WorldWideScience

Sample records for mechanical approximation carried

  1. Finite approximations in fluid mechanics

    International Nuclear Information System (INIS)

    Hirschel, E.H.

    1986-01-01

    This book contains twenty papers on work which was conducted between 1983 and 1985 in the Priority Research Program ''Finite Approximations in Fluid Mechanics'' of the German Research Society (Deutsche Forschungsgemeinschaft). Scientists from numerical mathematics, fluid mechanics, and aerodynamics present their research on boundary-element methods, factorization methods, higher-order panel methods, multigrid methods for elliptical and parabolic problems, two-step schemes for the Euler equations, etc. Applications are made to channel flows, gas dynamical problems, large eddy simulation of turbulence, non-Newtonian flow, turbomachine flow, zonal solutions for viscous flow problems, etc. The contents include: multigrid methods for problems from fluid dynamics, development of a 2D-Transonic Potential Flow Solver; a boundary element spectral method for nonstationary viscous flows in 3 dimensions; navier-stokes computations of two-dimensional laminar flows in a channel with a backward facing step; calculations and experimental investigations of the laminar unsteady flow in a pipe expansion; calculation of the flow-field caused by shock wave and deflagration interaction; a multi-level discretization and solution method for potential flow problems in three dimensions; solutions of the conservation equations with the approximate factorization method; inviscid and viscous flow through rotating meridional contours; zonal solutions for viscous flow problems

  2. Carry

    DEFF Research Database (Denmark)

    Koijen, Ralph S.J.; Moskowitz, Tobias J.; Heje Pedersen, Lasse

    that include global equities, global bonds, currencies, commodities, US Treasuries, credit, and equity index options. This predictability underlies the strong returns to "carry trades" that go long high-carry and short low-carry securities, applied almost exclusively to currencies, but shown here...

  3. Carry

    DEFF Research Database (Denmark)

    Koijen, Ralph S.J.; Moskowitz, Tobias; Pedersen, Lasse Heje

    2018-01-01

    -sectionally and in time series for a host of different asset classes, including global equities, global bonds, commodities, US Treasuries, credit, and options. Carry is not explained by known predictors of returns from these asset classes, and it captures many of these predictors, providing a unifying framework...... for return predictability. We reject a generalized version of Uncovered Interest Parity and the Expectations Hypothesis in favor of models with varying risk premia, in which carry strategies are commonly exposed to global recession, liquidity, and volatility risks, though none fully explains carry’s premium....

  4. Approximate solution methods in engineering mechanics

    International Nuclear Information System (INIS)

    Boresi, A.P.; Cong, K.P.

    1991-01-01

    This is a short book of 147 pages including references and sometimes bibliographies at the end of each chapter, and subject and author indices at the end of the book. The test includes an introduction of 3 pages, 29 pages explaining approximate analysis, 41 pages on finite differences, 36 pages on finite elements, and 17 pages on specialized methods

  5. Approximate solution of oil film load-carrying capacity of turbulent journal bearing with couple stress flow

    Science.gov (United States)

    Zhang, Yongfang; Wu, Peng; Guo, Bo; Lü, Yanjun; Liu, Fuxi; Yu, Yingtian

    2015-01-01

    The instability of the rotor dynamic system supported by oil journal bearing is encountered frequently, such as the half-speed whirl of the rotor, which is caused by oil film lubricant with nonlinearity. Currently, more attention is paid to the physical characteristics of oil film due to an oil-lubricated journal bearing being the important supporting component of the bearing-rotor systems and its nonlinear nature. In order to analyze the lubrication characteristics of journal bearings efficiently and save computational efforts, an approximate solution of nonlinear oil film forces of a finite length turbulent journal bearing with couple stress flow is proposed based on Sommerfeld and Ocvirk numbers. Reynolds equation in lubrication of a finite length turbulent journal bearing is solved based on multi-parametric principle. Load-carrying capacity of nonlinear oil film is obtained, and the results obtained by different methods are compared. The validation of the proposed method is verified, meanwhile, the relationships of load-carrying capacity versus eccentricity ratio and width-to-diameter ratio under turbulent and couple stress working conditions are analyzed. The numerical results show that both couple stress flow and eccentricity ratio have obvious influence on oil film pressure distribution, and the proposed method approximates the load-carrying capacity of turbulent journal bearings efficiently with various width-to-diameter ratios. This research proposes an approximate solution of oil film load-carrying capacity of turbulent journal bearings with different width-to-diameter ratios, which are suitable for high eccentricity ratios and heavy loads.

  6. Approximating perfection a mathematician's journey into the world of mechanics

    CERN Document Server

    Lebedev, Leonid P

    2004-01-01

    This is a book for those who enjoy thinking about how and why Nature can be described using mathematical tools. Approximating Perfection considers the background behind mechanics as well as the mathematical ideas that play key roles in mechanical applications. Concentrating on the models of applied mechanics, the book engages the reader in the types of nuts-and-bolts considerations that are normally avoided in formal engineering courses: how and why models remain imperfect, and the factors that motivated their development. The opening chapter reviews and reconsiders the basics of c

  7. An approximate approach to quantum mechanical study of biomacromolecules

    Science.gov (United States)

    Chen, Xihua

    method/basis-set levels of the quantum chemical calculation on the MFCC-downhill simplex optimization are also discussed. Finally, the MFCC-downhill simplex method is tested, as a general multiatomic case study, on a molecular system of cyclo-AAGAGG·H 2O to optimize the binding structure of water molecule to the fixed cyclohexapeptide. The MFCC-downhill simplex optimization results in good agreement with the crystal structure. The MFCC-downhill simplex method should be applicable to optimize the structures of ligands that bind to biomacromolecules such as proteins and DNAs. In Chapter 4, we propose a new approximate method for efficient calculation of biomacromolecular electronic properties, using a Density Matrix (DM) scheme which is integrated with the MFCC approach. In this MFCC-DM method, a biomacro-molecule such as a protein is partitioned by an MFCC scheme into properly capped fragments and concaps whose density matrices are calculated by conventional ab initio methods. These sub-system density matrices are then assembled to construct the full system density matrix which is finally employed to calculate the electronic energy, dipole moment, electronic density, electrostatic potential, etc., of the protein using Hartree-Fock or Density Functional Theory methods. By this MFCC-DM method, the self-consistent field (SCF) procedure for solving the full Hamiltonian problem is circumvented. Two implementations of this approach, MFCC-SDM and MFCC-GDM, are discussed. Systematic numerical studies are carried out on a series of extended polyglycines CH3CO-(GLY) n-NHCH3 (n=3-25) and excellent results are obtained. In Chapter 5, we present an improvement of MFCC-DM method and introduce a pairwise interaction correction (PIC) with which the MFCC-DM method is applicable to study a real-world protein with short-range structural complexity such as hydrogen bonding and close contact. In this MFCC-DM-PIC method, a protein molecule is partitioned into properly capped fragments and

  8. A Statistical Mechanics Approach to Approximate Analytical Bootstrap Averages

    DEFF Research Database (Denmark)

    Malzahn, Dorthe; Opper, Manfred

    2003-01-01

    We apply the replica method of Statistical Physics combined with a variational method to the approximate analytical computation of bootstrap averages for estimating the generalization error. We demonstrate our approach on regression with Gaussian processes and compare our results with averages...

  9. Approximative determination of failure probabilities in probabilistic fracture mechanics

    International Nuclear Information System (INIS)

    Riesch-Oppermann, H.; Brueckner, A.

    1987-01-01

    The possibility of using FORM in probabilistic fracture mechanics (PFM) is investigated. After a short review of the method and a description of some specific problems occurring in PFM applications, results obtained with FORM for the failure probabilities in a typical PFM problem (fatigue crack growth) are compared with those determined by a Monte Carlo simulation. (orig./HP)

  10. Multiple Scattering in Random Mechanical Systems and Diffusion Approximation

    Science.gov (United States)

    Feres, Renato; Ng, Jasmine; Zhang, Hong-Kun

    2013-10-01

    This paper is concerned with stochastic processes that model multiple (or iterated) scattering in classical mechanical systems of billiard type, defined below. From a given (deterministic) system of billiard type, a random process with transition probabilities operator P is introduced by assuming that some of the dynamical variables are random with prescribed probability distributions. Of particular interest are systems with weak scattering, which are associated to parametric families of operators P h , depending on a geometric or mechanical parameter h, that approaches the identity as h goes to 0. It is shown that ( P h - I)/ h converges for small h to a second order elliptic differential operator on compactly supported functions and that the Markov chain process associated to P h converges to a diffusion with infinitesimal generator . Both P h and are self-adjoint (densely) defined on the space of square-integrable functions over the (lower) half-space in , where η is a stationary measure. This measure's density is either (post-collision) Maxwell-Boltzmann distribution or Knudsen cosine law, and the random processes with infinitesimal generator respectively correspond to what we call MB diffusion and (generalized) Legendre diffusion. Concrete examples of simple mechanical systems are given and illustrated by numerically simulating the random processes.

  11. Relativistic-particle quantum mechanics (applications and approximations) II

    International Nuclear Information System (INIS)

    Coester, F.

    1981-01-01

    In this lecture I hope to show that relativistic-particle quantum mechanics with direct interactions is a useful tool for building models applicable to hadron systems at intermediate energies. To do this I will first describe a class of models designed to incorporate nucleon-nucleon interactions, pion production, absorption and scattering into a single dynamical framework without dressing the nucleons with pion clouds. The second major topic concerns electromagnetic interactions. In the previous lecture I specifically excluded long-rang forces and zero-mass particles. Since many of the experimental data in hadron physics involve electromagnetic interactions this limitation is a major defect which must be addressed

  12. EVALUATION OF SHEAR STRENGTH FOR UPPER SLABS OF CAISSON FOUNDATION BASED ON LOAD CARRYING MECHANISM

    Science.gov (United States)

    Hattori, Hisamichi; Tadokoro, Toshiya; Tanimura, Yukihiro; Nishioka, Hidetoshi; Watanabe, Tadatomo; Maruyama, Osamu

    In upper slabs of caisson foundation, a seismic desi gn is difficult with an incr ease in earthquake load. So we carried out loading tests and FEM analysis for upper slabs of caisson foundation. As a result, we proposed a new design method which takes into co nsideration the effective width on the pull out side based on crack pattern of test specimens, which is not considered in the existing design method. Moreover, we proposed a rational design method based on load carrying mechanism for upper slabs of caisson foundation.

  13. Social carry-over effects on non-social behavioral variation: mechanisms and consequences

    Directory of Open Access Journals (Sweden)

    Petri Toivo Niemelä

    2015-05-01

    Full Text Available The field of animal personality is interested in decomposing behaviors into different levels of variation, with its present focus on the ecological and evolutionary causes and consequences of expressed variation. Recently the role of the social environment, i.e. social partners, has been suggested to affect behavioral variation and induce selection on animal personality. Social partner effects exist because characters of social partners (e.g. size, behavior, affect the behavioral expression of a focal individual. Here, we 1 first review the proximate mechanisms underlying the social partner effects on behavioral expression and the timescales at which such effects might take place. We then 2 discuss how within- and among-individual variation in single behaviors and covariation between multiple behaviors, caused by social partners, can carry-over to non-social behaviors expressed outside the social context. Finally, we 3 highlight evolutionary consequences of social carry-over effects to non-social behaviors and 4 suggest study designs and statistical approaches which can be applied to study the nature and evolutionary consequences of social carry-over effects on non-social behaviors. Understanding the proximate mechanisms underpinning the social partner effects is important since it opens a door for deeper understanding of how social environments can affect behavioral variation and covariation at multiple levels, and the evolution of non-social behaviors (i.e. exploration, activity, boldness that are affected by social interactions.

  14. Real-time dynamics of matrix quantum mechanics beyond the classical approximation

    Science.gov (United States)

    Buividovich, Pavel; Hanada, Masanori; Schäfer, Andreas

    2018-03-01

    We describe a numerical method which allows to go beyond the classical approximation for the real-time dynamics of many-body systems by approximating the many-body Wigner function by the most general Gaussian function with time-dependent mean and dispersion. On a simple example of a classically chaotic system with two degrees of freedom we demonstrate that this Gaussian state approximation is accurate for significantly smaller field strengths and longer times than the classical one. Applying this approximation to matrix quantum mechanics, we demonstrate that the quantum Lyapunov exponents are in general smaller than their classical counterparts, and even seem to vanish below some temperature. This behavior resembles the finite-temperature phase transition which was found for this system in Monte-Carlo simulations, and ensures that the system does not violate the Maldacena-Shenker-Stanford bound λL < 2πT, which inevitably happens for classical dynamics at sufficiently small temperatures.

  15. Theory Analysis and Experiment Research of the Leg Mechanism for the Human-Carrying Walking Chair Robot

    Directory of Open Access Journals (Sweden)

    Lingfeng Sang

    2014-01-01

    Full Text Available For the high carrying capacity of the human-carrying walking chair robot, in this paper, 2-UPS+UP parallel mechanism is selected as the leg mechanism; then kinematics, workspace, control, and experiment of the leg mechanism are researched in detail. Firstly, design of the whole mechanism is described and degrees of freedom of the leg mechanism are analyzed. Second, the forward position, inverse position, and velocity of leg mechanism are studied. Third, based on the kinematics analysis and the structural constraints, the reachable workspace of 2-UPS+UP parallel mechanism is solved, and then the optimal motion workspace is searched in the reachable workspace by choosing the condition number as the evaluation index. Fourth, according to the theory analysis of the parallel leg mechanism, its control system is designed and the compound position control strategy is studied. Finally, in optimal motion workspace, the compound position control strategy is verified by using circular track with the radius 100 mm; the experiment results show that the leg mechanism moves smoothly and does not tremble obviously. Theory analysis and experiment research of the single leg mechanism provide a theoretical foundation for the control of the quadruped human-carrying walking chair robot.

  16. The local quantum-mechanical stress tensor in Thomas-Fermi approximation and gradient expansion method

    International Nuclear Information System (INIS)

    Kaschner, R.; Graefenstein, J.; Ziesche, P.

    1988-12-01

    From the local momentum balance using density functional theory an expression for the local quantum-mechanical stress tensor (or stress field) σ(r) of non-relativistic Coulomb systems is found out within the Thomas-Fermi approximation and its generalizations including gradient expansion method. As an illustration the stress field σ(r) is calculated for the jellium model of the interface K-Cs, containing especially the adhesive force between the two half-space jellia. (author). 23 refs, 1 fig

  17. Evaluation of quantum mechanics path integrals by the approximations exact on a class of polynomial functionals

    International Nuclear Information System (INIS)

    Lobanov, Yu.Yu.; Shidkov, E.P.

    1987-01-01

    The method for numerical evaluation of path integrals in Eucledean quantum mechanics without lattice discretization is elaborated. The method is based on the representation of these integrals in the form of functional integrals with respect to the conditional Wiener measure and on the use of the derived approximate exact on a class of polynomial functionals of a given degree. By the computations of non-perturbative characteristics, concerned the topological structure of vacuum, the advantages of this method versus lattice Monte-Carlo calculations are demonstrated

  18. Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions

    KAUST Repository

    Bisetti, Fabrizio

    2012-06-01

    Recent trends in hydrocarbon fuel research indicate that the number of species and reactions in chemical kinetic mechanisms is rapidly increasing in an effort to provide predictive capabilities for fuels of practical interest. In order to cope with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix. The components of the approach are described in detail and applied to the ignition of stoichiometric methane-air and iso-octane-air mixtures, here described by two widely adopted chemical kinetic mechanisms. The approach is found to be robust even at relatively large time steps and the global error displays a nominal third-order convergence. The performance of the approach is improved by utilising an adaptive algorithm for the selection of the Krylov subspace size, which guarantees an approximation to the matrix exponential within user-defined error tolerance. The Krylov projection of the Jacobian matrix onto a low-dimensional space is interpreted as a local model reduction with a well-defined error control strategy. Finally, the performance of the approach is discussed with regard to the optimal selection of the parameters governing the accuracy of its individual components. © 2012 Copyright Taylor and Francis Group, LLC.

  19. Mechanical Design of a Hybrid Leg Exoskeleton to Augment Load-Carrying for Walking

    Directory of Open Access Journals (Sweden)

    Yunjie Miao

    2013-11-01

    Full Text Available An innovative lower extremity exoskeleton, SJTU-EX, is demonstrated in Shanghai JiaoTong University, which mainly aims to help soldiers and workers to support a payload in motion. This paper summarizes the mechanical design of SJTU-EX. Each pseudo-anthropomorphic leg of SJTU-EX has four active joints and two passive joints, and the joint ranges are optimized in consideration of both safety factors and the realization of typical motions. Springs are applied in the leg to eliminate the effect of gravity. The results of dynamic simulations are used to determine the actuated joints and the passive joints. Novel Hy-Mo actuators are introduced for SJTU-EX and the layout of the actuator for Diamond Side 2 is described in detail as a design example.

  20. Approximations of time-dependent phenomena in quantum mechanics: adiabatic versus sudden processes

    International Nuclear Information System (INIS)

    Melnichuk, S V; Dijk, W van; Nogami, Y

    2005-01-01

    By means of a one-dimensional model of a particle in an infinite square-well potential with one wall moving at a constant speed, we examine aspects of time-dependent phenomena in quantum mechanics such as adiabatic and sudden processes. The particle is assumed to be initially in the ground state of the potential with its initial width. The time dependence of the wavefunction of the particle in the well is generally more complicated when the potential well is compressed than when it is expanded. We are particularly interested in the case in which the potential well is suddenly compressed. The so-called sudden approximation is not applicable in this case. We also study the energy of the particle in the changing well as a function of time for expansion and contraction as well as for expansion followed by contraction and vice versa

  1. [Analysis of genetics mechanism for the phenotypic diversity in a patient carrying a rare ring chromosome 9].

    Science.gov (United States)

    Qin, Shengfang; Wang, Xueyan; Li, Yunxing; Wei, Ping; Chen, Chun; Zeng, Lan

    2016-02-01

    To explore the genetics mechanism for the phenotypic variability in a patient carrying a rare ring chromosome 9. The karyotype of the patient was analyzed with cytogenetics method. Presence of sex chromosome was confirmed with fluorescence in situ hybridization. The SRY gene was subjected to PCR amplification and direct sequencing. Potential deletion and duplication were detected with array-based comparative genomic hybridization (array-CGH). The karyotype of the patient has comprised 6 types of cell lines containing a ring chromosome 9. The SRY gene sequence was normal. By array-CGH, the patient has carried a hemizygous deletion at 9p24.3-p23 (174 201-9 721 761) encompassing 30 genes from Online Mendelian Inheritance in Man. The phenotypic variability of the 9p deletion syndrome in conjunct with ring chromosome 9 may be attributable to multiple factors including loss of chromosomal material, insufficient dosage of genes, instability of ring chromosome, and pattern of inheritance.

  2. A counterexample and a modification to the adiabatic approximation theorem in quantum mechanics

    Science.gov (United States)

    Gingold, H.

    1991-01-01

    A counterexample to the adiabatic approximation theorem is given when degeneracies are present. A formulation of an alternative version is proposed. A complete asymptotic decomposition for n dimensional self-adjoint Hamiltonian systems is restated and used.

  3. Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions

    KAUST Repository

    Bisetti, Fabrizio

    2012-01-01

    with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix

  4. Polygonal-path approximation on the path spaces of quantum mechanical systems: extended Feynman maps

    International Nuclear Information System (INIS)

    Exner, R.; Kolerov, G.I.

    1981-01-01

    Various types of polygonal-path approximations appearing in the functional-integration theory are discussed. The uniform approximation is applied to extend the definition of the Feynman maps from our previous paper and to prove consistency of this extension. Relations of the extended Fsub(-i)-map to the Wiener integral are given. In particular, the basic theorem about the sequential Wiener integral by Cameron is improved [ru

  5. Piecewise-linear and bilinear approaches to nonlinear differential equations approximation problem of computational structural mechanics

    OpenAIRE

    Leibov Roman

    2017-01-01

    This paper presents a bilinear approach to nonlinear differential equations system approximation problem. Sometimes the nonlinear differential equations right-hand sides linearization is extremely difficult or even impossible. Then piecewise-linear approximation of nonlinear differential equations can be used. The bilinear differential equations allow to improve piecewise-linear differential equations behavior and reduce errors on the border of different linear differential equations systems ...

  6. Stabilized and Block Approximate Inverse Preconditioners for Problems in Solid and Structural Mechanics

    Czech Academy of Sciences Publication Activity Database

    Benzi, M.; Kouhia, R.; Tůma, Miroslav

    2001-01-01

    Roč. 190, - (2001), s. 6533-6554 ISSN 0045-7825 R&D Projects: GA AV ČR IAA2030801; GA ČR GA201/00/0080 Institutional research plan: AV0Z1030915 Keywords : preconditioning * conjugate gradient * factorized sparse approximate inverse * block algorithms * finite elements * shells Subject RIV: BA - General Mathematics Impact factor: 0.913, year: 2001

  7. Modelling of the UO2 dissolution mechanisms in synthetic groundwater. Experiments carried out under anaerobic and reducing conditions

    International Nuclear Information System (INIS)

    Cera, E.; Grive, M.; Bruno, J.; Ollila, K.

    2000-07-01

    The experimental data generated under anaerobic and reducing conditions within the EU R and D programme 1996-1998 entitled 'Source term for performance assessment of spent fuel as a waste form' and published as a POSIVA report (Ollila, 1999) have been modelled in the present work. The dissolution data available, mainly U in the aqueous phase as a function of time and redox potentials have been used to elucidate the redox pairs controlling the redox potential of the systems studied. Dissolution experiments carried out under anaerobic conditions have shown the important role of the uranium system on buffering the redox capacity of these systems. In the presence of carbonates in the system, the redox control has been given by the UO 2 (c)/U(VI) aqueous redox couple while in absence of carbonates in the system, the redox control has been governed by the UO 2 (c)/UO 2+x transition. In addition dissolution rates have been satisfactorily modelled by assuming an oxidative dissolution mechanism consisting in an initial oxidation of the surface of the uranium dioxide, binding of the HCO 3 or H+ at the U(VI) sites of the oxidised surface layer and detachment of these surface complexes. The redox controls in the experiments carried out under reducing conditions have been exerted by the different reducing agents added in the systems. Therefore, the addition of Fe 2+ lead to a redox control exerted by the Fe 2+ /Fe(OH) 3 (s) redox pair, while the addition of sulphide lead to a different redox control governed by the HS/SO 3 2- redox pair. (orig.)

  8. Modelling of the UO{sub 2} dissolution mechanisms in synthetic groundwater. Experiments carried out under anaerobic and reducing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cera, E.; Grive, M.; Bruno, J. [EnvirosQuantiSci (Spain); Ollila, K. [VTT Chemical Technology, Espoo (Finland)

    2000-07-01

    The experimental data generated under anaerobic and reducing conditions within the EU R and D programme 1996-1998 entitled 'Source term for performance assessment of spent fuel as a waste form' and published as a POSIVA report (Ollila, 1999) have been modelled in the present work. The dissolution data available, mainly U in the aqueous phase as a function of time and redox potentials have been used to elucidate the redox pairs controlling the redox potential of the systems studied. Dissolution experiments carried out under anaerobic conditions have shown the important role of the uranium system on buffering the redox capacity of these systems. In the presence of carbonates in the system, the redox control has been given by the UO{sub 2}(c)/U(VI) aqueous redox couple while in absence of carbonates in the system, the redox control has been governed by the UO{sub 2}(c)/UO{sub 2+x} transition. In addition dissolution rates have been satisfactorily modelled by assuming an oxidative dissolution mechanism consisting in an initial oxidation of the surface of the uranium dioxide, binding of the HCO{sub 3} or H+ at the U(VI) sites of the oxidised surface layer and detachment of these surface complexes. The redox controls in the experiments carried out under reducing conditions have been exerted by the different reducing agents added in the systems. Therefore, the addition of Fe{sup 2+} lead to a redox control exerted by the Fe{sup 2+}/Fe(OH){sub 3}(s) redox pair, while the addition of sulphide lead to a different redox control governed by the HS/SO{sub 3}{sup 2-} redox pair. (orig.)

  9. The measurement problem in quantum mechanics: approximation to the phenomenon of decoherence by operational identities

    International Nuclear Information System (INIS)

    Usera, J.I.

    1996-01-01

    An approach based on bits and pieces of standard wisdom plus and operational quantum mechanical identity deduced by the author is presented here in order to convey arguments concerning the quantum theory of measurement and which betray a flavor against completive claims for quantum mechanics. Special emphasis is put on the phenomenon of decoherence. This phenomenon (which is experimentally verifiable) finds natural room within the formalism while the wave function collapse (which is not) is precluded. (Author)

  10. From light polarization to the basic ideas of Quantum Mechanics. Experience carried out in a Technical Institute in Scampia (Naples)

    International Nuclear Information System (INIS)

    Moretti, M.

    2014-01-01

    The article focuses on teaching/learning Quantum Mechanics (QM) in secondary schools and involves two fundamental aspects: teacher training and experimentation in the classroom, carefully reflecting on the content and highlighting innovation in the teaching methodology. The experience of training took place within a second level post-graduate Master course for Physics teachers (The II level post-graduate Master course in Didactic Innovation in Physics and Guidance (Innovazione Didattica in Fisica e Orientamento IDIFO) http://www.fisica.uniud.it/ URDF/laurea/index.htm) is directed by M. Michelini. The University of Udine organizes the course with the collaboration of the Physiscs Education Research Groups of eighteen Italian Universities, and is a part of a training project addressed to physics teachers focused on modern physics. IDIFO is part of a national plan of the Ministry of Education, Research and University for the Scientific Degrees project (Piano Lauree Scientifiche)), based on a module dedicated to teaching/learning QM according to the fundamental concepts of Dirac theory. The teacher achieved formation attending three e-learning courses about teaching/learning quantum mechanics in secondary schools, researching and discussing research materials of physics education, planning an intervention module and experimenting in a real classroom the planned innovative path for a situated formation. The experimentation, carried out in a fifth class of a Technical Institute at Scampia (Naples), made the conclusive phase and gave data concerning the thinking ways of the students about some basic concepts of QM collected and evaluated. In particular, average students focused more the functional/applicative aspects of formal and conceptual constructs rather than on their physical meanings.

  11. Correction of fatigue parameters of concrete using approximation of mechanical-Fracture parameters in time

    Czech Academy of Sciences Publication Activity Database

    Šimonová, H.; Keršner, Z.; Seitl, Stanislav; Pryl, D.; Pukl, R.

    -, č. 1 (2012), s. 57-59 ISSN 1213-3116 R&D Projects: GA ČR(CZ) GAP104/11/0833 Institutional support: RVO:68081723 Keywords : fatigue * concrete * correction * fracture parameters Subject RIV: JL - Materials Fatigue, Friction Mechanics

  12. Quantum mechanics of the fractional-statistics gas: Random-phase approximation

    International Nuclear Information System (INIS)

    Dai, Q.; Levy, J.L.; Fetter, A.L.; Hanna, C.B.; Laughlin, R.B.

    1992-01-01

    A description of the fractional-statistics gas based on the complete summation of Hartree, Fock, ladder and bubble diagrams is presented. The superfluid properties identified previously in the random-phase-approximation (RPA) calculation of Fetter, Hanna, and Laughlin [Phys. Rev. B 39, 9679 (1989)] are substantially confirmed. The discrepancy between the RPA sound speed and the Hartree-Fock bulk modulus is found to be eliminated. The unusual Hall-effect behavior is found to vanish for the Bose gas test case but not for the fractional-statistics gas, implying that it is physically correct. Excellent agreement is obtained with the collective-mode dispersion obtained numerically by Xie, He, and Das Sarma [Phys. Rev. Lett. 65, 649 (1990)

  13. Leptonic CP violation induced by approximately μ-τ symmetric seesaw mechanism

    International Nuclear Information System (INIS)

    Baba, Teppei; Yasue, Masaki

    2008-01-01

    Assuming a minimal seesaw model with two heavy neutrinos (N), we examine effects of leptonic CP violation induced by approximate μ-τ symmetric interactions. As long as N is subject to the μ-τ symmetry, we can choose CP phases of Dirac mass terms without loss of generality in such a way that these phases arise from μ-τ symmetry breaking interactions. In the case that no phase is present in heavy neutrino mass terms, leptonic CP phases are controlled by two phases α and β. The similar consideration is extended to N blind to the μ-τ symmetry. It is argued that N subject (blind) to the μ-τ symmetry necessarily describes the normal (inverted) mass hierarchy. We restrict ourselves to μ-τ symmetric textures giving the tribimaximal mixing and calculate flavor neutrino masses to estimate CP-violating Dirac and Majorana phases as well as neutrino mixing angles as functions of α and β. Since α and β are generated by μ-τ symmetry breaking interactions, the CP-violating Majorana phase tends to be suppressed and is found to be at most O(0.1) radian. On the other hand, the CP-violating Dirac phase tends to show a proportionality to α or to β.

  14. Analysis on the Load Carrying Mechanism Integrated as Heterogeneous Co-operative Manipulator in a Walking Wheelchair

    Science.gov (United States)

    Rajay Vedaraj, I. S.; Jain, Ritika; Rao, B. V. A.

    2014-07-01

    used for climbing stairs with three leg design and anlaysis were also done on the mechanism integrated to the system. Kinematics of the legs are analysed separately and the legs are designed to carry a maximum of 175kgs, which is sustained by the center leg and shared by the dual wing legs equally during the walking phase. In the proposed design, screwjack mechanism is used as the central leg to share the load and thus the analysis on the load sharing capability of the whole system is analysed and concluded in terms of failure modes.

  15. Analysis on the Load Carrying Mechanism Integrated as Heterogeneous Co-operative Manipulator in a Walking Wheelchair

    International Nuclear Information System (INIS)

    Vedaraj, I S Rajay; Jain, Ritika; Rao, B V A

    2014-01-01

    used for climbing stairs with three leg design and analyses were also done on the mechanism integrated to the system. Kinematics of the legs are analysed separately and the legs are designed to carry a maximum of 175kgs, which is sustained by the center leg and shared by the dual wing legs equally during the walking phase. In the proposed design, screwjack mechanism is used as the central leg to share the load and thus the analysis on the load sharing capability of the whole system is analysed and concluded in terms of failure modes

  16. Polygonal-path approximations on the path spaces of quantum-mechanical systems: properties of the polygonal paths

    International Nuclear Information System (INIS)

    Exner, P.; Kolerov, G.I.

    1981-01-01

    Properties of the subset of polygonal paths in the Hilbert space H of paths referring to a d-dimensional quantum-mechanical system are examined. Using the reproduction kernel technique we prove that each element of H is approximated by polygonal paths uniformly with respect to the ''norm'' of time-interval partitions. This result will be applied in the second part of the present paper to prove consistency of the uniform polygonal-path extension of the Feynman maps [ru

  17. Carrying Capacity

    DEFF Research Database (Denmark)

    Schroll, Henning; Andersen, Jan; Kjærgård, Bente

    2012-01-01

    A spatial planning act was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive....../cities. Four different sectors (water, food production, waste, and forests) were selected as core areas for decentralised spatial planning. Indicators for SCC and ACC were identified and assessed with regard to relevance and quantifiability. For each of the indicators selected, a legal threshold or guiding...... was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive carrying capacity (SCC) and assimilative...

  18. Homogeneous Field and WKB Approximation in Deformed Quantum Mechanics with Minimal Length

    Directory of Open Access Journals (Sweden)

    Jun Tao

    2015-01-01

    Full Text Available In the framework of the deformed quantum mechanics with a minimal length, we consider the motion of a nonrelativistic particle in a homogeneous external field. We find the integral representation for the physically acceptable wave function in the position representation. Using the method of steepest descent, we obtain the asymptotic expansions of the wave function at large positive and negative arguments. We then employ the leading asymptotic expressions to derive the WKB connection formula, which proceeds from classically forbidden region to classically allowed one through a turning point. By the WKB connection formula, we prove the Bohr-Sommerfeld quantization rule up to Oβ2. We also show that if the slope of the potential at a turning point is too steep, the WKB connection formula is no longer valid around the turning point. The effects of the minimal length on the classical motions are investigated using the Hamilton-Jacobi method. We also use the Bohr-Sommerfeld quantization to study statistical physics in deformed spaces with the minimal length.

  19. Articular surface approximation in equivalent spatial parallel mechanism models of the human knee joint: an experiment-based assessment.

    Science.gov (United States)

    Ottoboni, A; Parenti-Castelli, V; Sancisi, N; Belvedere, C; Leardini, A

    2010-01-01

    In-depth comprehension of human joint function requires complex mathematical models, which are particularly necessary in applications of prosthesis design and surgical planning. Kinematic models of the knee joint, based on one-degree-of-freedom equivalent mechanisms, have been proposed to replicate the passive relative motion between the femur and tibia, i.e., the joint motion in virtually unloaded conditions. In the mechanisms analysed in the present work, some fibres within the anterior and posterior cruciate and medial collateral ligaments were taken as isometric during passive motion, and articulating surfaces as rigid. The shapes of these surfaces were described with increasing anatomical accuracy, i.e. from planar to spherical and general geometry, which consequently led to models with increasing complexity. Quantitative comparison of the results obtained from three models, featuring an increasingly accurate approximation of the articulating surfaces, was performed by using experimental measurements of joint motion and anatomical structure geometries of four lower-limb specimens. Corresponding computer simulations of joint motion were obtained from the different models. The results revealed a good replication of the original experimental motion by all models, although the simulations also showed that a limit exists beyond which description of the knee passive motion does not benefit considerably from further approximation of the articular surfaces.

  20. Mechanical load on the low back and shoulders during pushing and pulling of two-wheeled waste containers compared with lifting and carrying of bags and bins.

    Science.gov (United States)

    Schibye, B; Søgaard, K; Martinsen, D; Klausen, K

    2001-08-01

    Compare the mechanical load on the low back and shoulders during pushing and pulling a two-wheeled container with the load during lifting and carrying the same amount of waste. Only little is known about risk factors and mechanical loads during push/pull operations. A complete 2(3) factor push/pull experiment. A two-wheeled container with 25 or 50 kg was pushed in front of and pulled behind the body by seven waste collectors. Further, the same subjects lifted and carried a paper bag and a dustbin both loaded with 7 and 25 kg. All operations were video recorded and the push/pull force was measured by means of a three-dimensional force transducer. Peak Motus and Watbak software were used for digitising and calculation of torque at L4/L5 and the shoulder joints and compression and shear forces at L4/L5. During pushing and pulling the compression at L4/L5 is from 605 to 1445 N. The extension torque at L4/L5 produced by the push/pull force is counteracted by the forward leaning of the upper body. The shear force is below 202 N in all situations. The torque at the shoulders is between 1 and 38 Nm. In the present experiments the torques at the low back and the shoulders are low during pushing and pulling. No relation exists between the size of the external force and the torque at the low back and the shoulder. Pushing and pulling are common in many workplaces and have often replaced lifting and carrying situations. This has emphasised the need for more knowledge of the internal mechanical load on the body during these activities.

  1. The combined use of mechanical CPR and a carry sheet to maintain quality resuscitation in out-of-hospital cardiac arrest patients during extrication and transport.

    Science.gov (United States)

    Lyon, Richard M; Crawford, Anna; Crookston, Colin; Short, Steven; Clegg, Gareth R

    2015-08-01

    Quality of manual cardiopulmonary resuscitation (CPR) during extrication and transport of out-of-hospital cardiac arrest victims is known to be poor. Performing manual CPR during ambulance transport poses significant risk to the attending emergency medical services crew. We sought to use pre-hospital video recording to objectively analyse the impact of introducing mechanical CPR with an extrication sheet (Autopulse, Zoll) to an advanced, second-tier cardiac arrest response team. The study was conducted prospectively using defibrillator downloads and analysis of pre-hospital video recording to measure the quality of CPR during extrication from scene and ambulance transport of the OHCA patient. Adult patients with non-traumatic OHCA were included. The interruption to manual CPR to during extrication and to deploy the mechanical CPR device was analysed. In the manual CPR group, 53 OHCA cases were analysed for quality of CPR during extrication. The median time that chest compression was interrupted to allow the patient to be carried from scene to the ambulance was 270 s (IQR 201-387 s). 119 mechanical CPR cases were analysed. The median time interruption from last manual compression to first Autopulse compression was 39 s (IQR 29-47 s). The range from last manual compression to first Autopulse compression was 14-118 s. Mechanical CPR used in combination with an extrication sheet can be effectively used to improve the quality of resuscitation during extrication and ambulance transport of the refractory OHCA patient. The time interval to deploy the mechanical CPR device can be shortened with regular simulation training. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Mechanical strength parameters of cast iron with lamellar graphite and their significance for the design of pressure-carrying reactor components

    International Nuclear Information System (INIS)

    Janakiev, N.

    1977-01-01

    The tensile strength of thick-walled components in cast iron with lamellar graphite is lower by about 50 to 65% than that stated in DIN 1691. The usable compressive strength of this material under uni-axial load is about twice as high as its tensile strength. The graphite lamellae are not bonded into the metallic matrix. The width of the gaps between the graphite lamellae and the matrix increases with increasing wall thickness of the casting. In stress calculations for design purposes it is advisable to rely only on the permissible tensile stresses. It is shown that cast iron can be used as structural material for shieldings but is unsuitable for thick-walled reactor components carrying compressive and tensile stresses because its mechanical strength parameters decrease rapidly with increasing wall thickness. (orig.) [de

  3. Statistical physics as an approximate method of many-body quantum mechanics in the representation of occupation numbers

    International Nuclear Information System (INIS)

    Kushnirenko, A.N.

    1989-01-01

    An attempt was made to substantiate statistical physics from the viewpoint of many-body quantum mechanics in the representation of occupation numbers. This approach enabled to develop the variation method for solution of stationary and nonstationary nonequilibrium problems

  4. Classical and Quantum Models in Non-Equilibrium Statistical Mechanics: Moment Methods and Long-Time Approximations

    Directory of Open Access Journals (Sweden)

    Ramon F. Alvarez-Estrada

    2012-02-01

    Full Text Available We consider non-equilibrium open statistical systems, subject to potentials and to external “heat baths” (hb at thermal equilibrium at temperature T (either with ab initio dissipation or without it. Boltzmann’s classical equilibrium distributions generate, as Gaussian weight functions in momenta, orthogonal polynomials in momenta (the position-independent Hermite polynomialsHn’s. The moments of non-equilibrium classical distributions, implied by the Hn’s, fulfill a hierarchy: for long times, the lowest moment dominates the evolution towards thermal equilibrium, either with dissipation or without it (but under certain approximation. We revisit that hierarchy, whose solution depends on operator continued fractions. We review our generalization of that moment method to classical closed many-particle interacting systems with neither a hb nor ab initio dissipation: with initial states describing thermal equilibrium at T at large distances but non-equilibrium at finite distances, the moment method yields, approximately, irreversible thermalization of the whole system at T, for long times. Generalizations to non-equilibrium quantum interacting systems meet additional difficulties. Three of them are: (i equilibrium distributions (represented through Wigner functions are neither Gaussian in momenta nor known in closed form; (ii they may depend on dissipation; and (iii the orthogonal polynomials in momenta generated by them depend also on positions. We generalize the moment method, dealing with (i, (ii and (iii, to some non-equilibrium one-particle quantum interacting systems. Open problems are discussed briefly.

  5. Mechanisms of motor recovery after subtotal spinal cord injury: insights from the study of mice carrying a mutation (WldS) that delays cellular responses to injury.

    Science.gov (United States)

    Zhang, Z; Guth, L; Steward, O

    1998-01-01

    Partial lesions of the mammalian spinal cord result in an immediate motor impairment that recovers gradually over time; however, the cellular mechanisms responsible for the transient nature of this paralysis have not been defined. A unique opportunity to identify those injury-induced cellular responses that mediate the recovery of function has arisen from the discovery of a unique mutant strain of mice in which the onset of Wallerian degeneration is dramatically delayed. In this strain of mice (designated WldS for Wallerian degeneration, slow), many of the cellular responses to spinal cord injury are also delayed. We have used this experimental animal model to evaluate possible causal relationships between these delayed cellular responses and the onset of functional recovery. For this purpose, we have compared the time course of locomotor recovery in C57BL/6 (control) mice and in WldS (mutant) mice by hemisecting the spinal cord at T8 and evaluating locomotor function at daily postoperative intervals. The time course of locomotor recovery (as determined by the Tarlov open-field walking procedure) was substantially delayed in mice carrying the WldS mutation: C57BL/6 control mice began to stand and walk within 6 days (mean Tarlov score of 4), whereas mutant mice did not exhibit comparable locomotor function until 16 days postoperatively. (a) The rapid return of locomotor function in the C57BL/6 mice suggests that the recovery resulted from processes of functional plasticity rather than from regeneration or collateral sprouting of nerve fibers. (b) The marked delay in the return of locomotor function in WldS mice indicates that the processes of neuroplasticity are induced by degenerative changes in the damaged neurons. (c) These strains of mice can be effectively used in future studies to elucidate the specific biochemical and physiological alterations responsible for inducing functional plasticity and restoring locomotor function after spinal cord injury.

  6. Approximate Likelihood

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...

