the PDMS film during the forming process. Meanwhile, the composition of the film was optimized to achieve output performance, and favorable toughness was achieved after thermal curing. An arch-shape ITO/PET electrode was attached to the upper side of the polarized composite film and an aluminum film was placed under it as the bottom electrode. With periodic external force at 20 Hz, electrical output of this P-TENG, reached a peak voltage of 22 V and current of 9 μA with a peak current density of 1.13 μA/cm², which was six times that of the triboelectric generator without BT and MWCNT nanoparticles. The nanogenerator can be directly used to lighten 28 commercial light-emitting diodes (LEDs) without any energy storage unit or rectification circuit under human footfalls.

  2. A Novel Arch-Shape Nanogenerator Based on Piezoelectric and Triboelectric Mechanism for Mechanical Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Chenyang Xue

    2014-12-01

    Full Text Available A simple and cost-effective approach was developed to fabricate piezoelectric and triboelectric nanogenerator (P-TENG with high electrical output. Additionally, pyramid micro structures fabricated atop a polydimethylsiloxane (PDMS surface were employed to enhance the device performance. Furthermore, piezoelectric barium titanate (BT nanoparticles and multiwalled carbon nanotube (MWCNT were mixed in the PDMS film during the forming process. Meanwhile, the composition of the film was optimized to achieve output performance, and favorable toughness was achieved after thermal curing. An arch-shape ITO/PET electrode was attached to the upper side of the polarized composite film and an aluminum film was placed under it as the bottom electrode. With periodic external force at 20 Hz, electrical output of this P-TENG, reached a peak voltage of 22 V and current of 9 μA with a peak current density of 1.13 μA/cm2, which was six times that of the triboelectric generator without BT and MWCNT nanoparticles. The nanogenerator can be directly used to lighten 28 commercial light-emitting diodes (LEDs without any energy storage unit or rectification circuit under human footfalls.

  3. Stacked mechanical nanogenerator comprising piezoelectric semiconducting nanostructures and Schottky conductive contacts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong L [Marietta, GA; Xu, Sheng [Atlanta, GA

    2011-08-23

    An electric power generator includes a first conductive layer, a plurality of semiconducting piezoelectric nanostructures, a second conductive layer and a plurality of conductive nanostructures. The first conductive layer has a first surface from which the semiconducting piezoelectric nanostructures extend. The second conductive layer has a second surface and is parallel to the first conductive layer so that the second surface faces the first surface of the first conductive layer. The conductive nanostructures depend downwardly therefrom. The second conductive layer is spaced apart from the first conductive layer at a distance so that when a force is applied, the semiconducting piezoelectric nanostructures engage the conductive nanostructures so that the piezoelectric nanostructures bend, thereby generating a potential difference across the at semiconducting piezoelectric nanostructures and also thereby forming a Schottky barrier between the semiconducting piezoelectric nanostructures and the conductive nanostructures.

  4. Effects of La Incorporation in Hf Based Dielectric on Leakage Conduction and Carrier Scattering Mechanisms.

    Science.gov (United States)

    You, Seung-Won; Lee, Dong Hwi; Nguyen, Manh Cuong; Jeon, Yoon Seok; Tong, Duc-Tai; Bang, Hyun Joon; Jeong, Jae Kyoung; Choi, Rino

    2015-10-01

    Metal-oxide-semiconductor field effect transistors (MOSFETs) with various doses of La-incorporated in Hafnium-based dielectrics were characterized to evaluate the effect of La on dielectric and device properties. It is found that the Poole-Frenkel emission model could explain our experimental leakage current conduction mechanism reasonably and barrier heights of localized Poole-Frenkel trap sites increase gradually with increasing La incorporation. Cryogenic measurement (from 100 K to 300 K) of MOSFETs reveals that, as the content of La incorporation in the dielectric increases, the more increase of maximum effective mobility has been found at low temperature. It is mainly attributed to the more reduction of phonon scattering due to higher content of La atoms at the interface of dielectric and channel. Though it is relatively small, the existence of La in dielectric reduces coulomb scattering rate as well.

  5. An experimental evaluation of the fully coupled hysteretic electro-mechanical behaviour of piezoelectric actuators

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Mark [Department of Engineering, CERN, 1211 Geneva (Switzerland); Davino, Daniele, E-mail: davino@unisannio.it [Department of Engineering, University of Sannio, Benevento (Italy); Giustiniani, Alessandro; Masi, Alessandro [Department of Engineering, CERN, 1211 Geneva (Switzerland)

    2016-04-01

    Piezoelectrics are the most commonly used of the multifunctional smart materials in industrial applications, because of their relatively low cost and ease of use in electric and electronic oriented applications. Nevertheless, while datasheets usually give just small signal quasi-static parameters, their full potential can only be exploited only if a full characterization is available because the maximum stroke or the higher piezo coupling coefficients are available at different electro-mechanical biases, where often small signal analysis is not valid. In this paper a method to get the quasi-static fully coupled characterization is presented. The method is tested on a commercial piezo actuator but can be extended to similar devices.

  6. submitter An experimental evaluation of the fully coupled hysteretic electro-mechanical behaviour of piezoelectric actuators

    CERN Document Server

    Butcher, Mark; Giustiniani, Alessandro; Masi, Alessandro

    2016-01-01

    Piezoelectrics are the most commonly used of the multifunctional smart materials in industrial applications, because of their relatively low cost and ease of use in electric and electronic oriented applications. Nevertheless, while datasheets usually give just small signal quasi-static parameters, their full potential can only be exploited only if a full characterization is available because the maximum stroke or the higher piezo coupling coefficients are available at different electro-mechanical biases, where often small signal analysis is not valid. In this paper a method to get the quasi-static fully coupled characterization is presented. The method is tested on a commercial piezo actuator but can be extended to similar devices.

  7. Fatigue properties and intrinsic mechanism for the environmental-friendly piezoelectric materials for actuator applications

    Directory of Open Access Journals (Sweden)

    TIAN Chengyue

    2015-08-01

    Full Text Available Development of environmental-friendly lead-free piezoelectric ceramics with both large strain response and fatigue-resistant properties attracted much attention.In this work,A ternary solid solution (0.935-xBi0.5Na0.5TiO3-0.065BaTiO3-xSrTiO3(BNBSTx,reported in our previous work,that exhibits a large strain response at a critical composition,was investigated with the emphasis on its fatigue behavior.The results indicated that BNBST exhibited almost fatigue-resistant behavior after 106 cycles.The intrinsic mechanism was also discussed based on the complex impedance spectrum which was suggested to be originated from the lower defect density.

  8. Piezoelectric Wheel System

    Science.gov (United States)

    Juang, Puu-An

    2007-10-01

    A piezoelectric wheel system is proposed for used as a microstepping displacement device including a carrier and two displacement members, which are separately pivoted on the carrier. Each displacement member includes two wheels, and which can not rotate. In addition, each wheel includes a wheel sheet and a piezoelectric element embedded on its surface. When the piezoelectricity element generates and transmits power to the wheel sheet, the wheel induces vibration and deformation. Therefore, owing to the wheel sheets and the touched ground involving their relative motion, the displacement device can be moved or can be oriented its motion direction. The wheel system involves direct movement, and has no rotor requirement. In this research, a three-dimensional (3D) mechanical element with an extra electrical degree of freedom is employed to simulate the dynamic vibration modes of the linear piezoelectric, mechanical, and piezoelectric-mechanical behaviours of the piezoelectric wheel.

  9. Piezoelectric Ceramics Characterization

    Science.gov (United States)

    2001-09-01

    alloys, electrostrictive materials, magnetostrictive materials, electrorheological fluids are some examples of currently available smart materials...piezoelectric coefficients but also increase the dielectric constant and loss. They are utilized as actuators in vibration and noise control, benders, optical...or strain and electric field (equations (2) and (3)). High d-coefficients are desirable in materials utilized as actuators , such as in motional and

  10. Performance investigation of 1-3 piezoelectric ceramic-cement composite

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Xin, E-mail: chengxin@ujn.edu.cn [University of Jinan, School of Materials Science and Engineering, Jinan 250022 (China); Xu Dongyu, E-mail: xuy_sha@163.com [Shandong University, State Key Lab of Crystal Materials, Jinan 250100 (China); Lu Lingchao; Huang Shifeng [University of Jinan, School of Materials Science and Engineering, Jinan 250022 (China); Jiang Minhua [Shandong University, State Key Lab of Crystal Materials, Jinan 250100 (China)

    2010-05-15

    A 1-3 piezoelectric ceramic-cement composite has been fabricated using sulphoaluminate cement and lead niobium-magnesium zirconate titanate ceramics (P(MN)ZT) as matrix and functional component, respectively. The influences of piezoelectric ceramic volume fraction, aspect ratios of piezoelectric ceramic rods and temperature on the piezoelectric and dielectric properties of the composites were studied. This composite was shown to exhibit an improved electromechanical coupling coefficient with the mechanical quality factor reduced. Furthermore, the acoustic impedance of the composites could also be adjusted to match concrete structures. It has been demonstrated that by adjusting the piezoelectric ceramic volume fraction and shape parameters, the developed composite can be eventually used as sensing element in structural health monitoring.

  11. A possible coupling mechanism between magnetism and dielectric properties in EuTiO3

    Science.gov (United States)

    Jiang, Qing; Wu, Hua

    2002-12-01

    The dielectric constant of an incipient ferroelectric EuTiO3 exhibits a sharp decrease at about 5.5K, at which the antiferromagnetic ordering of the Eu spins simultaneously appears. This fact indicates the existence of a coupling between the magnetism and dielectric properties of EuTiO3. We propose a possible coupling mechanism between the magnetic and electrical subsystems as -gsumlsumlanglei,jrangleq2lvec Si·vec Sj. In the framework of soft-mode theory, we have obtained analytically a dielectric constant expression related to the spin correlation of nearest neighbours of Eu ions.

  12. A possible coupling mechanism between magnetism and dielectric properties in EuTiO3

    Institute of Scientific and Technical Information of China (English)

    蒋青; 吴华

    2002-01-01

    The dielectric constant of an incipient ferroelectric EuTiO3 exhibits a sharp decrease at about 5.5K, at which the antiferromagnetic ordering of the Eu spins simultaneously appears. This fact indicates the existence of a coupling between the magnetism and dielectric properties of EuTiO3. We propose a possible coupling mechanism between the magnetic and electrical subsystems as -gIn the framework of soft-mode theory, we have obtained analytically a dielectric constant expression related to the spin correlation of nearest neighbours of Eu ions.

  13. High Power Piezoelectric Characterization for Piezoelectric Transformer Development

    Science.gov (United States)

    Ural, Seyit O.

    The major goal was to develop characterization techniques to identify and define guidelines to manufacture high power density actuators. We particularly aim at improving the strengths of piezoelectric transformers, namely the high efficiency, ease of manufacturing, low electromagnetic noise, and high power to weight ratio resulting in an adaptor application by identifying material limitations, geometrical limitations and offer guidelines to counter drawbacks limiting the power density. There are 3 losses present in piezoelectrics. Namely dielectric, elastic and piezoelectric losses. These losses can be calculated using mechanical quality factors of the resonating piezoelectric actuator. But in order to calculate all three losses, the mechanical quality factor for resonance and anti resonance need to be measured. Although the mechanical quality factor for resonance is conventionally measured, measurements in antiresonance have been ignored. Since there was no unique measurement technique to address antiresonance and resonance Q in one single sweep, in this study constant vibration velocity method was developed. During the constant vibration velocity measurement, the input electrical energy is monitored and significant differences between resonance and antiresonance drives are observed. For the same output work (identical vibration velocity) significant differences in the losses were observed. Thermographic images have shown increasing temperature differences for resonance and antiresonance nodal point temperatures, with higher vibration velocities. The theoretical evaluation identified the difference observed in the mechanical quality factors at resonance and antiresonance to stem from the piezoelectric loss. In order to investigate losses in the absence of thermal effects a transient characterization technique was adopted. The burst technique, originally developed for characterization of the mechanical quality factor at resonance, has been modified with a switch

  14. Dielectric-breakdown and conduction-mechanism in a thinned alkali-free glass

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hoikwan; Lanagan, Michael T. [The Pennsylvania State University, University Park, PA (United States)

    2014-10-15

    The leakage current in alkali-free glass was analyzed to understand the dielectric breakdown behavior and the potential conduction mechanism. The dielectric breakdown strength and the leakage current were increased after the thickness of the glass had been recuded. To identify the predominant conduction mechanism, we carefully interpreted the dc voltage-current curves via fitting with various conduction mechanisms, e.g., Poole-Frenkel emission, Schottky emission, space charge-limited current, and hopping conduction. The result suggested that the space-charge-limited current and the hopping conduction of thermally-excited carriers were the most likely mechanisms of conduction in alkali-free glass.

  15. Piezoelectric energy harvesting

    CERN Document Server

    Erturk, Alper

    2011-01-01

    The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-

  16. Mechanical and Electrical Characterization of Piezoelectric Artificial Cochlear Device and Biocompatible Packaging

    Directory of Open Access Journals (Sweden)

    Youngdo Jung

    2015-07-01

    Full Text Available This paper presents the development of a piezoelectric artificial cochlea (PAC device capable of analyzing vibratory signal inputs and converting them into electrical signal outputs without an external power source by mimicking the function of human cochlea within an audible frequency range. The PAC consists of an artificial basilar membrane (ABM part and an implantable packaged part. The packaged part provides a liquid environment through which incoming vibrations are transmitted to the membrane part. The membrane part responds to the transmitted signal, and the local area of the ABM part vibrates differently depending on its local resonant frequency. The membrane was designed to have a logarithmically varying width from 0.97 mm to 8.0 mm along the 28 mm length. By incorporating a micro-actuator in an experimental platform for the package part that mimics the function of a stapes bone in the middle ear, we created a similar experimental environment to cochlea where the human basilar membrane vibrates. The mechanical and electrical responses of fabricated PAC were measured with a laser Doppler vibrometer and a data acquisition system, and were compared with simulation results. Finally, the fabricated PAC in a biocompatible package was developed and its mechanical and electrical characteristics were measured. The experimental results shows successful frequency separation of incoming mechanical signal from micro-actuator into frequency bandwidth within the 0.4 kHz–5 kHz range.

  17. A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging

    Science.gov (United States)

    Liang, Cunman; Wang, Fujun; Tian, Yanling; Zhao, Xingyu; Zhang, Hongjie; Cui, Liangyu; Zhang, Dawei; Ferreira, Placid

    2015-04-01

    A novel monolithic piezoelectric actuated wire clamp is presented in this paper to achieve fast, accurate, and robust microelectronic device packaging. The wire clamp has compact, flexure-based mechanical structure and light weight. To obtain large and robust jaw displacements and ensure parallel jaw grasping, a two-stage amplification composed of a homothetic bridge type mechanism and a parallelogram leverage mechanism was designed. Pseudo-rigid-body model and Lagrange approaches were employed to conduct the kinematic, static, and dynamic modeling of the wire clamp and optimization design was carried out. The displacement amplification ratio, maximum allowable stress, and natural frequency were calculated. Finite element analysis (FEA) was conducted to evaluate the characteristics of the wire clamp and wire electro discharge machining technique was utilized to fabricate the monolithic structure. Experimental tests were carried out to investigate the performance and the experimental results match well with the theoretical calculation and FEA. The amplification ratio of the clamp is 20.96 and the working mode frequency is 895 Hz. Step response test shows that the wire clamp has fast response and high accuracy and the motion resolution is 0.2 μm. High speed precision grasping operations of gold and copper wires were realized using the wire clamper.

  18. Mechanics of dielectric elastomers:materials, structures, and devices

    Institute of Scientific and Technical Information of China (English)

    Feng-bo ZHU; Chun-li ZHANG; Jin QIAN; Wei-qiu CHEN

    2016-01-01

    中文概要题目:介电高弹体的材料、结构和器件力学目的:介电高弹体是典型电敏性材料,在外加电场的作用下会产生大的变形,这一特点使其成为人工肌肉致动的理想材料,近年来引起研究者的广泛关注。本文着重介绍介电高弹体的基本力学理论和方法,旨在为相关材料、结构和器件的设计提供参考,也有助于不同专业背景的研究者了解并开展介电高弹体的相关研究。概本文介绍了近年来关于介电高弹体力电耦合问题的一些理论和数值研究,重点包括力电耦合的控制方程、材料本构关系、粘弹性响应、力电失稳以及致动器设计等方面。文中讨论了基于非平衡热动力学的介电高弹体力学模型处理复杂构型或与时间相关变形时常被采用的数值方法,优化介电高弹体致动极限的力学设计,以及介电高弹体力电响应在典型致动器中的应用。%Dielectric elastomers (DEs) respond to applied electric voltage with a surprisingly large deformation, showing a promising capability to generate actuation in mimicking natural muscles. A theoretical foundation of the mechanics of DEs is of crucial importance in designing DE-based structures and devices. In this review, we survey some recent theoretical and numerical efforts in exploring several aspects of electroactive materials, with emphases on the governing equations of electromechanical coupling, constitutive laws, viscoelastic behaviors, electromechanical instability as well as actuation applications. An overview of analytical models is provided based on the representative approach of non-equilibrium thermodynamics, with computational analyses being required in more generalized situations such as irregular shape, complex configuration, and time-dependent de-formation. Theoretical efforts have been devoted to enhancing the working limits of DE actuators by avoiding electromechanical instability as

  19. High Temperature, High Power Piezoelectric Composite Transducers

    OpenAIRE

    Hyeong Jae Lee; Shujun Zhang; Yoseph Bar-Cohen; Stewart Sherrit

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have le...

  20. Study on dielectric and piezoelectric properties of 0.7 Pb(Mg1/3Nb2/3)O3-0.3 PbTiO3 single crystal with nano-patterned composite electrode.

    Science.gov (United States)

    Chang, Wei-Yi; Huang, Wenbin; Bagal, Abhijeet; Chang, Chih-Hao; Tian, Jian; Han, Pengdi; Jiang, Xiaoning

    2013-09-21

    Effect of nano-patterned composite electrode and backswitching poling technique on dielectric and piezoelectric properties of 0.7 Pb(Mg1/3Nb2/3)O3-0.3 PbTiO3 was studied in this paper. Composite electrode consists of Mn nano-patterns with pitch size of 200 nm, and a blanket layer of Ti/Au was fabricated using a nanolithography based lift-off process, heat treatment, and metal film sputtering. Composite electrode and backswitching poling resulted in 27% increase of d33 and 25% increase of dielectric constant, and we believe that this is attributed to regularly defined nano-domains and irreversible rhombohedral to monoclinic phase transition in crystal. The results indicate that nano-patterned composite electrode and backswitching poling has a great potential in domain engineering of relaxor single crystals for advanced devices.

  1. A Novel Tunable Multi-Frequency Hybrid Vibration Energy Harvester Using Piezoelectric and Electromagnetic Conversion Mechanisms

    Directory of Open Access Journals (Sweden)

    Zhenlong Xu

    2016-01-01

    Full Text Available This paper presents a novel tunable multi-frequency hybrid energy harvester (HEH. It consists of a piezoelectric energy harvester (PEH and an electromagnetic energy harvester (EMEH, which are coupled with magnetic interaction. An electromechanical coupling model was developed and numerically simulated. The effects of magnetic force, mass ratio, stiffness ratio, and mechanical damping ratios on the output power were investigated. A prototype was fabricated and characterized by experiments. The measured first peak power increases by 16.7% and 833.3% compared with that of the multi-frequency EMEH and the multi-frequency PEH, respectively. It is 2.36 times more than the combined output power of the linear PEH and linear EMEH at 22.6 Hz. The half-power bandwidth for the first peak power is also broadened. Numerical results agree well with the experimental data. It is indicated that magnetic interaction can tune the resonant frequencies. Both magnetic coupling configuration and hybrid conversion mechanism contribute to enhancing the output power and widening the operation bandwidth. The magnitude and direction of magnetic force have significant effects on the performance of the HEH. This proposed HEH is an effective approach to improve the generating performance of the micro-scale energy harvesting devices in low-frequency range.

  2. Design of efficient loadcell for measurement of mechanical impact by piezoelectric PVDF film sensor

    Directory of Open Access Journals (Sweden)

    Priyanka Guin

    2016-09-01

    Full Text Available Conversion efficiency of mechanical impact into electrical voltage remains ever increasing demand for piezoelectric PVDF film sensor. For a given film sensor, the output voltage produced due to mechanical impact is highly dependent on the direction of stretching (or compressing and active area of the film sensor. More is the active area of the film; higher will be the output voltage. It is shown that the active area is significantly increased due to the ridge-like shape given at the inner surfaces of the plates of sandwich type loadcell and as a result of which higher conversion efficiency is obtained. The effectiveness of the ridge-like shape is confirmed statistically by conducting two factorial design of experiment in which shape and material of the loadcell are considered as the two factors with 2×4 matrix. In case of loadcell made of glass plates, more than 100% increase in the output voltage is observed for ridge-like shape in comparison to its plain counterpart. Both the bandwidth and frequency range of the output signal is found to be independent and dependent of the loadcell materials for indirect and direct impact with the loadcell respectively. The merits and demerits of the fabricated loadcells are discussed.

  3. Static Analysis of Functionally Graded Piezoelectric Beams under Thermo-Electro-Mechanical Loads

    Directory of Open Access Journals (Sweden)

    Amin Komeili

    2011-01-01

    Full Text Available This paper presents the analysis of static bending of beams made of functionally graded piezoelectric materials (FGPMs under a combined thermo-electro-mechanical load. The Euler Bernoulli theory (EBT, first-order shear deformation theory (FSDT and third-order shear deformation theory (TSDT were employed to compare the accuracy and the reliability of each theory in applications. The material properties vary continuously through the thickness direction. The material compositions were selected from the PZT family. The governing equations were derived from Hamilton's principle and solved using the finite element method and Fourier series method. Cubic Hermit interpolation shape function was used for estimating the transverse deflection, and the linear interpolation function was used for the axial displacement and the shear rotation as well. Fourier series expansion, based on the boundary conditions, were employed to solve the governing equations analytically. The accuracy of the method was validated by comparing the results with the previous studies. Finite element results were compared with the analytical results presented in this paper. A comprehensive parametric study is conducted to show the influence of the voltage, shear deformation, material composition, end supports, and the slenderness ratio on the thermo-electro-mechanical characteristic.

  4. Micro electro-mechanical system piezoelectric cantilever array for a broadband vibration energy harvester.

    Science.gov (United States)

    Chun, Inwoo; Lee, Hyun-Woo; Kwon, Kwang-Ho

    2014-12-01

    Limited energy sources of ubiquitous sensor networks (USNs) such as fuel cells and batteries have grave drawbacks such as the need for replacements and re-charging owing to their short durability and environmental pollution. Energy harvesting which is converting environmental mechanical vibration into electrical energy has been researched with some piezoelectric materials and various cantilever designs to increase the efficiency of energy-harvesting devices. In this study, we focused on an energy-harvesting cantilever with a broadband vibration frequency. We fabricated a lead zirconate titanate (PZT) cantilever array with various Si proof masses on small beams (5.5 mm x 0.5 mm x 0.5 mm). We obtained broadband resonant frequencies ranging between 127 Hz and 136 Hz using a micro electro-mechanical system (MEMS) process. In order to obtain broadband resonant characteristics, the cantilever array was comprised of six cantilevers with different resonant frequencies. We obtained an output power of about 2.461 μW at an acceleration of 0.23 g and a resistance of 4 kΩ. The measured bandwidth of the resonant frequency was approximately 9 Hz (127-136 Hz), which is about six times wider than the bandwidth of a single cantilever.

  5. A new soft dielectric silicone elastomer matrix with high mechanical integrity and low losses

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    in Young's modulus, however, is often accompanied by the loss of mechanical stability and thereby the lifetime of the DE. A new soft elastomer matrix, with no loss of mechanical stability and high dielectric permittivity, was prepared through the use of alkyl chloride-functional siloxane copolymers...

  6. Electro-mechanical response of functionally graded beams with imperfectly integrated surface piezoelectric layers

    Institute of Scientific and Technical Information of China (English)

    YAN Wei; CHEN Weiqiu

    2006-01-01

    The time-dependent behavior of a simply-supported functionally graded beam bonded with piezoelectric sensors and actuators is studied using the state-space method. The creep behavior of bonding adhesives between piezoelectric layers and beam is characterized by a Kelvin-Voigt viscoelastic model, which is practical in a high temperature circumstance. Both the host elastic functionally graded beam and the piezoelectric layers are orthotropic and in a state of plane stress, with the former being inhomogeneous along the thickness direction. A laminate model is employed to approximate the host beam. Moreover, the coupling effect between the elastic deformation and electric field in piezoelectric layers is considered. Results indicate that the viscoelastic property of interfacial adhesives has a significant effect on the function of bonded actuators and sensors with time elapsing.

  7. Amorphous Dielectric Thin Films with Extremely Low Mechanical Loss

    Directory of Open Access Journals (Sweden)

    Liu X.

    2015-04-01

    Full Text Available The ubiquitous low-energy excitations are one of the universal phenomena of amorphous solids. These excitations dominate the acoustic, dielectric, and thermal properties of structurally disordered solids. One exception has been a type of hydrogenated amorphous silicon (a-Si:H with 1 at.% H. Using low temperature elastic and thermal measurements of electron-beam evap-orated amorphous silicon (a-Si, we show that TLS can be eliminated in this system as the films become denser and more structurally ordered under certain deposition conditions. Our results demonstrate that TLS are not intrinsic to the glassy state but instead reside in low density regions of the amorphous network. This work obviates the role hydrogen was previously thought to play in removing TLS in a-Si:H and favors an ideal four-fold covalently bonded amorphous structure as the cause for the disappearance of TLS. Our result supports the notion that a-Si can be made a “perfect glass” with “crystal-like” properties, thus offering an encouraging opportunity to use it as a simple crystal dielectric alternative in applications, such as in modern quantum devices where TLS are the source of dissipation, decoherence and 1/f noise.

  8. Electrical conduction mechanism in bulk ceramic insulators at high voltages until dielectric breakdown

    Science.gov (United States)

    Neusel, C.; Jelitto, H.; Schneider, G. A.

    2015-04-01

    In order to develop and verify a dielectric breakdown model for bulk insulators thicker than 100 μm, the knowledge of the dominating conduction mechanism at high electric fields, or respectively voltages, is necessary. The dielectric breakdown is the electrical failure of an insulator. In some existing breakdown models, ohmic conduction is assumed as dominating conduction mechanism. For verification, the dominating dc conduction mechanism of bulk insulators at room temperature was investigated by applying high voltages up to 70 kV to the insulator until dielectric breakdown occurs. Four conduction models, namely, ohmic, space charge limited, Schottky, and Poole-Frenkel conduction, were employed to identify the dominating conduction mechanism. Comparing the calculated permittivities from the Schottky and Poole-Frenkel coefficients with experimentally measured permittivity, Schottky and Poole-Frenkel conduction can be excluded as dominating conduction mechanism. Based on the current density voltage characteristics (J-V-curve) and the thickness-dependence of the current density, space charge limited conduction (SCLC) was identified to be the dominating conduction mechanism at high voltages leading to dielectric breakdown. As a consequence, breakdown models based on ohmic conduction are not appropriate to explain the breakdown of the investigated bulk insulators. Furthermore, the electrical failure of the examined bulk insulators can only be described correctly by a breakdown model which includes SCLC as conduction mechanism.

  9. Thermal, dielectric and mechanical study of poly(vinyl chloride/olive pomace composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available Composites from PVC and chemically treated olive pomace have been prepared. The effect of the incorporation of virgin and benzylated olive pomace in the poly(vinyl chloride matrix on dielectric, mechanical and thermal stability properties, of /olive pomace composites was studied. The mechanical properties of the benzylated composites were improved. Furthermore, the thermal characterization of the different samples carried out by thermogravimetric analysis revealed an increase in the onset temperatures of decomposition for the treated composites. The dielectric investigation indicated that the samples containing olive pomace treated with the benzyl chloride can be used in electrical applications as insulators.

  10. Analysis of the Phase Transitions in BNT-BT Lead-Free Ceramics Around Morphotropic Phase Boundary by Mechanical and Dielectric Spectroscopies

    Directory of Open Access Journals (Sweden)

    Silva P.S.

    2016-03-01

    Full Text Available In this work, the syntheses and characterization by mechanical and dielectric spectroscopies of (1-x Bi0.5Na0.5TiO3-xBaTiO3 (BNT-100xBT, with x = 0.05, 0.06 and 0.07, lead-free piezoelectric ceramics is reported. Ceramic samples of BNT-BT have been prepared by mixed-oxide method and then conventionally sintered. X-ray diffraction patterns of sintered samples, indicated for BNT-7BT the presence of tetragonal (P4mm complex perovskite structure, whereas for BNT-5BT and BNT-6BT the samples exhibit a mixture of tetragonal (P4mm and rhombohedral (R3c crystalline phases, which reveal the presence of a morphotropic phase boundary (MPB in the BNT-BT system. Measurements of internal friction, Q-1, and the storage modulus, E’, as a function of temperature at various frequencies were carried out in a Dynamic Mechanical Analyzer (DMA, in the temperature range from 0ºC to 600ºC. Dielectric profiles are recorded in the frequency range from 1kHz to 100kHz and the temperature range from room temperature to 475ºC. Mechanical loss spectra obtained for investigated compositions of BNT-BT samples showed different frequency-independent anomalies. Two main anomalies for BNT-5BT and BNT-6BT, observed around 100ºC and 430ºC were associated with the ferroelectric-antiferroelectric and antiferroelectricparaelectric phase transitions, respectively. The results obtained from mechanical loss measurements were supported by dielectric relaxation spectra. For BNT-7BT, outside the MPB, four different frequency-independent processes were observed.

  11. Enhanced piezoelectric and mechanical properties of AlN-modified BaTiO3 composite ceramics.

    Science.gov (United States)

    Xu, Dan; Wang, Lidong; Li, Weili; Wang, Wei; Hou, Yafei; Cao, Wenping; Feng, Yu; Fei, Weidong

    2014-07-14

    BaTiO3-xAlN (BT-xAlN) composite ceramics were prepared by conventional solid state reaction sintering. The effects of the AlN content on the crystalline structures, densities, and electrical and mechanical properties of the BT ceramics were investigated. The BT-1.5%AlN ceramic exhibits a good piezoelectric constant of 305 pC N(-1) and an improved Vickers hardness of 5.9 GPa. The enhanced piezoelectricity originates from interactions between defect dipoles and spontaneous polarization inside the domains due to the occurrence of local symmetry, caused by the preferential distribution of the Al(3+)-N(3-) pairs vertical to the c axis. The hardening of the material is attributed to the improved density, and particle and grain boundary strengthening. Our work indicates that if a suitable doping ion pair is designed, lead-free ceramic systems prepared from ordinary raw materials by a conventional sintering method have a high probability of exhibiting good piezoelectric and mechanical properties simultaneously.

  12. Mechanical and dielectric characterization of lead zirconate titanate(PZT)/polyurethane(PU) thin film composite for energy harvesting

    Science.gov (United States)

    Aboubakr, S.; Rguiti, M.; Hajjaji, A.; Eddiai, A.; Courtois, C.; d'Astorg, S.

    2014-04-01

    The Lead Zirconate titanate (PZT) ceramic is known by its piezoelectric feature, but also by its stiffness, the use of a composite based on a polyurethane (PU) matrix charged by a piezoelectric material, enable to generate a large deformation of the material, therefore harvesting more energy. This new material will provide a competitive alternative and low cost manufacturing technology of autonomous systems (smart clothes, car seat, boat sail, flag ...). A thin film of the PZT/PU composite was prepared using up to 80 vol. % of ceramic. Due to the dielectric nature of the PZT, inclusions of this one in a PU matrix raises the permittivity of the composite, on other hand this latter seems to decline at high frequencies.

  13. Gap Waves in Piezoelectric layered Medium

    Directory of Open Access Journals (Sweden)

    Danoyan Z.N.

    2007-03-01

    Full Text Available In the present paper the conditions of existence of shear electroelastic gap waves in piezoelectric-vacuum-dielectric layered system are found. It is shown that in the discontact layered system the gap electroelastic waves can be propagated. It is considered the limiting case when the thickness of vacuuming layer tends to zero. It is proved that the statement of the problem is true when there is no acoustic contact between piezoelectric and dielectric grounded media.

  14. Piezoelectric, Mechanical and Acoustic Properties of KNaNbOF5 from First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Han Han

    2015-12-01

    Full Text Available Recently, a noncentrosymmetric crystal, KNaNbOF5, has attracted attention due to its potential to present piezoelectric properties. Although α- and β-KNaNbOF5 are similar in their stoichiometries, their structural frameworks, and their synthetic routes, the two phases exhibit very different properties. This paper presents, from first-principles calculations, comparative studies of the structural, electronic, piezoelectric, and elastic properties of the α and the β phase of the material. Based on the Christoffel equation, the slowness surface of the acoustic waves is obtained to describe its acoustic prosperities. These results may benefit further applications of KNaNbOF5.

  15. Compliant Electrode and Composite Material for Piezoelectric Wind and Mechanical Energy Conversions

    Science.gov (United States)

    Chen, Bin (Inventor)

    2015-01-01

    A thin film device for harvesting energy from wind. The thin film device includes one or more layers of a compliant piezoelectric material formed from a composite of a polymer and an inorganic material, such as a ceramic. Electrodes are disposed on a first side and a second side of the piezoelectric material. The electrodes are formed from a compliant material, such as carbon nanotubes or graphene. The thin film device exhibits improved resistance to structural fatigue upon application of large strains and repeated cyclic loadings.

  16. Influential Mechanism of the HPEF Parameters on the Dielectric Properties of Fresh Vegetables

    Directory of Open Access Journals (Sweden)

    Liu Yong-qiu

    2015-05-01

    Full Text Available The pretreatment of fresh vegetables with HPEF can improve lyophilized speed and reduce energy consumption, but when people study how to use fresh vegetables dielectric properties online to monitor the change of lyophilized water, they need to consider the impact of parameters of high voltage pulsed electric field on dielectric properties of fresh vegetables. Therefore, according to the author's many years of study and practical experience, this study first analyzes the dielectric properties of fresh vegetables and then develops the required equivalent circuit of this study; finally, it focuses on the impact of the mechanism of pulsed electric field parameters. The result of this study will provide a useful reference to the treatment of fresh vegetables with the HPEF.

  17. Mechanical and dielectric properties of carbon nanotubes/poly (vinyl alcohol) nanocomposites

    Science.gov (United States)

    Amrin, Sayed; Deshpande, V. D.

    2016-05-01

    In this work, two series of nanocomposites of poly(vinyl alcohol) (PVA) incorporated with multiwalled carbon nanotubes (MWNT) and carboxyl functionalized multiwalled carbon nanotubes (MWNT-COOH) were fabricated using solution-cast method and their tensile and dielectric properties were studied. Tensile tests were carried out on composite films of MWNT/PVA and MWNT-COOH/PVA for different loading levels. Results show that overall mechanical properties of the MWNT-COOH/PVA composite was greatly improved as compared to the MWNT/PVA film. The dielectric properties of nanocomposites were investigated in a frequency range from 0.1Hz to 10MHz at room temperature respectively. Compared to MWNT/PVA composites, higher dielectric constant and ac conductivity was achieved in MWNT-COOH/PVA nanocomposite, which can be well explained by the interfacial polarization effect.

  18. Order-Disorder Phase Transition and Dielectric Mechanism in Relaxor Ferroelectrics

    Institute of Scientific and Technical Information of China (English)

    WU Zhongqing; LIU Zhirong; GU Binglin

    2001-01-01

    An overview is presented on the order-disorder structural transitions and the dielectric mechanism in the complex-perovskite type relaxor ferroelectrics,I.e.,the relaxors.Emphasis is put on the theoretical understanding of the structural transitions,the macroscopic dielectric properties,and the relationship between them. The influences of the composition,the temperature,and the atomic interactions on the order-disorder microstructures can be well understood in the cluster-variation-method calculations.The criterion drawn from theoretical analysis is successful in predicting the order-disorder structure of relaxors.Among various physical models about relaxers,the dipole glassy model that described the dielectric response as the thermally activated flips of the local spontaneous polarization under random interactions is discussed in details.The Monte Carlo simulation results of this model are consistent with the linear and nonlinear experiments of relaxors.

  19. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dongyu, Xu [Shandong Provincial Key Laboratory of Construction Materials Preparation and Measurement, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022 (China); Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States); Xin, Cheng; Shifeng, Huang [Shandong Provincial Key Laboratory of Construction Materials Preparation and Measurement, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022 (China); Banerjee, Sourav [Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States)

    2014-12-28

    The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer.

  20. Tunability, dielectric, and piezoelectric properties of Ba{sub (1−x)}Ca{sub x}Ti{sub (1−y)}Zr{sub y}O{sub 3} ferroelectric thin films

    Energy Technology Data Exchange (ETDEWEB)

    Daumont, C. J. M., E-mail: christophe.daumont@univ-tours.fr; Le Mouellic, E.; Negulescu, B.; Wolfman, J. [Laboratoire GREMAN, UMR7347 CNRS, Faculté de Sciences et Techniques, Université François Rabelais, 37200 Tours (France); Simon, Q.; Payan, S.; Maglione, M. [Institute of Condensed Matter Chemistry of Bordeaux, ICMCB-CNRS, Université de Bordeaux, 33608 Pessac Cedex (France); Gardes, P.; Poveda, P. [STMicroelectronics, 10 rue Thalès de Milet, 37071 Tours Cedex (France)

    2016-03-07

    Tunable ferroelectric capacitors, which exhibit a decrease of the dielectric permittivity (ϵ) under electric field, are widely used in electronics for RF tunable applications (e.g., antenna impedance matching). Current devices use barium strontium titanate as the tunable dielectric, and the need for performance enhancement of the tunable element is the key for device improvement. We report here on libraries of Ba{sub 0.97}Ca{sub 0.03}Ti{sub 1−x}Zr{sub x}O{sub 3} thin films (0 ≤ x ≤ 27%) with a thickness of about 130 nm deposited on IrO{sub 2}/SiO{sub 2}/Si substrates using combinatorial pulsed laser deposition allowing for gradients of composition on one sample. A total of 600 capacitors on a single sample were characterized in order to statistically investigate the dielectric properties. We show that the tunabilty is maximum at intermediate compositions, reaching values up to 60% for an electric field of about 400 kV cm{sup −1}. We attribute the high tunability in the intermediate compositions to the paraelectric-ferroelectric phase transition, which is brought down to room temperature by the addition of Zr. In addition, the piezoelectric coefficient is found to be decreasing with increasing Zr content.

  1. Irreversibility effects in piezoelectric wafer active sensors after exposure to high temperature

    Science.gov (United States)

    Faisal Haider, Mohammad; Giurgiutiu, Victor; Lin, Bin; Yu, Lingyu

    2017-09-01

    This paper presents an experimental and analytical study of irreversible change in piezoelectric wafer active sensor (PWAS) electromechanical (E/M) impedance and admittance signature under high temperature exposure. After elevated to high temperatures, change in the material properties of PWAS can be quantified through irreversible changes in its E/M impedance and admittance signature. For the experimental study, circular PWAS transducers were exposed to temperatures between 50 °C and 250 °C at 50 °C intervals. E/M impedance and admittance data were obtained before and after each heating cycle. Irreversible temperature sensitivity of PWAS resonance and anti-resonance frequency was estimated as 0.0246 kHz °C-1 and 0.0327 kHz °C-1 respectively. PWAS transducer material properties relevant to impedance or admittance signature such as dielectric constant, dielectric loss factor, mechanical loss factor, and in plane piezoelectric constant were determined experimentally at room temperature before and after the elevated temperature tests. The in-plane piezoelectric coefficient was measured by using optical-fiber strain transducer system. It was found that the dielectric constant and in-plane piezoelectric coefficient increased linearly with temperature. Dielectric loss also increases with temperature but remains within 0.2% of initial room temperature value. Change in dielectric properties and piezoelectric constant may be explained by depinning of domains or by domain wall motion. The piezoelectric material degradation was investigated microstructurally and crystallographically by using scanning electron microscope and x-ray diffraction method respectively. There were no noticeable changes in microstructure, crystal structure, unit cell dimension, or symmetry. The degraded PWAS material properties were determined by matching impedance and admittance spectrums from experimental results with a closed form circular PWAS analytical model. Analytical results showed that

  2. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    Directory of Open Access Journals (Sweden)

    Francesco Cordero

    2015-12-01

    Full Text Available The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x − T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPB(x boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems.

  3. Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites

    NARCIS (Netherlands)

    James, N.K.; Lafont, U.; Zwaag, S. van der; Groen, W.A.

    2014-01-01

    Piezoelectric ceramic-polymer composites with 0-3 connectivity were fabricated using lead zirconium titanate (PZT) powder dispersed in an ionomer (Zn ionomer) and its reference ethylene methacrylic acid copolymer (EMAA) polymer matrix. The PZT-Zn ionomer and PZT-EMAA composites were prepared by melt

  4. Free and forced vibration control of piezoelectric FGM plate subjected to electro-mechanical loading

    Science.gov (United States)

    Jadhav, Priyanka A.; Bajoria, Kamal M.

    2013-06-01

    This paper investigates the free and forced vibration analysis of a newly introduced metal based functionally graded (FG) plate integrated with a piezoelectric actuator and sensor at the top and bottom faces respectively. The material properties of the FG plate are assumed to be graded along the thickness direction according to a simple power law distribution in terms of the volume fraction of the constituents, while the Poisson ratio is assumed to be constant. The plate is simply supported at all edges. The finite element model is based on higher order shear deformation theory (HOST), the von Karman hypothesis and degenerated shell elements. The displacement component of the present model is expanded in Taylor’s series in terms of the thickness co-ordinate. The Hamilton principle is used to derive the equation of motion for the piezoelectric functionally graded material (FGM) plate. The free and forced vibration analysis of the simply supported piezoelectric FG plate is carried out to present the effect of the power law index and the piezoelectric layer. The present analysis is carried out on a newly introduced FGM, which is a mixture of aluminum and stainless steel. Stainless steel is a high strength material but it can rust in extreme cases, and aluminum does not rust but it is a low strength material. The FGM exhibits corrosion resistance as well as the high strength property in a single material. This new FGM will definitely help in the construction as well as the metal industry.

  5. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics

    OpenAIRE

    Gamaly, E. G.; Rode, A. V.; Tikhonchuk, V. T.; Luther-Davies, B.

    2001-01-01

    The mechanism of ablation of solids by intense femtosecond laser pulses is described in an explicit analytical form. It is shown that at high intensities when the ionization of the target material is complete before the end of the pulse, the ablation mechanism is the same for both metals and dielectrics. The physics of this new ablation regime involves ion acceleration in the electrostatic field caused by charge separation created by energetic electrons escaping from the target. The formulae ...

  6. Time Dependent Dielectric Breakdown in Copper Low-k Interconnects: Mechanisms and Reliability Models

    Directory of Open Access Journals (Sweden)

    Terence K.S. Wong

    2012-09-01

    Full Text Available The time dependent dielectric breakdown phenomenon in copper low-k damascene interconnects for ultra large-scale integration is reviewed. The loss of insulation between neighboring interconnects represents an emerging back end-of-the-line reliability issue that is not fully understood. After describing the main dielectric leakage mechanisms in low-k materials (Poole-Frenkel and Schottky emission, the major dielectric reliability models that had appeared in the literature are discussed, namely: the Lloyd model, 1/E model, thermochemical E model, E1/2 models, E2 model and the Haase model. These models can be broadly categorized into those that consider only intrinsic breakdown (Lloyd, 1/E, E and Haase and those that take into account copper migration in low-k materials (E1/2, E2. For each model, the physical assumptions and the proposed breakdown mechanism will be discussed, together with the quantitative relationship predicting the time to breakdown and supporting experimental data. Experimental attempts on validation of dielectric reliability models using data obtained from low field stressing are briefly discussed. The phenomenon of soft breakdown, which often precedes hard breakdown in porous ultra low-k materials, is highlighted for future research.