  7. Diophantine approximation

    CERN Document Server

    Schmidt, Wolfgang M

    1980-01-01

    "In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)

  8. Tracking control of a closed-chain five-bar robot with two degrees of freedom by integration of an approximation-based approach and mechanical design.

    Science.gov (United States)

    Cheng, Long; Hou, Zeng-Guang; Tan, Min; Zhang, W J

    2012-10-01

    The trajectory tracking problem of a closed-chain five-bar robot is studied in this paper. Based on an error transformation function and the backstepping technique, an approximation-based tracking algorithm is proposed, which can guarantee the control performance of the robotic system in both the stable and transient phases. In particular, the overshoot, settling time, and final tracking error of the robotic system can be all adjusted by properly setting the parameters in the error transformation function. The radial basis function neural network (RBFNN) is used to compensate the complicated nonlinear terms in the closed-loop dynamics of the robotic system. The approximation error of the RBFNN is only required to be bounded, which simplifies the initial "trail-and-error" configuration of the neural network. Illustrative examples are given to verify the theoretical analysis and illustrate the effectiveness of the proposed algorithm. Finally, it is also shown that the proposed approximation-based controller can be simplified by a smart mechanical design of the closed-chain robot, which demonstrates the promise of the integrated design and control philosophy.

  9. Properties of Cells Carrying the Herpes Simplex Virus Type 2 Thymidine Kinase Gene: Mechanisms of Reversion to a Thymidine Kinase-Negative Phenotype

    Science.gov (United States)

    Bastow, K. F.; Darby, G.; Wildy, P.; Minson, A. C.

    1980-01-01

    We have isolated cells with a thymidine kinase-negative (tk−) phenotype from cells which carry the herpes simplex virus type 2 tk gene by selection in 5-bromodeoxyuridine or 9-(2-hydroxyethoxymethyl)guanine. Both selection routines generated revertants with a frequency of 10−3 to 10−4, and resistance to either compound conferred simultaneous resistance to the other. tk− revertants fell into three classes: (i) cells that arose by deletion of all virus sequences, (ii) cells that had lost the virus tk gene but retained a nonselected virus-specific function and arose by deletion of part of the virus-specific sequence, and (iii) cells that retained the potential to express all of the virus-specific functions of the parental cells and retained all of the virus-specific DNA sequences. Images PMID:16789205

  10. Technology development on production of test specimens from irradiated capsule outer-tube and mechanical evaluation test of stainless steel with high dose carried out by the technology

    International Nuclear Information System (INIS)

    Hayashi, Koji; Shibata, Akira; Iwamatsu, Shigemi; Sozawa, Shizuo; Takada, Fumiki; Ohmi, Masao; Nakagawa, Tetsuya

    2008-03-01

    The irradiation capsule 74M-52J was irradiated during total 136 cycles at reactor core of JMTR and the maximum neutron dose reached on 3.9x10 26 n/m 2 at the capsule outer-tube made of a type 304 stainless steel. In order to produce mechanical test specimens from the outer-tube, a punching technique was developed as a simple remote-handling method in a hot-cell. From comparison between the punching and the mechanical cutting methods, it was clarified that the punching technique was applicable to practical use. Moreover, an evaluation test of mechanical properties using specimens sampled from the 74M-52 was performed with in-water high temperature condition, less than 288degC. The result shows that the residual elongation is 18% at 150degC and 13% at 288degC. It was confirmed that the type 304 stainless steel irradiated up to such high dose shows enough ductility. (author)

  11. Ultrasound-targeted transfection of tissue-type plasminogen activator gene carried by albumin nanoparticles to dog myocardium to prevent thrombosis after heart mechanical valve replacement

    Directory of Open Access Journals (Sweden)

    Ji J

    2012-06-01

    Full Text Available Ji Jun, Ji Shang-Yi, Yang Jian-An, He Xia, Yang Xiao-Han, Ling Wen-Ping, Chen Xiao-LingDepartment of Pathology and Cardiovascular Surgery, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, Guangdong, People's Republic of ChinaBackground: There are more than 300,000 prosthetic heart valve replacements each year worldwide. These patients are faced with a higher risk of thromboembolic events after heart valve surgery and long-term or even life-long anticoagulative and antiplatelet therapies are necessary. Some severe complications such as hemorrhaging or rebound thrombosis can occur when the therapy ceases. Tissue-type plasminogen activator (t-PA is a thrombolytic agent. One of the best strategies is gene therapy, which offers a local high expression of t-PA over a prolonged time period to avoid both systemic hemorrhaging and local rebound thrombosis. There are some issues with t-PA that need to be addressed: currently, there is no up-to-date report on how the t-PA gene targets the heart in vivo and the gene vector for t-PA needs to be determined.Aims: To fabricate an albumin nano-t-PA gene ultrasound-targeted agent and investigate its targeting effect on prevention of thrombosis after heart mechanic valve replacement under therapeutic ultrasound.Methods: A dog model of mechanical tricuspid valve replacement was constructed. A highly expressive t-PA gene plasmid was constructed and packaged by nanoparticles prepared with bovine serum albumin. This nanopackaged t-PA gene plasmid was further cross-linked to ultrasonic microbubbles prepared with sucrose and bovine serum albumin to form the ultrasonic-targeted agent for t-PA gene transfection. The agent was given intravenously followed by a therapeutic ultrasound treatment (1 MHz, 1.5 w/cm2, 10 minutes of the heart soon after valve replacement had been performed. The expression of t-PA in myocardium was detected with multiclonal antibodies to t-PA by the indirect immunohistochemical method

  12. Targeted retrograde transfection of adenovirus vector carrying brain-derived neurotrophic factor gene prevents loss of mouse (twy/twy) anterior horn neurons in vivo sustaining mechanical compression.

    Science.gov (United States)

    Xu, Kan; Uchida, Kenzo; Nakajima, Hideaki; Kobayashi, Shigeru; Baba, Hisatoshi

    2006-08-01

    Immunohistochemical analysis after adenovirus (AdV)-mediated BDNF gene transfer in and around the area of mechanical compression in the cervical spinal cord of the hyperostotic mouse (twy/twy). To investigate the neuroprotective effect of targeted AdV-BDNF gene transfection in the twy mouse with spontaneous chronic compression of the spinal cord motoneurons. Several studies reported the neuroprotective effects of neurotrophins on injured spinal cord. However, no report has described the effect of targeted retrograde neurotrophic gene delivery on motoneuron survival in chronic compression lesions of the cervical spinal cord resembling lesions of myelopathy. LacZ marker gene using adenoviral vector (AdV-LacZ) was used to evaluate retrograde delivery from the sternomastoid muscle in adult twy mice (16-week-old) and (control). Four weeks after the AdV-LacZ or AdV-BDNF injection, the compressed cervical spinal cord was removed en bloc for immunohistologic investigation of b-galactosidase activity and immunoreactivity and immunoblot analyses of BDNF. The number of anterior horn neurons was counted using Nissl, ChAT and AChE staining. Spinal accessory motoneurons between C1 and C3 segments were successfully transfected by AdV-LacZ in both twy and ICR mice after targeted intramuscular injection. Immunoreactivity to BDNF was significantly stronger in AdV-BDNF-gene transfected twy mice than in AdV-LacZ-gene transfected mice. At the cord level showing the maximum compression in AdV-BDNF-transfected twy mice, the number of anterior horn neurons was sinificantly higher in the topographic neuronal cell counting of Nissl-, ChAT-, and AChE-stained samples than in AdV-LacZ-injected twy mice. Targeted AdV-BDNF-gene delivery significantly increased Nissl-stained anterior horn neurons and enhanced cholinergic enzyme activities in the twy. Our results suggest that targeted retrograde AdV-BDNF-gene in vivo delivery may enhance neuronal survival even under chronic mechanical compression.

  13. Diophantine approximation and badly approximable sets

    DEFF Research Database (Denmark)

    Kristensen, S.; Thorn, R.; Velani, S.

    2006-01-01

    . The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension...

  14. Optical Carry Adder.

    Science.gov (United States)

    1987-03-01

    AOM’s) with the deflected beam as the modulator "on" state. These AOM’s ( TeO2 crystals, manufactured by Newport E.O. Systems) have high deflection...caused by the slow acoustic propagation (4.2 - 105 cm/s for TeO2 ), but this delay can be minimized by placing the laser beam close to the acoustic...dependent jitter in the optical carry to below 1 ns, the total carry path must be less than 30 cm long (or 20 cm in glass , 14 cm in LiNbO 3). Thus, a 32

  15. Truthful approximations to range voting

    DEFF Research Database (Denmark)

    Filos-Ratsika, Aris; Miltersen, Peter Bro

    We consider the fundamental mechanism design problem of approximate social welfare maximization under general cardinal preferences on a finite number of alternatives and without money. The well-known range voting scheme can be thought of as a non-truthful mechanism for exact social welfare...

  16. Coexistence of spin-triplet superconductivity with magnetism within a single mechanism for orbitally degenerate correlated electrons: statistically consistent Gutzwiller approximation

    International Nuclear Information System (INIS)

    Zegrodnik, M; Spałek, J; Bünemann, J

    2013-01-01

    An orbitally degenerate two-band Hubbard model is analyzed with the inclusion of the Hund's rule-induced spin-triplet even-parity paired states and their coexistence with magnetic ordering. The so-called statistically consistent Gutzwiller approximation (SGA) has been applied to the case of a square lattice. The superconducting gaps, the magnetic moment and the free energy are analyzed as a function of the Hund's rule coupling strength and the band filling. Also, the influence of the intersite hybridization on the stability of paired phases is discussed. In order to examine the effect of correlations the results are compared with those calculated earlier within the Hartree–Fock (HF) approximation combined with the Bardeen–Cooper–Schrieffer (BCS) approach. Significant differences between the two methods used (HF + BCS versus SGA + real-space pairing) appear in the stability regions of the considered phases. Our results supplement the analysis of this canonical model used widely in the discussions of pure magnetic phases with the detailed elaboration of the stability of the spin-triplet superconducting states and the coexistent magnetic-superconducting states. At the end, we briefly discuss qualitatively the factors that need to be included for a detailed quantitative comparison with the corresponding experimental results. (paper)

  17. Approximate quantum Markov chains

    CERN Document Server

    Sutter, David

    2018-01-01

    This book is an introduction to quantum Markov chains and explains how this concept is connected to the question of how well a lost quantum mechanical system can be recovered from a correlated subsystem. To achieve this goal, we strengthen the data-processing inequality such that it reveals a statement about the reconstruction of lost information. The main difficulty in order to understand the behavior of quantum Markov chains arises from the fact that quantum mechanical operators do not commute in general. As a result we start by explaining two techniques of how to deal with non-commuting matrices: the spectral pinching method and complex interpolation theory. Once the reader is familiar with these techniques a novel inequality is presented that extends the celebrated Golden-Thompson inequality to arbitrarily many matrices. This inequality is the key ingredient in understanding approximate quantum Markov chains and it answers a question from matrix analysis that was open since 1973, i.e., if Lieb's triple ma...

  18. Modulated Pade approximant

    International Nuclear Information System (INIS)

    Ginsburg, C.A.

    1980-01-01

    In many problems, a desired property A of a function f(x) is determined by the behaviour of f(x) approximately equal to g(x,A) as x→xsup(*). In this letter, a method for resuming the power series in x of f(x) and approximating A (modulated Pade approximant) is presented. This new approximant is an extension of a resumation method for f(x) in terms of rational functions. (author)

  19. Sparse approximation with bases

    CERN Document Server

    2015-01-01

    This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications.  The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...

  20. Approximate symmetries of Hamiltonians

    Science.gov (United States)

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  1. Approximating distributions from moments

    Science.gov (United States)

    Pawula, R. F.

    1987-11-01

    A method based upon Pearson-type approximations from statistics is developed for approximating a symmetric probability density function from its moments. The extended Fokker-Planck equation for non-Markov processes is shown to be the underlying foundation for the approximations. The approximation is shown to be exact for the beta probability density function. The applicability of the general method is illustrated by numerous pithy examples from linear and nonlinear filtering of both Markov and non-Markov dichotomous noise. New approximations are given for the probability density function in two cases in which exact solutions are unavailable, those of (i) the filter-limiter-filter problem and (ii) second-order Butterworth filtering of the random telegraph signal. The approximate results are compared with previously published Monte Carlo simulations in these two cases.

  2. CONTRIBUTIONS TO RATIONAL APPROXIMATION,

    Science.gov (United States)

    Some of the key results of linear Chebyshev approximation theory are extended to generalized rational functions. Prominent among these is Haar’s...linear theorem which yields necessary and sufficient conditions for uniqueness. Some new results in the classic field of rational function Chebyshev...Furthermore a Weierstrass type theorem is proven for rational Chebyshev approximation. A characterization theorem for rational trigonometric Chebyshev approximation in terms of sign alternation is developed. (Author)

  3. Approximation techniques for engineers

    CERN Document Server

    Komzsik, Louis

    2006-01-01

    Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you''re looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik''s years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.

  4. Expectation Consistent Approximate Inference

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2005-01-01

    We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability dis...

  5. Ordered cones and approximation

    CERN Document Server

    Keimel, Klaus

    1992-01-01

    This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.

  6. Approximate and renormgroup symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling

    2009-07-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  7. Approximate and renormgroup symmetries

    International Nuclear Information System (INIS)

    Ibragimov, Nail H.; Kovalev, Vladimir F.

    2009-01-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  8. Approximations of Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Vinai K. Singh

    2013-03-01

    Full Text Available A fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. Such results can be viewed as an existence of optimal fuzzy systems. Li-Xin Wang discussed a similar problem using Gaussian membership function and Stone-Weierstrass Theorem. He established that fuzzy systems, with product inference, centroid defuzzification and Gaussian functions are capable of approximating any real continuous function on a compact set to arbitrary accuracy. In this paper we study a similar approximation problem by using exponential membership functions

  9. General Rytov approximation.

    Science.gov (United States)

    Potvin, Guy

    2015-10-01

    We examine how the Rytov approximation describing log-amplitude and phase fluctuations of a wave propagating through weak uniform turbulence can be generalized to the case of turbulence with a large-scale nonuniform component. We show how the large-scale refractive index field creates Fermat rays using the path integral formulation for paraxial propagation. We then show how the second-order derivatives of the Fermat ray action affect the Rytov approximation, and we discuss how a numerical algorithm would model the general Rytov approximation.

  10. Geometric approximation algorithms

    CERN Document Server

    Har-Peled, Sariel

    2011-01-01

    Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.

  11. INTOR cost approximation

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1980-01-01

    A simplified cost approximation for INTOR parameter sets in a narrow parameter range is shown. Plausible constraints permit the evaluation of the consequences of parameter variations on overall cost. (orig.) [de

  12. Approximation and Computation

    CERN Document Server

    Gautschi, Walter; Rassias, Themistocles M

    2011-01-01

    Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg

  13. Approximate kernel competitive learning.

    Science.gov (United States)

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. On Covering Approximation Subspaces

    Directory of Open Access Journals (Sweden)

    Xun Ge

    2009-06-01

    Full Text Available Let (U';C' be a subspace of a covering approximation space (U;C and X⊂U'. In this paper, we show that and B'(X⊂B(X∩U'. Also, iff (U;C has Property Multiplication. Furthermore, some connections between outer (resp. inner definable subsets in (U;C and outer (resp. inner definable subsets in (U';C' are established. These results answer a question on covering approximation subspace posed by J. Li, and are helpful to obtain further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.

  15. On Convex Quadratic Approximation

    NARCIS (Netherlands)

    den Hertog, D.; de Klerk, E.; Roos, J.

    2000-01-01

    In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of

  16. Prestack wavefield approximations

    KAUST Repository

    Alkhalifah, Tariq

    2013-01-01

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.

  17. Approximating The DCM

    DEFF Research Database (Denmark)

    Madsen, Rasmus Elsborg

    2005-01-01

    The Dirichlet compound multinomial (DCM), which has recently been shown to be well suited for modeling for word burstiness in documents, is here investigated. A number of conceptual explanations that account for these recent results, are provided. An exponential family approximation of the DCM...

  18. Approximation by Cylinder Surfaces

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1997-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  19. Prestack wavefield approximations

    KAUST Repository

    Alkhalifah, Tariq

    2013-09-01

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.

  20. An improved saddlepoint approximation.

    Science.gov (United States)

    Gillespie, Colin S; Renshaw, Eric

    2007-08-01

    Given a set of third- or higher-order moments, not only is the saddlepoint approximation the only realistic 'family-free' technique available for constructing an associated probability distribution, but it is 'optimal' in the sense that it is based on the highly efficient numerical method of steepest descents. However, it suffers from the problem of not always yielding full support, and whilst [S. Wang, General saddlepoint approximations in the bootstrap, Prob. Stat. Lett. 27 (1992) 61.] neat scaling approach provides a solution to this hurdle, it leads to potentially inaccurate and aberrant results. We therefore propose several new ways of surmounting such difficulties, including: extending the inversion of the cumulant generating function to second-order; selecting an appropriate probability structure for higher-order cumulants (the standard moment closure procedure takes them to be zero); and, making subtle changes to the target cumulants and then optimising via the simplex algorithm.

  1. Prestack traveltime approximations

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    Most prestack traveltime relations we tend work with are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multi-focusing or double square-root (DSR) and the common reflection stack (CRS) equations. Using the DSR equation, I analyze the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I derive expansion based solutions of this eikonal based on polynomial expansions in terms of the reflection and dip angles in a generally inhomogenous background medium. These approximate solutions are free of singularities and can be used to estimate travetimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. A Marmousi example demonstrates the usefulness of the approach. © 2011 Society of Exploration Geophysicists.

  2. Topology, calculus and approximation

    CERN Document Server

    Komornik, Vilmos

    2017-01-01

    Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdős, Fejér, Stieltjes, and Turán. The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations. Students of both pure an...

  3. Approximate Bayesian recursive estimation

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav

    2014-01-01

    Roč. 285, č. 1 (2014), s. 100-111 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Approximate parameter estimation * Bayesian recursive estimation * Kullback–Leibler divergence * Forgetting Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/karny-0425539.pdf

  4. Approximating Preemptive Stochastic Scheduling

    OpenAIRE

    Megow Nicole; Vredeveld Tjark

    2009-01-01

    We present constant approximative policies for preemptive stochastic scheduling. We derive policies with a guaranteed performance ratio of 2 for scheduling jobs with release dates on identical parallel machines subject to minimizing the sum of weighted completion times. Our policies as well as their analysis apply also to the recently introduced more general model of stochastic online scheduling. The performance guarantee we give matches the best result known for the corresponding determinist...

  5. Optimization and approximation

    CERN Document Server

    Pedregal, Pablo

    2017-01-01

    This book provides a basic, initial resource, introducing science and engineering students to the field of optimization. It covers three main areas: mathematical programming, calculus of variations and optimal control, highlighting the ideas and concepts and offering insights into the importance of optimality conditions in each area. It also systematically presents affordable approximation methods. Exercises at various levels have been included to support the learning process.

  6. Quantum tunneling beyond semiclassical approximation

    International Nuclear Information System (INIS)

    Banerjee, Rabin; Majhi, Bibhas Ranjan

    2008-01-01

    Hawking radiation as tunneling by Hamilton-Jacobi method beyond semiclassical approximation is analysed. We compute all quantum corrections in the single particle action revealing that these are proportional to the usual semiclassical contribution. We show that a simple choice of the proportionality constants reproduces the one loop back reaction effect in the spacetime, found by conformal field theory methods, which modifies the Hawking temperature of the black hole. Using the law of black hole mechanics we give the corrections to the Bekenstein-Hawking area law following from the modified Hawking temperature. Some examples are explicitly worked out.

  7. Cyclic approximation to stasis

    Directory of Open Access Journals (Sweden)

    Stewart D. Johnson

    2009-06-01

    Full Text Available Neighborhoods of points in $mathbb{R}^n$ where a positive linear combination of $C^1$ vector fields sum to zero contain, generically, cyclic trajectories that switch between the vector fields. Such points are called stasis points, and the approximating switching cycle can be chosen so that the timing of the switches exactly matches the positive linear weighting. In the case of two vector fields, the stasis points form one-dimensional $C^1$ manifolds containing nearby families of two-cycles. The generic case of two flows in $mathbb{R}^3$ can be diffeomorphed to a standard form with cubic curves as trajectories.

  8. On the WKBJ approximation

    International Nuclear Information System (INIS)

    El Sawi, M.

    1983-07-01

    A simple approach employing properties of solutions of differential equations is adopted to derive an appropriate extension of the WKBJ method. Some of the earlier techniques that are commonly in use are unified, whereby the general approximate solution to a second-order homogeneous linear differential equation is presented in a standard form that is valid for all orders. In comparison to other methods, the present one is shown to be leading in the order of iteration, and thus possibly has the ability of accelerating the convergence of the solution. The method is also extended for the solution of inhomogeneous equations. (author)

  9. The relaxation time approximation

    International Nuclear Information System (INIS)

    Gairola, R.P.; Indu, B.D.

    1991-01-01

    A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs

  10. Polynomial approximation on polytopes

    CERN Document Server

    Totik, Vilmos

    2014-01-01

    Polynomial approximation on convex polytopes in \\mathbf{R}^d is considered in uniform and L^p-norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the L^p-case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate K-functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.

  11. Finite elements and approximation

    CERN Document Server

    Zienkiewicz, O C

    2006-01-01

    A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o

  12. WKB approximation in atomic physics

    International Nuclear Information System (INIS)

    Karnakov, Boris Mikhailovich

    2013-01-01

    Provides extensive coverage of the Wentzel-Kramers-Brillouin approximation and its applications. Presented as a sequence of problems with highly detailed solutions. Gives a concise introduction for calculating Rydberg states, potential barriers and quasistationary systems. This book has evolved from lectures devoted to applications of the Wentzel-Kramers-Brillouin- (WKB or quasi-classical) approximation and of the method of 1/N -expansion for solving various problems in atomic and nuclear physics. The intent of this book is to help students and investigators in this field to extend their knowledge of these important calculation methods in quantum mechanics. Much material is contained herein that is not to be found elsewhere. WKB approximation, while constituting a fundamental area in atomic physics, has not been the focus of many books. A novel method has been adopted for the presentation of the subject matter, the material is presented as a succession of problems, followed by a detailed way of solving them. The methods introduced are then used to calculate Rydberg states in atomic systems and to evaluate potential barriers and quasistationary states. Finally, adiabatic transition and ionization of quantum systems are covered.

  13. Approximate Bayesian computation.

    Directory of Open Access Journals (Sweden)

    Mikael Sunnåker

    Full Text Available Approximate Bayesian computation (ABC constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology.

  14. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  15. The random phase approximation

    International Nuclear Information System (INIS)

    Schuck, P.

    1985-01-01

    RPA is the adequate theory to describe vibrations of the nucleus of very small amplitudes. These vibrations can either be forced by an external electromagnetic field or can be eigenmodes of the nucleus. In a one dimensional analogue the potential corresponding to such eigenmodes of very small amplitude should be rather stiff otherwise the motion risks to be a large amplitude one and to enter a region where the approximation is not valid. This means that nuclei which are supposedly well described by RPA must have a very stable groundstate configuration (must e.g. be very stiff against deformation). This is usually the case for doubly magic nuclei or close to magic nuclei which are in the middle of proton and neutron shells which develop a very stable groundstate deformation; we take the deformation as an example but there are many other possible degrees of freedom as, for example, compression modes, isovector degrees of freedom, spin degrees of freedom, and many more

  16. The quasilocalized charge approximation

    International Nuclear Information System (INIS)

    Kalman, G J; Golden, K I; Donko, Z; Hartmann, P

    2005-01-01

    The quasilocalized charge approximation (QLCA) has been used for some time as a formalism for the calculation of the dielectric response and for determining the collective mode dispersion in strongly coupled Coulomb and Yukawa liquids. The approach is based on a microscopic model in which the charges are quasilocalized on a short-time scale in local potential fluctuations. We review the conceptual basis and theoretical structure of the QLC approach and together with recent results from molecular dynamics simulations that corroborate and quantify the theoretical concepts. We also summarize the major applications of the QLCA to various physical systems, combined with the corresponding results of the molecular dynamics simulations and point out the general agreement and instances of disagreement between the two

  17. How honey bees carry pollen

    Science.gov (United States)

    Matherne, Marguerite E.; Anyanwu, Gabriel; Leavey, Jennifer K.; Hu, David L.

    2017-11-01

    Honey bees are the tanker of the skies, carrying thirty percent of their weight in pollen per foraging trip using specialized orifices on their body. How do they manage to hang onto those pesky pollen grains? In this experimental study, we investigate the adhesion force of pollen to the honeybee. To affix pollen to themselves, honey bees form a suspension of pollen in nectar, creating a putty-like pollen basket that is skewered by leg hairs. We use tensile tests to show that the viscous force of the pollen basket is more than ten times the honeybee's flight force. This work may provide inspiration for the design of robotic flying pollinators.

  18. Prestack traveltime approximations

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-05-01

    Many of the explicit prestack traveltime relations used in practice are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multifocusing, based on the double square-root (DSR) equation, and the common reflection stack (CRS) approaches. Using the DSR equation, I constructed the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I recasted the eikonal in terms of the reflection angle, and thus, derived expansion based solutions of this eikonal in terms of the difference between the source and receiver velocities in a generally inhomogenous background medium. The zero-order term solution, corresponding to ignoring the lateral velocity variation in estimating the prestack part, is free of singularities and can be used to estimate traveltimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. The higher-order terms include limitations for horizontally traveling waves, however, we can readily enforce stability constraints to avoid such singularities. In fact, another expansion over reflection angle can help us avoid these singularities by requiring the source and receiver velocities to be different. On the other hand, expansions in terms of reflection angles result in singularity free equations. For a homogenous background medium, as a test, the solutions are reasonably accurate to large reflection and dip angles. A Marmousi example demonstrated the usefulness and versatility of the formulation. © 2012 Society of Exploration Geophysicists.

  19. Evaluation of variational approximations

    International Nuclear Information System (INIS)

    Trevisan, L.A.

    1991-01-01

    In Feynman's approach to quantum statistical mechanics, the partition function can e represented as a path integral. A recently proposed variation method of Feynman-Kleinert is able to transform the path integral into an integral in phase space, in which the quantum fluctuations have been taken care of by introducing the effective classical potential. This method has been testes with succeed for the smooth potentials and for the singular potential of delta. The method to the strong singular potentials is applied: a quadratic potential and a linear potential both with a rigid wall at the origin. By satisfying the condition that the density of the particle be vanish at the origin, and adapted method of Feynman-Kleinert in order to improve the method is introduced. (author)

  20. Studies of mechanisms and processes of relevance to the safety of nuclear waste repositories, as carried out prior to, during and after flovelling of the Hope potash salt mine

    International Nuclear Information System (INIS)

    1985-01-01

    Studies on the effects of a hypothetical accident involving water or brine intrusion into a waste repository in a salt mine are of special importance within the framework of safety assessments of salt formations as candidate sites for nuclear waste repositories. The measuring activities under review include the following: Physicochemical measurements for determining dissolution and recipitation of salts, transport mechanisms, temperature curves, natural build-up and efficiency of geochemical barriers in the brine. Geochemical measurements for obtaining information on the rock deformation prior to, during, and after flovelling. Geophysical measurements of microseismic behaviour of rock masses prior to, during, and after flovelling. Examination of an artificial barrier structure for the testing and assessment of technical barriers and their efficiency. (orig./HP) [de

  1. Self-similar factor approximants

    International Nuclear Information System (INIS)

    Gluzman, S.; Yukalov, V.I.; Sornette, D.

    2003-01-01

    The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is addressed by deriving an improved type of approximants. The derivation is based on the self-similar approximation theory, which presents the passage from one approximant to another as the motion realized by a dynamical system with the property of group self-similarity. The derived approximants, because of their form, are called self-similar factor approximants. These complement the obtained earlier self-similar exponential approximants and self-similar root approximants. The specific feature of self-similar factor approximants is that their control functions, providing convergence of the computational algorithm, are completely defined from the accuracy-through-order conditions. These approximants contain the Pade approximants as a particular case, and in some limit they can be reduced to the self-similar exponential approximants previously introduced by two of us. It is proved that the self-similar factor approximants are able to reproduce exactly a wide class of functions, which include a variety of nonalgebraic functions. For other functions, not pertaining to this exactly reproducible class, the factor approximants provide very accurate approximations, whose accuracy surpasses significantly that of the most accurate Pade approximants. This is illustrated by a number of examples showing the generality and accuracy of the factor approximants even when conventional techniques meet serious difficulties

  2. International Conference Approximation Theory XV

    CERN Document Server

    Schumaker, Larry

    2017-01-01

    These proceedings are based on papers presented at the international conference Approximation Theory XV, which was held May 22–25, 2016 in San Antonio, Texas. The conference was the fifteenth in a series of meetings in Approximation Theory held at various locations in the United States, and was attended by 146 participants. The book contains longer survey papers by some of the invited speakers covering topics such as compressive sensing, isogeometric analysis, and scaling limits of polynomials and entire functions of exponential type. The book also includes papers on a variety of current topics in Approximation Theory drawn from areas such as advances in kernel approximation with applications, approximation theory and algebraic geometry, multivariate splines for applications, practical function approximation, approximation of PDEs, wavelets and framelets with applications, approximation theory in signal processing, compressive sensing, rational interpolation, spline approximation in isogeometric analysis, a...

  3. Hierarchical low-rank approximation for high dimensional approximation

    KAUST Repository

    Nouy, Anthony

    2016-01-01

    Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.

  4. Hierarchical low-rank approximation for high dimensional approximation

    KAUST Repository

    Nouy, Anthony

    2016-01-07

    Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.

  5. Forms of Approximate Radiation Transport

    CERN Document Server

    Brunner, G

    2002-01-01

    Photon radiation transport is described by the Boltzmann equation. Because this equation is difficult to solve, many different approximate forms have been implemented in computer codes. Several of the most common approximations are reviewed, and test problems illustrate the characteristics of each of the approximations. This document is designed as a tutorial so that code users can make an educated choice about which form of approximate radiation transport to use for their particular simulation.

  6. Approximation by planar elastic curves

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2016-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....

  7. Exact constants in approximation theory

    CERN Document Server

    Korneichuk, N

    1991-01-01

    This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base

  8. International Conference Approximation Theory XIV

    CERN Document Server

    Schumaker, Larry

    2014-01-01

    This volume developed from papers presented at the international conference Approximation Theory XIV,  held April 7–10, 2013 in San Antonio, Texas. The proceedings contains surveys by invited speakers, covering topics such as splines on non-tensor-product meshes, Wachspress and mean value coordinates, curvelets and shearlets, barycentric interpolation, and polynomial approximation on spheres and balls. Other contributed papers address a variety of current topics in approximation theory, including eigenvalue sequences of positive integral operators, image registration, and support vector machines. This book will be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.

  9. Cryptococcus neoformans carried by Odontomachus bauri ants

    Directory of Open Access Journals (Sweden)

    Mariana Santos de Jesus

    2012-06-01

    Full Text Available Cryptococcus neoformans is the most common causative agent of cryptococcosis worldwide. Although this fungus has been isolated from a variety of organic substrates, several studies suggest that hollow trees constitute an important natural niche for C. neoformans. A previously surveyed hollow of a living pink shower tree (Cassia grandis positive for C. neoformans in the city of Rio de Janeiro, Brazil, was chosen for further investigation. Odontomachus bauri ants (trap-jaw ants found inside the hollow were collected for evaluation as possible carriers of Cryptococcus spp. Two out of 10 ants were found to carry phenoloxidase-positive colonies identified as C. neoformans molecular types VNI and VNII. The ants may have acted as a mechanical vector of C. neoformans and possibly contributed to the dispersal of the fungi from one substrate to another. To the best of our knowledge, this is the first report on the association of C. neoformans with ants of the genus Odontomachus.

  10. Some results in Diophantine approximation

    DEFF Research Database (Denmark)

    Pedersen, Steffen Højris

    the basic concepts on which the papers build. Among other it introduces metric Diophantine approximation, Mahler’s approach on algebraic approximation, the Hausdorff measure, and properties of the formal Laurent series over Fq. The introduction ends with a discussion on Mahler’s problem when considered......This thesis consists of three papers in Diophantine approximation, a subbranch of number theory. Preceding these papers is an introduction to various aspects of Diophantine approximation and formal Laurent series over Fq and a summary of each of the three papers. The introduction introduces...

  11. Limitations of shallow nets approximation.

    Science.gov (United States)

    Lin, Shao-Bo

    2017-10-01

    In this paper, we aim at analyzing the approximation abilities of shallow networks in reproducing kernel Hilbert spaces (RKHSs). We prove that there is a probability measure such that the achievable lower bound for approximating by shallow nets can be realized for all functions in balls of reproducing kernel Hilbert space with high probability, which is different with the classical minimax approximation error estimates. This result together with the existing approximation results for deep nets shows the limitations for shallow nets and provides a theoretical explanation on why deep nets perform better than shallow nets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Spherical Approximation on Unit Sphere

    Directory of Open Access Journals (Sweden)

    Eman Samir Bhaya

    2018-01-01

    Full Text Available In this paper we introduce a Jackson type theorem for functions in LP spaces on sphere And study on best approximation of  functions in  spaces defined on unit sphere. our central problem is to describe the approximation behavior of functions in    spaces for  by modulus of smoothness of functions.

  13. Approximate circuits for increased reliability

    Science.gov (United States)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  14. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  15. Consumerism and the Sister Carrie's American Dream%Consumerism and the Sister Carrie''s American Dream

    Institute of Scientific and Technical Information of China (English)

    卢亚丽

    2017-01-01

    From the aspect of consumerism to this text analyze Sister Carrie's"American dream"destruction. The author wholly and deeply analyzes the embodiment of consumerism in Dreiser's Sister Carrie and Dreiser's outlook and values under the effect of consumerism. To prove that the reason for destruction of Carrie's American dream is consumerism.

  16. Approximate Dynamic Programming: Combining Regional and Local State Following Approximations.

    Science.gov (United States)

    Deptula, Patryk; Rosenfeld, Joel A; Kamalapurkar, Rushikesh; Dixon, Warren E

    2018-06-01

    An infinite-horizon optimal regulation problem for a control-affine deterministic system is solved online using a local state following (StaF) kernel and a regional model-based reinforcement learning (R-MBRL) method to approximate the value function. Unlike traditional methods such as R-MBRL that aim to approximate the value function over a large compact set, the StaF kernel approach aims to approximate the value function in a local neighborhood of the state that travels within a compact set. In this paper, the value function is approximated using a state-dependent convex combination of the StaF-based and the R-MBRL-based approximations. As the state enters a neighborhood containing the origin, the value function transitions from being approximated by the StaF approach to the R-MBRL approach. Semiglobal uniformly ultimately bounded (SGUUB) convergence of the system states to the origin is established using a Lyapunov-based analysis. Simulation results are provided for two, three, six, and ten-state dynamical systems to demonstrate the scalability and performance of the developed method.

  17. Approximate solutions of the Wei Hua oscillator using the Pekeris ...

    Indian Academy of Sciences (India)

    The approximate analytical bound-state solutions of the Schrödinger equation for the. Wei Hua oscillator are carried out in N-dimensional space by taking Pekeris approximation scheme to the orbital centrifugal term. Solutions of the corresponding hyper-radial equation are obtained using the conventional Nikiforov–Uvarov ...

  18. Energetics of load carrying in Nepalese porters.

    Science.gov (United States)

    Bastien, Guillaume J; Schepens, Bénédicte; Willems, Patrick A; Heglund, Norman C

    2005-06-17

    Nepalese porters routinely carry head-supported loads equal to 100 to 200% of their body weight (Mb) for many days up and down steep mountain footpaths at high altitudes. Previous studies have shown that African women carry head-supported loads of up to 60% of their Mb far more economically than army recruits carrying equivalent loads in backpacks. Here we show that Nepalese porters carry heavier loads even more economically than African women. Female Nepalese porters, for example, carry on average loads that are 10% of their Mb heavier than the maximum loads carried by the African women, yet do so at a 25% smaller metabolic cost.

  19. Modified semiclassical approximation for trapped Bose gases

    International Nuclear Information System (INIS)

    Yukalov, V.I.

    2005-01-01

    A generalization of the semiclassical approximation is suggested allowing for an essential extension of its region of applicability. In particular, it becomes possible to describe Bose-Einstein condensation of a trapped gas in low-dimensional traps and in traps of low confining dimensions, for which the standard semiclassical approximation is not applicable. The result of the modified approach is shown to coincide with purely quantum-mechanical calculations for harmonic traps, including the one-dimensional harmonic trap. The advantage of the semiclassical approximation is in its simplicity and generality. Power-law potentials of arbitrary powers are considered. The effective thermodynamic limit is defined for any confining dimension. The behavior of the specific heat, isothermal compressibility, and density fluctuations is analyzed, with an emphasis on low confining dimensions, where the usual semiclassical method fails. The peculiarities of the thermodynamic characteristics in the effective thermodynamic limit are discussed

  20. The adiabatic approximation in multichannel scattering

    International Nuclear Information System (INIS)

    Schulte, A.M.

    1978-01-01

    Using two-dimensional models, an attempt has been made to get an impression of the conditions of validity of the adiabatic approximation. For a nucleon bound to a rotating nucleus the Coriolis coupling is neglected and the relation between this nuclear Coriolis coupling and the classical Coriolis force has been examined. The approximation for particle scattering from an axially symmetric rotating nucleus based on a short duration of the collision, has been combined with an approximation based on the limitation of angular momentum transfer between particle and nucleus. Numerical calculations demonstrate the validity of the new combined method. The concept of time duration for quantum mechanical collisions has also been studied, as has the collective description of permanently deformed nuclei. (C.F.)

  1. The efficiency of Flory approximation

    International Nuclear Information System (INIS)

    Obukhov, S.P.

    1984-01-01

    The Flory approximation for the self-avoiding chain problem is compared with a conventional perturbation theory expansion. While in perturbation theory each term is averaged over the unperturbed set of configurations, the Flory approximation is equivalent to the perturbation theory with the averaging over the stretched set of configurations. This imposes restrictions on the integration domain in higher order terms and they can be treated self-consistently. The accuracy δν/ν of Flory approximation for self-avoiding chain problems is estimated to be 2-5% for 1 < d < 4. (orig.)

  2. Approximate Implicitization Using Linear Algebra

    Directory of Open Access Journals (Sweden)

    Oliver J. D. Barrowclough

    2012-01-01

    Full Text Available We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design (CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms. We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.

  3. Rollout sampling approximate policy iteration

    NARCIS (Netherlands)

    Dimitrakakis, C.; Lagoudakis, M.G.

    2008-01-01

    Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schemes without value functions, which focus on policy representation using classifiers and address policy learning as a

  4. Weighted approximation with varying weight

    CERN Document Server

    Totik, Vilmos

    1994-01-01

    A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.

  5. Framework for sequential approximate optimization

    NARCIS (Netherlands)

    Jacobs, J.H.; Etman, L.F.P.; Keulen, van F.; Rooda, J.E.

    2004-01-01

    An object-oriented framework for Sequential Approximate Optimization (SAO) isproposed. The framework aims to provide an open environment for thespecification and implementation of SAO strategies. The framework is based onthe Python programming language and contains a toolbox of Python

  6. The optimal XFEM approximation for fracture analysis

    International Nuclear Information System (INIS)

    Jiang Shouyan; Du Chengbin; Ying Zongquan

    2010-01-01

    The extended finite element method (XFEM) provides an effective tool for analyzing fracture mechanics problems. A XFEM approximation consists of standard finite elements which are used in the major part of the domain and enriched elements in the enriched sub-domain for capturing special solution properties such as discontinuities and singularities. However, two issues in the standard XFEM should specially be concerned: efficient numerical integration methods and an appropriate construction of the blending elements. In the paper, an optimal XFEM approximation is proposed to overcome the disadvantage mentioned above in the standard XFEM. The modified enrichment functions are presented that can reproduced exactly everywhere in the domain. The corresponding FORTRAN program is developed for fracture analysis. A classic problem of fracture mechanics is used to benchmark the program. The results indicate that the optimal XFEM can alleviate the errors and improve numerical precision.

  7. Consumerism and the Sister Carrie's American Dream

    Institute of Scientific and Technical Information of China (English)

    卢亚丽

    2017-01-01

    From the aspect of consumerism to this text analyze Sister Carrie's"American dream"destruction. The author wholly and deeply analyzes the embodiment of consumerism in Dreiser's Sister Carrie and Dreiser's outlook and values under the effect of consumerism. To prove that the reason for destruction of Carrie's American dream is consumerism.

  8. Local Dynamic Stability Associated with Load Carrying

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2013-03-01

    Conclusion: Current study confirmed the sensitivity of local dynamic stability measure in load carrying situation. It was concluded that load carrying tasks were associated with declined local dynamic stability, which may result in increased risk of fall accident. This finding has implications in preventing fall accidents associated with occupational load carrying.

  9. Mean-field approximation minimizes relative entropy

    International Nuclear Information System (INIS)

    Bilbro, G.L.; Snyder, W.E.; Mann, R.C.