  7. Properties of La2O3-Doped PNSZT Piezoelectric Ceramics Having Tetragonal and Rhombohedral Coexistent Phases

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The relationship between composition and the electric mechanical properties for La2O3-doped lead niobium stibium zirconate titanate(La2O3-doped PNSZT) piezoelectric ceramics,in which there are tetragonal and rhombohedral coexistent phases, was studied. A series of piezoelectric ceramics with good properties was obtained, having dielectric constants(ε=1500~2500), plane electromechanical coupling factor(Kp=0.45~0.65), mechanical quality factor(Qm=500~1600). These materials are used for making ultrasonic sensor and filter, and marine acoustic launching and receiving device, and so on. It has been explored that the influence of composition on the lattice constant and phase composition of La2O3-doped PNSZT piezoelectric ceramics by XRD(X-ray diffraction). The character of dielectric constant changing of La2O3-doped PNSZT piezoelectric ceramics before polarization and after polarization was studied. The affecting mechanism about composition on the electric machine properties of phase coexistent La2O3-doped PNSZT piezoelectric ceramics was analyzed and discussed.

  8. High dielectric, dynamic mechanical and thermal properties of polyimide composite film filled with carbon-coated silver nanowires

    Science.gov (United States)

    Wang, Lisi; Piao, Xiaoyu; Zou, Heng; Wang, Ya; Li, Hengfeng

    2015-01-01

    High dielectric permittivity materials are much desirable in the electric industry. Filling polymer matrix with conductive powders to form percolative composites is one of the most promising methods to achieve high dielectric permittivity. However, they do not always provide high mechanical properties and thermal stability, which seriously limit their applications. In this study, we present the preparation of functional core-shell structured silver nanowires/polyimide (AgNWs/PI) hybrid film with high dielectric permittivity and low loss dielectric. The core-shell structure of AgNWs was characterized by transmission electric microscopy. The dynamical mechanical analysis showed that AgNWs/PI hybrid films had relative high dynamic mechanical properties with storage modules over 1 Gpa. Moreover, the hybrid films exhibited excellent thermal stability with 5 % weight-loss temperature above 500 °C. The dielectric properties of the carbon-coated AgNWs hybrid films were remarkably improved. The maximum dielectric permittivity of hybrid films is 126 at 102 Hz, which was 39 times higher than that of pure PI matrix, while the dielectric loss of that is still remained at a low value. This study showed a new method to improve the dielectric, dynamic mechanical and thermal properties of films.

  9. Drilling, Coring and Sampling Using Piezoelectric Actuated Mechanisms: From the USDC to a Piezo-Rotary-Hammer Drill

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Bao, Xiaoqi

    2012-01-01

    NASA exploration missions are increasingly including sampling tasks but with the growth in engineering experience (particularly, Phoenix Scout and MSL) it is now very much recognized that planetary drilling poses many challenges. The difficulties grow significantly with the hardness of sampled material, the depth of drilling and the harshness of the environmental conditions. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a number of piezoelectric actuated drills and corers were developed by the Advanced Technologies Group of JPL. The basic configuration that was conceived in 1998 is known as the Ultrasonic/Sonic Driller/Corer (USDC), and it operates as a percussive mechanism. This drill requires as low preload as 10N (important for operation at low gravity) allowing to operate with as low-mass device as 400g, use an average power as low as 2- 3W and drill rocks as hard as basalt. A key feature of this drilling mechanism is the use of a free-mass to convert the ultrasonic vibrations generated by piezoelectric stack to sonic impacts on the bit. Using the versatile capabilities f the USDC led to the development of many configurations and device sizes. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to remove cuttings. To reach meters deep in ice a wireline drill was developed called the Ultrasonic/Sonic Gopher and it was demonstrated in 2005 to penetrate about 2-m deep at Antarctica. Jointly with Honeybee Robotics, this mechanism is currently being modified to incorporate rotation and inchworm operation forming Auto-Gopher to reach meters deep in rocks. To take advantage of the ability of piezoelectric actuators to operate over a wide temperatures range, piezoelectric actuated drills were developed and demonstrated to operate at as cold as -200oC and as hot as 500oC. In this paper, the developed mechanisms

  10. A One-Structure-Based Hybridized Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric-Piezoelectric-Pyroelectric Effects.

    Science.gov (United States)

    Wang, Shuhua; Wang, Zhong Lin; Yang, Ya

    2016-04-20

    A hybridized nanogenerator is demonstrated, which has the structure of PVDF nanowires-PDMS composite film/indium tin oxide (ITO) electrode/polarized PVDF film/ITO electrode, and which can individually/simultaneously scavenge mechanical and thermal energies using piezoelectric, triboelectric, and pyroelectric effects. As compared with the individual energy harvesting unit, the hybridized nanogenerator has a much better charging performance. This work may push forward a significant step toward multienergy harvesting technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Piezoelectric valve

    Science.gov (United States)

    Petrenko, Serhiy Fedorovich

    2013-01-15

    A motorized valve has a housing having an inlet and an outlet to be connected to a pipeline, a saddle connected with the housing, a turn plug having a rod, the turn plug cooperating with the saddle, and a drive for turning the valve body and formed as a piezoelectric drive, the piezoelectric drive including a piezoelectric generator of radially directed standing acoustic waves, which is connected with the housing and is connectable with a pulse current source, and a rotor operatively connected with the piezoelectric generator and kinematically connected with the rod of the turn plug so as to turn the turn plug when the rotor is actuated by the piezoelectric generator.

  12. Electrical Breakdown and Mechanical Ageing in Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin

    the mechanisms behind the electrical breakdown of DEs and the second strategy is to investigate the long-term electromechanical reliability of DEs. In the first strategy, the electrothermal breakdown in polydimethylsiloxane (PDMS) elastomers was modelled in order to evaluate the thermal mechanisms behind...... the electrical failures. From the modelling based on the fitting of experimental data, it showed that the electrothermal breakdown of the PDMS elastomers was strongly influenced by the increase in both relative permittivity and conductivity. In addition to that, a methodology in determining the parameters...... that affect the breakdown strength of the pre-stretched DEs was developed. Breakdown strength was determined for samples with and without volume conservation and was found to depend strongly on the strain and the thickness of the samples. In order for DEs to be fully implementable in commercial products...

  13. Piezoelectric Vibration Energy Harvesting Device Combined with Damper

    Directory of Open Access Journals (Sweden)

    Hung-I Lu

    2014-05-01

    Full Text Available Piezoelectricity is a type of material that enables mechanical energy and electrical energy to be interchangeable, which can be divided into positive piezoelectric effect and inverse piezoelectric effect. The positive piezoelectric effect is that the electric dipole moment of material generates changes when the piezoelectric material is subjected to pressure, resulting in electrical energy. Conversely, the inverse piezoelectric effect is the process of electrical energy converted into mechanical energy.

  14. Notes on Piezoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-03

    These notes provide a pedagogical discussion of the physics of piezoelectricity. The exposition starts with a brief analysis of the classical (continuum) theory of piezoelectric phenomena in solids. The main subject of the notes is, however, a quantum mechanical analysis. We first derive the Frohlich Hamiltonian as part of the description of the electron-phonon interaction. The results of this analysis are then employed to derive the equations of piezoelectricity. A couple of examples with the zinc blende and and wurtzite structures are presented at the end

  15. Measurements of mechanical thermal noise and energy dissipation in optical dielectric coatings

    CERN Document Server

    Li, Tianjun; Geitner, Mickael; Cagnoli, Gianpietro; Dolique, Vincent; Degallaix, Jérôme; Flaminio, Raffaele; Forest, Danièle; Granata, Massimo; Michel, Christophe; Morgado, Nazario; Pinard, Laurent; Bellon, Ludovic

    2014-01-01

    In recent years an increasing number of devices and experiments are shown to be limited by mechanical thermal noise. In particular sub-Hertz laser frequency stabilization and gravitational wave detectors, that are able to measure fluctuations of 1E-18 m/rtHz or less, are being limited by thermal noise in the dielectric coatings deposited on mirrors. In this paper we present a new measurement of thermal noise in low absorption dielectric coatings deposited on micro-cantilevers and we compare it with the results obtained from the mechanical loss measurements. For the first time the coating thermal noise is measured on a wide range of frequencies with high signal to noise ratio. In addition we present a novel technique to deduce the coating mechanical losses from the measurement of the mechanical quality factor which does not rely on the knowledge of the coating and substrate Young moduli. The dielectric coatings are deposited by ion beam sputtering. The results presented here give a frequency independent loss a...

  16. [NH2(C2H4)2O]MX5: a new family of morpholinium nonlinear optical materials among halogenoantimonate(III) and halogenobismuthate(III) compounds. Structural characterization, dielectric and piezoelectric properties.

    Science.gov (United States)

    Owczarek, Magdalena; Szklarz, Przemysław; Jakubas, Ryszard; Miniewicz, Andrzej

    2012-06-28

    This paper presents the structural features of ionic complexes formed by morpholine and metal ions which belong to group VA, namely Sb(III) and Bi(III). A series of target inorganic-organic hybrid compounds of the general formula [NH(2)(C(2)H(4))(2)O](2)MX(5) (where M = Sb, Bi; X = Cl, Br) has been synthesized by incorporating the organic component (morpholine) into the highly polarizable one-dimensional halogenoantimonate(III)/halogenobismuthate(III) chain network. Among the studied compounds, four were found to crystallize in the room temperature phase in the piezoelectric, orthorhombic space group P2(1)2(1)2(1), Z = 4, the feature being confirmed by the powder second harmonic generation of light and piezoelectric measurements. Dielectric dispersion studies between 200 Hz and 2 MHz disclosed a relaxation process below room temperature well described by the Cole-Cole equation. Based on crystal structures available in Cambridge Structural Database (version 5.32, November 2010) we attempt to show a relationship between the acentric symmetry of compounds and the type of anionic network within the R(2)MX(5)-subgroup (where R denotes organic cation) of halogenoantimonates(III) and halogenobismuthates(III).

  17. Effects of Ca-dopant on the pyroelectric, piezoelectric and dielectric properties of (Sr 0.6Ba 0.4) 4Na 2Nb 10O 30 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-12-01

    Calcium-doped sodium strontium barium niobate (SBNN, (Sr 0.6Ba 0.4) 4-xCa xNa 2Nb 10O 30, 0 ≤ x ≤ 0.5) ceramics were prepared by a conventional solid-state reaction method. SBNN showed \\'filled\\' tetragonal tungsten-bronze structure with fully occupied A-sites. The tetragonal structure, as revealed by X-ray diffraction (XRD) and Raman spectroscopy, was not affected by the Ca-dopant. Effects of Ca-doping concentration on the phase transitions as well as ferroelectric, piezoelectric and pyroelectric properties of the SBNN ceramics were investigated. From the dielectric studies, two anomalies were observed, namely, a sharp normal ferroelectric transition at 260 °C and a broad maximum at round -110 °C. The later was affected by the Ca-doping concentration and its origin was discussed. At x = 0.3, the sample exhibited the highest pyroelectric coefficient of 168 μC/m 2 K and the largest piezoelectric coefficient (d 33) of 63 pC/N at room temperature. On the basis of our results, the pyroelectric properties of the SBNN were improved by Ca-doping. © 2012 Elsevier B.V. All rights reserved.

  18. Crystal Structure, Piezoelectric and Dielectric Properties of (Li, Ce)4+, Nb5+ and Mn2+ Co-doped CaBi4Ti4O15 High-Temperature Ceramics

    Science.gov (United States)

    Xin, Deqiong; Chen, Qiang; Wu, Jiagang; Bao, Shaoming; Zhang, Wen; Xiao, Dingquan; Zhu, Jianguo

    2016-07-01

    Bismuth-layered structured ceramics Ca0.85(Li,Ce)0.075Bi4Ti4- x Nb x O15-0.01MnCO3 were prepared by the conventional solid-state reaction method. The evolution of microstructure and corresponding electrical properties were studied. All the samples presented a single bismuth layered-structural phase with m = 4, indicating that (Li, Ce)4+, Nb5+ and Mn2+ adequately enter into the pseudo-perovskite structure and form solid solutions. It was found that Ca0.85(Li,Ce)0.075Bi4Ti3.98Nb0.02O15-0.01MnCO3 (CBTLCM-0.02Nb) ceramics possess the optimum electrical properties. The piezoelectric coefficient d 33, dielectric constant ɛ r, loss tan δ, planar electromechanical coupling factor k p and Curie-temperature T C of CBTLCM-0.02Nb ceramics were found to be ˜19.6 pC/N, 160, 0.16%, 8.1% and 767°C, respectively. Furthermore, the thermal depoling behavior demonstrates that the d 33 value of x = 0.02 content remains at 16.8 pC/N after annealing at 500°C. These results suggest that the (Li, Ce)4+-, Nb5+- and Mn2+-doped CBT-based ceramics are promising candidates for high-temperature piezoelectric applications.

  19. Properties of quasi 1-3 piezoelectric PZT-epoxy composites obtained by dielectrophoresis

    NARCIS (Netherlands)

    Ende, D.A. van den; Bory, B.F.; Groen, W.A.; Zwaag, S. van der

    2010-01-01

    The dielectric and piezoelectric properties of piezoelectric particleepoxy polymer composites structured into 1-3 composites via dielectrophoresis during curing are reported. The dielectrophoretic alignment induces a textured microstructure in the composite, with particles forming chains in the dire

  20. Quantum Mechanical Study of YTiO3 to the Investigation of Piezoelectricity

    Directory of Open Access Journals (Sweden)

    Raimundo Dirceu de Paula Ferreira

    2011-01-01

    Full Text Available In previous articles we reported through theoretical studies the piezoelectric effect in BaTiO3, SmTiO3, and YFeO3. In this paper, we used the Douglas-Kroll-Hess (DKH second-order scalar relativistic method to investigate the piezoelectricity in YTiO3. In the calculations we used the [6s4p] and [10s5p4d] Gaussian basis sets for the O (3P and Ti (5S atoms, respectively, from the literature in combination with the (30s21p16d/[15s9p6d] basis set for the Y (3D atom, obtained by generator coordinate Hartree-Fock (GCHF method, and they had their quality evaluated using calculations of total energy and orbital energies (HOMO and HOMO-1 of the 2TiO+1 and 1YO+1 fragments. The dipole moment, the total energy, and the total atomic charges in YTiO3 in Cs space group were calculated. When we analyze those properties we verify that it is reasonable to believe that YTiO3 does not present piezoelectric properties.

  1. Microstructure, dielectric and piezoelectric properties of lead-free Bi0.5Na0.5TiO3−Bi0.5K0.5TiO3−BiMnO3 ceramics

    Indian Academy of Sciences (India)

    Huabin Yang; Xu Shan; Changrong Zhou; Qin Zhou; Weizhou Li; Jun Cheng

    2013-04-01

    To improve the piezoelectric properties of Bi0.5Na0.5TiO3-based ceramics, a new perovskite-type leadfree piezoelectric (1 – – )Bi0.5Na0.5TiO3−Bi0.5K0.5TiO3−BiMnO3 system has been fabricated by a conventional solid–state reaction method and their microstructure, dielectric and piezoelectric properties have been investigated. The results of X-ray diffraction (XRD) analysis reveal that the addition of small amounts of BiMnO3 did not cause a remarkable change in crystal structure, but resulted in an evident evolution inmicrostructure. An obvious secondary phase was observed in samples with high Bi0.5K0.5TiO3 content. It is found from dielectric constant curves that low-temperature hump disappeared with increasing y and it appeared again with increasing x. The piezoelectric properties significantly increase with increasing Bi0.5K0.5TiO3 and BiMnO3 content. The piezoelectric constant and electromechanical coupling factor attain maximum values of 33 = 182 pC/N at = 0.21( = 0.01) and p = 0.333 at = 0.18 ( = 0.01), respectively.

  2. A room temperature cured low dielectric hyperbranched epoxy adhesive with high mechanical strength

    Indian Academy of Sciences (India)

    Bibekananda De; Niranjan Karak

    2014-05-01

    A low dielectric constant hyperbranched epoxy thermoset with excellent adhesive and mechanical strength is the demand for advanced electronics and engineering applications. The present investigation provided a room temperature, curable hyperbranched epoxy, obtained by an A2 + B3 polycondensation reaction. The synthesized hyperbranched epoxy was cured by a combined hardener system consisting of a commercial poly(amido-amine) and a first generation aliphatic poly(amido-amine) dendrimer (PAD) prepared by Michael addition reaction of methyl acrylate and aliphatic amines. The thermoset exhibited high mechanical strength, excellent adhesive strength, low dielectric constant, good thermal stability and excellent weather resistance along with very good moisture resistance. The results showed the influence of the amount of PAD on the performance of the thermoset. Thus, the study revealed that the combined poly(amido-amine) cured hyperbranched epoxy has high potential in advanced electrical packaging and microelectronic devices.

  3. Ablation of solids by femtosecond lasers ablation mechanism and ablation thresholds for metals and dielectrics

    CERN Document Server

    Gamaly, E G; Tikhonchuk, V T; Luther-Davies, B

    2001-01-01

    The mechanism of ablation of solids by intense femtosecond laser pulses is described in an explicit analytical form. It is shown that at high intensities when the ionization of the target material is complete before the end of the pulse, the ablation mechanism is the same for both metals and dielectrics. The physics of this new ablation regime involves ion acceleration in the electrostatic field caused by charge separation created by energetic electrons escaping from the target. The formulae for ablation thresholds and ablation rates for metals and dielectrics, combining the laser and target parameters, are derived and compared to experimental data. The calculated dependence of the ablation thresholds on the pulse duration is in agreement with the experimental data in a femtosecond range, and it is linked to the dependence for nanosecond pulses.

  4. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals

    Science.gov (United States)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R.; Chen, Long-Qing

    2016-01-01

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials. PMID:27991504

  5. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R.; Chen, Long-Qing (Penn); (Xian Jiaotong); (CIW); (Simon); (TRS Techn); (Wollongong)

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  6. Piezoelectric Nanowires in Energy Harvesting Applications

    Directory of Open Access Journals (Sweden)

    Zhao Wang

    2015-01-01

    Full Text Available Recently, the nanogenerators which can convert the mechanical energy into electricity by using piezoelectric one-dimensional nanomaterials have exhibited great potential in microscale power supply and sensor systems. In this paper, we provided a comprehensive review of the research progress in the last eight years concerning the piezoelectric nanogenerators with different structures. The fundamental piezoelectric theory and typical piezoelectric materials are firstly reviewed. After that, the working mechanism, modeling, and structure design of piezoelectric nanogenerators were discussed. Then the recent progress of nanogenerators was reviewed in the structure point of views. Finally, we also discussed the potential application and future development of the piezoelectric nanogenerators.

  7. Propagation of SH waves in a piezoelectric/piezomagnetic plate: Effects of interfacial imperfection couplings and the related physical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Hong-Xing [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Li, Yong-Dong, E-mail: LYDbeijing@163.com [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Xiong, Tao [Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Guan, Yong [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China)

    2016-09-07

    The problem of dispersive SH wave in a piezoelectric/piezomagnetic plate that contains an imperfect interface is considered in the present work. An imperfection coupling model is adopted to describe the magnetic, electric and mechanical imperfections on the interface. A transcendental dispersion equation is derived and numerically solved to get the phase velocity. The validity of the numerical procedure is verified in a degenerated case. The effects of the coupled interfacial imperfections on the dispersion behavior of SH waves are discussed in detail and the related underlying physical mechanisms are explained. - Highlights: • SH-wave is investigated in a multiferroic plate with coupled interfacial imperfections. • SH-wave is affected by both interfacial imperfections and their inter-couplings. • Physical mechanisms of the effects are explained via energy transformations.

  8. Piezoelectric composite oscillator for measuring mechanical spectroscopy in small samples that non-match in half wavelength

    Science.gov (United States)

    Bonifacich, F. G.; Lambri, O. A.; Pérez Landazábal, J. I.; Recarte, V.; Zelada, G. I.; Mocellini, R. R.; Sánchez Alarcos, V.; Marenzana, A.; Plazaola, F.

    2016-03-01

    A novel piezoelectric device for measuring mechanical spectroscopy as a function of temperature and strain has been developed. The new equipment involves five oscillating elements, a crystal driver, two spacer bars, the sample and the crystal gauge. The spacer bars and the sample do not match in frequency. The device developed here results in an important solution for measuring mechanical spectroscopy in small samples, where the condition of match in frequency cannot be satisfied. Mechanical spectroscopy measurements were performed in free decay with the equipment working in an out of tune condition. The associated mathematical equations required for the measurement process have also been developed. In addition, the new equipment was successfully used for the measurement of different types of materials: metals, polymers and ferromagnetic shape memory alloys.

  9. MWCNTs/Resin Nanocomposites: Structural, Thermal, Mechanical and Dielectric Investigation

    Directory of Open Access Journals (Sweden)

    N. D. Alexopoulos

    2015-11-01

    Full Text Available Multi-wall carbon nanotubes (MWCNTs were manufactured, characterized and added to a typical aeronautical resin matrix at different concentrations as nano-reinforcement. The carbon content of produced MWCNTs was determined to be around 98.5% while they consisted of 13-20 wall-layers and their external diameter had an average size in between 20 and 50 nm. MWCNTs were dispersed in an epoxy resin system and tensile specimens for different MWCNTs concentrations were prepared in an open mould. Electrical wiring was attached to the specimens’ surface and surface electrical resistance change was in-situ monitored during monotonic tension till fracture. Performed tensile tests showed that the MWCNTs addition increased both modulus of elasticity and ultimate tensile strength on the nano-composites with a simultaneously dramatic ductility decrease. The MWCNTs addition enhanced the investigated resin matrix with monitoring ability; electrical resistance change of the investigated tensile tests was correlated in the elastic regime with axial nominal strain and the gauge factor of the different MWCNTs concentration specimens were calculated. It was found that lowest MWCNTs concentration gave the best results in terms of piezo-resistivity and simultaneously the least enhancement in the mechanical properties.

  10. Dielectric Investigation of Parylene D Thin Films: Relaxation and Conduction Mechanisms.

    Science.gov (United States)

    Mokni, M; Kahouli, A; Jomni, F; Garden, J-L; André, E; Sylvestre, A

    2015-09-03

    Parylene is a generic name indicating a family of polymers with the basic chemical structure of poly-p-xylylene. Parylene N and Parylene C are the most popular for applications. Curiously, Parylene D (poly( dichloro-p-xylylene), (C8H6Cl2)) was forgotten for applications. This report is the consequence of a later availability of a commercial dimer of Parylene D and also to the recent advent of fluorinated Parylenes allowing extending applications at higher temperatures. In our work, from a dielectric analysis, we present the potentialities of Parylene D for applications particularly interesting for integration in organic field-effect transistors. Dielectric and electrical properties, macromolecular structures, and dynamics interaction with electric field as a function of frequency and temperature are studied in 5.8 μm thick Parylene D grown by chemical vapor deposition. More exactly, the dielectric permittivity, the dissipation factor, the electrical conductivity, and the electric modulus of Parylene D were investigated in a wide temperature and frequency ranges from -140 to +350 °C and from 0.1 Hz to 1 MHz, respectively. According to the temperature dependence of the dielectric permittivity, Parylene D has two different dielectric responses. It is retained as a nonpolar material at very low temperature (like Parylene N) and as a polar material at high temperature (like parylene C). The dissipation factor shows the manifestation of two relaxations mechanisms: γ and β at very low and high temperatures, respectively. The γ relaxation is assigned to the local motions of the C-H end of the chains when the cryogenic temperature range is approached. A broad peak in tan δ is assigned to the β relaxation. It corresponds to rotational motion of some polar C-Cl groups. For temperature above 260 °C a mechanism of Maxwell-Wagner-Sillars polarization at the amorphous/crystalline interfaces was identified with two activation energies of Ea1 = 2.12 eV and Ea2 = 3.8 e

  11. Nanosecond pulsed sliding dielectric barrier discharge plasma actuator for airflow control: Electrical, optical, and mechanical characteristics

    Science.gov (United States)

    Bayoda, K. D.; Benard, N.; Moreau, E.

    2015-08-01

    Plasma actuators used for active flow control are widely studied because they could replace mechanical actuators. Industrial applications of these plasma actuators sometimes require a large surface plasma sheet in view of increasing the interaction region between the discharge and the incoming flow. Instead of using a typical two-electrode nanosecond pulsed dielectric barrier discharge for which the interaction region is limited to about 20 mm, this study proposes to characterize a nanosecond sliding discharge based on a three-electrode geometry in order to increase the extension length up to the electrode gap. This sliding discharge is compared to the typical nanosecond dielectric barrier discharge by means of electrical, optical, and mechanical diagnostics. Electrical characterization reveals that the deposited energy can be widely increased. Time-resolved Intensified Charge Coupled Device (iCCD) images of the discharge development over the dielectric surface highlight that the intensity and the propagation velocity of streamers are strongly affected by the DC voltage applied at the third electrode. Finally, qualitative and quantitative characterizations of the pressure wave due to the surrounding gas heating are proposed by means of Schlieren visualizations and high frequency pressure measurements, respectively.

  12. Hysteresis mechanism and control in pentacene organic field-effect transistors with polymer dielectric

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2013-05-01

    Full Text Available Hysteresis mechanism of pentacene organic field-effect transistors (OFETs with polyvinyl alcohol (PVA and/or polymethyl methacrylate (PMMA dielectrics is studied. Through analyzing the electrical characteristics of OFETs with various PVA/PMMA arrangements, it shows that charge, which is trapped in PVA bulk and at the interface of pentacene/PVA, is one of the origins of hysteresis. The results also show that memory window is proportional to both trap amount in PVA and charge density at the gate/PVA or PVA/pentacene interfaces. Hence, the controllable memory window of around 0 ∼ 10 V can be realized by controlling the thickness and combination of triple-layer polymer dielectrics.

  13. Electrical and Mechanical Properties of the Dielectric Capacitor Film Based on Polyvinylidene Fluoride and Aromatic Polythiourea

    Science.gov (United States)

    Li, Ya; Fu, Qiong; Li, Lili; Li, Weiping

    2016-10-01

    To obtain the flexible dielectric material suitable for mass produced supercapacitor, blend films based on polyvinylidene fluoride (PVDF) and aromatic polythiourea (ArPTU) were prepared by solution casting. We found that the PVDF/ArPTU blend film is a good energy storage material for capacitors with high breakdown strength and low loss at high filed. The breakdown field of PVDF/ArPTU (90/10) film is more than 700 MV/m, and the maximum released energy density is up to 11 J/cm3 with discharging efficiency above 80%. We also proved that the mechanical property of blend films is much better than that of pure ArPTU film, and the toughness and softness are close to the level of PVDF film. The blend film based on PVDF and ArPTU is a flexible dielectric material in the manufacture of supercapacitor.

  14. Mechanism of resonant perfect optical absorption in dielectric film supporting metallic grating structures.

    Science.gov (United States)

    Chen, Xiumei; Yan, Xiaopeng; Li, Ping; Mou, Yongni; Wang, Wenqiang; Guan, Zhiqiang; Xu, Hongxing

    2016-08-22

    The mechanism of resonant perfect optical absorbers is quantitatively revealed by the coupled mode method for the air/grating/dielectric film/air four region system. The sufficient and necessary conditions of the perfect optical absorption are derived from the interface scattering coefficients analyses. The coupling of the Fabry-Perot modes in the grating slits and non-zero order quasi waveguide modes in the dielectric film play a key role for the perfect optical absorption when the light is incident from the grating side. The analytical sufficient and necessary conditions of the perfect optical absorption provide an efficient tool towards geometry design for the perfect optical absorption at the specific wavelengths. The advantages of a widely tunable perfect optical absorption wavelength, a high Q factor and the confined energy loss on metal surfaces make the air/grating/film/air structures promising for applications in sensing, modulation and detection.

  15. Dielectric and shear mechanical relaxations in glass-forming liquids: A test of the Gemant-DiMarzio-Bishop model

    DEFF Research Database (Denmark)

    Niss, K.; Jakobsen, B.; Olsen, N.B.

    2005-01-01

    The Gemant-DiMarzio-Bishop model, which connects the frequency-dependent shear modulus to the frequency-dependent dielectric constant, is reviewed and a new consistent macroscopic formulation is derived. It is moreover shown that this version of the model can be tested without fitting parameters...... that the Gemant-DiMarzio-Bishop model is correct on a qualitative level. The quantitative agreement between the model and the data is on the other hand moderate to poor. It is discussed if a model-free comparison between the dielectric and shear mechanical relaxations is relevant, and it is concluded...... that the shear modulus should be compared with the rotational dielectric modulus, 1/(epsilon(omega)–n^2), which is extracted from the Gemant-DiMarzio-Bishop model, rather than to the dielectric susceptibility or the conventional dielectric modulus M=1/epsilon(omega)...

  16. Dielectric charging by AFM in tip-to-sample space mode: overview and challenges in revealing the appropriate mechanisms.

    Science.gov (United States)

    Makasheva, K; Villeneuve-Faure, C; Laurent, C; Despax, B; Boudou, L; Teyssedre, G

    2015-07-24

    The study of charge distribution on the surface and in the bulk of dielectrics is of great scientific interest because of the information gained on the storage and transport properties of the medium. Nevertheless, the processes at the nanoscale level remain out of the scope of the commonly used diagnostic methods. Atomic force microscopy (AFM) is currently applied for both injection and imaging of charges on dielectric thin films at the nanoscale level to answer the increasing demand for characterization of miniaturized components used in microelectronics, telecommunications, electrophotography, electrets, etc. However, the mechanisms for dielectric charging by AFM are not well documented, and an analysis of the literature shows that inappropriate mechanisms are sometimes presented. It is shown here that corona discharge, frequently pointed out as a likely mechanism for dielectric charging by AFM in tip-to-sample space mode, cannot develop in such small distances. Furthermore, a review of different mechanisms surmised to be at the origin of dielectric charging at the nanoscale level is offered. Field electron emission enhanced by thermionic emission is identified as a likely mechanism for dielectric charging at the nanoscale level. Experimental validation of this mechanism is obtained for typical electric field strengths in AFM.

  17. Energy collection via Piezoelectricity

    Science.gov (United States)

    Naveen Kumar, Ch

    2015-12-01

    In the present days, wireless data transmission techniques are commonly used in electronic devices. For powering them connection needs to be made to the power supply through wires else power may be supplied from batteries. Batteries require charging, replacement and other maintenance efforts. So, some alternative methods need to be developed to keep the batteries full time charged and to avoid the need of any consumable external energy source to charge the batteries. Mechanical energy harvesting utilizes piezoelectric components where deformations produced by different means are directly converted to electrical charge via piezoelectric effect. The proposed work in this research recommends Piezoelectricity as a alternate energy source. The motive is to obtain a pollution-free energy source and to utilize and optimize the energy being wasted. Current work also illustrates the working principle of piezoelectric crystal and various sources of vibration for the crystal.

  18. Exact second order formalism for the study of electro-acoustic properties in piezoelectric structures under an initial mechanical stress.

    Science.gov (United States)

    Lematre, M; Domenjoud, M; Tran-Huu-Hue, L P

    2011-12-01

    In this study we develop the exact second order formalism of piezoelectric structures under an external mechanical stress. Indeed, previous models are approximated since they consist in deriving all the equations in the natural coordinate system (corresponding to the pre-stress free case). Hence, our exact formalism proposes to obtain the whole of equations in the current coordinate system (which is the coordinate system after the pre-deformation). Then, this exact formalism is used to derive the modified Christoffel equations and the modified KLM model. Finally, we quantify the correction with the approximate formalism on several transfer functions and electro-mechanical parameters for a non hysteretic material (lithium niobate). In conclusion, we show that for this material, significant corrections are obtained when studying the plane wave velocities and the electrical input impedance (about 4%), whereas other parameters such as coupling coefficient and impulse response are less influenced by the choice of coordinate systems (corrections less than 0.5%).

  19. Piezoelectric allostery of protein

    Science.gov (United States)

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins.

  20. Dielectric and piezoelectric properties of Bi0.5(Na0.82K0.18)0.5 TiO3–LiSbO3 lead-free piezoelectric ceramics

    Indian Academy of Sciences (India)

    Zhou Chong-Rong; Chai Li-Yuan

    2011-07-01

    The (1–)Bi0.5(Na0.82K0.18)0.5TiO3–LiSbO3 ( = 0−0.03) lead-free piezoelectric ceramics were fabricated by a conventional solid-state reaction method and the effect of LiSbO3 addition on microstructure and electrical properties of the ceramics was investigated. The results of XRD measurement show that Li+ and Sb5+ diffuse into the Bi0.5(Na0.82K0.18)0.5TiO3 lattices to form a solid solution with a pure perovskite structure. The LiSbO3 addition has no remarkable effect on the crystal structure. However, a significant change in grain size took place. Simultaneously, with increasing amount of LiSbO3, the temperature for a antiferroelectric to paraelectric phase transition clearly increases. The piezoelectric constant 33 and the electromechanical coupling factor p show an obvious improvement by adding small amount of LiSbO3, which shows optimum values of 33 = 175 pC/N and p = 0.36 at = 0.01.

  1. Phase development, densification and dielectric properties of (0.95-xNa0.5K0.5NbO3 - 0.05LiTaO3 - x LiSbO3 lead-free piezoelectric ceramics

    Directory of Open Access Journals (Sweden)

    Pornsuda Bomlai

    2008-08-01

    Full Text Available Lead-free piezoelectric ceramics in the system (0.95-x Na0.5K0.5NbO3 - 0.05LiTaO3 - x LiSbO3, x = 0-0.1, were synthesized by a reaction-sintering method. The effects of the content of LiSbO3, and the sintering temperature on phase-development, microstructure and dielectric properties of the samples were investigated. Additions of LiSbO3 produced a change in crystal system from orthorhombic to tetragonal. The additive reduced the temperature at which secondary recrystallisation occurred, and also affected average grain size and dielectric constant. A sintering temperature of 1050oC (for 2 h was the optimum for this system in order to achieve a high density and high dielectric constant. A maximum dielectric constant of 1510 was recorded for the x = 0.04 composition.

  2. Using Piezoelectric Devices to Transmit Power through Walls

    Science.gov (United States)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi

    2008-01-01

    A method denoted wireless acoustic-electric feed-through (WAEF) has been conceived for transmitting power and/or data signals through walls or other solid objects made of a variety of elastic materials that could be electrically conductive or nonconductive. WAEF would make it unnecessary to use wires, optical fibers, tubes, or other discrete wall-penetrating signal-transmitting components, thereby eliminating the potential for structural weakening or leakage at such penetrations. Avoidance of such penetrations could be essential in some applications in which maintenance of pressure, vacuum, or chemical or biological isolation is required. In a basic WAEF setup, a transmitting piezoelectric transducer on one side of a wall would be driven at resonance to excite ultrasonic vibrations in the wall. A receiving piezoelectric transducer on the opposite side of the wall would convert the vibrations back to an ultrasonic AC electric signal, which would then be detected and otherwise processed in a manner that would depend on the modulation (if any) applied to the signal and whether the signal was used to transmit power, data, or both. An electromechanical-network model has been derived as a computationally efficient means of analyzing and designing a WAEF system. This model is a variant of a prior model, known in the piezoelectric-transducer art as Mason's equivalent-circuit model, in which the electrical and mechanical dynamics, including electromechanical couplings, are expressed as electrical circuit elements that can include inductors, capacitors, and lumped-parameter complex impedances. The real parts of the complex impedances are used to account for dielectric, mechanical, and coupling losses in all components (including all piezoelectric-transducer, wall, and intermediate material layers). In an application to a three-layer piezoelectric structure, this model was shown to yield the same results as do solutions of the wave equations of piezoelectricity and acoustic

  3. RF Micro-Electro-Mechanical Systems Capacitive Switches Using Ultra Thin Hafnium Oxide Dielectric

    Science.gov (United States)

    Zhang, Yi; Onodera, Kazumasa; Maeda, Ryutaro

    2006-01-01

    A π-type RF capacitive switch using about 45-nm-thick HfO2 dielectric layer was fabricated. High isolation performance was obtained in wide-band range when the switch was down-state. The isolation was better than -40 dB at the frequency range of 4-35 GHz. Particularly, the isolation was better than -50 dB in the frequency range of 8-12 GHz, i.e., X band. HfO2 showed excellent process compatibility with conventional microfabrication procedure. The 45-nm-thick HfO2 film was prepared using sputtering at room temperature so that it was feasible to be integrated into RF switch and other microwave circuits. The results of constant bias stressing showed that the ultra thin HfO2 had excellent reliability. The electric breakdown of HfO2 was observed, which had no apparent negative effects on the reliability of the dielectric. HfO2 dielectrics were attractive in the application of RF micro-electro-mechanical systems (MEMS) switch for new generation of low-loss high-linearity microwave circuits.

  4. TRANSIENT RESPONSE OF COPLANAR INTERFACIAL CRACKS BETWEEN TWO DISSIMILAR PIEZOELECTRIC STRIPS UNDER ANTI-PLANE MECHANICAL AND IN-PLANE ELECTRICAL IMPACTS

    Institute of Scientific and Technical Information of China (English)

    RayK.L.Su; FengWenjie; LiuJinxi; ZouZhenzhu

    2003-01-01

    The dynamic response of multiple coplanar interface cracks between two dissimilar piezoelectric strips subjected to mechanical and electrical impacts is investigated. Solutions to two kinds of electric boundary conditions on crack surfaces, i.e. electric impermeable and electric permeable, are obtained. Laplace and Fourier transforms and dislocation density functions are employed to reduce the mixed boundary value problem to Cauchy singular integral equations,which can be solved numerically. The effects of electrical load, geometry criterion of piezoelectric strips, relative location of cracks and material properties on the dynamic energy release rate are examined.

  5. Mechanical and dielectric characterization of hemp fibre reinforced polypropylene (HFRPP by dry impregnation process

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available Natural fibres such as jute, coir, sisal, bamboo and pineapple are known to have high specific strength and can be effectively used in composites in various applications. The use of hemp fibres to reinforce the polymer aroused great interest and expectations amongst scientists and materials engineers. In this paper, composites with isotactic polypropylene (iPP matrix and hemp fibres were studied. These materials were manufactured via the patented FIBROLINE process based on the principle of the dry impregnation of a fibre assembly with a thermoplastic powder (iPP, using an alternating electric field. The aim of this paper is to show the influence of fibre/matrix interfaces on dielectric properties coupled with mechanical behaviours. Fibres or more probably the fibre/matrix interfaces allow the diffusion of electric charges and delocalise the polarisation energy. In this way, damages are limited during mechanical loading and the mechanical properties of the composites increase. The structure of composite samples was investigated by X-ray and FTIR analysis. The mechanical properties were analysed by quasistatic and dynamic tests. The dielectric investigations were carried out using the SEMME (Scanning Electron Microscope Mirror Effect method coupled with the measurement of the induced current (ICM.

  6. Stretchable piezoelectric nanocomposite generator

    Science.gov (United States)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-06-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  7. Energy Harvesting via Piezoelectricity

    Directory of Open Access Journals (Sweden)

    Tanvi Dikshit

    2010-01-01

    Full Text Available In the present era, wireless data transmission techniques are commonly used in electronic devices. For powering them connection needs to be made to the power supply through wires else power may be supplied from batteries. Batteries require charging, replacement and other maintenance efforts. For example, in the applications such as villages, border areas, forests, hilly areas, where generally remote controlled devices are used, continuous charging of the microcells is not possible by conventional charging methods .So, some alternative methods needs to be developed to keep the batteries full time charged and to avoid the need of any consumable external energy source to charge the batteries.. To resolve such problems, Energy harvesting technique is proposed as the best alternative. There exists variety of energy harvesting techniques but mechanical energy harvesting happens to be the most prominent. This technique utilizes piezoelectric components where deformations produced by different means are directly converted to electrical charge via piezoelectric effect. Subsequently the electrical energy can be regulated or stored for further use. The proposed work in this research recommends Piezoelectricity as a alternate energy source. The motive is to obtain a pollution-free energy source and to utilize and optimize the energy being wasted. In this paper two important techniques are stressed upon to harness the energy viz Piezoelectric Windmill and Increased Bandwidth Piezoelectric Crystal. Current work also illustrates the working principle of piezoelectric crystal and various sources of vibration for the crystal.

  8. Piezoelectric and Dielectric Properties of Multilayered BaTiO3/(Ba,Ca)TiO3/CaTiO3 Thin Films.

    Science.gov (United States)

    Zhu, Xiao Na; Gao, Ting Ting; Xu, Xing; Liang, Wei Zheng; Lin, Yuan; Chen, Chonglin; Chen, Xiang Ming

    2016-08-31

    Highly oriented multilayered BaTiO3-(Ba,Ca)TiO3-CaTiO3 thin films were fabricated on Nb-doped (001) SrTiO3 (Nb:STO) substrates by pulsed laser deposition. The configurations of multilayered BaTiO3-(Ba,Ca)TiO3-CaTiO3 thin films are designed with the thickness ratio of 1:1:1 and 2:1:1 and total thickness ∼300 nm. Microstructural characterization by X-ray diffraction indicates that the as-deposited thin films are highly c-axis oriented and large in-plane strain is determined in BaTiO3 and CaTiO3 layers. Piezoresponse force microscopy (PFM) studies reveal an intense in-plane polarization component, whereas the out-of-plane shows inferior phase contrast. The optimized combination is found to be the BaTiO3-(Ba0.85Ca0.15)TiO3-CaTiO3 structure with combination ratio 2:1:1, which displays the largest domain switching amplitude under DC electric field, the largest room-temperature dielectric constant ∼646, a small dielectric loss of 0.03, and the largest dielectric tunability of ∼50% at 400 kV/cm. These results suggest that the enhanced dielectric and tunability performance are greatly associated with the large in-plane polarization component and domain switching.

  9. Development in Laser Induced Extrinsic Absorption Damage Mechanism of Dielectric Films

    Institute of Scientific and Technical Information of China (English)

    XIA Zhi-Lin; DENG De-Gang; FAN Zheng-Xiu; SHAO Jian-Da

    2006-01-01

    @@ Absorption of host and the temperature-dependence of absorption coefficient have been considered in evaluating temperature distribution in films, when laser pulse irradiates on films. Absorption of dielectric materials experience three stages with the increase of temperature: multi-photon absorption; single photon absorption; metallic absorption. These different absorption mechanisms correspond to different band gap energies of materials, which will decrease when the temperature of materials increases. Evaluating results indicate that absorption of host increases rapidly when the laser pulse will be over. If absorption of host and the temperature-dependence of absorption are considered, the maximal temperatures in films will be increased by a factor of four.

  10. Silicone rubbers for dielectric elastomers with improved dielectric and mechanical properties as a result of substituting silica with titanium dioxide

    DEFF Research Database (Denmark)

    Yu, Liyun; Skov, Anne Ladegaard

    2016-01-01

    One prominent method of modifying the properties of dielectric elastomers (DEs) is by adding suitable metal oxide fillers. However, almost all commercially available silicone elastomers are already heavily filled with silica to reinforce the otherwise rather weak silicone network and the resulting...... metal oxide filled elastomer may contain too much filler. We therefore explore the replacement of silica with titanium dioxide to ensure a relatively low concentration of filler. Liquid silicone rubber (LSR) has relatively low viscosity, which is favorable for loading inorganic fillers. In the present...... study, four commercial LSRs with varying loadings of silica and one benchmark room-temperature vulcanizable rubber (RTV) were investigated. The resulting elastomers were evaluated with respect to their dielectric permittivity, tear and tensile strengths, electrical breakdown, thermal stability...

  11. Silicone rubbers for dielectric elastomers with improved dielectric and mechanical properties as a result of substituting silica with titanium dioxide

    Directory of Open Access Journals (Sweden)

    Liyun Yu

    2015-10-01

    Full Text Available One prominent method of modifying the properties of dielectric elastomers (DEs is by adding suitable metal oxide fillers. However, almost all commercially available silicone elastomers are already heavily filled with silica to reinforce the otherwise rather weak silicone network and the resulting metal oxide filled elastomer may contain too much filler. We therefore explore the replacement of silica with titanium dioxide to ensure a relatively low concentration of filler. Liquid silicone rubber (LSR has relatively low viscosity, which is favorable for loading inorganic fillers. In the present study, four commercial LSRs with varying loadings of silica and one benchmark room-temperature vulcanizable rubber (RTV were investigated. The resulting elastomers were evaluated with respect to their dielectric permittivity, tear and tensile strengths, electrical breakdown, thermal stability and dynamic viscosity. Filled silicone elastomers with high loadings of nano-sized titanium dioxide (TiO2 particles were also studied. The best overall performing formulation had 35 wt.% TiO2 nanoparticles in the POWERSIL® XLR LSR, where the excellent ensemble of relative dielectric permittivity of 4.9 at 0.1 Hz, breakdown strength of 160 V µm−1, tear strength of 5.3 MPa, elongation at break of 190%, a Young’s modulus of 0.85 MPa and a 10% strain response (simple tension in a 50 V μm−1 electric field was obtained.