    1991-01-01

    The authors derive the mean-field approximation from the information-theoretic principle of minimum relative entropy instead of by minimizing Peierls's inequality for the Weiss free energy of statistical physics theory. They show that information theory leads to the statistical mechanics procedure. As an example, they consider a problem in binary image restoration. They find that mean-field annealing compares favorably with the stochastic approach

  10. Nuclear Hartree-Fock approximation testing and other related approximations

    International Nuclear Information System (INIS)

    Cohenca, J.M.

    1970-01-01

    Hartree-Fock, and Tamm-Dancoff approximations are tested for angular momentum of even-even nuclei. Wave functions, energy levels and momenta are comparatively evaluated. Quadripole interactions are studied following the Elliott model. Results are applied to Ne 20 [pt

  11. Evaluating total carrying capacity of tourism using impact indicators

    Directory of Open Access Journals (Sweden)

    R. Sharma

    2016-03-01

    Full Text Available The carrying capacity is well identified tool to manage problems due to uncontrolled tourism for any destination. This report highlights the carrying capacity estimation of Kerwa tourism area, Bhopal, India. The methodology used in this report is a new two-tier mechanism of impact analysis using index numbers derived from a survey of 123 stakeholders. From this the individual component impact analysis and the total carrying capacity of the area is computed in order to state the insight of the total carrying capacity left for the tourism activities in Kerwa tourism area. It is calculated from, the results so obtained, that the Kerwa catchment area falls in “very low impact category” and hence in a healthy state of the artwork in terms of total carrying capacity. The study conveys the current need in the destination management and tourism development as a road map for the destination managers for implementing sustainable tourism.

  12. Shearlets and Optimally Sparse Approximations

    DEFF Research Database (Denmark)

    Kutyniok, Gitta; Lemvig, Jakob; Lim, Wang-Q

    2012-01-01

    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations...... optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction...... to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field....

  13. Diophantine approximation and Dirichlet series

    CERN Document Server

    Queffélec, Hervé

    2013-01-01

    This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided into seven chapters, the first three of which present tools from commutative harmonic analysis, including a sharp form of the uncertainty principle, ergodic theory and Diophantine approximation to be used in the sequel. A presentation of continued fraction expansions, including the mixing property of the Gauss map, is given. Chapters four and five present the general theory of Dirichlet series, with classes of examples connected to continued fractions, the famous Bohr point of view, and then the use of random Dirichlet series to produce non-trivial extremal examples, including sharp forms of the Bohnenblust-Hille theorem. Chapter six deals with Hardy-Dirichlet spaces, which are new and useful Banach spaces of anal...

  14. Approximations to camera sensor noise

    Science.gov (United States)

    Jin, Xiaodan; Hirakawa, Keigo

    2013-02-01

    Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.

  15. Rational approximations for tomographic reconstructions

    International Nuclear Information System (INIS)

    Reynolds, Matthew; Beylkin, Gregory; Monzón, Lucas

    2013-01-01

    We use optimal rational approximations of projection data collected in x-ray tomography to improve image resolution. Under the assumption that the object of interest is described by functions with jump discontinuities, for each projection we construct its rational approximation with a small (near optimal) number of terms for a given accuracy threshold. This allows us to augment the measured data, i.e., double the number of available samples in each projection or, equivalently, extend (double) the domain of their Fourier transform. We also develop a new, fast, polar coordinate Fourier domain algorithm which uses our nonlinear approximation of projection data in a natural way. Using augmented projections of the Shepp–Logan phantom, we provide a comparison between the new algorithm and the standard filtered back-projection algorithm. We demonstrate that the reconstructed image has improved resolution without additional artifacts near sharp transitions in the image. (paper)

  16. Approximation methods in probability theory

    CERN Document Server

    Čekanavičius, Vydas

    2016-01-01

    This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.

  17. Approximate reasoning in physical systems

    International Nuclear Information System (INIS)

    Mutihac, R.

    1991-01-01

    The theory of fuzzy sets provides excellent ground to deal with fuzzy observations (uncertain or imprecise signals, wavelengths, temperatures,etc.) fuzzy functions (spectra and depth profiles) and fuzzy logic and approximate reasoning. First, the basic ideas of fuzzy set theory are briefly presented. Secondly, stress is put on application of simple fuzzy set operations for matching candidate reference spectra of a spectral library to an unknown sample spectrum (e.g. IR spectroscopy). Thirdly, approximate reasoning is applied to infer an unknown property from information available in a database (e.g. crystal systems). Finally, multi-dimensional fuzzy reasoning techniques are suggested. (Author)

  18. Face Recognition using Approximate Arithmetic

    DEFF Research Database (Denmark)

    Marso, Karol

    Face recognition is image processing technique which aims to identify human faces and found its use in various different fields for example in security. Throughout the years this field evolved and there are many approaches and many different algorithms which aim to make the face recognition as effective...... processing applications the results do not need to be completely precise and use of the approximate arithmetic can lead to reduction in terms of delay, space and power consumption. In this paper we examine possible use of approximate arithmetic in face recognition using Eigenfaces algorithm....

  19. Measuring Social carrying Capacity: An Exploratory Study

    OpenAIRE

    López-Bonilla, Jesús Manuel; López-Bonilla, Luis Miguel

    2007-01-01

    The tourist carrying capacity commands a growing interest given that it is closely linked with sustainable tourist development. The justification of the utility of this concept is given by means of a simple and efficient methodological proposal, by analysing the social carrying capacity. To this end, an empirical application is carried out in the Western Andalusia. In some of the cases analysed, the satisfaction of the tourist is found to decline when the levels of the tourist use are higher ...

  20. Approximate Reanalysis in Topology Optimization

    DEFF Research Database (Denmark)

    Amir, Oded; Bendsøe, Martin P.; Sigmund, Ole

    2009-01-01

    In the nested approach to structural optimization, most of the computational effort is invested in the solution of the finite element analysis equations. In this study, the integration of an approximate reanalysis procedure into the framework of topology optimization of continuum structures...

  1. Approximate Matching of Hierarchial Data

    DEFF Research Database (Denmark)

    Augsten, Nikolaus

    -grams of a tree are all its subtrees of a particular shape. Intuitively, two trees are similar if they have many pq-grams in common. The pq-gram distance is an efficient and effective approximation of the tree edit distance. We analyze the properties of the pq-gram distance and compare it with the tree edit...

  2. Approximation of Surfaces by Cylinders

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1998-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  3. Approximation properties of haplotype tagging

    Directory of Open Access Journals (Sweden)

    Dreiseitl Stephan

    2006-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are locations at which the genomic sequences of population members differ. Since these differences are known to follow patterns, disease association studies are facilitated by identifying SNPs that allow the unique identification of such patterns. This process, known as haplotype tagging, is formulated as a combinatorial optimization problem and analyzed in terms of complexity and approximation properties. Results It is shown that the tagging problem is NP-hard but approximable within 1 + ln((n2 - n/2 for n haplotypes but not approximable within (1 - ε ln(n/2 for any ε > 0 unless NP ⊂ DTIME(nlog log n. A simple, very easily implementable algorithm that exhibits the above upper bound on solution quality is presented. This algorithm has running time O((2m - p + 1 ≤ O(m(n2 - n/2 where p ≤ min(n, m for n haplotypes of size m. As we show that the approximation bound is asymptotically tight, the algorithm presented is optimal with respect to this asymptotic bound. Conclusion The haplotype tagging problem is hard, but approachable with a fast, practical, and surprisingly simple algorithm that cannot be significantly improved upon on a single processor machine. Hence, significant improvement in computatational efforts expended can only be expected if the computational effort is distributed and done in parallel.

  4. All-Norm Approximation Algorithms

    NARCIS (Netherlands)

    Azar, Yossi; Epstein, Leah; Richter, Yossi; Woeginger, Gerhard J.; Penttonen, Martti; Meineche Schmidt, Erik

    2002-01-01

    A major drawback in optimization problems and in particular in scheduling problems is that for every measure there may be a different optimal solution. In many cases the various measures are different ℓ p norms. We address this problem by introducing the concept of an All-norm ρ-approximation

  5. On badly approximable complex numbers

    DEFF Research Database (Denmark)

    Esdahl-Schou, Rune; Kristensen, S.

    We show that the set of complex numbers which are badly approximable by ratios of elements of , where has maximal Hausdorff dimension. In addition, the intersection of these sets is shown to have maximal dimension. The results remain true when the sets in question are intersected with a suitably...

  6. Approximate reasoning in decision analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, M M; Sanchez, E

    1982-01-01

    The volume aims to incorporate the recent advances in both theory and applications. It contains 44 articles by 74 contributors from 17 different countries. The topics considered include: membership functions; composite fuzzy relations; fuzzy logic and inference; classifications and similarity measures; expert systems and medical diagnosis; psychological measurements and human behaviour; approximate reasoning and decision analysis; and fuzzy clustering algorithms.

  7. Rational approximation of vertical segments

    Science.gov (United States)

    Salazar Celis, Oliver; Cuyt, Annie; Verdonk, Brigitte

    2007-08-01

    In many applications, observations are prone to imprecise measurements. When constructing a model based on such data, an approximation rather than an interpolation approach is needed. Very often a least squares approximation is used. Here we follow a different approach. A natural way for dealing with uncertainty in the data is by means of an uncertainty interval. We assume that the uncertainty in the independent variables is negligible and that for each observation an uncertainty interval can be given which contains the (unknown) exact value. To approximate such data we look for functions which intersect all uncertainty intervals. In the past this problem has been studied for polynomials, or more generally for functions which are linear in the unknown coefficients. Here we study the problem for a particular class of functions which are nonlinear in the unknown coefficients, namely rational functions. We show how to reduce the problem to a quadratic programming problem with a strictly convex objective function, yielding a unique rational function which intersects all uncertainty intervals and satisfies some additional properties. Compared to rational least squares approximation which reduces to a nonlinear optimization problem where the objective function may have many local minima, this makes the new approach attractive.

  8. Pythagorean Approximations and Continued Fractions

    Science.gov (United States)

    Peralta, Javier

    2008-01-01

    In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…

  9. Ultrafast Approximation for Phylogenetic Bootstrap

    NARCIS (Netherlands)

    Bui Quang Minh, [No Value; Nguyen, Thi; von Haeseler, Arndt

    Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and

  10. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  11. The Concept of Carrying Capacity in Tourism

    Directory of Open Access Journals (Sweden)

    Josef Zelenka

    2014-05-01

    Full Text Available Carrying capacity is often pragmatically, theoretically as well as purely intuitively considered as a concept in the context of tourism sustainability. The carrying capacity application has the greatest potential in protected areas, in frequently visited cultural and natural attractions, and in relation to sustaining of the lifestyle of the local community and tourism destination potential in general. Despite its importance, partial applications, determination of basic theoretical principles, and specifying connection to the other theoretical concepts in tourism (particularly destination life cycle, LAC concept, visitors management, there still is a rightful opinion of some authors suggesting that there is no consistent theory of tourism carrying capacity. This theory would be the base for sophisticated practical carrying capacity applications. This paper is therefore focused on introduction of the theoretical concept of carrying capacity, which can be discussed and possibly further elaborated.

  12. Beyond the random phase approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian S.

    2013-01-01

    We assess the performance of a recently proposed renormalized adiabatic local density approximation (rALDA) for ab initio calculations of electronic correlation energies in solids and molecules. The method is an extension of the random phase approximation (RPA) derived from time-dependent density...... functional theory and the adiabatic connection fluctuation-dissipation theorem and contains no fitted parameters. The new kernel is shown to preserve the accurate description of dispersive interactions from RPA while significantly improving the description of short-range correlation in molecules, insulators......, and metals. For molecular atomization energies, the rALDA is a factor of 7 better than RPA and a factor of 4 better than the Perdew-Burke-Ernzerhof (PBE) functional when compared to experiments, and a factor of 3 (1.5) better than RPA (PBE) for cohesive energies of solids. For transition metals...

  13. Hydrogen: Beyond the Classic Approximation

    International Nuclear Information System (INIS)

    Scivetti, Ivan

    2003-01-01

    The classical nucleus approximation is the most frequently used approach for the resolution of problems in condensed matter physics.However, there are systems in nature where it is necessary to introduce the nuclear degrees of freedom to obtain a correct description of the properties.Examples of this, are the systems with containing hydrogen.In this work, we have studied the resolution of the quantum nuclear problem for the particular case of the water molecule.The Hartree approximation has been used, i.e. we have considered that the nuclei are distinguishable particles.In addition, we have proposed a model to solve the tunneling process, which involves the resolution of the nuclear problem for configurations of the system away from its equilibrium position

  14. Approximation errors during variance propagation

    International Nuclear Information System (INIS)

    Dinsmore, Stephen

    1986-01-01

    Risk and reliability analyses are often performed by constructing and quantifying large fault trees. The inputs to these models are component failure events whose probability of occuring are best represented as random variables. This paper examines the errors inherent in two approximation techniques used to calculate the top event's variance from the inputs' variance. Two sample fault trees are evaluated and several three dimensional plots illustrating the magnitude of the error over a wide range of input means and variances are given

  15. Parallelization of Reversible Ripple-carry Adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Axelsen, Holger Bock

    2009-01-01

    The design of fast arithmetic logic circuits is an important research topic for reversible and quantum computing. A special challenge in this setting is the computation of standard arithmetical functions without the generation of \\emph{garbage}. Here, we present a novel parallelization scheme...... wherein $m$ parallel $k$-bit reversible ripple-carry adders are combined to form a reversible $mk$-bit \\emph{ripple-block carry adder} with logic depth $\\mathcal{O}(m+k)$ for a \\emph{minimal} logic depth $\\mathcal{O}(\\sqrt{mk})$, thus improving on the $mk$-bit ripple-carry adder logic depth $\\mathcal...

  16. The flexible application of carrying capacity in ecology

    Directory of Open Access Journals (Sweden)

    Eric J. Chapman

    2018-01-01

    Full Text Available Carrying capacity encompasses a broad collection of approaches used to better understand biotic interactions in ecosystems and is often applied with no explicit regard to its historical origin. In this paper, we reviewed the primary literature to examine how carrying capacity is applied in ecology. We focused our review on ecosystem studies—studies that frame their results at the ecosystem level—published after the 1950s and highlight emerging trends of this concept. We found that while carrying capacity offers some underlying commonalities, a wide range of definitions and approaches hinders a unified framework to better understand biotic ecosystem interactions. Not surprisingly, these studies most often use K—the number of individuals that the environment “can support” in a given area—to define carrying capacity, despite considerable ambiguity and uncertainty in this approach. Furthermore, the studies that we reviewed spanned several levels of ecological organization: molecules to communities and up to landscapes. To add further complexity, it is not clear whether carrying capacity was intended as a dynamic concept subject to temporal variability as it was often applied in the reviewed studies. We found that carrying capacity is most often applied to studies in conservation biology, rangeland and wildlife management, aquaculture, and fisheries biology. We explore ecosystem level responses to implications of “carrying capacity” overshoot and discuss proposed mechanisms that govern ecosystem carrying capacity. We discuss the usefulness of the concept and end with suggestions to improve carrying capacity's general application in ecosystem studies. Keywords: Carrying capacity, Conservation biology, Ecosystems, Ecosystem management, Natural resources

  17. Gun Carrying by High School Students in Boston, MA: Does Overestimation of Peer Gun Carrying Matter?

    Science.gov (United States)

    Hemenway, David; Vriniotis, Mary; Johnson, Renee M.; Miller, Matthew; Azrael, Deborah

    2011-01-01

    This paper investigates: (1) whether high school students overestimate gun carrying by their peers, and (2) whether those students who overestimate peer gun carrying are more likely to carry firearms. Data come from a randomly sampled survey conducted in 2008 of over 1700 high school students in Boston, MA. Over 5% of students reported carrying a…

  18. Approximate solutions to Mathieu's equation

    Science.gov (United States)

    Wilkinson, Samuel A.; Vogt, Nicolas; Golubev, Dmitry S.; Cole, Jared H.

    2018-06-01

    Mathieu's equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent to Schrödinger's equation. Mathieu's equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various approximations which appear throughout the physics and mathematics literature and examine their accuracy and regimes of applicability. Particular attention is paid to quantities relevant to the physics of Josephson junctions, but the arguments and notation are kept general so as to be of use to the broader physics community.

  19. Approximate Inference for Wireless Communications

    DEFF Research Database (Denmark)

    Hansen, Morten

    This thesis investigates signal processing techniques for wireless communication receivers. The aim is to improve the performance or reduce the computationally complexity of these, where the primary focus area is cellular systems such as Global System for Mobile communications (GSM) (and extensions...... to the optimal one, which usually requires an unacceptable high complexity. Some of the treated approximate methods are based on QL-factorization of the channel matrix. In the work presented in this thesis it is proven how the QL-factorization of frequency-selective channels asymptotically provides the minimum...

  20. Generalized Gradient Approximation Made Simple

    International Nuclear Information System (INIS)

    Perdew, J.P.; Burke, K.; Ernzerhof, M.

    1996-01-01

    Generalized gradient approximations (GGA close-quote s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. copyright 1996 The American Physical Society

  1. Approximate analytical modeling of leptospirosis infection

    Science.gov (United States)

    Ismail, Nur Atikah; Azmi, Amirah; Yusof, Fauzi Mohamed; Ismail, Ahmad Izani

    2017-11-01

    Leptospirosis is an infectious disease carried by rodents which can cause death in humans. The disease spreads directly through contact with feces, urine or through bites of infected rodents and indirectly via water contaminated with urine and droppings from them. Significant increase in the number of leptospirosis cases in Malaysia caused by the recent severe floods were recorded during heavy rainfall season. Therefore, to understand the dynamics of leptospirosis infection, a mathematical model based on fractional differential equations have been developed and analyzed. In this paper an approximate analytical method, the multi-step Laplace Adomian decomposition method, has been used to conduct numerical simulations so as to gain insight on the spread of leptospirosis infection.

  2. Impulse approximation in solid helium

    International Nuclear Information System (INIS)

    Glyde, H.R.

    1985-01-01

    The incoherent dynamic form factor S/sub i/(Q, ω) is evaluated in solid helium for comparison with the impulse approximation (IA). The purpose is to determine the Q values for which the IA is valid for systems such a helium where the atoms interact via a potential having a steeply repulsive but not infinite hard core. For 3 He, S/sub i/(Q, ω) is evaluated from first principles, beginning with the pair potential. The density of states g(ω) is evaluated using the self-consistent phonon theory and S/sub i/(Q,ω) is expressed in terms of g(ω). For solid 4 He resonable models of g(ω) using observed input parameters are used to evaluate S/sub i/(Q,ω). In both cases S/sub i/(Q, ω) is found to approach the impulse approximation S/sub IA/(Q, ω) closely for wave vector transfers Q> or approx. =20 A -1 . The difference between S/sub i/ and S/sub IA/, which is due to final state interactions of the scattering atom with the remainder of the atoms in the solid, is also predominantly antisymmetric in (ω-ω/sub R/), where ω/sub R/ is the recoil frequency. This suggests that the symmetrization procedure proposed by Sears to eliminate final state contributions should work well in solid helium

  3. Plasma Physics Approximations in Ares

    International Nuclear Information System (INIS)

    Managan, R. A.

    2015-01-01

    Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, Fn( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for A α (ζ ),A β (ζ ), ζ, f(ζ ) = (1 + e -μ/θ )F 1/2 (μ/θ), F 1/2 '/F 1/2 , F c α , and F c β . In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.

  4. Approximate estimation of system reliability via fault trees

    International Nuclear Information System (INIS)

    Dutuit, Y.; Rauzy, A.

    2005-01-01

    In this article, we show how fault tree analysis, carried out by means of binary decision diagrams (BDD), is able to approximate reliability of systems made of independent repairable components with a good accuracy and a good efficiency. We consider four algorithms: the Murchland lower bound, the Barlow-Proschan lower bound, the Vesely full approximation and the Vesely asymptotic approximation. For each of these algorithms, we consider an implementation based on the classical minimal cut sets/rare events approach and another one relying on the BDD technology. We present numerical results obtained with both approaches on various examples

  5. Abstraction carrying code and resource-awareness

    OpenAIRE

    Hermenegildo, Manuel V.; Albert Albiol, Elvira; López García, Pedro; Puebla Sánchez, Alvaro Germán

    2005-01-01

    Proof-Carrying Code (PCC) is a general approach to mobile code safety in which the code supplier augments the program with a certifícate (or proof). The intended benefit is that the program consumer can locally validate the certifícate w.r.t. the "untrusted" program by means of a certifícate checker—a process which should be much simpler, eíñcient, and automatic than generating the original proof. Abstraction Carrying Code (ACC) is an enabling technology for PCC in which an abstract mod...

  6. Approximating the minimum cycle mean

    Directory of Open Access Journals (Sweden)

    Krishnendu Chatterjee

    2013-07-01

    Full Text Available We consider directed graphs where each edge is labeled with an integer weight and study the fundamental algorithmic question of computing the value of a cycle with minimum mean weight. Our contributions are twofold: (1 First we show that the algorithmic question is reducible in O(n^2 time to the problem of a logarithmic number of min-plus matrix multiplications of n-by-n matrices, where n is the number of vertices of the graph. (2 Second, when the weights are nonnegative, we present the first (1 + ε-approximation algorithm for the problem and the running time of our algorithm is ilde(O(n^ω log^3(nW/ε / ε, where O(n^ω is the time required for the classic n-by-n matrix multiplication and W is the maximum value of the weights.

  7. Nonlinear approximation with dictionaries I. Direct estimates

    DEFF Research Database (Denmark)

    Gribonval, Rémi; Nielsen, Morten

    2004-01-01

    We study various approximation classes associated with m-term approximation by elements from a (possibly) redundant dictionary in a Banach space. The standard approximation class associated with the best m-term approximation is compared to new classes defined by considering m-term approximation w...

  8. Approximate cohomology in Banach algebras | Pourabbas ...

    African Journals Online (AJOL)

    We introduce the notions of approximate cohomology and approximate homotopy in Banach algebras and we study the relation between them. We show that the approximate homotopically equivalent cochain complexes give the same approximate cohomologies. As a special case, approximate Hochschild cohomology is ...

  9. Transgenic cassava lines carrying heterologous alternative oxidase ...

    African Journals Online (AJOL)

    Afuape

    2013-07-03

    Jul 3, 2013 ... production of flowers, apomixis (Nassar et al., 2000; ... In order to increase the stress tolerance capacity of ... stress-related procedure due to the activities of auxin ... the evaluation of the transgenic lines for rate of OES .... Some transgenic lines carrying the 35S-AOX fragment amplified using 35S303F1 and.

  10. Infections That Pets Carry (For Parents)

    Science.gov (United States)

    ... how to protect your family from infections. How Pets Spread Infections Like people, all animals carry germs . Illnesses common among housepets — ... get an infection that can be passed to people. Safely Caring for Your Pet Here are some tips to help your family ...

  11. Construction of expression vectors carrying mouse peroxisomal ...

    African Journals Online (AJOL)

    The aim of this study was to construct expression vectors carrying mouse peroxisomal protein gene (PEP-cDNA) in prokaryotic and mammalian expression vectors in ... pGEX6p2-PEP and pUcD3-FLAG-PEP constructed vectors were transformed into the one shot TOP10 and JM105 bacterial competent cells, respectively.

  12. Magnetoacoustic waves in current-carrying plasmas

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1980-04-01

    The results of theoretical and experimental investigations of the characteristics of magnetoacoustic waves in non-uniform, current-carrying plasmas are reviewed. Dissipative MHD and collisionless theories are considered. Also discussed is the use of magnetoacoustic waves in plasma diagnostics and plasma heating

  13. Construction of expression vectors carrying mouse peroxisomal ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... The aim of this study was to construct expression vectors carrying mouse peroxisomal protein gene. (PEP-cDNA) in prokaryotic and mammalian expression vectors in chimeric cDNA types, encompassing. GST and FLAG with PEP-cDNA. PEP-cDNA was sub-cloned in pGEX6p2 prokaryotic expression ...

  14. Transgenic cassava lines carrying heterologous alternative oxidase ...

    African Journals Online (AJOL)

    Afuape

    2013-07-03

    Jul 3, 2013 ... Organized embryogenic callus development: In our experiment, somatic embryos were developed from leaf lobes collected from transgenic cassava lines carrying the AtAOX1a gene. Immature leaf lobes measuring about 1 to 6 mm obtained from about six weeks old in vitro derived plants were used.

  15. Approximating methods for intractable probabilistic models: Applications in neuroscience

    DEFF Research Database (Denmark)

    Højen-Sørensen, Pedro

    2002-01-01

    This thesis investigates various methods for carrying out approximate inference in intractable probabilistic models. By capturing the relationships between random variables, the framework of graphical models hints at which sets of random variables pose a problem to the inferential step. The appro...

  16. Adolescents Carrying Handguns and Taking Them to School: Psychosocial Correlates among Public School Students in Illinois.

    Science.gov (United States)

    Williams, Sunyna S.; Mulhall, Peter F.; Reis, Janet S.; DeVille, John O.

    2002-01-01

    Examines psychosocial correlates of adolescents carrying a handgun and taking a handgun to school. Survey participants were approximately 22,000 6th, 8th, and 10th grade public school students from Illinois. Results showed that the strongest correlates of handgun carrying behaviors were variables directly associated with handguns and violence,…

  17. Research on Water Resources Design Carrying Capacity

    Directory of Open Access Journals (Sweden)

    Guanghua Qin

    2016-04-01

    Full Text Available Water resources carrying capacity (WRCC is a recently proposed management concept, which aims to support sustainable socio-economic development in a region or basin. However, the calculation of future WRCC is not well considered in most studies, because water resources and the socio-economic development mode for one area or city in the future are quite uncertain. This paper focused on the limits of traditional methods of WRCC and proposed a new concept, water resources design carrying capacity (WRDCC, which incorporated the concept of design. In WRDCC, the population size that the local water resources can support is calculated based on the balance of water supply and water consumption, under the design water supply and design socio-economic development mode. The WRDCC of Chengdu city in China is calculated. Results show that the WRDCC (population size of Chengdu city in development modeI (II, III will be 997 ×104 (770 × 104, 504 × 104 in 2020, and 934 × 104 (759 × 104, 462 × 104 in 2030. Comparing the actual population to the carrying population (WRDCC in 2020 and 2030, a bigger gap will appear, which means there will be more and more pressure on the society-economic sustainable development.

  18. Single-electron states near a current-carrying core

    International Nuclear Information System (INIS)

    Masale, M.

    2004-01-01

    The energy spectrum of an electron confined near a current-carrying core is obtained as a function of the azimuthal applied magnetic field within the effective-mass approximation. The double degeneracy of the non-zero electron's axial wave number (k z ) states is lifted by the current-induced magnetic field while that of the non-zero azimuthal quantum number (m) states is preserved. A further analysis is the evaluations of the oscillator strengths for optical transitions involving the lowest-order pair of the electron's energy subbands within the dipole approximation. The radiation field is taken as that of elliptically polarized light incident along the core axis. In this polarization and within the dipole approximation, the allowed transitions are only those governed by the following specific selection rules. The azimuthal quantum numbers of the initial and final states must differ by unity while the electron's axial wave number is conserved. The azimuthal magnetic field is also found to lift the multiple degeneracies of the k z ≠0 interaction integrals as well as those of the oscillator strengths for optical transitions

  19. Photoelectron spectroscopy and the dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hemmers, O.; Hansen, D.L.; Wang, H. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  20. Lunar ash flows - Isothermal approximation.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  1. Placarding of road vehicles carrying radioactive materials

    International Nuclear Information System (INIS)

    1977-09-01

    The purpose of this Code is to give guidance on the placarding requirements for vehicles carrying radioactive materials by road in Great Britain and on the continent of Europe. Additional placards may be required regarding dangerous properties other than radioactivity. The labelling of packages for transport is dealt with in AECP 1030. This Code deals with two aspects of road vehicle placarding:-(a) placarding on the outside of road vehicles in Great Britain and on the continent of Europe, (b) a fireproof placard fixed in the driver's cab. Responsibility for placarding the vehicle rests with the carrier, but in practice the consignor may need to provide the placards. (U.K.)

  2. Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience

    Directory of Open Access Journals (Sweden)

    Li Rui

    2017-07-01

    Full Text Available It has been proven that quantum adders are forbidden by the laws of quantum mechanics. We analyze theoretical proposals for the implementation of approximate quantum adders and optimize them by means of genetic algorithms, improving previous protocols in terms of efficiency and fidelity. Furthermore, we experimentally realize a suitable approximate quantum adder with the cloud quantum computing facilities provided by IBM Quantum Experience. The development of approximate quantum adders enhances the toolbox of quantum information protocols, paving the way for novel applications in quantum technologies.

  3. Voltage-carrying states in superconducting microstrips

    International Nuclear Information System (INIS)

    Stuivinga, M.E.C.

    1983-01-01

    When the critical current is exceeded in a superconducting microstrip, voltage-carrying states with a resistance significantly below the normal state resistance can occur. Phase-slip centers (PSC) appear at about the critical temperature. These are successive local voltage units which manifest themselves as strip-like increments in voltage in the I-V characteristic. For temperatures off the critical temperature the PSC regime degenerates into a region of normal material, a so-called hot spot. These two phenomena, PSC and hot spots, form the subject of this thesis. To gain a better understanding of the phase-slip center process, an experiment was designed to measure local values of the quasi-particle and pair potential. The results of local potential and gap measurements at a PSC in aluminium are presented and discussed. Special attention is paid to pair-breaking interactions which can shorten the relaxation time. A non-linear differential equation is derived which describes the development of a PSC into a normal hot spot under the influence of Joule heating. It incorporates the temperature rise due to the dissipative processes occurring in the charge imbalance tails. Numerical solutions are presented for a set of parameters, including those for aluminium and tin. Subsequently, they are compared with experiments. (Auth.)

  4. Detecting Vessels Carrying Migrants Using Machine Learning

    Science.gov (United States)

    Sfyridis, A.; Cheng, T.; Vespe, M.

    2017-10-01

    Political instability, conflicts and inequalities result into significant flows of people worldwide, moving to different countries in search of a better life, safety or to be reunited with their families. Irregular crossings into Europe via sea routes, despite not being new, have recently increased together with the loss of lives of people in the attempt to reach EU shores. This highlights the need to find ways to improve the understanding of what is happening at sea. This paper, intends to expand the knowledge available on practices among smugglers and contribute to early warning and maritime situational awareness. By identifying smuggling techniques and based on anomaly detection methods, behaviours of interest are modelled and one class support vector machines are used to classify unlabelled data and detect potential smuggling vessels. Nine vessels are identified as potentially carrying irregular migrants and refugees. Though, further inspection of the results highlights possible misclassifications caused by data gaps and limited knowledge on smuggling tactics. Accepted classifications are considered subject to further investigation by the authorities.

  5. Retinal oscillations carry visual information to cortex

    Directory of Open Access Journals (Sweden)

    Kilian Koepsell

    2009-04-01

    Full Text Available Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs and thalamic outputs (spikes and then analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz, is encoded by average firing rate with respect to the stimulus and carries information about local changes in the visual field over time. The other operates in the gamma frequency band (40-80 Hz and is encoded by spike timing relative to retinal oscillations. At times, the second channel conveyed even more information than the first. Because retinal oscillations involve extensive networks of ganglion cells, it is likely that the second channel transmits information about global features of the visual scene.

  6. DETECTING VESSELS CARRYING MIGRANTS USING MACHINE LEARNING

    Directory of Open Access Journals (Sweden)

    A. Sfyridis

    2017-10-01

    Full Text Available Political instability, conflicts and inequalities result into significant flows of people worldwide, moving to different countries in search of a better life, safety or to be reunited with their families. Irregular crossings into Europe via sea routes, despite not being new, have recently increased together with the loss of lives of people in the attempt to reach EU shores. This highlights the need to find ways to improve the understanding of what is happening at sea. This paper, intends to expand the knowledge available on practices among smugglers and contribute to early warning and maritime situational awareness. By identifying smuggling techniques and based on anomaly detection methods, behaviours of interest are modelled and one class support vector machines are used to classify unlabelled data and detect potential smuggling vessels. Nine vessels are identified as potentially carrying irregular migrants and refugees. Though, further inspection of the results highlights possible misclassifications caused by data gaps and limited knowledge on smuggling tactics. Accepted classifications are considered subject to further investigation by the authorities.

  7. Trajectory averaging for stochastic approximation MCMC algorithms

    KAUST Repository

    Liang, Faming

    2010-01-01

    to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic

  8. Reduction of Linear Programming to Linear Approximation

    OpenAIRE

    Vaserstein, Leonid N.

    2006-01-01

    It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.

  9. Some relations between entropy and approximation numbers

    Institute of Scientific and Technical Information of China (English)

    郑志明

    1999-01-01

    A general result is obtained which relates the entropy numbers of compact maps on Hilbert space to its approximation numbers. Compared with previous works in this area, it is particularly convenient for dealing with the cases where the approximation numbers decay rapidly. A nice estimation between entropy and approximation numbers for noncompact maps is given.

  10. Axiomatic Characterizations of IVF Rough Approximation Operators

    Directory of Open Access Journals (Sweden)

    Guangji Yu

    2014-01-01

    Full Text Available This paper is devoted to the study of axiomatic characterizations of IVF rough approximation operators. IVF approximation spaces are investigated. The fact that different IVF operators satisfy some axioms to guarantee the existence of different types of IVF relations which produce the same operators is proved and then IVF rough approximation operators are characterized by axioms.

  11. An approximation for kanban controlled assembly systems

    NARCIS (Netherlands)

    Topan, E.; Avsar, Z.M.

    2011-01-01

    An approximation is proposed to evaluate the steady-state performance of kanban controlled two-stage assembly systems. The development of the approximation is as follows. The considered continuous-time Markov chain is aggregated keeping the model exact, and this aggregate model is approximated

  12. Operator approximant problems arising from quantum theory

    CERN Document Server

    Maher, Philip J

    2017-01-01

    This book offers an account of a number of aspects of operator theory, mainly developed since the 1980s, whose problems have their roots in quantum theory. The research presented is in non-commutative operator approximation theory or, to use Halmos' terminology, in operator approximants. Focusing on the concept of approximants, this self-contained book is suitable for graduate courses.

  13. Shielding calculations for ships carrying irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Burstall, R.F.; Dean, M.H.

    1983-01-01

    A number of ships have been constructed to carry irradiated fuel from Japan to the UK and France, for reprocessing. About twenty transport flasks may be carried on each voyage. Permanent shielding must be provided on the ships to ensure that no member of the crew receives an annual dose rate greater than a specified limit. As the fuel is of varying type and radiation history, and as flasks of differing designs are used, many calculations are needed. There are a number of difficulties in making shielding calculations for the ships. The geometry is complex, dimensions are large, and considerable air spaces are involved. The paper considers possible methods of calculation. The line-of-sight method is chosen for most of the calculations, for both gamma radiation and neutrons. The basic data which is used in the calculations is described. As the methods of calculation are somewhat approximate, it is necessary to provide confirmation that they are sufficiently accurate. Validation has been provided in two ways. First, measurements have been made on board the ships, and these have been checked against calculation. Second, a simplified model of the flasks and ship has been set up, and calculations checked against more sophisticated methods. Results of the validation checks are presented, and it is shown that adequate accuracy is achieved. (author)

  14. Shielding calculations for ships carrying irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Dean, M.H.

    1985-01-01

    A number of ships have been constructed to carry irradiated fuel from Japan to the U.K. and France, for reprocessing. About 20 transport flasks may be carried on each voyage. Permanent shielding must be provided on the ships to ensure that no member of the crew receives an annual dose greater than a specified limit. As the fuel is of varying type and radiation history, and as flasks of differing designs are used, many shielding calculations are needed. There are a number of difficulties in making shielding calculations for the ships. The geometry is complex, dimensions are large and considerable air spaces are involved. The paper considers possible methods of calculation. The line-of-sight method is chosen for most of the calculations, for both γ-radiation and neutrons. The basic data which is used in the calculations is described. As the methods of calculation are somewhat approximate, it is necessary to provide confirmation that they are sufficiently accurate. Validation has been provided in two ways. First, measurements have been made on board one of the ships, Pacific Crane, and these have been checked against calculation. Second, a simplified model of the flasks and ship has been set up, and calculations checked against more sophisticated methods. Results of the validation checks are presented, and it is shown that adequate accuracy is achieved. (author)

  15. STS-99 workers carry new Master Events Controller to Endeavour

    Science.gov (United States)

    2000-01-01

    Workers carry the replacement Enhanced Main Events Controller (E- MEC) to Shuttle Endeavour at Launch Pad 39A for installation in the aft compartment of the payload bay. The original E-MEC became suspect during the Jan. 31 launch countdown and mission STS-99 was delayed when NASA managers decided to replace it. Each Shuttle carries two enhanced master events controllers (E-MECs), which provide relays for onboard flight computers to send signals to arm and fire pyrotechnics that separate the solid rockets and external tank during assent. Both E-MECs are needed for the Shuttle to be cleared for flight. Currently Endeavour and Columbia are the only two orbiters with the E-MECs. Built by Rockwell's Satellite Space Electronics Division, Anaheim, Calif., each unit weighs 65 pounds and is approximately 20 inches long, 13 inches wide and 8 inches tall. Previously, three Shuttle flights have been scrubbed or delayed due to faulty MECs: STS-73, STS-49 and STS-41-D. The next scheduled date for launch of STS-99 is Feb. 11 at 12:30 p.m. EST.

  16. Can `loss and damage' carry the load?

    Science.gov (United States)

    Verchick, Robert R. M.

    2018-05-01

    Even assuming a heroic rush towards carbon reduction and adaptation, some regions of the world will be hammered hard by climate impacts. Thus, a global consensus now sees the need for a supplemental plan to deal with the kind of harms that cannot be avoided-what Parties call `loss and damage'. For a loss-and-damage plan to work, it must be capable of carrying the load, the load being whatever minimal standards that morality and political consensus require. But if residual risk climbs too high, it will fall short of even the most basic expectations. The Paris Agreement calls for holding the rise in global average temperature to `well below 2°C above pre-industrial levels', while working to limit the increase to 1.5°C. How much difference is in that half-degree? From the point of view of residual risk, quite a lot. According to a 2016 study published by the European Geosciences Union, a jump from 1.5°C to 2°C could produce outsize impacts, particularly in tropical latitudes. That difference could mark the line between a plan that is politically and morally defensible and one that is not. At the very least, the difference is enough to inform the design and expectations of any future plan. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  17. BLOOD SUBSTITUTES: EVOLUTION FROM NON-CARRYING TO OXYGEN AND GAS CARRYING FLUIDS

    Science.gov (United States)

    Cabrales, Pedro; Intaglietta, Marcos

    2013-01-01

    The development of oxygen (O2) carrying blood substitutes has evolved from the goal of replicating blood O2 transports properties to that of preserving microvascular and organ function, reducing the inherent or potential toxicity of the material used to carry O2, and treating pathologies initiated by anemia and hypoxia. Furthermore, the emphasis has shifted from blood replacement fluid to “O2 therapeutics” that restore tissue oxygenation to specific tissues regions. This review covers the different alternatives, potential and limitations of hemoglobin based O2 carriers (HBOCs) and perfluorocarbon based O2 carriers (PFCOCs), with emphasis on the physiological conditions disturbed in the situation that they will be used. It describes how concepts learned from plasma expanders without O2 carrying capacity can be applied to maintain O2 delivery and summarizes the microvascular responses due to HBOCs and PFCOCs. This review also presents alternative applications of HBOCs and PFCOCs namely: 1) How HBOC O2 affinity can be engineered to target O2 delivery to hypoxic tissues; and 2) How the high gas solubility of PFCOCs provides new opportunities for carrying, dissolving and delivering gases with biological activity. It is concluded that current blood substitutes development has amplified their applications horizon by devising therapeutic functions for oxygen carriers requiring limited O2 delivery capacity restoration. Conversely, full, blood-like O2 carrying capacity re-establishment awaits control of O2 carrier toxicity. PMID:23820271

  18. Analysis of corrections to the eikonal approximation

    Science.gov (United States)

    Hebborn, C.; Capel, P.

    2017-11-01

    Various corrections to the eikonal approximations are studied for two- and three-body nuclear collisions with the goal to extend the range of validity of this approximation to beam energies of 10 MeV/nucleon. Wallace's correction does not improve much the elastic-scattering cross sections obtained at the usual eikonal approximation. On the contrary, a semiclassical approximation that substitutes the impact parameter by a complex distance of closest approach computed with the projectile-target optical potential efficiently corrects the eikonal approximation. This opens the possibility to analyze data measured down to 10 MeV/nucleon within eikonal-like reaction models.

  19. The Wigner transform and the semi-classical approximations

    International Nuclear Information System (INIS)

    Shlomo, S.

    1985-01-01

    The Wigner transform provides a reformulation of quantum mechanics in terms of classical concepts. Some properties of the Wigner transform of the density matrix which justify its interpretation as the quantum-mechanical analog of the classical phase-space distribution function are presented. Considering some applications, it is demonstrated that the Wigner distribution function serves as a good starting point for semi-classical approximations to properties of the (nuclear) many-body system

  20. Mapping moveout approximations in TI media

    KAUST Repository

    Stovas, Alexey; Alkhalifah, Tariq Ali

    2013-01-01

    Moveout approximations play a very important role in seismic modeling, inversion, and scanning for parameters in complex media. We developed a scheme to map one-way moveout approximations for transversely isotropic media with a vertical axis of symmetry (VTI), which is widely available, to the tilted case (TTI) by introducing the effective tilt angle. As a result, we obtained highly accurate TTI moveout equations analogous with their VTI counterparts. Our analysis showed that the most accurate approximation is obtained from the mapping of generalized approximation. The new moveout approximations allow for, as the examples demonstrate, accurate description of moveout in the TTI case even for vertical heterogeneity. The proposed moveout approximations can be easily used for inversion in a layered TTI medium because the parameters of these approximations explicitly depend on corresponding effective parameters in a layered VTI medium.

  1. Analytical approximation of neutron physics data

    International Nuclear Information System (INIS)

    Badikov, S.A.; Vinogradov, V.A.; Gaj, E.V.; Rabotnov, N.S.

    1984-01-01

    The method for experimental neutron-physical data analytical approximation by rational functions based on the Pade approximation is suggested. It is shown that the existence of the Pade approximation specific properties in polar zones is an extremely favourable analytical property essentially extending the convergence range and increasing its rate as compared with polynomial approximation. The Pade approximation is the particularly natural instrument for resonance curve processing as the resonances conform to the complex poles of the approximant. But even in a general case analytical representation of the data in this form is convenient and compact. Thus representation of the data on the neutron threshold reaction cross sections (BOSPOR constant library) in the form of rational functions lead to approximately twenty fold reduction of the storaged numerical information as compared with the by-point calculation at the same accWracy

  2. A unified approach to the Darwin approximation

    International Nuclear Information System (INIS)

    Krause, Todd B.; Apte, A.; Morrison, P. J.

    2007-01-01

    There are two basic approaches to the Darwin approximation. The first involves solving the Maxwell equations in Coulomb gauge and then approximating the vector potential to remove retardation effects. The second approach approximates the Coulomb gauge equations themselves, then solves these exactly for the vector potential. There is no a priori reason that these should result in the same approximation. Here, the equivalence of these two approaches is investigated and a unified framework is provided in which to view the Darwin approximation. Darwin's original treatment is variational in nature, but subsequent applications of his ideas in the context of Vlasov's theory are not. We present here action principles for the Darwin approximation in the Vlasov context, and this serves as a consistency check on the use of the approximation in this setting

  3. Mapping moveout approximations in TI media

    KAUST Repository

    Stovas, Alexey

    2013-11-21

    Moveout approximations play a very important role in seismic modeling, inversion, and scanning for parameters in complex media. We developed a scheme to map one-way moveout approximations for transversely isotropic media with a vertical axis of symmetry (VTI), which is widely available, to the tilted case (TTI) by introducing the effective tilt angle. As a result, we obtained highly accurate TTI moveout equations analogous with their VTI counterparts. Our analysis showed that the most accurate approximation is obtained from the mapping of generalized approximation. The new moveout approximations allow for, as the examples demonstrate, accurate description of moveout in the TTI case even for vertical heterogeneity. The proposed moveout approximations can be easily used for inversion in a layered TTI medium because the parameters of these approximations explicitly depend on corresponding effective parameters in a layered VTI medium.

  4. An Approximate Approach to Automatic Kernel Selection.

    Science.gov (United States)

    Ding, Lizhong; Liao, Shizhong

    2016-02-02

    Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.

  5. Bounded-Degree Approximations of Stochastic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Christopher J.; Pinar, Ali; Kiyavash, Negar

    2017-06-01

    We propose algorithms to approximate directed information graphs. Directed information graphs are probabilistic graphical models that depict causal dependencies between stochastic processes in a network. The proposed algorithms identify optimal and near-optimal approximations in terms of Kullback-Leibler divergence. The user-chosen sparsity trades off the quality of the approximation against visual conciseness and computational tractability. One class of approximations contains graphs with speci ed in-degrees. Another class additionally requires that the graph is connected. For both classes, we propose algorithms to identify the optimal approximations and also near-optimal approximations, using a novel relaxation of submodularity. We also propose algorithms to identify the r-best approximations among these classes, enabling robust decision making.

  6. Targeted Drug-Carrying Bacteriophages as Antibacterial Nanomedicines▿

    Science.gov (United States)

    Yacoby, Iftach; Bar, Hagit; Benhar, Itai

    2007-01-01

    While the resistance of bacteria to traditional antibiotics is a major public health concern, the use of extremely potent antibacterial agents is limited by their lack of selectivity. As in cancer therapy, antibacterial targeted therapy could provide an opportunity to reintroduce toxic substances to the antibacterial arsenal. A desirable targeted antibacterial agent should combine binding specificity, a large drug payload per binding event, and a programmed drug release mechanism. Recently, we presented a novel application of filamentous bacteriophages as targeted drug carriers that could partially inhibit the growth of Staphylococcus aureus bacteria. This partial success was due to limitations of drug-loading capacity that resulted from the hydrophobicity of the drug. Here we present a novel drug conjugation chemistry which is based on connecting hydrophobic drugs to the phage via aminoglycoside antibiotics that serve as solubility-enhancing branched linkers. This new formulation allowed a significantly larger drug-carrying capacity of the phages, resulting in a drastic improvement in their performance as targeted drug-carrying nanoparticles. As an example for a potential systemic use for potent agents that are limited for topical use, we present antibody-targeted phage nanoparticles that carry a large payload of the hemolytic antibiotic chloramphenicol connected through the aminoglycoside neomycin. We demonstrate complete growth inhibition toward the pathogens Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli with an improvement in potency by a factor of ∼20,000 compared to the free drug. PMID:17404004

  7. Description logics with approximate definitions precise modeling of vague concepts

    NARCIS (Netherlands)

    Schlobach, Stefan; Klein, Michel; Peelen, Linda

    2007-01-01

    We extend traditional Description Logics (DL) with a simple mechanism to handle approximate concept definitions in a qualitative way. Often, for example in medical applications, concepts are not definable in a crisp way but can fairly exhaustively be constrained through a particular sub- and a

  8. Higher-Order Approximations of Motion of a Nonlinear Oscillator Using the Parameter Expansion Technique

    Science.gov (United States)

    Ganji, S. S.; Domairry, G.; Davodi, A. G.; Babazadeh, H.; Seyedalizadeh Ganji, S. H.

    The main objective of this paper is to apply the parameter expansion technique (a modified Lindstedt-Poincaré method) to calculate the first, second, and third-order approximations of motion of a nonlinear oscillator arising in rigid rod rocking back. The dynamics and frequency of motion of this nonlinear mechanical system are analyzed. A meticulous attention is carried out to the study of the introduced nonlinearity effects on the amplitudes of the oscillatory states and on the bifurcation structures. We examine the synchronization and the frequency of systems using both the strong and special method. Numerical simulations and computer's answers confirm and complement the results obtained by the analytical approach. The approach proposes a choice to overcome the difficulty of computing the periodic behavior of the oscillation problems in engineering. The solutions of this method are compared with the exact ones in order to validate the approach, and assess the accuracy of the solutions. In particular, APL-PM works well for the whole range of oscillation amplitudes and excellent agreement of the approximate frequency with the exact one has been demonstrated. The approximate period derived here is accurate and close to the exact solution. This method has a distinguished feature which makes it simple to use, and also it agrees with the exact solutions for various parameters.

  9. Cosmological applications of Padé approximant

    International Nuclear Information System (INIS)

    Wei, Hao; Yan, Xiao-Peng; Zhou, Ya-Nan

    2014-01-01

    As is well known, in mathematics, any function could be approximated by the Padé approximant. The Padé approximant is the best approximation of a function by a rational function of given order. In fact, the Padé approximant often gives better approximation of the function than truncating its Taylor series, and it may still work where the Taylor series does not converge. In the present work, we consider the Padé approximant in two issues. First, we obtain the analytical approximation of the luminosity distance for the flat XCDM model, and find that the relative error is fairly small. Second, we propose several parameterizations for the equation-of-state parameter (EoS) of dark energy based on the Padé approximant. They are well motivated from the mathematical and physical points of view. We confront these EoS parameterizations with the latest observational data, and find that they can work well. In these practices, we show that the Padé approximant could be an useful tool in cosmology, and it deserves further investigation

  10. Cosmological applications of Padé approximant

    Science.gov (United States)

    Wei, Hao; Yan, Xiao-Peng; Zhou, Ya-Nan

    2014-01-01

    As is well known, in mathematics, any function could be approximated by the Padé approximant. The Padé approximant is the best approximation of a function by a rational function of given order. In fact, the Padé approximant often gives better approximation of the function than truncating its Taylor series, and it may still work where the Taylor series does not converge. In the present work, we consider the Padé approximant in two issues. First, we obtain the analytical approximation of the luminosity distance for the flat XCDM model, and find that the relative error is fairly small. Second, we propose several parameterizations for the equation-of-state parameter (EoS) of dark energy based on the Padé approximant. They are well motivated from the mathematical and physical points of view. We confront these EoS parameterizations with the latest observational data, and find that they can work well. In these practices, we show that the Padé approximant could be an useful tool in cosmology, and it deserves further investigation.

  11. Multilevel Monte Carlo in Approximate Bayesian Computation

    KAUST Repository

    Jasra, Ajay

    2017-02-13

    In the following article we consider approximate Bayesian computation (ABC) inference. We introduce a method for numerically approximating ABC posteriors using the multilevel Monte Carlo (MLMC). A sequential Monte Carlo version of the approach is developed and it is shown under some assumptions that for a given level of mean square error, this method for ABC has a lower cost than i.i.d. sampling from the most accurate ABC approximation. Several numerical examples are given.

  12. Uniform analytic approximation of Wigner rotation matrices

    Science.gov (United States)

    Hoffmann, Scott E.

    2018-02-01

    We derive the leading asymptotic approximation, for low angle θ, of the Wigner rotation matrix elements, dm1m2 j(θ ) , uniform in j, m1, and m2. The result is in terms of a Bessel function of integer order. We numerically investigate the error for a variety of cases and find that the approximation can be useful over a significant range of angles. This approximation has application in the partial wave analysis of wavepacket scattering.

  13. Exact and approximate multiple diffraction calculations

    International Nuclear Information System (INIS)

    Alexander, Y.; Wallace, S.J.; Sparrow, D.A.

    1976-08-01

    A three-body potential scattering problem is solved in the fixed scatterer model exactly and approximately to test the validity of commonly used assumptions of multiple scattering calculations. The model problem involves two-body amplitudes that show diffraction-like differential scattering similar to high energy hadron-nucleon amplitudes. The exact fixed scatterer calculations are compared to Glauber approximation, eikonal-expansion results and a noneikonal approximation

  14. Bent approximations to synchrotron radiation optics

    International Nuclear Information System (INIS)

    Heald, S.

    1981-01-01

    Ideal optical elements can be approximated by bending flats or cylinders. This paper considers the applications of these approximate optics to synchrotron radiation. Analytic and raytracing studies are used to compare their optical performance with the corresponding ideal elements. It is found that for many applications the performance is adequate, with the additional advantages of lower cost and greater flexibility. Particular emphasis is placed on obtaining the practical limitations on the use of the approximate elements in typical beamline configurations. Also considered are the possibilities for approximating very long length mirrors using segmented mirrors

  15. Local density approximations for relativistic exchange energies

    International Nuclear Information System (INIS)

    MacDonald, A.H.

    1986-01-01

    The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented

  16. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  17. APPROXIMATIONS TO PERFORMANCE MEASURES IN QUEUING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Kambo, N. S.

    2012-11-01

    Full Text Available Approximations to various performance measures in queuing systems have received considerable attention because these measures have wide applicability. In this paper we propose two methods to approximate the queuing characteristics of a GI/M/1 system. The first method is non-parametric in nature, using only the first three moments of the arrival distribution. The second method treads the known path of approximating the arrival distribution by a mixture of two exponential distributions by matching the first three moments. Numerical examples and optimal analysis of performance measures of GI/M/1 queues are provided to illustrate the efficacy of the methods, and are compared with benchmark approximations.

  18. Quantum infinite order sudden approximation for ion-molecule reactions: treatment of the He + H2+ system

    International Nuclear Information System (INIS)

    Baer, M.; Nakamura, H.; Kouri, D.J.

    1986-01-01

    In this work the ion-molecule reaction He + H 2 + (v/sub i/) → HeH + (v/sub f/) + H(v/sub i/ = 0-7, v/sub f/ = 0-2) was studied quantum mechanically in the energy range 1.3 eV ≤ E/sub tot/ ≤ 1.8 eV. The calculations were carried out employing the Reactive Infinite Order Sudden Approximation (RIOSA). The two features characteristic of this system in the above energy range, namely the strong enhancement of the reaction rate with the initial vibrational energy (at a fixed total energy) and the relatively weak dependence of the cross sections on translational energy, were found to be well reproduced in the numerical treatment. The results also revealed the existence of two mechanisms of the exchange process: one is the ordinary mechanism and the other is probably related to the spectator stripping model

  19. Diagonal Pade approximations for initial value problems

    International Nuclear Information System (INIS)

    Reusch, M.F.; Ratzan, L.; Pomphrey, N.; Park, W.

    1987-06-01

    Diagonal Pade approximations to the time evolution operator for initial value problems are applied in a novel way to the numerical solution of these problems by explicitly factoring the polynomials of the approximation. A remarkable gain over conventional methods in efficiency and accuracy of solution is obtained. 20 refs., 3 figs., 1 tab

  20. Approximation properties of fine hyperbolic graphs

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... In this paper, we propose a definition of approximation property which is called the metric invariant translation approximation property for a countable discrete metric space. Moreover, we use ... Department of Applied Mathematics, Shanghai Finance University, Shanghai 201209, People's Republic of China ...

  1. Approximation properties of fine hyperbolic graphs

    Indian Academy of Sciences (India)

    2010 Mathematics Subject Classification. 46L07. 1. Introduction. Given a countable discrete group G, some nice approximation properties for the reduced. C∗-algebras C∗ r (G) can give us the approximation properties of G. For example, Lance. [7] proved that the nuclearity of C∗ r (G) is equivalent to the amenability of G; ...

  2. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-01-01

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  3. Simultaneous approximation in scales of Banach spaces

    International Nuclear Information System (INIS)

    Bramble, J.H.; Scott, R.

    1978-01-01

    The problem of verifying optimal approximation simultaneously in different norms in a Banach scale is reduced to verification of optimal approximation in the highest order norm. The basic tool used is the Banach space interpolation method developed by Lions and Peetre. Applications are given to several problems arising in the theory of finite element methods

  4. Approximation algorithms for guarding holey polygons ...

    African Journals Online (AJOL)

    Guarding edges of polygons is a version of art gallery problem.The goal is finding the minimum number of guards to cover the edges of a polygon. This problem is NP-hard, and to our knowledge there are approximation algorithms just for simple polygons. In this paper we present two approximation algorithms for guarding ...

  5. Efficient automata constructions and approximate automata

    NARCIS (Netherlands)

    Watson, B.W.; Kourie, D.G.; Ngassam, E.K.; Strauss, T.; Cleophas, L.G.W.A.

    2008-01-01

    In this paper, we present data structures and algorithms for efficiently constructing approximate automata. An approximate automaton for a regular language L is one which accepts at least L. Such automata can be used in a variety of practical applications, including network security pattern

  6. Efficient automata constructions and approximate automata

    NARCIS (Netherlands)

    Watson, B.W.; Kourie, D.G.; Ngassam, E.K.; Strauss, T.; Cleophas, L.G.W.A.; Holub, J.; Zdárek, J.

    2006-01-01

    In this paper, we present data structures and algorithms for efficiently constructing approximate automata. An approximate automaton for a regular language L is one which accepts at least L. Such automata can be used in a variety of practical applications, including network security pattern

  7. Spline approximation, Part 1: Basic methodology

    Science.gov (United States)

    Ezhov, Nikolaj; Neitzel, Frank; Petrovic, Svetozar

    2018-04-01

    In engineering geodesy point clouds derived from terrestrial laser scanning or from photogrammetric approaches are almost never used as final results. For further processing and analysis a curve or surface approximation with a continuous mathematical function is required. In this paper the approximation of 2D curves by means of splines is treated. Splines offer quite flexible and elegant solutions for interpolation or approximation of "irregularly" distributed data. Depending on the problem they can be expressed as a function or as a set of equations that depend on some parameter. Many different types of splines can be used for spline approximation and all of them have certain advantages and disadvantages depending on the approximation problem. In a series of three articles spline approximation is presented from a geodetic point of view. In this paper (Part 1) the basic methodology of spline approximation is demonstrated using splines constructed from ordinary polynomials and splines constructed from truncated polynomials. In the forthcoming Part 2 the notion of B-spline will be explained in a unique way, namely by using the concept of convex combinations. The numerical stability of all spline approximation approaches as well as the utilization of splines for deformation detection will be investigated on numerical examples in Part 3.

  8. Nonlinear approximation with general wave packets

    DEFF Research Database (Denmark)

    Borup, Lasse; Nielsen, Morten

    2005-01-01

    We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete...

  9. Quirks of Stirling's Approximation

    Science.gov (United States)

    Macrae, Roderick M.; Allgeier, Benjamin M.

    2013-01-01

    Stirling's approximation to ln "n"! is typically introduced to physical chemistry students as a step in the derivation of the statistical expression for the entropy. However, naive application of this approximation leads to incorrect conclusions. In this article, the problem is first illustrated using a familiar "toy…

  10. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-06-23

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  11. Approximations for stop-loss reinsurance premiums

    NARCIS (Netherlands)

    Reijnen, Rajko; Albers, Willem/Wim; Kallenberg, W.C.M.

    2005-01-01

    Various approximations of stop-loss reinsurance premiums are described in literature. For a wide variety of claim size distributions and retention levels, such approximations are compared in this paper to each other, as well as to a quantitative criterion. For the aggregate claims two models are

  12. Improved Dutch Roll Approximation for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Liang-Liang Yin

    2014-06-01

    Full Text Available An improved dutch roll approximation for hypersonic vehicle is presented. From the new approximations, the dutch roll frequency is shown to be a function of the stability axis yaw stability and the dutch roll damping is mainly effected by the roll damping ratio. In additional, an important parameter called roll-to-yaw ratio is obtained to describe the dutch roll mode. Solution shows that large-roll-to-yaw ratio is the generate character of hypersonic vehicle, which results the large error for the practical approximation. Predictions from the literal approximations derived in this paper are compared with actual numerical values for s example hypersonic vehicle, results show the approximations work well and the error is below 10 %.

  13. Approximate error conjugation gradient minimization methods

    Science.gov (United States)

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  14. On the Behaviour of Current-Carrying Wire-Conductors and Bucking of a Column

    DEFF Research Database (Denmark)

    Ganji, S. S.; Barari, Amin; Fereidoon, A.

    2013-01-01

    This paper applies approximate analytical methods namely Iteration Perturbation Method (IPM), variational approach (VA) and Parameter Expanding Method (PEM) to Single-Degree-Of-Freedom (SDOF) nonlinear oscillation systems. Some numerical cases as dynamic behavior of current-carrying wire-conductors...

  15. Killing cancer cells by targeted drug-carrying phage nanomedicines

    Directory of Open Access Journals (Sweden)

    Yacoby Iftach

    2008-04-01

    Full Text Available Abstract Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates.

  16. Killing cancer cells by targeted drug-carrying phage nanomedicines

    Science.gov (United States)

    Bar, Hagit; Yacoby, Iftach; Benhar, Itai

    2008-01-01

    Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates. PMID:18387177

  17. Regression with Sparse Approximations of Data

    DEFF Research Database (Denmark)

    Noorzad, Pardis; Sturm, Bob L.

    2012-01-01

    We propose sparse approximation weighted regression (SPARROW), a method for local estimation of the regression function that uses sparse approximation with a dictionary of measurements. SPARROW estimates the regression function at a point with a linear combination of a few regressands selected...... by a sparse approximation of the point in terms of the regressors. We show SPARROW can be considered a variant of \\(k\\)-nearest neighbors regression (\\(k\\)-NNR), and more generally, local polynomial kernel regression. Unlike \\(k\\)-NNR, however, SPARROW can adapt the number of regressors to use based...

  18. Conditional Density Approximations with Mixtures of Polynomials

    DEFF Research Database (Denmark)

    Varando, Gherardo; López-Cruz, Pedro L.; Nielsen, Thomas Dyhre

    2015-01-01

    Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce...... two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities...

  19. Hardness and Approximation for Network Flow Interdiction

    OpenAIRE

    Chestnut, Stephen R.; Zenklusen, Rico

    2015-01-01

    In the Network Flow Interdiction problem an adversary attacks a network in order to minimize the maximum s-t-flow. Very little is known about the approximatibility of this problem despite decades of interest in it. We present the first approximation hardness, showing that Network Flow Interdiction and several of its variants cannot be much easier to approximate than Densest k-Subgraph. In particular, any $n^{o(1)}$-approximation algorithm for Network Flow Interdiction would imply an $n^{o(1)}...

  20. Approximation of the semi-infinite interval

    Directory of Open Access Journals (Sweden)

    A. McD. Mercer

    1980-01-01

    Full Text Available The approximation of a function f∈C[a,b] by Bernstein polynomials is well-known. It is based on the binomial distribution. O. Szasz has shown that there are analogous approximations on the interval [0,∞ based on the Poisson distribution. Recently R. Mohapatra has generalized Szasz' result to the case in which the approximating function is αe−ux∑k=N∞(uxkα+β−1Γ(kα+βf(kαuThe present note shows that these results are special cases of a Tauberian theorem for certain infinite series having positive coefficients.

  1. Mathematical analysis, approximation theory and their applications

    CERN Document Server

    Gupta, Vijay

    2016-01-01

    Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.

  2. Multilevel weighted least squares polynomial approximation

    KAUST Repository

    Haji-Ali, Abdul-Lateef; Nobile, Fabio; Tempone, Raul; Wolfers, Sö ren

    2017-01-01

    , obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose

  3. Low Rank Approximation Algorithms, Implementation, Applications

    CERN Document Server

    Markovsky, Ivan

    2012-01-01

    Matrix low-rank approximation is intimately related to data modelling; a problem that arises frequently in many different fields. Low Rank Approximation: Algorithms, Implementation, Applications is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. A major part of the text is devoted to application of the theory. Applications described include: system and control theory: approximate realization, model reduction, output error, and errors-in-variables identification; signal processing: harmonic retrieval, sum-of-damped exponentials, finite impulse response modeling, and array processing; machine learning: multidimensional scaling and recommender system; computer vision: algebraic curve fitting and fundamental matrix estimation; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; ...

  4. Nonlinear Ritz approximation for Fredholm functionals

    Directory of Open Access Journals (Sweden)

    Mudhir A. Abdul Hussain

    2015-11-01

    Full Text Available In this article we use the modify Lyapunov-Schmidt reduction to find nonlinear Ritz approximation for a Fredholm functional. This functional corresponds to a nonlinear Fredholm operator defined by a nonlinear fourth-order differential equation.

  5. Euclidean shortest paths exact or approximate algorithms

    CERN Document Server

    Li, Fajie

    2014-01-01

    This book reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. The coverage includes mathematical proofs for many of the given statements.

  6. Square well approximation to the optical potential

    International Nuclear Information System (INIS)

    Jain, A.K.; Gupta, M.C.; Marwadi, P.R.

    1976-01-01

    Approximations for obtaining T-matrix elements for a sum of several potentials in terms of T-matrices for individual potentials are studied. Based on model calculations for S-wave for a sum of two separable non-local potentials of Yukawa type form factors and a sum of two delta function potentials, it is shown that the T-matrix for a sum of several potentials can be approximated satisfactorily over all the energy regions by the sum of T-matrices for individual potentials. Based on this, an approximate method for finding T-matrix for any local potential by approximating it by a sum of suitable number of square wells is presented. This provides an interesting way to calculate the T-matrix for any arbitary potential in terms of Bessel functions to a good degree of accuracy. The method is applied to the Saxon-Wood potentials and good agreement with exact results is found. (author)

  7. Approximation for the adjoint neutron spectrum

    International Nuclear Information System (INIS)

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2002-01-01

    The proposal of this work is the determination of an analytical approximation which is capable to reproduce the adjoint neutron flux for the energy range of the narrow resonances (NR). In a previous work we developed a method for the calculation of the adjoint spectrum which was calculated from the adjoint neutron balance equations, that were obtained by the collision probabilities method, this method involved a considerable quantity of numerical calculation. In the analytical method some approximations were done, like the multiplication of the escape probability in the fuel by the adjoint flux in the moderator, and after these approximations, taking into account the case of the narrow resonances, were substituted in the adjoint neutron balance equation for the fuel, resulting in an analytical approximation for the adjoint flux. The results obtained in this work were compared to the results generated with the reference method, which demonstrated a good and precise results for the adjoint neutron flux for the narrow resonances. (author)

  8. Saddlepoint approximation methods in financial engineering

    CERN Document Server

    Kwok, Yue Kuen

    2018-01-01

    This book summarizes recent advances in applying saddlepoint approximation methods to financial engineering. It addresses pricing exotic financial derivatives and calculating risk contributions to Value-at-Risk and Expected Shortfall in credit portfolios under various default correlation models. These standard problems involve the computation of tail probabilities and tail expectations of the corresponding underlying state variables.  The text offers in a single source most of the saddlepoint approximation results in financial engineering, with different sets of ready-to-use approximation formulas. Much of this material may otherwise only be found in original research publications. The exposition and style are made rigorous by providing formal proofs of most of the results. Starting with a presentation of the derivation of a variety of saddlepoint approximation formulas in different contexts, this book will help new researchers to learn the fine technicalities of the topic. It will also be valuable to quanti...

  9. Methods of Fourier analysis and approximation theory

    CERN Document Server

    Tikhonov, Sergey

    2016-01-01

    Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.

  10. Pion-nucleus cross sections approximation

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.

    1990-01-01

    Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs

  11. APPROXIMATE DEVELOPMENTS FOR SURFACES OF REVOLUTION

    Directory of Open Access Journals (Sweden)

    Mădălina Roxana Buneci

    2016-12-01

    Full Text Available The purpose of this paper is provide a set of Maple procedures to construct approximate developments of a general surface of revolution generalizing the well-known gore method for sphere

  12. Steepest descent approximations for accretive operator equations

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1993-03-01

    A necessary and sufficient condition is established for the strong convergence of the steepest descent approximation to a solution of equations involving quasi-accretive operators defined on a uniformly smooth Banach space. (author). 49 refs

  13. Seismic wave extrapolation using lowrank symbol approximation

    KAUST Repository

    Fomel, Sergey

    2012-04-30

    We consider the problem of constructing a wave extrapolation operator in a variable and possibly anisotropic medium. Our construction involves Fourier transforms in space combined with the help of a lowrank approximation of the space-wavenumber wave-propagator matrix. A lowrank approximation implies selecting a small set of representative spatial locations and a small set of representative wavenumbers. We present a mathematical derivation of this method, a description of the lowrank approximation algorithm and numerical examples that confirm the validity of the proposed approach. Wave extrapolation using lowrank approximation can be applied to seismic imaging by reverse-time migration in 3D heterogeneous isotropic or anisotropic media. © 2012 European Association of Geoscientists & Engineers.

  14. An overview on Approximate Bayesian computation*

    Directory of Open Access Journals (Sweden)

    Baragatti Meïli

    2014-01-01

    Full Text Available Approximate Bayesian computation techniques, also called likelihood-free methods, are one of the most satisfactory approach to intractable likelihood problems. This overview presents recent results since its introduction about ten years ago in population genetics.

  15. Approximate Computing Techniques for Iterative Graph Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Panyala, Ajay R.; Subasi, Omer; Halappanavar, Mahantesh; Kalyanaraman, Anantharaman; Chavarria Miranda, Daniel G.; Krishnamoorthy, Sriram

    2017-12-18

    Approximate computing enables processing of large-scale graphs by trading off quality for performance. Approximate computing techniques have become critical not only due to the emergence of parallel architectures but also the availability of large scale datasets enabling data-driven discovery. Using two prototypical graph algorithms, PageRank and community detection, we present several approximate computing heuristics to scale the performance with minimal loss of accuracy. We present several heuristics including loop perforation, data caching, incomplete graph coloring and synchronization, and evaluate their efficiency. We demonstrate performance improvements of up to 83% for PageRank and up to 450x for community detection, with low impact of accuracy for both the algorithms. We expect the proposed approximate techniques will enable scalable graph analytics on data of importance to several applications in science and their subsequent adoption to scale similar graph algorithms.

  16. Approximating the Qualitative Vickrey Auction by a Negotiation Protocol

    Science.gov (United States)

    Hindriks, Koen V.; Tykhonov, Dmytro; de Weerdt, Mathijs

    A result of Bulow and Klemperer has suggested that auctions may be a better tool to obtain an efficient outcome than negotiation. For example, some auction mechanisms can be shown to be efficient and strategy-proof. However, they generally also require that the preferences of at least one side of the auction are publicly known. However, sometimes it is very costly, impossible, or undesirable to publicly announce such preferences. It thus is interesting to find methods that do not impose this constraint but still approximate the outcome of the auction. In this paper we show that a multi-round multi-party negotiation protocol may be used to this end if the negotiating agents are capable of learning opponent preferences. The latter condition can be met by current state of the art negotiation technology. We show that this protocol approximates the theoretical outcome predicted by a so-called Qualitative Vickrey auction mechanism (even) on a complex multi-issue domain.

  17. Multiuser detection and channel estimation: Exact and approximate methods

    DEFF Research Database (Denmark)

    Fabricius, Thomas

    2003-01-01

    subtractive interference cancellation with hyperbolic tangent tentative decision device, in statistical mechanics and machine learning called the naive mean field approach. The differences between the proposed algorithms lie in how the bias is estimated/approximated. We propose approaches based on a second...... propose here to use accurate approximations borrowed from statistical mechanics and machine learning. These give us various algorithms that all can be formulated in a subtractive interference cancellation formalism. The suggested algorithms can e ectively be seen as bias corrections to standard...... of the Junction Tree Algorithm, which is a generalisation of Pearl's Belief Propagation, the BCJR, sum product, min/max sum, and Viterbi's algorithm. Although efficient algoithms, they have an inherent exponential complexity in the number of users when applied to CDMA multiuser detection. For this reason we...

  18. Approximative solutions of stochastic optimization problem

    Czech Academy of Sciences Publication Activity Database

    Lachout, Petr

    2010-01-01

    Roč. 46, č. 3 (2010), s. 513-523 ISSN 0023-5954 R&D Projects: GA ČR GA201/08/0539 Institutional research plan: CEZ:AV0Z10750506 Keywords : Stochastic optimization problem * sensitivity * approximative solution Subject RIV: BA - General Mathematics Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/SI/lachout-approximative solutions of stochastic optimization problem.pdf

  19. Lattice quantum chromodynamics with approximately chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hierl, Dieter

    2008-05-15

    In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)

  20. An approximate analytical approach to resampling averages

    DEFF Research Database (Denmark)

    Malzahn, Dorthe; Opper, M.

    2004-01-01

    Using a novel reformulation, we develop a framework to compute approximate resampling data averages analytically. The method avoids multiple retraining of statistical models on the samples. Our approach uses a combination of the replica "trick" of statistical physics and the TAP approach for appr...... for approximate Bayesian inference. We demonstrate our approach on regression with Gaussian processes. A comparison with averages obtained by Monte-Carlo sampling shows that our method achieves good accuracy....

  1. Stochastic quantization and mean field approximation

    International Nuclear Information System (INIS)

    Jengo, R.; Parga, N.

    1983-09-01

    In the context of the stochastic quantization we propose factorized approximate solutions for the Fokker-Planck equation for the XY and Zsub(N) spin systems in D dimensions. The resulting differential equation for a factor can be solved and it is found to give in the limit of t→infinity the mean field or, in the more general case, the Bethe-Peierls approximation. (author)

  2. Polynomial approximation of functions in Sobolev spaces

    International Nuclear Information System (INIS)

    Dupont, T.; Scott, R.

    1980-01-01

    Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomical plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces

  3. Magnus approximation in the adiabatic picture

    International Nuclear Information System (INIS)

    Klarsfeld, S.; Oteo, J.A.

    1991-01-01

    A simple approximate nonperturbative method is described for treating time-dependent problems that works well in the intermediate regime far from both the sudden and the adiabatic limits. The method consists of applying the Magnus expansion after transforming to the adiabatic basis defined by the eigenstates of the instantaneous Hamiltonian. A few exactly soluble examples are considered in order to assess the domain of validity of the approximation. (author) 32 refs., 4 figs

  4. Lattice quantum chromodynamics with approximately chiral fermions

    International Nuclear Information System (INIS)

    Hierl, Dieter

    2008-05-01

    In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the Θ + pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)

  5. Truss topology optimization with discrete design variables by outer approximation

    DEFF Research Database (Denmark)

    Stolpe, Mathias

    2015-01-01

    Several variants of an outer approximation method are proposed to solve truss topology optimization problems with discrete design variables to proven global optimality. The objective is to minimize the volume of the structure while satisfying constraints on the global stiffness of the structure...... for classical outer approximation approaches applied to optimal design problems. A set of two- and three-dimensional benchmark problems are solved and the numerical results suggest that the proposed approaches are competitive with other special-purpose global optimization methods for the considered class...... under the applied loads. We extend the natural problem formulation by adding redundant force variables and force equilibrium constraints. This guarantees that the designs suggested by the relaxed master problems are capable of carrying the applied loads, a property which is generally not satisfied...

  6. Approximate approaches to the one-dimensional finite potential well

    International Nuclear Information System (INIS)

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A

    2011-01-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m i ) is taken to be distinct from mass outside (m o ). A relevant parameter is the mass discontinuity ratio β = m i /m o . To correctly account for the mass discontinuity, we apply the BenDaniel-Duke boundary condition. We obtain approximate solutions for two cases: when the well is shallow and when the well is deep. We compare the approximate results with the exact results and find that higher-order approximations are quite robust. For the shallow case, the approximate solution can be expressed in terms of a dimensionless parameter σ l = 2m o V 0 L 2 /ℎ 2 (or σ = β 2 σ l for the deep case). We show that the lowest-order results are related by a duality transform. We also discuss how the energy upscales with L (E∼1/L γ ) and obtain the exponent γ. Exponent γ → 2 when the well is sufficiently deep and β → 1. The ratio of the masses dictates the physics. Our presentation is pedagogical and should be useful to students on a first course on elementary quantum mechanics or low-dimensional semiconductors.

  7. Approximating centrality in evolving graphs: toward sublinearity

    Science.gov (United States)

    Priest, Benjamin W.; Cybenko, George

    2017-05-01

    The identification of important nodes is a ubiquitous problem in the analysis of social networks. Centrality indices (such as degree centrality, closeness centrality, betweenness centrality, PageRank, and others) are used across many domains to accomplish this task. However, the computation of such indices is expensive on large graphs. Moreover, evolving graphs are becoming increasingly important in many applications. It is therefore desirable to develop on-line algorithms that can approximate centrality measures using memory sublinear in the size of the graph. We discuss the challenges facing the semi-streaming computation of many centrality indices. In particular, we apply recent advances in the streaming and sketching literature to provide a preliminary streaming approximation algorithm for degree centrality utilizing CountSketch and a multi-pass semi-streaming approximation algorithm for closeness centrality leveraging a spanner obtained through iteratively sketching the vertex-edge adjacency matrix. We also discuss possible ways forward for approximating betweenness centrality, as well as spectral measures of centrality. We provide a preliminary result using sketched low-rank approximations to approximate the output of the HITS algorithm.

  8. Kinematics of roller chain drives - Exact and approximate analysis

    DEFF Research Database (Denmark)

    Fuglede, Niels; Thomsen, Jon Juel

    2016-01-01

    An exact and approximate kinematic analysis of a roller chain drive modeled as a four-bar mechanism is presented. The span connects the sprockets such that they rotate in the same direction, and the sprocket size, number of teeth, and shaft center distance can be arbitrary. The driven sprocket...... to be very good agreement. All together this gives new insights into the characteristics of chain drive kinematics and the influence of main design parameters....

  9. Magnetic structure of a nanoparticle in mean-field approximation

    International Nuclear Information System (INIS)

    Usov, N.A.; Gudoshnikov, S.A.

    2005-01-01

    Quantum mechanical Hartree-Fock approximation is used to calculate a magnetic state of a nanoparticle. The cases of ferromagnetic (FM), antiferromagnetic (AFM) and composite particles having an FM core surrounded by an AFM shell are considered in a unified manner. It is shown that effective interaction at the boundary between FM and AFM areas rotates FM and AFM spins perpendicular to each other. The coercive force of a composite particle increases as a function of the AFM shell thickness

  10. Approximate motion integrals and the quantum chaos problem

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Ivanov, I.B.

    2001-01-01

    One discusses the problem of occurrence and seek for the motion integrals in the stationary quantum mechanics and its relation to the quantum chaos. One studies decomposition of quantum numbers and derives the criterion of chaos. To seek the motion integrals one applies the convergence method. One derived the approximate integrals in the Hennone-Hales problem. One discusses the problem of compatibility of chaos and integrability [ru

  11. Interpretation and quality of the tilted axis cranking approximation

    International Nuclear Information System (INIS)

    Frauendorf, S.; Meng, J.

    1996-06-01

    Comparing with the exact solutions of the model system of one and two particles coupled to an axial rotor, the quality of the semi classical tilted axis cranking approximation is investigated. Extensive comparisons of the energies and M1 and E2 transition probabilities are carried out for the lowest bands. Very good agreement is found, except near band crossings. Various recipes to take into account finite K within the frame of the usual principal axis cranking are included into the comparison. A set of rules is suggested that permits to construct the excited bands from the cranking configurations, avoiding spurious states. (orig.)

  12. Neutrino-nucleus cross section in the impulse approximation regime

    International Nuclear Information System (INIS)

    Benhar, Omar; Farina, Nicola

    2005-01-01

    In the impulse approximation regime the nuclear response to a weakly interacting probe can be written in terms of the measured nucleon structure functions and the target spectral function, yielding the energy and momentum distribution of the constituent nucleons. We discuss a calculation of charged current neutrino-oxygen interactions in the quasielastic channel, carried out within nuclear many body theory. The proposed approach, extensively and successfully employed in the analysis of electron-nucleus scattering data, allows for a parameter free prediction of the neutrino-nucleus cross section, whose quantitative understanding will be critical to the analysis of the next generation of high precision neutrino oscillation experiments

  13. Data-Driven Model Reduction and Transfer Operator Approximation

    Science.gov (United States)

    Klus, Stefan; Nüske, Feliks; Koltai, Péter; Wu, Hao; Kevrekidis, Ioannis; Schütte, Christof; Noé, Frank

    2018-06-01

    In this review paper, we will present different data-driven dimension reduction techniques for dynamical systems that are based on transfer operator theory as well as methods to approximate transfer operators and their eigenvalues, eigenfunctions, and eigenmodes. The goal is to point out similarities and differences between methods developed independently by the dynamical systems, fluid dynamics, and molecular dynamics communities such as time-lagged independent component analysis, dynamic mode decomposition, and their respective generalizations. As a result, extensions and best practices developed for one particular method can be carried over to other related methods.

  14. Medium-induced gluon radiation beyond the eikonal approximation

    CERN Document Server

    Apolinário, Liliana; Milhano, Guilherme; Salgado, Carlos A

    2014-01-01

    In this work we improve existing calculations of radiative energy loss by computing corrections that implement energy-momentum conservation, previously only implemented a posteriori, in a rigorous way. Using the path-integral formalism, we compute in-medium splittings allowing transverse motion of all particles in the emission process, thus relaxing the assumption that only the softest particle is permitted such movement. This work constitutes the extension of the computation carried out for x$\\rightarrow$1 in Phys. Lett. B718 (2012) 160-168, to all values of x, the momentum fraction of the energy of the parent parton carried by the emitted gluon. In order to accomplish a general description of the whole in-medium showering process, in this work we allow for arbitrary formation times for the emitted gluon. We provide general expressions and their realisation in the path integral formalism within the harmonic oscillator approximation.

  15. Trajectory averaging for stochastic approximation MCMC algorithms

    KAUST Repository

    Liang, Faming

    2010-10-01

    The subject of stochastic approximation was founded by Robbins and Monro [Ann. Math. Statist. 22 (1951) 400-407]. After five decades of continual development, it has developed into an important area in systems control and optimization, and it has also served as a prototype for the development of adaptive algorithms for on-line estimation and control of stochastic systems. Recently, it has been used in statistics with Markov chain Monte Carlo for solving maximum likelihood estimation problems and for general simulation and optimizations. In this paper, we first show that the trajectory averaging estimator is asymptotically efficient for the stochastic approximation MCMC (SAMCMC) algorithm under mild conditions, and then apply this result to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic approximation MLE algorithm for missing data problems, is also considered in the paper. © Institute of Mathematical Statistics, 2010.