  12. Mechanical, dielectric and optical assessment of glass composites prepared using milling technique

    Indian Academy of Sciences (India)

    Gurbinder Kaur; G Pickrell; V Kumar; O P Pandey; K Singh; S K Arya

    2015-08-01

    In the present investigation, mechanical and spectroscopic properties of glass composites have been investigated. The glass composites have been prepared by the milling technique instead of using any filler particle. Due to the presence of different alkaline earth modifiers in composites, marked difference in their strength and optical properties is observed. The band gap, Urbach energy and the extinction coefficient of the glass composites have been calculated using UV–visible spectroscopy. Moreover, the real and imaginary dielectric constants have also been calculated for all the composites in addition to the Weibull statistics and cumulative probability of failure. The results have been discussed in light of comparison between the glass composites and the individual glasses. The mechanical and optical properties indicate marked effect on the mechanical strength, band gap and Urbach energy for glass composites as compared with the individual glasses.

  13. Constructing of cure monitoring system with piezoelectric ceramics for composite laminate

    Science.gov (United States)

    Oshima, Nobuo; Inoue, Kouichi; Motogi, Shinya; Fukuda, Takehito

    2003-08-01

    The cure monitoring system with piezoelectric ceramics is constructed. An embedded type piezoelectric ceramics sensor with flat lead wires is developed. And the piezoelectric ceramics is embedded into composite laminate. A dummy piezoelectric ceramics is set in the autoclave oven. The impedance of the piezoelectric ceramics which is embedded in the composite laminate and that of the dummy piezoelectric ceramics are measured by a LCR meter. The piezoelectric ceramics have strong temperature dependency. The temperature dependency of the impedance of piezoelectric ceramics is corrected by the information from the dummy piezoelectric ceramics. A dielectric sensor is also embedded in the composite laminate as a reference sensor for the degree of cure. The change in calculated cure index shows good correspondence with change in the log ion viscosity which is measured by the dielectric cure monitoring sensor.

  14. Elastic, piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3-50(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary

    Science.gov (United States)

    Xue, Dezhen; Zhou, Yumei; Bao, Huixin; Zhou, Chao; Gao, Jinghui; Ren, Xiaobing

    2011-03-01

    There is an urgent demand for high performance Pb-free piezoelectrics to substitute for the current workhorse, the lead zirconate titanate (PZT) family. Recently, a triple point (also tricritical point) type morphotropic phase boundary (MPB) in Pb-free Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 system has been reported that shows equally as excellent piezoelectricity as soft PZT at room temperature (Liu and Ren6). In the present study, we measured a full set of elastic, piezoelectric, and dielectric properties for the MPB composition, Ba(Zr0.2Ti0.8)O3-50(Ba0.7Ca0.3)TiO3 (BZT-50BCT), by using a resonance method. The resonant method gives piezoelectric properties d33 = 546 pC/N, g33 = 15.3 × 10-3 Vm/N, electromechanical coupling factor k33 = 65%, and the elastic constant s33E = 19.7 × 10-12 m2/N, c33E = 11.3 × 1010 N/m2, which are close to the properties of soft PZT (PZT-5A). Furthermore, the piezoelectric coefficients (k33, d33), the ferroelectric properties (coercive field, remnant polarization), and the elastic constants (s33D, s33E, c33D, c33E) were also determined as a function of temperature ranging from -50 to 60°C. Our results show that the properties are optimal around MPB temperature (room temperature) and decrease with deviations from the MPB temperature. Nevertheless, the piezoelectric coefficient d33 can maintain an appreciable level of 93 pC/N even at -50°C. The high piezoelectric properties can be ascribed to the low polarization anisotropy as well as the elastic softening at MPB.

  15. Determination of density of states, conduction mechanisms and dielectric properties of nickel disulfide nanoparticles

    Directory of Open Access Journals (Sweden)

    Arifa Jamil

    2016-05-01

    Full Text Available Temperature and frequency dependent ac electrical measurements were used to explore density of states, conduction mechanisms and dielectric properties of nickel disulfide (NiS2 nanoparticles. The NiS2 nanoparticles were prepared by conventional one step solid state reaction method at 250 °C. X-ray diffraction (XRD confirmed cubic phase of prepared nanoparticles. Scanning electron microscope (SEM images revealed presence of irregular shaped nanoparticles as small as 50 nm. The ac electrical measurements were carried out from 300 K to 413 K. Two depressed semicircular arcs from 20 Hz to 2 MHz showed presence of bulk and grain boundary phases in NiS2 nanoparticles at all temperatures. Small polaron hopping conduction from 300 K to 393 K and correlated barrier hopping conduction mechanism at temperatures higher than 393 K was observed. High value of density of states (of the order of 1024 eV−1cm−3 was calculated from ac conductivity. At low frequencies high values (of the order of 104-107 of real part of dielectric constant (ε′ were observed at different temperatures. These observations suggest that NiS2 nanoparticles may find applications in electronic devices.

  16. Carbon materials with quasi-graphene layers: The dielectric, percolation properties and the electronic transport mechanism

    Institute of Scientific and Technical Information of China (English)

    Lu Ming-Ming; Yuan Jie; Wen Bo; Liu Jia; Cao Wen-Qiang; Cao Mao-Sheng

    2013-01-01

    We investigate the dielectric properties of muhi-walled carbon nanotubes (MWCNTs) and graphite filling in SiO2 with the filling concentration of 2-20 wt.% in the frequency range of 102-107 Hz.M WCNTs and graphite have general electrical properties and percolation phenomena owing to their quasi-structure made up of graphene layers.Both permittivity ε and conductivity σ exhibit jumps around the percolation threshold.Variations of dielectric properties of the composites are in agreement with the percolation theory.All the percolation phenomena are determined by hopping and migrating electrons,which are attributed to the special electronic transport mechanism of the fillers in the composites.However,the twin-percolation phenomenon exists when the concentration of MWCNTs is between 5-10 wt.% and 15-20 wt.% in the MWCNTs/SiO2 composites,while in the graphite/SiO2 composites,there is only one percolation phenomenon in the graphite concentration of 10-15 wt.%.The unique twin-percolation phenomenon of MWCNTs/SiO2 is described and attributed to the electronic transfer mechanism,especially the network effect of MWCNTs in the composites.The network formation plays an essential role in determining the second percolation threshold of MWCNTs/SiO2.

  17. ANALYSIS OF ELECTRIC BOUNDARY CONDITION EFFECTS ON CRACK PROPAGATION IN PIEZOELECTRIC CERAMICS

    Institute of Scientific and Technical Information of China (English)

    齐航; 方岱宁; 姚振汉

    2001-01-01

    There are three types of cracks: impermeable crack, permeable crack and conducting crack, with different electric boundary conditions on faces of cracks in piezoelectric ceramics, which poses difficulties in the analysis of piezoelectric fracture problems. In this paper, in contrast to our previous FEM formulation, the numerical analysis is based on the use of exact electric boundary conditions at the crack faces, thus the common assumption of electric impermeability in the FEM analysis is avoided. The crack behavior and elasto-electric fields near a crack tip in a PZT-5piezoelectric ceramic under mechanical, electrical and coupled mechanical-electrical loads with different electric boundary conditions on crack faces are investigated. It is found that the dielectric medium between the crack faces will reduce the singularity of stress and electric displacement. Furthermore, when the permittivity of the dielectric medium in the crack gap is of the same order as that of the piezoelectric ceramic, the crack becomes a conducting crack, the applied electric field has no effect on the crack propagation.

  18. Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure

    Science.gov (United States)

    Fey, Tobias; Eichhorn, Franziska; Han, Guifang; Ebert, Kathrin; Wegener, Moritz; Roosen, Andreas; Kakimoto, Ken-ichi; Greil, Peter

    2016-01-01

    A two-dimensional auxetic lattice structure was fabricated from a PZT piezoceramic. Tape casted and sintered sheets with a thickness of 530 μm were laser cut into inverted honeycomb lattice structure with re-entrant cell geometry (θ = -25°) and poling direction oriented perpendicular to the lattice plane. The in-plane strain response upon applying an uniaxial compression load as well as an electric field perpendicular to the lattice plane were analyzed by a 2D image data detection analysis. The auxetic lattice structure exhibits orthotropic deformation behavior with a negative in-plane Poisson’s ratio of -2.05. Compared to PZT bulk material the piezoelectric auxetic lattice revealed a strain amplification by a factor of 30-70. Effective transversal coupling coefficients {{d}al}31 of the PZT lattice exceeding 4 × 103 pm V-1 were determined which result in an effective hydrostatic coefficient {{d}al}h 66 times larger than that of bulk PZT.

  19. Study of the aging processes in polyurethane adhesives using thermal treatment and differential calorimetric, dielectric, and mechanical techniques ; 1, identifying the aging processes ; 2, quantifying the aging effect

    CERN Document Server

    Althouse, L P

    1979-01-01

    Study of the aging processes in polyurethane adhesives using thermal treatment and differential calorimetric, dielectric, and mechanical techniques ; 1, identifying the aging processes ; 2, quantifying the aging effect

  20. Dielectric, Ferroelectric, and Piezoelectric Properties of Mn-Doped K0.5Na0.5NbO3 Lead-Free Ceramics

    Science.gov (United States)

    Lopez-Juarez, Rigoberto; Gomez-Vidales, Virginia; Cruz, M. P.; Villafuerte-Castrejon, M. E.

    2015-08-01

    In this work, study of manganese-doped potassium-sodium niobate ceramics was performed. It was found that, with increasing Mn2+ content from 1 mol.% to 1.5 mol.%, the Q m changed from 60 to near 500 with no appreciable detriment in piezoelectric properties. These properties first increased with 0.5 mol.%, and remained almost constant with 1 mol.% of manganese. Maximum values for d 33, d 31, and k p were 120 pC N-1, 33 pC N-1, and 36%, respectively. Thus, manganese-doped K0.5Na0.5NbO3 ceramics represent an option for high-power applications.

  1. Piezoelectric Film.

    Science.gov (United States)

    Garrison, Steve

    1992-01-01

    Presents activities that utilize piezoelectric film to familiarize students with fundamental principles of electricity. Describes classroom projects involving chemical sensors, microbalances, microphones, switches, infrared sensors, and power generation. (MDH)

  2. Dielectric relaxation behavior of Callovo-Oxfordian clay rock: A hydraulic-mechanical-electromagnetic coupling approach

    Science.gov (United States)

    Wagner, Norman; Bore, Thierry; Robinet, Jean-Charles; Coelho, Daniel; Taillade, Frederic; Delepine-Lesoille, Sylvie

    2013-09-01

    Water content is a key parameter to monitor in nuclear waste repositories such as the planed underground repository in Bure, France, in the Callovo-Oxfordian (COx) clay formation. High-frequency electromagnetic (HF-EM) measurement techniques, i.e., time or frequency domain reflectometry, offer useful tools for quantitative estimation of water content in porous media. However, despite the efficiency of HF-EM methods, the relationship between water content and dielectric material properties needs to be characterized. Moreover, the high amount of swelling clay in the COx clay leads to dielectric relaxation effects which induce strong dispersion coupled with high absorption of EM waves. Against this background, the dielectric relaxation behavior of the clay rock was studied at frequencies from 1 MHz to 10 GHz with network analyzer technique in combination with coaxial transmission line cells. For this purpose, undisturbed and disturbed clay rock samples were conditioned to achieve a water saturation range from 0.16 to nearly saturation. The relaxation behavior was quantified based on a generalized fractional relaxation model under consideration of an apparent direct current conductivity assuming three relaxation processes: a high-frequency water process and two interface processes which are related to interactions between the aqueous pore solution and mineral particles (adsorbed/hydrated water relaxation, counter ion relaxation and Maxwell-Wagner effects). The frequency-dependent HF-EM properties were further modeled based on a novel hydraulic-mechanical-electromagnetic coupling approach developed for soils. The results show the potential of HF-EM techniques for quantitative monitoring of the hydraulic state in underground repositories in clay formations.

  3. Characterization of Piezoelectric PDMS-Nanoparticle Composites

    Science.gov (United States)

    Borsa, C. J.; Mionic Ebersold, M.; Bowen, P.; Farine, P.-A.; Briand, D.

    2015-12-01

    In this work, the novel fabrication and characterization of elastomeric piezoelectric nanocomposites are explored. Fabrication methods explored herein utilize ball milled barium titanate powder dispersions, along with double walled carbon nanotubes which are dispersed in toluene though the use of an ultrasonic probe. Test devices are then constructed with electrodes made from evaporated gold on polyimide foils and protective dielectrics of pristine PDMS. Two different device construction methods are explored utilizing both direct contact bonding and plasma bonding of the active composite layers to the dielectric/electrode. Test samples are evaluated through the use of a dedicated Berlincourt type piezoelectric d33 meter.

  4. Natural frequency of beams with embedded piezoelectric sensors and actuators

    OpenAIRE

    Della, Christian N.; Shu, Dongwei

    2007-01-01

    A mathematical model is developed to study the natural frequency of beams with embedded piezoelectric sensors and actuators. The piezoelectric sensors/actuators in a non-piezoelectric matrix (host beam) are analyzed as two inhomogeneity problems by using Eshelby’s equivalent inclusion method. The natural frequency of the beam is determined from the variational principle in Rayleigh quotient form, which is expressed as functions of the elastic strain energy and dielectric energy of the piezoel...

  5. Towards a two dimensional model of surface piezoelectricity

    OpenAIRE

    Monge Víllora, Oscar

    2016-01-01

    We want to understand the behaviour of flexoelectricity and surface piezoelectricity and distinguish them in order to go deep into the controversies of the filed. This motivate the construction of a model of continuum flexoelectric theory. The model proposed is a two-dimensional model that integrates the electromechanical equations that include the elastic, dielectric, piezoelectric and flexoelectric effect on a rectangular sample. As the flexoelectric and the surface piezoelectric effects ap...

  6. Structural, spectral, thermal, dielectric, mechanical and optical properties of urea L-alanine acetate single crystals

    Science.gov (United States)

    Jaikumar, D.; Kalainathan, S.; Bhagavannarayana, G.

    2010-05-01

    A new organic nonlinear optical crystal, urea L-alanine acetate (ULAA) has been grown by solution growth using slow cooling technique with the vision to improve the properties of the L-alanine crystals. Urea and L-alanine material were mixed in the molar ratio 1:4. Solubility and metastable zone width were determined. Single crystal XRD analyses revealed that the crystal lattice of ULAA is orthorhombic system, primitive lattice with cell parameters a=5.7971 Å, b=6.0391 Å, c=12.3276 Å with space group P2 12 12 1 (D 24). High-resolution X-ray diffraction (HR-XRD) analysis was carried out to study their crystalline perfection. FTIR spectrum was recorded to identify the presence of functional groups and molecular structure was confirmed by 1H NMR spectrum. From the mass spectrum, the ratio of compound formation of ULAA was analyzed. Thermal strength of the grown crystal has been studied using thermo-gravimetric (TG) and differential thermal analysis (DTA). Dielectric measurements reveal that the grown crystals have very low dielectric loss. The mechanical behavior was studied by Vickers microhardness test. The grown crystals were found to be transparent in the entire visible region. Preliminary measurement using Kurtz powder technique with Nd-YAG laser light of wavelength 1064 nm indicates that their second harmonic generation (SHG) efficiency is roughly equal to that of pure KDP.

  7. Molecular dynamics of the supercooled pharmaceutical agent posaconazole studied via differential scanning calorimetry and dielectric and mechanical spectroscopies.

    Science.gov (United States)

    Adrjanowicz, K; Kaminski, K; Wlodarczyk, P; Grzybowska, K; Tarnacka, M; Zakowiecki, D; Garbacz, G; Paluch, M; Jurga, S

    2013-10-07

    This paper presents comprehensive studies on the molecular dynamics of a pharmaceutically important substance, posaconazole. In order to characterize relaxation dynamics in the supercooled liquid and glassy states, dielectric and mechanical spectroscopies were applied. Dielectric data have indicated multiple relaxation processes that appear above and below the glass transition temperature Tg (τα=100 s) of posaconazole. From the curvature of the dielectric log10(τα) versus inverse of temperature dependence, we determine so-called "fragility", being a very popular parameter for classifying the structural dynamics of supercooled liquids and polymers. From the calculations, we get m=150, which means that is one of the most fragile glass-forming liquids. In this paper, the relaxation dynamics of supercooled posaconazole extracted from the dielectric response function was also confronted with shear-mechanical relaxation. Finally, we have also presented a direct comparison of the fragility and the number of dynamically correlated molecules Nc determined from dynamic calorimetry curves and dielectric and mechanical spectroscopies, showing a clear deviation in the picture of glass-transition dynamics generated by calorimetric and spectroscopic techniques.

  8. Local piezoelectric behavior in PZT-based thin films for ultrasound transducers

    Science.gov (United States)

    Griggio, Flavio

    superior crystal quality. Thirdly, changes in the mechanical boundary conditions experienced by a ferroelectric thin film were found to influence both the properties and the length scale for correlated motion of domain walls. Microfabrication was employed to release the PZT films from the Si substrate. Nonlinear piezoelectric maps, by band excitation piezoforce microscopy, showed formation of clusters of higher nonlinear activities of similar size for clamped PZT films with different microstructures. However PZT films that had been released from the Si substrate showed a distinct increase in the correlation length associated with coupled domain wall motion, suggesting that the local mechanical boundary conditions, more than microstructure or composition govern the domain wall dynamics. Release of both the local and the global stress states in films produced dielectric nonlinearities comparable to those of bulk ceramics. The second research direction was targeted at demonstrating the functionality of a one dimensional transducer array. A diaphragm geometry was used for the transducer arrays in order to benefit from the unimorph-type displacement of the PZT-SiO2 layers. For this purpose, the PZT and remaining films in the stack were patterned using reactive ion etching and partially released from the underlying silicon substrate by XeF2 etching from the top. Admittance measurements on the fabricated structures showed resonance frequencies at ˜40 MHz for a 80 mum diameter-wide diaphragms with a PZT thickness of 1.74 mum. In-water transmit and receive functionalities were demonstrated. A bandwidth on receive of 80 % centered at 40 MHz was determined during pitch-mode tests.

  9. Fabrication and Characterization of ZnO Nanowire-based Piezoelectric Nanogenerators for Low Frequency Mechanical Energy Harvesting

    Science.gov (United States)

    Poulin-Vittrant, G.; Oshman, C.; Opoku, C.; Dahiya, A. S.; Camara, N.; Alquier, D.; Hue, L.-P. Tran Huu; Lethiecq, M.

    The present work investigates the possibility to charge a Lithium micro-battery (LiB) via direct conversion of ambient mechanical energy into electricity using piezoelectric ZnO nanowire (NW) based microgenerators (PGs). An estimate is provided for the power levels at the different stages of mechanical-to-electrical energy conversion chain, in the following areas: (1) PG output, (2) power management block and (3) LiB storage unit. Also covered in this work is the synthesis, which is a prerequisite for realising such PGs. ZnO NWs of 2 μm in length and 200 nm in diameter have been grown using a low temperature (galvanic cell in the growth nutrients, which acted as an electrolyte medium. This necessitated ZnO NWs growth on conductive surfaces, even in the absence of seed layers and/or substrate with specific lattice parameters. Finally, the assembly steps undertaken to realise the fully functional PGs are discussed, and the performances of the final PG are described thereafter. Subjecting such devices to a 10 Hz sinusoidal bending force resulted in a measured PG output of ∼56 mV peak to peak, on 1 MΩ resistive load.

  10. Piezoelectric Transformers: An Historical Review

    Directory of Open Access Journals (Sweden)

    Alfredo Vazquez Carazo

    2016-04-01

    Full Text Available Piezoelectric transformers (PTs are solid-state devices that transform electrical energy into electrical energy by means of a mechanical vibration. These devices are manufactured using piezoelectric materials that are driven at resonance. With appropriate design and circuitry, it is possible to step up and step down the voltages between the input and output sections of the piezoelectric transformer, without making use of magnetic materials and obtaining excellent conversion efficiencies. The initial concept of a piezoelectric ceramic transformer was proposed by Charles A. Rosen in 1954. Since then, the evolution of piezoelectric transformers through history has been linked to the relevant work of some excellent researchers as well as to the evolution in materials, manufacturing processes, and driving circuit techniques. This paper summarizes the historical evolution of the technology.

  11. Enhancing the dielectric property of 0.69PZT-0.31PZNN thick films by optimizing the poling condition

    Science.gov (United States)

    Song, Daniel; Woo, Min Sik; Ahn, Jung Hwan; Sung, Tae Hyun

    2015-05-01

    We investigated how the applied electric-field's magnitude and the poling time affected, respectively, the dielectric property and the microstructure of piezoelectric lead zirconate titanate/lead zirconate nickel niobate (PZT-PZNN) thick films in order to apply the films to piezoelectric energy harvesters. Several 300-µm-thick, 10 × 10-mm2 PZT-PZNN squares were tape cast, laminated, sintered, and poled under 2-, 4-, 6-, 10-, 14-, and 15-kV/mm electric fields for 30 min. The 10-kV/mm electric field produced the highest d 33 × g 33 without mechanically damaging the sample. Further, samples were sintered at 950, 1000, and 1020 °C and subsequently poled at 10 kV/mm (previously determined as the magnitude of the optimal poling electric field) for 15, 30, 60, 120, and 240 min to investigate how the poling time affected the piezoelectric ceramic's microstructure. The optimal poling time for all the sintered samples was 60 min. Further, the piezoelectric ceramics composed of small grains and poled longer than 60 min showed higher dielectric constants. However, those composed of large grains and poled for times shorter than 60 min showed higher dielectric constants because the element mobility of the piezoelectric ceramics increased with increasing poling time.

  12. Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging

    Science.gov (United States)

    Wang, Wei; Peng, Dengfeng; Zhang, Hanlu; Yang, Xiaohong; Pan, Caofeng

    2017-07-01

    Piezoelectric semiconductor with optical, electrical and mechanical multifunctions has great potential applications in future optoelectronic devices. The rich properties and applications mainly encompass the intrinsic structures and their coupling effects. Here, we report that lanthanide ions doped piezoelectric semiconductor CaZnOS:Sm3+ showing strong red emission induced by dynamic mechanical stress. Under moderate mechanical load, the doped piezoelectric semiconductor exhibits strong visible red emission to the naked eyes even under the day light. A flexible dynamic pressure sensor device is fabricated based on the prepared CaZnOS:Sm3+ powders. The mechanical-induced emission properties of the device are investigated by the optical fiber spectrometer. The linear characteristic emissions are attributed to the 4G5/2→6H5/2 (566 nm), 4G5/2→6H7/2 (580-632 nm), 4G5/2→6H9/2 (653-673 nm) and 4G5/2→6H11/2 (712-735 nm) f-f transitions of Sm3+ ions. The integral emission intensity is proportional to the value of applied pressure. By using the linear relationship between integrated emission intensity and the dynamic pressure, the real-time pressure distribution is visualized and recorded. Our results highlight that the incorporation of lanthanide luminescent ions into piezoelectric semiconductors as smart materials could be applied into the flexible mechanical-optical sensor device without additional auxiliary power, which has great potential for promising applications such as mapping of personalized handwriting, smart display, and human machine interface.

  13. Modeling and parametric analysis of a piezoelectric flexoelectric nanoactuator

    Directory of Open Access Journals (Sweden)

    Baroudi Sourour

    2016-01-01

    Full Text Available With the development of nanotechnology, nanoactuators have recently re-stimulated a surge of scientific interests in research communities. One of the interesting transduction mechanisms that showed high efficiency at the nanoscale was flexoelectricity. In fact, the flexoelectric effect in dielectric solids couples polarization and strain gradient, rather than polarization and strain for piezoelectricity, to convert mechanical stimulus into electricity and vice cersa. The objective of the current work is to develop a complete comprehensive electromechanical model of a nanobeam whose for piezoelectrically-actuated nanocantilever sensor in which both the flexoelectricity and piezoelectricity effects will be tzken into consideration. Starting from the enthalpy density function, the Hamilton’s principle is applied to drive the governing coupled equations with appropriate boundary conditions. Then, we investigate the free vibration of the mechanism by formulating the eigenvalue problem associated with the coupled partial differential equations. Using the Galerkin procedure we develop both the static and dynamic of our structure. The results show that a certain aspect ratio flexoelectric effect significantly increases the performance of the nanoactuator.

  14. Mechanism of Phase Transition from Liquid to Gas Under Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Wang, Qiuying; Li, Sen; Gu, Fan

    2010-10-01

    Liquid gasification phenomenon was observable in liquid-solid dielectric barrier discharge (DBD) experiments. Starting from classical thermodynamics, this study aimed at finding the reason of liquid gasification in the DBD experiments. Fluid statics and electrohydrodynamics were adopted to analyze the mechanism of phase transition from liquid to gas. The Sumoto effect was also employed to visually explain the change in the pressure of fluid due to the electric field. It was concluded from both theoretical analysis and experiment that the change in liquid pressure was a key factor causing liquid to gasify in DBD conditions. Furthermore, it was stressed that the liquid pressure was affected by many parameters including liquid permittivity, voltage, electric intensity, size of the discharge space and uniformity of the electric field distribution, etc. All of them affected DBD liquid gasification. The related results would provide useful theoretical evidence for multi-phase DBD applications.

  15. Measurement of the mechanical loss of a dielectric multilayer reflective coating at low temperature

    CERN Document Server

    Yamamoto, K; Ishitsuka, H; Ito, K; Kuroda, K; Miyoki, S; Numata, K; Ohashi, M; Sato, N; Shintomi, T; Suzuki, T; Tomaru, T; Uchiyama, T; Waseda, K; Watanabe, K; Yamamoto, A; Haruyama, Tomiyoshi; Ishitsuka, Hideki; Ito, Kazuhiko; Kuroda, Kazuaki; Miyoki, Shinji; Numata, Kenji; Ohashi, Masatake; Sato, Nobuaki; Shintomi, Takakazu; Suzuki, Toshikazu; Tomaru, Takayuki; Uchiyama, Takashi; Waseda, Koichi; Watanabe, Koji; Yamamoto, Akira; Yamamoto, Kazuhiro

    2006-01-01

    We have measured the mechanical loss of a dielectric multilayer reflective coating (ion-beam sputtered SiO$_2$ and Ta$_2$O$_5$) in cooled mirrors. The loss was nearly independent of the temperature (4 K $\\sim$ 300 K), frequency, optical loss, and stress caused by the coating, and the details of the manufacturing processes. The loss angle was $(4 \\sim 6) \\times 10^{-4}$. The temperature independence of this loss implies that the amplitude of the coating thermal noise, which is a severe limit in any precise measurement, is proportional to the square root of the temperature. Sapphire mirrors at 20 K satisfy the requirement concerning the thermal noise of even future interferometric gravitational wave detector projects on the ground, for example, LCGT.

  16. The role of temperature on dielectric relaxation and conductivity mechanism of dark conglomerate liquid crystal phase

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Alptekin [Istanbul Technical University, Department of Physics Engineering, 34469 Maslak, Istanbul (Turkey); Yildiz Technical University, Department of Physics, 34210 Esenler, Istanbul (Turkey); Canli, Nimet Yilmaz, E-mail: niyilmaz@yahoo.com [Yildiz Technical University, Department of Physics, 34210 Esenler, Istanbul (Turkey); Özdemir, Zeynep Güven [Yildiz Technical University, Department of Physics, 34210 Esenler, Istanbul (Turkey); Ocak, Hale; Eran, Belkız Bilgin [Yildiz Technical University, Department of Chemistry, 34210 Esenler, Istanbul (Turkey); Okutan, Mustafa [Yildiz Technical University, Department of Physics, 34210 Esenler, Istanbul (Turkey)

    2016-03-15

    In this study, dielectric properties and ac conductivity mechanism of the bent-core liquid crystal 3′-{4-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4- [4-[6-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1yl)hex-1-yloxy]benzoyloxy] benzoyloxy}biphenyl (DBB) have been analyzed by impedance spectroscopy measurements at different temperatures. According to the polarizing microscopy results, DBB liquid crystal compound exhibits a dark conglomerate mesophase (DC{sup [*]} phase) which can be identified by the occurrence of a conglomerate of domains with opposite chirality. The chiral domains of this low-birefringent mesophase become more visible by rotating the polarizer. The variation of the real (ε′) and imaginary (ε″) parts of dielectric constant with angular frequency and Cole–Cole curves of DBB have been analyzed. The fitting results for dispersion curves at different temperatures revealed that DBB system exhibits nearly Debye-type relaxation except for 125 °C. Moreover, it has been determined that while the relaxation frequencies shift to higher frequencies as the temperature increases from 25 °C to 125 °C, the peak intensities remarkably decrease with increasing temperature. According to Cole–Cole plot and phase angle versus frequency curve, it has been determined that DBB LC may have a possibility of utilizing as a super-capacitor at room temperature. Furthermore, it has been found that the conductivity mechanism of the DBB alters from Correlated Barrier Hoping (CBH) model to Quantum Tunneling Model (QMT) with in increasing temperature at high frequency region. In terms of CBH model, optical band gaps at 25 °C and 75 °C temperatures have also been calculated. Finally, activation energies for some selected angular frequencies have also been calculated.

  17. The nature of dielectric state and self compensation mechanisms in PbTe doped with Ga

    Science.gov (United States)

    Petrenko, T. L.; Bryksa, V. P.

    2014-04-01

    The long-standing problem of impurity states in narrow-gap PbTe crystals doped with group-III element Ga was analized by means of density functional theory. We focus on the mechanisms of the self-compensation during growth as well as during post-growth annealing to clarify the mechanism of dielectric state formation necessary for the device fabrication. The unique feature of the presented work is consideration of the simplest impurity complex {{\\left( 2{\\rm{Ga}} \\right)}_{{\\rm{Pb}}}} as well as of a lead vacancy {{V}_{{\\rm{Pb}}}}, gallium substituting for Pb site {\\rm{G}}{{{\\rm{a}}}_{{\\rm{Pb}}}} and interstitial gallium {\\rm{G}}{{{\\rm{a}}}_{\\operatorname{int}}} in various charge states. Calculations show that complex {{\\left( 2{\\rm{Ga}} \\right)}_{{\\rm{Pb}}}} has the lowest formation energy among other gallium-related defects and is a double donor. {\\rm{G}}{{{\\rm{a}}}_{\\operatorname{int}}} is a single donor while {\\rm{G}}{{{\\rm{a}}}_{{\\rm{Pb}}}} is amphoteric impurity which act as a donor or acceptor depending on the Fermi level position. Moreover, we conclude that neutral impurity {\\rm{Ga}}_{{\\rm{Pb}}}^{0} is metastable due to the self-compensation and formation of {{(2{\\rm{Ga}})}_{{\\rm{Pb}}}} complex with simultaneous creation of {{V}_{{\\rm{Pb}}}}. Calculated binding energy of this complex suggests that it is stable for the actual temperatures and concentrations. In addition the {{(2{\\rm{Ga}})}_{{\\rm{Pb}}}} defect is responsible for spontaneous creation of lead vacancy which prevents an increasing of the carrier concentration. Therefore, the considered complex determines the most striking features of PbTe crystals doped with Ga, namely DX-like properties and dielectric state formation. This defect plays a crucial role in real crystals and clarifies the nature of properties important for device fabrication.

  18. The role of temperature on dielectric relaxation and conductivity mechanism of dark conglomerate liquid crystal phase

    Science.gov (United States)

    Yildiz, Alptekin; Canli, Nimet Yilmaz; Özdemir, Zeynep Güven; Ocak, Hale; Eran, Belkız Bilgin; Okutan, Mustafa

    2016-03-01

    In this study, dielectric properties and ac conductivity mechanism of the bent-core liquid crystal 3‧-{4-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-[6-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1yl)hex-1-yloxy]benzoyloxy]benzoyloxy}biphenyl (DBB) have been analyzed by impedance spectroscopy measurements at different temperatures. According to the polarizing microscopy results, DBB liquid crystal compound exhibits a dark conglomerate mesophase (DC[*] phase) which can be identified by the occurrence of a conglomerate of domains with opposite chirality. The chiral domains of this low-birefringent mesophase become more visible by rotating the polarizer. The variation of the real (ε‧) and imaginary (ε″) parts of dielectric constant with angular frequency and Cole-Cole curves of DBB have been analyzed. The fitting results for dispersion curves at different temperatures revealed that DBB system exhibits nearly Debye-type relaxation except for 125 °C. Moreover, it has been determined that while the relaxation frequencies shift to higher frequencies as the temperature increases from 25 °C to 125 °C, the peak intensities remarkably decrease with increasing temperature. According to Cole-Cole plot and phase angle versus frequency curve, it has been determined that DBB LC may have a possibility of utilizing as a super-capacitor at room temperature. Furthermore, it has been found that the conductivity mechanism of the DBB alters from Correlated Barrier Hoping (CBH) model to Quantum Tunneling Model (QMT) with in increasing temperature at high frequency region. In terms of CBH model, optical band gaps at 25 °C and 75 °C temperatures have also been calculated. Finally, activation energies for some selected angular frequencies have also been calculated.

  19. The clash of mechanical and electrical size-effects in ZnO nanowires and a double power law approach to elastic strain engineering of piezoelectric and piezotronic devices.

    Science.gov (United States)

    Rinaldi, Antonio; Araneo, Rodolfo; Celozzi, Salvatore; Pea, Marialilia; Notargiacomo, Andrea

    2014-09-10

    The piezoelectric performance of ultra-strength ZnO nanowires (NWs) depends on the subtle interplay between electrical and mechanical size-effects. "Size-dependent" modeling of compressed NWs illustrates why experimentally observed mechanical stiffening can indeed collide with electrical size-effects when the size shrinks, thereby lowering the actual piezoelectric function from bulk estimates. "Smaller" is not necessarily "better" in nanotechnology.

  20. PLZT-Modified Relaxor Piezoelectric Ceramic System for Medical Diagnostic Applications

    Directory of Open Access Journals (Sweden)

    Koduri Ramam

    2008-01-01

    Full Text Available The piezoelectric ceramic system [Pb0.978–yLa0.012Ba0.01Sry][(Zr0.534Ti0.4660.987Nb0.008]O3 (PLBSZNT has been fabricated for use in medical diagnostics applications. The fundamental pre-requisites are high-density, high dielectric constant and high piezoelectric properties that serve as compatible ceramic materials for medical diagnostic applications. It is essential for sensitive transducers that the piezoelectric ceramics must efficiently convert between electrical and mechanical energy, and so the electromechanical coupling coefficients should be high, as the fabrication process of tiny elements for medical arrays must be carried out without damaging the material and its properties. In our study, Sr-modified PLBZNT had shown single ferroelectric tetragonal phase. An analysis of different Sr doping concentration is reported, and the high dielectric permittivity, low dielectric loss along with high electromechanical properties indicate that PLBSZNT is suitable for medical diagnostic applications as well as sensors and actuators.

  1. Multilayer Piezoelectric Stack Actuator Characterization

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  2. Piezoelectricity in Single Crystal of Pentaerythritol Tetranitrate

    Directory of Open Access Journals (Sweden)

    K. Raha

    1991-07-01

    Full Text Available The piezoelectric constants perpendicular to (110 and (001 of single crystal f pentaerythritol tetranitrate (PETN are determined to be (3.2+-0.30x10/sup-13/and (1.5+-0.30x10/sub-13/CN/sub-1/. The charge development on these faces under static loading has been confirmed to be true piezoelectric in origin. The crystal seems to experience a quasi permanent deformation under repeated and successive compression with a very long relaxation time. This gives rise to a unique behaviour of individual crystal of PETN under identical stress condition. Mechanical stress relaxation measurements have also been carried out to provide additional evidence on the uniqueness of the crystal. Dielectric constant of the crystal along the directions perpendicular to (110 and (001 are 3.50+-0.12 and 4.57+-0.17; Young's modulus along the directions are (1.24+- 0.30x10/sub6/g cm/sup-2/ respectively. Single crystals of one cm/sub3/ of PETN develops about 10 V cm/sup-1/ field under a force of 1 kg across (110face.

  3. The mechanism for large-volume fluid pumping via reversible snap-through of dielectric elastomer

    Science.gov (United States)

    Li, Zhe; Wang, Yingxi; Foo, Choon Chiang; Godaba, Hareesh; Zhu, Jian; Yap, Choon Hwai

    2017-08-01

    Giant deformation of dielectric elastomers (DEs) via electromechanical instability (or the "snap-through" phenomenon) is a promising mechanism for large-volume fluid pumping. Snap-through of a DE membrane coupled with compressible air has been previously investigated. However, the physics behind reversible snap-through of a DE diaphragm coupled with incompressible fluid for the purpose of fluid pumping has not been well investigated, and the conditions required for reversible snap-through in a hydraulic system are unknown. In this study, we have proposed a concept for large-volume fluid pumping by harnessing reversible snap-through of the dielectric elastomer. The occurrence of snap-through was theoretically modeled and experimentally verified. Both the theoretical and experimental pressure-volume curves of the DE membrane under different actuation voltages were used to design the work loop of the pump, and the theoretical work loop agreed with the experimental work loop. Furthermore, the feasibility of reversible snap-through was experimentally verified, and specific conditions were found necessary for this to occur, such as a minimum actuation voltage, an optimal range of hydraulic pressure exerted on the DE membrane and a suitable actuation frequency. Under optimal working conditions, we demonstrated a pumping volume of up to 110 ml per cycle, which was significantly larger than that without snap-through. Furthermore, we have achieved fluid pumping from a region of low pressure to another region of high pressure. Findings of this study would be useful for real world applications such as the blood pump.

  4. Electrical, mechanical and temperature characterization of commercialy available LTCC dielectric materials

    Directory of Open Access Journals (Sweden)

    Radosavljević Goran

    2013-01-01

    Full Text Available Presented paper deals with mechanical, electrical and thermal properties of several commercially available materials that are widely used for fabrication of electronic components, sensor systems etc. In the LTCC (Low Temperature Co-fired Technology. Having complete and accurate information of material chemical composition, its electrical and mechanical properties are essential for successful design of various components and/or systems. In many cases, available technical documentation provided by the manufacturers contains less information than designers require for complete pre-design analysis of system behavior in real time environment. Three offently exploited commercialy available dielectric materials provided by Heraeus company (Heraeus CT700, Heraeus CT707 and Heraeus CT800 are investigated. Electrical, mechanical and thermal properties analyses have been conducted in order to determine some of the important material properties. A full chemical composition analysis was performed resulting in determination of materials' chemical composition, followed with determination of relative permittivity value, elasticity modulus and relative thermal coefficient value. [Projekat Ministarstva nauke Republike Srbije, br. III 45021

  5. High-response piezoelectricity modeled quantitatively near a phase boundary

    Science.gov (United States)

    Newns, Dennis M.; Kuroda, Marcelo A.; Cipcigan, Flaviu S.; Crain, Jason; Martyna, Glenn J.

    2017-01-01

    Interconversion of mechanical and electrical energy via the piezoelectric effect is fundamental to a wide range of technologies. The discovery in the 1990s of giant piezoelectric responses in certain materials has therefore opened new application spaces, but the origin of these properties remains a challenge to our understanding. A key role is played by the presence of a structural instability in these materials at compositions near the "morphotropic phase boundary" (MPB) where the crystal structure changes abruptly and the electromechanical responses are maximal. Here we formulate a simple, unified theoretical description which accounts for extreme piezoelectric response, its observation at compositions near the MPB, accompanied by ultrahigh dielectric constant and mechanical compliances with rather large anisotropies. The resulting model, based upon a Landau free energy expression, is capable of treating the important domain engineered materials and is found to be predictive while maintaining simplicity. It therefore offers a general and powerful means of accounting for the full set of signature characteristics in these functional materials including volume conserving sum rules and strong substrate clamping effects.

  6. Radial growth of zinc oxide nanowire for piezoelectric nanogenerator application

    Science.gov (United States)

    Rasouli, Safa

    2017-04-01

    Nano- and micro-self-biased sensors employed environmental harvested energy, which are provided by different methods, such as piezoelectric. Piezoelectric materials are capable of producing electrical energy from environmental mechanical force. In this paper, a radial layer of well-arrayed hexagonal zinc oxide nanowires is grown on carbon fiber substrate using a two-step Chemical deposition method of metal salt growth. The resulted morphology is examined using Field Emission Scanning Electron Microscopy (FESEM) micrographs and X-ray Diffraction (XRD) pattern which indicates the quality and the crystallization order of the samples. In addition, composition of the material is studied using a Fourier Transform Infrared (FTIR) spectroscopy method. The results show that zinc oxide nanowires are well managed in vertical direction on the cylindrical carbon fibers. The hexagonal nanowires are grown with a length from 206 to 286 nm (Nanometer) and the diameter from 75 to 103 nm. The results of FTIR spectroscopy and XRD also illustrate the wurtzite structure of zinc oxide. The synthesized nanowires are then applied in a flexible capacitive piezoelectric nanogenerator consisting of a thin Ag layer as the upper contact and a carbon substrate as the back contact which are separated by a PMMA dielectric film. The output current and voltage are measured by applying a random pulse mechanical force on the upper contact. A maximum voltage and current of 14 mV (millivolt) and 20 nA (nanoampere) are generated at the output of nanogenerator, respectively.

  7. Effective properties of coated fibrous piezoelectric composites with spring-type interfaces under anti-plane mechanical and in-plane electrical loads

    Science.gov (United States)

    Shi, Yin; Wan, YongPing; Zhong, Zheng

    2016-10-01

    In this paper, we investigate the effective properties of three-phase (matrix/coating/fiber) cylindrical piezoelectric composites with imperfect interfaces under anti-plane mechanical and in-plane electrical loads. By using the electromechanically coupling spring-type interface model and the generalized self-consistent method (GSM), we analytically derived the effective electroelastic moduli. The present solutions include as special cases the three-phase cylindrical piezoelectric composites with perfect interfaces as well as the two-phase (matrix/fiber) case with imperfect or perfect interfaces. Selected calculations are graphically shown to demonstrate dependence of the effective moduli on the interfacial properties. The particular size-dependent characteristic due to the interfacial imperfection is also discussed.

  8. Revisiting the Characterization of the Losses in Piezoelectric Materials from Impedance Spectroscopy at Resonance

    Directory of Open Access Journals (Sweden)

    Amador M. González

    2016-01-01

    Full Text Available Electronic devices using the piezoelectric effect contain piezoelectric materials: often crystals, but in many cases poled ferroelectric ceramics (piezoceramics, polymers or composites. On the one hand, these materials exhibit non-negligible losses, not only dielectric, but also mechanical and piezoelectric. In this work, we made simulations of the effect of the three types of losses in piezoelectric materials on the impedance spectrum at the resonance. We analyze independently each type of loss and show the differences among them. On the other hand, electrical and electronic engineers include piezoelectric sensors in electrical circuits to build devices and need electrical models of the sensor element. Frequently, material scientists and engineers use different languages, and the characteristic material coefficients do not have a straightforward translation to those specific electrical circuit components. To connect both fields of study, we propose the use of accurate methods of characterization from impedance measurements at electromechanical resonance that lead to determination of all types of losses, as an alternative to current standards. We introduce a simplified equivalent circuit model with electrical parameters that account for piezoceramic losses needed for the modeling and design of industrial applications.

  9. Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms

    Science.gov (United States)

    Ling, Mingxiang; Cao, Junyi; Zeng, Minghua; Lin, Jing; Inman, Daniel J.