  16. 'LTE-diffusion approximation' for arc calculations

    International Nuclear Information System (INIS)

    Lowke, J J; Tanaka, M

    2006-01-01

    This paper proposes the use of the 'LTE-diffusion approximation' for predicting the properties of electric arcs. Under this approximation, local thermodynamic equilibrium (LTE) is assumed, with a particular mesh size near the electrodes chosen to be equal to the 'diffusion length', based on D e /W, where D e is the electron diffusion coefficient and W is the electron drift velocity. This approximation overcomes the problem that the equilibrium electrical conductivity in the arc near the electrodes is almost zero, which makes accurate calculations using LTE impossible in the limit of small mesh size, as then voltages would tend towards infinity. Use of the LTE-diffusion approximation for a 200 A arc with a thermionic cathode gives predictions of total arc voltage, electrode temperatures, arc temperatures and radial profiles of heat flux density and current density at the anode that are in approximate agreement with more accurate calculations which include an account of the diffusion of electric charges to the electrodes, and also with experimental results. Calculations, which include diffusion of charges, agree with experimental results of current and heat flux density as a function of radius if the Milne boundary condition is used at the anode surface rather than imposing zero charge density at the anode

  17. Semiclassical initial value approximation for Green's function.

    Science.gov (United States)

    Kay, Kenneth G

    2010-06-28

    A semiclassical initial value approximation is obtained for the energy-dependent Green's function. For a system with f degrees of freedom the Green's function expression has the form of a (2f-1)-dimensional integral over points on the energy surface and an integral over time along classical trajectories initiated from these points. This approximation is derived by requiring an integral ansatz for Green's function to reduce to Gutzwiller's semiclassical formula when the integrations are performed by the stationary phase method. A simpler approximation is also derived involving only an (f-1)-dimensional integral over momentum variables on a Poincare surface and an integral over time. The relationship between the present expressions and an earlier initial value approximation for energy eigenfunctions is explored. Numerical tests for two-dimensional systems indicate that good accuracy can be obtained from the initial value Green's function for calculations of autocorrelation spectra and time-independent wave functions. The relative advantages of initial value approximations for the energy-dependent Green's function and the time-dependent propagator are discussed.

  18. Approximate Bayesian evaluations of measurement uncertainty

    Science.gov (United States)

    Possolo, Antonio; Bodnar, Olha

    2018-04-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) includes formulas that produce an estimate of a scalar output quantity that is a function of several input quantities, and an approximate evaluation of the associated standard uncertainty. This contribution presents approximate, Bayesian counterparts of those formulas for the case where the output quantity is a parameter of the joint probability distribution of the input quantities, also taking into account any information about the value of the output quantity available prior to measurement expressed in the form of a probability distribution on the set of possible values for the measurand. The approximate Bayesian estimates and uncertainty evaluations that we present have a long history and illustrious pedigree, and provide sufficiently accurate approximations in many applications, yet are very easy to implement in practice. Differently from exact Bayesian estimates, which involve either (analytical or numerical) integrations, or Markov Chain Monte Carlo sampling, the approximations that we describe involve only numerical optimization and simple algebra. Therefore, they make Bayesian methods widely accessible to metrologists. We illustrate the application of the proposed techniques in several instances of measurement: isotopic ratio of silver in a commercial silver nitrate; odds of cryptosporidiosis in AIDS patients; height of a manometer column; mass fraction of chromium in a reference material; and potential-difference in a Zener voltage standard.

  19. Multilevel weighted least squares polynomial approximation

    KAUST Repository

    Haji-Ali, Abdul-Lateef

    2017-06-30

    Weighted least squares polynomial approximation uses random samples to determine projections of functions onto spaces of polynomials. It has been shown that, using an optimal distribution of sample locations, the number of samples required to achieve quasi-optimal approximation in a given polynomial subspace scales, up to a logarithmic factor, linearly in the dimension of this space. However, in many applications, the computation of samples includes a numerical discretization error. Thus, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose a multilevel method that utilizes samples computed with different accuracies and is able to match the accuracy of single-level approximations with reduced computational cost. We derive complexity bounds under certain assumptions about polynomial approximability and sample work. Furthermore, we propose an adaptive algorithm for situations where such assumptions cannot be verified a priori. Finally, we provide an efficient algorithm for the sampling from optimal distributions and an analysis of computationally favorable alternative distributions. Numerical experiments underscore the practical applicability of our method.

  20. Kinetic characteristics of the gait of a musician carrying or not his instrument

    Directory of Open Access Journals (Sweden)

    Carlos Bolli Mota

    2009-01-01

    Full Text Available The integrity of the locomotor system can be compromised by the transport of certain objects, especially when done in an inadequate manner. Due to their weight and size, the transport of musical instruments can contribute to body dysfunctions in musicians who frequently have to carry their instruments, influencing balance andbody posture. Thus, the soil reaction force was investigated during the gait of a musician carrying or not his instrument. Two AMTI (Advanced Mechanical Technologies, Inc. platforms were used for kinetic data acquisition. A total of 40 measurements were obtainedfor gait and balance: 20 without carrying the instrument and 20 while carrying the instrument. The t test showed significant differences between the two situations for all variables analyzed. The results suggest that the locomotor system suffers alterationswhen carrying any kind of load, as was the case here in which the subject carried 7.75% of his own weight.

  1. Smooth function approximation using neural networks.

    Science.gov (United States)

    Ferrari, Silvia; Stengel, Robert F

    2005-01-01

    An algebraic approach for representing multidimensional nonlinear functions by feedforward neural networks is presented. In this paper, the approach is implemented for the approximation of smooth batch data containing the function's input, output, and possibly, gradient information. The training set is associated to the network adjustable parameters by nonlinear weight equations. The cascade structure of these equations reveals that they can be treated as sets of linear systems. Hence, the training process and the network approximation properties can be investigated via linear algebra. Four algorithms are developed to achieve exact or approximate matching of input-output and/or gradient-based training sets. Their application to the design of forward and feedback neurocontrollers shows that algebraic training is characterized by faster execution speeds and better generalization properties than contemporary optimization techniques.

  2. The binary collision approximation: Background and introduction

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1992-08-01

    The binary collision approximation (BCA) has long been used in computer simulations of the interactions of energetic atoms with solid targets, as well as being the basis of most analytical theory in this area. While mainly a high-energy approximation, the BCA retains qualitative significance at low energies and, with proper formulation, gives useful quantitative information as well. Moreover, computer simulations based on the BCA can achieve good statistics in many situations where those based on full classical dynamical models require the most advanced computer hardware or are even impracticable. The foundations of the BCA in classical scattering are reviewed, including methods of evaluating the scattering integrals, interaction potentials, and electron excitation effects. The explicit evaluation of time at significant points on particle trajectories is discussed, as are scheduling algorithms for ordering the collisions in a developing cascade. An approximate treatment of nearly simultaneous collisions is outlined and the searching algorithms used in MARLOWE are presented

  3. Self-similar continued root approximants

    International Nuclear Information System (INIS)

    Gluzman, S.; Yukalov, V.I.

    2012-01-01

    A novel method of summing asymptotic series is advanced. Such series repeatedly arise when employing perturbation theory in powers of a small parameter for complicated problems of condensed matter physics, statistical physics, and various applied problems. The method is based on the self-similar approximation theory involving self-similar root approximants. The constructed self-similar continued roots extrapolate asymptotic series to finite values of the expansion parameter. The self-similar continued roots contain, as a particular case, continued fractions and Padé approximants. A theorem on the convergence of the self-similar continued roots is proved. The method is illustrated by several examples from condensed-matter physics.

  4. Ancilla-approximable quantum state transformations

    Energy Technology Data Exchange (ETDEWEB)

    Blass, Andreas [Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Gurevich, Yuri [Microsoft Research, Redmond, Washington 98052 (United States)

    2015-04-15

    We consider the transformations of quantum states obtainable by a process of the following sort. Combine the given input state with a specially prepared initial state of an auxiliary system. Apply a unitary transformation to the combined system. Measure the state of the auxiliary subsystem. If (and only if) it is in a specified final state, consider the process successful, and take the resulting state of the original (principal) system as the result of the process. We review known information about exact realization of transformations by such a process. Then we present results about approximate realization of finite partial transformations. We not only consider primarily the issue of approximation to within a specified positive ε, but also address the question of arbitrarily close approximation.

  5. On Born approximation in black hole scattering

    Science.gov (United States)

    Batic, D.; Kelkar, N. G.; Nowakowski, M.

    2011-12-01

    A massless field propagating on spherically symmetric black hole metrics such as the Schwarzschild, Reissner-Nordström and Reissner-Nordström-de Sitter backgrounds is considered. In particular, explicit formulae in terms of transcendental functions for the scattering of massless scalar particles off black holes are derived within a Born approximation. It is shown that the conditions on the existence of the Born integral forbid a straightforward extraction of the quasi normal modes using the Born approximation for the scattering amplitude. Such a method has been used in literature. We suggest a novel, well defined method, to extract the large imaginary part of quasinormal modes via the Coulomb-like phase shift. Furthermore, we compare the numerically evaluated exact scattering amplitude with the Born one to find that the approximation is not very useful for the scattering of massless scalar, electromagnetic as well as gravitational waves from black holes.

  6. Ancilla-approximable quantum state transformations

    International Nuclear Information System (INIS)

    Blass, Andreas; Gurevich, Yuri

    2015-01-01

    We consider the transformations of quantum states obtainable by a process of the following sort. Combine the given input state with a specially prepared initial state of an auxiliary system. Apply a unitary transformation to the combined system. Measure the state of the auxiliary subsystem. If (and only if) it is in a specified final state, consider the process successful, and take the resulting state of the original (principal) system as the result of the process. We review known information about exact realization of transformations by such a process. Then we present results about approximate realization of finite partial transformations. We not only consider primarily the issue of approximation to within a specified positive ε, but also address the question of arbitrarily close approximation

  7. On transparent potentials: a Born approximation study

    International Nuclear Information System (INIS)

    Coudray, C.

    1980-01-01

    In the frame of the scattering inverse problem at fixed energy, a class of potentials transparent in Born approximation is obtained. All these potentials are spherically symmetric and are oscillating functions of the reduced radial variable. Amongst them, the Born approximation of the transparent potential of the Newton-Sabatier method is found. In the same class, quasi-transparent potentials are exhibited. Very general features of potentials transparent in Born approximation are then stated. And bounds are given for the exact scattering amplitudes corresponding to most of the potentials previously exhibited. These bounds, obtained at fixed energy, and for large values of the angular momentum, are found to be independent on the energy

  8. Minimal entropy approximation for cellular automata

    International Nuclear Information System (INIS)

    Fukś, Henryk

    2014-01-01

    We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim. (paper)

  9. Resummation of perturbative QCD by pade approximants

    International Nuclear Information System (INIS)

    Gardi, E.

    1997-01-01

    In this lecture I present some of the new developments concerning the use of Pade Approximants (PA's) for resuming perturbative series in QCD. It is shown that PA's tend to reduce the renormalization scale and scheme dependence as compared to truncated series. In particular it is proven that in the limit where the β function is dominated by the 1-loop contribution, there is an exact symmetry that guarantees invariance of diagonal PA's under changing the renormalization scale. In addition it is shown that in the large β 0 approximation diagonal PA's can be interpreted as a systematic method for approximating the flow of momentum in Feynman diagrams. This corresponds to a new multiple scale generalization of the Brodsky-Lepage-Mackenzie (BLM) method to higher orders. I illustrate the method with the Bjorken sum rule and the vacuum polarization function. (author)

  10. Fast wavelet based sparse approximate inverse preconditioner

    Energy Technology Data Exchange (ETDEWEB)

    Wan, W.L. [Univ. of California, Los Angeles, CA (United States)

    1996-12-31

    Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.

  11. Perturbation expansions generated by an approximate propagator

    International Nuclear Information System (INIS)

    Znojil, M.

    1987-01-01

    Starting from a knowledge of an approximate propagator R at some trial energy guess E 0 , a new perturbative prescription for p-plet of bound states and of their energies is proposed. It generalizes the Rayleigh-Schroedinger (RS) degenerate perturbation theory to the nondiagonal operators R (eliminates a RS need of their diagnolisation) and defines an approximate Hamiltonian T by mere inversion. The deviation V of T from the exact Hamiltonian H is assumed small only after a substraction of a further auxiliary Hartree-Fock-like separable ''selfconsistent'' potential U of rank p. The convergence is illustrated numerically on the anharmonic oscillator example

  12. Approximate Inference and Deep Generative Models

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Advances in deep generative models are at the forefront of deep learning research because of the promise they offer for allowing data-efficient learning, and for model-based reinforcement learning. In this talk I'll review a few standard methods for approximate inference and introduce modern approximations which allow for efficient large-scale training of a wide variety of generative models. Finally, I'll demonstrate several important application of these models to density estimation, missing data imputation, data compression and planning.

  13. Unambiguous results from variational matrix Pade approximants

    International Nuclear Information System (INIS)

    Pindor, Maciej.

    1979-10-01

    Variational Matrix Pade Approximants are studied as a nonlinear variational problem. It is shown that although a stationary value of the Schwinger functional is a stationary value of VMPA, the latter has also another stationary value. It is therefore proposed that instead of looking for a stationary point of VMPA, one minimizes some non-negative functional and then one calculates VMPA at the point where the former has the absolute minimum. This approach, which we call the Method of the Variational Gradient (MVG) gives unambiguous results and is also shown to minimize a distance between the approximate and the exact stationary values of the Schwinger functional

  14. Faster and Simpler Approximation of Stable Matchings

    Directory of Open Access Journals (Sweden)

    Katarzyna Paluch

    2014-04-01

    Full Text Available We give a 3 2 -approximation algorithm for finding stable matchings that runs in O(m time. The previous most well-known algorithm, by McDermid, has the same approximation ratio but runs in O(n3/2m time, where n denotes the number of people andm is the total length of the preference lists in a given instance. In addition, the algorithm and the analysis are much simpler. We also give the extension of the algorithm for computing stable many-to-many matchings.

  15. APPROXIMATION OF PROBABILITY DISTRIBUTIONS IN QUEUEING MODELS

    Directory of Open Access Journals (Sweden)

    T. I. Aliev

    2013-03-01

    Full Text Available For probability distributions with variation coefficient, not equal to unity, mathematical dependences for approximating distributions on the basis of first two moments are derived by making use of multi exponential distributions. It is proposed to approximate distributions with coefficient of variation less than unity by using hypoexponential distribution, which makes it possible to generate random variables with coefficient of variation, taking any value in a range (0; 1, as opposed to Erlang distribution, having only discrete values of coefficient of variation.

  16. On the dipole approximation with error estimates

    Science.gov (United States)

    Boßmann, Lea; Grummt, Robert; Kolb, Martin

    2018-01-01

    The dipole approximation is employed to describe interactions between atoms and radiation. It essentially consists of neglecting the spatial variation of the external field over the atom. Heuristically, this is justified by arguing that the wavelength is considerably larger than the atomic length scale, which holds under usual experimental conditions. We prove the dipole approximation in the limit of infinite wavelengths compared to the atomic length scale and estimate the rate of convergence. Our results include N-body Coulomb potentials and experimentally relevant electromagnetic fields such as plane waves and laser pulses.

  17. Congruence Approximations for Entrophy Endowed Hyperbolic Systems

    Science.gov (United States)

    Barth, Timothy J.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.

  18. Hardness of approximation for strip packing

    DEFF Research Database (Denmark)

    Adamaszek, Anna Maria; Kociumaka, Tomasz; Pilipczuk, Marcin

    2017-01-01

    Strip packing is a classical packing problem, where the goal is to pack a set of rectangular objects into a strip of a given width, while minimizing the total height of the packing. The problem has multiple applications, for example, in scheduling and stock-cutting, and has been studied extensively......)-approximation by two independent research groups [FSTTCS 2016,WALCOM 2017]. This raises a questionwhether strip packing with polynomially bounded input data admits a quasi-polynomial time approximation scheme, as is the case for related twodimensional packing problems like maximum independent set of rectangles or two...

  19. Improved WKB approximation for quantum tunneling: Application to heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Toubiana, A.J. [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Nuclear, Escola Politecnica, C.P. 68529, Rio de Janeiro, RJ (Brazil); Ecole CentraleSupelec, Gif-sur-Yvette (France); Paris Saclay, Saint-Aubin (France); Canto, L.F. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, C.P. 68528, Rio de Janeiro (Brazil); Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil); Hussein, M.S. [Universidade de Sao Paulo, Instituto de Estudos Avancados, C.P. 72012, Sao Paulo, SP (Brazil); Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo, SP (Brazil); Instituto Tecnologico de Aeronautica, CTA, Departamento de Fisica, Sao Jose dos Campos, Sao Paulo, SP (Brazil)

    2017-02-15

    In this paper we revisit the one-dimensional tunnelling problem. We consider Kemble's approximation for the transmission coefficient. We show how this approximation can be extended to above-barrier energies by performing the analytical continuation of the radial coordinate to the complex plane. We investigate the validity of this approximation by comparing their predictions for the cross section and for the barrier distribution with the corresponding quantum-mechanical results. We find that the extended Kemble's approximation reproduces the results of quantum mechanics with great accuracy. (orig.)

  20. 30 CFR 56.16014 - Operator-carrying overhead cranes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Operator-carrying overhead cranes. 56.16014 Section 56.16014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 56.16014 Operator-carrying overhead cranes. Operator-carrying overhead cranes shall...

  1. 30 CFR 57.16014 - Operator-carrying overhead cranes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Operator-carrying overhead cranes. 57.16014 Section 57.16014 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 57.16014 Operator-carrying overhead cranes. Operator-carrying overhead cranes shall...

  2. 46 CFR 111.105-35 - Vessels carrying coal.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Vessels carrying coal. 111.105-35 Section 111.105-35...-GENERAL REQUIREMENTS Hazardous Locations § 111.105-35 Vessels carrying coal. (a) The following are Class II, Division 1, (Zone 10 or Z) locations on a vessel that carries coal: (1) The interior of each coal...

  3. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander; Genton, Marc G.; Sun, Ying

    2015-01-01

    We approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.

  4. Large hierarchies from approximate R symmetries

    International Nuclear Information System (INIS)

    Kappl, Rolf; Ratz, Michael; Vaudrevange, Patrick K.S.

    2008-12-01

    We show that hierarchically small vacuum expectation values of the superpotential in supersymmetric theories can be a consequence of an approximate R symmetry. We briefly discuss the role of such small constants in moduli stabilization and understanding the huge hierarchy between the Planck and electroweak scales. (orig.)

  5. Approximate Networking for Universal Internet Access

    Directory of Open Access Journals (Sweden)

    Junaid Qadir

    2017-12-01

    Full Text Available Despite the best efforts of networking researchers and practitioners, an ideal Internet experience is inaccessible to an overwhelming majority of people the world over, mainly due to the lack of cost-efficient ways of provisioning high-performance, global Internet. In this paper, we argue that instead of an exclusive focus on a utopian goal of universally accessible “ideal networking” (in which we have a high throughput and quality of service as well as low latency and congestion, we should consider providing “approximate networking” through the adoption of context-appropriate trade-offs. In this regard, we propose to leverage the advances in the emerging trend of “approximate computing” that rely on relaxing the bounds of precise/exact computing to provide new opportunities for improving the area, power, and performance efficiency of systems by orders of magnitude by embracing output errors in resilient applications. Furthermore, we propose to extend the dimensions of approximate computing towards various knobs available at network layers. Approximate networking can be used to provision “Global Access to the Internet for All” (GAIA in a pragmatically tiered fashion, in which different users around the world are provided a different context-appropriate (but still contextually functional Internet experience.

  6. Uncertainty relations for approximation and estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaeha, E-mail: jlee@post.kek.jp [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsutsui, Izumi, E-mail: izumi.tsutsui@kek.jp [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2016-05-27

    We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér–Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position–momentum and the time–energy relations in one framework albeit handled differently. - Highlights: • Several inequalities interpreted as uncertainty relations for approximation/estimation are derived from a single ‘versatile inequality’. • The ‘versatile inequality’ sets a limit on the approximation of an observable and/or the estimation of a parameter by another observable. • The ‘versatile inequality’ turns into an elaboration of the Robertson–Kennard (Schrödinger) inequality and the Cramér–Rao inequality. • Both the position–momentum and the time–energy relation are treated in one framework. • In every case, Aharonov's weak value arises as a key geometrical ingredient, deciding the optimal choice for the proxy functions.

  7. Uncertainty relations for approximation and estimation

    International Nuclear Information System (INIS)

    Lee, Jaeha; Tsutsui, Izumi

    2016-01-01

    We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér–Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position–momentum and the time–energy relations in one framework albeit handled differently. - Highlights: • Several inequalities interpreted as uncertainty relations for approximation/estimation are derived from a single ‘versatile inequality’. • The ‘versatile inequality’ sets a limit on the approximation of an observable and/or the estimation of a parameter by another observable. • The ‘versatile inequality’ turns into an elaboration of the Robertson–Kennard (Schrödinger) inequality and the Cramér–Rao inequality. • Both the position–momentum and the time–energy relation are treated in one framework. • In every case, Aharonov's weak value arises as a key geometrical ingredient, deciding the optimal choice for the proxy functions.

  8. Intrinsic Diophantine approximation on general polynomial surfaces

    DEFF Research Database (Denmark)

    Tiljeset, Morten Hein

    2017-01-01

    We study the Hausdorff measure and dimension of the set of intrinsically simultaneously -approximable points on a curve, surface, etc, given as a graph of integer polynomials. We obtain complete answers to these questions for algebraically “nice” manifolds. This generalizes earlier work done...

  9. Perturbation of operators and approximation of spectrum

    Indian Academy of Sciences (India)

    outside the bounds of essential spectrum of A(x) can be approximated ... some perturbed discrete Schrödinger operators treating them as block ...... particular, one may think of estimating the spectrum and spectral gaps of Schrödinger.

  10. Quasilinear theory without the random phase approximation

    International Nuclear Information System (INIS)

    Weibel, E.S.; Vaclavik, J.

    1980-08-01

    The system of quasilinear equations is derived without making use of the random phase approximation. The fluctuating quantities are described by the autocorrelation function of the electric field using the techniques of Fourier analysis. The resulting equations posses the necessary conservation properties, but comprise new terms which hitherto have been lost in the conventional derivations

  11. Rational approximations and quantum algorithms with postselection

    NARCIS (Netherlands)

    Mahadev, U.; de Wolf, R.

    2015-01-01

    We study the close connection between rational functions that approximate a given Boolean function, and quantum algorithms that compute the same function using post-selection. We show that the minimal degree of the former equals (up to a factor of 2) the minimal query complexity of the latter. We

  12. Padé approximations and diophantine geometry.

    Science.gov (United States)

    Chudnovsky, D V; Chudnovsky, G V

    1985-04-01

    Using methods of Padé approximations we prove a converse to Eisenstein's theorem on the boundedness of denominators of coefficients in the expansion of an algebraic function, for classes of functions, parametrized by meromorphic functions. This result is applied to the Tate conjecture on the effective description of isogenies for elliptic curves.

  13. Approximate systems with confluent bonding mappings

    OpenAIRE

    Lončar, Ivan

    2001-01-01

    If X = {Xn, pnm, N} is a usual inverse system with confluent (monotone) bonding mappings, then the projections are confluent (monotone). This is not true for approximate inverse system. The main purpose of this paper is to show that the property of Kelley (smoothness) of the space Xn is a sufficient condition for the confluence (monotonicity) of the projections.

  14. Function approximation with polynomial regression slines

    International Nuclear Information System (INIS)

    Urbanski, P.

    1996-01-01

    Principles of the polynomial regression splines as well as algorithms and programs for their computation are presented. The programs prepared using software package MATLAB are generally intended for approximation of the X-ray spectra and can be applied in the multivariate calibration of radiometric gauges. (author)

  15. Approximation Algorithms for Model-Based Diagnosis

    NARCIS (Netherlands)

    Feldman, A.B.

    2010-01-01

    Model-based diagnosis is an area of abductive inference that uses a system model, together with observations about system behavior, to isolate sets of faulty components (diagnoses) that explain the observed behavior, according to some minimality criterion. This thesis presents greedy approximation

  16. On the parametric approximation in quantum optics

    Energy Technology Data Exchange (ETDEWEB)

    D' Ariano, G.M.; Paris, M.G.A.; Sacchi, M.F. [Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Pavia Univ. (Italy). Dipt. di Fisica ' Alessandro Volta'

    1999-03-01

    The authors perform the exact numerical diagonalization of Hamiltonians that describe both degenerate and nondegenerate parametric amplifiers, by exploiting the conservation laws pertaining each device. It is clarify the conditions under which the parametric approximation holds, showing that the most relevant requirements is the coherence of the pump after the interaction, rather than its un depletion.

  17. On the parametric approximation in quantum optics

    International Nuclear Information System (INIS)

    D'Ariano, G.M.; Paris, M.G.A.; Sacchi, M.F.; Pavia Univ.

    1999-01-01

    The authors perform the exact numerical diagonalization of Hamiltonians that describe both degenerate and nondegenerate parametric amplifiers, by exploiting the conservation laws pertaining each device. It is clarify the conditions under which the parametric approximation holds, showing that the most relevant requirements is the coherence of the pump after the interaction, rather than its un depletion

  18. Uniform semiclassical approximation for absorptive scattering systems

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pato, M.P.

    1987-07-01

    The uniform semiclassical approximation of the elastic scattering amplitude is generalized to absorptive systems. An integral equation is derived which connects the absorption modified amplitude to the absorption free one. Division of the amplitude into a diffractive and refractive components is then made possible. (Author) [pt

  19. Tension and Approximation in Poetic Translation

    Science.gov (United States)

    Al-Shabab, Omar A. S.; Baka, Farida H.

    2015-01-01

    Simple observation reveals that each language and each culture enjoys specific linguistic features and rhetorical traditions. In poetry translation difference and the resultant linguistic tension create a gap between Source Language and Target language, a gap that needs to be bridged by creating an approximation processed through the translator's…

  20. Variational Gaussian approximation for Poisson data

    Science.gov (United States)

    Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen

    2018-02-01

    The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.

  1. Quasiclassical approximation for ultralocal scalar fields

    International Nuclear Information System (INIS)

    Francisco, G.

    1984-01-01

    It is shown how to obtain the quasiclassical evolution of a class of field theories called ultralocal fields. Coherent states that follow the 'classical' orbit as defined by Klauder's weak corespondence principle and restricted action principle is explicitly shown to approximate the quantum evolutions as (h/2π) → o. (Author) [pt

  2. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-11-30

    We approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.

  3. Multilevel Monte Carlo in Approximate Bayesian Computation

    KAUST Repository

    Jasra, Ajay; Jo, Seongil; Nott, David; Shoemaker, Christine; Tempone, Raul

    2017-01-01

    is developed and it is shown under some assumptions that for a given level of mean square error, this method for ABC has a lower cost than i.i.d. sampling from the most accurate ABC approximation. Several numerical examples are given.

  4. Multidimensional stochastic approximation using locally contractive functions

    Science.gov (United States)

    Lawton, W. M.

    1975-01-01

    A Robbins-Monro type multidimensional stochastic approximation algorithm which converges in mean square and with probability one to the fixed point of a locally contractive regression function is developed. The algorithm is applied to obtain maximum likelihood estimates of the parameters for a mixture of multivariate normal distributions.

  5. Pade approximant calculations for neutron escape probability

    International Nuclear Information System (INIS)

    El Wakil, S.A.; Saad, E.A.; Hendi, A.A.

    1984-07-01

    The neutron escape probability from a non-multiplying slab containing internal source is defined in terms of a functional relation for the scattering function for the diffuse reflection problem. The Pade approximant technique is used to get numerical results which compare with exact results. (author)

  6. Optical bistability without the rotating wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Sharaby, Yasser A., E-mail: Yasser_Sharaby@hotmail.co [Physics Department, Faculty of Applied Sciences, Suez Canal University, Suez (Egypt); Joshi, Amitabh, E-mail: ajoshi@eiu.ed [Department of Physics, Eastern Illinois University, Charleston, IL 61920 (United States); Hassan, Shoukry S., E-mail: Shoukryhassan@hotmail.co [Mathematics Department, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2010-04-26

    Optical bistability for two-level atomic system in a ring cavity is investigated outside the rotating wave approximation (RWA) using non-autonomous Maxwell-Bloch equations with Fourier decomposition up to first harmonic. The first harmonic output field component exhibits reversed or closed loop bistability simultaneously with the usual (anti-clockwise) bistability in the fundamental field component.

  7. Optical bistability without the rotating wave approximation

    International Nuclear Information System (INIS)

    Sharaby, Yasser A.; Joshi, Amitabh; Hassan, Shoukry S.

    2010-01-01

    Optical bistability for two-level atomic system in a ring cavity is investigated outside the rotating wave approximation (RWA) using non-autonomous Maxwell-Bloch equations with Fourier decomposition up to first harmonic. The first harmonic output field component exhibits reversed or closed loop bistability simultaneously with the usual (anti-clockwise) bistability in the fundamental field component.

  8. Lognormal Approximations of Fault Tree Uncertainty Distributions.

    Science.gov (United States)

    El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P

    2018-01-26

    Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.

  9. RATIONAL APPROXIMATIONS TO GENERALIZED HYPERGEOMETRIC FUNCTIONS.

    Science.gov (United States)

    Under weak restrictions on the various free parameters, general theorems for rational representations of the generalized hypergeometric functions...and certain Meijer G-functions are developed. Upon specialization, these theorems yield a sequency of rational approximations which converge to the

  10. A rational approximation of the effectiveness factor

    DEFF Research Database (Denmark)

    Wedel, Stig; Luss, Dan

    1980-01-01

    A fast, approximate method of calculating the effectiveness factor for arbitrary rate expressions is presented. The method does not require any iterative or interpolative calculations. It utilizes the well known asymptotic behavior for small and large Thiele moduli to derive a rational function...

  11. Decision-theoretic troubleshooting: Hardness of approximation

    Czech Academy of Sciences Publication Activity Database

    Lín, Václav

    2014-01-01

    Roč. 55, č. 4 (2014), s. 977-988 ISSN 0888-613X R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : Decision-theoretic troubleshooting * Hardness of approximation * NP-completeness Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.451, year: 2014

  12. Nonstandard approximation schemes for lower dimensional quantum field theories

    International Nuclear Information System (INIS)

    Fitzpatrick, D.A.

    1981-01-01

    The purpose of this thesis has been to apply two different nonstandard approximation schemes to a variety of lower-dimensional schemes. In doing this, we show their applicability where (e.g., Feynman or Rayleigh-Schroedinger) approximation schemes are inapplicable. We have applied the well-known mean-field approximation scheme by Guralnik et al. to general lower dimensional theories - the phi 4 field theory in one dimension, and the massive and massless Thirring models in two dimensions. In each case, we derive a bound-state propagator and then expand the theory in terms of the original and bound-state propagators. The results obtained can be compared with previously known results thereby show, in general, reasonably good convergence. In the second half of the thesis, we develop a self-consistent quantum mechanical approximation scheme. This can be applied to any monotonic polynomial potential. It has been applied in detail to the anharmonic oscillator, and the results in several analytical domains are very good, including extensive tables of numerical results

  13. Designing quantum information processing via structural physical approximation.

    Science.gov (United States)

    Bae, Joonwoo

    2017-10-01

    In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.

  14. An approximate analytical solution for describing surface runoff and sediment transport over hillslope

    Science.gov (United States)

    Tao, Wanghai; Wang, Quanjiu; Lin, Henry

    2018-03-01

    Soil and water loss from farmland causes land degradation and water pollution, thus continued efforts are needed to establish mathematical model for quantitative analysis of relevant processes and mechanisms. In this study, an approximate analytical solution has been developed for overland flow model and sediment transport model, offering a simple and effective means to predict overland flow and erosion under natural rainfall conditions. In the overland flow model, the flow regime was considered to be transitional with the value of parameter β (in the kinematic wave model) approximately two. The change rate of unit discharge with distance was assumed to be constant and equal to the runoff rate at the outlet of the plane. The excess rainfall was considered to be constant under uniform rainfall conditions. The overland flow model developed can be further applied to natural rainfall conditions by treating excess rainfall intensity as constant over a small time interval. For the sediment model, the recommended values of the runoff erosion calibration constant (cr) and the splash erosion calibration constant (cf) have been given in this study so that it is easier to use the model. These recommended values are 0.15 and 0.12, respectively. Comparisons with observed results were carried out to validate the proposed analytical solution. The results showed that the approximate analytical solution developed in this paper closely matches the observed data, thus providing an alternative method of predicting runoff generation and sediment yield, and offering a more convenient method of analyzing the quantitative relationships between variables. Furthermore, the model developed in this study can be used as a theoretical basis for developing runoff and erosion control methods.

  15. Approximation scheme for strongly coupled plasmas: Dynamical theory

    International Nuclear Information System (INIS)

    Golden, K.I.; Kalman, G.

    1979-01-01

    The authors present a self-consistent approximation scheme for the calculation of the dynamical polarizability α (k, ω) at long wavelengths in strongly coupled one-component plasmas. Development of the scheme is carried out in two stages. The first stage follows the earlier Golden-Kalman-Silevitch (GKS) velocity-average approximation approach, but goes much further in its application of the nonlinear fluctuation-dissipation theorem to dynamical calculations. The result is the simple expression for α (k, ω), αatsub GKSat(k, ω) 4 moment sum rule. In the second stage, the above dynamical expression is made self-consistent at long wavelengths by postulating that a decomposition of the quadratic polarizabilities in terms of linear ones, which prevails in the k → 0 limit for weak coupling, can be relied upon as a paradigm for arbitrary coupling. The result is a relatively simple quadratic integral equation for α. Its evaluation in the weak-coupling limit and its comparison with known exact results in that limit reveal that almost all important correlational and long-time effects are reproduced by our theory with very good numerical accuracy over the entire frequency range; the only significant defect of the approximation seems to be the absence of the ''dominant'' γ ln γ -1 (γ is the plasma parameter) contribution to Im α

  16. Scenario approximation in a phenomenological study in Mexico: experience report.

    Science.gov (United States)

    Guerrero-Castañeda, Raúl Fernando; Menezes, Tânia Maria de Oliva; Vargas, Ma Guadalupe Ojeda

    2017-01-01

    To report our experience using scenario approximation in a phenomenological study of nursing in Mexico. Experience report on scenario approximation to coexist with elderly in order to select the participants of a phenomenological study. During a four-month period in 2016, visits were carried out two groups of elderly individuals where several activities were carried out. Coexistence with the elderly throughout accompaniment in the groups' activities together with joint dialogue allowed selection of those who corresponded to the characteristics of the study objective. Scenario approximation is necessary in phenomenological studies, not only for creating empathy among the participants but also for the researchers to immerse themselves in the phenomenon under study, as shown by the first approaches of the researcher. Relatar la experiencia del acercamiento al escenario de un estudio fenomenológico en enfermería en México. Relato de experiencia sobre el acercamiento al escenario de estudio para convivir con adultos mayores con la finalidad de seleccionar a los participantes de un estudio fenomenológico. Se llevaron a cabo visitas durante el año 2016, en un periodo de cuatro meses a dos grupos de adultos mayores en donde se realizaron diversas actividades. La convivencia con los adultos mayores a través del acompañamiento en las actividades que realizaban en los grupos y el diálogo conjunto permitió seleccionar a aquellos que respondían a las características del objeto de estudio. Es necesaria la aproximación al escenario de estudios fenomenológicos, no sólo con la finalidad de ganar empatía de los participantes sino para sumergirse en el fenómeno de estudio, mismo que se va mostrando desde los primeros acercamientos del investigador.

  17. Green's Kernels and meso-scale approximations in perforated domains

    CERN Document Server

    Maz'ya, Vladimir; Nieves, Michael

    2013-01-01

    There are a wide range of applications in physics and structural mechanics involving domains with singular perturbations of the boundary. Examples include perforated domains and bodies with defects of different types. The accurate direct numerical treatment of such problems remains a challenge. Asymptotic approximations offer an alternative, efficient solution. Green’s function is considered here as the main object of study rather than a tool for generating solutions of specific boundary value problems. The uniformity of the asymptotic approximations is the principal point of attention. We also show substantial links between Green’s functions and solutions of boundary value problems for meso-scale structures. Such systems involve a large number of small inclusions, so that a small parameter, the relative size of an inclusion, may compete with a large parameter, represented as an overall number of inclusions. The main focus of the present text is on two topics: (a) asymptotics of Green’s kernels in domai...

  18. Approximating tunneling rates in multi-dimensional field spaces

    Energy Technology Data Exchange (ETDEWEB)

    Masoumi, Ali; Olum, Ken D.; Wachter, Jeremy M., E-mail: ali@cosmos.phy.tufts.edu, E-mail: kdo@cosmos.phy.tufts.edu, E-mail: Jeremy.Wachter@tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-10-01

    Quantum mechanics makes the otherwise stable vacua of a theory metastable through the nucleation of bubbles of the new vacuum. This in turn causes a first order phase transition. These cosmological phase transitions may have played an important role in settling our universe into its current vacuum, and they may also happen in future. The most important frameworks where vacuum decay happens contain a large number of fields. Unfortunately, calculating the tunneling rates in these models is very time-consuming. In this paper we present a simple approximation for the tunneling rate by reducing it to a one-field problem which is easy to calculate. We demonstrate the validity of this approximation using our recent code 'Anybubble' for several classes of potentials.

  19. Approximation methods for the partition functions of anharmonic systems

    International Nuclear Information System (INIS)

    Lew, P.; Ishida, T.

    1979-07-01

    The analytical approximations for the classical, quantum mechanical and reduced partition functions of the diatomic molecule oscillating internally under the influence of the Morse potential have been derived and their convergences have been tested numerically. This successful analytical method is used in the treatment of anharmonic systems. Using Schwinger perturbation method in the framework of second quantization formulism, the reduced partition function of polyatomic systems can be put into an expression which consists separately of contributions from the harmonic terms, Morse potential correction terms and interaction terms due to the off-diagonal potential coefficients. The calculated results of the reduced partition function from the approximation method on the 2-D and 3-D model systems agree well with the numerical exact calculations

  20. On load carrying capacity of frames taking into account finite displacements

    International Nuclear Information System (INIS)

    Borkoaski, A.; Saran, M.

    1981-01-01

    An approximate method that takes into account the influence of finite displacements upon the load carrying capacity of planar unbraced frames is described. It is the iterative procedure where Quadratic Programming is applied for evaluation of subsequent configurations of the frame, whereas Linear Programming serves to find ultimate load factors for each configuration. Numerical tests show that the procedure gives practically acceptable results being at the same time much cheaper than the exact geometrically and physically non-linear incremental analysis. (orig.)

  1. Approximated solutions to Born-Infeld dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Rafael [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA),Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,Ciudad Universitaria, Pabellón I, 1428 Buenos Aires (Argentina); Nigro, Mauro [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,Ciudad Universitaria, Pabellón I, 1428 Buenos Aires (Argentina)

    2016-02-01

    The Born-Infeld equation in the plane is usefully captured in complex language. The general exact solution can be written as a combination of holomorphic and anti-holomorphic functions. However, this solution only expresses the potential in an implicit way. We rework the formulation to obtain the complex potential in an explicit way, by means of a perturbative procedure. We take care of the secular behavior common to this kind of approach, by resorting to a symmetry the equation has at the considered order of approximation. We apply the method to build approximated solutions to Born-Infeld electrodynamics. We solve for BI electromagnetic waves traveling in opposite directions. We study the propagation at interfaces, with the aim of searching for effects susceptible to experimental detection. In particular, we show that a reflected wave is produced when a wave is incident on a semi-space containing a magnetostatic field.

  2. The Hartree-Fock seniority approximation

    International Nuclear Information System (INIS)

    Gomez, J.M.G.; Prieto, C.

    1986-01-01

    A new self-consistent method is used to take into account the mean-field and the pairing correlations in nuclei at the same time. We call it the Hartree-Fock seniority approximation, because the long-range and short-range correlations are treated in the frameworks of Hartree-Fock theory and the seniority scheme. The method is developed in detail for a minimum-seniority variational wave function in the coordinate representation for an effective interaction of the Skyrme type. An advantage of the present approach over the Hartree-Fock-Bogoliubov theory is the exact conservation of angular momentum and particle number. Furthermore, the computational effort required in the Hartree-Fock seniority approximation is similar to that ofthe pure Hartree-Fock picture. Some numerical calculations for Ca isotopes are presented. (orig.)

  3. Analytical Ballistic Trajectories with Approximately Linear Drag

    Directory of Open Access Journals (Sweden)

    Giliam J. P. de Carpentier

    2014-01-01

    Full Text Available This paper introduces a practical analytical approximation of projectile trajectories in 2D and 3D roughly based on a linear drag model and explores a variety of different planning algorithms for these trajectories. Although the trajectories are only approximate, they still capture many of the characteristics of a real projectile in free fall under the influence of an invariant wind, gravitational pull, and terminal velocity, while the required math for these trajectories and planners is still simple enough to efficiently run on almost all modern hardware devices. Together, these properties make the proposed approach particularly useful for real-time applications where accuracy and performance need to be carefully balanced, such as in computer games.

  4. Simple Lie groups without the approximation property

    DEFF Research Database (Denmark)

    Haagerup, Uffe; de Laat, Tim

    2013-01-01

    For a locally compact group G, let A(G) denote its Fourier algebra, and let M0A(G) denote the space of completely bounded Fourier multipliers on G. The group G is said to have the Approximation Property (AP) if the constant function 1 can be approximated by a net in A(G) in the weak-∗ topology...... on the space M0A(G). Recently, Lafforgue and de la Salle proved that SL(3,R) does not have the AP, implying the first example of an exact discrete group without it, namely, SL(3,Z). In this paper we prove that Sp(2,R) does not have the AP. It follows that all connected simple Lie groups with finite center...

  5. Approximated solutions to Born-Infeld dynamics

    International Nuclear Information System (INIS)

    Ferraro, Rafael; Nigro, Mauro

    2016-01-01

    The Born-Infeld equation in the plane is usefully captured in complex language. The general exact solution can be written as a combination of holomorphic and anti-holomorphic functions. However, this solution only expresses the potential in an implicit way. We rework the formulation to obtain the complex potential in an explicit way, by means of a perturbative procedure. We take care of the secular behavior common to this kind of approach, by resorting to a symmetry the equation has at the considered order of approximation. We apply the method to build approximated solutions to Born-Infeld electrodynamics. We solve for BI electromagnetic waves traveling in opposite directions. We study the propagation at interfaces, with the aim of searching for effects susceptible to experimental detection. In particular, we show that a reflected wave is produced when a wave is incident on a semi-space containing a magnetostatic field.

  6. Traveltime approximations for inhomogeneous HTI media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    Traveltimes information is convenient for parameter estimation especially if the medium is described by an anisotropic set of parameters. This is especially true if we could relate traveltimes analytically to these medium parameters, which is generally hard to do in inhomogeneous media. As a result, I develop traveltimes approximations for horizontaly transversely isotropic (HTI) media as simplified and even linear functions of the anisotropic parameters. This is accomplished by perturbing the solution of the HTI eikonal equation with respect to η and the azimuthal symmetry direction (usually used to describe the fracture direction) from a generally inhomogeneous elliptically anisotropic background medium. The resulting approximations can provide accurate analytical description of the traveltime in a homogenous background compared to other published moveout equations out there. These equations will allow us to readily extend the inhomogenous background elliptical anisotropic model to an HTI with a variable, but smoothly varying, η and horizontal symmetry direction values. © 2011 Society of Exploration Geophysicists.

  7. Approximate radiative solutions of the Einstein equations

    International Nuclear Information System (INIS)

    Kuusk, P.; Unt, V.

    1976-01-01

    In this paper the external field of a bounded source emitting gravitational radiation is considered. A successive approximation method is used to integrate the Einstein equations in Bondi's coordinates (Bondi et al, Proc. R. Soc.; A269:21 (1962)). A method of separation of angular variables is worked out and the approximate Einstein equations are reduced to key equations. The losses of mass, momentum, and angular momentum due to gravitational multipole radiation are found. It is demonstrated that in the case of proper treatment a real mass occurs instead of a mass aspect in a solution of the Einstein equations. In an appendix Bondi's new function is given in terms of sources. (author)

  8. Nonlinear analysis approximation theory, optimization and applications

    CERN Document Server

    2014-01-01

    Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.

  9. Analysing organic transistors based on interface approximation

    International Nuclear Information System (INIS)

    Akiyama, Yuto; Mori, Takehiko

    2014-01-01

    Temperature-dependent characteristics of organic transistors are analysed thoroughly using interface approximation. In contrast to amorphous silicon transistors, it is characteristic of organic transistors that the accumulation layer is concentrated on the first monolayer, and it is appropriate to consider interface charge rather than band bending. On the basis of this model, observed characteristics of hexamethylenetetrathiafulvalene (HMTTF) and dibenzotetrathiafulvalene (DBTTF) transistors with various surface treatments are analysed, and the trap distribution is extracted. In turn, starting from a simple exponential distribution, we can reproduce the temperature-dependent transistor characteristics as well as the gate voltage dependence of the activation energy, so we can investigate various aspects of organic transistors self-consistently under the interface approximation. Small deviation from such an ideal transistor operation is discussed assuming the presence of an energetically discrete trap level, which leads to a hump in the transfer characteristics. The contact resistance is estimated by measuring the transfer characteristics up to the linear region

  10. Fast approximate convex decomposition using relative concavity

    KAUST Repository

    Ghosh, Mukulika; Amato, Nancy M.; Lu, Yanyan; Lien, Jyh-Ming

    2013-01-01

    Approximate convex decomposition (ACD) is a technique that partitions an input object into approximately convex components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can also generate a more manageable number of components. It can be used as a basis of divide-and-conquer algorithms for applications such as collision detection, skeleton extraction and mesh generation. In this paper, we propose a new method called Fast Approximate Convex Decomposition (FACD) that improves the quality of the decomposition and reduces the cost of computing it for both 2D and 3D models. In particular, we propose a new strategy for evaluating potential cuts that aims to reduce the relative concavity, rather than absolute concavity. As shown in our results, this leads to more natural and smaller decompositions that include components for small but important features such as toes or fingers while not decomposing larger components, such as the torso, that may have concavities due to surface texture. Second, instead of decomposing a component into two pieces at each step, as in the original ACD, we propose a new strategy that uses a dynamic programming approach to select a set of n c non-crossing (independent) cuts that can be simultaneously applied to decompose the component into n c+1 components. This reduces the depth of recursion and, together with a more efficient method for computing the concavity measure, leads to significant gains in efficiency. We provide comparative results for 2D and 3D models illustrating the improvements obtained by FACD over ACD and we compare with the segmentation methods in the Princeton Shape Benchmark by Chen et al. (2009) [31]. © 2012 Elsevier Ltd. All rights reserved.

  11. Fast Approximate Joint Diagonalization Incorporating Weight Matrices

    Czech Academy of Sciences Publication Activity Database

    Tichavský, Petr; Yeredor, A.

    2009-01-01

    Roč. 57, č. 3 (2009), s. 878-891 ISSN 1053-587X R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : autoregressive processes * blind source separation * nonstationary random processes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.212, year: 2009 http://library.utia.cas.cz/separaty/2009/SI/tichavsky-fast approximate joint diagonalization incorporating weight matrices.pdf

  12. On approximation of functions by product operators

    Directory of Open Access Journals (Sweden)

    Hare Krishna Nigam

    2013-12-01

    Full Text Available In the present paper, two quite new reults on the degree of approximation of a function f belonging to the class Lip(α,r, 1≤ r <∞ and the weighted class W(Lr,ξ(t, 1≤ r <∞ by (C,2(E,1 product operators have been obtained. The results obtained in the present paper generalize various known results on single operators.

  13. Markdown Optimization via Approximate Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Cos?gun

    2013-02-01

    Full Text Available We consider the markdown optimization problem faced by the leading apparel retail chain. Because of substitution among products the markdown policy of one product affects the sales of other products. Therefore, markdown policies for product groups having a significant crossprice elasticity among each other should be jointly determined. Since the state space of the problem is very huge, we use Approximate Dynamic Programming. Finally, we provide insights on the behavior of how each product price affects the markdown policy.

  14. Solving Math Problems Approximately: A Developmental Perspective.

    Directory of Open Access Journals (Sweden)

    Dana Ganor-Stern

    Full Text Available Although solving arithmetic problems approximately is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems approximately, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults' ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the approximated calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger than the exact answer and when it was far (vs. close from it, suggesting the involvement of an approximate number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner.

  15. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-01-07

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design

  16. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-01-05

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.

  17. Factorized Approximate Inverses With Adaptive Dropping

    Czech Academy of Sciences Publication Activity Database

    Kopal, Jiří; Rozložník, Miroslav; Tůma, Miroslav

    2016-01-01

    Roč. 38, č. 3 (2016), A1807-A1820 ISSN 1064-8275 R&D Projects: GA ČR GA13-06684S Grant - others:GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : approximate inverses * incomplete factorization * Gram–Schmidt orthogonalization * preconditioned iterative methods Subject RIV: BA - General Mathematics Impact factor: 2.195, year: 2016

  18. Semiclassical approximation in Batalin-Vilkovisky formalism

    International Nuclear Information System (INIS)

    Schwarz, A.

    1993-01-01

    The geometry of supermanifolds provided with a Q-structure (i.e. with an odd vector field Q satisfying {Q, Q}=0), a P-structure (odd symplectic structure) and an S-structure (volume element) or with various combinations of these structures is studied. The results are applied to the analysis of the Batalin-Vilkovisky approach to the quantization of gauge theories. In particular the semiclassical approximation in this approach is expressed in terms of Reidemeister torsion. (orig.)

  19. Approximation for limit cycles and their isochrons.

    Science.gov (United States)

    Demongeot, Jacques; Françoise, Jean-Pierre

    2006-12-01

    Local analysis of trajectories of dynamical systems near an attractive periodic orbit displays the notion of asymptotic phase and isochrons. These notions are quite useful in applications to biosciences. In this note, we give an expression for the first approximation of equations of isochrons in the setting of perturbations of polynomial Hamiltonian systems. This method can be generalized to perturbations of systems that have a polynomial integral factor (like the Lotka-Volterra equation).

  20. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul

    2015-01-01

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design

  1. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul

    2015-01-01

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.

  2. Approximate Inverse Preconditioners with Adaptive Dropping

    Czech Academy of Sciences Publication Activity Database

    Kopal, J.; Rozložník, Miroslav; Tůma, Miroslav

    2015-01-01

    Roč. 84, June (2015), s. 13-20 ISSN 0965-9978 R&D Projects: GA ČR(CZ) GAP108/11/0853; GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : approximate inverse * Gram-Schmidt orthogonalization * incomplete decomposition * preconditioned conjugate gradient method * algebraic preconditioning * pivoting Subject RIV: BA - General Mathematics Impact factor: 1.673, year: 2015

  3. Approximations and Implementations of Nonlinear Filtering Schemes.

    Science.gov (United States)

    1988-02-01

    sias k an Ykar repctively the input and the output vectors. Asfold. First, there are intrinsic errors, due to explained in the previous section, the...e.g.[BV,P]). In the above example of a a-algebra, the distributive property SIA (S 2vS3) - (SIAS2)v(SIAS3) holds. A complete orthocomplemented...process can be approximated by a switched Control Systems: Stochastic Stability and parameter process depending on the aggregated slow Dynamic Relaibility

  4. An analytical approximation for resonance integral

    International Nuclear Information System (INIS)

    Magalhaes, C.G. de; Martinez, A.S.

    1985-01-01

    It is developed a method which allows to obtain an analytical solution for the resonance integral. The problem formulation is completely theoretical and based in concepts of physics of general character. The analytical expression for integral does not involve any empiric correlation or parameter. Results of approximation are compared with pattern values for each individual resonance and for sum of all resonances. (M.C.K.) [pt

  5. Fast approximate convex decomposition using relative concavity

    KAUST Repository

    Ghosh, Mukulika

    2013-02-01

    Approximate convex decomposition (ACD) is a technique that partitions an input object into approximately convex components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can also generate a more manageable number of components. It can be used as a basis of divide-and-conquer algorithms for applications such as collision detection, skeleton extraction and mesh generation. In this paper, we propose a new method called Fast Approximate Convex Decomposition (FACD) that improves the quality of the decomposition and reduces the cost of computing it for both 2D and 3D models. In particular, we propose a new strategy for evaluating potential cuts that aims to reduce the relative concavity, rather than absolute concavity. As shown in our results, this leads to more natural and smaller decompositions that include components for small but important features such as toes or fingers while not decomposing larger components, such as the torso, that may have concavities due to surface texture. Second, instead of decomposing a component into two pieces at each step, as in the original ACD, we propose a new strategy that uses a dynamic programming approach to select a set of n c non-crossing (independent) cuts that can be simultaneously applied to decompose the component into n c+1 components. This reduces the depth of recursion and, together with a more efficient method for computing the concavity measure, leads to significant gains in efficiency. We provide comparative results for 2D and 3D models illustrating the improvements obtained by FACD over ACD and we compare with the segmentation methods in the Princeton Shape Benchmark by Chen et al. (2009) [31]. © 2012 Elsevier Ltd. All rights reserved.

  6. Conference on Abstract Spaces and Approximation

    CERN Document Server

    Szökefalvi-Nagy, B; Abstrakte Räume und Approximation; Abstract spaces and approximation

    1969-01-01

    The present conference took place at Oberwolfach, July 18-27, 1968, as a direct follow-up on a meeting on Approximation Theory [1] held there from August 4-10, 1963. The emphasis was on theoretical aspects of approximation, rather than the numerical side. Particular importance was placed on the related fields of functional analysis and operator theory. Thirty-nine papers were presented at the conference and one more was subsequently submitted in writing. All of these are included in these proceedings. In addition there is areport on new and unsolved problems based upon a special problem session and later communications from the partici­ pants. A special role is played by the survey papers also presented in full. They cover a broad range of topics, including invariant subspaces, scattering theory, Wiener-Hopf equations, interpolation theorems, contraction operators, approximation in Banach spaces, etc. The papers have been classified according to subject matter into five chapters, but it needs littl...

  7. Development of the relativistic impulse approximation

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1985-01-01

    This talk contains three parts. Part I reviews the developments which led to the relativistic impulse approximation for proton-nucleus scattering. In Part II, problems with the impulse approximation in its original form - principally the low energy problem - are discussed and traced to pionic contributions. Use of pseudovector covariants in place of pseudoscalar ones in the NN amplitude provides more satisfactory low energy results, however, the difference between pseudovector and pseudoscalar results is ambiguous in the sense that it is not controlled by NN data. Only with further theoretical input can the ambiguity be removed. Part III of the talk presents a new development of the relativistic impulse approximation which is the result of work done in the past year and a half in collaboration with J.A. Tjon. A complete NN amplitude representation is developed and a complete set of Lorentz invariant amplitudes are calculated based on a one-meson exchange model and appropriate integral equations. A meson theoretical basis for the important pair contributions to proton-nucleus scattering is established by the new developments. 28 references

  8. Ranking Support Vector Machine with Kernel Approximation

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2017-01-01

    Full Text Available Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels can give higher accuracy than linear RankSVM (RankSVM with a linear kernel for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  9. A Gaussian Approximation Potential for Silicon

    Science.gov (United States)

    Bernstein, Noam; Bartók, Albert; Kermode, James; Csányi, Gábor

    We present an interatomic potential for silicon using the Gaussian Approximation Potential (GAP) approach, which uses the Gaussian process regression method to approximate the reference potential energy surface as a sum of atomic energies. Each atomic energy is approximated as a function of the local environment around the atom, which is described with the smooth overlap of atomic environments (SOAP) descriptor. The potential is fit to a database of energies, forces, and stresses calculated using density functional theory (DFT) on a wide range of configurations from zero and finite temperature simulations. These include crystalline phases, liquid, amorphous, and low coordination structures, and diamond-structure point defects, dislocations, surfaces, and cracks. We compare the results of the potential to DFT calculations, as well as to previously published models including Stillinger-Weber, Tersoff, modified embedded atom method (MEAM), and ReaxFF. We show that it is very accurate as compared to the DFT reference results for a wide range of properties, including low energy bulk phases, liquid structure, as well as point, line, and plane defects in the diamond structure.

  10. Approximate modal analysis using Fourier decomposition

    International Nuclear Information System (INIS)

    Kozar, Ivica; Jericevic, Zeljko; Pecak, Tatjana

    2010-01-01

    The paper presents a novel numerical approach for approximate solution of eigenvalue problem and investigates its suitability for modal analysis of structures with special attention on plate structures. The approach is based on Fourier transformation of the matrix equation into frequency domain and subsequent removal of potentially less significant frequencies. The procedure results in a much reduced problem that is used in eigenvalue calculation. After calculation eigenvectors are expanded and transformed back into time domain. The principles are presented in Jericevic [1]. Fourier transform can be formulated in a way that some parts of the matrix that should not be approximated are not transformed but are fully preserved. In this paper we present formulation that preserves central or edge parts of the matrix and compare it with the formulation that performs transform on the whole matrix. Numerical experiments on transformed structural dynamic matrices describe quality of the approximations obtained in modal analysis of structures. On the basis of the numerical experiments, from the three approaches to matrix reduction one is recommended.

  11. Green-Ampt approximations: A comprehensive analysis

    Science.gov (United States)

    Ali, Shakir; Islam, Adlul; Mishra, P. K.; Sikka, Alok K.

    2016-04-01

    Green-Ampt (GA) model and its modifications are widely used for simulating infiltration process. Several explicit approximate solutions to the implicit GA model have been developed with varying degree of accuracy. In this study, performance of nine explicit approximations to the GA model is compared with the implicit GA model using the published data for broad range of soil classes and infiltration time. The explicit GA models considered are Li et al. (1976) (LI), Stone et al. (1994) (ST), Salvucci and Entekhabi (1994) (SE), Parlange et al. (2002) (PA), Barry et al. (2005) (BA), Swamee et al. (2012) (SW), Ali et al. (2013) (AL), Almedeij and Esen (2014) (AE), and Vatankhah (2015) (VA). Six statistical indicators (e.g., percent relative error, maximum absolute percent relative error, average absolute percent relative errors, percent bias, index of agreement, and Nash-Sutcliffe efficiency) and relative computer computation time are used for assessing the model performance. Models are ranked based on the overall performance index (OPI). The BA model is found to be the most accurate followed by the PA and VA models for variety of soil classes and infiltration periods. The AE, SW, SE, and LI model also performed comparatively better. Based on the overall performance index, the explicit models are ranked as BA > PA > VA > LI > AE > SE > SW > ST > AL. Results of this study will be helpful in selection of accurate and simple explicit approximate GA models for solving variety of hydrological problems.

  12. An Origami Approximation to the Cosmic Web

    Science.gov (United States)

    Neyrinck, Mark C.

    2016-10-01

    The powerful Lagrangian view of structure formation was essentially introduced to cosmology by Zel'dovich. In the current cosmological paradigm, a dark-matter-sheet 3D manifold, inhabiting 6D position-velocity phase space, was flat (with vanishing velocity) at the big bang. Afterward, gravity stretched and bunched the sheet together in different places, forming a cosmic web when projected to the position coordinates. Here, I explain some properties of an origami approximation, in which the sheet does not stretch or contract (an assumption that is false in general), but is allowed to fold. Even without stretching, the sheet can form an idealized cosmic web, with convex polyhedral voids separated by straight walls and filaments, joined by convex polyhedral nodes. The nodes form in `polygonal' or `polyhedral' collapse, somewhat like spherical/ellipsoidal collapse, except incorporating simultaneous filament and wall formation. The origami approximation allows phase-space geometries of nodes, filaments, and walls to be more easily understood, and may aid in understanding spin correlations between nearby galaxies. This contribution explores kinematic origami-approximation models giving velocity fields for the first time.

  13. Function approximation of tasks by neural networks

    International Nuclear Information System (INIS)

    Gougam, L.A.; Chikhi, A.; Mekideche-Chafa, F.

    2008-01-01

    For several years now, neural network models have enjoyed wide popularity, being applied to problems of regression, classification and time series analysis. Neural networks have been recently seen as attractive tools for developing efficient solutions for many real world problems in function approximation. The latter is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. In a previous contribution, we have used a well known simplified architecture to show that it provides a reasonably efficient, practical and robust, multi-frequency analysis. We have investigated the universal approximation theory of neural networks whose transfer functions are: sigmoid (because of biological relevance), Gaussian and two specified families of wavelets. The latter have been found to be more appropriate to use. The aim of the present contribution is therefore to use a m exican hat wavelet a s transfer function to approximate different tasks relevant and inherent to various applications in physics. The results complement and provide new insights into previously published results on this problem

  14. Simultaneous perturbation stochastic approximation for tidal models

    KAUST Repository

    Altaf, M.U.

    2011-05-12

    The Dutch continental shelf model (DCSM) is a shallow sea model of entire continental shelf which is used operationally in the Netherlands to forecast the storm surges in the North Sea. The forecasts are necessary to support the decision of the timely closure of the moveable storm surge barriers to protect the land. In this study, an automated model calibration method, simultaneous perturbation stochastic approximation (SPSA) is implemented for tidal calibration of the DCSM. The method uses objective function evaluations to obtain the gradient approximations. The gradient approximation for the central difference method uses only two objective function evaluation independent of the number of parameters being optimized. The calibration parameter in this study is the model bathymetry. A number of calibration experiments is performed. The effectiveness of the algorithm is evaluated in terms of the accuracy of the final results as well as the computational costs required to produce these results. In doing so, comparison is made with a traditional steepest descent method and also with a newly developed proper orthogonal decompositionbased calibration method. The main findings are: (1) The SPSA method gives comparable results to steepest descent method with little computational cost. (2) The SPSA method with little computational cost can be used to estimate large number of parameters.

  15. Blind sensor calibration using approximate message passing

    International Nuclear Information System (INIS)

    Schülke, Christophe; Caltagirone, Francesco; Zdeborová, Lenka

    2015-01-01

    The ubiquity of approximately sparse data has led a variety of communities to take great interest in compressed sensing algorithms. Although these are very successful and well understood for linear measurements with additive noise, applying them to real data can be problematic if imperfect sensing devices introduce deviations from this ideal signal acquisition process, caused by sensor decalibration or failure. We propose a message passing algorithm called calibration approximate message passing (Cal-AMP) that can treat a variety of such sensor-induced imperfections. In addition to deriving the general form of the algorithm, we numerically investigate two particular settings. In the first, a fraction of the sensors is faulty, giving readings unrelated to the signal. In the second, sensors are decalibrated and each one introduces a different multiplicative gain to the measurements. Cal-AMP shares the scalability of approximate message passing, allowing us to treat large sized instances of these problems, and experimentally exhibits a phase transition between domains of success and failure. (paper)

  16. Ranking Support Vector Machine with Kernel Approximation.

    Science.gov (United States)

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  17. Simultaneous perturbation stochastic approximation for tidal models

    KAUST Repository

    Altaf, M.U.; Heemink, A.W.; Verlaan, M.; Hoteit, Ibrahim

    2011-01-01

    The Dutch continental shelf model (DCSM) is a shallow sea model of entire continental shelf which is used operationally in the Netherlands to forecast the storm surges in the North Sea. The forecasts are necessary to support the decision of the timely closure of the moveable storm surge barriers to protect the land. In this study, an automated model calibration method, simultaneous perturbation stochastic approximation (SPSA) is implemented for tidal calibration of the DCSM. The method uses objective function evaluations to obtain the gradient approximations. The gradient approximation for the central difference method uses only two objective function evaluation independent of the number of parameters being optimized. The calibration parameter in this study is the model bathymetry. A number of calibration experiments is performed. The effectiveness of the algorithm is evaluated in terms of the accuracy of the final results as well as the computational costs required to produce these results. In doing so, comparison is made with a traditional steepest descent method and also with a newly developed proper orthogonal decompositionbased calibration method. The main findings are: (1) The SPSA method gives comparable results to steepest descent method with little computational cost. (2) The SPSA method with little computational cost can be used to estimate large number of parameters.

  18. Local approximation of a metapopulation's equilibrium.

    Science.gov (United States)

    Barbour, A D; McVinish, R; Pollett, P K

    2018-04-18

    We consider the approximation of the equilibrium of a metapopulation model, in which a finite number of patches are randomly distributed over a bounded subset [Formula: see text] of Euclidean space. The approximation is good when a large number of patches contribute to the colonization pressure on any given unoccupied patch, and when the quality of the patches varies little over the length scale determined by the colonization radius. If this is the case, the equilibrium probability of a patch at z being occupied is shown to be close to [Formula: see text], the equilibrium occupation probability in Levins's model, at any point [Formula: see text] not too close to the boundary, if the local colonization pressure and extinction rates appropriate to z are assumed. The approximation is justified by giving explicit upper and lower bounds for the occupation probabilities, expressed in terms of the model parameters. Since the patches are distributed randomly, the occupation probabilities are also random, and we complement our bounds with explicit bounds on the probability that they are satisfied at all patches simultaneously.

  19. Approximate particle number projection in hot nuclei

    International Nuclear Information System (INIS)

    Kosov, D.S.; Vdovin, A.I.

    1995-01-01

    Heated finite systems like, e.g., hot atomic nuclei have to be described by the canonical partition function. But this is a quite difficult technical problem and, as a rule, the grand canonical partition function is used in the studies. As a result, some shortcomings of the theoretical description appear because of the thermal fluctuations of the number of particles. Moreover, in nuclei with pairing correlations the quantum number fluctuations are introduced by some approximate methods (e.g., by the standard BCS method). The exact particle number projection is very cumbersome and an approximate number projection method for T ≠ 0 basing on the formalism of thermo field dynamics is proposed. The idea of the Lipkin-Nogami method to perform any operator as a series in the number operator powers is used. The system of equations for the coefficients of this expansion is written and the solution of the system in the next approximation after the BCS one is obtained. The method which is of the 'projection after variation' type is applied to a degenerate single j-shell model. 14 refs., 1 tab

  20. Nonresonant approximations to the optical potential

    International Nuclear Information System (INIS)

    Kowalski, K.L.

    1982-01-01

    A new class of approximations to the optical potential, which includes those of the multiple-scattering variety, is investigated. These approximations are constructed so that the optical potential maintains the correct unitarity properties along with a proper treatment of nucleon identity. The special case of nucleon-nucleus scattering with complete inclusion of Pauli effects is studied in detail. The treatment is such that the optical potential receives contributions only from subsystems embedded in their own physically correct antisymmetrized subspaces. It is found that a systematic development of even the lowest-order approximations requires the use of the off-shell extension due to Alt, Grassberger, and Sandhas along with a consistent set of dynamical equations for the optical potential. In nucleon-nucleus scattering a lowest-order optical potential is obtained as part of a systematic, exact, inclusive connectivity expansion which is expected to be useful at moderately high energies. This lowest-order potential consists of an energy-shifted (trho)-type term with three-body kinematics plus a heavy-particle exchange or pickup term. The natural appearance of the exchange term additivity in the optical potential clarifies the role of the elastic distortion in connection with the treatment of these processes. The relationship of the relevant aspects of the present analysis of the optical potential to conventional multiple scattering methods is discussed

  1. Optimal random perturbations for stochastic approximation using a simultaneous perturbation gradient approximation

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    simultaneous perturbation approximation to the gradient based on loss function measurements. SPSA is based on picking a simultaneous perturbation (random) vector in a Monte Carlo fashion as part of generating the approximation to the gradient. This paper derives the optimal distribution for the Monte Carlo...

  2. Removal new alternative to chemical and mechanical removal for the study of pollen carried on the wild bee scopae Remoción química como nueva alternativa a la remoción mecánica para el estudio del polen transportado en las escopas de abejas silvestres

    Directory of Open Access Journals (Sweden)

    Marta Caccavari

    2010-12-01

    Full Text Available Taxonomic recognition and quantification of the different pollen types collected by bees offer the most direct method to study the diet. To determine the importance of each plant taxon, it is necessary to separate the pollen deposited only in the collecting structures in order to minimize contamination of grains collected passively in other parts of the body. The technique currently applied is based on the mechanical removal of the pollen loads with dissecting needles and repeated washings with ethanol. Metathoracic scopae that underwent this procedure showed traces of pollen in varying amounts when observed under the microscope. As an alternative to this technique chemical removal using HOK is proposed. The leg is removed and treated separatedly to avoid contamination. The deflocculant properties of HOK successfully allowed to separate the pollen adhered to the scopae, which can be then returned to the individual, unaffected by the procedure. Suspend the pollen in a know quantity of mounting fluid permit take the subsamples and determine the total number of pollen grains of each taxon. In this paper, the new technique is presented and its effectiveness is compared to the technique currenty used.El reconocimiento taxonómico y la cuantificación de los distintos tipos polínicos colectados por las abejas ofrecen el método más directo para estudiar la dieta. Para determinar la importancia de cada taxón vegetal y minimizar la contaminación, es necesario separar el polen depositado en las estructuras de colecta, de los granos recolectados en forma pasiva en otras partes del cuerpo. La técnica que se aplica hasta el momento se basa en la remoción mecánica de las cargas polínicas con agujas de disección y sucesivos lavados con etanol. Escopas de patas metatoráxicas sometidas a este procedimiento al ser observadas bajo lupa presentaban aún granos de polen en cantidades variables. Como una alternativa a esta técnica proponemos la remoci

  3. Approximate number and approximate time discrimination each correlate with school math abilities in young children.

    Science.gov (United States)

    Odic, Darko; Lisboa, Juan Valle; Eisinger, Robert; Olivera, Magdalena Gonzalez; Maiche, Alejandro; Halberda, Justin

    2016-01-01

    What is the relationship between our intuitive sense of number (e.g., when estimating how many marbles are in a jar), and our intuitive sense of other quantities, including time (e.g., when estimating how long it has been since we last ate breakfast)? Recent work in cognitive, developmental, comparative psychology, and computational neuroscience has suggested that our representations of approximate number, time, and spatial extent are fundamentally linked and constitute a "generalized magnitude system". But, the shared behavioral and neural signatures between number, time, and space may alternatively be due to similar encoding and decision-making processes, rather than due to shared domain-general representations. In this study, we investigate the relationship between approximate number and time in a large sample of 6-8 year-old children in Uruguay by examining how individual differences in the precision of number and time estimation correlate with school mathematics performance. Over four testing days, each child completed an approximate number discrimination task, an approximate time discrimination task, a digit span task, and a large battery of symbolic math tests. We replicate previous reports showing that symbolic math abilities correlate with approximate number precision and extend those findings by showing that math abilities also correlate with approximate time precision. But, contrary to approximate number and time sharing common representations, we find that each of these dimensions uniquely correlates with formal math: approximate number correlates more strongly with formal math compared to time and continues to correlate with math even when precision in time and individual differences in working memory are controlled for. These results suggest that there are important differences in the mental representations of approximate number and approximate time and further clarify the relationship between quantity representations and mathematics. Copyright

  4. Training to Increase Safe Tray Carrying Among Cocktail Servers

    OpenAIRE

    Scherrer, Megan D; Wilder, David A

    2008-01-01

    We evaluated the effects of training on proper carrying techniques among 3 cocktail servers to increase safe tray carrying on the job and reduce participants' risk of developing musculoskeletal disorders. As participants delivered drinks to their tables, their finger, arm, and neck positions were observed and recorded. Each participant received individual safety training that focused on proper carrying positions and techniques after baseline data were collected. A multiple baseline design acr...

  5. The infinite limit as an eliminable approximation for phase transitions

    Science.gov (United States)

    Ardourel, Vincent

    2018-05-01

    It is generally claimed that infinite idealizations are required for explaining phase transitions within statistical mechanics (e.g. Batterman 2011). Nevertheless, Menon and Callender (2013) have outlined theoretical approaches that describe phase transitions without using the infinite limit. This paper closely investigates one of these approaches, which consists of studying the complex zeros of the partition function (Borrmann et al., 2000). Based on this theory, I argue for the plausibility for eliminating the infinite limit for studying phase transitions. I offer a new account for phase transitions in finite systems, and I argue for the use of the infinite limit as an approximation for studying phase transitions in large systems.

  6. On exact and approximate exchange-energy densities

    DEFF Research Database (Denmark)

    Springborg, Michael; Dahl, Jens Peder

    1999-01-01

    Based on correspondence rules between quantum-mechanical operators and classical functions in phase space we construct exchange-energy densities in position space. Whereas these are not unique but depend on the chosen correspondence rule, the exchange potential is unique. We calculate this exchange......-energy density for 15 closed-shell atoms, and compare it with kinetic- and Coulomb-energy densities. It is found that it has a dominating local-density character, but electron-shell effects are recognizable. The approximate exchange-energy functionals that have been proposed so far are found to account only...

  7. Organization and carrying out the triathlon competitions in Ukraine

    Directory of Open Access Journals (Sweden)

    Volodymyr Vodlozerov

    2016-02-01

    Full Text Available Purpose: the aim is analyzing of system of organization and carrying out the triathlon competitions in Ukraine in accordance with rules of triathlon international federation. Material & Methods: comparative analysis of process of organization and carrying out the triathlon competitions in the world and Ukraine was carried out on basis of specialist literature studying, normative base of sports organizations (triathlon federation. Results: inconsistencies were identified in competitions carried out in cold season, particularity of triathlon that intends overcoming the combined distance without time durations between stages. Conclusions: recommendation in eliminate inconsistencies that affect to performance of triathlon competitions in Ukraine was suggested.

  8. Boundary Value Problems and Approximate Solutions

    African Journals Online (AJOL)

    Tadesse

    Department of Mathematics, College of Natural and Computational Scineces, Mekelle ..... In this section, the Variational Iteration Method is applied to different forms of .... Some problems in non-Newtonian fluid mechanics, Ph.D. thesis, Wales.

  9. The Population Growth and Carrying Capacity in Semarang City

    Science.gov (United States)

    Hariyanto; Hadi, Sudharto P.; Buchori, Imam

    2018-02-01

    Population growth and development of city activities take some lands to carry them. As a result, land use competition happens among persons, society or sector. Land necessity for settlement, industry, or sector has taken over farm land, therefore farm land has been converted intensively and massively. Chronologically, population growth will cause land necessity increase. Unproductive land, especially farm land will be converted. Furthermore, farm land conversion will cause carrying capacity change. Carrying capacity has certain bio capacity. With the population growth, it will increase resource consumption; on the other side, farm land conversion will decrease carrying capacity. The objective of the study is to know about the influence of population growth towards carrying capacity (bio capacity) in Semarang city. Land consumption per capita is indeed influenced by city population, the higher the population is, the lower the land consumption per capita. With the population growth, it will influence carrying capacity. Carrying capacity here is the ratio of area to population. Analytical descriptive method is applied in the study with all sub-districts in Semarang city as the analysis unit. Population here is sub-district area and population per sub-district in Semarang city. Population growth data period is from 2000 until 2015. Main variables of the study are area per sub-district, population, population growth, carrying capacity. Result of the study shows significant influence of carrying capacity decrease, especially some outskirts in Semarang city. This condition happens because the outskirts in Semarang city tend to have dense population growth. Range of carrying capacity in Semarang city is from 0,007 to 0,117 of 0 to 1. Almost all sub-districts in Semarang city show miserable condition, except Mijen and Tugu. The conclusion of the study is that population will decrease carrying capacity. Therefore, the government should control population growth by paying

  10. Pentaquarks in the Jaffe-Wilczek approximation

    International Nuclear Information System (INIS)

    Narodetskii, I.M.; Simonov, Yu.A.; Trusov, M.A.; Semay, C.; Silvestre-Brac, B.

    2005-01-01

    The masses of uudds-bar, uuddd-bar, and uussd-bar pentaquarks are evaluated in a framework of both the effective Hamiltonian approach to QCD and spinless Salpeter equation using the Jaffe-Wilczek diquark approximation and the string interaction for the diquark-diquark-antiquark system. The pentaquark masses are found to be in the region above 2 GeV. That indicates that the Goldstone-boson-exchange effects may play an important role in the light pentaquarks. The same calculations yield the mass of [ud] 2 c-bar pentaquark ∼3250 MeV and [ud] 2 b-bar pentaquark ∼6509 MeV [ru

  11. Localization and stationary phase approximation on supermanifolds

    Science.gov (United States)

    Zakharevich, Valentin

    2017-08-01

    Given an odd vector field Q on a supermanifold M and a Q-invariant density μ on M, under certain compactness conditions on Q, the value of the integral ∫Mμ is determined by the value of μ on any neighborhood of the vanishing locus N of Q. We present a formula for the integral in the case where N is a subsupermanifold which is appropriately non-degenerate with respect to Q. In the process, we discuss the linear algebra necessary to express our result in a coordinate independent way. We also extend the stationary phase approximation and the Morse-Bott lemma to supermanifolds.

  12. SAM revisited: uniform semiclassical approximation with absorption

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pato, M.P.

    1986-01-01

    The uniform semiclassical approximation is modified to take into account strong absorption. The resulting theory, very similar to the one developed by Frahn and Gross is used to discuss heavy-ion elastic scattering at intermediate energies. The theory permits a reasonably unambiguos separation of refractive and diffractive effects. The systems 12 C+ 12 C and 12 C+ 16 O, which seem to exhibit a remnant of a nuclear rainbow at E=20 Mev/N, are analysed with theory which is built directly on a model for the S-matrix. Simple relations between the fit S-matrix and the underlying complex potential are derived. (Author) [pt

  13. TMB: Automatic differentiation and laplace approximation

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Nielsen, Anders; Berg, Casper Willestofte

    2016-01-01

    TMB is an open source R package that enables quick implementation of complex nonlinear random effects (latent variable) models in a manner similar to the established AD Model Builder package (ADMB, http://admb-project.org/; Fournier et al. 2011). In addition, it offers easy access to parallel...... computations. The user defines the joint likelihood for the data and the random effects as a C++ template function, while all the other operations are done in R; e.g., reading in the data. The package evaluates and maximizes the Laplace approximation of the marginal likelihood where the random effects...

  14. Shape theory categorical methods of approximation

    CERN Document Server

    Cordier, J M

    2008-01-01

    This in-depth treatment uses shape theory as a ""case study"" to illustrate situations common to many areas of mathematics, including the use of archetypal models as a basis for systems of approximations. It offers students a unified and consolidated presentation of extensive research from category theory, shape theory, and the study of topological algebras.A short introduction to geometric shape explains specifics of the construction of the shape category and relates it to an abstract definition of shape theory. Upon returning to the geometric base, the text considers simplical complexes and

  15. On one approximation in quantum chromodynamics

    International Nuclear Information System (INIS)

    Alekseev, A.I.; Bajkov, V.A.; Boos, Eh.Eh.

    1982-01-01

    Form of a complete fermion propagator near the mass shell is investigated. Considered is a nodel of quantum chromodynamics (MQC) where in the fermion section the Block-Nordsic approximation has been made, i. e. u-numbers are substituted for ν matrices. The model was investigated by means of the Schwinger-Dyson equation for a quark propagator in the infrared region. The Schwinger-Dyson equation was managed to reduce to a differential equation which is easily solved. At that, the Green function is suitable to represent as integral transformation

  16. Static correlation beyond the random phase approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian Sommer

    2014-01-01

    derived from Hedin's equations (Random Phase Approximation (RPA), Time-dependent Hartree-Fock (TDHF), Bethe-Salpeter equation (BSE), and Time-Dependent GW) all reproduce the correct dissociation limit. We also show that the BSE improves the correlation energies obtained within RPA and TDHF significantly...... and confirms that BSE greatly improves the RPA and TDHF results despite the fact that the BSE excitation spectrum breaks down in the dissociation limit. In contrast, second order screened exchange gives a poor description of the dissociation limit, which can be attributed to the fact that it cannot be derived...

  17. Multi-compartment linear noise approximation

    International Nuclear Information System (INIS)

    Challenger, Joseph D; McKane, Alan J; Pahle, Jürgen

    2012-01-01

    The ability to quantify the stochastic fluctuations present in biochemical and other systems is becoming increasing important. Analytical descriptions of these fluctuations are attractive, as stochastic simulations are computationally expensive. Building on previous work, a linear noise approximation is developed for biochemical models with many compartments, for example cells. The procedure is then implemented in the software package COPASI. This technique is illustrated with two simple examples and is then applied to a more realistic biochemical model. Expressions for the noise, given in the form of covariance matrices, are presented. (paper)

  18. Approximation of Moessbauer spectra of metallic glasses

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.

    1988-01-01

    Moessbauer spectra of iron-rich metallic glasses are approximated by means of six broadened lines which have line position relations similar to those of α-Fe. It is shown via the results of the DISPA (dispersion mode vs. absorption mode) line shape analysis that each spectral peak is broadened owing to a sum of Lorentzian lines weighted by a Gaussian distribution in the peak position. Moessbauer parameters of amorphous metallic Fe 83 B 17 and Fe 40 Ni 40 B 20 alloys are presented, derived from the fitted spectra. (author). 2 figs., 2 tabs., 21 refs

  19. High energy approximations in quantum field theory

    International Nuclear Information System (INIS)

    Orzalesi, C.A.

    1975-01-01

    New theoretical methods in hadron physics based on a high-energy perturbation theory are discussed. The approximated solutions to quantum field theory obtained by this method appear to be sufficiently simple and rich in structure to encourage hadron dynamics studies. Operator eikonal form for field - theoretic Green's functions is derived and discussion is held on how the eikonal perturbation theory is to be renormalized. This method is extended to massive quantum electrodynamics of scalar charged bosons. Possible developments and applications of this theory are given [pt

  20. Weak field approximation of new general relativity

    International Nuclear Information System (INIS)

    Fukui, Masayasu; Masukawa, Junnichi

    1985-01-01

    In the weak field approximation, gravitational field equations of new general relativity with arbitrary parameters are examined. Assuming a conservation law delta sup(μ)T sub(μν) = 0 of the energy-momentum tensor T sub(μν) for matter fields in addition to the usual one delta sup(ν)T sub(μν) = 0, we show that the linearized gravitational field equations are decomposed into equations for a Lorentz scalar field and symmetric and antisymmetric Lorentz tensor fields. (author)

  1. Pentaquarks in the Jaffe-Wilczek Approximation

    International Nuclear Information System (INIS)

    Narodetskii, I.M.; Simonov, Yu.A.; Trusov, M.A.; Semay, C.; Silvestre-Brac, B.