    2016-07-01

    Piezo-actuated, flexure hinge-based compliant mechanisms have been frequently used in precision engineering in the last few decades. There have been a considerable number of publications on modeling the displacement amplification behavior of rhombus-type and bridge-type compliant mechanisms. However, due to an unclear geometric approximation and mechanical assumption between these two flexures, it is very difficult to obtain an exact description of the kinematic performance using previous analytical models, especially when the designed angle of the compliant mechanisms is small. Therefore, enhanced theoretical models of the displacement amplification ratio for rhombus-type and bridge-type compliant mechanisms are proposed to improve the prediction accuracy based on the distinct force analysis between these two flexures. The energy conservation law and the elastic beam theory are employed for modeling with consideration of the translational and rotational stiffness. Theoretical and finite elemental results show that the prediction errors of the displacement amplification ratio will be enlarged if the bridge-type flexure is simplified as a rhombic structure to perform mechanical modeling. More importantly, the proposed models exhibit better performance than the previous models, which is further verified by experiments.

  10. Piezoelectric, dielectric and magnetic properties of (1-x)Pb[Zr, Ti, (Mg{sub 1/2}W{sub 1/2}), (Ni{sub 1/3}Nb{sub 2/3})]O{sub 3}+x(Ni, Co, Cu)FeO{sub 4} composites

    Energy Technology Data Exchange (ETDEWEB)

    Chao Xiaolian [Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an, 710062 Shaanxi (China); Yang Zupei, E-mail: yangzp@snnu.edu.c [Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an, 710062 Shaanxi (China); Dong Mingyuan; Zhang Yi [Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an, 710062 Shaanxi (China)

    2011-08-15

    The phase structure, microstructure, piezoelectric properties, dielectric characteristic and the ME effect of magnetoelectric Pb[Zr{sub 0.23}Ti{sub 0.36}+0.02(Mg{sub 1/2}W{sub 1/2})+0.39(Ni{sub 1/3}Nb{sub 2/3})]O{sub 3} (PZT)+xNi{sub 0.8}Co{sub 0.1}Cu{sub 0.1}Fe{sub 2}O{sub 4} (NCCF) composite ceramics were prepared by the conventional solid state reaction method. The structural analysis of both the constituent phases and their composites was carried out by X-ray diffraction, energy dispersive spectrometry and scanning electron microscopy. The results showed cubic spinel structure for ferrite phase and tetragonal perovskite structure for ferroelectric phase. The piezoelectric constant, dielectric constant, Curie temperature, remanent polarization and coercive electric field decreased with increase of ferrite content. The coercive field strength, saturation magnetization and remanent magnetization increased with increasing ferrite content. - Highlights: (1-x)Pb[Zr{sub 0.23}Ti{sub 0.36}+0.02(Mg{sub 1/2}W{sub 1/2})+0.39(Ni{sub 1/3}Nb{sub 2/3})] O{sub 3}+xNi{sub 0.8}Co{sub 0.1}Cu{sub 0.1}Fe{sub 2}O{sub 4} composites have been prepared by the conventional ceramics technique. However, there is little work that can give piezoelectric characteristics of ME. In this work, the magnetoelectric and piezoelectric properties of magnetoelectric composites are investigated.

  11. Research on Effective Electric-Mechanical Coupling Coefficient of Sandwich Type Piezoelectric Ultrasonic Transducer Using Bending Vibration Mode

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2015-01-01

    Full Text Available An analytical model on electromechanical coupling coefficient and the length optimization of a bending piezoelectric ultrasonic transducer are proposed. The piezoelectric transducer consists of 8 PZT elements sandwiched between four thin electrodes, and the PZT elements are clamped by a screwed connection between fore beam and back beam. Firstly, bending vibration model of the piezoelectric transducer is built based on the Timoshenko beam theory. Secondly, the analytical model of effective electromechanical coupling coefficient is built based on the bending vibration model. Energy method and electromechanical equivalent circuit method are involved in the modelling process. To validate the analytical model, sandwich type piezoelectric transducer example in second order bending vibration mode is analysed. Effective electromechanical coupling coefficient of the transducer is optimized with simplex reflection technique, and the optimized ratio of length of the transducers is obtained. Finally, experimental prototypes of the sandwich type piezoelectric transducers are fabricated. Bending vibration mode and impedance of the experimental prototypes are tested, and electromechanical coupling coefficient is obtained according to the testing results. Results show that the analytical model is in good agreement with the experimental model.

  12. Formation mechanism of dot-line square superlattice pattern in dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weibo; Dong, Lifang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com; Wang, Yongjie; Zhang, Xinpu [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); College of Quality and Technical Supervision, Hebei University, Baoding 071002 (China); Pan, Yuyang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com [College of Quality and Technical Supervision, Hebei University, Baoding 071002 (China)

    2014-11-15

    We investigate the formation mechanism of the dot-line square superlattice pattern (DLSSP) in dielectric barrier discharge. The spatio-temporal structure studied by using the intensified-charge coupled device camera shows that the DLSSP is an interleaving of three different subpatterns in one half voltage cycle. The dot square lattice discharges first and, then, the two kinds of line square lattices, which form square grid structures discharge twice. When the gas pressure is varied, DLSSP can transform from square superlattice pattern (SSP). The spectral line profile method is used to compare the electron densities, which represent the amounts of surface charges qualitatively. It is found that the amount of surface charges accumulated by the first discharge of DLSSP is less than that of SSP, leading to a bigger discharge area of the following discharge (lines of DLSSP instead of halos of SSP). The spatial distribution of the electric field of the surface charges is simulated to explain the formation of DLSSP. This paper may provide a deeper understanding for the formation mechanism of complex superlattice patterns in DBD.

  13. High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes.

    Science.gov (United States)

    Yan, Jing; Jeong, Young Gyu

    2016-06-22

    Piezoelectric nanogenerators, harvesting energy from mechanical stimuli in our living environments, hold great promise to power sustainable self-sufficient micro/nanosystems and mobile/portable electronics. BaTiO3 as a lead-free material with high piezoelectric coefficient and dielectric constant has been widely examined to realize nanogenerators, capacitors, sensors, etc. In this study, polydimethylsiloxane (PDMS)-based flexible composites including BaTiO3 nanofibers with different alignment modes were manufactured and their piezoelectric performance was examined. For the study, BaTiO3 nanofibers were prepared by an electrospinning technique utilizing a sol-gel precursor and following calcination process, and they were then aligned vertically or horizontally or randomly in PDMS matrix-based nanogenerators. The morphological structures of BaTiO3 nanofibers and their nanogenerators were analyzed by using SEM images. The crystal structures of the nanogenerators before and after poling were characterized by X-ray diffraction. The dielectric and piezoelectric properties of the nanogenerators were investigated as a function of the nanofiber alignment mode. The nanogenerator with BaTiO3 nanofibers aligned vertically in the PDMS matrix sheet achieved high piezoelectric performance of an output power of 0.1841 μW with maximum voltage of 2.67 V and current of 261.40 nA under a low mechanical stress of 0.002 MPa, in addition to a high dielectric constant of 40.23 at 100 Hz. The harvested energy could thus power a commercial LED directly or be stored into capacitors after rectification.

  14. FABRICATION AND MECHANICAL PROPERTIES OF Na0.5Bi0.5TiO3–BaTiO3 LEAD-FREE PIEZOELECTRIC CERAMICS

    Directory of Open Access Journals (Sweden)

    PAN YUSONG

    2014-03-01

    Full Text Available Piezoelectric ceramics with 0.94Na0.5Bi0.5TO3–0.06BaTiO3 compositions were fabricated by solid state mixed oxide method and sintered at different temperatures varying from 1050°C to 1150°C to obtain dense ceramics. Phase analysis using X-ray diffraction showed tetragonal perovskite structure of Na0.5Bi0.5TO3 with no BaTiO3 peak detected. The SEM observation revealed that the crystal grain size of the piezoelectric ceramics is on the nano-size dimensions under all the sintering temperature. The study on the compressive mechanical characteristics showed that the compressive strength of the 0.94Na0.5Bi0.5TO3–0.06BaTiO3 piezoelectric ceramics increases with the rise of sintering temperature and sintering time. The change behavior of the compressive strength with the rise of cold pressure presents increasing firstly and then decreases.

  15. Research on the degradation mechanism of pyridine in drinking water by dielectric barrier discharge.

    Science.gov (United States)

    Li, Yang; Yi, Rongjie; Yi, Chengwu; Zhou, Biyun; Wang, Huijuan

    2017-03-01

    Pyridine, an important chemical raw material, is widely used in industry, for example in textiles, leather, printing, dyeing, etc. In this research, a dielectric barrier discharge (DBD) system was developed to remove pyridine, as a representative type of nitrogen heterocyclic compound in drinking water. First, the influence of the active species inhibitors tertiary butanol alcohol (TBA), HCO3(-), and CO3(2-) on the degradation rate of pyridine was investigated to verify the existence of active species produced by the strong ionization discharge in the system. The intermediate and final products generated in the degradation process of pyridine were confirmed and analyzed through a series of analytical techniques, including liquid chromatography-mass spectrometry (LC-MS), high performance liquid chromatography (HPLC), ion chromatography (IC), total organic carbon (TOC) analysis, ultraviolet (UV) spectroscopy, etc. The results showed that the degradation of pyridine was mainly due to the strong oxidizing power of ozone and hydroxyl radical produced by the DBD system. Several intermediate products including 3-hydroxyl pyridine, fumaric acid, 2, 3-dihydroxypyridine, and oxalic acid were detected. Nitrogen was removed from the pyridine molecule to form nitrate. Through analysis of the degradation mechanism of pyridine, the oxidation pathway was deduced. The study provided a theoretical and experimental basis for the application of DBD strong ionization discharge in treatment of nitrogen heterocyclic compounds in drinking water. Copyright © 2016. Published by Elsevier B.V.

  16. Ultrafast Breakdown of dielectrics: Energy absorption mechanisms investigated by double pulse experiments

    Energy Technology Data Exchange (ETDEWEB)

    Guizard, Stéphane, E-mail: stephane.guizard@cea.fr [Laboratoire des Solides Irradiés, CEA-IRAMIS, CNRS, Ecole Polytechnique, 91128 Palaiseau (France); Klimentov, Sergey [General Physics Institute of the Russian Academy of Sciences, Vavilova St 38, 11991 Moscow (Russian Federation); Mouskeftaras, Alexandros [Laboratoire des Solides Irradiés, CEA-IRAMIS, CNRS, Ecole Polytechnique, 91128 Palaiseau (France); Fedorov, Nikita; Geoffroy, Ghita [Laboratoire CELIA, CNRS-CEA-Université de Bordeaux, Cours de La Libération, Talence (France); Vilmart, Gautier [Laboratoire des Solides Irradiés, CEA-IRAMIS, CNRS, Ecole Polytechnique, 91128 Palaiseau (France)

    2015-05-01

    We investigate the mechanisms involved in the modification of dielectric materials by ultrashort laser pulses. We show that the use of a double pulse (fundamental and second harmonic of a Ti–Sa laser) excitation allows getting new insight in the fundamental processes that occur during the interaction. We first measure the optical breakdown (OB) threshold map (intensity of first pulse versus intensity of second pulse) in various materials (Al{sub 2}O{sub 3}, MgO, α-SiO{sub 2}). Using a simple model that includes multiphoton excitation followed by carrier heating in the conduction band, and assuming that OB occurs when a critical amount of energy is deposited in the material, we can satisfactorily reproduce this evolution of optical breakdown thresholds. The results demonstrate the dominant role of carrier heating in the energy transfer from the laser pulse to the solid. This important phenomenon is also highlighted by the kinetic energy distribution of photoelectrons observed in a photoemission experiment performed under similar conditions of double pulse excitation. Finally we show, in the case of α-SiO{sub 2}, that the initial electronic excitation plays a key role in the formation of surface ripples and that their characteristics are determined by the first pulse, even at intensities well below OB threshold.

  17. TECHNICAL NOTE: Review of the mechanics of materials models for one-dimensional surface-bonded piezoelectric actuators

    Science.gov (United States)

    Alzahrani, Bandar A.; Alghamdi, Abdulmalik A. A.

    2003-06-01

    This note reviews the commonest and simplest theoretical models used in modelling one-dimensional smart structures. These models can be used for any type of induced strain; however, the piezoelectric actuator is used here as a typical active element. A numerical example is given to show the differences among these models especially as regards the strain induced in the beam.

  18. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  19. Energy Harvesting From Low Frequency Applications Using Piezoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huidong; Tian, Chuan; Deng, Zhiqun

    2014-11-06

    This paper reviewed the state of research on piezoelectric energy harvesters. Various types of harvester configurations, piezoelectric materials, and techniques used to improve the mechanical-to-electrical energy conversion efficiency were discussed. Most of the piezoelectric energy harvesters studied today have focused on scavenging mechanical energy from vibration sources due to their abundance in both natural and industrial environments. Cantilever beams have been the most studied structure for piezoelectric energy harvester to date because of the high responsiveness to small vibrations.

  20. Dielectric micro-resonator-based opto-mechanical systems for sensing applications

    Science.gov (United States)

    Ali, Amir Roushdy

    In recent years, whispering gallery mode (WGM), or morphology dependent optical resonances (MDR) of dielectric micro-resonators have attracted interest with proposed applications in a wide range of areas due to the high optical quality factors, Q, they can exhibit (reaching ~ 10. 9 for silica spheres). Micro-resonator WGMs have been used in applications that include those in spectroscopy, micro-cavity laser technology, optical communications (switching, filtering and multiplexing), sensors technologies and even chemical and biological sensing. The WGM of these dielectric micro-resonators are highly sensitive to morphological changes (such as the size, shape, or refractive index) of the resonance cavity and hence, can be tuned by causing a minute change in the physical condition of the surrounding. In this dissertation, we have been creating opto-mechanical systems, which at their most basic, are extraordinarily sensitive sensors. One of the ultimate goals of this dissertation is to develop sensors capable of detecting the extremely small electric field changes. To improve the performance of the sensors, we couple a polymer cantilever beam to a dielectric micro-resonator. The eventual use of such ultra sensitive electric filed sensors could include neural-machine interfaces for advanced prosthetics devices. The work presented here includes a basic analysis and experimental investigations of the electric field sensitivity and range of micro-resonators of several different materials and geometries followed by the electric field sensor design, testing, and characterization. Also, the effects of angular velocity on the WGM shifts of spherical micro-resonators are also investigated. The elastic deformation that is induced on a spinning resonator due to the centrifugal force may lead to a sufficient shift in the optical resonances and therefore interfering with its desirable operational sensor design. Furthermore, this principle could be used for the development of

  1. Research on a Linear Piezoelectric Actuator Using T-Shape Transducer to Realize High Mechanical Output

    Directory of Open Access Journals (Sweden)

    Sijia Shao

    2016-04-01

    Full Text Available A modified large thrust ultrasonic linear motor using a T-shape configuration composed of two orthogonal sandwich-type transducers has been proposed in this paper. It is an improved version of a previous T-shape motor. The vertical transducer is used to generate the normal force between the driving foot and slider, while the other push-pull–type horizontal transducer is applied to generate driving force to push the working platform. By superimposing the two longitudinal vibrations, the proposed motor generates an elliptical movement on the driving foot. In order to improve the vibration characteristics and amplify the driving vibration amplitude, the shape of the driving foot and horn have been redesigned and optimized. The finite element method (FEM is used to adjust the structural parameters to degenerate the two working mode frequencies. The prototype has been fabricated and its mechanical output ability has been measured. The output characteristics of the modified motor, compared with the previous T-shape motor, achieve a relatively high level. The typical no-load speed and maximum output thrust of the prototype are 0.83 m/s and 56 N under an exciting voltage of 150 Vrms.

  2. In situ study on low-k interconnect time-dependent-dielectric-breakdown mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Boon Yeap, Kong, E-mail: KongBoon.Yeap@globalfoundries.com [GLOBALFOUNDRIES, Fab8, 400 Stonebreak Rd. Extension, Malta, New York 12020 (United States); Fraunhofer Institute for Ceramic Technologies and Systems, Maria-Reiche-Str. 2, D-01109 Dresden (Germany); Gall, Martin; Liao, Zhongquan; Sander, Christoph; Muehle, Uwe; Zschech, Ehrenfried [Fraunhofer Institute for Ceramic Technologies and Systems, Maria-Reiche-Str. 2, D-01109 Dresden (Germany); Justison, Patrick [GLOBALFOUNDRIES, Fab8, 400 Stonebreak Rd. Extension, Malta, New York 12020 (United States); Aubel, Oliver; Hauschildt, Meike; Beyer, Armand; Vogel, Norman [GLOBALFOUNDRIES Dresden Module One LLC and Co. KG, Wilschdorfer Landstr. 101, D-01109 Dresden (Germany)

    2014-03-28

    An in situ transmission-electron-microscopy methodology is developed to observe time-dependent dielectric breakdown (TDDB) in an advanced Cu/ultra-low-k interconnect stack. A test structure, namely a “tip-to-tip” structure, was designed to localize the TDDB degradation in small dielectrics regions. A constant voltage is applied at 25 °C to the “tip-to-tip” structure, while structural changes are observed at nanoscale. Cu nanoparticle formation, agglomeration, and migration processes are observed after dielectric breakdown. The Cu nanoparticles are positively charged, since they move in opposite direction to the electron flow. Measurements of ionic current, using the Triangular-Voltage-Stress method, suggest that Cu migration is not possible before dielectric breakdown, unless the Cu/ultra-low-k interconnect stacks are heated to 200 °C and above.

  3. A nanoscale piezoelectric transformer for low-voltage transistors.

    Science.gov (United States)

    Agarwal, Sapan; Yablonovitch, Eli

    2014-11-12

    A novel piezoelectric voltage transformer for low-voltage transistors is proposed. Placing a piezoelectric transformer on the gate of a field-effect transistor results in the piezoelectric transformer field-effect transistor that can switch at significantly lower voltages than a conventional transistor. The piezoelectric transformer operates by using one piezoelectric to squeeze another piezoelectric to generate a higher output voltage than the input voltage. Multiple piezoelectrics can be used to squeeze a single piezoelectric layer to generate an even higher voltage amplification. Coupled electrical and mechanical modeling in COMSOL predicts a 12.5× voltage amplification for a six-layer piezoelectric transformer. This would lead to more than a 150× reduction in the power needed for communications.

  4. Nonlinear kinematics for piezoelectricity in ALEGRA-EMMA.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, John Anthony; Fuller, Timothy Jesse

    2013-09-01

    This report develops and documents nonlinear kinematic relations needed to implement piezoelectric constitutive models in ALEGRA-EMMA [5], where calculations involving large displacements and rotations are routine. Kinematic relationships are established using Gausss law and Faradays law; this presentation on kinematics goes beyond piezoelectric materials and is applicable to all dielectric materials. The report then turns to practical details of implementing piezoelectric models in an application code where material principal axes are rarely aligned with user defined problem coordinate axes. This portion of the report is somewhat pedagogical but is necessary in order to establish documentation for the piezoelectric implementation in ALEGRA-EMMA. This involves transforming elastic, piezoelectric, and permittivity moduli from material principal axes to problem coordinate axes. The report concludes with an overview of the piezoelectric implementation in ALEGRA-EMMA and small verification examples.

  5. Virus-based piezoelectric energy generation.

    Science.gov (United States)

    Lee, Byung Yang; Zhang, Jinxing; Zueger, Chris; Chung, Woo-Jae; Yoo, So Young; Wang, Eddie; Meyer, Joel; Ramesh, Ramamoorthy; Lee, Seung-Wuk

    2012-05-13

    Piezoelectric materials can convert mechanical energy into electrical energy, and piezoelectric devices made of a variety of inorganic materials and organic polymers have been demonstrated. However, synthesizing such materials often requires toxic starting compounds, harsh conditions and/or complex procedures. Previously, it was shown that hierarchically organized natural materials such as bones, collagen fibrils and peptide nanotubes can display piezoelectric properties. Here, we demonstrate that the piezoelectric and liquid-crystalline properties of M13 bacteriophage (phage) can be used to generate electrical energy. Using piezoresponse force microscopy, we characterize the structure-dependent piezoelectric properties of the phage at the molecular level. We then show that self-assembled thin films of phage can exhibit piezoelectric strengths of up to 7.8 pm V(-1). We also demonstrate that it is possible to modulate the dipole strength of the phage, hence tuning the piezoelectric response, by genetically engineering the major coat proteins of the phage. Finally, we develop a phage-based piezoelectric generator that produces up to 6 nA of current and 400 mV of potential and use it to operate a liquid-crystal display. Because biotechnology techniques enable large-scale production of genetically modified phages, phage-based piezoelectric materials potentially offer a simple and environmentally friendly approach to piezoelectric energy generation.

  6. Virus-based piezoelectric energy generation

    Science.gov (United States)

    Lee, Byung Yang; Zhang, Jinxing; Zueger, Chris; Chung, Woo-Jae; Yoo, So Young; Wang, Eddie; Meyer, Joel; Ramesh, Ramamoorthy; Lee, Seung-Wuk

    2012-06-01

    Piezoelectric materials can convert mechanical energy into electrical energy, and piezoelectric devices made of a variety of inorganic materials and organic polymers have been demonstrated. However, synthesizing such materials often requires toxic starting compounds, harsh conditions and/or complex procedures. Previously, it was shown that hierarchically organized natural materials such as bones, collagen fibrils and peptide nanotubes can display piezoelectric properties. Here, we demonstrate that the piezoelectric and liquid-crystalline properties of M13 bacteriophage (phage) can be used to generate electrical energy. Using piezoresponse force microscopy, we characterize the structure-dependent piezoelectric properties of the phage at the molecular level. We then show that self-assembled thin films of phage can exhibit piezoelectric strengths of up to 7.8 pm V-1. We also demonstrate that it is possible to modulate the dipole strength of the phage, hence tuning the piezoelectric response, by genetically engineering the major coat proteins of the phage. Finally, we develop a phage-based piezoelectric generator that produces up to 6 nA of current and 400 mV of potential and use it to operate a liquid-crystal display. Because biotechnology techniques enable large-scale production of genetically modified phages, phage-based piezoelectric materials potentially offer a simple and environmentally friendly approach to piezoelectric energy generation.

  7. Rare-Earth Calcium Oxyborate Piezoelectric Crystals ReCa4O(BO33: Growth and Piezoelectric Characterizations

    Directory of Open Access Journals (Sweden)

    Fapeng Yu

    2014-07-01

    Full Text Available Rare-earth calcium oxyborate crystals, ReCa4O(BO33 (ReCOB, Re = Er, Y, Gd, Sm, Nd, Pr, and La , are potential piezoelectric materials for ultrahigh temperature sensor applications, due to their high electrical resistivity at elevated temperature, high piezoelectric sensitivity and temperature stability. In this paper, different techniques for ReCOB single-crystal growth are introduced, including the Bridgman and Czochralski pulling methods. Crystal orientations and the relationships between the crystallographic and physical axes of the monoclinic ReCOB crystals are discussed. The procedures for dielectric, elastic, electromechanical and piezoelectric property characterization, taking advantage of the impedance method, are presented. In addition, the maximum piezoelectric coefficients for different piezoelectric vibration modes are explored, and the optimized crystal cuts free of piezoelectric cross-talk are obtained by rotation calculations.

  8. Interfaces: nanometric dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, T J [School of Informatics, University of Wales Bangor, Dean Street, Bangor, Gwynedd, LL70 9PX (United Kingdom)

    2005-01-21

    The incorporation of nanometric size particles in a matrix to form dielectric composites shows promise of materials (nanodielectrics) with new and improved properties. It is argued that the properties of the interfaces between the particles and the matrix, which will themselves be of nanometric dimensions, will have an increasingly dominant role in determining dielectric performance as the particle size decreases. The forces that determine the electrical and dielectric properties of interfaces are considered, with emphasis on the way in which they might influence composite behaviour. A number of examples are given in which interfaces at the nanometric level exercise both passive and active control over dielectric, optical and conductive properties. Electromechanical properties are also considered, and it is shown that interfaces have important electrostrictive and piezoelectric characteristics. It is demonstrated that the process of poling, namely subjecting macroscopic composite materials to electrical stress and raised temperatures to create piezoelectric materials, can be explained in terms of optimizing the collective response of the nanometric interfaces involved. If the electrical and electromechanical features are coupled to the long-established electrochemical properties, interfaces represent highly versatile active elements with considerable potential in nanotechnology.

  9. Interfaces: nanometric dielectrics

    Science.gov (United States)

    Lewis, T. J.

    2005-01-01

    The incorporation of nanometric size particles in a matrix to form dielectric composites shows promise of materials (nanodielectrics) with new and improved properties. It is argued that the properties of the interfaces between the particles and the matrix, which will themselves be of nanometric dimensions, will have an increasingly dominant role in determining dielectric performance as the particle size decreases. The forces that determine the electrical and dielectric properties of interfaces are considered, with emphasis on the way in which they might influence composite behaviour. A number of examples are given in which interfaces at the nanometric level exercise both passive and active control over dielectric, optical and conductive properties. Electromechanical properties are also considered, and it is shown that interfaces have important electrostrictive and piezoelectric characteristics. It is demonstrated that the process of poling, namely subjecting macroscopic composite materials to electrical stress and raised temperatures to create piezoelectric materials, can be explained in terms of optimizing the collective response of the nanometric interfaces involved. If the electrical and electromechanical features are coupled to the long-established electrochemical properties, interfaces represent highly versatile active elements with considerable potential in nanotechnology.

  10. The electro-mechanical phase transition of Gent model dielectric elastomer tube with two material constants

    Science.gov (United States)

    Liu, Liwu; Luo, Xiaojian; Fei, Fan; Wang, Yixing; Leng, Jinsong; Liu, Yanju

    2013-04-01

    Applied to voltage, a dielectric elastomer membrane may deform into a mixture of two states under certain conditions. One of which is the flat state and the other is the wrinkled state. In the flat state, the membrane is relatively thick with a small area, while on the contrary, in the wrinkled state, the membrane is relatively thin with a large area. The coexistence of these two states may cause the electromechanical phase transition of dielectric elastomer. The phase diagram of idea dielectric elastomer membrane under unidirectional stress and voltage inspired us to think about the liquid-to-vapor phase transition of pure substance. The practical working cycle of a steam engine includes the thermodynamical process of liquid-to-vapor phase transition, the fact is that the steam engine will do the maximum work if undergoing the phase transition process. In this paper, in order to consider the influence of coexistent state of dielectric elastomer, we investigate the homogeneous deformation of the dielectric elastomer tube. The theoretical model is built and the relationship between external loads and stretch are got, we can see that the elastomer tube experiences the coexistent state before reaching the stretching limit from the diagram. We think these results can guide the design and manufacture of energy harvesting equipments.

  11. Mechanical reliability of porous low-k dielectrics for advanced interconnect: Study of the instability mechanisms in porous low-k dielectrics and their mediation through inert plasma induced re-polymerization of the backbone structure

    Science.gov (United States)

    Sa, Yoonki

    Continuous scaling down of critical dimensions in interconnect structures requires the use of ultralow dielectric constant (k) films as interlayer dielectrics to reduce resistance-capacitance delays. Porous carbon-doped silicon oxide (p-SiCOH) dielectrics have been the leading approach to produce these ultralow-k materials. However, embedding of porosity into dielectric layer necessarily decreases the mechanical reliability and increases its susceptibility to adsorption of potentially deleterious chemical species during device fabrication process. Among those, exposure of porous-SiCOH low-k (PLK) dielectrics to oxidizing plasma environment causes the increase in dielectric constant and their vulnerability to mechanical instability of PLKs due to the loss of methyl species and increase in moisture uptake. These changes in PLK properties and physical stability have been persisting challenges for next-generation interconnects because they are the sources of failure in interconnect integration as well as functional and physical failures appearing later in IC device manufacturing. It is therefore essential to study the fundamentals of the interactions on p-SiCOH matrix induced by plasma exposure and find an effective and easy-to-implement way to reverse such changes by repairing damage in PLK structure. From these perspectives, the present dissertation proposes 1) a fundamental understanding of structural transformation occurring during oxidative plasma exposure in PLK matrix structure and 2) its restoration by using silylating treatment, soft x-ray and inert Ar-plasma radiation, respectively. Equally important, 3) as an alternative way of increasing the thermo-mechanical reliability, PLK dielectric film with an intrinsically robust structure by controlling pore morphology is fabricated and investigated. Based on the investigations, stability of PLK films studied by time-dependent ball indentation tester under the elevated temperature, variation in film thickness and

  12. Characterization of a Piezoelectric Buzzer Using a Michelson Interferometer

    Science.gov (United States)

    Lloyd, S.; Paetkau, M.

    2010-01-01

    A piezoelectric material generates an electric potential across its surface when subjected to mechanical stress; conversely, the inverse piezoelectric effect describes the expansion or contraction of the material when subjected to some applied voltage. Piezoelectric materials are used in devices such as doorbell buzzers, barbeque igniters, and…

  13. Comparison of Stabilization of Piezoelectric Euler-Bernoulli Beam Models

    NARCIS (Netherlands)

    de Jong, Matthias; Scherpen, Jacquelien M.A.; Morris, Kirsten

    2016-01-01

    Piezoelectric materials are used in many control and sensing applications via a strip of piezoelectric material also known as a piezoelectric beam. Applications can be vibration control in (complex) mechanical structures and on-line measurement or compensation in high-precision technology for shape

  14. The precursory electric signals, observed before the Izmit Turkey EQ (Mw = 7.6, August 17th, 1999), analyzed in terms of a hypothetically pre-activated, in the focal area, large scale piezoelectric mechanism

    CERN Document Server

    Thanassoulas, C

    2011-01-01

    The generated, prior to the Izmit Turkey large EQ, preseismic electric signals were recorded in Greece by the VOL Earth's electric field monitoring site. In order to explain their peculiar character and their generating mechanism, a large scale piezoelectric mechanism was assumed that was initiated in the Izmit seismogenic region long before the EQ occurrence time. The theoretical analysis of the adopted physical model justifies the generation of a number of specific electric signals that can be emitted from the focal area before the rock formation failure. The processing of the registered by the VOL monitoring site raw data revealed the presence of similar signals as the expected theoretical ones. Therefore, it is concluded that long before the Izmit EQ occurrence a large scale piezoelectric mechanism was initiated that was modulated too by the tidally triggered lithospheric oscillation and therefore generated the observed preseismic electric signals. The adopted piezoelectric model provides critical informa...

  15. COMBINED DAMAGE FRACTURE CRITERIA FOR PIEZOELECTRIC CERAMICS

    Institute of Scientific and Technical Information of China (English)

    Yang Xinhua; Chen Chuanyao; Hu Yuantai; Wang Cheng

    2005-01-01

    Mechanical and electrical damages are introduced to study the fracture mechanics of piezoelectric ceramics in this paper. Two kinds of piezoelectric fracture criteria are established using the method of least squares combined with a damage analysis of the well-known piezoelectric fracture experiments of Park and Sun's. One is based on a linear combination of the mechanical and electrical damages and the other on their nonlinear combination. When the combined damage D is up to its critical value Dc, piezoelectric fracture occurs. It is found from the qualitative comparison of the numerical results with the experimental data that the nonlinearly combined damage fracture criterion can give a better prediction of piezoelectric fracture. And it is concluded from the nonlinearly combined damage fracture criterion that a negative electric field impedes fracture whereas the effect of a positive electric field on fracture depends on its magnitude.

  16. Tailored piezoelectric thin films for energy harvester

    NARCIS (Netherlands)

    Wan, X.

    2013-01-01

    Piezoelectric materials are excellent materials to transfer mechanical energy into electrical energy, which can be stored and used to power other devices. PiezoMEMS is a good way to combine silicon wafer processing and piezoelectric thin film technology and lead to a variety of miniaturized and prem

  17. Special topics in the theory of piezoelectricity

    CERN Document Server

    Yang, Jiashi

    2009-01-01

    Piezoelectricity has been a steadily growing field, with recent advances made by researchers from applied physics, acoustics, materials science, and engineering. This collective work presents a comprehensive treatment of selected advanced topics in the subject. The book is written for an intermediate graduate level and is intended for researchers, mechanical engineers, and applied mathematicians interested in the advances and new applications in piezoelectricity.

  18. Design of a piezoelectric rotation actuator

    NARCIS (Netherlands)

    Holterman, J.; de Vries, Theodorus J.A.; Babakhani, B.; Brouwer, Dannis Michel

    2012-01-01

    In order to facilitate active damping within a linear motion system, a self-sensing piezoelectric rotation actuator has been designed. The rotation actuator consists of two piezoelectric stacks that function as linear actuators, embedded in a mechanical interface with several elastic elements, thus

  19. Mechanism of Enhanced Dielectric Properties of SiC/Ni Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yan; KANG Yu-Qing; FANG Xiao-Yong; YUAN Jie; SHI Xiao-Ling; SONG Wei-Li; CAO Mao-Sheng

    2008-01-01

    Dielectric properties of SiC/Ni nanocomposites prepared by a simple and facile electroless plating approach at X band are investigated.Compared to the original SiC nanoparticles (SiCp),the real part of the permittivity,ε',and the dielectric loss tangent tan δe of SiC/Ni nanocomposites are clearly enhanced by about 31% and 33%,respectively.The effective equations for complex permittivity of SiC/Ni nanocomposites are proposed.We also calculate ε' and tan δe of SiC/Ni nanocomposites and the calculated results are well consistent with the measured data.

  20. Microwave absorption of a TiO2@PPy hybrid and its nonlinear dielectric resonant attenuation mechanism

    Science.gov (United States)

    Jiang, Wanchun; Wang, Yu; Xie, Aming; Wu, Fan

    2016-09-01

    We report on a high-performance electromagnetic absorption material (TiO2@PPy) developed via a facile in situ polymerization process, where lower than  -60 dB maximum absorption and 6.56 dB effective absorption bandwidth (lower than  -10 dB) can be obtained under low thickness. The excellent electromagnetic wave absorption ability is attributed to the synthetic effect of improved impedance matching and the dual loss mechanism, which originates from the polarization relaxations of dipoles induced by vacancy defects and a conductive network constructed by aerogels. An equivalent circuit model is established to explicate the nonlinear dielectric resonant attenuation mechanism.

  1. Lead-Free Metamaterials with Enormous Apparent Piezoelectric Response.

    Science.gov (United States)

    Zhou, Wanfeng; Chen, Pan; Pan, Qi; Zhang, Xiaotong; Chu, Baojin

    2015-11-01

    Lead-free flexoelectric piezoelectric metamaterials are created by applying an asymmetric chemical reduction to Na1/2 Bi1/2 TiO3 -BaTiO3 ceramics. The reduction induces two gradient-generating mechanisms, curvature structure and chemical inhomogeneity, and enhances the flexoelectric effect. The ceramics behave like piezoelectric materials, exhibiting an enormous and high-temperature stable apparent piezoelectric response, outperforming existing lead-oxide-based piezoelectrics.

  2. Large and broadband piezoelectricity in smart polymer-foam space-charge electrets

    Science.gov (United States)

    Neugschwandtner, G. S.; Schwödiauer, R.; Vieytes, M.; Bauer-Gogonea, S.; Bauer, S.; Hillenbrand, J.; Kressmann, R.; Sessler, G. M.; Paajanen, M.; Lekkala, J.

    2000-12-01

    Charged closed-cell microporous polypropylene foams are shown to exhibit piezoelectric resonance modes in the dielectric function, coupled with a large anisotropy in the electromechanical and elastic material properties. Strong direct and converse dynamic piezoelectricity with a piezoelectric d33 coefficient of 140 pC/N at 600 kHz is identified. The piezoelectric d33 coefficient exceeds that of the ferroelectric polymer polyvinylidene fluoride by a factor of 5 and compares favorably with ferroelectric ceramics. Applications of similar concepts should provide a broad class of easily fabricated "soft" piezoelectric materials.

  3. Piezoelectric Motors, an Overview

    OpenAIRE

    Karl Spanner; Burhanettin Koc

    2016-01-01

    Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ult...

  4. Simple piezoelectric translation device

    Science.gov (United States)

    Niedermann, Ph.; Emch, R.; Descouts, P.

    1988-02-01

    We describe a piezoelectric device which allows continuous movement and high-resolution micropositioning, without distance limitation. Both mechanical construction and the electronics for the device are very simple. The movement is obtained via a stick-slip mechanism, and steps as small as 10 nm are obtained. A displacement speed of 0.4 mm/s has been attained, and the device was capable of carrying several times its own weight, exerting a horizontal force, or climbing a plane inclined by 7°. Due to its compact construction, the device shows prospects for miniaturization.

  5. Piezoelectric wind turbine

    Science.gov (United States)

    Kishore, Ravi Anant; Priya, Shashank

    2013-03-01

    In past few years, there has been significant focus towards developing small scale renewable energy based power sources for powering wireless sensor nodes in remote locations such as highways and bridges to conduct continuous health monitoring. These prior efforts have led to the development of micro-scale solar modules, hydrogen fuel cells and various vibration based energy harvesters. However, the cost effectiveness, reliability, and practicality of these solutions remain a concern. Harvesting the wind energy using micro-to-small scale wind turbines can be an excellent solution in variety of outdoor scenarios provided they can operate at few miles per hour of wind speed. The conventional electromagnetic generator used in the wind mills always has some cogging torque which restricts their operation above certain cut-in wind speed. This study aims to develop a novel piezoelectric wind turbine that utilizes bimorph actuators for electro-mechanical energy conversion. This device utilizes a Savonius rotor that is connected to a disk having magnets at the periphery. The piezoelectric actuators arranged circumferentially around the disk also have magnets at the tip which interacts with the magnetic field of the rotating disk and produces cyclical deflection. The wind tunnel experiments were conducted between 2-12 mph of wind speeds to characterize and optimize the power output of the wind turbine. Further, testing was conducted in the open environment to quantify the response to random wind gusts. An attempt was made towards integration of the piezoelectric wind turbine with the wireless sensor node.

  6. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  7. High Temperature, High Power Piezoelectric Composite Transducers

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2014-08-01

    Full Text Available Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  8. Growth, mechanical, dielectric, thermal and optical studies of a nonlinear optical crystal: L-Histidinium dipicrate dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Helen, F.; Kanchana, G., E-mail: kanchanagac@gmail.com

    2015-02-01

    Nonlinear optical single crystals of L-histidinium dipicrate dihydrate (LHDPDH) were grown by slow evaporation solution growth technique at room temperature. The microstructure and growth features were analysed by chemical etching. The grown crystal was subjected to X-ray diffraction analysis to confirm its purity and crystal structure. Mechanical behaviour of the grown crystal was analysed by Vicker's microhardness test. The stiffness constant was evaluated for various loads. The dielectric behaviour was investigated at different frequencies and temperatures. AC conductivity and activation energy were determined. Electronic properties, such as valence electron plasma energy, average energy gap or Penn gap, Fermi energy and electronic polarizability were calculated. Thermal analysis confirmed the association of two water molecules in the crystal lattice of LHDPDH and revealed the thermal stability of the crystal. Photoconductivity study reveals that LHDPDH exhibits positive photoconductivity. The optical transmission window and optical band gap of the crystal were found by UV–vis–NIR studies. Second harmonic generation efficiency was found to be 2.5 times that of the standard KDP crystal. The laser damage threshold for the grown crystal was measured using Nd:YAG laser. - Highlights: • High stiffness constant indicates strong binding forces between ions. • Low dielectric constant and dielectric loss at high frequencies. • LHDPDH crystal shows positive photoconductivity. • The laser damage threshold is found to be higher than urea. • SHG efficiency is 2.5 times that of KDP.

  9. Graphene Oxide Papers Simultaneously Doped with Mg(2+) and Cl(-) for Exceptional Mechanical, Electrical, and Dielectric Properties.

    Science.gov (United States)

    Lin, Xiuyi; Shen, Xi; Sun, Xinying; Liu, Xu; Wu, Ying; Wang, Zhenyu; Kim, Jang-Kyo

    2016-01-27

    This paper reports simultaneous modification of graphene oxide (GO) papers by functionalization with MgCl2. The Mg(2+) ions enhance both the interlayer cross-links and lateral bridging between the edges of adjacent GO sheets by forming Mg-O bonds. The improved load transfer between the GO sheets gives rise to a maximum of 200 and 400% increases in Young's modulus and tensile strength of GO papers. The intercalation of chlorine between the GO layers alters the properties of GO papers in two ways by forming ionic Cl(-) and covalent C-Cl bonds. The p-doping effect arising from Cl contributes to large enhancements in electrical conductivities of GO papers, with a remarkable 2500-fold surge in the through-thickness direction. The layered structure and the anisotropic electrical conductivities of reduced GO papers naturally create numerous nanocapacitors that lead to charge accumulation based on the Maxwell-Wagner (MW) polarization. The combined effect of much promoted dipolar polarizations due to Mg-O, C-Cl, and Cl(-) species results in an exceptionally high dielectric constant greater than 60 000 and a dielectric loss of 3 at 1 kHz by doping with 2 mM MgCl2. The excellent mechanical and electrical properties along with unique dielectric performance shown by the modified GO and rGO papers open new avenues for niche applications, such as electromagnetic interference shielding materials.

  10. Analysis of nonlinear transient responses of piezoelectric resonators.

    Science.gov (United States)

    Hagiwara, Manabu; Takahashi, Seita; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki

    2011-09-01

    The electric transient response method is an effective technique to evaluate material constants of piezoelectric ceramics under high-power driving. In this study, we tried to incorporate nonlinear piezoelectric behaviors in the analysis of transient responses. As a base for handling the nonlinear piezoelectric responses, we proposed an assumption that the electric displacement is proportional to the strain without phase lag, which could be described by a real and constant piezoelectric e-coefficient. Piezoelectric constitutive equations including nonlinear responses were proposed to calculate transient responses of a piezoelectric resonator. The envelopes and waveforms of current and vibration velocity in transient responses observed in some piezoelectric ceramics could be fitted with the calculation including nonlinear responses. The procedure for calculation of mechanical quality factor Q(m) for piezoelectric resonators with nonlinear behaviors was also proposed.

  11. Analytical Optimization of Piezoelectric Circular Diaphragm Generator

    Directory of Open Access Journals (Sweden)

    S. Mohammadi

    2013-01-01

    Full Text Available This paper presents an analytical study of the piezoelectric circular diaphragm microgenerator using strain energy method. Piezoelectrics are the intelligent materials that can be used as transducer to convert mechanical energy into electrical energy and vice versa. The aim of this paper is to optimize produced electrical energy from mechanical pressure. Therefore, the circular metal plate equipped with piezoelectric circular patch has been considered with simply and clamped supports. A comprehensive modeling, parametrical study and the effect of the boundary conditions on the performance of the microgenerator have been investigated. The system is under variable pressure from an oscillating pressure source. Results are presented for PZT and PMN-PT piezoelectric materials with steel and aluminum substrates. An optimal value for the radius and thickness of the piezoelectric layer with a special support condition has been obtained.

  12. Characterization of Piezoelectric Ceramic-Polymer Composites for Ultrasonic Sensor Applications

    Science.gov (United States)

    Jung, Kyung Keun; Park, Sang Hyoun; Yoo, Kwang Soo; Ko, Hyun Phill; Yoon, Seok Jin

    The piezoelectric ceramic-polymer composites were prepared by Pb(Zr0.52Ti0.48)O3 (PZT)-based ceramics with high piezoelectricity and electromechanical coupling factor and the polyvinylidene fluoride (PVdF) polymer with high acoustic impedance. The composites with 0-3 connectivity type were fabricated by hot pressing and tape casting methods. Their crystallinity, microstructure, dielectric, and piezoelectric properties were systematically evaluated.

  13. Relationship of Cure Temperature to Mechanical, Physical, and Dielectric Performance of PDMS Glass Composite for Electric Motor Insulation

    Science.gov (United States)

    Miller, Sandi G.; Becker, Kathleen; Williams, Tiffany S.; Scheiman, Daniel A.; McCorkle, Linda S.; Heimann, Paula J.; Ring, Andrew; Woodworth, Andrew

    2017-01-01

    Achieving NASAs aggressive fuel burn and emission reduction for N-plus-3 aircraft will require hybrid electric propulsion system in which electric motors driven by either power generated from turbine or energy storage system will power the fan for propulsion. Motors designed for hybrid electric aircraft are expected to operate at medium to high voltages over long durations in a high altitude service environment. Such conditions have driven research toward the development of wire insulation with improved mechanical strength, thermal stability and increased breakdown voltage. The silicone class of materials has been considered for electric wire insulation due to its inherent thermal stability, dielectric strength and mechanical integrity. This paper evaluates the dependence of these properties on the cure conditions of a polydimethyl-siloxane (PDMS) elastomer; where both cure temperature and base-to-catalyst ratio were varied. The PDMS elastomer was evaluated as a bulk material and an impregnation matrix within a lightweight glass veil support. The E-glass support was selected for mechanical stiffness and dielectric strength. This work has shown a correlation between cure conditions and material physical properties. Tensile strength increased with cure temperature whereas breakdown voltage tended to be independent of process variations. The results will be used to direct material formulation based on specific insulation requirements.

  14. Enhanced Piezoelectric Shunt Design

    Directory of Open Access Journals (Sweden)

    Chul H. Park

    2003-01-01

    Full Text Available Piezoceramic material connected to an electronic shunt branch circuit has formed a successful vibration reduction device. One drawback of the conventional electronic shunt circuit is the large inductance required when suppressing low frequency vibration modes. Also, the large internal resistance associated with this large inductance exceeds the optimal design resistance needed for low frequency vibration suppression. To solve this problem, a modified and enhanced piezoelectric shunt circuit is designed and analyzed by using mechanical-electrical analogies to present the physical interpretation. The enhanced shunt circuit developed in this paper is proved to significantly reduce the targeted vibration mode of a cantilever beam, theoretically and experimentally.

  15. Nanostructured piezoelectric energy harvesters

    CERN Document Server

    Briscoe, Joe

    2014-01-01

    This book covers a range of devices that use piezoelectricity to convert mechanical deformation into electrical energy and relates their output capabilities to a range of potential applications. Starting with a description of the fundamental principles and properties of piezo- and ferroelectric materials, where applications of bulk materials are well established, the book shows how nanostructures of these materials are being developed for energy harvesting applications. The authors show how a nanostructured device can be produced, and put in context some of the approaches that are being invest

  16. Which is better, electrostatic or piezoelectric energy harvesting systems?

    Science.gov (United States)

    Elliott, A. D. T.; Miller, L. M.; Halvorsen, E.; Wright, P. K.; Mitcheson, P. D.

    2015-12-01

    This paper answers the often asked, and until now inadequately answered, question of which MEMS compatible transducer type achieves the best power density in an energy harvesting system. This question is usually poorly answered because of the number of variables which must be taken into account and the multi-domain nature of the modelling and optimisation. The work here includes models of the mechanics, transducer and the power processing circuits (e.g. rectification and battery management) which in turn include detailed semiconductor models. It is shown that electrostatic harvesters perform better than piezoelectric harvesters at low accelerations, due to lower energy losses, and the reverse is generally true at high accelerations. At very high accelerations using MEMS-scale devices the dielectric breakdown limit in piezoelectric energy harvesters severely decreases their performance thus electrostatics are again preferred. Using the insights gained in this comparison, the optimal transduction mechanism can be chosen as a function of harvesting operating frequency, acceleration and device size.

  17. Effect of geometric size on mechanical properties of dielectric elastomers based on an improved visco-hyperelastic film model

    Science.gov (United States)

    Chang, Mengzhou; Wang, Zhenqing; Tong, Liyong; Liang, Wenyan

    2017-03-01

    Dielectric polymers show complex mechanical behaviors with different boundary conditions, geometry size and pre-stress. A viscoelastic model suitable for inhomogeneous deformation is presented integrating the Kelvin-Voigt model in a new form in this work. For different types of uniaxial tensile test loading along the length direction of sample, single-step-relaxation tests, loading–unloading tests and tensile–creep–relaxation tests the improved model provides a quite favorable comparison with the experiment results. Moreover, The mechanical properties of test sample with several length–width ratios under different boundary conditions are also invested. The influences of the different boundary conditions are calculated with a stress applied on the boundary point and the result show that the fixed boundary will increase the stress compare with homogeneous deformation. In modeling the effect of pre-stress in the shear test, three pre-stressed mode are discussed. The model validation on the general mechanical behavior shows excellent predictive capability.

  18. Giant piezoelectricity on Si for hyperactive MEMS.

    Science.gov (United States)

    Baek, S H; Park, J; Kim, D M; Aksyuk, V A; Das, R R; Bu, S D; Felker, D A; Lettieri, J; Vaithyanathan, V; Bharadwaja, S S N; Bassiri-Gharb, N; Chen, Y B; Sun, H P; Folkman, C M; Jang, H W; Kreft, D J; Streiffer, S K; Ramesh, R; Pan, X Q; Trolier-McKinstry, S; Schlom, D G; Rzchowski, M S; Blick, R H; Eom, C B

    2011-11-18

    Microelectromechanical systems (MEMS) incorporating active piezoelectric layers offer integrated actuation, sensing, and transduction. The broad implementation of such active MEMS has long been constrained by the inability to integrate materials with giant piezoelectric response, such as Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PMN-PT). We synthesized high-quality PMN-PT epitaxial thin films on vicinal (001) Si wafers with the use of an epitaxial (001) SrTiO(3) template layer with superior piezoelectric coefficients (e(31,f) = -27 ± 3 coulombs per square meter) and figures of merit for piezoelectric energy-harvesting systems. We have incorporated these heterostructures into microcantilevers that are actuated with extremely low drive voltage due to thin-film piezoelectric properties that rival bulk PMN-PT single crystals. These epitaxial heterostructures exhibit very large electromechanical coupling for ultrasound medical imaging, microfluidic control, mechanical sensing, and energy harvesting.

  19. Vacuum mounting for piezoelectric transducers

    Science.gov (United States)

    Tiede, D. A.

    1977-01-01

    Special housing couples piezoelectric transducers to nonporous surfaces for ultrasonic or acoustic-emission testing. Device, while providing sound isolation on flat or nonflat surfaces, can be attached and detached quickly. Vacuum sealing mechanism eliminates need for permanent or semipermanent bonds, viscous coupling liquids, weights, magnets, tape, or springs ordinarily used.

  20. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.

    Science.gov (United States)

    Gupta, Manoj Kumar; Kim, Sang-Woo; Kumar, Binay

    2016-01-27

    Lead-free piezoelectric nano- and microstructure-based generators have recently attracted much attention due to the continuous demand of self-powered body implantable devices. We report the fabrication of a high-performance flexible piezoelectric microgenerator based on lead-free inorganic piezoelectric Na0.47K0.47Li0.06NbO3 (NKLN) microcubes for the first time. The composite generator is fabricated using NKLN microcubes and polydimethylsiloxane (PDMS) polymer on a flexible substrate. The flexible device exhibits excellent performance with a large recordable piezoelectric output voltage of 48 V and output current density of 0.43 μA/cm(2) under vertical compressive force of 2 kgf, for which an energy conversion efficiency of about 11% has been achieved. Piezoresponse and ferroelectric studies reveal that NKLN microcubes exhibited high piezoelectric charge coefficient (d33) as high as 460 pC/N and a well-defined hysteresis loops with remnant polarization and coercive field of 13.66 μC/cm(2) and 19.45 kV/cm, respectively. The piezoelectric charge generation mechanism from NKLN microgenerator are discussed in the light of the high d33 and alignment of electric dipoles in polymer matrix and dielectric constant of NKLN microcubes. It has been demonstrated that the developed power generator has the potential to generate high electric output power under mechanical vibration for powering biomedical devices in the near future.

  1. Investigation of slurry systems in metal and dielectric chemical mechanical polishing

    Science.gov (United States)

    Lu, Zhenyu

    The properties of slurries play a significant role in chemical mechanical polishing (CMP) of metal and dielectric films in semiconductor device manufacturing. This study investigates the effects of the size, shape, and hardness of uniform abrasive particles of simple and composite natures on the polishing of copper, tantalum, and thermal oxide films in the presence of different chemical reagents. It was shown that the total surface area of the solids in the slurry controlled the material removal rate by pure silica for both Cu and Ta, while the surface quality of the polished films was better when using higher silica contents. Ceria particles are the choice abrasives in polishing of oxide surfaces. Since it is difficult to prepare in quantities uniform ceria particles of various shapes, the latter were prepared by using monodispersed cubic and ellipsoidal hematite (Fe2O3) particles and spherical silica, and coating them with nanosized ceria. The polishing data were then obtained using slurries of all these particles and the results were compared with slurries containing only nanosized ceria. At the same pH and the same solid content, the removal rates of these slurries followed the contact area model. Furthermore, slurries containing mixtures of particles performed more efficiently than those of individual particles. Interactions of abrasive particles with surface films to be polished are also very important in CMP. In this study, the packed column technique was employed to investigate the physical and chemical reactions at the particle/film interfaces under conditions that simulate CMP processes. Well-defined dispersions of uniform particles, including spherical silica, calcined alumina, and silica cores coated with nanosized ceria particles were used to evaluate particle adhesion on copper and glass beads. It was shown that pH and the slurry flow rate had significant effects on particle deposition and detachment. The attachment results of silica particles on

  2. Electrical and mechanical characteristics of nanosecond pulsed sliding dielectric barrier discharges with different electrode gaps

    Science.gov (United States)

    Bayoda, K. D.; Benard, N.; Moreau, E.

    2015-10-01

    This study proposes the characterization of a surface sliding discharge that extends over a length of 80 mm. The gas ionization is caused by series of high voltage pulses with nanosecond rising and decaying times while ion drift is forced by a negative DC component. Different plasma diagnostics such as electrical measurements, iCCD visualizations and strioscopy have been performed. They highlight that a threshold mean electric field between both air-exposed electrodes is required to fully establish a sliding discharge. Compared to a single nanosecond pulsed dielectric barrier discharge, the sliding discharge results in an energy consumption increase. Moreover, the pressure wave induced by the discharge is strongly impacted.

  3. Piezoelectric drive circuit

    Science.gov (United States)

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  4. Impact of NiOx Buffer Layers on the Dielectric Properties of BaTiO3 Thin Films on Nickel Substrates Fabricated by Polymer Assisted Deposition

    Directory of Open Access Journals (Sweden)

    Hui Du

    2015-01-01

    Full Text Available Structural health monitoring with piezoelectric thin films integrated on structural metals shows great advantages for potential applications. However, the integration of piezoelectric thin films on structure metals is still challenged. In this paper, we report the piezoelectric barium titanate [BaTiO3 (BTO] thin films deposited on polycrystalline Ni substrates by the polymer assisted deposition (PAD method using NiOx as the buffer layers. The NiOx buffer layers with different thicknesses were prepared by varying immersing time from 5 minutes to 4 hours in H2O2 solution. The dielectric and leakage current properties of the thin films have been studied by general test systems. The BTO/Ni heterostructure with 2-hour immersing time exhibits better dielectric properties with a dielectric constant over 1500 and a 34.8% decrease of the dielectric loss compared to that with 5-minute immersing time. The results show that the leakage current density is strongly affected by the thickness of the NiOx buffer layer. The conduction mechanisms of the BTO/Ni heterostructure have been discussed according to the J-V characteristic curves.

  5. 惯性冲击驱动管内移动机器人设计%A piezoelectric in-pipe micro robot actuated by impact drive mechanism

    Institute of Scientific and Technical Information of China (English)

    刘品宽; 温志杰; 李锦

    2008-01-01

    A piezoelectric in-pipe micro robot with bimorph structure and actuated by the Impact Drive Mechanism(IDM)theory is presented in this paper.The basic structure of this actuator is composed of two piezoelectric bimorph sheets and an inertia mass connected in series.While operating,the deflection of the two piezoelectric bimorph sheets is translated into linear movement by the IDM to complete the system actuation.AS the essence of the IDM theory,the relationship between the inertia impact force generated by the deflection of the bimorph sheets and the friction between moving body and pipe inwall is analyzed theoretically.Then,the dynamic performance of the system is simulated both by MATLAB and by ANSYS.The results show that the step displacement could be minified to 0.15μm,and the proposed actuator is higher accurate and higher efficient for medical and industrial applications.%设计了一种以压电双层膜为基本结构,通过惯性冲击原理达到运动驱动目的的管内移动机器人.该机器人主要由一个典型的压电双层膜结构和惯性质量串联构成.工作时,压电双层膜的变形由惯性冲击转化为整体结构的直线位移.从理论上分析了惯性冲击原理的核心问题:惯性冲击力与管壁和机器人之间摩擦力的关系,并通过MATLAB和AN-SYS等软件对整个系统的动态响应做了仿真.相关的验证表明,所设计的管内移动机器人运动步长可以达到0.15μm,具有精密运动和高效率的优点,可以在工业中广泛应用.

  6. A Study of Concrete Hydration and Dielectric Relaxation Mechanism Using Ground Penetrating Radar and Short-Time Fourier Transform

    Directory of Open Access Journals (Sweden)

    Lai WL

    2010-01-01

    Full Text Available Abstract Ground penetrating radar (GPR was used to characterize the frequency-dependent dielectric relaxation phenomena in ordinary Portland cement (OPC hydration in concrete changing from fresh to hardened state. The study was experimented by measuring the changes of GPR A-scan waveforms over a period of 90 days, and processed the waveforms with short-time Fourier transform (STFT in joint time-frequency analysis (JTFA domain rather than a conventional time or frequency domain alone. The signals of the direct wave traveled at the concrete surface and the reflected wave from an embedded steel bar were transformed with STFT, in which the changes of peak frequency over ages were tracked. The peak frequencies were found to increase with ages and the patterns were found to match closely with primarily the well-known OPC hydration process and secondarily, the evaporation effect. The close match is contributed to the simultaneous effects converting free to bound water over time, on both conventional OPC hydration and dielectric relaxation mechanisms.

  7. Modeling thin-film piezoelectric polymer ultrasonic sensors

    Science.gov (United States)

    González, M. G.; Sorichetti, P. A.; Santiago, G. D.

    2014-11-01

    This paper presents a model suitable to design and characterize broadband thin film sensors based on piezoelectric polymers. The aim is to describe adequately the sensor behavior, with a reasonable number of parameters and based on well-known physical equations. The mechanical variables are described by an acoustic transmission line. The electrical behavior is described by the quasi-static approximation, given the large difference between the velocities of propagation of the electrical and mechanical disturbances. The line parameters include the effects of the elastic and electrical properties of the material. The model was validated with measurements of a poly(vinylidene flouride) sensor designed for short-pulse detection. The model variables were calculated from the properties of the polymer at frequencies between 100 Hz and 30 MHz and at temperatures between 283 K and 313 K, a relevant range for applications in biology and medicine. The simulations agree very well with the experimental data, predicting satisfactorily the influence of temperature and the dielectric properties of the polymer on the behavior of the sensor. Conversely, the model allowed the calculation of the material dielectric properties from the measured response of the sensor, with good agreement with the published values.

  8. Piezoelectric Motors, an Overview

    Directory of Open Access Journals (Sweden)

    Karl Spanner

    2016-02-01

    Full Text Available Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ultrasonic motors, inertia-drive, and piezo-walk-drive. In this review, a comprehensive summary of piezoelectric motors, with their classification from initial idea to recent progress, is presented. This review also includes some of the industrial and commercial applications of piezoelectric motors that are presently available in the market as actuators.

  9. The nonlinear piezoelectric tuned vibration absorber

    Science.gov (United States)

    Soltani, P.; Kerschen, G.

    2015-07-01

    This paper proposes a piezoelectric vibration absorber, termed the nonlinear piezoelectric tuned vibration absorber (NPTVA), for the mitigation of nonlinear resonances of mechanical systems. The new feature of the NPTVA is that its nonlinear restoring force is designed according to a principle of similarity, i.e., the NPTVA should be an electrical analog of the nonlinear host system. Analytical formulas for the NPTVA parameters are derived using the homotopy perturbation method. Doing so, a nonlinear generalization of Den Hartog’s equal-peak tuning rule is developed for piezoelectric vibration absorbers.

  10. Analysis of Asymmetric Piezoelectric Composite Beam

    CERN Document Server

    Chen, J -S; Wu, K -C

    2008-01-01

    This paper deals with the vibration analysis of an asymmetric composite beam composed of glass a piezoelectric material. The Bernoulli's beam theory is adopted for mechanical deformations, and the electric potential field of the piezoelectric material is assumed such that the divergence-free requirement of the electrical displacements is satisfied. The accuracy of the analytic model is assessed by comparing the resonance frequencies obtained by the analytic model with those obtained by the finite element method. The model developed can be used as a tool for designing piezoelectric actuators such as micro-pumps.

  11. Piezoelectric Voltage Coupled Reentrant Cavity Resonator

    CERN Document Server

    Carvalho, Natalia C; Floch, Jean-Michel Le; Tobar, Michael Edmund

    2014-01-01

    A piezoelectric voltage coupled microwave reentrant cavity has been developed. The central cavity post is bonded to a piezoelectric actuator allowing the voltage control of small post displacements over a high dynamic range. We show that such a cavity can be implemented as a voltage tunable resonator, a transducer for exciting and measuring mechanical modes of the structure and a transducer for measuring comparative sensitivity of the piezoelectric material. Experiments were conducted at room and cryogenic temperatures with results verified using Finite Element software.

  12. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films. During the impact, the droplet kinetic energy is transferred into the form of mechanical stress forcing the piezoelectric structure to vibrate. Experimental results show energy of 0.3 μJ per droplet. The scenario of moderate falling drop intensity, i.e. 230 drops per second, yields a total energy of 400 μJ. © 2012 The Institution of Engineering and Technology.

  13. Temperature dependent structures and properties of Bi0.5Na0.5TiO3-based lead free piezoelectric composite.

    Science.gov (United States)

    Zhang, Ji; Sun, Lei; Geng, Xiao-Yu; Zhang, Bin-Bin; Yuan, Guo-Liang; Zhang, Shan-Tao

    2016-07-05

    The thermal depolarization around 100 °C of the Bi0.5Na0.5TiO3-based piezoelectric solid solutions leads to the disappearance of macroscopic ferroelectric/piezoelectric properties and remains a long-standing obstacle for their actual applications. In this communication, we report lead-free piezoelectric composites of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3:0.5ZnO (BNT-6BT:0.5ZnO, where 0.5 is the mole ratio of ZnO to BNT-6BT) with deferred thermal depolarization, which is experimentally confirmed by systematic temperature dependent dielectric, ferroelectric, piezoelectric measurements. Especially, based on temperature dependent X-ray diffraction measurements on unpoled and poled samples, thermal depolarization is confirmed to have no relationship with the structural phase transition, the possible mechanism for the deferred thermal depolarization is correlated with the ZnO-induced local electric field which can suppress the depolarization field. We believe our results may be helpful for understanding the origin of thermal depolarization in BNT-based piezoelectric materials, and thus provide an effective way to overcoming this obstacle.

  14. Piezoelectric properties and diffusion phase transition around PPT of La-doped (Na0.52K0.44Li0.04) Nb0.8Ta0.2O3 lead-free piezoelectric ceramics

    Science.gov (United States)

    Yang, Wenlong; Wang, Li; Li, Haidong; Han, Junsheng; Xiu, Hanjiang; Zhou, Zhongxiang

    2016-10-01

    Lead-free ceramics (Na0.52K0.44Li0.04)1-3xLaxNb0.8Ta0.2O3 (KNLNT-Lax, x=0.00, 0.25, 0.5, 0.75, 1.00, 1.25 mol%) as non-polluting materials were prepared by solid state reaction method. The structure, piezoelectric proprieties and temperature stability of KNLNT ceramic with different La doping concentrations were investigated. The results show a transition from orthorhombic-tetragonal mix phase to tetragonal single phase with the variation of La3+ concentrations. The SEM micrographs of surface and fractured surface show a dense microstructure with few micropores. The La-doped KNLTN ceramic will be an alternative candidate contributes to excellent piezoelectric properties, which are found in the 0.75 mol% La-doped KNLNT ceramics, with d33=215pC/N, kp=42.8%and Qm=89. It has been remarkably improved that the temperature stability of KNLTN-Lax piezoelectric properties at room temperature, and the dielectric relaxation can be observed obviously. The mechanism of La doping was analyzed in terms of valence compensation and polymorphic phase transition (PPT) diffusion. The orthorhombic-tetragonal phase transition around room temperature and the relaxation transition were considered contributing to the excellent piezoelectric performance and improved temperature stability of La3+-doped KNLTN.

  15. Investigation of La3+ Doping Effect on Piezoelectric Coefficients of BLT Ceramics

    Directory of Open Access Journals (Sweden)

    Wodecka-Dus B.

    2017-06-01

    Full Text Available Effects of La3+ admixture in barium lanthanum titanate (BLT ceramics system with colossal permittivity on performance of prospective piezoelectric cold plasma application were studied. Usage of cold atmospheric pressure plasma appears promising in terms of industrial and healthcare applications. Performed investigation provide consistent evaluation of doping lanthanum amount on piezoelectric coefficients values with simultaneous capability of charge accumulation for effective plasma generation. Modification of ferroelectric materials with heterovalent ions, however with the lower radii than the original atoms, significantly affects their domain mobility and consequently electromechanical properties. To determine the piezoelectric coefficients, the resonance-antiresonance method was implemented, and values of piezoelectric and dielectric parameters were recorded. Finally the results indicated that addition of 0.4 mol.% of La3+ ions to the ceramic structure maximally increased the values of piezoelectric coefficient to d33 = 20 pC/N and to huge dielectric constant to ε33T = 29277.

  16. Piezoelectric devices for generating low power

    Science.gov (United States)

    Chilibon, Irinela

    2016-12-01

    This paper reviews concepts and applications in low-power electronics and energy harvesting technologies. Various piezoelectric materials and devices for small power generators useful in renewable electricity are presented. The vibrating piezoelectric device differs from the typical electrical power source in that it has capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. In general, vibration energy could be converted into electrical energy using one of three techniques: electrostatic charge, magnetic fields and piezoelectric. A low power piezoelectric generator, having a PZT element was realised in order to supply small electronic elements, such as optoelectronic small devices, LEDs, electronic watches, small sensors, interferometry with lasers or Micro-electro-mechanical System (MEMS) array with multi-cantilevers.

  17. Dielectric and piezoelectric properties of lead-free Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9−x}Zr{sub 0.1}Cu{sub x}O{sub 3} ceramics synthesized by a hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Hunpratub, Sitchai [Material Science and Nanotechnology Programs, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Phokha, Sumalin [Department of Physics, Faculty of Science, Udon Thani Rajabhat University, Udon Thani 41000 (Thailand); Maensiri, Santi [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Chindaprasirt, Prinya, E-mail: prinya@kku.ac.th [Sustainable Infrastructure Research and Development Center, Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2016-04-30

    Graphical abstract: Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9−x}Zr{sub 0.1}Cu{sub x}O{sub 3} (x = 0.2, 0.4, 0.6, 0.8 and 1%) ceramics are prepared from nanopowders synthesized using a hydrothermal method at low sintering temperature of 1300 °C for 3 h. The samples are dense microstructures investigated by scanning electron microscopy (SEM). The dielectric constants, ferroelectric hysteresis loops of Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9−x}Zr{sub 0.1}Cu{sub x}O{sub 3} ceramics are well character. - Highlights: • Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9−x}Zr{sub 0.1}Cu{sub x}O{sub 3} (x = 0.2, 0.4, 0.6, 0.8 and 1%) ceramics were prepared from nanopowders using a hydrothermal method. • The ceramic samples had high dielectric constant. • The ceramic samples showed a fine ferroelectric hysteresis loop. • The piezoelectric charge coefficient (d{sub 33}) of BCZTC ceramics was improved with Cu doping. - Abstract: Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9}Zr{sub 0.1−x}Cu{sub x}O{sub 3} (BCTZC) nanopowders were synthesized using a hydrothermal method after which they were pressed into discs and sintered in air at 1300 °C for 3 h to form ceramic samples. The phase and microstructure of the powder and ceramic samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results indicated that the ceramic samples exhibited a tetragonal structure and that CuO, BaZrO{sub 3} or CaTiO{sub 3} impurity phases, which had been present in the powder samples, were not observed. The average grain sizes in the ceramic samples were found to be 17.0, 16.1, 20.0, 18.1 and 19.6 μm for Cu mole fractions x of 0.002, 0.004, 0.006, 0.008 and 0.01, respectively. The dielectric constants, ferroelectric hysteresis loops and piezoelectric charge coefficients of the BCZTC ceramic samples were also investigated. Optimum values for the relative dielectric constant (ε′), tan δ and piezoelectric charge coefficient (d{sub 33}) of the samples were 3830, 0.03 and 306 p

  18. Experimental study on the dielectric properties of polyacrylate dielectric elastomer

    Science.gov (United States)

    Qiang, Junhua; Chen, Hualing; Li, Bo

    2012-02-01

    The dielectric constant of elastomeric dielectric material is an essential physical parameter, whose value may affect the electromechanical deformation of a dielectric elastomer actuator. Since the dielectric constant is influenced by several external factors as reported before, and no certain value has been confirmed to our knowledge, in the present paper, on the basis of systematical comparison of recent past literature, we conducted extensive works on the measurement of dielectric properties of VHB films, involving five influencing factors: prestretch (both equal and unequal biaxial), electrical frequency, electrode material, stress relaxation time and temperature. Experimental results directly show that the dielectric response changes according to these factors, based on which we investigate the significance of each factor, especially the interaction of two external conditions on the dielectric constant of deformable dielectric, by presenting a physical picture of the mechanism of polarization.

  19. Using Diffusion Bonding in Making Piezoelectric Actuators

    Science.gov (United States)

    Sager, Frank E.

    2003-01-01

    and pressure for a specified curing time. The pressure, temperature, and time depend on the piezoelectric material selected. At the end of the diffusion-bonding process, the resulting laminated piezoelectric actuator is tested to verify the adequacy of the mechanical output as a function of an applied DC voltage.

  20. A continuum damage model for piezoelectric materials

    Institute of Scientific and Technical Information of China (English)

    Yiming Fu; Xianqiao Wang

    2008-01-01

    In this paper, a constitutive model is proposed for piezoelectric material solids containing distributed cracks.The model is formulated in a framework of continuum damage mechanics using second rank tensors as internal variables. The Helmhotlz free energy of piezoelectric mate-rials with damage is then expressed as a polynomial including the transformed strains, the electric field vector and the ten-sorial damage variables by using the integrity bases restricted by the initial orthotropic symmetry of the material. By using the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of the piezoelectric mate-rial, the constitutive relations of piezoelectric materials with damage are derived. The model is applied to a special case of piezoelectric plate with transverse matrix cracks. With theKirchhoff hypothesis of plate, the free vibration equationsof the piezoelectric rectangular plate considering damage isestablished. By using Galerkin method, the equations are sol-ved. Numerical results show the effect of the damage on the free vibration of the piezoelectric plate under the close-circuit condition, and the present results are compared with those of the three-dimensional theory.

  1. Piezoelectric paint sensor for ultrasonic NDE

    Science.gov (United States)

    Li, X.; Zhang, Y.

    2007-04-01

    This paper deals with a distributed acoustic emission sensing method, which is especially suitable for piezoelectric paint. Piezoelectric paint is a composite piezoelectric material that is comprised of tiny piezoelectric particles randomly dispersed within a polymer matrix phase. An overview of the distributed acoustic emission sensing method for defect monitoring is given in this paper. The use of piezoelectric materials for ultrasonic signal measurements is next discussed along with a series of ultrasonic tests performed to verify the ultrasonic sensing capability of piezoelectric paint. To examine the mechanism of the distributed acoustic emission sensing method for crack initiation detection, the results of a finite element simulation based study is presented in this paper. The finite element model used in the parametric study is calibrated with experimental data. The effect of sensor numbers included in the array has been studied using both simulation and experimental data. Based on the preliminary results of this study, piezoelectric paint sensor appears to hold a potential for use in on-line monitoring of cracks such as those caused by fatigue in metal structures although more work is still needed before successful practical application can be made.

  2. High dielectric permittivity and improved mechanical and thermal properties of poly(vinylidene fluoride) composites with low carbon nanotube content: effect of composite processing on phase behavior and dielectric properties

    Science.gov (United States)

    Sudheer Kumar, G.; Vishnupriya, D.; Chary, K. Suresh; Umasankar Patro, T.

    2016-09-01

    The composite processing technique and nanofiller concentration and its functionalization significantly alter the properties of polymer nanocomposites. To realize this, multi-walled carbon nanotubes (CNT) were dispersed in a poly(vinylidene fluoride) (PVDF) matrix at carefully selected CNT concentrations by two illustrious methods, such as solution-cast and melt-mixing. Notwithstanding the processing method, CNTs induced predominantly the γ-phase in PVDF, instead of the commonly obtained β-phase upon nanofiller incorporation, and imparted significant improvements in dielectric properties. Acid-treatment of CNT improved its dispersion and interfacial adhesion significantly with PVDF, and induced a higher γ-phase content and better dielectric properties in PVDF as compared to pristine CNT. Further, the γ-phase content was found to be higher in solution-cast composites than that in melt-mixed counterparts, most likely due to solvent-induced crystallization in a controlled environment and slow solvent evaporation in the former case. However, interestingly, the melt-mixed composites showed a significantly higher dielectric constant at the onset of the CNT networked-structure as compared to the solution-cast composites. This suggests the possible role of CNT breakage during melt-mixing, which might lead to higher space-charge polarization at the polymer-CNT interface, and in turn an increased number of pseudo-microcapacitors in these composites than the solution-cast counterparts. Notably, PVDF with 0.13 vol% (volume fraction, f c = 0.0013) of acid-treated CNTs, prepared by melt-mixing, displayed the relative permittivity of ˜217 and capacitance of ˜5430 pF, loss tangent of ˜0.4 at 1 kHz and an unprecedented figure of merit of ˜105. We suggest a simple hypothesis for the γ-phase formation and evolution of the high dielectric constant in these composites. Further, the high-dielectric composite film showed marked improvements in mechanical and thermal properties

  3. Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator.

    Science.gov (United States)

    Lee, Ju-Hyuck; Lee, Keun Young; Gupta, Manoj Kumar; Kim, Tae Yun; Lee, Dae-Yeong; Oh, Junho; Ryu, Changkook; Yoo, Won Jong; Kang, Chong-Yun; Yoon, Seok-Jin; Yoo, Ji-Beom; Kim, Sang-Woo

    2014-02-01

    A highly stretchable hybrid nanogenerator has been developed using a micro-patterned piezoelectric polymer P(VDF-TrFE), PDMS-CNT composite, and graphene nanosheets. Mechanical and thermal energies are simultaneously harvested from a single cell of the device. The hybrid nanogenerator exhibits high robustness behavior even after 30% stretching and generates very stable piezoelectric and pyroelectric power outputs due to micro-pattern designing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Circuit for Driving Piezoelectric Transducers

    Science.gov (United States)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  5. Carbon Nanotube-Epoxy Nanocomposites: Correlation and Integration of Dynamic Impedance, Dielectric, and Mechanical Analyses

    Directory of Open Access Journals (Sweden)

    O. Moudam

    2013-01-01

    Full Text Available This study focuses on the characterization of MWNT-epoxy composites for different MWNT concentrations of 0–7 wt% by correlating different dynamic analysis techniques, including DMA, impedance, and DEA. An optimum composition was established at 0.1 wt% MWNTs corresponding to the best MWNT dispersion which resulted in the formation of an optimum MWNT network. The addition of this low fraction of MWNTs in epoxy resulted in stiffening the molecular structure and suppressing certain molecular transitions, raising the dielectric constant especially in the low-to-medium frequency range, raising the electrical conductivity especially at the high frequencies, and increasing the electromagnetic shielding effectiveness. The 0.1% MWNT-epoxy nanocomposite switched the electromagnetic shielding behaviour from being a very effective absorber at low frequencies to being an effective reflector at high frequencies. Finally, the Nyquist plot derived from the dynamic impedance spectroscopy proved most useful at providing evidence of multiple size distribution of MWNT agglomerates.

  6. Piezo-Electric Hypothesis for Hot Spot Formation Leading to Detonation

    Science.gov (United States)

    Montgomery, D. S.; Cawkwell, M. J.; Ramos, K. J.

    2015-06-01

    The impact to detonation sequence has been a long standing mystery in high explosives (HE). It is widely recognized that detonation begins in spatially-localized ``hot spots'' where chemistry initiates, but the physical mechanisms leading to hot spot formation are unknown. Here we revisit an old hypothesis, first suggested by Maycock and Grabenstein, that piezo-electric effects may be the cause of hot spot formation since most solid HE materials are observed to be highly piezo-electric. In this scenario, shock-induced pressure leads to electric fields of 100's MV/m, sufficient for dielectric breakdown and breaking chemical bonds, rather than via thermal effects. Extrapolation of statically measured piezo-electric coefficients for several HE materials suggests that shock pressures > 100-kbar might lead to field strengths > 100 - 1000 MV/m, but no definitive experimental proof has been obtained to support this. Here we discuss possible experiments to test this hypothesis by measuring the electric field in dynamic HE experiments correlated with hot spot formation. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.

  7. Charged vacancy induced enhanced piezoelectric response of reactive assistive IBSD grown AlN thin films

    Science.gov (United States)

    Sharma, Neha; Rath, Martando; Ilango, S.; Ravindran, T. R.; Ramachandra Rao, M. S.; Dash, S.; Tyagi, A. K.

    2017-01-01

    Piezoelectric response of AlN thin films was investigated in a AlN/Ti/Si(1 0 0) layer structure prepared by ion beam sputter deposition (IBSD) in reactive assistance of N+/\\text{N}2+ ions. The samples were characterized for their microstructure, piezoelectric response and charged defects using high resolution x-ray diffraction (HR-XRD), piezo force microscopy (PFM) and photoluminescence (PL) spectroscopy respectively. Our results show that the films are highly textured along the a-axis and charged native point defects are present in the microstructure. Phase images of these samples obtained from PFM show that the films are predominantly N-polar. The measured values of piezoelectric coefficient d 33(eff) for these samples are as high as 206  ±  20 pm V-1 and 668  ±  60 pm V-1 calculated by piezo response loop for AlN films of a thickness of 235 nm and 294 nm respectively. A mechanism for high d 33(eff) values is proposed with a suitable model based on the charged defects induced enhanced polarization in the dielectric continuum of AlN.

  8. Fabrication and modeling of piezoelectric transducers for High-Frequency medical imaging

    CERN Document Server

    Abellard, André-Pierre; Holc, Janez; Levassort, Franck; Noshchenko, Oleksandr; Lethiecq, Marc; Kosec, Marija

    2013-01-01

    We have studied the processing of piezoelectric thick films using electrophoretic deposition (EPD) for high-frequency ultrasound applications. Lead-zirconium-titanate (PZT) particles synthetized by solid states synthesis were dispersed in ethanol using ammonium polyacrylate (PAA). The electrophoretic deposition of PZT particles was performed at a constant-current mode. PZT thick-films deposited at 1 mA for 60 seconds were sintered at 900oC for 2 hours in a PbO-controlled atmosphere. The scanning-electron microscopy (SEM) analysis shows that the thickness of PZT layer is uniform and that the pores are homogeneously distributed within the layer. The complex electrical impedance was measured and fitted by KLM scheme in order to deduce the dielectric, mechanical and piezoelectric parameters of the thick-films. The density and thickness of PZT thick films are used as inputs and the thickness coupling factor kt, dielectric constant at constant strain and resonant frequency are deduced. The results show that homogen...

  9. Hybrid thermoelectric piezoelectric generator

    Science.gov (United States)

    Montgomery, D. S.; Hewitt, C. A.; Carroll, D. L.

    2016-06-01

    This work presents an integration of flexible thermoelectric and piezoelectric materials into a single device structure. This device architecture overcomes several prohibitive issues facing the combination of traditional thermoelectric and piezoelectric generators, while optimizing performance of the combined power output. The structure design uses a carbon nanotube/polymer thin film as a flexible thermoelectric generator that doubles as an electrode on a piezoelectric generator made of poly(vinylidene fluoride). An example 2 × 2 array of devices is shown to generate 89% of the maximum thermoelectric power, and provide 5.3 times more piezoelectric voltage when compared with a traditional device.

  10. Miniature Piezoelectric Macro-Mass Balance

    Science.gov (United States)

    Sherrit, Stewart; Trebi-Ollennu, Ashitey; Bonitz, Robert G.; Bar-Cohen, Yoseph

    2010-01-01

    Mass balances usually use a strain gauge that requires an impedance measurement and is susceptible to noise and thermal drift. A piezoelectric balance can be used to measure mass directly by monitoring the voltage developed across the piezoelectric balance, which is linear with weight or it can be used in resonance to produce a frequency change proportional to the mass change (see figure). The piezoelectric actuator/balance is swept in frequency through its fundamental resonance. If a small mass is added to the balance, the resonance frequency shifts down in proportion to the mass. By monitoring the frequency shift, the mass can be determined. This design allows for two independent measurements of mass. Additionally, more than one sample can be verified because this invention allows for each sample to be transported away from the measuring device upon completion of the measurement, if required. A piezoelectric actuator, or many piezoelectric actuators, was placed between the collection plate of the sampling system and the support structure. As the sample mass is added to the plate, the piezoelectrics are stressed, causing them to produce a voltage that is proportional to the mass and acceleration. In addition, a change in mass delta m produces a change in the resonance frequency with delta f proportional to delta m. In a microgravity environment, the spacecraft could be accelerated to produce a force on the piezoelectric actuator that would produce a voltage proportional to the mass and acceleration. Alternatively, the acceleration could be used to force the mass on the plate, and the inertial effects of the mass on the plate would produce a shift in the resonance frequency with the change in frequency related to the mass change. Three prototypes of the mass balance mechanism were developed. These macro-mass balances each consist of a solid base and an APA 60 Cedrat flextensional piezoelectric actuator supporting a measuring plate. A similar structure with 3 APA

  11. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  12. Mechanical and Electrical Ageing Effects on the Long-Term Stretching of Silicone Dielectric Elastomers with Soft Fillers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Zakaria, Shamsul Bin; Yu, Liyun

    2016-01-01

    Dielectric elastomer materials for actuators need to be soft and stretchable while possessing high dielectric permittivity. Soft silicone elastomers can be obtained through the use of silicone oils, while enhanced permittivity can be obtained through the use of dipolar groups on the polymer backb...

  13. Mechanical and Electrical Ageing Effects on the Long-Term Stretching of Silicone Dielectric Elastomers with Soft Fillers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Zakaria, Shamsul Bin; Yu, Liyun

    2016-01-01

    Dielectric elastomer materials for actuators need to be soft and stretchable while possessing high dielectric permittivity. Soft silicone elastomers can be obtained through the use of silicone oils, while enhanced permittivity can be obtained through the use of dipolar groups on the polymer backb...

  14. Defect Engineering of Lead-Free Piezoelectrics with High Piezoelectric Properties and Temperature-Stability.

    Science.gov (United States)

    Feng, Yu; Li, Wei-Li; Xu, Dan; Qiao, Yu-Long; Yu, Yang; Zhao, Yu; Fei, Wei-Dong

    2016-04-13

    The high piezoelectricity of ABO3-type lead-free piezoelectric materials can be achieved with the help of either morphotropic phase boundary (MPB) or polymorphic phase transition (PPT). Here, we propose a new defect engineering route to the excellent piezoelectric properties, in which doped smaller acceptor and donor ions substituting bivalent A-sites are utilized to bring local lattice distortion and lower symmetry. A concrete paradigm is presented, (Li-Al) codoped BaTiO3 perovskite, that exhibits a largely thermo-stable piezoelectric constant (>300 pC/N) and huge mechanical quality factor (>2000). A systematic analysis including theoretical analysis and simulation results indicates that the Li(+) and Al(3+) ions are inclined to occupy the neighboring A-sites in the lattice and constitute a defect dipole (ionic pairs). The defect dipoles possess a kind of dipole moment which tends to align directionally after thermo-electric treatment. A mechanism related to the defect symmetry principle, phase transition, and defect migration is proposed to explain the outstanding piezoelectric properties. The present study opens a new development window for excellent piezoelectricity and provides a promising route to the potential utilization of lead-free piezoelectrics in high power applications.

  15. Investigation of mechanism of anode plasma formation in ion diode with dielectric anode

    Science.gov (United States)

    Pushkarev, A.

    2015-10-01

    The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350-400 kV, 6-8 kA, 80 ns) with a focusing conical diode with Br external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1-2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction in the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10-15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3-6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20-30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°-6°.

  16. Microstructure and electrical properties of Ti-modified (Na0.5K0.5)(TiχNb1-χ)O3 lead-free piezoelectric ceramics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qian; ZHANG Boping; ZHAO Pei; LI Haitao; ZHANG Limin

    2009-01-01

    Ti-Modified (Na0.5K0.5)(TixNb1-x)O3 (NKNT) piezoelectric ceramics were fabricated by double-layer buffed powder process at 1020℃ for 2 h. The microstructures, and piezoelectric and dielectric properties of the lead-free NKNT ceramics were investigated. X-ray diffraction re-suits indicated that Ti4+ had diffused into the (Na0.5K0.5)NbO3 lattices to form a solid solution with a perovskite structure. The introducing of Ti into the (Na0.5K0.5)NbO3 solid solution effectively reduced the sintering temperature and densified the microstructure with a decreased grain size. The highest relative density reached more than 90%. The highest piezoelectric dielectric coefficient d33 and planar mode electro mechanical coupling coefficient kp were 110 pC/N and 19.5%, which were obtained in the NKNT ceramic with 1 mol% Ti. The piezoelectric properties of the NKNT ceramics were enhanced by aging in air for a period of time owing to the compensation of oxygen vacancies.

  17. Piezoelectric Properties of CuO-Doped (K,Na)NbO3 Lead-Free Ceramics Synthesized with Hydrothermal Powders

    Science.gov (United States)

    Yokouchi, Yuriko; Maeda, Takafumi; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2013-07-01

    We report the piezoelectric properties of CuO-doped hydrothermal (K,Na)NbO3 ceramics that can be applied as hard-type lead-free piezoelectric ceramics. To date, we have succeeded in synthesizing high-quality KNbO3 and NaNbO3 powders by the hydrothermal method, which is based on an ionic reaction at high temperature (around 210 °C) and pressure. Increasing both the piezoelectric constant d and the mechanical quality factor (Qm) is important for resonance-type piezoelectric devices, such as ultrasonic motors and transformers. CuO doping into hydrothermal (K,Na)NbO3 ceramics was examined to realize hard-type lead-free piezoelectric ceramics. By doping with 1.2 mol % CuO, Qm was increased and the dielectric loss (tan δ) was decreased to 0.5%. The grain size was also influenced by the amount of CuO doping, which indicates that Qm is related to the density. To achieve a higher Qm value, the grain size is required to be less than 5 µm however, excessive CuO doping leads to anomalous grain growth. Optimal piezoelectric properties were obtained for 1.2 mol % CuO-doped (K,Na)NbO3; k31 = 0.32, d31 = -44 pC/N, Qm (radial) = 959, and tan δ= 0.5%. These characteristics showed that CuO doping with hydrothermal powders is effective for obtaining hard-type ceramics, and the mechanical quality factor is more than ten times higher than that of nondoped hydrothermal (K,Na)NbO3 ceramics. Therefore, compared with the conventional solid-state method, we could succeed in obtaining hard-type ceramics by a simple and short process.

  18. Doping effects of CuO additives on the properties of low-temperature-sintered PMnN-PZT-based piezoelectric ceramics and their applications on surface acoustic wave devices.