    2005-01-01

    The masses of uudds-bar, uuddd-bar, and uussd-bar pentaquarks are evaluated in a framework of both the effective Hamiltonian approach to QCD and the spinless Salpeter equation using the Jaffe-Wilczek diquark approximation and the string interaction for the diquark-diquark-antiquark system. The pentaquark masses are found to be in the region above 2 GeV. That indicates that the Goldstone boson exchange effects may play an important role in the light pentaquarks. The same calculations yield the mass of [ud] 2 c-bar pentaquark ∼3250 MeV and [ud] 2 b-bar pentaquark ∼6509 MeV

  2. Turbo Equalization Using Partial Gaussian Approximation

    DEFF Research Database (Denmark)

    Zhang, Chuanzong; Wang, Zhongyong; Manchón, Carles Navarro

    2016-01-01

    This letter deals with turbo equalization for coded data transmission over intersymbol interference (ISI) channels. We propose a message-passing algorithm that uses the expectation propagation rule to convert messages passed from the demodulator and decoder to the equalizer and computes messages...... returned by the equalizer by using a partial Gaussian approximation (PGA). We exploit the specific structure of the ISI channel model to compute the latter messages from the beliefs obtained using a Kalman smoother/equalizer. Doing so leads to a significant complexity reduction compared to the initial PGA...

  3. Topics in multivariate approximation and interpolation

    CERN Document Server

    Jetter, Kurt

    2005-01-01

    This book is a collection of eleven articles, written by leading experts and dealing with special topics in Multivariate Approximation and Interpolation. The material discussed here has far-reaching applications in many areas of Applied Mathematics, such as in Computer Aided Geometric Design, in Mathematical Modelling, in Signal and Image Processing and in Machine Learning, to mention a few. The book aims at giving a comprehensive information leading the reader from the fundamental notions and results of each field to the forefront of research. It is an ideal and up-to-date introduction for gr

  4. 46 CFR 111.105-45 - Vessels carrying agricultural products.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Vessels carrying agricultural products. 111.105-45... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-45 Vessels carrying agricultural products. (a) The following areas are Class II, Division 1, (Zone 10 or Z) locations on vessels...

  5. 25 CFR 23.51 - Grant carry-over authority.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Grant carry-over authority. 23.51 Section 23.51 Indians... Uniform Grant Administration Provisions and Requirements § 23.51 Grant carry-over authority. Unless... two years beyond the initial grant funding period and must be utilized only for the intent, purpose...

  6. 14 CFR 121.589 - Carry-on baggage.

    Science.gov (United States)

    2010-01-01

    ... (c) and (d). (c) No certificate holder may allow an airplane to take off or land unless each article... holder may allow the boarding of carry-on baggage on an airplane unless each passenger's baggage has been... program in its operations specifications. In addition, no passenger may board an airplane if his/her carry...

  7. Sums over geometries and improvements on the mean field approximation

    International Nuclear Information System (INIS)

    Sacksteder, Vincent E. IV

    2007-01-01

    The saddle points of a Lagrangian due to Efetov are analyzed. This Lagrangian was originally proposed as a tool for calculating systematic corrections to the Bethe approximation, a mean-field approximation which is important in statistical mechanics, glasses, coding theory, and combinatorial optimization. Detailed analysis shows that the trivial saddle point generates a sum over geometries reminiscent of dynamically triangulated quantum gravity, which suggests new possibilities to design sums over geometries for the specific purpose of obtaining improved mean-field approximations to D-dimensional theories. In the case of the Efetov theory, the dominant geometries are locally treelike, and the sum over geometries diverges in a way that is similar to quantum gravity's divergence when all topologies are included. Expertise from the field of dynamically triangulated quantum gravity about sums over geometries may be able to remedy these defects and fulfill the Efetov theory's original promise. The other saddle points of the Efetov Lagrangian are also analyzed; the Hessian at these points is nonnormal and pseudo-Hermitian, which is unusual for bosonic theories. The standard formula for Gaussian integrals is generalized to nonnormal kernels

  8. A partition function approximation using elementary symmetric functions.

    Directory of Open Access Journals (Sweden)

    Ramu Anandakrishnan

    Full Text Available In statistical mechanics, the canonical partition function [Formula: see text] can be used to compute equilibrium properties of a physical system. Calculating [Formula: see text] however, is in general computationally intractable, since the computation scales exponentially with the number of particles [Formula: see text] in the system. A commonly used method for approximating equilibrium properties, is the Monte Carlo (MC method. For some problems the MC method converges slowly, requiring a very large number of MC steps. For such problems the computational cost of the Monte Carlo method can be prohibitive. Presented here is a deterministic algorithm - the direct interaction algorithm (DIA - for approximating the canonical partition function [Formula: see text] in [Formula: see text] operations. The DIA approximates the partition function as a combinatorial sum of products known as elementary symmetric functions (ESFs, which can be computed in [Formula: see text] operations. The DIA was used to compute equilibrium properties for the isotropic 2D Ising model, and the accuracy of the DIA was compared to that of the basic Metropolis Monte Carlo method. Our results show that the DIA may be a practical alternative for some problems where the Monte Carlo method converge slowly, and computational speed is a critical constraint, such as for very large systems or web-based applications.

  9. Efficient Method to Approximately Solve Retrial Systems with Impatience

    Directory of Open Access Journals (Sweden)

    Jose Manuel Gimenez-Guzman

    2012-01-01

    Full Text Available We present a novel technique to solve multiserver retrial systems with impatience. Unfortunately these systems do not present an exact analytic solution, so it is mandatory to resort to approximate techniques. This novel technique does not rely on the numerical solution of the steady-state Kolmogorov equations of the Continuous Time Markov Chain as it is common for this kind of systems but it considers the system in its Markov Decision Process setting. This technique, known as value extrapolation, truncates the infinite state space using a polynomial extrapolation method to approach the states outside the truncated state space. A numerical evaluation is carried out to evaluate this technique and to compare its performance with previous techniques. The obtained results show that value extrapolation greatly outperforms the previous approaches appeared in the literature not only in terms of accuracy but also in terms of computational cost.

  10. Quantum scattering beyond the plane-wave approximation

    Science.gov (United States)

    Karlovets, Dmitry

    2017-12-01

    While a plane-wave approximation in high-energy physics works well in a majority of practical cases, it becomes inapplicable for scattering of the vortex particles carrying orbital angular momentum, of Airy beams, of the so-called Schrödinger cat states, and their generalizations. Such quantum states of photons, electrons and neutrons have been generated experimentally in recent years, opening up new perspectives in quantum optics, electron microscopy, particle physics, and so forth. Here we discuss the non-plane-wave effects in scattering brought about by the novel quantum numbers of these wave packets. For the well-focused electrons of intermediate energies, already available at electron microscopes, the corresponding contribution can surpass that of the radiative corrections. Moreover, collisions of the cat-like superpositions of such focused beams with atoms allow one to probe effects of the quantum interference, which have never played any role in particle scattering.

  11. APPROXIMATING INNOVATION POTENTIAL WITH NEUROFUZZY ROBUST MODEL

    Directory of Open Access Journals (Sweden)

    Kasa, Richard

    2015-01-01

    Full Text Available In a remarkably short time, economic globalisation has changed the world’s economic order, bringing new challenges and opportunities to SMEs. These processes pushed the need to measure innovation capability, which has become a crucial issue for today’s economic and political decision makers. Companies cannot compete in this new environment unless they become more innovative and respond more effectively to consumers’ needs and preferences – as mentioned in the EU’s innovation strategy. Decision makers cannot make accurate and efficient decisions without knowing the capability for innovation of companies in a sector or a region. This need is forcing economists to develop an integrated, unified and complete method of measuring, approximating and even forecasting the innovation performance not only on a macro but also a micro level. In this recent article a critical analysis of the literature on innovation potential approximation and prediction is given, showing their weaknesses and a possible alternative that eliminates the limitations and disadvantages of classical measuring and predictive methods.

  12. Analytic approximate radiation effects due to Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.

    2012-02-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.

  13. TMB: Automatic Differentiation and Laplace Approximation

    Directory of Open Access Journals (Sweden)

    Kasper Kristensen

    2016-04-01

    Full Text Available TMB is an open source R package that enables quick implementation of complex nonlinear random effects (latent variable models in a manner similar to the established AD Model Builder package (ADMB, http://admb-project.org/; Fournier et al. 2011. In addition, it offers easy access to parallel computations. The user defines the joint likelihood for the data and the random effects as a C++ template function, while all the other operations are done in R; e.g., reading in the data. The package evaluates and maximizes the Laplace approximation of the marginal likelihood where the random effects are automatically integrated out. This approximation, and its derivatives, are obtained using automatic differentiation (up to order three of the joint likelihood. The computations are designed to be fast for problems with many random effects (≈ 106 and parameters (≈ 103 . Computation times using ADMB and TMB are compared on a suite of examples ranging from simple models to large spatial models where the random effects are a Gaussian random field. Speedups ranging from 1.5 to about 100 are obtained with increasing gains for large problems. The package and examples are available at http://tmb-project.org/.

  14. On some applications of diophantine approximations.

    Science.gov (United States)

    Chudnovsky, G V

    1984-03-01

    Siegel's results [Siegel, C. L. (1929) Abh. Preuss. Akad. Wiss. Phys.-Math. Kl. 1] on the transcendence and algebraic independence of values of E-functions are refined to obtain the best possible bound for the measures of irrationality and linear independence of values of arbitrary E-functions at rational points. Our results show that values of E-functions at rational points have measures of diophantine approximations typical to "almost all" numbers. In particular, any such number has the "2 + epsilon" exponent of irrationality: Theta - p/q > q(-2-epsilon) for relatively prime rational integers p,q, with q >/= q(0) (Theta, epsilon). These results answer some problems posed by Lang. The methods used here are based on the introduction of graded Padé approximations to systems of functions satisfying linear differential equations with rational function coefficients. The constructions and proofs of this paper were used in the functional (nonarithmetic case) in a previous paper [Chudnovsky, D. V. & Chudnovsky, G. V. (1983) Proc. Natl. Acad. Sci. USA 80, 5158-5162].

  15. Detecting Change-Point via Saddlepoint Approximations

    Institute of Scientific and Technical Information of China (English)

    Zhaoyuan LI; Maozai TIAN

    2017-01-01

    It's well-known that change-point problem is an important part of model statistical analysis.Most of the existing methods are not robust to criteria of the evaluation of change-point problem.In this article,we consider "mean-shift" problem in change-point studies.A quantile test of single quantile is proposed based on saddlepoint approximation method.In order to utilize the information at different quantile of the sequence,we further construct a "composite quantile test" to calculate the probability of every location of the sequence to be a change-point.The location of change-point can be pinpointed rather than estimated within a interval.The proposed tests make no assumptions about the functional forms of the sequence distribution and work sensitively on both large and small size samples,the case of change-point in the tails,and multiple change-points situation.The good performances of the tests are confirmed by simulations and real data analysis.The saddlepoint approximation based distribution of the test statistic that is developed in the paper is of independent interest and appealing.This finding may be of independent interest to the readers in this research area.

  16. Traveling cluster approximation for uncorrelated amorphous systems

    International Nuclear Information System (INIS)

    Kaplan, T.; Sen, A.K.; Gray, L.J.; Mills, R.

    1985-01-01

    In this paper, the authors apply the TCA concepts to spatially disordered, uncorrelated systems (e.g., fluids or amorphous metals without short-range order). This is the first approximation scheme for amorphous systems that takes cluster effects into account while preserving the Herglotz property for any amount of disorder. They have performed some computer calculations for the pair TCA, for the model case of delta-function potentials on a one-dimensional random chain. These results are compared with exact calculations (which, in principle, taken into account all cluster effects) and with the CPA, which is the single-site TCA. The density of states for the pair TCA clearly shows some improvement over the CPA, and yet, apparently, the pair approximation distorts some of the features of the exact results. They conclude that the effects of large clusters are much more important in an uncorrelated liquid metal than in a substitutional alloy. As a result, the pair TCA, which does quite a nice job for alloys, is not adequate for the liquid. Larger clusters must be treated exactly, and therefore an n-TCA with n > 2 must be used

  17. Approximating Markov Chains: What and why

    International Nuclear Information System (INIS)

    Pincus, S.

    1996-01-01

    Much of the current study of dynamical systems is focused on geometry (e.g., chaos and bifurcations) and ergodic theory. Yet dynamical systems were originally motivated by an attempt to open-quote open-quote solve,close-quote close-quote or at least understand, a discrete-time analogue of differential equations. As such, numerical, analytical solution techniques for dynamical systems would seem desirable. We discuss an approach that provides such techniques, the approximation of dynamical systems by suitable finite state Markov Chains. Steady state distributions for these Markov Chains, a straightforward calculation, will converge to the true dynamical system steady state distribution, with appropriate limit theorems indicated. Thus (i) approximation by a computable, linear map holds the promise of vastly faster steady state solutions for nonlinear, multidimensional differential equations; (ii) the solution procedure is unaffected by the presence or absence of a probability density function for the attractor, entirely skirting singularity, fractal/multifractal, and renormalization considerations. The theoretical machinery underpinning this development also implies that under very general conditions, steady state measures are weakly continuous with control parameter evolution. This means that even though a system may change periodicity, or become chaotic in its limiting behavior, such statistical parameters as the mean, standard deviation, and tail probabilities change continuously, not abruptly with system evolution. copyright 1996 American Institute of Physics

  18. Approximation to estimation of critical state

    International Nuclear Information System (INIS)

    Orso, Jose A.; Rosario, Universidad Nacional

    2011-01-01

    The position of the control rod for the critical state of the nuclear reactor depends on several factors; including, but not limited to the temperature and configuration of the fuel elements inside the core. Therefore, the position can not be known in advance. In this paper theoretical estimations are developed to obtain an equation that allows calculating the position of the control rod for the critical state (approximation to critical) of the nuclear reactor RA-4; and will be used to create a software performing the estimation by entering the count rate of the reactor pulse channel and the length obtained from the control rod (in cm). For the final estimation of the approximation to critical state, a function obtained experimentally indicating control rods reactivity according to the function of their position is used, work is done mathematically to obtain a linear function, which gets the length of the control rod, which has to be removed to get the reactor in critical position. (author) [es

  19. Analytic approximate radiation effects due to Bremsstrahlung

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2012-01-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R and D Energy Recovery Linac.

  20. Approximate analytic theory of the multijunction grill

    International Nuclear Information System (INIS)

    Hurtak, O.; Preinhaelter, J.

    1991-03-01

    An approximate analytic theory of the general multijunction grill is developed. Omitting the evanescent modes in the subsidiary waveguides both at the junction and at the grill mouth and neglecting multiple wave reflection, simple formulae are derived for the reflection coefficient, the amplitudes of the incident and reflected waves and the spectral power density. These quantities are expressed through the basic grill parameters (the electric length of the structure and phase shift between adjacent waveguides) and two sets of reflection coefficients describing wave reflections in the subsidiary waveguides at the junction and at the plasma. Approximate expressions for these coefficients are also given. The results are compared with a numerical solution of two specific examples; they were shown to be useful for the optimization and design of multijunction grills.For the JET structure it is shown that, in the case of a dense plasma,many results can be obtained from the simple formulae for a two-waveguide multijunction grill. (author) 12 figs., 12 refs

  1. Limitations of the acoustic approximation for seismic crosshole tomography

    Science.gov (United States)

    Marelli, Stefano; Maurer, Hansruedi

    2010-05-01

    Modelling and inversion of seismic crosshole data is a challenging task in terms of computational resources. Even with the significant increase in power of modern supercomputers, full three-dimensional elastic modelling of high-frequency waveforms generated from hundreds of source positions in several boreholes is still an intractable task. However, it has been recognised that full waveform inversion offers substantially more information compared with traditional travel time tomography. A common strategy to reduce the computational burden for tomographic inversion is to approximate the true elastic wave propagation by acoustic modelling. This approximation assumes that the solid rock units can be treated like fluids (with no shear wave propagation) and is generally considered to be satisfactory so long as only the earliest portions of the recorded seismograms are considered. The main assumption is that most of the energy in the early parts of the recorded seismograms is carried by the faster compressional (P-) waves. Although a limited number of studies exist on the effects of this approximation for surface/marine synthetic reflection seismic data, and show it to be generally acceptable for models with low to moderate impedance contrasts, to our knowledge no comparable studies have been published on the effects for cross-borehole transmission data. An obvious question is whether transmission tomography should be less affected by elastic effects than surface reflection data when only short time windows are applied to primarily capture the first arriving wavetrains. To answer this question we have performed 2D and 3D investigations on the validity of the acoustic approximation for an elastic medium and using crosshole source-receiver configurations. In order to generate consistent acoustic and elastic data sets, we ran the synthetic tests using the same finite-differences time-domain elastic modelling code for both types of simulations. The acoustic approximation was

  2. Constrained Optimization via Stochastic approximation with a simultaneous perturbation gradient approximation

    DEFF Research Database (Denmark)

    Sadegh, Payman

    1997-01-01

    This paper deals with a projection algorithm for stochastic approximation using simultaneous perturbation gradient approximation for optimization under inequality constraints where no direct gradient of the loss function is available and the inequality constraints are given as explicit functions...... of the optimization parameters. It is shown that, under application of the projection algorithm, the parameter iterate converges almost surely to a Kuhn-Tucker point, The procedure is illustrated by a numerical example, (C) 1997 Elsevier Science Ltd....

  3. New Tests of the Fixed Hotspot Approximation

    Science.gov (United States)

    Gordon, R. G.; Andrews, D. L.; Horner-Johnson, B. C.; Kumar, R. R.

    2005-05-01

    We present new methods for estimating uncertainties in plate reconstructions relative to the hotspots and new tests of the fixed hotspot approximation. We find no significant motion between Pacific hotspots, on the one hand, and Indo-Atlantic hotspots, on the other, for the past ~ 50 Myr, but large and significant apparent motion before 50 Ma. Whether this motion is truly due to motion between hotspots or alternatively due to flaws in the global plate motion circuit can be tested with paleomagnetic data. These tests give results consistent with the fixed hotspot approximation and indicate significant misfits when a relative plate motion circuit through Antarctica is employed for times before 50 Ma. If all of the misfit to the global plate motion circuit is due to motion between East and West Antarctica, then that motion is 800 ± 500 km near the Ross Sea Embayment and progressively less along the Trans-Antarctic Mountains toward the Weddell Sea. Further paleomagnetic tests of the fixed hotspot approximation can be made. Cenozoic and Cretaceous paleomagnetic data from the Pacific plate, along with reconstructions of the Pacific plate relative to the hotspots, can be used to estimate an apparent polar wander (APW) path of Pacific hotspots. An APW path of Indo-Atlantic hotspots can be similarly estimated (e.g. Besse & Courtillot 2002). If both paths diverge in similar ways from the north pole of the hotspot reference frame, it would indicate that the hotspots have moved in unison relative to the spin axis, which may be attributed to true polar wander. If the two paths diverge from one another, motion between Pacific hotspots and Indo-Atlantic hotspots would be indicated. The general agreement of the two paths shows that the former is more important than the latter. The data require little or no motion between groups of hotspots, but up to ~10 mm/yr of motion is allowed within uncertainties. The results disagree, in particular, with the recent extreme interpretation of

  4. Mechanical Stresses Induced by Compression in Castings of the Load-carrying Grate

    Directory of Open Access Journals (Sweden)

    Słowik J.

    2016-06-01

    Full Text Available The main aim of this study was to examine the compression-induced state of stress arising in castings of the guide grates during operation in pusher-type furnaces for heat treatment. The effect of grate compression is caused by its forced movement in the furnace. The introduction of flexible segments to the grate structure changes in a significant way the stress distribution, mainly by decreasing its value, and consequently considerably extends the lifetime of the grates. The stress distribution was examined in the grates with flexible segments arranged crosswise (normal to the direction of the grate compression and lengthwise (following the direction of force. A regression equation was derived to describe the relationship between the stress level in a row of ribs in the grate and the number of flexible segments of a lengthwise orientation placed in this row. It was found that, regardless of the distribution of the flexible segments in a row, the stress values were similar in all the ribs included in this row, and in a given row of the ribs/flexible segments a similar state of stress prevailed, irrespective of the position of this row in the whole structure of the grate and of the number of the ribs/flexible segments introduced therein. Parts of the grate responsible for the stress transfer were indicated and also parts which play the role of an element bonding the structure.

  5. Mechanism of Ovarian Epithelial Tumor Predisposition in Individuals Carrying Germline BRCA1 Mutations

    Science.gov (United States)

    2006-12-01

    progesterone, and the peptide hormone mullerian inhibiting substance (MIS). MIS belongs to the TGF-beta family [21]. It is secreted by Sertoli cells of the...mullerian hormone in transgenic mice. Endocrinology 2001;142:4040-6. [30] Conolly DC, Bao R, Nikitin AY, et al. Female mice chimeric for expression...the grey text below (by clicking once on the grey text) and start typing in the designated section. The text is pre-formatted in Times New Roman

  6. Factorized distorted wave approximation for the (e,2e) reaction on atoms : coplanar symmetric

    International Nuclear Information System (INIS)

    Fuss, I.; McCarthy, I.E.; Noble, C.J.; Weigold, E.

    1977-02-01

    The coplanar symmetric (e,2e) cross section has been studied in the intermediate energy region for the valence states of the inert gases He, Ar and Ne. Experimental measurements at 200, 400, 800, and 1200eV for He, and at 400, 800 and 1200eV for Ne and Ar, are compared with calculations based on the factorized half-off-shell distorted-wave impulse approximation. Calculations are carried out using partial wave expanded optical model wave functions which describe elastic scattering for the distorted waves, the eikonal approximation, and the plane wave approximation. (Author)

  7. US Public Opinion on Carrying Firearms in Public Places.

    Science.gov (United States)

    Wolfson, Julia A; Teret, Stephen P; Azrael, Deborah; Miller, Matthew

    2017-06-01

    To estimate US public opinion, overall and by gun ownership status, about the public places where legal gun owners should be allowed to carry firearms. We fielded an online survey among 3949 adults, including an oversample of gun owners and veterans, in April 2015. We used cross-tabulations with survey weights to generate nationally representative estimates. Fewer than 1 in 3 US adults supported gun carrying in any of the specified venues. Support for carrying in public was consistently higher among gun owners than among non-gun owners. Overall, support for carrying in public was lowest for schools (19%; 95% confidence interval [CI] = 16.7, 21.1), bars (18%; 95% CI = 15.9, 20.6), and sports stadiums (17%; 95% CI = 15.0, 19.5). Most Americans, including most gun owners, support restricting public places legal gun owners can carry firearms. These views contrast sharply with the current trend in state legislatures of expanding where, how, and by whom guns can be carried in public. Recent state laws and proposed federal legislation that would force states to honor out-of-state concealed carry permits are out of step with American public opinion.

  8. Discontinuous approximate molecular electronic wave-functions

    International Nuclear Information System (INIS)

    Stuebing, E.W.; Weare, J.H.; Parr, R.G.

    1977-01-01

    Following Kohn, Schlosser and Marcus and Weare and Parr an energy functional is defined for a molecular problem which is stationary in the neighborhood of the exact solution and permits the use of trial functions that are discontinuous. The functional differs from the functional of the standard Rayleigh--Ritz method in the replacement of the usual kinetic energy operators circumflex T(μ) with operators circumflex T'(μ) = circumflex T(μ) + circumflex I(μ) generates contributions from surfaces of nonsmooth behavior. If one uses the nabla PSI . nabla PSI way of writing the usual kinetic energy contributions, one must add surface integrals of the product of the average of nabla PSI and the change of PSI across surfaces of discontinuity. Various calculations are carried out for the hydrogen molecule-ion and the hydrogen molecule. It is shown that ab initio calculations on molecules can be carried out quite generally with a basis of atomic orbitals exactly obeying the zero-differential overlap (ZDO) condition, and a firm basis is thereby provided for theories of molecular electronic structure invoking the ZDO aoproximation. It is demonstrated that a valence bond theory employing orbitals exactly obeying ZDO can provide an adequate account of chemical bonding, and several suggestions are made regarding molecular orbital methods

  9. Random phase approximation in relativistic approach

    International Nuclear Information System (INIS)

    Ma Zhongyu; Yang Ding; Tian Yuan; Cao Ligang

    2009-01-01

    Some special issues of the random phase approximation(RPA) in the relativistic approach are reviewed. A full consistency and proper treatment of coupling to the continuum are responsible for the successful application of the RPA in the description of dynamical properties of finite nuclei. The fully consistent relativistic RPA(RRPA) requires that the relativistic mean filed (RMF) wave function of the nucleus and the RRPA correlations are calculated in a same effective Lagrangian and the consistent treatment of the Dirac sea of negative energy states. The proper treatment of the single particle continuum with scattering asymptotic conditions in the RMF and RRPA is discussed. The full continuum spectrum can be described by the single particle Green's function and the relativistic continuum RPA is established. A separable form of the paring force is introduced in the relativistic quasi-particle RPA. (authors)

  10. Random-phase approximation and broken symmetry

    International Nuclear Information System (INIS)

    Davis, E.D.; Heiss, W.D.

    1986-01-01

    The validity of the random-phase approximation (RPA) in broken-symmetry bases is tested in an appropriate many-body system for which exact solutions are available. Initially the regions of stability of the self-consistent quasiparticle bases in this system are established and depicted in a 'phase' diagram. It is found that only stable bases can be used in an RPA calculation. This is particularly true for those RPA modes which are not associated with the onset of instability of the basis; it is seen that these modes do not describe any excited state when the basis is unstable, although from a formal point of view they remain acceptable. The RPA does well in a stable broken-symmetry basis provided one is not too close to a point where a phase transition occurs. This is true for both energies and matrix elements. (author)

  11. Local facet approximation for image stitching

    Science.gov (United States)

    Li, Jing; Lai, Shiming; Liu, Yu; Wang, Zhengming; Zhang, Maojun

    2018-01-01

    Image stitching aims at eliminating multiview parallax and generating a seamless panorama given a set of input images. This paper proposes a local adaptive stitching method, which could achieve both accurate and robust image alignments across the whole panorama. A transformation estimation model is introduced by approximating the scene as a combination of neighboring facets. Then, the local adaptive stitching field is constructed using a series of linear systems of the facet parameters, which enables the parallax handling in three-dimensional space. We also provide a concise but effective global projectivity preserving technique that smoothly varies the transformations from local adaptive to global planar. The proposed model is capable of stitching both normal images and fisheye images. The efficiency of our method is quantitatively demonstrated in the comparative experiments on several challenging cases.

  12. Approximated solutions to the Schroedinger equation

    International Nuclear Information System (INIS)

    Rico, J.F.; Fernandez-Alonso, J.I.

    1977-01-01

    The authors are currently working on a couple of the well-known deficiencies of the variation method and present here some of the results that have been obtained so far. The variation method does not give information a priori on the trial functions best suited for a particular problem nor does it give information a posteriori on the degree of precision attained. In order to clarify the origin of both difficulties, a geometric interpretation of the variation method is presented. This geometric interpretation is the starting point for the exact formal solution to the fundamental state and for the step-by-step approximations to the exact solution which are also given. Some comments on these results are included. (Auth.)

  13. Vortex sheet approximation of boundary layers

    International Nuclear Information System (INIS)

    Chorin, A.J.

    1978-01-01

    a grid free method for approximating incomprssible boundary layers is introduced. The computational elements are segments of vortex sheets. The method is related to the earlier vortex method; simplicity is achieved at the cost of replacing the Navier-Stokes equations by the Prandtl boundary layer equations. A new method for generating vorticity at boundaries is also presented; it can be used with the earlier voartex method. The applications presented include (i) flat plate problems, and (ii) a flow problem in a model cylinder- piston assembly, where the new method is used near walls and an improved version of the random choice method is used in the interior. One of the attractive features of the new method is the ease with which it can be incorporated into hybrid algorithms

  14. Approximate Stokes Drift Profiles in Deep Water

    Science.gov (United States)

    Breivik, Øyvind; Janssen, Peter A. E. M.; Bidlot, Jean-Raymond

    2014-09-01

    A deep-water approximation to the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profile gives a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The alternative profile comes at no added numerical cost compared to the monochromatic profile.

  15. Analytical approximations for wide and narrow resonances

    International Nuclear Information System (INIS)

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2005-01-01

    This paper aims at developing analytical expressions for the adjoint neutron spectrum in the resonance energy region, taking into account both narrow and wide resonance approximations, in order to reduce the numerical computations involved. These analytical expressions, besides reducing computing time, are very simple from a mathematical point of view. The results obtained with this analytical formulation were compared to a reference solution obtained with a numerical method previously developed to solve the neutron balance adjoint equations. Narrow and wide resonances of U 238 were treated and the analytical procedure gave satisfactory results as compared with the reference solution, for the resonance energy range. The adjoint neutron spectrum is useful to determine the neutron resonance absorption, so that multigroup adjoint cross sections used by the adjoint diffusion equation can be obtained. (author)

  16. Analytical approximations for wide and narrow resonances

    Energy Technology Data Exchange (ETDEWEB)

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: aquilino@lmp.ufrj.br

    2005-07-01

    This paper aims at developing analytical expressions for the adjoint neutron spectrum in the resonance energy region, taking into account both narrow and wide resonance approximations, in order to reduce the numerical computations involved. These analytical expressions, besides reducing computing time, are very simple from a mathematical point of view. The results obtained with this analytical formulation were compared to a reference solution obtained with a numerical method previously developed to solve the neutron balance adjoint equations. Narrow and wide resonances of U{sup 238} were treated and the analytical procedure gave satisfactory results as compared with the reference solution, for the resonance energy range. The adjoint neutron spectrum is useful to determine the neutron resonance absorption, so that multigroup adjoint cross sections used by the adjoint diffusion equation can be obtained. (author)

  17. The Bloch Approximation in Periodically Perforated Media

    International Nuclear Information System (INIS)

    Conca, C.; Gomez, D.; Lobo, M.; Perez, E.

    2005-01-01

    We consider a periodically heterogeneous and perforated medium filling an open domain Ω of R N . Assuming that the size of the periodicity of the structure and of the holes is O(ε),we study the asymptotic behavior, as ε → 0, of the solution of an elliptic boundary value problem with strongly oscillating coefficients posed in Ω ε (Ω ε being Ω minus the holes) with a Neumann condition on the boundary of the holes. We use Bloch wave decomposition to introduce an approximation of the solution in the energy norm which can be computed from the homogenized solution and the first Bloch eigenfunction. We first consider the case where Ωis R N and then localize the problem for abounded domain Ω, considering a homogeneous Dirichlet condition on the boundary of Ω

  18. Approximate spacetime symmetries and conservation laws

    Energy Technology Data Exchange (ETDEWEB)

    Harte, Abraham I [Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States)], E-mail: harte@uchicago.edu

    2008-10-21

    A notion of geometric symmetry is introduced that generalizes the classical concepts of Killing fields and other affine collineations. There is a sense in which flows under these new vector fields minimize deformations of the connection near a specified observer. Any exact affine collineations that may exist are special cases. The remaining vector fields can all be interpreted as analogs of Poincare and other well-known symmetries near timelike worldlines. Approximate conservation laws generated by these objects are discussed for both geodesics and extended matter distributions. One example is a generalized Komar integral that may be taken to define the linear and angular momenta of a spacetime volume as seen by a particular observer. This is evaluated explicitly for a gravitational plane wave spacetime.

  19. Coated sphere scattering by geometric optics approximation.

    Science.gov (United States)

    Mengran, Zhai; Qieni, Lü; Hongxia, Zhang; Yinxin, Zhang

    2014-10-01

    A new geometric optics model has been developed for the calculation of light scattering by a coated sphere, and the analytic expression for scattering is presented according to whether rays hit the core or not. The ray of various geometric optics approximation (GOA) terms is parameterized by the number of reflections in the coating/core interface, the coating/medium interface, and the number of chords in the core, with the degeneracy path and repeated path terms considered for the rays striking the core, which simplifies the calculation. For the ray missing the core, the various GOA terms are dealt with by a homogeneous sphere. The scattering intensity of coated particles are calculated and then compared with those of Debye series and Aden-Kerker theory. The consistency of the results proves the validity of the method proposed in this work.

  20. Approximation by max-product type operators

    CERN Document Server

    Bede, Barnabás; Gal, Sorin G

    2016-01-01

    This monograph presents a broad treatment of developments in an area of constructive approximation involving the so-called "max-product" type operators. The exposition highlights the max-product operators as those which allow one to obtain, in many cases, more valuable estimates than those obtained by classical approaches. The text considers a wide variety of operators which are studied for a number of interesting problems such as quantitative estimates, convergence, saturation results, localization, to name several. Additionally, the book discusses the perfect analogies between the probabilistic approaches of the classical Bernstein type operators and of the classical convolution operators (non-periodic and periodic cases), and the possibilistic approaches of the max-product variants of these operators. These approaches allow for two natural interpretations of the max-product Bernstein type operators and convolution type operators: firstly, as possibilistic expectations of some fuzzy variables, and secondly,...

  1. Polarized constituent quarks in NLO approximation

    International Nuclear Information System (INIS)

    Khorramian, Ali N.; Tehrani, S. Atashbar; Mirjalili, A.

    2006-01-01

    The valon representation provides a basis between hadrons and quarks, in terms of which the bound-state and scattering properties of hadrons can be united and described. We studied polarized valon distributions which have an important role in describing the spin dependence of parton distribution in leading and next-to-leading order approximation. Convolution integral in frame work of valon model as a useful tool, was used in polarized case. To obtain polarized parton distributions in a proton we need to polarized valon distribution in a proton and polarized parton distributions inside the valon. We employed Bernstein polynomial averages to get unknown parameters of polarized valon distributions by fitting to available experimental data

  2. Approximate Sensory Data Collection: A Survey.

    Science.gov (United States)

    Cheng, Siyao; Cai, Zhipeng; Li, Jianzhong

    2017-03-10

    With the rapid development of the Internet of Things (IoTs), wireless sensor networks (WSNs) and related techniques, the amount of sensory data manifests an explosive growth. In some applications of IoTs and WSNs, the size of sensory data has already exceeded several petabytes annually, which brings too many troubles and challenges for the data collection, which is a primary operation in IoTs and WSNs. Since the exact data collection is not affordable for many WSN and IoT systems due to the limitations on bandwidth and energy, many approximate data collection algorithms have been proposed in the last decade. This survey reviews the state of the art of approximatedatacollectionalgorithms. Weclassifythemintothreecategories: themodel-basedones, the compressive sensing based ones, and the query-driven ones. For each category of algorithms, the advantages and disadvantages are elaborated, some challenges and unsolved problems are pointed out, and the research prospects are forecasted.

  3. Approximate Sensory Data Collection: A Survey

    Directory of Open Access Journals (Sweden)

    Siyao Cheng

    2017-03-01

    Full Text Available With the rapid development of the Internet of Things (IoTs, wireless sensor networks (WSNs and related techniques, the amount of sensory data manifests an explosive growth. In some applications of IoTs and WSNs, the size of sensory data has already exceeded several petabytes annually, which brings too many troubles and challenges for the data collection, which is a primary operation in IoTs and WSNs. Since the exact data collection is not affordable for many WSN and IoT systems due to the limitations on bandwidth and energy, many approximate data collection algorithms have been proposed in the last decade. This survey reviews the state of the art of approximatedatacollectionalgorithms. Weclassifythemintothreecategories: themodel-basedones, the compressive sensing based ones, and the query-driven ones. For each category of algorithms, the advantages and disadvantages are elaborated, some challenges and unsolved problems are pointed out, and the research prospects are forecasted.

  4. Approximate truncation robust computed tomography—ATRACT

    International Nuclear Information System (INIS)

    Dennerlein, Frank; Maier, Andreas

    2013-01-01

    We present an approximate truncation robust algorithm to compute tomographic images (ATRACT). This algorithm targets at reconstructing volumetric images from cone-beam projections in scenarios where these projections are highly truncated in each dimension. It thus facilitates reconstructions of small subvolumes of interest, without involving prior knowledge about the object. Our method is readily applicable to medical C-arm imaging, where it may contribute to new clinical workflows together with a considerable reduction of x-ray dose. We give a detailed derivation of ATRACT that starts from the conventional Feldkamp filtered-backprojection algorithm and that involves, as one component, a novel original formula for the inversion of the two-dimensional Radon transform. Discretization and numerical implementation are discussed and reconstruction results from both, simulated projections and first clinical data sets are presented. (paper)

  5. Hydromagnetic turbulence in the direct interaction approximation

    International Nuclear Information System (INIS)

    Nagarajan, S.

    1975-01-01

    The dissertation is concerned with the nature of turbulence in a medium with large electrical conductivity. Three distinct though inter-related questions are asked. Firstly, the evolution of a weak, random initial magnetic field in a highly conducting, isotropically turbulent fluid is discussed. This was first discussed in the paper 'Growth of Turbulent Magnetic Fields' by Kraichnan and Nagargian. The Physics of Fluids, volume 10, number 4, 1967. Secondly, the direct interaction approximation for hydromagnetic turbulence maintained by stationary, isotropic, random stirring forces is formulated in the wave-number-frequency domain. Thirdly, the dynamical evolution of a weak, random, magnetic excitation in a turbulent electrically conducting fluid is examined under varying kinematic conditions. (G.T.H.)

  6. Peculiarities of approximation for reactor neutron energy spectra during computerized simulation of radiation defects

    International Nuclear Information System (INIS)

    Kupchishin, A.A.; Kupchishin, A.I.; Stusik, G.; Omarbekova, Zh.

    2001-01-01

    Peculiarities of approximation for reactor neutron energy spectra during radiation defects computerized simulation were discussed. Approximation of neutron spectra N(E) was carried out by N(E)=α·exp(-β·E)·sh(γ·E) formula (1), where α, β, γ - approximation coefficients. In the capacity of operating reactor data experimental data on 235 U and 239 Pu were applied. The algorithm was designed, and acting soft ware for spectra parameters calculation was developed. The following values of approximation parameters were obtained: α=80.8; β=0.935;γ=2.04 (for uranium and plutonium these coefficients are less distinguishing). Then with use of formula 1 and α, β, γ coefficients the approximation curves were constructed. These curves satisfactorily describe existing experimental data and allowing to use its for radiation defects simulation in the reactor materials

  7. On the validity of the use of a localized approximation for helical beams. I. Formal aspects

    Science.gov (United States)

    Gouesbet, Gérard; André Ambrosio, Leonardo

    2018-03-01

    The description of an electromagnetic beam for use in light scattering theories may be carried out by using an expansion over vector spherical wave functions with expansion coefficients expressed in terms of Beam Shape Coefficients (BSCs). A celebrated method to evaluate these BSCs has been the use of localized approximations (with several existing variants). We recently established that the use of any existing localized approximation is of limited validity in the case of Bessel and Mathieu beams. In the present paper, we address a warning against the use of any existing localized approximation in the case of helical beams. More specifically, we demonstrate that a procedure used to validate any existing localized approximation fails in the case of helical beams. Numerical computations in a companion paper will confirm that existing localized approximations are of limited validity in the case of helical beams.

  8. Research on Psychological Carrying Capacity of Tourism Destination

    Institute of Scientific and Technical Information of China (English)

    Fan Zhiyong; Zhong Sheng

    2009-01-01

    As a part of the carrying capacity system of tourism destination,tourism psychological carrying capacity and its makeup are very important indexes which reflect the harmonious development of tourism destination develops harmoniously,but the academy has not paid enough attention to them.Based on the concept and connotation of psychological carrying capacity,this paper explains the influencing factors which affect the psychological capacity of the tourist and the resident after the acknowledged concept,and then designs a harmonious development model of tourism destination.Finally,it offers some countermeasures against the overloading psychological capacity.

  9. Approximation Preserving Reductions among Item Pricing Problems

    Science.gov (United States)

    Hamane, Ryoso; Itoh, Toshiya; Tomita, Kouhei

    When a store sells items to customers, the store wishes to determine the prices of the items to maximize its profit. Intuitively, if the store sells the items with low (resp. high) prices, the customers buy more (resp. less) items, which provides less profit to the store. So it would be hard for the store to decide the prices of items. Assume that the store has a set V of n items and there is a set E of m customers who wish to buy those items, and also assume that each item i ∈ V has the production cost di and each customer ej ∈ E has the valuation vj on the bundle ej ⊆ V of items. When the store sells an item i ∈ V at the price ri, the profit for the item i is pi = ri - di. The goal of the store is to decide the price of each item to maximize its total profit. We refer to this maximization problem as the item pricing problem. In most of the previous works, the item pricing problem was considered under the assumption that pi ≥ 0 for each i ∈ V, however, Balcan, et al. [In Proc. of WINE, LNCS 4858, 2007] introduced the notion of “loss-leader, ” and showed that the seller can get more total profit in the case that pi < 0 is allowed than in the case that pi < 0 is not allowed. In this paper, we derive approximation preserving reductions among several item pricing problems and show that all of them have algorithms with good approximation ratio.