    Science.gov (United States)

    Tsai, Cheng-Che; Chu, Sheng-Yuan; Lu, Chun-Hsien

    2009-03-01

    To develop the anisotropic ceramic substrate with low sintering temperature for surface acoustic wave (SAW) applications, the low cost and feasible material with moderate piezoelectric properties, good dielectric properties, and higher Curie temperature were explored. The piezoelectric ceramics with compositions of Pb[(Mn(1/3)Nb(2/3))(0.06-) (Zr(0.52)Ti(0.48))0.94] O(3) (PMnN-PZT) + 0.5 wt.% PbO + x wt.% CuO (0.05 = x = 0.3) had been prepared by the conventional mixed-oxides method. CuO dopants were used as the sintering aid to improve the bulk density under low sintering temperature (i.e., 980-1040 degrees C). The phase structures, microstructures, frequency behavior of dielectric properties (up to 50 MHz), piezoelectric properties, ferroelectric properties, and temperature stability with the amount of CuO additive were systematically investigated. Experimental results showed that the sintering temperature could be lowered down to 1020 degrees C and still keep reasonably good piezoelectric activity (i.e., high electromechanical coupling factor (k(p)), (k(t)) and dielectric and ferroelectric properties. The preferable composition, obtained at x = 0.1, presented the values of the electromechanical coupling factor (k(p)) (k(t)), mechanical quality factor (Q(m)), piezoelectric charge constant (d(33)), dielectric constant, dielectric loss, temperature coefficient of resonant frequency (TCF(B)), and Curie point (T(c)) of 0.54, 0.48, 850, 238 pc/N, 1450, 0.0023, 1.1 kV/mm, 26 coul/cm(2), -150 ppm/ degrees C, and 348 degrees C. Using this developed low-temperature-sintered material to make the piezoelectric substrate, the SAW filter was fabricated and its properties were measured. Results showed that this device possessed very high value of k(2)(7.13%) with a good TCF (-40.15 ppm/ degrees C), and a surface wave velocity (V(P)) of 2196 m/s.

  19. Finite element modeling and feedback control of piezoelectric smart structures

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the general formula derived with a smart beam structure bonded with piezoelectric material using the piezoelectricity theory, elastic mechanism and Hamilton principle for eleetromechanically coupled piezoelectric fi nite element and dynamic equations, the second order dynamic model built, and the expression of state space, and the analysis of conventional speed and position feedback and the design of optimum feedback controller for output, the fi nite element models built for a piezoelectric cantilever beam, and the feedback controller designed eventually, and concludes with simulation results that the vibration suppression obtained is very satisfactory and the algorithms proposed are very useful.

  20. Study the Postbuckling of Hexagonal Piezoelectric Nanowires with Surface Effect

    Directory of Open Access Journals (Sweden)

    O. Rahmani

    2014-04-01

    Full Text Available Piezoelectric nanobeams having circular, rectangular and hexagonal cross-sections are synthesized and used in various Nano structures; however, piezoelectric nanobeams with hexagonal cross-sections have not been studied in detail. In particular, the physical mechanisms of the surface effect and the role of surface stress, surface elasticity and surface piezoelectricity have not been discussed thoroughly. The present study investigated post-buckling behavior of piezoelectric nanobeams by examining surface effects. The energy method was applied to post-buckling of hexagonal nanobeams and the critical buckling voltage and amplitude are derived analytically from bulk and surface material properties and geometric factors.

  1. AC Conductivity and Dielectric Relaxation Behavior of Sb2S3 Bulk Material

    Science.gov (United States)

    Abd El-Rahman, K. F.; Darwish, A. A. A.; Qashou, Saleem I.; Hanafy, T. A.

    2016-07-01

    The Sb2S3 bulk material was used for next-generation anode for lithium-ion batteries. Alternative current (AC) conductivity, dielectric properties and electric modulus of Sb2S3 have been investigated. The measurements were carried out in the frequency range from 40 Hz to 5 MHz and temperature range from 293 K to 453 K. The direct current (DC) conductivity, σ DC, shows an activated behavior and the calculated activation energy is 0.50 eV. The AC conductivity, σ AC, was found to increase with the increase of temperature and frequency. The conduction mechanism of σ AC was controlled by the correlated barrier hopping model. The behavior of the dielectric constant, ɛ', and dielectric loss index, ɛ'', reveal that the polarization process of Sb2S3 is dipolar in nature. The behavior of both ɛ' and ɛ'' reveals that bulk Sb2S3 has no ferroelectric or piezoelectric phase transition. The dielectric modulus, M, gives a simple method for evaluating the activation energy of the dielectric relaxation. The calculated activation energy from M is 0.045 eV.

  2. Effect of garment design on piezoelectricity harvesting from joint movement

    Science.gov (United States)

    Yang, Jin-Hee; Cho, Hyun-Seung; Park, Seon-Hyung; Song, Seung-Hwan; Yun, Kwang-Seok; Lee, Joo Hyeon

    2016-03-01

    The harvesting of piezoelectricity through the human body involves the conversion of mechanical energy, mostly generated by the repeated movements of the body, to electrical energy, irrespective of the time and location. In this research, it was expected that the garment design would play an important role in increasing the efficiency of piezoelectricity scavenged in a garment because the mechanical deformation imposed on the energy harvester could increase through an optimal design configuration for the garment parts supporting a piezoelectricity harvester. With this expectation, this research aimed to analyze the effect of the clothing factors, and that of human factors on the efficiency of piezoelectricity harvesting through clothing in joint movements. These analyses resulted in that the efficiency of the piezoelectricity harvesting was affected from both two clothing factors, tightness level depending upon the property of the textile material and design configuration of the garment part supporting the piezoelectricity harvesting. Among the three proposed designs of the garment part supporting the piezoelectricity harvesting, ‘reinforced 3D module design,’ which maximized the value of radius in the piezoelectricity harvester, showed the highest efficiency across all areas of the joints in the human body. The two human factors, frequency of movement and body part, affected the efficiency of the piezoelectricity harvesting as well.

  3. Nonmagnetic driver for piezoelectric actuators

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh

    2014-01-01

    Piezoelectric actuator drive aims to enable reliable motor performance in strong magnetic fields for magnetic res- onance imaging and computed tomography treatment tables. There are technical limitations in operation of these motors and drive systems related to magnetic interference. Piezoelectric...... actuators. Therefore, piezoelectric transformer-based power converters are used for driving piezoelectric actuator drive motor in the presence of high electromagnetic field....

  4. Variation of Piezoelectric properties and mechanisms across the relaxor-like/Ferroelectric continuum in BiFeO3- (K0.5Bi0.5)TiO3-PbTiO3 ceramics.

    Science.gov (United States)

    Bennett, James; Shrout, Thomas R; Zhang, Shujun; Owston, Heather E; Stevenson, Tim J; Esat, Faye; Bell, Andrew J; Comyn, T P

    2015-01-01

    1- x - y)BiFeO3-x(K0.5Bi0.5)TiO3-yPbTiO3 (BFKBT- PT) piezoelectric ceramics were investigated across the compositional space and contrasted against the xBiFeO3- (1-x)(K0.5Bi0.5)TiO3 (BF-KBT) system, whereby a range of relaxor-like/ferroelectric behavior was observed. Structural and piezoelectric properties were closely related to the PbTiO3 concentration; below a critical concentration, relaxor-like behavior was identified. The mechanisms governing the piezoelectric behavior were investigated with structural, electrical, and imaging techniques. X-ray diffraction established that longrange non-centrosymmetric crystallographic order was evident above a critical PbTiO3 concentration, y > 0.1125. Commensurate with the structural analysis, electric-field-induced strain responses showed electrostrictive behavior in the PbTiO3-reduced compositions, with increased piezoelectric switching in PbTiO3-rich compositions. Positive-up-negative-down (PUND) analysis was used to confirm electric-field-induced polarization measurements, elucidating that the addition of PbTiO3 increased the switchable polarization and ferroelectric ordering. Piezoresponse force microscopy (PFM) of the BF-KBT-PT system exhibited typical domain patterns above a critical PbTiO3 threshold, with no ferroelectric domains observed in the BF-KBT system in the pseudocubic region. Doping of BiFeO3-PbTiO3 has been unsuccessful in the search for hightemperature materials that offer satisfactory piezoelectric properties; however, this system demonstrates that the partial substitution of alternative end-members can be an effective method. The partial substitution of PbTiO3 into BF-KBT enables long-range non-centrosymmetric crystallographic order, resulting in increased polar order and TC, compared with the pseudocubic region. The search for novel high-temperature piezoelectric ceramics can therefore exploit the accommodating nature of the perovskite family, which allows significant variance in chemical and physical

  5. Effect of Sr2TiMnO6 fillers on mechanical, dielectric and thermal behaviour of PMMA polymer

    Science.gov (United States)

    Thomas, P.; Dakshayini, B. S.; Kushwaha, H. S.; Vaish, Rahul

    2015-06-01

    Composites of poly(methyl methacrylate) (PMMA) and Sr2TiMnO6 (STMO) were fabricated via melt mixing followed by hot pressing technique. These were characterized using X-ray diffraction (XRD), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), thermo mechanical analysis (TMA) and impedance analyser for their structural, thermal and dielectric properties. The coefficient of thermal expansion (CTE) was measured between 40°C and 100°C for pure PMMA is 115.2 ppm/°C, which was decreased to 78.58 ppm/°C when the STMO content was increased to 50 wt.% in PMMA. There was no difference in the glass transition (Tg) temperature of the PMMA polymer and their composites. However, the FTIR analysis indicated possible interaction between the PMMA and STMO. The density and the hardness were increased as the STMO content increased in the PMMA matrix. Permittivity was found to be as high as 30.9 at 100 Hz for the PMMA+STMO-50 wt.% composites, indicating the possibility of using these materials for capacitor applications. The thermal stability of polymer was enhanced by incorporation of STMO fillers.

  6. Growth, structural, spectral, mechanical, thermal and dielectric characterization of phosphoric acid admixtured L-alanine (PLA) single crystals

    Science.gov (United States)

    Rose, A. S. J. Lucia; Selvarajan, P.; Perumal, S.

    2011-10-01

    Phosphoric acid admixtured L-alanine (PLA) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 18 mm × 12 mm × 8 mm have been obtained in 28 days. The grown crystals were colorless and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV-visible transmittance spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied.

  7. Modeling of recovery mechanism of ozone zero phenomenaby adding small amount of nitrogen in atmospheric pressure oxygen dielectric barrier discharges

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2013-09-01

    Ozone zero phenomena in an atmospheric pressure oxygen dielectric barrier discharges have been one of the major problems during a long time operation of ozone generators. But it is also known that the adding a small amount of nitrogen makes the recover from the ozone zero phenomena. To make clear the mechanism of recovery, authors have been simulated the discharges with using the results of Ref. 3. As a result, the recovery process can be seen and ozone density increased. It is found that the most important species would be nitrogen atoms. The reaction of nitrogen atoms and oxygen molecules makes oxygen atoms which is main precursor species of ozone. This generation of oxygen atoms is effective to increase ozone. The dependence of oxygen atom density (nO) and nitrogen atom density (nN) ratio was examined in this paper. In the condition of low nN/nO ratio case, generation of nitrogen oxide is low, and the quenching of ozone by the nitrogen oxide would be low. But in the high ratio condition, the quenching of ozone by nitrogen oxide would significant. This work was supported by KAKENHI(23560352).

  8. Model and Design of a Power Driver for Piezoelectric Stack Actuators

    Directory of Open Access Journals (Sweden)

    Chiaberge M

    2010-01-01

    Full Text Available A power driver has been developed to control piezoelectric stack actuators used in automotive application. An FEM model of the actuator has been implemented starting from experimental characterization of the stack and mechanical and piezoelectric parameters. Experimental results are reported to show a correct piezoelectric actuator driving method and the possibility to obtain a sensorless positioning control.

  9. Compositional Design of Dielectric, Ferroelectric and Piezoelectric Properties of (K, NaNbO3 and (Ba, Na(Ti, NbO3 Based Ceramics Prepared by Different Sintering Routes

    Directory of Open Access Journals (Sweden)

    José A. Eiras

    2016-03-01

    Full Text Available Lead free piezoelectric materials are being intensively investigated in order to substitute lead based ones, commonly used in many different applications. Among the most promising lead-free materials are those with modified NaNbO3, such as (K, NaNbO3 (KNN and (Ba, Na(Ti, NbO3 (BTNN families. From a ceramic processing point of view, high density single phase KNN and BTNN ceramics are very difficult to sinter due to the volatility of the alkaline elements, the narrow sintering temperature range and the anomalous grain growth. In this work, Spark Plasma Sintering (SPS and high-energy ball milling (HEBM, following heat treatments (calcining and sintering, in oxidative (O2 atmosphere have been used to prepare single phase highly densified KNN (“pure” and Cu2+ or Li1+ doped, with theoretical densities ρth > 97% and BTNN ceramics (ρth - 90%, respectively. Using BTTN ceramics with a P4mm perovskite-like structure, we showed that by increasing the NaNbO3 content, the ferroelectric properties change from having a relaxor effect to an almost “normal” ferroelectric character, while the tetragonality and grain size increase and the shear piezoelectric coefficients (k15, g15 and d15 improve. For KNN ceramics, the results reveal that the values for remanent polarization as well as for most of the coercive field are quite similar among all compositions. These facts evidenced that Cu2+ may be incorporated into the A and/or B sites of the perovskite structure, having both hardening and softening effects.

  10. Effect of domain structure on the mechanical and piezoelectric properties of lead-free alkali niobate ceramics

    Science.gov (United States)

    Martin, Alexander; Kakimoto, Ken-ichi

    2014-09-01

    Load-bearing applications, such as actuators, require sufficient mechanical properties to guarantee long lifetime and reliability. Lead zirconate titanate (PZT) ceramics show relatively low mechanical strength which decreases after applying an electric field. Thus far, evaluations of the mechanical properties have not been the focus in the case of alkali niobate-based (NKN) ceramics. For this purpose, differently poled Lix(Na0.5K0.5)1-xNbO3 ceramics have been observed by means of 3-point bending tests. Best results were achieved with Li0.02Na0.49K0.49NbO3, with a flexural strength of 115 MPa in unpoled state. This value was maximized at a 90° domain switching fraction η of about 20% to 134 MPa. Other compositions showed similar behavior, which led to the idea that domain switching can be used to enhance the mechanical properties of NKN ceramics. Internal stresses induced via domain reorientation might be the cause of this phenomenon and will be examined in this study.

  11. Ferromagnetic-Dielectric Ni0.5Zn0.5Fe1.9O4−δ/PbZr0.52Ti0.48O3 Particulate Composites: Electric, Magnetic, Mechanical, and Electromagnetic Properties

    Directory of Open Access Journals (Sweden)

    M. Venkata Ramana

    2010-01-01

    Full Text Available Novel ferromagnetic-dielectric particulate composites of Ni0.5Zn0.5Fe1.95O4−δ (NZF and PbZr0.52Ti0.48O3 (PZT were prepared by conventional ceramic method. The presence of two phases in composites was confirmed by XRD technique. The variations of dielectric constant ( with frequency in the range of 100 kHz–1 MHz at room temperature and also with temperature at three different frequencies (50 kHz, 100 kHz, and 500 kHz were studied. Detailed studies on the dielectric properties were done confirming that the magnetoelectric interaction between the constituent phases may result in various anomalies in the dielectric behaviour of the composites. It is proposed that interfaces play an important role in the dielectric properties, causing space charge effects and Maxwell-Wagner relaxation, particularly at low frequencies and high temperatures. The piezoelectric d33 constant was studied at room temperature, and the d33 constant value decreased with ferrite content. Magnetic properties like B-H loops traces were studied to understand the saturation magnetic (Ms and magnetic moment ( of the present particulate composites. The magnetoelectric (ME output was measured by varying dc bias magnetic field. A large ME output signal of 2780 mV/cm Oe was observed in the composite having 50% ferrite. The temperature variation of longitudinal modulus (L and internal friction (Q−1 of these particulate composites at 104 kHz was studied in the temperature range 30°C–420°C by the composite oscillator technique. Longitudinal modulus showed a sharp minimum, and internal friction exhibits a sharp peak at ferroelectric-paraelectric phase transition. These ferroelectric-dielectric particulate composites were prepared with a view to using them as ME sensors and transducers.

  12. Giant Static Dielectric Constant of Strained PbTiO3*

    Institute of Scientific and Technical Information of China (English)

    WANG Yuan-Xu

    2009-01-01

    First-principles density functional perturbation calculations are employed to study the dielectric and piezoelectric properties of strained tetragonal PbTi03. Lattice distortion, static dielectric constant, Born effective charge, zone-centre phonons, and piezoelectric constant are obtained. For the strained tetragonal Pb TiO3, we obtain a giant static dielectric constant (3600) under a strain 0.77%. Moreover, the calculated piezoelectric constant e15 of strained PbTiO3 reaches about 203 C/m2 which is about 20 times of that of unstrained system. The giant static dielectric constant is mainly due to the softening of the lowest-frequency phonon mode and the reduce of Ti-O bond length. This work demonstrates a route to a giant static dielectrics for electrically microwave and other devices.

  13. Materials characterization and fracture mechanics of a space grade dielectric silicone insulation

    Science.gov (United States)

    Abdel-Latif, A. I.; Tweedie, A. T.

    1982-01-01

    The present investigation is concerned with the DC 93-500 high voltage silicone insulation material employed to pot the gun and the collector end of a traveling wave tube (TWT) used on the Landsat D Satellite. The fracture mechanics behavior of the silicone resin was evaluated by measuring the slow crack velocity as a function of the opening mode of the stress intensity factor at +25 and -10 C, taking into account various uniaxial discrete strain values. It was found that the silicone resins slow crack growth is faster than that for a high voltage insulation polyurethane material at the same stress intensity factor value and room temperature.

  14. Mechanically compliant electrodes and dielectric elastomers from PEG-PDMS copolymers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    2016-01-01

    Soft conducting elastomers have been prepared from polydimethylsiloxane-polyethyleneglycol (PDMS-PEG) copolymer and surfactant-stabilized multi-walled carbon nanotubes (MWCNTs). The copolymer was chain-extended with PDMS of molecular weight 17.2 kg mol-1 in order to obtain a crosslinkable PDMS...... showed high conductivity combined with inherent softness. The high conductivity and softness, PDMS-PEG copolymers with incorporated MWCNTs hold great promises as compliant and highly stretchable electrodes for stretchable devices such as electro-mechanical transducers....

  15. Communication: Slow supramolecular mode in amine and thiol derivatives of 2-ethyl-1-hexanol revealed by combined dielectric and shear-mechanical studies.

    Science.gov (United States)

    Adrjanowicz, K; Jakobsen, B; Hecksher, T; Kaminski, K; Dulski, M; Paluch, M; Niss, K

    2015-11-14

    In this paper, we present results of dielectric and shear-mechanical studies for amine (2-ethyl-1-hexylamine) and thiol (2-ethyl-1-hexanethiol) derivatives of the monohydroxy alcohol, 2-ethyl-1-hexanol. The amine and thiol can form hydrogen bonds weaker in strength than those of the alcohol. The combination of dielectric and shear-mechanical data enables us to reveal the presence of a relaxation mode slower than the α-relaxation. This mode is analogous to the Debye mode seen in monohydroxy alcohols and demonstrates that supramolecular structures are present for systems with lower hydrogen bonding strength. We report some key features accompanying the decrease in the strength of the hydrogen bonding interactions on the relaxation dynamics close to the glass-transition. This includes changes (i) in the amplitude of the Debye and α-relaxations and (ii) the separation between primary and secondary modes.

  16. Electroactive properties of flexible piezoelectric composites

    Directory of Open Access Journals (Sweden)

    Walter Katsumi Sakamoto

    2001-07-01

    Full Text Available A flexible piezoelectric composite with 0-3 connectivity, made from Lead Zirconate Titanate (PZT powder and vegetable-based polyurethane (PU, was doped with small amount of semiconductor powder. As a result a composite with 0-0-3 connectivity was obtained. The nature of absorption and steady state electrical conduction and the dielectric behaviour have been studied for this ceramic/polymer composite. The dielectric loss processes of the composite were observed to be dominated by those the polymer. Adding a semiconductor phase in the composite the electrical conductivity can be controlled and a continuous electric flux path could be created between the PZT grains. This composite may be poled at low voltage and in shorter time compared with composites without a conductive phase.

  17. Piezoelectric cantilever sensors

    Science.gov (United States)

    Shih, Wan Y. (Inventor); Shih, Wei-Heng (Inventor); Shen, Zuyan (Inventor)

    2008-01-01

    A piezoelectric cantilever with a non-piezoelectric, or piezoelectric tip useful as mass and viscosity sensors. The change in the cantilever mass can be accurately quantified by monitoring a resonance frequency shift of the cantilever. For bio-detection, antibodies or other specific receptors of target antigens may be immobilized on the cantilever surface, preferably on the non-piezoelectric tip. For chemical detection, high surface-area selective absorbent materials are coated on the cantilever tip. Binding of the target antigens or analytes to the cantilever surface increases the cantilever mass. Detection of target antigens or analytes is achieved by monitoring the cantilever's resonance frequency and determining the resonance frequency shift that is due to the mass of the adsorbed target antigens on the cantilever surface. The use of a piezoelectric unimorph cantilever allows both electrical actuation and electrical sensing. Incorporating a non-piezoelectric tip (14) enhances the sensitivity of the sensor. In addition, the piezoelectric cantilever can withstand damping in highly viscous liquids and can be used as a viscosity sensor in wide viscosity range.

  18. Performance of Nonlinear Mechanical, Resonant-Shunted Piezoelectric, and Electronic Vibrations Absorbers for Multi-Degree-of-Freedom Structures

    Science.gov (United States)

    2011-07-21

    cowork- ers in the Mechanical Systems Lab. Thanks to Mauro, Dino, Clay, Eric, Debbie, Jens, and Marca for their discussions and assistance with...through static equilibrium simultaneously. iii. Displacement of one mass uniquely defines the displacements of all masses. These criteria are analogous to...be greater. Shaw and Pierre [10, 11] present an alternative definition of nonlinear normal modes, defined for both conservative and dissipative systems

  19. Energy harvesting from low frequency applications using piezoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel, E-mail: zhiqun.deng@pnnl.gov [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States)

    2014-12-15

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters.

  20. The co-operative performance of a hydrated salt assisted sponge like P(VDF-HFP) piezoelectric generator: an effective piezoelectric based energy harvester.

    Science.gov (United States)

    Adhikary, Prakriti; Garain, Samiran; Mandal, Dipankar

    2015-03-21

    We have prepared hydrated salt filler assisted sponge like P(VDF-HFP) micro-porous electroactive films to fabricate a high performance flexible piezoelectric generator (FPG). These FPGs deliver up to 8 V of open circuit voltage under external stress and also generate enough power to turn on at least fifteen commercial blue light emitting diodes (LEDs) instantly. Furthermore, capacitors have been successfully charged by repeated finger touches indicating the potential of the FPGs to be used as self-powered devices where different types of mechanical vibrations can be applied. The high performance of FPGs might be attributed to the co-operative contribution from the porous electret structure and electroactive nature of the P(VDF-HFP) film, as they also enhance the dielectric permittivity. This approach is simple, cost-effective, and well-suited for large-scale fabrication of high-performance FPGs.

  1. Effect of carbon nanotubes on properties of cement-sand-based piezoelectric composites

    Science.gov (United States)

    Kim, Sunjung; Zhao, Ping; Enemuoh, Emmanuel

    2015-04-01

    Carbon Nanotubes (CNTs) were dispersed in a cement-sand-based piezoelectric smart composite as conductive fillers to improve its poling efficiency, leading to a desirable piezoelectric effect. By introducing a small amount of CNTs, continuous electric networks between Lead Zirconate Titanate (PZT) particles were created, thus making the composite poling easier. Specimens were prepared by mixing PZT powders, Portland cement and sand with CNTs, followed by pressing it with a load frame system. The effect of quantity of CNTs ranging from 0 to 1.0 volume percent on properties of the composite, including its piezoelectric coefficient, dielectric constant and loss, and sensing effects, were characterized. It was found that the addition of CNTs facilitated effective poling at room temperature and improved the piezoelectric and dielectric properties of the composite. The composite modified by CNTs achieved optimal properties when the CNTs content was 0.7 vol.%.

  2. Good Quality Factor in GdMnO3-Doped (K0.5Na0.5)NbO3 Piezoelectric Ceramics

    Science.gov (United States)

    Bucur, Raul Alin; Badea, Iuliana; Bucur, Alexandra Ioana; Novaconi, Stefan

    2016-06-01

    (1 - x)(K0.5Na0.5)NbO3 - xGdMnO3 (KNN- xGM) ferroelectric ceramics (0 ≤ x ≤ 5 mol.%) were obtained through a solid state technique. For all the studied compositions, orthorhombic perovskite crystalline structures were obtained at room temperature. GdMnO3 suppresses the grain growth and gives rather homogenous microstructures as the concentration increases. The doped ceramics exhibita good dielectric response, a "hard" ferroelectric behavior and good piezoelectric properties. An improved mechanical quality factor of 1180 and a high Curie temperature T C = 400°C, coupled with k p = 0.426, makes the composition x = 1 mol.% GdMnO3 suitable for lead-free piezoelectric materials for high-power and high-temperature applications.

  3. Stress controlled pulsed direct current co-sputtered Al1−xScxN as piezoelectric phase for micromechanical sensor applications

    Directory of Open Access Journals (Sweden)

    Simon Fichtner

    2015-11-01

    Full Text Available Scandium alloyed aluminum nitride (Al1−xScxN thin films were fabricated by reactive pulsed direct current co-sputtering of separate scandium and aluminum targets with x ≤ 0.37. A significant improvement of the clamped transversal piezoelectric response to strain e31,f from −1.28 C/m2 to −3.01 C/m2 was recorded, while dielectric constant and loss angle remain low. Further, the built-in stress level of Al1−xScxN was found to be tuneable by varying pressure, Ar/N2 ratio, and Sc content. The thus resulting enhancement of the expectable signal to noise ratio by a factor of 2.1 and the ability to control built-in stress make the integration of Al1−xScxN as the piezoelectric phase of micro-electro-mechanical system sensor applications highly attractive.

  4. Influence of thermo-oxidation on dielectric and mechanical properties of epoxy/amine resins

    Science.gov (United States)

    Ernault, Estève; Richaud, Emmanuel; Fayolle, Bruno

    2016-05-01

    This objective of this work is to compare the changes of electrical and mechanical properties during thermo-oxidation of epoxy, in order to improve the choice of end life criterion. The thermal oxidation of DGEBA totally cured with linear aliphatic hardener is investigated under several temperature and oxygen pressure. Chemical changes are followed thanks to infra-red spectroscopy, macromolecular changes thanks to differential scanning calorimetry (changes of Tg). During thermo-oxidation at 110°C in air, volume resistivity and tensile properties in terms of modulus and deformation at break changes are assessed. The results show a formation of polar groups corresponding to oxidation products and a decrease of molecular mobility associated to a crosslinking process. Furthermore, it appears that the oxidation process leads to an embrittlement process whereas electrical properties are not significantly modified.

  5. Hybrid Cleaning Technology for Enhanced Post-Cu/Low-Dielectric Constant Chemical Mechanical Planarization Cleaning Performance

    Science.gov (United States)

    Ramachandran, Manivannan; Cho, Byoung-Jun; Kwon, Tae-Young; Park, Jin-Goo

    2013-05-01

    During chemical mechanical planarization (CMP), a copper/low-k surface is often contaminated by abrasive particles, organic materials and other additives. These contaminants need to be removed in the subsequent cleaning process with minimum material loss. In this study, a dilute amine-based alkaline cleaning solution is used along with physical force in the form of megasonic energy to remove particles and organic contaminants. Tetramethylammonium hydroxide (TMAH) and monoethanolamine (MEA) are used as an organic base and complexing agent, respectively, in the proposed solution. Ethanolamine acts as a corrosion inhibitor in the solution. Organic residue removal was confirmed through contact angle measurements and X-ray photoelectron spectroscopy analysis. Electrochemical studies showed that the proposed solution increases protection against corrosion, and that the hybrid cleaning technology resulted in higher particle removal efficiency from both the copper and low-k surfaces.

  6. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  7. Green synthesis of magnesium ion incorporated nanocrystalline hydroxyapatite and their mechanical, dielectric and photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Arul, K. Thanigai; Kolanthai, Elayaraja [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Manikandan, E. [Nanosciences African Network (NANO-AFNET), iThemba LABS-National Research Foundation (NRF), Materials Research Department, Cape Town, South Africa. (South Africa); Bhalerao, G.M. [University Grants Commission – Department of Atomic Energy, Consortium for Scientific Research, Kalpakkam 603 104 (India); Chandra, V. Sarath; Ramya, J. Ramana [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Mudali, U. Kamachi [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Nair, K.G.M. [Accelerator Material Science Section, Material Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kalkura, S.Narayana, E-mail: kalkurasn@annauniv.edu [Crystal Growth Centre, Anna University, Chennai 600 025 (India)

    2015-07-15

    Highlights: • Rapid technique to synthesize nanorods of magnesium ion incorporated hydroxyapatite. • Enhanced electrical and mechanical properties. • Improved photoluminescence and wettability on magnesium incorporation. • Increased in vitro bioactivity. - Abstract: Nanocrystalline hydroxyapatite (HAp-Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2,} 35 nm) and magnesium (Mg{sup 2+}) ion incorporated HAp were synthesized by microwave technique. XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), FE-HRTEM (Field emission high resolution transmission electron microscopy), DLS (dynamic light scattering), EDXRF (energy dispersive X-ray fluorescence spectrometry), microhardness, permittivity and alternating current (ac) conductivity, besides the PL (photoluminescence), wettability and in vitro bioactivity of the samples were analysed. EDXRF revealed the Mg{sup 2+} ion incorporation in HAp. The Mg{sup 2+} ion incorporation did not alter the phase but drastically reduced the crystallite size and particle size respectively by 48% and 32%. There was enhanced microhardness (24%) at low level (<13%) and decreased zeta potential of Mg{sup 2+} ion incorporation. The permittivity, ac conductivity, PL, wettability and in vitro bioactivity were enhanced on Mg{sup 2+} ion incorporation. These properties enable them to be a promising candidate for wound healing, bone replacement applications and also as a biosensor.

  8. Metallic Nanoparticles Embedded in a Dielectric Matrix: Growth Mechanisms and Percolation

    Directory of Open Access Journals (Sweden)

    M. García del Muro

    2008-01-01

    Full Text Available We present a study of the preparation and structural characterization of granular Ag-ZrO2, Co-ZrO2, and Au-ZrO2 thin films grown by pulsed laser deposition (PLD in a wide range of volume fraction x of metal (0.08mechanisms of particle growing as a function of the metal content are evidenced: nucleation and particle coalescence, with their relative significance depending strongly on the type of metal, giving rise to very different values of the percolation threshold (xc(Ag∼0.28, xc(Co∼0.35, and xc(Au∼0.55.

  9. Ultraviolet-induced discharge currents and reduction of the piezoelectric coefficient in cellular polypropylene films

    Science.gov (United States)

    Mellinger, Axel; Camacho González, Francisco; Gerhard-Multhaupt, Reimund

    2003-01-01

    Photostimulated discharge spectroscopy of cellular polypropylene films between 200 and 400 nm showed the existence of at least three distinct trapping levels at 4.6, 5.6, and 6.3 eV. The effects of UV irradiation on the piezoelectric d33 coefficient was studied by monitoring thickness-extension resonances in the dielectric spectrum. Prolonged irradiation at wavelengths below 210 nm led to a reduction of the piezoelectric coefficient, caused by partial discharge of the polymer foam.

  10. Dielectric Metamaterials

    Science.gov (United States)

    2015-05-29

    Final Report  29 May 2015 Dielectric Metamaterials SRI Project P21340 ONR Contract N00014-12-1-0722 Prepared by: Srini Krishnamurthy...2 2. Theory of Metamaterials ....................................................................................................... 2 2.1...accurately assess the impact of various forms of disorder on metamaterials (MMs) (both dielectric and metal inclusions); and (5) identify designs

  11. Piezoelectric energy harvesting computer controlled test bench.

    Science.gov (United States)

    Vázquez-Rodriguez, M; Jiménez, F J; de Frutos, J; Alonso, D

    2016-09-01

    In this paper a new computer controlled (C.C.) laboratory test bench is presented. The patented test bench is made up of a C.C. road traffic simulator, C.C. electronic hardware involved in automating measurements, and test bench control software interface programmed in LabVIEW™. Our research is focused on characterizing electronic energy harvesting piezoelectric-based elements in road traffic environments to extract (or "harvest") maximum power. In mechanical to electrical energy conversion, mechanical impacts or vibrational behavior are commonly used, and several major problems need to be solved to perform optimal harvesting systems including, but no limited to, primary energy source modeling, energy conversion, and energy storage. It is described a novel C.C. test bench that obtains, in an accurate and automatized process, a generalized linear equivalent electrical model of piezoelectric elements and piezoelectric based energy store harvesting circuits in order to scale energy generation with multiple devices integrated in different topologies.

  12. Piezoelectric energy harvesting computer controlled test bench

    Science.gov (United States)

    Vázquez-Rodriguez, M.; Jiménez, F. J.; de Frutos, J.; Alonso, D.

    2016-09-01

    In this paper a new computer controlled (C.C.) laboratory test bench is presented. The patented test bench is made up of a C.C. road traffic simulator, C.C. electronic hardware involved in automating measurements, and test bench control software interface programmed in LabVIEW™. Our research is focused on characterizing electronic energy harvesting piezoelectric-based elements in road traffic environments to extract (or "harvest") maximum power. In mechanical to electrical energy conversion, mechanical impacts or vibrational behavior are commonly used, and several major problems need to be solved to perform optimal harvesting systems including, but no limited to, primary energy source modeling, energy conversion, and energy storage. It is described a novel C.C. test bench that obtains, in an accurate and automatized process, a generalized linear equivalent electrical model of piezoelectric elements and piezoelectric based energy store harvesting circuits in order to scale energy generation with multiple devices integrated in different topologies.

  13. Multilayer modal actuator-based piezoelectric transformers.

    Science.gov (United States)

    Huang, Yao-Tien; Wu, Wen-Jong; Wang, Yen-Chieh; Lee, Chih-Kung

    2007-02-01

    An innovative, multilayer piezoelectric transformer equipped with a full modal filtering input electrode is reported herein. This modal-shaped electrode, based on the orthogonal property of structural vibration modes, is characterized by full modal filtering to ensure that only the desired vibration mode is excited during operation. The newly developed piezoelectric transformer is comprised of three layers: a multilayered input layer, an insulation layer, and a single output layer. The electrode shape of the input layer is derived from its structural vibration modal shape, which takes advantage of the orthogonal property of the vibration modes to achieve a full modal filtering effect. The insulation layer possesses two functions: first, to couple the mechanical vibration energy between the input and output, and second, to provide electrical insulation between the two layers. To meet the two functions, a low temperature, co-fired ceramic (LTCC) was used to provide the high mechanical rigidity and high electrical insulation. It can be shown that this newly developed piezoelectric transformer has the advantage of possessing a more efficient energy transfer and a wider optimal working frequency range when compared to traditional piezoelectric transformers. A multilayer piezoelectric, transformer-based inverter applicable for use in LCD monitors or portable displays is presented as well.

  14. Effect of Yb Addition on the Sintering Behavior and High Power Piezoelectric Properties of Pb(Zr,Ti)O3-Pb(Mn,Nb)O3

    Science.gov (United States)

    2007-11-02

    ultrasonic motors and piezoelectric transformers, as materials which can convert electrical energy to mechanical energy or vice versa at the...such as piezo-transformers and piezoelectric ultrasonic motors . The Curie temperature is one of important properties for high power piezoelectric...devices such as piezoelectric transformers and ultrasonic motors . IV. Conclusion electric characteristics were investigated for the 0.9Pb

  15. Piezoelectric MEMS resonators

    CERN Document Server

    Piazza, Gianluca

    2017-01-01

    This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associate...

  16. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    Science.gov (United States)

    Ahmad, Mahmoud Al; Alshareef, H. N.

    2012-02-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates in the line it sets an alternating current in the actuator electrodes. This flowing current drives the piezoelectric cantilever to mechanical movement, especially when the frequency of the RF signal matches the mechanical resonant frequency of the cantilever. Output voltage signals versus frequency for both mechanical vibrational and RF signal excitations have been measured using different loads.

  17. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud

    2012-02-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates in the line it sets an alternating current in the actuator electrodes. This flowing current drives the piezoelectric cantilever to mechanical movement, especially when the frequency of the RF signal matches the mechanical resonant frequency of the cantilever. Output voltage signals versus frequency for both mechanical vibrational and RF signal excitations have been measured using different loads.© 2011 Elsevier Ltd. All rights reserved.

  18. Effects of void size and gas content on electrical breakdown in lightweight, mechanically compliant, void-filled dielectrics

    Science.gov (United States)

    Anderson, R. A.; Lagasse, R. R.; Russick, E. M.; Schroeder, J. L.

    2002-03-01

    Dielectric potting materials (encapsulants) are used to prevent air breakdown in high-voltage electrical devices. We report breakdown strengths in void-filled encapsulants, stressed with unipolar voltage pulses of the order of 10 μs duration. High strengths, on the order of 100 kV mm-1, are measured under these test conditions. The materials studied include low-density open celled gel-derived foams with cell sizes of 4 μm or less, closed celled CO2-blown polystyrene and urethane foams, and epoxies containing 48 vol % of hollow glass microballoon (GMB) fillers. These last specimens varied the void gas (N2 or SO2) and also the void diameters (tens to hundreds of μm). Our measurements are thought to be directly sensitive to the rate of field-induced ionization events in the void gas; however, the breakdown strengths of the materials tested appeared to vary in direct proportion with the conventional Paschen-law gas-discharge inception threshold, the electric stress at which gas-ionization avalanches become possible. The GMB-epoxy specimens displayed this type of dependence of breakdown strength on the void-gas density and void size, but the measurements were an order of magnitude above the conventional predictions. Small-celled foams also showed increased breakdown strengths with decreased cell size, although their irregular void geometry prevented a direct comparison with the more uniformly structured microballoon-filled encapsulants. The experimental observations are consistent with a breakdown mechanism in which the discharge of a few voids can launch a full breakdown in the composite material.

  19. Piezoelectric Energy Harvesting Solutions

    Directory of Open Access Journals (Sweden)

    Renato Caliò

    2014-03-01

    Full Text Available This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions.

  20. Piezoelectrically Enhanced Photocathodes

    Science.gov (United States)

    Beach, Robert A.; Nikzad, Shouleh; Bell, Lloyd Douglas; Strittmatter, Robert

    2011-01-01

    Doping of photocathodes with materials that have large piezoelectric coefficients has been proposed as an alternative means of increasing the desired photoemission of electrons. Treating cathode materials to increase emission of electrons is called "activation" in the art. It has been common practice to activate photocathodes by depositing thin layers of suitable metals (usually, cesium). Because cesium is unstable in air, fabrication of cesiated photocathodes and devices that contain them must be performed in sealed tubes under vacuum. It is difficult and costly to perform fabrication processes in enclosed, evacuated spaces. The proposed piezoelectrically enhanced photocathodes would have electron-emission properties similar to those of cesiated photocathodes but would be stable in air, and therefore could be fabricated more easily and at lower cost. Candidate photocathodes include nitrides of elements in column III of the periodic table . especially compounds of the general formula Al(x)Ga(1.x)N (where 0< or = x < or =.1). These compounds have high piezoelectric coefficients and are suitable for obtaining response to ultraviolet light. Fabrication of a photocathode according to the proposal would include inducement of strain in cathode layers during growth of the layers on a substrate. The strain would be induced by exploiting structural mismatches among the various constituent materials of the cathode. Because of the piezoelectric effect in this material, the strain would give rise to strong electric fields that, in turn, would give rise to a high concentration of charge near the surface. Examples of devices in which piezoelectrically enhanced photocathodes could be used include microchannel plates, electron- bombarded charge-coupled devices, image tubes, and night-vision goggles. Piezoelectrically enhanced photocathode materials could also be used in making highly efficient monolithic photodetectors. Highly efficient and stable piezoelectrically enhanced

  1. Piezoelectric ceramic thick films deposited on silicon substrates by screen printing

    Science.gov (United States)

    Yao, Kui; He, Xujiang; Xu, Yuan; Chen, Meima

    2004-07-01

    Screen-printing processes offer advantages in producing directly patterned and integrated piezoelectric elements, and fill an important technological gap between thin film and bulk ceramics. However, several existing problems in the screen-printed piezoelectric thick films, such as the poor reliability and the required high sintering temperature, are significantly limiting their applications. In this work, lead zirconate titanate (PZT) ceramic films of 30 μm in thickness were deposited on Pt-coated silicon substrates by the screen-printing process, in which the ceramic pastes were prepared through a chemical liquid-phase doping approach. Porous thick films with good adhesion were formed on the substrates at a temperature of 925°C. Stable out-of-plane piezoelectric vibration of the thick films was observed with a laser scanning vibrometer (LSV), and the piezoelectric dilatation magnitude was determined accordingly. Our piezoelectric measurements through the areal displacement detection with LSV exhibited distinct advantages for piezoelectric film characterization, including high reliability, high efficiency, and comprehensive information. The longitudinal piezoelectric coefficients of the thick films were calculated from the measured dilatation data through a numerical simulation. High piezoelectric voltage constants were obtained due to the very low dielectric constant of the porous thick films. The application potentials of our screen-printed thick films as integrated piezoelectric sensors are discussed.

  2. Effect of Sintering Time on Dielectric and Piezoelectric Properties of Lanthanum Doped Pb(Ni1/3Sb2/3-PbZrTiO3 Ferroelectric Ceramics

    Directory of Open Access Journals (Sweden)

    C.M. Lonkar

    2013-07-01

    Full Text Available Lead zirconate titanate (PZT based materials can be employed for power harvesting applications since they can produce electrical output in response to ambient pressures, vibrations, movements etc. In the present studies, sintering time for composition Pb0.98La0.02(NiSb0.05[(Zr0.52Ti0.480.995]0.95O3 (La-PNS-PZT was optimised to achieve properties suitable for power harvesting. Composition was processed through mixed oxide route and sintered at 1270 °C for 20 min, 40 min, 60 min, 80min and 100 min. XRD pattern indicated the presence of both, ferroelectric tetragonal and ferroelectric rhombohedral perovskite phases. The optical photographs shown the uniform and dense microstructure for the samples sintered for 60 min, resulted into optimum piezoelectric charge coefficient, voltage coefficient, electromechanical coupling coefficient and figure of merit. Power harvesting capabilities in response to impact of stainless steel ball (8.25 gm from 150 mm height were evaluated and compared with PZT type 5A. La-PNS-PZT produced batter electrical output (5.11 W, 71.13 µJ across the matching load resistance of 4000 Ω and 2.08 W maximum power and 20.79 µJ energy by PZT type 5A disc across the matching load resistance of 1000 Ω.

  3. Effect of Sintering Time on Dielectric and Piezoelectric Properties of Lanthanum Doped Pb(Ni1/3Sb2/3-PbZrTiO3 Ferroelectric Ceramics

    Directory of Open Access Journals (Sweden)

    C. M. Lonkar

    2013-07-01

    Full Text Available produce electrical output in response to ambient pressures, vibrations, movements etc. In the present studies, sintering time for composition Pb0.98La0.02(NiSb0.05[(Zr0.52Ti0.480.995]0.95O3 (La-PNS-PZT was optimised to achieve properties suitable for power harvesting. Composition was processed through mixed oxide route and sintered at 1270 °C for 20 min, 40 min, 60 min, 80min and 100 min. XRD pattern indicated the presence of both, ferroelectric tetragonal and ferroelectric rhombohedral perovskite phases. The optical photographs shown the uniform and dense microstructure for the samples sintered for 60 min, resulted into optimum piezoelectric charge coefficient, voltage coefficient, electromechanical coupling coefficient and figure of merit. Power harvesting capabilities in response to impact of stainless steel ball (8.25 gm from 150 mm height were evaluated and compared with PZT type 5A. La-PNS-PZT produced batter electrical output (5.11 W, 71.13 μJ across the matching load resistance of 4000 Ω and 2.08 W maximum power and 20.79 μJ energy by PZT type 5A disc across the matching load resistance of 1000 Ω.Defence Science Journal, 2013, 63(4, pp.418-422, DOI:http://dx.doi.org/10.14429/dsj.63.4866

  4. Hybrid Piezoelectric/Fiber-Optic Sensor Sheets

    Science.gov (United States)

    Lin, Mark; Qing, Xinlin

    2004-01-01

    Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.

  5. High-Temperature Dielectric Response and Multiscale Mechanism of SiO2/Si3N4 Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    HOU Zhi-Ling; ZHANG Liang; YUAN Jie; SONG Wei-Li; CAO Mao-Sheng

    2008-01-01

    The high-temperature dielectric properties of SiO2/Si3N4 nanocomposites are investigated theoretically and experimentally. Its permittivities and loss tangents at the temperature ranging from room temperature to 1300℃ at 9.0 GHz are measured by the resonant cavity method. The SiO2/Si3N4 nanocomposites show complex dielectric behaviour at elevated temperature, and a multi-scale model is proposed to describe the dependence of the dielectric properties in the SiO2/Si3N4 on its compositional variations. Such a theory is needed so that the available property measurements could be extrapolated to other operating frequencies and temperatures.

  6. A facile growth mechanism, structural, optical, dielectric and electrical properties of ZnSe nanosphere via hydrothermal process

    Science.gov (United States)

    Javed, Qurat-Ul-Ain; Baqi, Sabah; Abbas, Hussain; Bibi, Maryam

    2017-02-01

    Hydrothermal method was chosen as a convenient method to fabricate zinc selenide (ZnSe) nanoparticle materials. The prepared nanospheres were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), where its different properties were observed using UV-visible spectroscopy and LCR meter. It was found that the pure ZnSe nanoparticles have a Zinc blende structure with crystallite size 10.91 nm and in a spherical form with average diameter of 35 nm (before sonication) and 18 nm (after sonication) with wide band gap of 4.28 eV. It was observed that there is inverse relation of frequency with dielectric constant and dielectric loss while AC conductivity grows up by increasing frequency. Such nanostructures were determined to be effectively used in optoelectronic devices as UV detector and in those devices where high-dielectric constant materials are required.

  7. Piezoelectric Generation and Damping of Extensional Waves in Bars

    OpenAIRE

    Jansson, Anders

    2007-01-01

    This thesis focuses on the electromechanical processes of generation and damping of transient waves in bars with attached piezoelectric members. In particular, the influence of amplifier and electrical circuitry on the mechanical waves is of interest. A straight bar element containing piezoelectric members is viewed as a linear system with one electrical and two mechanical ports where it interacts with external electrical and mechanical devices through voltage, current, forces and velocities....

  8. Piezoelectric properties of Sr3Ga2Ge4O14 single crystals

    Indian Academy of Sciences (India)

    Anhua Wu; Jiayue Xu; Juan Zhou; Hui Shen

    2007-04-01

    A new piezoelectric single crystal, Sr3Ga2Ge4O14 (SGG), has been grown successfully by the vertical Bridgman method with crucible-sealing technique. SGG crystal up to 2″ in diameter has been obtained. The relative dielectric constants, the piezoelectric strain constants, elastic compliance constants and electromechanical coupling factors have been determined with resonance and anti-resonance frequencies method by using the impedance analyzer (Agilent 4294A). The results show that the piezoelectric strain constants and electromechanical coupling factors of SGG single crystal are higher than those of LGS single crystals making it a potential substrate material for surface-acoustic wave applications.

  9. Equivalent circuit with complex physical constants and equivalent-parameters-expressed dissipation factors of piezoelectric materials

    Institute of Scientific and Technical Information of China (English)

    Chen Yu; Wen Yu-Mei; Li Ping

    2006-01-01

    The equivalent circuit with complex physical constants for a piezoelectric ceramic in thickness mode is established.In the equivalent circuit, electric components (equivalent circuit parameters) are connected to real and imaginary parts of complex physical coefficients of piezoelectric materials. Based on definitions of dissipation factors, three of them (dielectric, elastic and piezoelectric dissipation factors) are represented by equivalent circuit parameters. Since the equivalent circuit parameters are detectable, the dissipation factors can be easily obtained. In the experiments, the temperature and the stress responses of the three dissipation factors are measured.

  10. Complete set of elastic, dielectric, and piezoelectric constants of [011]C poled rhombohedral Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3:Mn single crystals.

    Science.gov (United States)

    Huo, Xiaoqing; Zhang, Shujun; Liu, Gang; Zhang, Rui; Luo, Jun; Sahul, Raffi; Cao, Wenwu; Shrout, Thomas R

    2013-02-21

    Mn modified rhombohedral Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT:Mn) single crystals poled along [011]C crystallographic direction exhibit a "2R" engineered domain configuration, with macroscopic mm2 symmetry. The complete sets of material constants were determined using combined resonance and ultrasonic methods, and compared to [001]C poled PIN-PMN-PT:Mn crystals. The thickness shear piezoelectric coefficient d15 and electromechanical coupling factor k15 were found to be on the order of ∼3000 pC/N and 0.92, respectively, with longitudinal piezoelectric coefficient d33 and coupling factor k33 being on the order of ∼1050 pC/N and 0.90. Of particular importance is that PIN-PMN-PT:Mn single crystals exhibited high mechanical quality factor Q33 ∼ 1000, comparable to "hard" PZT8 ceramics, which can also be confirmed by the low extrinsic contribution, being ≤2% from the Rayleigh analysis.

  11. Dielectric Properties of Yttria Ceramics at High Temperature

    Institute of Scientific and Technical Information of China (English)

    Jian Chen; Zheng-Ping Gao; Jin-Ming Wang; Da-Hai Zhang

    2007-01-01

    Based on Clausius-Mosotti equation and Debye relaxation theory, the dielectric model of yttria ceramics was developed according to the dielectric loss mechanism. The dielectric properties of yttria ceramics were predicted at high temperature. The temperature dependence and frequency dependence of dielectric constant and dielectric loss were discussed, respectively.As the result, the data calculated by theoretical dielectric model are in agreement with experimental data.

  12. The analysis of the effect of homogeneous mechanical stress on the acoustic wave propagation in the "La3Ga5SiO14/fused silica" piezoelectric layered structure.

    Science.gov (United States)

    Burkov, S I; Zolotova, O P; Sorokin, B P; Turchin, P P

    2015-01-01

    The results of computer simulation taking into account the linear and nonlinear material constants have been presented. Study of the influence of external uniaxial mechanical stress on the dispersive characteristics of elastic waves in piezoelectric structures as "La3Ga5SiO14/fused silica" has been executed. The comparison of elastic wave velocity changes under the influence of an uniaxial stress while a full set of nonlinear material constants of crystalline layer+geometric nonlinearity, or only geometric nonlinearity of the layer induced by the static deformation of a substrate, has been fulfilled.

  13. Piezoelectric Energy Harvester for Batteryless Switch Devices

    Science.gov (United States)

    Kim, Min-Soo; Lee, Sung-Chan; Kim, Sin-Woong; Jeong, Soon-Jong; Kim, In-Sung; Song, Jaesung

    2013-10-01

    This study investigated a piezoelectric energy-harvesting system for a mechanical switch device. Piezoelectric ceramics of 0.4Pb(Mg1/3Nb2/3)O3-0.25PbZrO3-0.35PbTiO3 were prepared by using a conventional solid-state reaction method. Li2O, Bi2O3, and CuO additions were used as sintering aids to develop piezoelectric ceramics for low-temperature sintering. Multilayer piezoelectric ceramics with 10×10×3 mm3 sizes and with Ag-Pd inner electrodes were manufactured by using the conventional tape-casting method with the prepared powder. A prototype of a piezoelectric batteryless switch device using the multilayer ceramics was produced. It showed an output peak-to-peak voltage of 3.8 V and an output power per strike of 18 µW. The performance of the device was good enough for practical use.

  14. Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide.

    Science.gov (United States)

    Bhavanasi, Venkateswarlu; Kumar, Vipin; Parida, Kaushik; Wang, Jiangxin; Lee, Pooi See

    2016-01-13

    Ferroelectric materials have attracted interest in recent years due to their application in energy harvesting owing to its piezoelectric nature. Ferroelectric polymers are flexible and can sustain larger strains compared to inorganic counterparts, making them attractive for harvesting energy from mechanical vibrations. Herein, we report, for the first time, the enhanced piezoelectric energy harvesting performance of the bilayer films of poled poly(vinylidene fluoride-trifluoroethylene) [PVDF-TrFE] and graphene oxide (GO). The bilayer film exhibits superior energy harvesting performance with a voltage output of 4 V and power output of 4.41 μWcm(-2) compared to poled PVDF-TrFE films alone (voltage output of 1.9 V and power output of 1.77 μWcm(-2)). The enhanced voltage and power output in the presence of GO film is due to the combined effect of electrostatic contribution from graphene oxide, residual tensile stress, enhanced Young's modulus of the bilayer films, and the presence of space charge at the interface of the PVDF-TrFE and GO films, arising from the uncompensated polarization of PVDF-TrFE. Higher Young's modulus and dielectric constant of GO led to the efficient transfer of mechanical and electrical energy.

  15. Reducing the capacitance of piezoelectric film sensors

    Energy Technology Data Exchange (ETDEWEB)

    González, Martín G., E-mail: mggonza@fi.uba.ar [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB Buenos Aires (Argentina); Sorichetti, Patricio A.; Santiago, Guillermo D. [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina)

    2016-04-15

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N{sup 2}, whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design.

  16. Performance analysis of piezoelectric bimorph generator

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,the theoretical model and simulation of the performance of a piezoelectric (PZT)bimorph generator is introduced.The generator consists of two piezoelectric plates bonded on a substrate metal plate.For an effective electromechanical coupling coefficient (EECC) and the generated energy,the analytical formulae are established with the thickness ratio and the Young's modulus ratio as variables.After giving correlative material parameters,the EECC and generated energy can be computed.The results show that there is a optimal thickness ratio for a piezoelectric bimorph generator to achieve the maximum EECC and electrical energy.The EECC and generated energy decrease with an increase of the Young's modulus ratio.In addition,the influence of mechanical source on electrical energy generation and power output is also considered.

  17. Ciliae-based actuator with piezoelectric excitation

    Science.gov (United States)

    Pott, Peter P.; Carrasco, Alvaro; Schlaak, Helmut F.

    2012-06-01

    Small actuators based on the inverse piezoelectric effect are successfully deployed in commercial applications. Usually, ultrasonic motors are used. Based on resonance effects these motors provide a pronounced nonlinearity at low speeds and thus put high demands on the control algorithm. In contrast, piezoelectric stepping motors are mechanically complex and provide only low speeds. The contribution at hand describes a proposed design for a new piezoelectric motor based on cilia friction that can be manufactured at low costs. The cilia are made from uniaxial carbon-fibre reinforced plastics. The derived CFRP-brushes are pressed perpendicularly to the rotor surface to produce force or torque. First experiments prove the feasibility of the concept. A net pushing force of 500 mN is achieved.

  18. Piezoelectric materials mimic the function of the cochlear sensory epithelium

    Science.gov (United States)

    Inaoka, Takatoshi; Shintaku, Hirofumi; Nakagawa, Takayuki; Kawano, Satoyuki; Ogita, Hideaki; Sakamoto, Tatsunori; Hamanishi, Shinji; Wada, Hiroshi; Ito, Juichi

    2011-01-01

    Cochlear hair cells convert sound vibration into electrical potential, and loss of these cells diminishes auditory function. In response to mechanical stimuli, piezoelectric materials generate electricity, suggesting that they could be used in place of hair cells to create an artificial cochlear epithelium. Here, we report that a piezoelectric membrane generated electrical potentials in response to sound stimuli that were able to induce auditory brainstem responses in deafened guinea pigs, indicating its capacity to mimic basilar membrane function. In addition, sound stimuli were transmitted through the external auditory canal to a piezoelectric membrane implanted in the cochlea, inducing it to vibrate. The application of sound to the middle ear ossicle induced voltage output from the implanted piezoelectric membrane. These findings establish the fundamental principles for the development of hearing devices using piezoelectric materials, although there are many problems to be overcome before practical application. PMID:22025702

  19. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  20. The influence of static pre-stretching on the mechanical ageing of filled silicone rubbers for dielectric elastomer applications

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Yu, Liyun; Kofod, Guggi

    2015-01-01

    Dielectric elastomer (DE) pre-stretching is a key aspect of attaining better actuation performance, as ithelps prevent electromechanical instability (EMI) and usually lowers the Young’s modulus, thus leading toeasier deformation. The pre-stretched DE is not only susceptible to a high risk of tear...

  1. Piezoelectric and pyroelectric effects of a crystalline polymer

    Science.gov (United States)

    Kundu, Nikhil K.; Kundu, Malay

    1990-01-01

    Polyvinylidene flouride (PVDF) is a crystalline polymer to both piezoelectric and pyroelectric nature. Piezoelectricity produces electrical signals when mechanically deformed, and pyroelectricity is the electrical polarization induced by thermal absorption in crystals. To demonstrate the piezoelectric effect PVDF is subjected to impact loads which produce electrical charges proportional to mechanical stresses. A heat source was used to demonstrate the pyroelectric nature of PVDF. The rise in temperature due to absorbed energy by the polymer produces electrical output. The qualitative test results obtained are graphically reproduced.

  2. Piezoelectric Templates - New Views on Biomineralization and Biomimetics.

    Science.gov (United States)

    Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim

    2016-05-23

    Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template's piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V(-1) compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature.

  3. Power enhancement of piezoelectric transformers by adding heat transfer equipment.

    Science.gov (United States)

    Su, Yu-Hao; Liu, Yuan-Ping; Vasic, Dejan; Wu, Wen-Jong; Costa, François; Lee, Chih-Kung

    2012-10-01

    It is known that piezoelectric transformers have several inherent advantages compared with conventional electromagnetic transformers. However, the maximum power capacity of piezoelectric transformers is not as large as electromagnetic transformers in practice, especially in the case of high output current. The theoretical power density of piezoelectric transformers calculated by stress boundary can reach 330 W/cm(3), but no piezoelectric transformer has ever reached such a high power density in practice. The power density of piezoelectric transformers is limited to 33 W/cm(3) in practical applications. The underlying reason is that the maximum passing current of the piezoelectric material (mechanical current) is limited by the temperature rise caused by heat generation. To increase this current and the power capacity, we proposed to add a thermal pad to the piezoelectric transformer to dissipate heat. The experimental results showed that the proposed techniques can increase by 3 times the output current of the piezoelectric transformer. A theoretical-phenomenological model which explains the relationship between vibration velocity and generated heat is also established to verify the experimental results.

  4. 基于光控压电混合驱动悬臂梁独立模态控制%Independent modal control on cantilever beam based on hybrid photovoltaic/piezoelectric actuation mechanism

    Institute of Scientific and Technical Information of China (English)

    姜晶; 邓宗全; 岳洪浩; 王雷; TZOU Horn-sen

    2015-01-01

    提出利用镧改性锆钛酸铅(PLZT)的光电效应,将PLZT作为电动势源来驱动压电作动器,从而实现光控板壳结构的振动控制。基于光控压电等效电学模型建立了光控压电混合驱动的数学模型,并进行了实验验证。为了实现光控悬臂梁的独立模态控制,针对悬臂梁结构,设计了正交模态传感器/作动器表面电极形状函数。提出PLZT与压电作动器正/反接控制的激励策略,并结合速度反馈定光强控制的控制算法,利用Newmark-β法对不同光照强度下悬臂梁的动态响应进行了数值仿真分析。分析结果证明了所设计的模态传感器/作动器及针对光控压电混合驱动提出的控制策略的正确性。%The photonic control on flexible shell using hybrid photovoltaic/piezoelectric actuation mechanism was proposed.Based on the photovoltaic effect of PLZT,it was used as photovoltaic generator to drive piezoelectric actuator. The constitutive model of this novel actuation mechanism was established based on its equivalent electrical model,and was verified by experiments.In order to realize the independent modal control on cantilever beam using hybrid photovoltaic/piezoelectric actuation mechanism,orthogonal sensors were designed,and the ON/OFF control of positive/negative connection between PLZT and piezoelectric actuator was proposed combining the use of constant light control algorithm based on velocity feedback.Dynamic modal control equations of the cantilever beam laminated with orthogonal actuators based on this novel photonic control method was numerically solved using Newmark -βmethod.The simulation results show that the orthogonal sensors/actuators designed and the control schemes proposed for this photonic method can effectively realize photonic independent modal control on cantilever beam.

  5. Remarkable effect of Ni{sup 2+}doping on structural, second harmonic generation, optical, mechanical and dielectric properties of KDP single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, V. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413 (Saudi Arabia); Shkir, Mohd, E-mail: shkirphysics@gmail.com [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413 (Saudi Arabia); AlFaify, S.; Algarni, H. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413 (Saudi Arabia); Abutalib, M.M. [Faculty of Science-AL Faisaliah, Campus, King Abdulaziz University, P.O. Box 80200, Jeddah 21589 (Saudi Arabia); Yahia, I.S. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413 (Saudi Arabia); Nano-Science & Semiconductor Labs., Thin Film Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt)

    2016-06-15

    The nonlinear optical single crystals of pure and Ni{sup 2+} doped potassium dihydrogen phosphate (KDP) were successfully grown by slow evaporation solution growth technique. The effects of the addition of Ni{sup 2+} with different molar concentration have been studied by powder X-ray diffraction, FT-Raman, second harmonic generation, microscopic and dielectric studies. Its crystallinity was assessed by the FT-Raman technique and its surface, structural imperfections were recorded using high resolution microscope, which clearly reveals that the doping is showing considerable effect on the samples. The SHG measurements also carried out on pure and doped samples, which reveal the relative SHG efficiency has been enhanced due to doping. The optical activities were studied by UV–vis-NIR technique and reveals high optical transparency in doped samples. The remarkable enhancement in mechanical strength was observed due to doping. The enhanced dielectric constant and low dielectric loss confirms that the grown crystals with doping are superior to pure crystals and may be used in optoelectronic devices.

  6. Composites Based on Core-Shell Structured HBCuPc@CNTs-Fe3O4 and Polyarylene Ether Nitriles with Excellent Dielectric and Mechanical Properties

    Science.gov (United States)

    Pu, Zejun; Zhong, Jiachun; Liu, Xiaobo

    2017-10-01

    Core-shell structured magnetic carbon nanotubes (CNTs-Fe3O4) coated with hyperbranched copper phthalocyanine (HBCuPc) (HBCuPc@CNTs-Fe3O4) hybrids were prepared by the solvent-thermal method. The results indicated that the HBCuPc molecules were decorated on the surface of CNTs-Fe3O4 through coordination behavior of phthalocyanines, and the CNTs-Fe3O4 core was completely coaxial wrapped by a functional intermediate HBCuPc shell. Then, polymer-based composites with a relatively high dielectric constant and low dielectric loss were fabricated by using core-shell structured HBCuPc@CNTs-Fe3O4 hybrids as fillers and polyarylene ether nitriles (PEN) as the polymer matrix. The cross-sectional scanning electron microscopy (SEM) images of composites showed that there is almost no agglomeration and internal delamination. In addition, the rheological analysis reveals that the core-shell structured HBCuPc@CNTs-Fe3O4 hybrids present better dispersion and stronger interface adhesion with the PEN matrix than CNTs-Fe3O4, thus resulting in significant improvement of the mechanical, thermal and dielectric properties of polymer-based composites.

  7. Modification of piezoelectric vibratory gyroscope resonator parameters by feedback control

    CSIR Research Space (South Africa)

    Loveday, PW

    1998-09-01

    Full Text Available A method for analyzing the effect of feedback control on the dynamics of piezoelectric resonators used in vibratory gyroscopes has been developed. This method can be used to determine the feasibility of replacing the traditional mechanical balancing...

  8. Damping Analyses of Structural Vibrations and Shunted Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Saber Mohammadi

    2012-01-01

    Full Text Available Piezoelectric transducers in conjunction with appropriate electric networks can be used as a mechanical energy dissipation device. Alternatively, undesired mechanical energy of a structure could be converted into electrical energy that can be dissipated through a shunt network in the form of Joule heating. This paper presents an experimental method to calculate damping energy in mechanical systems. However, the mathematical description of damping mechanism is much more complicated, and any process responsible for the occurrence of damping is very intricate. Structural and piezoelectric damping are calculated and analysed in the case of pulse switching or SSDI semiactive vibration control technique. This technique which was developed in the field of piezoelectric damping consists in triggering the inverting switch on each extremum of the piezoelectric voltage which induces an increase of the electromechanical energy conversion.

  9. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  10. Stability analysis of piezoelectric beams

    NARCIS (Netherlands)

    Voß, T.; Scherpen, J.M.A.

    2011-01-01

    Piezoelectric materials are used in many engineering application. When modeling piezoelectric materials the standard assumption is that the electromagnetic field which is used to actuate the piezoelectric material is quasi static. In this paper we show that although the assumption of a quasi static

  11. Cellulose Nanofibril Film as a Piezoelectric Sensor Material.

    Science.gov (United States)

    Rajala, Satu; Siponkoski, Tuomo; Sarlin, Essi; Mettänen, Marja; Vuoriluoto, Maija; Pammo, Arno; Juuti, Jari; Rojas, Orlando J; Franssila, Sami; Tuukkanen, Sampo

    2016-06-22

    Self-standing films (45 μm thick) of native cellulose nanofibrils (CNFs) were synthesized and characterized for their piezoelectric response. The surface and the microstructure of the films were evaluated with image-based analysis and scanning electron microscopy (SEM). The measured dielectric properties of the films at 1 kHz and 9.97 GHz indicated a relative permittivity of 3.47 and 3.38 and loss tangent tan δ of 0.011 and 0.071, respectively. The films were used as functional sensing layers in piezoelectric sensors with corresponding sensitivities of 4.7-6.4 pC/N in ambient conditions. This piezoelectric response is expected to increase remarkably upon film polarization resulting from the alignment of the cellulose crystalline regions in the film. The CNF sensor characteristics were compared with those of polyvinylidene fluoride (PVDF) as reference piezoelectric polymer. Overall, the results suggest that CNF is a suitable precursor material for disposable piezoelectric sensors, actuators, or energy generators with potential applications in the fields of electronics, sensors, and biomedical diagnostics.

  12. Modelling of a cantilever non-symmetric piezoelectric bimorph

    Science.gov (United States)

    Brissaud, Michel; Ledren, Sarah; Gonnard, P.

    2003-11-01

    The aim of this paper is the modelling of a non-symmetric bimorph constituted by a piezoelectric material deposited on an alumina substrate and used either as an actuator or a sensor. Theoretical modelling based on the flexural modes of the structure is carried out and the influence of the electrode characteristics (geometrical dimensions and elastic parameters) is introduced in the modelling for calculating the bimorph bending displacement. In actuator mode, the electrical admittance of the cantilever non-symmetric bimorph is stated and the intrinsic electromechanical coupling factor linked to the bimorph bending motion is deduced and compared with that defined in IEEE Standards. The analytical modelling was used for characterizing a cantilever bimorph constituted by a piezoelectric thick film deposited on an alumina substrate. A trial and error fitting method is described for determining the elastic, piezoelectric and dielectric constants of the piezoelectric material. The influence of the electrode parameters is calculated and the measurement uncertainty is deduced. In sensor mode the open voltage delivered by the bent piezoelectric layer and the electrical equivalent circuit of the bimorph are given. Theoretical results are compared with those obtained by the finite element method, and discussed.

  13. A single dielectric nanolaser

    Science.gov (United States)

    Huang, Tsung-Yu; Yen, Ta-Jen

    2016-09-01

    To conquer Ohmic losses from metal and enhance pump absorption efficiency of a nanolaser based on surface plasmon polariton, we theoretically calculate the first magnetic and electric scattering coefficient of a dielectric sphere under a plane wave excitation with a dielectric constant of around 12. From this calculation, we could retrieve both negative effective permittivity and permeability of the sphere simultaneously at frequencies around 153 THz in the aids of Lewin's theory and the power distribution clearly demonstrate the expected negative Goos-Hänchen effect, which usually occurred in a negative refractive waveguide, thus creating two energy vortices to trap incident energy and then promoting the pump absorption efficiency. Meanwhile, a magnetic lasing mode at 167.3 THz is demonstrated and reveals a magnetic dipole resonance mode and a circulating energy flow within the dielectric sphere, providing a possible stopped light feedback mechanism to enable the all-dielectric nanolaser. More importantly, the corresponding mode volume is reduced to 0.01λ3 and a gain threshold of 5.1×103 is obtained. To validate our design of all-dielectric nanolaser, we employ finite-difference-time-domain simulation software to examine the behavior of the nanolaser. From simulation, we could obtain a pinned-down population inversion of 0.001 and a lasing peak at around 166.5 THz, which is very consistent with the prediction of Mie theory. Finally, according to Mie theory, we can regard the all-dielectric nanolaser as the excitation of material polariton and thus could make an analogue between lasing modes of the dielectric and metallic nanoparticles.

  14. Piezoelectric wave motor

    Science.gov (United States)

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  15. Lead-Free Piezoelectrics

    CERN Document Server

    Nahm, Sahn

    2012-01-01

    Ecological restrictions in many parts of the world are demanding the elimination of Pb from all consumer items. At this moment in the piezoelectric ceramics industry, there is no issue of more importance than the transition to lead-free materials. The goal of Lead-Free Piezoelectrics is to provide a comprehensive overview of the fundamentals and developments in the field of lead-free materials and products to leading researchers in the world. The text presents chapters on demonstrated applications of the lead-free materials, which will allow readers to conceptualize the present possibilities and will be useful for both students and professionals conducting research on ferroelectrics, piezoelectrics, smart materials, lead-free materials, and a variety of applications including sensors, actuators, ultrasonic transducers and energy harvesters.

  16. Thermally switchable dielectrics

    Science.gov (United States)

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  17. Enhanced temperature stability and quality factor with Hf substitution for Sn and MnO2 doping of (Ba0.97Ca0.03)(Ti0.96Sn0.04)O3 lead-free piezoelectric ceramics with high Curie temperature

    Science.gov (United States)

    Tsai, Cheng-Che; Chao, Wei-Hsiang; Chu, Sheng-Yuan; Hong, Cheng-Shong; Weng, Chung-Ming; Su, Hsiu-Hsien

    2016-12-01

    In this work, the process of two-stage modifications for (Ba0.97Ca0.03)(Ti0.96Sn0.04-xHfx)O3 (BCTS4-100xH100x) ceramics was studied. The trade-off composition was obtained by Hf substitution for Sn and MnO2 doping (two-stage modification) which improves the temperature stability and piezoelectric properties. The phase structure ratio, microstructure, and dielectric, piezoelectric, ferroelectric, and temperature stability properties were systematically investigated. Results showed that BCTS4-100xH100x piezoelectric ceramics with x=0.035 had a relatively high Curie temperature (TC) of about 112 °C, a piezoelectric charge constant (d33) of 313 pC/N, an electromechanical coupling factor (kp) of 0.49, a mechanical quality factor (Qm) of 122, and a remnant polarization (Pr) of 19 μ C /cm2 . In addition, the temperature stability of the resonant frequency (fr), kp, and aging d33 could be tuned via Hf content. Good piezoelectric temperature stability (up to 110 °C) was found with x =0.035. BCTS0.5H3.5 + a mol% Mn (BCTSH + a Mn) piezoelectric ceramics with a = 2 had a high TC of about 123 °C, kp ˜ 0.39, d33 ˜ 230 pC/N, Qm ˜ 341, and high temperature stability due to the produced oxygen vacancies. This mechanism can be depicted using the complex impedance analysis associated with a valence compensation model on electric properties. Two-stage modification for lead-free (Ba0.97Ca0.03)(Ti0.96Sn0.04)O3 ceramics suitably adjusts the compositions for applications in piezoelectric motors and actuators.

  18. Enhanced temperature stability and quality factor with Hf substitution for Sn and MnO2 doping of (Ba0.97Ca0.03(Ti0.96Sn0.04O3 lead-free piezoelectric ceramics with high Curie temperature

    Directory of Open Access Journals (Sweden)

    Cheng-Che Tsai

    2016-12-01

    Full Text Available In this work, the process of two-stage modifications for (Ba0.97Ca0.03(Ti0.96Sn0.04-xHfxO3 (BCTS4-100xH100x ceramics was studied. The trade-off composition was obtained by Hf substitution for Sn and MnO2 doping (two-stage modification which improves the temperature stability and piezoelectric properties. The phase structure ratio, microstructure, and dielectric, piezoelectric, ferroelectric, and temperature stability properties were systematically investigated. Results showed that BCTS4-100xH100x piezoelectric ceramics with x=0.035 had a relatively high Curie temperature (TC of about 112 °C, a piezoelectric charge constant (d33 of 313 pC/N, an electromechanical coupling factor (kp of 0.49, a mechanical quality factor (Qm of 122, and a remnant polarization (Pr of 19μC/cm2. In addition, the temperature stability of the resonant frequency (fr, kp, and aging d33 could be tuned via Hf content. Good piezoelectric temperature stability (up to 110 °C was found with x =0.035. BCTS0.5H3.5 + a mol% Mn (BCTSH + a Mn piezoelectric ceramics with a = 2 had a high TC of about 123 °C, kp ∼ 0.39, d33 ∼ 230 pC/N, Qm ∼ 341, and high temperature stability due to the produced oxygen vacancies. This mechanism can be depicted using the complex impedance analysis associated with a valence compensation model on electric properties. Two-stage modification for lead-free (Ba0.97Ca0.03(Ti0.96Sn0.04O3 ceramics suitably adjusts the compositions for applications in piezoelectric motors and actuators.

  19. Design considerations for piezoelectric polymer ultrasound transducers.

    Science.gov (United States)

    Brown, L F

    2000-01-01

    Much work has been published on the design of ultrasound transducers using piezoelectric ceramics, but a great deal of this work does not apply when using the piezoelectric polymers because of their unique electrical and mechanical properties. The purpose of this paper is to review and present new insight into seven important considerations for the design of active piezoelectric polymer ultrasound transducers: piezoelectric polymer materials selection, transducer construction and packaging requirements, materials characterization and modeling, film thickness and active area design, electroding selection, backing material design, and front protection/matching layer design. Besides reviewing these design considerations, this paper also presents new insight into the design of active piezoelectric polymer ultrasonic transducers. The design and fabrication of an immersible ultrasonic transducer, which has no adhesive layer between the active element and backing layer, is included. The transducer features direct deposition of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer onto an insulated aluminum backing substrate. Pulse-echo tests indicated a minimum insertion loss of 37 dB and -6 dB bandwidth of 9.8 to 22 MHz (71%). The use of polymer wear-protection/quarter-wave matching layers is also discussed. Test results on a P(VDF-TrFE) transducer showed that a Mylar/sup TM/ front layer provided a slight increase in pulse-echo amplitude of 15% (or 1.2 dB) and an increase in -6 dB pulse-echo fractional bandwidth from 86 to 95%. Theoretical derivations are reported for optimizing the active area of the piezoelectric polymer element for maximum power transfer at resonance. These derivations are extended to the special case for a low profile (i.e., thin) shielded transducer. A method for modeling the non-linear loading effects of a commercial pulser-receiver is also included.

  20. Piezoelectric Accelerometers Development

    DEFF Research Database (Denmark)

    Liu, Bin; Bang, Lisbet Fogh

    1999-01-01

    The paper describes the development of piezoelectric accelerometers using Finite Element (FE) approach. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between simulated results and measured results of Type...... 8325 are below 6%. It is proved that the specifications of the accelerometer can be effectively predicted using the FE method, especially when modifications of the accelerometer are required. The development process of piezoelectric accelerometers in Brüel & Kjær is becoming more efficient...

  1. Piezoelectric accelerometeres development

    DEFF Research Database (Denmark)

    Liu, Bin

    1999-01-01

    The paper describes the development of piezoelectric accelerometers using Finite Element (FE) approach. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between simulated results and measured results of Type...... 8325 are below 6%. It is proved that the specifications of the accelerometer can be effectively predicted using the FE method, especially when modifications of the accelerometer are required. The development process of piezoelectric accelerometers in Brüel & Kjær is becoming more efficient....

  2. Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method.

    Science.gov (United States)

    Daniels, Alice; Zhu, Meiling; Tiwari, Ashutosh

    2013-12-01

    Piezoelectric material properties have substantial influence on electrical power output from piezoelectric energy harvesters (PEHs). Understanding their influences is the first step in designing effective PEHs to generate higher power outputs. This paper uses a coupled piezoelectric-circuit-finite element method to study the power outputs of different types of piezoelectric materials, including single crystal, polyvinylidene fluoride (PVDF), and soft and hard lead zirconate titanate (PZT) materials. The purpose of this study is to try to gain an understanding of which piezoelectric material property--the elastic compliance s11, the piezoelectric strain constant d31, the piezoelectric stress constant g31, and the relative dielectric constant ϵ(T)r33, and the associated material properties of the d31 × g31, called the figure of merit (FOM), and the coupling coefficient k31--dominates the power output. A rectangular piezoelectric plate under a low-frequency excitation is used to evaluate piezoelectric material properties for a higher power output. It was found that 1) d31 is a more dominant material property over other material properties for higher power output; 2) FOM was more linearly related to the power output than either the k31 or the d31; and 3) ϵ(T)r33 had some role; when the materials have an identical d31; a lower ϵ(T)r33 was preferred. Because of unexplained outliers, no single material parameter was able to be recommended as selection criteria, but combined FOM with d31 parameters is recommended for selection of piezoelectric material for a higher power output from PEHs.

  3. Growth, thermal, dielectric and mechanical properties of L-phenylalanine-benzoic acid: A nonlinear optical single crystal

    Science.gov (United States)

    Tamilselvan, S.; Vimalan, M.; Vetha Potheher, I.; Rajasekar, S.; Jeyasekaran, R.; Antony Arockiaraj, M.; Madhavan, J.

    2013-10-01

    An efficient amino acid family nonlinear optical single crystal L-phenylalanine-benzoic acid (LPB) was conveniently grown by slow evaporation technique at room temperature. The crystal system and the lattice parameters were analyzed by single crystal X-ray diffraction studies. The grown crystal has excellent transmission in the entire visible region and its lower cut-off wavelength was found to be 248 nm. The SHG efficiency of the grown crystal was found to be 1.6 times higher than that of KDP crystal. The Laser damage threshold value of LPB has been found to be 6.5 GW/cm2. The sample was thermally stable up to 134 °C. Microhardness, dielectric and AC/DC conductivity measurements were made along (0 0 1) plane and reported for the first time. Microhardness studies revealed that the sample belongs to hard nature. Frequency dependent dielectric constant was measured for different temperatures and found maximum dielectric constant of 14 for 363 K. Photoconductivity studies of LPB divulged its negative photoconducting nature.

  4. Dielectric relaxation and electrical conduction mechanism in A2HoSbO6 (A=Ba, Sr, Ca) Double Perovskite Ceramics: An impedance spectroscopic analysis

    Science.gov (United States)

    Halder, Saswata; Dutta, Alo; Sinha, T. P.

    2017-03-01

    The AC electrical properties of polycrystalline double perovskite oxides A2HoSbO6 (A=Ba, Sr, Ca; AHS) synthesized by solid state reaction technique has been explored by using impedance spectroscopic studies. The Rietveld refinement of the room temperature X-ray diffraction data show that Ba2HoSbO6 (BHS) has cubic phase and Sr2HoSbO6 (SHS) and Ca2HoSbO6 (CHS) crystallize in monoclinic phase. The samples show significant frequency dispersion in their dielectric properties. The polydispersive nature of the relaxation mechanism is explained by the modified Cole-Cole model. The scaling behavior of dielectric loss indicate the temperature independence of the relaxation mechanism. The magnitude of the activation energy indicates that the hopping mechanism is responsible for carrier transport in AHS. The frequency dependent conductivity spectra follow the double power law. Impedance spectroscopic data presented in the Nyquist plot (Z" versus Z‧) are used to identify an equivalent circuit along with to know the grain, grain boundary and interface contributions. The constant phase element (CPE) is used to analyze the experimental response of BHS, SHS and CHS comprehending the contribution of different microstructural features to the conduction process. The temperature dependent electrical conductivity shows a semiconducting behavior.

  5. Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications.

    Science.gov (United States)

    Guo, Hong-Feng; Li, Zhen-Sheng; Dong, Shi-Wu; Chen, Wei-Jun; Deng, Ling; Wang, Yu-Fei; Ying, Da-Jun

    2012-08-01

    Previous studies have shown that piezoelectric materials may be used to prepare bioactive electrically charged surfaces. In the current study, polyurethane/polyvinylidene fluoride (PU/PVDF) scaffolds were prepared by electrospinning. The mechanical property and piezoelectric property of the scaffolds were evaluated. The crystalline phase of PVDF in the scaffolds was characterised by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). In vitro cell culture was performed to investigate cytocompatibility of the scaffolds. Wound-healing assay, cell-adhesion assay, quantitative RT-PCR and Western blot analyses were performed to investigate piezoelectric effect of the scaffolds on fibroblast activities. Further, the scaffolds were subcutaneously implanted in Sprague-Dawley (SD) rats to investigate their biocompatibility and the piezoelectric effect on fibrosis in vivo. The results indicated that the electrospinning process had changed PVDF crystalline phase from the nonpiezoelectric α phase to the piezoelectric β phase. The fibroblasts cultured on the scaffolds showed normal morphology and proliferation. The fibroblasts cultured on the piezoelectric-excited scaffolds showed enhanced migration, adhesion and secretion. The scaffolds that were subcutaneously implanted in SD rats showed higher fibrosis level due to the piezoelectrical stimulation, which was caused by random animal movements followed by mechanical deformation of the scaffolds. The scaffolds are potential candidates for wound healing applications.

  6. Analysis of the impedance resonance of piezoelectric multi-fiber composite stacks

    Science.gov (United States)

    Sherrit, S.; Djrbashian, A.; Bradford, S. C.

    2013-04-01

    Multi-Fiber Composites™ (MFC's) produced by Smart Materials Corp behave essentially like thin planar stacks where each piezoelectric layer is composed of a multitude of fibers. We investigate the suitability of using previously published inversion techniques [9] for the impedance resonances of monolithic co-fired piezoelectric stacks to the MFC™ to determine the complex material constants from the impedance data. The impedance equations examined in this paper are those based on the derivation by Martin [5,6,10]. The utility of resonance techniques to invert the impedance data to determine the small signal complex material constants are presented for a series of MFC's. The technique was applied to actuators with different geometries and the real coefficients were determined to be similar within changes of the boundary conditions due to change of geometry. The scatter in the imaginary coefficient was found to be larger. The technique was also applied to the same actuator type but manufactured in different batches with some design changes in the non active portion of the actuator and differences in the dielectric and the electromechanical coupling between the two batches were easily measureable. It is interesting to note that strain predicted by small signal impedance analysis is much lower than high field stains. Since the model is based on material properties rather than circuit constants, it could be used for the direct evaluation of specific aging or degradation mechanisms in the actuator as well as batch sorting and adjustment of manufacturing processes.

  7. Multilayered piezomagnetic/piezoelectric composites with periodic interfacial cracks subject to in-plane loading

    Science.gov (United States)

    Tian, Wenxiang; Zhong, Zheng; Li, Yaochen

    2016-01-01

    A two-dimensional fracture problem of periodically distributed interfacial cracks in multilayered piezomagnetic/piezoelectric composites is studied under in-plane magnetic or electric loading. The magnetic permittivity of the piezoelectric material and the dielectric constant of the piezomagnetic material are considered. A system of singular integral equations of the second kind with a Cauchy kernel is obtained by means of Fourier transform and further solved by using Jacobi polynomials. The problem is solved in the real domain by constructing real fundamental solutions. The primary interfacial fracture mechanic parameters, such as the stress intensity factors (SIFs), the electric displacement intensity factors (EDIFs), the magnetic induction intensity factors (MIIFs) and the energy release rates (ERRs) are then obtained. It is found that a magnetic or electric loading normal to the crack surfaces can lead to a mixture of mode I and mode II type stress singularities at the crack tips. Numerical results show that increasing the thickness of the active layer will favor the crack initiation. Inversely, increasing the thickness of the passive layer will retard the crack initiation. Furthermore, the results indicate that the crack initiation can be inhibited by adjusting the direction of the applied magnetic or electric loading.

  8. ANALYSIS OF DAMAGE NEAR A CONDUCTING CRACK IN A PIEZOELECTRIC CERAMIC

    Institute of Scientific and Technical Information of China (English)

    YangXinhua; ChenChuanyao; HuYuantai

    2003-01-01

    The finite element formulation for analyzing static damage near a conducting crack in a thin piezoelectric plate is established from the virtual work principle of piezoelectricity. The damage fields under various mechanical and electrical loads are calculated carefully by using an effective iterative procedure. The numerical results show that all the damage fields around a crack tip are fan-shaped and the electric field applied has great influence on the mechanical damage,which is related to the piezoelectric properties.

  9. On the buckling behavior of piezoelectric nanobeams: An exact solution

    Energy Technology Data Exchange (ETDEWEB)

    Jandaghian, Ali Akbar; Rahmaini, Omid [University of Zanjan, Zanjan (Iran, Islamic Republic of)

    2015-08-15

    In this paper, thermoelectric-mechanical buckling behavior of the piezoelectric nanobeams is investigated based on the nonlocal theory and Euler-Bernoulli beam theory. The electric potential is assumed linear through the thickness of the nanobeam and the governing equations are derived by Hamilton's principle. The governing equations are solved analytically for different boundary conditions. The effects of the nonlocal parameter, temperature change, and external electric voltage on the critical buckling load of the piezoelectric nanobeams are discussed in detail. This study should be useful for the design of piezoelectric nanodevices.

  10. All-solution-processed flexible thin film piezoelectric nanogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Sung Yun; Kim, Sunyoung; Kim, Kyongjun [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744 (Korea, Republic of); Lee, Ju-Hyuck; Kim, Sang-Woo [SKKU Advanced Institute of Nanotechnology, School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Kang, Chong-Yun; Yoon, Seok-Jin [Electronic Materials Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, Youn Sang [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744 (Korea, Republic of); Advanced Institutes of Convergence Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of)

    2012-11-27

    An all-solution-processed flexible thin film piezoelectric nanogenerator is demonstrated using reactive zinc hydroxo-condensation and a screen-printing method. The highly elastic thin film allows the piezoelectric energy to be generated through the mechanical rolling and muscle stretching of the piezoelectric unit. This flexible all solution-processed nanogenerator is promising for use in future energy harvesters such as wearable human patches and mobile electronics. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Piezoelectric actuator renaissance

    Science.gov (United States)

    Uchino, Kenji

    2015-03-01

    This paper resumes the content of the invited talk of the author, read at the occasion of the International Workshop on Relaxor Ferroelectrics, IWRF 14, held on October 12-16, 2014 in Stirin, Czech Republic. It reviews the recent advances in materials, designing concepts, and new applications of piezoelectric actuators, as well as the future perspectives of this area.

  12. Electrical properties and sensing ability of novel piezoelectric ceramic fibers with Pt core

    Science.gov (United States)

    Du, Jianzhou; Qiu, Jinhao; Zhu, Kongjun; Ji, Hongli; Zhao, Huayun

    2012-04-01

    The traditional sintering method was used to sinter the pure and Fe2O3 doped 0.55Pb(Ni0.33Nb0.67)O3-0.45Pb(Zr0.3Ti0.7)O3 (abbreviate as PNN-PZT and PFNN-PZT, respectively) ceramics. The addition of Fe2O3 significantly improved the microstructure and electrical properties. Compared with pure PNN-PZT ceramics, higher dielectric and piezoelectric properties of d31~-390 pC/N, ɛ r ~6298 were obtained for the PFNN-PZT sample sintered at 1175°C for 2 h. Hence, the PFNN-PZT ceramics sample was selected to fabricate piezoelectric ceramic fibers with Pt core (PFC). Both the green fibers and bulk ceramics were sintered at 1150-1225°C for 2 h in a closed crucible, respectively. The effect of sintering temperature on the microstructure and electrical properties of the PFNN-PZT fibers was investigated. The optimal piezoelectric properties are obtained for the sample sintered at 1175°C for 2 h. The relative dielectric constant and piezoelectric constant show peak values of ɛ r~3683, d31~-197.4 pC/N, respectively. The PFC is a new type piezoelectric device, which can be used for sensors or actuators. The results of sensing experiment show that the piezoelectric ceramic fiber with Pt core has high sensitivity for the Lamb waves.

  13. Energy harvesting performance of piezoelectric ceramic and polymer nanowires

    Science.gov (United States)

    Crossley, Sam; Kar-Narayan, Sohini

    2015-08-01

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in certain cases, to have similar energy conversion efficiencies, ceramics are more promising in strain-driven NGs while polymers are more promising for stress-driven NGs

  14. Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of lead titanate-epoxy composites

    NARCIS (Netherlands)

    Khanbareh, H.; Zwaag, S. van der; Groen, W.A.

    2014-01-01

    Functional granular composites of lead titanate particles in an epoxy matrix prepared by dielectrophoresis show enhanced dielectric, piezoelectric and pyroelectric properties compared to 0-3 composites for different ceramic volume content from 10% to 50%. Two structuring parameters, the interparticl

  15. A Diagram of the Structure Evolution of Pb(Zn1/3Nb2/3 O3-9%PbTiO3 Relaxor Ferroelectric Crystals with Excellent Piezoelectric Properties

    Directory of Open Access Journals (Sweden)

    Hua Zhou

    2017-05-01

    Full Text Available Piezoelectric properties are of significant importance to medical ultrasound, actuators, sensors, and countless other device applications. The mechanism of piezoelectric properties can be deeply understood in light of structure evolutions. In this paper, we report a diagram of the structure evolutions of Pb(Zn1/3Nb2/30.91Ti0.09O3 (PZN-9PT crystals with excellent piezoelectric properties among orthorhombic, tetragonal, and cubic phases, with a temperature increasing from room temperature to 220 °C. Through fitting the temperature-dependent XRD curves with Gauss and Lorenz functions, we obtained the evolutions of the content ratio of three kinds of phases (orthorhombic, tetragonal and cubic and the lattice parameters of the PZN-9PT system with the changes of temperature. The XRD fitting results together with Raman and dielectric spectra show that the phase transitions of PZN-9PT are a typical continuous evolution process. Additionally, resonance and anti-resonance spectra show the excellent piezoelectric properties of these crystals, which probably originate from the nano twin domains, as demonstrated by TEM images. Of particular attention is that the thickness electromechanical coupling factor kt is up to 72%.

  16. Dielectric barrier discharges in analytical chemistry.

    Science.gov (United States)

    Meyer, C; Müller, S; Gurevich, E L; Franzke, J

    2011-06-21

    The present review reflects the importance of dielectric barrier discharges in analytical chemistry. Special about this discharge is-and in contrast to usual discharges with direct current-that the plasma is separated from one or two electrodes by a dielectric barrier. This gives rise to two main features of the dielectric barrier discharges; it can serve as dissociation and excitation device and as ionization mechanism, respectively. The article portrays the various application fields for dielectric barrier discharges in analytical chemistry, for example the use for elemental detection with optical spectrometry or as ionization source for mass spectrometry. Besides the introduction of different kinds of dielectric barrier discharges used for analytical chemistry from the literature, a clear and concise classification of dielectric barrier discharges into capacitively coupled discharges is provided followed by an overview about the characteristics of a dielectric barrier discharge concerning discharge properties and the ignition mechanism.

  17. Postbuckling investigations of piezoelectric microdevices considering damage effects.

    Science.gov (United States)

    Sun, Zhigang; Wang, Xianqiao

    2014-03-11

    Piezoelectric material has been emerging as a popular building block in MEMS devices owing to its unique mechanical and electrical material properties. However, the reliability of MEMS devices under buckling deformation environments remains elusive and needs to be further explored. Based on the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of piezoelectric material, a constitutive model of piezoelectric materials with damage is presented. The Kachanvo damage evolution law under in-plane compressive loads is employed. The model is applied to the specific case of the postbuckling analysis of the piezoelectric plate with damage. Then, adopting von Karman's plate theory, the nonlinear governing equations of the piezoelectric plates with initial geometric deflection including damage effects under in-plane compressive loads are established. By using the finite difference method and the Newmark scheme, the damage evolution for damage accumulation is developed and the finite difference procedure for postbuckling equilibrium path is simultaneously employed. Numerical results show the postbuckling behaviors of initial flat and deflected piezoelectric plates with damage or no damage under different sets of electrical loading conditions. The effects of applied voltage, aspect ratio of plate, thick-span ratio of plate, damage as well as initial geometric deflections on the postbuckling behaviors of the piezoelectric plate are discussed.

  18. Advances in Valveless Piezoelectric Pump with Cone-shaped Tubes

    Science.gov (United States)

    Zhang, Jian-Hui; Wang, Ying; Huang, Jun

    2017-07-01

    This paper reviews the development of valveless piezoelectric pump with cone-shaped tube chronologically, which have widely potential application in biomedicine and micro-electro-mechanical systems because of its novel principles and deduces the research direction in the future. Firstly, the history of valveless piezoelectric pumps with cone-shaped tubes is reviewed and these pumps are classified into the following types: single pump with solid structure or plane structure, and combined pump with parallel structure or series structure. Furthermore, the function of each type of cone-shaped tubes and pump structures are analyzed, and new directions of potential expansion of valveless piezoelectric pumps with cone-shaped tubes are summarized and deduced. The historical argument, which is provided by the literatures, that for a valveless piezoelectric pump with cone-shaped tubes, cone angle determines the flow resistance and the flow resistance determines the flow direction. The argument is discussed in the reviewed pumps one by one, and proved to be convincing. Finally, it is deduced that bionics is pivotal in the development of valveless piezoelectric pump with cone-shaped tubes from the perspective of evolution of biological structure. This paper summarizes the current valveless piezoelectric pumps with cone-shaped tubes and points out the future development, which may provide guidance for the research of piezoelectric actuators.

  19. Postbuckling Investigations of Piezoelectric Microdevices Considering Damage Effects

    Directory of Open Access Journals (Sweden)

    Zhigang Sun

    2014-03-01

    Full Text Available Piezoelectric material has been emerging as a popular building block in MEMS devices owing to its unique mechanical and electrical material properties. However, the reliability of MEMS devices under buckling deformation environments remains elusive and needs to be further explored. Based on the Talreja’s tensor valued internal state damage variables as well as the Helmhotlz free energy of piezoelectric material, a constitutive model of piezoelectric materials with damage is presented. The Kachanvo damage evolution law under in-plane compressive loads is employed. The model is applied to the specific case of the postbuckling analysis of the piezoelectric plate with damage. Then, adopting von Karman’s plate theory, the nonlinear governing equations of the piezoelectric plates with initial geometric deflection including damage effects under in-plane compressive loads are established. By using the finite difference method and the Newmark scheme, the damage evolution for damage accumulation is developed and the finite difference procedure for postbuckling equilibrium path is simultaneously employed. Numerical results show the postbuckling behaviors of initial flat and deflected piezoelectric plates with damage or no damage under different sets of electrical loading conditions. The effects of applied voltage, aspect ratio of plate, thick-span ratio of plate, damage as well as initial geometric deflections on the postbuckling behaviors of the piezoelectric plate are discussed.

  20. A Multivariate Variational Principle for Piezoelectric Effect Problems

    Institute of Scientific and Technical Information of China (English)

    Ke Zunping; Chen Dapeng; Pian T. H. H

    1996-01-01

    The mechanical-electric coupling effect of piezoelectric materials and devices is discussed and a brief review on the evolution of the technique is presented. On such basis,as a first step toward the formulation of finite elements for analysis of piezoelectric devices, a multivariate variation principle is presented. As has been revealed by the present work,an important particularization thereof is the Allik-Hughes functional.

  1. Neutron Production from the Fracture of Piezoelectric Rocks

    CERN Document Server

    Widom, A; Srivastava, Y N

    2011-01-01

    A theoretical explanation is provided for the experimental evidence that fracturing piezoelectric rocks produces neutrons. The elastic energy micro-crack production ultimately yields the macroscopic fracture. The mechanical energy is converted by the piezoelectric effect into electric field energy. The electric field energy decays via radio frequency (microwave) electric field oscillations. The radio frequency electric fields accelerate the condensed matter electrons which then collide with protons producing neutrons and neutrinos.

  2. EDGE SINGULARITY OF BONDED PIEZOELECTRIC MATERIALS WITH REPEATED EIGENVALUES

    Institute of Scientific and Technical Information of China (English)

    王效贵; 许金泉

    2001-01-01

    In piezoelectric problems, the form of the general solution is dependent on the eigenvalues of the material. The singular stress field and electrical displacement field near the interface edge were deduced in this study. The results showed that the stress field and the electrical displacement field have the same singularity; and that the singularity depends not only on the mechanical properties and shape of the interface edge, but also on the piezoelectric properties of the composite material.

  3. Development of a Piezoelectric Rotary Hammer Drill

    Science.gov (United States)

    Domm, Lukas N.

    2011-01-01

    The Piezoelectric Rotary Hammer Drill is designed to core through rock using a combination of rotation and high frequency hammering powered by a single piezoelectric actuator. It is designed as a low axial preload, low mass, and low power device for sample acquisition on future missions to extraterrestrial bodies. The purpose of this internship is to develop and test a prototype of the Piezoelectric Rotary Hammer Drill in order to verify the use of a horn with helical or angled cuts as a hammering and torque inducing mechanism. Through an iterative design process using models in ANSYS Finite Element software and a Mason's Equivalent Circuit model in MATLAB, a horn design was chosen for fabrication based on the predicted horn tip motion, electromechanical coupling, and neutral plane location. The design was then machined and a test bed assembled. The completed prototype has proven that a single piezoelectric actuator can be used to produce both rotation and hammering in a drill string through the use of a torque inducing horn. Final data results include bit rotation produced versus input power, and best drilling rate achieved with the prototype.

  4. Rotor damage detection by using piezoelectric impedance

    Science.gov (United States)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  5. Piezoelectric Nanoparticle-Polymer Composite Materials

    Science.gov (United States)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  6. Dielectric and conduction mechanism studies of PEMA/ENR-50 blend with LiCF3SO3 salt

    Science.gov (United States)

    Sukri, N.; Mohamed, N. S.; Subban, R. H. Y.

    2017-09-01

    Solid polymer electrolytes (SPEs) composed of a blend of Poly(ethyl methacrylate) (PEMA) and Epoxidized Natural Rubber-50 (ENR-50) and Lithium triflate (LiCF3SO3) were prepared by solution casting technique. The conductivity was measured by using electrical impedance spectroscopy (EIS). Measurement of conductivity was carried out as a function of frequency at various concentrations of salt. The SPE exhibit high conductivity of ˜10-5 S/cm at ambient temperature when 40 wt% of LiCF3SO3 was added. Increase in conductivity is attributed to increasing number of charge carriers due to dissociation of salt when the concentration of salt increased. Dielectric properties and ac conductivity of the samples were analyzed. The values of dielectric constant were found to increase with increasing conductivity of the samples. The electrical modulus shows the formation of dispersion peaks. Relaxation time of ionic charge carriers were extracted from the maximum peak of loss tangent at various concentrations of LiCF3SO3 salt. The temperature dependence of the power law exponent s is explained by the overlapping large polaron-tunnelling (OLPT) model.

  7. An analytical model for electrode-ceramic interaction in multilayer piezoelectric actuators

    Institute of Scientific and Technical Information of China (English)

    B. L. Wang; J. C. Han

    2007-01-01

    The present paper develops an analytical model for multi-electrodes in multi-layered piezoelectric actuators, in which the electrodes are vertical to and terminated at the edges of the medium and electroelastic field concentrations ahead of the electrodes in the multilayer piezoelectric actuators are examined. By considering a representative unit in realistic multilayers, the problem is formulated in terms of electric potential between the electrode tips and results in a system of singular integral equations in which the electric potential is taken as unknown function. Effects are investigated of electrode spacing and piezoelectric coupling on the singular electroelastic fields at the electrode tips, and closed-form expressions are given for the electromechanical field near the electrode tips. Exact solution for un-coupled dielectrics is provided, where no piezoelectric coupling is present.

  8. PIEZOELECTRIC PROPERTIES OF SINGLE-STRAND DNA MOLECULAR BRUSH BIOLAYERS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The paper is devoted to investigations on nanomechanical behaviors of biochips in label-free biodetections. The chip consists of Si-layer, Ti-layer, Au-layer and single-strand DNA (ssDNA) molecular brush biolayer immobilized by self-assembly technology of thiol group. Unlike previous viewpoints, such as force-bending, entropy-bending and curvature electricity effect, etc.,the piezoelectric effect of the biopolymer brush layer is viewed as the main factor that induces nanomechanical bending of biochips, and a classical macroscopic piezoelectric constitutive relation is used to describe the piezoelectric effect. A new laminated cantilever beam model with a piezoelectric biolayer in continuum mechanics, the linearized Poisson-Boltzmann equation in statistical mechanics and the scaling method in polyelectrolyte brush theory are combined to establish a relationship between the nanomechanical deflection of DNA chips and the factors such as nanoscopic structural features of ssDNA molecules, buffer salt concentration, macroscopic mechanical/piezoelectric parameters of DNA chips etc. Curve fitting of experimental data shows that the sign of the piezoelectric constant of the biolayer may control the deflection direction of DNA chips during the packaging process.

  9. Piezoelectric performance of fluor polymer sandwiches with different void structures

    Science.gov (United States)

    Lou, Kexing; Zhang, Xiaoqing; Xia, Zhongfu

    2012-06-01

    Film sandwiches, consisting of two outer layers of fluoroethylenepropylene and one middle layer of patterned porous polytetrafluoroethylene, were prepared by patterning and fusion bonding. Contact charging was conducted to render the films piezoelectric. The critical voltage to trigger air breakdown in the inner voids in the fabricated films was investigated. The piezoelectric d 33 coefficients were measured employing the quasistatic method and dielectric resonance spectrum. The results show that the critical voltage for air breakdown in the inner voids is associated with the void microstructure of the films. For the films with patterning factors of 0%, 25% and 44%, the critical values are 300, 230 and 230 kV/cm, respectively. With an increase in the patterning factor, both the piezoelectric d 33 coefficients determined from the dielectric resonance spectra and those determined from quasistatic measurements increase, which might be due to a decrease in Young's modulus for the films. The nonlinearity of d 33 becomes increasingly obvious as the patterning factor increases.

  10. A continuum theory of surface piezoelectricity for nanodielectrics

    Science.gov (United States)

    Pan, XiaHui; Yu, ShouWen; Feng, XiQiao

    2011-04-01

    In this paper, a phenomenological continuum theory of surface piezoelectricity accounting for the linear superficial interplay between electricity and elasticity is formulated primarily for elastic dielectric materials. This theory is inspired by the physical idea that once completely relaxed, an insulating free dielectric surface will sustain a nontrivial spontaneous surface polarization in the normal direction together with a tangential self-equilibrated residual surface stress field. Under external loadings, the surface Helmholtz free energy density is identified as the characteristic function of such surfaces, with the in-plane strain tensor of surface and the surface free charge density as the independent state variables. New boundary conditions governing the surface piezoelectricity are derived through the variational method. The resulting concepts of charge-dependent surface stress and deformation-dependent surface electric field reflect the linear electromechanical coupling behavior of nanodielectric surfaces. As an illustrative example, an infinite radially polarizable piezoelectric nanotube with both inner and outer surfaces grounded is investigated. The novel phenomenon of possible surface-induced polarity inversion is predicted for thin enough nanotubes.

  11. Piezoelectric peptide-based nanogenerator enhanced by single-electrode triboelectric nanogenerator

    Science.gov (United States)

    Nguyen, Vu; Kelly, Steve; Yang, Rusen

    2017-07-01

    Peptide has recently been demonstrated as a sustainable and smart material for piezoelectric energy conversion. Although the power output was improved compared to other biomaterials, the use of a piezoelectric device alone can only capture the energy from the minute deformation in materials. In comparison, the triboelectric effect can convert mechanical energy from large motion. Consequently, utilizing both piezoelectric and triboelectric effects is of significant research interest due to their complementary energy conversion mechanisms. Here we demonstrated a hybrid nanogenerator that combined a peptide-based piezoelectric nanogenerator with a single-electrode triboelectric nanogenerator. Our device structure enabled the voltage and current outputs of each individual type of nanogenerator to be superposed in the hybrid nanogenerator, producing overall constructive outputs. The design of our device also enabled a simplified configuration of hybrid nanogenerator. This study is important not only for the enhancement of peptide-based piezoelectric device but also for the future design of hybrid piezoelectric and triboelectric nanogenerators.

  12. Coupled mixed-field laminate theory and finite element for smart piezoelectric composite shell structures

    Science.gov (United States)

    Saravanos, Dimitris A.

    1996-01-01

    Mechanics for the analysis of laminated composite shells with piezoelectric actuators and sensors are presented. A new mixed-field laminate theory for piezoelectric shells is formulated in curvilinear coordinates which combines single-layer assumptions for the displacements and a layerwise representation for the electric potential. The resultant coupled governing equations for curvilinear piezoelectric laminates are described. Structural mechanics are subsequently developed and an 8-node finite-element is formulated for the static and dynamic analysis of adaptive composite structures of general laminations containing piezoelectric layers. Evaluations of the method and comparisons with reported results are presented for laminated piezoelectric-composite plates, a closed cylindrical shell with a continuous piezoceramic layer and a laminated composite semi-circular cantilever shell with discrete cylindrical piezoelectric actuators and/or sensors.

  13. Dielectric response of MgO-added Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} ceramics under bias electric field: Examination of contributing mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaofei [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); School of Mathematics and Physics, Hubei Ploytechnic University, Huangshi, 435003 (China); Xu Qing, E-mail: xuqing@whut.edu.cn [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Zhan Di; Liu Hanxing; Chen Wen; Huang Duanping [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2013-02-01

    The structure and dielectric properties of (1-x)wt% Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}-xwt% MgO (x=0.5-60) ceramics were studied. The specimens with x{<=}1 had a single-phase perovskite structure and those with higher MgO contents presented a biphasic structure comprising Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} and MgO phases. The temperature dependence of the dielectric properties showed a frequency-dispersion behavior. The dielectric constants of the ceramics under bias electric field displayed an obvious deviation from the behavior as predicted by the phenomenological Johnson model. These dielectric phenomena were explained in relation to Mg{sup 2+} doping and polar nano-regions (PNRs) in Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} phase. Fitting the dielectric constants to a multipolarization mechanism model resolved intrinsic and extrinsic contributions to the dielectric non-linearity of the ceramics. Characteristic parameters of the contributions were determined from the fitting. Increasing MgO content led to a monotonous enhancement of the anharmonic coefficient ({alpha}). The polarization of PNRs tended to decrease with the increase of MgO content while the size of PNRs was insensitive to MgO content.

  14. Piezoelectric Resonator with Two Layers

    Science.gov (United States)

    Stephanou, Philip J. (Inventor); Black, Justin P. (Inventor)

    2013-01-01

    A piezoelectric resonator device includes: a top electrode layer with a patterned structure, a top piezoelectric layer adjacent to the top layer, a middle metal layer adjacent to the top piezoelectric layer opposite the top layer, a bottom piezoelectric layer adjacent to the middle layer opposite the top piezoelectric layer, and a bottom electrode layer with a patterned structure and adjacent to the bottom piezoelectric layer opposite the middle layer. The top layer includes a first plurality of electrodes inter-digitated with a second plurality of electrodes. A first one of the electrodes in the top layer and a first one of the electrodes in the bottom layer are coupled to a first contact, and a second one of the electrodes in the top layer and a second one of the electrodes in the bottom layer are coupled to a second contact.

  15. Piezoelectric step-motion actuator

    Science.gov (United States)

    Mentesana; Charles P.

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  16. Growth, optical, thermal, mechanical and dielectric studies of sodium succinate hexahydrate (β phase) single crystal: A promising third order NLO material

    Science.gov (United States)

    Mageshwari, P. S. Latha; Priya, R.; Krishnan, S.; Joseph, V.; Das, S. Jerome

    2016-11-01

    A third order nonlinear optical (NLO)single crystals of sodium succinate hexahydrate (SSH) (β phase) has been grown by a slow evaporation growth technique using aqueous solution at ambient temperature. The lattice parameters and morphology of SSH were determined by single crystal X-ray diffraction analysis. SSH crystallizes in centrosymmetric monoclinic system with space group P 21 / c and the crystalline purity was analyzed by powder X-ray diffraction analysis. The UV-vis-NIR spectrum reveals that the crystal is transparent in the entire visible region. The recorded FT-IR spectrum verified the presence of various functional groups in the material. NMR analysis of the grown crystal confirms the structural elucidation and detects the major and minor functional groups present in the title compound. ICP-OES analysis proved the presence of sodium in SSH. TG-DTA/DSCanalysis was used to investigate the thermal stability of the material. The dielectric permittivity and dielectric loss of SSH were carried out as a function of frequency for different temperatures and the results were discussed. The mechanical stability was evaluated from Vicker's microhardness test. The third order nonlinear optical properties of SSH has been investigated employing Z-scan technique with He-Ne laser operating at 632.8 nm wavelength.

  17. Micro-structure, Mechanical Properties and Dielectric Properties of Bisphenol A Allyl Compound-Bismaleimide Modified by Super-Critical Silica and Polyethersulfone Composite

    Science.gov (United States)

    Chen, Yufei; Wang, Botao; Li, Fangliang; Teng, Chengjun

    2017-07-01

    Bisphenol A allyl compound-bismaleimide (MBAE) composite modified by SCE-SiO2 and polyethersulfone (PES) resin has been prepared and researched. SCE-SiO2 was modified by super-critical ethanol and PES thermoplastic resin used as modifiers. The composite was prepared via the hot melting method. The FT-IR measurements indicated that ethanol molecular had adsorbed on the nano-SiO2 surface. SEM images showed that the composite had a multiphase structure, PES and SCE-SiO2 existed as a dispersed phase, and the interaction of the three phases affected each other, such that the bending fracture behavior transformed from brittle fracture to ductile fracture, and the modifiers of SCE-SiO2 and PES resin could improve the mechanical properties. The impact and the bending strength of the composite was 16.5 kJ/mm2 and 150.4 MPa, improved by 68.3% and 56.7% compared with those of the MBAE matrix, respectively, when the content of SCE-SiO2 was 2 wt.% and PES 5 wt.%. The dielectric constant ( ɛ) of the composites was less than 3.9 and decreased with increasing frequency, and the dielectric loss was less than 9 × 10-3 for frequencies between 102 Hz and 105 Hz. These properties could meet the requirement of insulating material.

  18. Synthesis and Properties of [Bi0.5(Na1-xAgx)0.5]1-yBayTiO3 Piezoelectric Ceramics

    Science.gov (United States)

    Wu, Lang; Xiao, Ding-Quan; Lin, Dun-Min; Zhu, Jian-Guo; Yu, Ping

    2005-12-01

    A new group of ABO3-type lead-free piezoelectric ceramics, [Bi0.5(Na1-xAgx)0.5]1-yBayTiO3, was developed, and the corresponding invention patent was submitted. The ceramics were synthesized by the conventional ceramic sintering technique using electronic grade raw materials, and the preparation techniques are very stable and convenient. The crystalline phase, microstructure and electric properties of the ceramics were also investigated. All the ceramics have high densities of about 5.70-5.84 g/cm3, which are more than 95% of the theoretical values. This system provides high piezoelectric performances: d33=168 pC/N, kp=0.31 when x=0.06, y=0.06. Moreover, the samples doped with a moderate amount of Mn could increase the mechanical quality factor Qm and reduce the dielectric loss \\mathop{tg}δ simultaneously. The temperature dependence of piezoelectric properties measured show that at up to 180°C, d33 can still remain 126 pC/N for [Bi0.5(Na0.96Ag0.04)0.5]0.90Ba0.10TiO3 ceramics, which has a d33 of 137 pC/N at room temperature.

  19. High-fidelity piezoelectric loudspeaker

    OpenAIRE

    Fernández Martínez, Javier

    2014-01-01

    This project reports on a literature review about piezoelectric loudspeakers and on an experimental research about how to improve some features of a particular horned piezoelectric tweeter. The work involves an investigation of the performance and principle of operation of piezoelectric loudspeakers to understand how the sound is generated and what its main parameters are. Also, previous research papers about how to improve this type of speakers are reported. The knowledge gained was us...

  20. ANALYSIS OF BEAMS WITH PIEZOELECTRIC ACTUATORS

    Institute of Scientific and Technical Information of China (English)

    林启荣; 刘正兴; 王宗利

    2001-01-01

    Based on the two-dimensional constitutive relationships of the piezoelectric material, an analytical solution for an intelligent beam excited by a pair of piezoelectric actuators is derived. With the solution the force and moment generated by two piezoelectric actuators and a pair of piezoelectric actuator/sensor are obtained. Examples of a cantilever piezoelectric laminated beam or a simply supported piezoelectric laminated beam, applied with voltages, are given.

  1. Flexible energy harvesting from hard piezoelectric beams

    Science.gov (United States)

    Delnavaz, Aidin; Voix, Jérémie

    2016-11-01

    This paper presents design, multiphysics finite element modeling and experimental validation of a new miniaturized PZT generator that integrates a bulk piezoelectric ceramic onto a flexible platform for energy harvesting from the human body pressing force. In spite of its flexibility, the mechanical structure of the proposed device is simple to fabricate and efficient for the energy conversion. The finite element model involves both mechanical and piezoelectric parts of the device coupled with the electrical circuit model. The energy harvester prototype was fabricated and tested under the low frequency periodic pressing force during 10 seconds. The experimental results show that several nano joules of electrical energy is stored in a capacitor that is quite significant given the size of the device. The finite element model is validated by observing a good agreement between experimental and simulation results. the validated model could be used for optimizing the device for energy harvesting from earcanal deformations.

  2. Power Consideration in a Piezoelectric Generator

    Directory of Open Access Journals (Sweden)

    Rémi Tardiveau

    2013-01-01

    Full Text Available A piezoelectric generator converts mechanical energy into electricity and is used in energy harvesting devices. In this paper, synchronisation conditions in regard to the excitation vibration are studied. We show that a phase shift of ninety degrees between the vibration excitation and the bender’s displacement provides the maximum power from the mechanical excitation. However, the piezoelectric material is prone to power losses; hence the bender’s displacement amplitude is optimised in order to increase the amount of power which is converted into electricity. In the paper, we use active energy harvesting to control the power flow, and all the results are achieved at a frequency of 200 Hz which is well below the generator’s resonant frequency.

  3. Black Branes as Piezoelectrics

    CERN Document Server

    Armas, Jay; Obers, Niels A

    2012-01-01

    We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.

  4. Black branes as piezoelectrics.

    Science.gov (United States)

    Armas, Jay; Gath, Jakob; Obers, Niels A

    2012-12-14

    We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.

  5. Propellant Flow Actuated Piezoelectric Igniter for Combustion Engines

    Science.gov (United States)

    Wollen, Mark A. (Inventor)

    2015-01-01

    A propellant flow actuated piezoelectric igniter device using one or more hammer balls retained by one or more magnets, or other retaining method, until sufficient fluid pressure is achieved to release and accelerate the hammer ball, such that it impacts a piezoelectric crystal to produce an ignition spark. Certain preferred embodiments provide a means for repetitively capturing and releasing the hammer ball after it impacts one or more piezoelectric crystals, thereby oscillating and producing multiple, repetitive ignition sparks. Furthermore, an embodiment is presented for which oscillation of the hammer ball and repetitive impact to the piezoelectric crystal is maintained without the need for a magnet or other retaining mechanism to achieve this oscillating impact process.

  6. Piezoelectric Windmill: A Novel Solution to Remote Sensing

    Science.gov (United States)

    Priya, Shashank; Chen, Chih-Ta; Fye, Darren; Zahnd, Jeff

    2005-01-01

    This study demonstrates a technology, “Piezoelectric Windmill”, for generating the electrical power from wind energy. The electric power-generation from wind energy is based on piezoelectric effect and utilizes the bimorph actuators. Piezoelectric Windmill consists of piezoelectric actuators arranged along the circumference of the mill in the cantilever form. Using the camshaft gear mechanism an oscillating torque is generated through the flowing wind and applied on the actuators. A working prototype was fabricated utilizing 12 bimorphs (60 × 20 × 0.5 mm3) having a preload of 23.5 gm. Under a nominal torque level corresponding to normal wind flow and oscillating frequency of 6 Hz, a power of 10.2 mW was successfully measured across a load of 4.6 kΩ after rectification. Combined with the wireless transmission, this technology provides a practical solution to the remote powering of sensors and communication devices.

  7. Selective femtosecond laser structuring of dielectric thin films with different band gaps: a time-resolved study of ablation mechanisms

    Science.gov (United States)

    Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2016-12-01

    Ultrashort pulse lasers have been increasingly gaining importance for the selective structuring of dielectric thin films in industrial applications. In a variety of works the ablation of thin SiO2 and SiNx films from Si substrates has been investigated with near infrared laser wavelengths with photon energies of about 1.2 eV where both dielectrics are transparent (E_{{gap,SiO2}}≈ 8 eV; E_{{gap,SiN}x}≈ 2.5 eV). In these works it was found that few 100 nm thick SiO2 films are selectively ablated with a "lift-off" initiated by confined laser ablation whereas the SiN_{{x}} films are ablated by a combination of confined and direct laser ablation. In the work at hand, ultrafast pump-probe imaging was applied to compare the laser ablation dynamics of the two thin film systems directly with the uncoated Si substrate—on the same setup and under identical parameters. On the SiO2 sample, results show the pulse absorption in the Si substrate, leading to the confined ablation of the SiO2 layer by the expansion of the substrate. On the SiN_{{x}} sample, direct absorption in the layer is observed leading to its removal by evaporation. The pump-probe measurements combined with reflectivity corrected threshold fluence investigations suggest that melting of the Si substrate is sufficient to initiate the lift-off of an overlaying transparent film—evaporation of the substrate seems not to be necessary.

  8. Active control of nano dimers response using piezoelectric effect

    Science.gov (United States)

    Mekkawy, Ahmed A.; Ali, Tamer A.; Badawi, Ashraf H.

    2016-09-01

    Nano devices can be used as building blocks for Internet of Nano-Things network devices, such as sensors/actuators, transceivers, and routers. Although nano particles response can be engineered to fit in different regimes, for such a nano particle to be used as an active nano device, its properties should be dynamically controlled. This controllability is a challenge, and there are many proposed techniques to tune nanoparticle response on the spot through a sort of control signal, wither that signal is optical (for all-optical systems) or electronic (for opto-electronic systems). This will allow the use of nano particles as nano-switches or as dynamic sensors that can pick different frequencies depending on surrounding conditions or depending on a smart decisions. In this work, we propose a piezoelectric substrate as an active control mediator to control plasmonic gaps in nano dimers. This method allows for integrating nano devices with regular electronics while communicating control signals to nano devices through applying electric signals to a piezoelectric material, in order to control the gaps between nano particles in a nano cluster. We do a full numerical study to the system, analyzing the piezoelectric control resolution (minimum gap change step) and its effect on a nanodimer response as a nanoantenna. This analysis considers the dielectric functions of materials within the visible frequencies range. The effects of different parameters, such as the piezoelectric geometrical structure and materials, on the gap control resolution and the operating frequency are studied.

  9. A finite crack with arbitrarily varied surface piezoelectricity

    Science.gov (United States)

    Xu, Yang; Wang, Xu

    2017-01-01

    We study the contribution of arbitrarily varied surface piezoelectricity to the anti-plane deformation and in-plane electric fields of a hexagonal piezoelectric material containing a finite crack. The varied surface piezoelectricity is incorporated by using an extended version of the continuum-based surface/interface model of Gurtin and Murdoch. In our discussion, the surface properties, including the surface elastic stiffness, the surface piezoelectric modulus and the surface dielectric permittivity, are assumed to be varied arbitrarily along the crack surfaces. By using the Green’s function method, the original boundary value problem is reduced to a system of two coupled first-order Cauchy singular integro-differential equations. Through a diagonalization strategy, the coupled system is transformed into two independent singular integro-differential equations, each of which can be numerically solved by using the collocation method. Our results indicate that the variation of the surface electroelastic moduli exerts a significant influence on the crack opening displacement, the electric potential jump across the crack faces and on the strengths of the logarithmic singularity in stresses and electric displacements at the crack tips.

  10. Hybrid piezoelectric energy harvesting transducer system

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)

    2008-01-01

    A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.

  11. Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies

    Directory of Open Access Journals (Sweden)

    Min-Gyu Kang

    2016-02-01

    Full Text Available Energy harvesting is the most effective way to respond to the energy shortage and to produce sustainable power sources from the surrounding environment. The energy harvesting technology enables scavenging electrical energy from wasted energy sources, which always exist everywhere, such as in heat, fluids, vibrations, etc. In particular, piezoelectric energy harvesting, which uses a direct energy conversion from vibrations and mechanical deformation to the electrical energy, is a promising technique to supply power sources in unattended electronic devices, wireless sensor nodes, micro-electronic devices, etc., since it has higher energy conversion efficiency and a simple structure. Up to now, various technologies, such as advanced materials, micro- and macro-mechanics, and electric circuit design, have been investigated and emerged to improve performance and conversion efficiency of the piezoelectric energy harvesters. In this paper, we focus on recent progress of piezoelectric energy harvesting technologies based on PbZrxTi1-xO3 (PZT materials, which have the most outstanding piezoelectric properties. The advanced piezoelectric energy harvesting technologies included materials, fabrications, unique designs, and properties are introduced to understand current technical levels and suggest the future directions of piezoelectric energy harvesting.

  12. 一种两自由度的压电-电磁复合能量收集器%A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms

    Institute of Scientific and Technical Information of China (English)

    Hong-yan WANG; Li-hua TANG; Yuan GUO; Xiao-biao SHAN; Tao XIE

    2014-01-01

    研究目的:对一种两自由度的压电-电磁复合能量收集器进行发电性能研究。创新要点:建立了一种两自由度压电-电磁复合能量收集器发电性能的数学模型,该数学模型可以评估两自由度压电-电磁复合能量收集器中压电元件、电磁元件以及系统总输出功率。研究方法:对一种两自由度的压电-电磁复合能量收集器进行数学建模,并实验验证数学模型的正确性。基于实验测试得到的系统参数值,理论研究压电元件和电磁元件的机电耦合系数对不同能量收集器发电性能的影响关系,并对几种能量收集器的发电能力进行对比分析。重要结论:对于非强耦合(弱或中间耦合)的两自由度机电转换器,复合能量收集器(压电+电磁)具有比单一能量收集器(压电或电磁)更高的发电能力。%This paper presents a two-degree-of-freedom (2DOF) hybrid piezoelectric-electromagnetic energy harvester (P-EMEH). Such a 2DOF system is designed to achieve two close resonant frequencies. The combined piezoelectric- electromagnetic conversion mechanism is exploited to further improve the total power output of the system in comparison to a stand-alone piezoelectric or electromagnetic conversion mechanism. First, a mathematical model for the 2DOF hybrid P-EMEH is established. Subsequently, the maximal power output of the 2DOF hybrid P-EMEH is compared both experimentally and theo-retically with those from the 1DOF piezoelectric energy harvester (PEH), 1DOF electromagnetic energy harvester (EMEH), 2DOF PEH, and 2DOF EMEH. Based on the validated mathematical model, the effect of the effective electromechanical coupling coefficients (EMCC) on the maximal power outputs from various harvester configurations is analyzed. The results indicate that for the 2DOF hybrid P-EMEH, although the increase of the power output from one electromechanical transducer will lead to the decrease of the

  13. Dielectric spectroscopy of polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, R.D.; Matveeva, E.M. [Polytechnical Univ. of Valencia, (Spain)

    1993-12-31

    Polyaniline films (PANI) are being considered as attractive new galvanic sources, electrochromic displays, chemical sensors, etc. So far much work has been done to study their optical, electrochemical and electrical properties. However, there are still doubts about the basic electric conductivity mechanisms of PANI. The aim of this paper is to study the influence of water molecules and acid anions on the properties of PANI films by dielectric spectroscopy.

  14. Electron-phonon metamaterial featuring nonlinear tri-interleaved piezoelectric topologies and its application in low-frequency vibration control

    Science.gov (United States)

    Bao, Bin; Guyomar, Daniel; Lallart, Mickaël

    2016-09-01

    This article proposes a nonlinear tri-interleaved piezoelectric topology based on the synchronized switch damping on inductor (SSDI) technique, which can be applied to phononic metamaterials for elastic wave control and effective low-frequency vibration reduction. A comparison of the attenuation performance is made between piezoelectric phononic metamaterial with distributed SSDI topology (each SSDI shunt being independently connected to a single piezoelectric element) and piezoelectric phononic metamaterial with the proposed electronic topology. Theoretical results show excellent band gap hybridization (near-coupling between Bragg scattering mechanism and wideband resonance mechanism induced by synchronized switch damping networks in piezoelectric phononic metamaterials) with the proposed electronic topology over the investigated frequency domain. Furthermore, piezoelectric phononic metamaterials with proposed electronic topology generated a better low-frequency broadband gap, which is experimentally validated by measuring the harmonic response of a piezoelectric phononic metamaterial beam under clamped-clamped boundary conditions.

  15. Mechanical Design and Investigation of Energy Transducer Based on the Vibration-piezoelectric Principle%基于振动-压电原理的能量转换器机械设计和理论研究

    Institute of Scientific and Technical Information of China (English)

    王荣华

    2016-01-01

    本研究基于振动-压电原理,对应用于旋转运动的储能器进行了分析和设计。该系统由涂敷了压电涂层以及装载有质量块的悬臂梁组成,整个系统绕着杆轴转动。当杆轴转动时,质量块的重力作用会引起悬臂梁的机械振动,从而产生振动能。继而压电涂层作为能量转换器可以将产生的机械能转换成电能。通过弹性结构的运动方程以及压电转换器的电学特性可以得到输出电能的数学表达式。然后进一步获得了电阻负载的最优化结果以及最大输出功率,并通过PVDF和PZT两种转换器进行了实验验证。结果显示当采用尺寸为50 mm×38 mm×0.1 mm的PZT压电材料时,可以在140 rad/s转速下得到6.5 mW的最大输出电压。%Based on the transition principle of vibration-energy, the energy harvester system used for rotary motion is analyzed and designed. The system consists of cantilever beams each of which is coated with piezoelectric ceramic on one side and attached with a tip mass on the end, and the whole system is rotated along a shaft driven by a hub. During the rotation motion, the gravitation will induce the mechanical vibration of cantilever beam resulting in the production of vibration energy which is then transferred into electricity by piezoelectric coating (act as an energy transducer). According to the motion expression of flexible structure and electrical characteristics of piezoelectric coating, the electric expression is obtained to optimize the resistance load and maximum output power which are also verified experimentally on both PVDF and PZT transducers. As indicated by the results, a PZT transducer with dimensions of 50mm × 38mm × 0.1mm can produce a maximum power of 6.5mW at the rotation speed of 140rad/s.

  16. Decomposition of acetaminophen in water by a gas phase dielectric barrier discharge plasma combined with TiO2-rGO nanocomposite: Mechanism and degradation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guyu; Sun, Yabing, E-mail: sybnju@163.com; Zhang, Chunxiao; Yu, Zhongqing

    2017-02-05

    Highlights: • Graphene Oxide-based catalyst was first applied with dielectric barrier discharge plasma. • The TiO{sub 2}-rGO showed efficient synergistic effect with gas phase dielectric barrier discharge plasma. • The property changes of TiO{sub 2}-rGO nanocomposite after plasma treatment were characterized. • The mechanism and possible pathways of APAP degradation in plasma/TiO{sub 2}-rGO system were proposed. - Abstract: Acetaminophen (APAP) served as the model pollutant to evaluate the feasibility of pollutant removal by gas phase dielectric barrier discharge plasma combined with the titanium dioxide-reduced Graphene Oxide (TiO{sub 2}-rGO) nanocomposite. TiO{sub 2}-rGO nanocomposite was prepared using the modified hydrothermal method and characterized by TEM and XPS before and after plasma process. The results indicated that the APAP degradation efficiency was significantly improved to 92% after 18 min of discharge plasma treatment coupling 0.25 g L{sup −1} TiO{sub 2}-rGO 5% wt at 18 kV, compared with the plasma alone and plasma combined with P25 TiO{sub 2}. The degradation mechanism for APAP in this system was studied by investigating the effects of the operational variables (e.g. discharge voltage and pH value) and the amount of the generated active species; and the results showed that O{sub 3} and H{sub 2}O{sub 2} yields were influenced notably by adding TiO{sub 2}-rGO. Also, it was observed that, compared with unused TiO{sub 2}-rGO, the photocatalytic performance of used TiO{sub 2}-rGO declined after several recirculation times due to the further reduction of Graphene Oxide in plasma system. Finally, intermediate products were analyzed by UV–vis spectrometry and HPLC/MS, and possible transformation pathways were identified with the support of theoretically calculating the frontier electron density of APAP.

  17. AN INTERFACE INCLUSION BETWEEN TWO DISSIMILAR PIEZOELECTRIC MATERIALS

    Institute of Scientific and Technical Information of China (English)

    高存法; 樊蔚勋

    2001-01-01

    The generalized two- dimensional problem of a dielectric rigid line inclusion, atthe interface between two dissimilar piezoelectric media subjected to piecewise uniform loads at infinity, is studied by means of the Stroh theory. The problem was reduced to a Hilbert problem, and then closed-form expressions were obtained, respectively, for the complex potentials in piezoelectric media, the electric field inside the inclusion and the tip fields near the inclusion. It is shown that in the media, all field variables near the inclusion-tip show square root singularity and oscillatory singularity, the intensity of which is dependent on the material constants and the strains at infinity. In addition, it is found that the electric field inside the inclusion is singular and oscillatory too, when approaching the inclusion-tips from inside the inclusion.

  18. A novel microgripper hybrid driven by a piezoelectric stack actuator and piezoelectric cantilever actuators

    Science.gov (United States)

    Chen, Weilin; Zhang, Xianmin; Fatikow, Sergej

    2016-11-01

    For the piezo-driven microgripper, one issue is to enlarge the grasping stroke and realize parallel grasping movement in the compact design. Piezoelectric stack actuator (PSA) and piezoelectric cantilever actuator (PCA) are two kinds of typical piezoelectric actuators. In this study, a novel microgripper hybrid driven by a PSA and two PCAs is proposed, which can be a better solution for the issue, compared with the previous microgripper using PSA-driven multi-stages displacement amplification mechanism (DAM) or using longer and narrower PCAs. A compact one-stage orthogonal DAM is proposed for the PSA in the microgripper, which can enlarge the grasping stroke and realize parallel grasping movement. The proposed orthogonal DAM is a triangulation amplification-based mechanism with undetermined structural parameters. Bidirectional symmetric input forces/displacements are not required in the proposed design. The number of the undetermined parameters and the solution principle are analyzed. Finite element analysis is used to verify the proposed DAM. The gripper arms are designed as two PCAs, for which the grasping and parasitic movements of the free end are modeled. Piezoelectric-static coupling finite element analysis is used to verify the models. The PCAs-driven grasping with considerable parasitic movement can be used in the coarse positioning. The integration of the hybrid-driven microgripper is presented, and its performances are presented and verified by experiments.

  19. A variational energy approach for electromechanical analysis of thick piezoelectric beam

    Institute of Scientific and Technical Information of China (English)

    LAU C.W.H.; LIM C.W; LEUNG A.Y.T.

    2005-01-01

    A new two dimensional coupled electromechanical model for athick, laminated beam with piezoelectric and isotropic lamina subjected to static external electric loading is developed. The model combined the first order shear deformation theory for the relatively thick elastic core and linear piezoelectric theory for the piezoelectric lamina. The actuation response is induced through the application of extemal electric voltage. Rayleigh-Ritz method is adopted to model the displacement and potential fields of the beam and governing equations were finally derived from the variational energy principle. The model allows the piezoelectric lamina to be formulated via a two-dimensional model because of the strong electro-mechanical coupling and the presence of a two-dimensional electric field. Numerical examples of piezoelectric laminated beam are presented. It is shown in this paper that a one-dimensional model for the piezoelectric beam-like layer is inadequate.

  20. Influence and optimization of the electrodes position in a piezoelectric energy harvesting flag

    Science.gov (United States)

    Piñeirua, Miguel; Doaré, Olivier; Michelin, Sébastien

    2015-06-01

    Fluttering piezoelectric plates may harvest energy from a fluid flow by converting the plate's mechanical deformation into electric energy in an output circuit. This work focuses on the influence of the arrangement of the piezoelectric electrodes along the plate's surface on the energy harvesting efficiency of the system, using a combination of experiments and numerical simulations. A weakly nonlinear model of a plate in axial flow, equipped with a discrete number of piezoelectric patches is derived and confronted to experimental results. Numerical simulations are then used to optimize the position and dimensions of the piezoelectric electrodes. These optimal configurations can be understood physically in the limit of small and large electromechanical coupling.