  10. Approximate direct georeferencing in national coordinates

    Science.gov (United States)

    Legat, Klaus

    Direct georeferencing has gained an increasing importance in photogrammetry and remote sensing. Thereby, the parameters of exterior orientation (EO) of an image sensor are determined by GPS/INS, yielding results in a global geocentric reference frame. Photogrammetric products like digital terrain models or orthoimages, however, are often required in national geodetic datums and mapped by national map projections, i.e., in "national coordinates". As the fundamental mathematics of photogrammetry is based on Cartesian coordinates, the scene restitution is often performed in a Cartesian frame located at some central position of the image block. The subsequent transformation to national coordinates is a standard problem in geodesy and can be done in a rigorous manner-at least if the formulas of the map projection are rigorous. Drawbacks of this procedure include practical deficiencies related to the photogrammetric processing as well as the computational cost of transforming the whole scene. To avoid these problems, the paper pursues an alternative processing strategy where the EO parameters are transformed prior to the restitution. If only this transition was done, however, the scene would be systematically distorted. The reason is that the national coordinates are not Cartesian due to the earth curvature and the unavoidable length distortion of map projections. To settle these distortions, several corrections need to be applied. These are treated in detail for both passive and active imaging. Since all these corrections are approximations only, the resulting technique is termed "approximate direct georeferencing". Still, the residual distortions are usually very low as is demonstrated by simulations, rendering the technique an attractive approach to direct georeferencing.

  11. Calculating the Optimum Angle of Filament-Wound Pipes in Natural Gas Transmission Pipelines Using Approximation Methods.

    Science.gov (United States)

    Reza Khoshravan Azar, Mohammad; Emami Satellou, Ali Akbar; Shishesaz, Mohammad; Salavati, Bahram

    2013-04-01

    Given the increasing use of composite materials in various industries, oil and gas industry also requires that more attention should be paid to these materials. Furthermore, due to variation in choice of materials, the materials needed for the mechanical strength, resistance in critical situations such as fire, costs and other priorities of the analysis carried out on them and the most optimal for achieving certain goals, are introduced. In this study, we will try to introduce appropriate choice for use in the natural gas transmission composite pipelines. Following a 4-layered filament-wound (FW) composite pipe will consider an offer our analyses under internal pressure. The analyses' results will be calculated for different combinations of angles 15 deg, 30 deg, 45 deg, 55 deg, 60 deg, 75 deg, and 80 deg. Finally, we will compare the calculated values and the optimal angle will be gained by using the Approximation methods. It is explained that this layering is as the symmetrical.

  12. Analysis of Environmental Carrying Capacity with Emergy Perspective of Jeju Island

    Directory of Open Access Journals (Sweden)

    Chanhoon Jung

    2018-05-01

    Full Text Available Jeju Island experienced an approximately 42% increase in energy consumption from 2006 to 2015 and the demand for energy consumption is expected to continue to increase. Thus, Jeju Island is planning a project entitled “Carbon Free Island by 2030” to promote sustainable development and is required to estimate the environmental carrying capacity for future energy demand changes. The purpose of this study was to calculate the emergy inherent in Jeju Island’s energy, materials, and information in 2015 using the emergy analysis method and local characteristics. In addition, this study aimed to estimate the emergy indices to evaluate the environmental carrying capacity for sustainable development in 2005, 2015, and 2030 considering the future energy demand. This study’s outputs provide the environmental carrying capacity with emergy indices, such as the percent renewable (%Renew, emergy yield ratio (EYR, environmental loading ratio (ELR, sustainability index (SI, and carrying capacity of the population (CCP for social and economic activities on Jeju Island, which are expected to be saturated. These findings show regions with heavy tourism require development strategies, including the concept of environmental carrying capacity.

  13. Foreign exchange predictability and the carry trade: a decomposition approach

    Czech Academy of Sciences Publication Activity Database

    Anatolyev, Stanislav; Gospodinov, N.; Jamali, I.; Liu, X.

    2017-01-01

    Roč. 42, June (2017), s. 199-211 ISSN 0927-5398 Institutional support: RVO:67985998 Keywords : exchange rate forecasting * carry trade * return decomposition Subject RIV: AH - Economics OBOR OECD: Finance Impact factor: 0.979, year: 2016

  14. Study on Tourist Carrying Capacity Based on Matter Element Analysis

    Institute of Scientific and Technical Information of China (English)

    LiuYunguo; FanTing; LiXin; ZhouMing; WangXianhai

    2005-01-01

    This paper proposes that it is necessary to implement the concept of tourist carrying capacity to facilitate the tourism planning, and presents a method to evaluate the carrying capacity. The method called matter element analysis can solve the uncertain and incompatible problem of the evaluated factors in assessing carrying capacity.The current state of a destination's carrying capacity can be determined by establishing the standard indexes and the matter element model. Through the evaluating of the travel industry zones of the Autonomous Prefecture of Western Hunan, the method is proved to be simple and feasible, and it is improved to be significant for the tourism planning and determination as well as the sustainable development of the regional tourism.

  15. Estimating the recreational carrying capacity of a lowland river section.

    Science.gov (United States)

    Lorenz, Stefan; Pusch, Martin T

    2012-01-01

    Recreational boating represents a major human use of inland waters in many regions. However, boating tourism may affect the ecological integrity of surface waters in multiple ways. In particular, surface waves produced by boating may disturb freshwater invertebrates, such as interrupting the filtration activity of benthic mussels. As mussels may significantly contribute to self-purification, disturbance may have crucial impacts on water quality, and thus on water tourism. In this paper we calculate the carrying capacity of a river section for sustainable boating tourism based on the preservation of water quality. This approach is complemented by spatial and social approaches for carrying capacity estimates. The ecological carrying capacity significantly decreases with lower water levels during summer. Hence, the analysis of variables that influence the river's carrying capacity allows the formation of recommendations for management measures that integrate social, touristic and ecological aspects.

  16. Assessment of feeding value of vegetable-carried pineapple fruit ...

    African Journals Online (AJOL)

    This study compared the sun-drying characteristics of five blends each (w/w; 1:1, 1:1.5, 1:2, 1:2.5, 1:3) of wheat offal-carried pineapple waste (WO:PW) and brewers' dried grains-carried pineapple waste (BDG:PW), assessed the blends for their nutrient contents and the feeding value of the optimum blends with Red Sokoto ...

  17. Risk approximation in decision making: approximative numeric abilities predict advantageous decisions under objective risk.

    Science.gov (United States)

    Mueller, Silke M; Schiebener, Johannes; Delazer, Margarete; Brand, Matthias

    2018-01-22

    Many decision situations in everyday life involve mathematical considerations. In decisions under objective risk, i.e., when explicit numeric information is available, executive functions and abilities to handle exact numbers and ratios are predictors of objectively advantageous choices. Although still debated, exact numeric abilities, e.g., normative calculation skills, are assumed to be related to approximate number processing skills. The current study investigates the effects of approximative numeric abilities on decision making under objective risk. Participants (N = 153) performed a paradigm measuring number-comparison, quantity-estimation, risk-estimation, and decision-making skills on the basis of rapid dot comparisons. Additionally, a risky decision-making task with exact numeric information was administered, as well as tasks measuring executive functions and exact numeric abilities, e.g., mental calculation and ratio processing skills, were conducted. Approximative numeric abilities significantly predicted advantageous decision making, even beyond the effects of executive functions and exact numeric skills. Especially being able to make accurate risk estimations seemed to contribute to superior choices. We recommend approximation skills and approximate number processing to be subject of future investigations on decision making under risk.

  18. Carrying capacity: the tradition and policy implications of limits

    Directory of Open Access Journals (Sweden)

    Virginia Deane Abernethy

    2001-01-01

    Full Text Available ABSTRACT: Within just the last few centuries, science and technology have enlarged human capabilities and population size until humans now take, for their own use, nearly half of the Earth's net terrestrial primary production. An ethical perspective suggests that potentials to alter, or further increase, humanity's use of global resources should be scrutinized through the lenses of self-interested foresightedness and respect for non-human life. Without overtly invoking ethics, studies of the carrying capacity achieve just this objective. Carrying capacity is an ecological concept that expresses the relationship between a population and the natural environment on which it depends for ongoing sustenance. Carrying capacity assumes limits on the number of individuals that can be supported at a given level of consumption without degrading the environment and, therefore, reducing future carrying capacity. That is, carrying capacity addresses long-term sustainability. Worldviews differ in the importance accorded to the carrying capacity concept. This paper addresses three worldviews - ecological, romantic, and entrepreneurial - and explores the ethics and the policy implications of their contrasting perspectives.

  19. Dynamics of a plasma shell with a carrying out current

    International Nuclear Information System (INIS)

    Komel'kov, V.S.; Kuznetsov, A.P.; Perebejnos, V.V.; Pleshanov, A.S.; Solomonov, M.T.

    1982-01-01

    Experimental data on hydrogen plasma acceleration in continuous medium after plasma escape out from the coaxial plasma accelerator with discharge current approximately 1 MA and initial gas pressure approximately 10 4 Pa are obtained. Modified method of particle calculation in cells qualitatively satisfactorily describes the experiment and indicate a number of quantitative regularities of the process. The investigation made it possible to obtain qualitative characteristics on hydrogen plasma flow and displayed a number of quantitative regularities. Calculation results show the real possibility to obtain high-temperature dense plasma in continuous medium beyond the accelerator boundary

  20. Some properties of dual and approximate dual of fusion frames

    OpenAIRE

    Arefijamaal, Ali Akbar; Neyshaburi, Fahimeh Arabyani

    2016-01-01

    In this paper we extend the notion of approximate dual to fusion frames and present some approaches to obtain dual and approximate alternate dual fusion frames. Also, we study the stability of dual and approximate alternate dual fusion frames.

  1. Approximation algorithms for a genetic diagnostics problem.

    Science.gov (United States)

    Kosaraju, S R; Schäffer, A A; Biesecker, L G

    1998-01-01

    We define and study a combinatorial problem called WEIGHTED DIAGNOSTIC COVER (WDC) that models the use of a laboratory technique called genotyping in the diagnosis of an important class of chromosomal aberrations. An optimal solution to WDC would enable us to define a genetic assay that maximizes the diagnostic power for a specified cost of laboratory work. We develop approximation algorithms for WDC by making use of the well-known problem SET COVER for which the greedy heuristic has been extensively studied. We prove worst-case performance bounds on the greedy heuristic for WDC and for another heuristic we call directional greedy. We implemented both heuristics. We also implemented a local search heuristic that takes the solutions obtained by greedy and dir-greedy and applies swaps until they are locally optimal. We report their performance on a real data set that is representative of the options that a clinical geneticist faces for the real diagnostic problem. Many open problems related to WDC remain, both of theoretical interest and practical importance.

  2. Adaptive approximation of higher order posterior statistics

    KAUST Repository

    Lee, Wonjung

    2014-02-01

    Filtering is an approach for incorporating observed data into time-evolving systems. Instead of a family of Dirac delta masses that is widely used in Monte Carlo methods, we here use the Wiener chaos expansion for the parametrization of the conditioned probability distribution to solve the nonlinear filtering problem. The Wiener chaos expansion is not the best method for uncertainty propagation without observations. Nevertheless, the projection of the system variables in a fixed polynomial basis spanning the probability space might be a competitive representation in the presence of relatively frequent observations because the Wiener chaos approach not only leads to an accurate and efficient prediction for short time uncertainty quantification, but it also allows to apply several data assimilation methods that can be used to yield a better approximate filtering solution. The aim of the present paper is to investigate this hypothesis. We answer in the affirmative for the (stochastic) Lorenz-63 system based on numerical simulations in which the uncertainty quantification method and the data assimilation method are adaptively selected by whether the dynamics is driven by Brownian motion and the near-Gaussianity of the measure to be updated, respectively. © 2013 Elsevier Inc.

  3. Configuring Airspace Sectors with Approximate Dynamic Programming

    Science.gov (United States)

    Bloem, Michael; Gupta, Pramod

    2010-01-01

    In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.

  4. Rainbows: Mie computations and the Airy approximation.

    Science.gov (United States)

    Wang, R T; van de Hulst, H C

    1991-01-01

    Efficient and accurate computation of the scattered intensity pattern by the Mie formulas is now feasible for size parameters up to x = 50,000 at least, which in visual light means spherical drops with diameters up to 6 mm. We present a method for evaluating the Mie coefficients from the ratios between Riccati-Bessel and Neumann functions of successive order. We probe the applicability of the Airy approximation, which we generalize to rainbows of arbitrary p (number of internal reflections = p - 1), by comparing the Mie and Airy intensity patterns. Millimeter size water drops show a match in all details, including the position and intensity of the supernumerary maxima and the polarization. A fairly good match is still seen for drops of 0.1 mm. A small spread in sizes helps to smooth out irrelevant detail. The dark band between the rainbows is used to test more subtle features. We conclude that this band contains not only externally reflected light (p = 0) but also a sizable contribution f rom the p = 6 and p = 7 rainbows, which shift rapidly with wavelength. The higher the refractive index, the closer both theories agree on the first primary rainbow (p = 2) peak for drop diameters as small as 0.02 mm. This may be useful in supporting experimental work.

  5. Dynamical Vertex Approximation for the Hubbard Model

    Science.gov (United States)

    Toschi, Alessandro

    A full understanding of correlated electron systems in the physically relevant situations of three and two dimensions represents a challenge for the contemporary condensed matter theory. However, in the last years considerable progress has been achieved by means of increasingly more powerful quantum many-body algorithms, applied to the basic model for correlated electrons, the Hubbard Hamiltonian. Here, I will review the physics emerging from studies performed with the dynamical vertex approximation, which includes diagrammatic corrections to the local description of the dynamical mean field theory (DMFT). In particular, I will first discuss the phase diagram in three dimensions with a special focus on the commensurate and incommensurate magnetic phases, their (quantum) critical properties, and the impact of fluctuations on electronic lifetimes and spectral functions. In two dimensions, the effects of non-local fluctuations beyond DMFT grow enormously, determining the appearance of a low-temperature insulating behavior for all values of the interaction in the unfrustrated model: Here the prototypical features of the Mott-Hubbard metal-insulator transition, as well as the existence of magnetically ordered phases, are completely overwhelmed by antiferromagnetic fluctuations of exponentially large extension, in accordance with the Mermin-Wagner theorem. Eventually, by a fluctuation diagnostics analysis of cluster DMFT self-energies, the same magnetic fluctuations are identified as responsible for the pseudogap regime in the holed-doped frustrated case, with important implications for the theoretical modeling of the cuprate physics.

  6. Quantum adiabatic approximation and the geometric phase

    International Nuclear Information System (INIS)

    Mostafazadeh, A.

    1997-01-01

    A precise definition of an adiabaticity parameter ν of a time-dependent Hamiltonian is proposed. A variation of the time-dependent perturbation theory is presented which yields a series expansion of the evolution operator U(τ)=summation scr(l) U (scr(l)) (τ) with U (scr(l)) (τ) being at least of the order ν scr(l) . In particular, U (0) (τ) corresponds to the adiabatic approximation and yields Berry close-quote s adiabatic phase. It is shown that this series expansion has nothing to do with the 1/τ expansion of U(τ). It is also shown that the nonadiabatic part of the evolution operator is generated by a transformed Hamiltonian which is off-diagonal in the eigenbasis of the initial Hamiltonian. This suggests the introduction of an adiabatic product expansion for U(τ) which turns out to yield exact expressions for U(τ) for a large number of quantum systems. In particular, a simple application of the adiabatic product expansion is used to show that for the Hamiltonian describing the dynamics of a magnetic dipole in an arbitrarily changing magnetic field, there exists another Hamiltonian with the same eigenvectors for which the Schroedinger equation is exactly solvable. Some related issues concerning geometric phases and their physical significance are also discussed. copyright 1997 The American Physical Society

  7. Magnetic reconnection under anisotropic magnetohydrodynamic approximation

    International Nuclear Information System (INIS)

    Hirabayashi, K.; Hoshino, M.

    2013-01-01

    We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observations. Our results showed that once magnetic reconnection takes place, a firehose-sense (p ∥ >p ⊥ ) pressure anisotropy arises in the downstream region, and the generated slow shocks are quite weak comparing with those in an isotropic MHD. In spite of the weakness of the shocks, however, the resultant reconnection rate is 10%–30% higher than that in an isotropic case. This result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere

  8. When Density Functional Approximations Meet Iron Oxides.

    Science.gov (United States)

    Meng, Yu; Liu, Xing-Wu; Huo, Chun-Fang; Guo, Wen-Ping; Cao, Dong-Bo; Peng, Qing; Dearden, Albert; Gonze, Xavier; Yang, Yong; Wang, Jianguo; Jiao, Haijun; Li, Yongwang; Wen, Xiao-Dong

    2016-10-11

    Three density functional approximations (DFAs), PBE, PBE+U, and Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE), were employed to investigate the geometric, electronic, magnetic, and thermodynamic properties of four iron oxides, namely, α-FeOOH, α-Fe 2 O 3 , Fe 3 O 4 , and FeO. Comparing our calculated results with available experimental data, we found that HSE (a = 0.15) (containing 15% "screened" Hartree-Fock exchange) can provide reliable values of lattice constants, Fe magnetic moments, band gaps, and formation energies of all four iron oxides, while standard HSE (a = 0.25) seriously overestimates the band gaps and formation energies. For PBE+U, a suitable U value can give quite good results for the electronic properties of each iron oxide, but it is challenging to accurately get other properties of the four iron oxides using the same U value. Subsequently, we calculated the Gibbs free energies of transformation reactions among iron oxides using the HSE (a = 0.15) functional and plotted the equilibrium phase diagrams of the iron oxide system under various conditions, which provide reliable theoretical insight into the phase transformations of iron oxides.

  9. The Effects of Computer Assisted Instruction Materials on Approximate Number Skills of Students with Dyscalculia

    Science.gov (United States)

    Mutlu, Yilmaz; Akgün, Levent

    2017-01-01

    The aim of this study is to examine the effects of computer assisted instruction materials on approximate number skills of students with mathematics learning difficulties. The study was carried out with pretest-posttest quasi experimental method with a single subject. The participants of the study consist of a girl and two boys who attend 3rd…

  10. Method for rendering harmless sulfur dioxide-carrying gases and sulfur-carrying waste water from pyrolysis of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Aspegren, O E.A.; Eklund, A J

    1951-03-15

    A method is described for rendering harmless sulfur dioxide-carrying gases, which are formed in processes for the manufacture of solid, liquid, or gaseous products by pyrolysis of oil shale, and thereby to extract valuable products, characterized in that the sulfur dioxide-carrying gases are washed with a solution or sludge obtained by leaching wholly or partly burned-out residues from the pyrolysis.

  11. Saldanha Bay, South Africa III: new production and carrying capacity ...

    African Journals Online (AJOL)

    It is estimated that the total annual production of mussels and oysters, respectively, for a 1 000-ha cultivation area is approximately 40 000–53 000 t y–1 (mainly Mytilus galloprovincialis) and 4 600–6 000 t y–1 (Crassotrea gigas). The combined total production figures constitute only 24–31% of the surplus new production.

  12. Approximate solutions: ramps and periodic variations. Chapter 5

    International Nuclear Information System (INIS)

    1998-01-01

    The aim of reactor regulation is generally to maintain reactor power at the demand power, or to vary it slowly to attain a new demand power. On the other hand, the purpose of reactor shutdown systems (SDS) is to insert rapidly, on actuation, a large negative reactivity in order to minimize an overpower, or limit the energy released during a transient, so that fuel failure is improbable. Control mechanisms are therefore characterized by: their reactivity worth (mk), which must exceed the reactivity effect which the mechanism is designed to compensate; and their insertion rate (mk/s), which must be at least as fast as the effect to be controlled. Table 5.1 gives a summary of the various control mechanisms in a CANDU 6 reactor. The reactivity worth shown for each mechanism is the static reactivity change associated with full movement of the device. In reality, the dynamic reactivity will vary in a continuous manner, not suddenly, as assumed in the previous chapter. The realistic simulation of a reactivity insertion in the reactor must then take into account the rate of insertion of reactivity, which is governed by the insertion speed of the mechanism. We have seen in the previous chapter that it is possible to solved analytically the point-kinetics equations for constant reactivity. We could generalize these solutions to step-wise reactivity variations by linking together the analytic solutions to for a sequence of step changes. This approach is not necessarily the best from a numerical point of view. By introducing one or more simplifying assumptions, it will be possible to obtain an analytical solution of arbitrary variations in reactivity or in the external source. These assumptions will undoubtedly limit the applicability of the results, but the approximate solutions obtained will allow us to describe the reactor behaviour analytically. (author)

  13. [Ecological carrying capacity and Chongming Island's ecological construction].

    Science.gov (United States)

    Wang, Kaiyun; Zou, Chunjing; Kong, Zhenghong; Wang, Tianhou; Chen, Xiaoyong

    2005-12-01

    This paper overviewed the goals of Chongming Island's ecological construction and its background, analyzed the current eco-economic status and constraints of the Island, and put forward some scientific issues on its ecological construction. It was suggested that for the resources-saving and sustainable development of the Island, the researches on its ecological construction should be based on its ecological carrying capacity, fully take the regional characteristics into consideration, and refer the successful development modes at home and abroad. The carrying capacity study should ground on systemic and dynamic views, give a thorough evaluation of the Island's present carrying capacity, simulate its possible changes, and forecast its demands and risks. Operable countermeasures to promote the Island's carrying capacity should be worked out, new industry structure, population scale, and optimized distribution projects conforming to regional carrying capacity should be formulated, and effective ecological security alarming and control system should be built, with the aim of providing suggestions and strategic evidences for the decision-making of economic development and sustainable environmental resources use of the region.

  14. Carrying capacity of water resources in Bandung Basin

    Science.gov (United States)

    Marganingrum, D.

    2018-02-01

    The concept of carrying capacity is widely used in various sectors as a management tool for sustainable development processes. This idea has also been applied in watershed or basin scale. Bandung Basin is the upstream of Citarum watershed known as one of the national strategic areas. This area has developed into a metropolitan area loaded with various environmental problems. Therefore, research that is related to environmental carrying capacity in this area becomes a strategic issue. However, research on environmental carrying capacity that has been done in this area is still partial either in water balance terminology, land suitability, ecological footprint, or balance of supply and demand of resources. This paper describes the application of the concept of integrated environmental carrying capacity in order to overcome the increasing complexity and dynamic environmental problems. The sector that becomes the focus of attention is the issue of water resources. The approach method to be carried out is to combine the concept of maximum balance and system dynamics. The dynamics of the proposed system is the ecological dynamics and population that cannot be separated from one another as a unity of the Bandung Basin ecosystem.

  15. Levitation of current carrying states in the lattice model for the integer quantum Hall effect.

    Science.gov (United States)

    Koschny, T; Potempa, H; Schweitzer, L

    2001-04-23

    The disorder driven quantum Hall to insulator transition is investigated for a two-dimensional lattice model. The Hall conductivity and the localization length are calculated numerically near the transition. For uncorrelated and weakly correlated disorder potentials the current carrying states are annihilated by the negative Chern states originating from the band center. In the presence of correlated disorder potentials with correlation length larger than approximately half the lattice constant the floating up of the critical states in energy without merging is observed. This behavior is similar to the levitation scenario proposed for the continuum model.

  16. Dynamical cluster approximation plus semiclassical approximation study for a Mott insulator and d-wave pairing

    Science.gov (United States)

    Kim, SungKun; Lee, Hunpyo

    2017-06-01

    Via a dynamical cluster approximation with N c = 4 in combination with a semiclassical approximation (DCA+SCA), we study the doped two-dimensional Hubbard model. We obtain a plaquette antiferromagnetic (AF) Mott insulator, a plaquette AF ordered metal, a pseudogap (or d-wave superconductor) and a paramagnetic metal by tuning the doping concentration. These features are similar to the behaviors observed in copper-oxide superconductors and are in qualitative agreement with the results calculated by the cluster dynamical mean field theory with the continuous-time quantum Monte Carlo (CDMFT+CTQMC) approach. The results of our DCA+SCA differ from those of the CDMFT+CTQMC approach in that the d-wave superconducting order parameters are shown even in the high doped region, unlike the results of the CDMFT+CTQMC approach. We think that the strong plaquette AF orderings in the dynamical cluster approximation (DCA) with N c = 4 suppress superconducting states with increasing doping up to strongly doped region, because frozen dynamical fluctuations in a semiclassical approximation (SCA) approach are unable to destroy those orderings. Our calculation with short-range spatial fluctuations is initial research, because the SCA can manage long-range spatial fluctuations in feasible computational times beyond the CDMFT+CTQMC tool. We believe that our future DCA+SCA calculations should supply information on the fully momentum-resolved physical properties, which could be compared with the results measured by angle-resolved photoemission spectroscopy experiments.

  17. Hydration thermodynamics beyond the linear response approximation.

    Science.gov (United States)

    Raineri, Fernando O

    2016-10-19

    The solvation energetics associated with the transformation of a solute molecule at infinite dilution in water from an initial state A to a final state B is reconsidered. The two solute states have different potentials energies of interaction, [Formula: see text] and [Formula: see text], with the solvent environment. Throughout the A [Formula: see text] B transformation of the solute, the solvation system is described by a Hamiltonian [Formula: see text] that changes linearly with the coupling parameter ξ. By focusing on the characterization of the probability density [Formula: see text] that the dimensionless perturbational solute-solvent interaction energy [Formula: see text] has numerical value y when the coupling parameter is ξ, we derive a hierarchy of differential equation relations between the ξ-dependent cumulant functions of various orders in the expansion of the appropriate cumulant generating function. On the basis of this theoretical framework we then introduce an inherently nonlinear solvation model for which we are able to find analytical results for both [Formula: see text] and for the solvation thermodynamic functions. The solvation model is based on the premise that there is an upper or a lower bound (depending on the nature of the interactions considered) to the amplitude of the fluctuations of Y in the solution system at equilibrium. The results reveal essential differences in behavior for the model when compared with the linear response approximation to solvation, particularly with regards to the probability density [Formula: see text]. The analytical expressions for the solvation properties show, however, that the linear response behavior is recovered from the new model when the room for the thermal fluctuations in Y is not restricted by the existence of a nearby bound. We compare the predictions of the model with the results from molecular dynamics computer simulations for aqueous solvation, in which either (1) the solute

  18. Bond selective chemistry beyond the adiabatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Butler, L.J. [Univ. of Chicago, IL (United States)

    1993-12-01

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  19. Cophylogeny reconstruction via an approximate Bayesian computation.

    Science.gov (United States)

    Baudet, C; Donati, B; Sinaimeri, B; Crescenzi, P; Gautier, C; Matias, C; Sagot, M-F

    2015-05-01

    Despite an increasingly vast literature on cophylogenetic reconstructions for studying host-parasite associations, understanding the common evolutionary history of such systems remains a problem that is far from being solved. Most algorithms for host-parasite reconciliation use an event-based model, where the events include in general (a subset of) cospeciation, duplication, loss, and host switch. All known parsimonious event-based methods then assign a cost to each type of event in order to find a reconstruction of minimum cost. The main problem with this approach is that the cost of the events strongly influences the reconciliation obtained. Some earlier approaches attempt to avoid this problem by finding a Pareto set of solutions and hence by considering event costs under some minimization constraints. To deal with this problem, we developed an algorithm, called Coala, for estimating the frequency of the events based on an approximate Bayesian computation approach. The benefits of this method are 2-fold: (i) it provides more confidence in the set of costs to be used in a reconciliation, and (ii) it allows estimation of the frequency of the events in cases where the data set consists of trees with a large number of taxa. We evaluate our method on simulated and on biological data sets. We show that in both cases, for the same pair of host and parasite trees, different sets of frequencies for the events lead to equally probable solutions. Moreover, often these solutions differ greatly in terms of the number of inferred events. It appears crucial to take this into account before attempting any further biological interpretation of such reconciliations. More generally, we also show that the set of frequencies can vary widely depending on the input host and parasite trees. Indiscriminately applying a standard vector of costs may thus not be a good strategy. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  20. Coronal Loops: Evolving Beyond the Isothermal Approximation

    Science.gov (United States)

    Schmelz, J. T.; Cirtain, J. W.; Allen, J. D.

    2002-05-01

    Are coronal loops isothermal? A controversy over this question has arisen recently because different investigators using different techniques have obtained very different answers. Analysis of SOHO-EIT and TRACE data using narrowband filter ratios to obtain temperature maps has produced several key publications that suggest that coronal loops may be isothermal. We have constructed a multi-thermal distribution for several pixels along a relatively isolated coronal loop on the southwest limb of the solar disk using spectral line data from SOHO-CDS taken on 1998 Apr 20. These distributions are clearly inconsistent with isothermal plasma along either the line of sight or the length of the loop, and suggested rather that the temperature increases from the footpoints to the loop top. We speculated originally that these differences could be attributed to pixel size -- CDS pixels are larger, and more `contaminating' material would be expected along the line of sight. To test this idea, we used CDS iron line ratios from our data set to mimic the isothermal results from the narrowband filter instruments. These ratios indicated that the temperature gradient along the loop was flat, despite the fact that a more complete analysis of the same data showed this result to be false! The CDS pixel size was not the cause of the discrepancy; rather, the problem lies with the isothermal approximation used in EIT and TRACE analysis. These results should serve as a strong warning to anyone using this simplistic method to obtain temperature. This warning is echoed on the EIT web page: ``Danger! Enter at your own risk!'' In other words, values for temperature may be found, but they may have nothing to do with physical reality. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783. This research was funded in part by the NASA/TRACE MODA grant for Montana State University.

  1. Optimization and benchmarking of a perturbative Metropolis Monte Carlo quantum mechanics/molecular mechanics program.

    Science.gov (United States)

    Feldt, Jonas; Miranda, Sebastião; Pratas, Frederico; Roma, Nuno; Tomás, Pedro; Mata, Ricardo A

    2017-12-28

    In this work, we present an optimized perturbative quantum mechanics/molecular mechanics (QM/MM) method for use in Metropolis Monte Carlo simulations. The model adopted is particularly tailored for the simulation of molecular systems in solution but can be readily extended to other applications, such as catalysis in enzymatic environments. The electrostatic coupling between the QM and MM systems is simplified by applying perturbation theory to estimate the energy changes caused by a movement in the MM system. This approximation, together with the effective use of GPU acceleration, leads to a negligible added computational cost for the sampling of the environment. Benchmark calculations are carried out to evaluate the impact of the approximations applied and the overall computational performance.

  2. Concepts for reducing nuclear utility inventory carrying costs

    International Nuclear Information System (INIS)

    Graybill, R.E.; DiCola, F.E.; Solanas, C.H.

    1985-01-01

    Nuclear utilities are under pressure to reduce their operating and maintenance expenses such that the total cost of generating electricity through nuclear power remains an economically attractive option. One area in which expenses may be reduced is total inventory carrying cost. The total inventory carrying cost consists of financing an inventory, managing the inventory, assuring quality, engineering of acceptable parts specifications, and procuring initial and replenishment stock. Concepts and methodology must be developed to reduce the remaining expenses of a utility's total inventory carrying cost. Currently, two concepts exist: pooled inventory management system (PIMS), originally established by General Electric Company and a group of boiling water reactor owners, and Nuclear Parts Associates' (NUPA) shared inventory management program (SIMP). Both concepts share or pool parts and components among utilities. The SIMP program objectives and technical activities are summarized

  3. Global sensitivity analysis using low-rank tensor approximations

    International Nuclear Information System (INIS)

    Konakli, Katerina; Sudret, Bruno

    2016-01-01

    In the context of global sensitivity analysis, the Sobol' indices constitute a powerful tool for assessing the relative significance of the uncertain input parameters of a model. We herein introduce a novel approach for evaluating these indices at low computational cost, by post-processing the coefficients of polynomial meta-models belonging to the class of low-rank tensor approximations. Meta-models of this class can be particularly efficient in representing responses of high-dimensional models, because the number of unknowns in their general functional form grows only linearly with the input dimension. The proposed approach is validated in example applications, where the Sobol' indices derived from the meta-model coefficients are compared to reference indices, the latter obtained by exact analytical solutions or Monte-Carlo simulation with extremely large samples. Moreover, low-rank tensor approximations are confronted to the popular polynomial chaos expansion meta-models in case studies that involve analytical rank-one functions and finite-element models pertinent to structural mechanics and heat conduction. In the examined applications, indices based on the novel approach tend to converge faster to the reference solution with increasing size of the experimental design used to build the meta-model. - Highlights: • A new method is proposed for global sensitivity analysis of high-dimensional models. • Low-rank tensor approximations (LRA) are used as a meta-modeling technique. • Analytical formulas for the Sobol' indices in terms of LRA coefficients are derived. • The accuracy and efficiency of the approach is illustrated in application examples. • LRA-based indices are compared to indices based on polynomial chaos expansions.

  4. Apparatus for carrying out ultrasonic inspection of pressure vessels

    International Nuclear Information System (INIS)

    Dent, K.H.; Greenhalgh, F.G.

    1975-01-01

    An apparatus is described for moving an ultrasonic scanning mechanism over the interior surface of a pressure vessel and comprising a mast for supporting the scanning mechanism inside the vessel and a carriage for traversing the mast within the vessel, the mast being pivotably secured to the carriage so that when the ultrasonic scanning mechanism contacts the interior surface of the pressure vessel the mast is caused to pivot. (auth)

  5. Tensorial spacetime geometries carrying predictive, interpretable and quantizable matter dynamics

    International Nuclear Information System (INIS)

    Rivera Hernandez, Sergio

    2012-01-01

    Which tensor fields G on a smooth manifold M can serve as a spacetime structure? In the first part of this thesis, it is found that only a severely restricted class of tensor fields can provide classical spacetime geometries, namely those that can carry predictive, interpretable and quantizable matter dynamics. The obvious dependence of this characterization of admissible tensorial spacetime geometries on specific matter is not a weakness, but rather presents an insight: it was Maxwell theory that justified Einstein to promote Lorentzian manifolds to the status of a spacetime geometry. Any matter that does not mimick the structure of Maxwell theory, will force us to choose another geometry on which the matter dynamics of interest are predictive, interpretable and quantizable. These three physical conditions on matter impose three corresponding algebraic conditions on the totally symmetric contravariant coefficient tensor field P that determines the principal symbol of the matter field equations in terms of the geometric tensor G: the tensor field P must be hyperbolic, time-orientable and energy-distinguishing. Remarkably, these physically necessary conditions on the geometry are mathematically already sufficient to realize all kinematical constructions familiar from Lorentzian geometry, for precisely the same structural reasons. This we were able to show employing a subtle interplay of convex analysis, the theory of partial differential equations and real algebraic geometry. In the second part of this thesis, we then explore general properties of any hyperbolic, time-orientable and energy-distinguishing tensorial geometry. Physically most important are the construction of freely falling non-rotating laboratories, the appearance of admissible modified dispersion relations to particular observers, and the identification of a mechanism that explains why massive particles that are faster than some massless particles can radiate off energy until they are slower than all

  6. Tensorial spacetime geometries carrying predictive, interpretable and quantizable matter dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rivera Hernandez, Sergio

    2012-02-15

    Which tensor fields G on a smooth manifold M can serve as a spacetime structure? In the first part of this thesis, it is found that only a severely restricted class of tensor fields can provide classical spacetime geometries, namely those that can carry predictive, interpretable and quantizable matter dynamics. The obvious dependence of this characterization of admissible tensorial spacetime geometries on specific matter is not a weakness, but rather presents an insight: it was Maxwell theory that justified Einstein to promote Lorentzian manifolds to the status of a spacetime geometry. Any matter that does not mimick the structure of Maxwell theory, will force us to choose another geometry on which the matter dynamics of interest are predictive, interpretable and quantizable. These three physical conditions on matter impose three corresponding algebraic conditions on the totally symmetric contravariant coefficient tensor field P that determines the principal symbol of the matter field equations in terms of the geometric tensor G: the tensor field P must be hyperbolic, time-orientable and energy-distinguishing. Remarkably, these physically necessary conditions on the geometry are mathematically already sufficient to realize all kinematical constructions familiar from Lorentzian geometry, for precisely the same structural reasons. This we were able to show employing a subtle interplay of convex analysis, the theory of partial differential equations and real algebraic geometry. In the second part of this thesis, we then explore general properties of any hyperbolic, time-orientable and energy-distinguishing tensorial geometry. Physically most important are the construction of freely falling non-rotating laboratories, the appearance of admissible modified dispersion relations to particular observers, and the identification of a mechanism that explains why massive particles that are faster than some massless particles can radiate off energy until they are slower than all

  7. Verifiably Truthful Mechanisms

    DEFF Research Database (Denmark)

    Branzei, Simina; Procaccia, Ariel D.

    2015-01-01

    the computational sense). Our approach involves three steps: (i) specifying the structure of mechanisms, (ii) constructing a verification algorithm, and (iii) measuring the quality of verifiably truthful mechanisms. We demonstrate this approach using a case study: approximate mechanism design without money...

  8. Delay model and performance testing for FPGA carry chain TDC

    International Nuclear Information System (INIS)

    Kang Xiaowen; Liu Yaqiang; Cui Junjian Yang Zhangcan; Jin Yongjie

    2011-01-01

    Time-of-flight (TOF) information would improve the performance of PET (position emission tomography). TDC design is a key technique. It proposed Carry Chain TDC Delay model. Through changing the significant delay parameter of model, paper compared the difference of TDC performance, and finally realized Time-to-Digital Convertor (TDC) based on Carry Chain Method using FPGA EP2C20Q240C8N with 69 ps LSB, max error below 2 LSB. Such result could meet the TOF demand. It also proposed a Coaxial Cable Measuring method for TDC testing, without High-precision test equipment. (authors)

  9. Evaluation of carrying capacity and territorial environmental sustainability

    Directory of Open Access Journals (Sweden)

    Giuseppe Ruggiero

    2012-09-01

    Full Text Available Land use has a great impact on environmental quality, use of resources, state of ecosystems and socio-economic development. Land use can be considered sustainable if the environmental pressures of human activities do not exceed the ecological carrying capacity. A scientific knowledge of the capability of ecosystems to provide resources and absorb waste is a useful and innovative means of supporting territorial planning. This study examines the area of the Province of Bari to estimate the ecosystems’ carrying capacity, and compare it with the current environmental pressures exerted by human activities. The adapted methodology identified the environmentally sustainable level for one province.

  10. Carry trade as a speculative investment strategy in Serbia

    Directory of Open Access Journals (Sweden)

    Bungin Sanja

    2012-12-01

    Full Text Available This paper is analyses causes and the consequences of a speculative investment carry trade strategy in the exchange market in Serbia. The presence of such type of investor is related to high yields of risk free securities denominated in dinars, as well as the perception of future movements of dinar exchange rate related to currency that serves as source of investment. The consequences of carry trade may significantly influence exchange rate movements when monetary policy has limited facilities to combat negative and sudden shocks.

  11. General relativistic galvano-gravitomagnetic effect in current carrying conductors

    International Nuclear Information System (INIS)

    Ahmedov, B.J.

    1998-11-01

    The analogy between general relativity and electromagnetism suggests that there is a galvano-gravitomagnetic effect, which is the gravitational analogue of the Hall effect. This new effect takes place when a current carrying conductor is placed in a gravitomagnetic field and the conduction electrons moving inside the conductor are deflected transversally with respect to the current flow. In connection with this galvano-gravitomagnetic effect, we explore the possibility of using current carrying conductors for detecting the gravitomagnetic field of the Earth. (author)

  12. Nonadiabatic charged spherical evolution in the postquasistatic approximation

    International Nuclear Information System (INIS)

    Rosales, L.; Barreto, W.; Peralta, C.; Rodriguez-Mueller, B.

    2010-01-01

    We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating spheres of matter, to study the evolution of dissipative and electrically charged distributions in general relativity. The numerical implementation of our approach leads to a solver which is globally second-order convergent. We evolve nonadiabatic distributions assuming an equation of state that accounts for the anisotropy induced by the electric charge. Dissipation is described by streaming-out or diffusion approximations. We match the interior solution, in noncomoving coordinates, with the Vaidya-Reissner-Nordstroem exterior solution. Two models are considered: (i) a Schwarzschild-like shell in the diffusion limit; and (ii) a Schwarzschild-like interior in the free-streaming limit. These toy models tell us something about the nature of the dissipative and electrically charged collapse. Diffusion stabilizes the gravitational collapse producing a spherical shell whose contraction is halted in a short characteristic hydrodynamic time. The streaming-out radiation provides a more efficient mechanism for emission of energy, redistributing the electric charge on the whole sphere, while the distribution collapses indefinitely with a longer hydrodynamic time scale.

  13. Detection of cracks in shafts with the Approximated Entropy algorithm

    Science.gov (United States)

    Sampaio, Diego Luchesi; Nicoletti, Rodrigo

    2016-05-01

    The Approximate Entropy is a statistical calculus used primarily in the fields of Medicine, Biology, and Telecommunication for classifying and identifying complex signal data. In this work, an Approximate Entropy algorithm is used to detect cracks in a rotating shaft. The signals of the cracked shaft are obtained from numerical simulations of a de Laval rotor with breathing cracks modelled by the Fracture Mechanics. In this case, one analysed the vertical displacements of the rotor during run-up transients. The results show the feasibility of detecting cracks from 5% depth, irrespective of the unbalance of the rotating system and crack orientation in the shaft. The results also show that the algorithm can differentiate the occurrence of crack only, misalignment only, and crack + misalignment in the system. However, the algorithm is sensitive to intrinsic parameters p (number of data points in a sample vector) and f (fraction of the standard deviation that defines the minimum distance between two sample vectors), and good results are only obtained by appropriately choosing their values according to the sampling rate of the signal.

  14. A NURBS approximation of experimental stress-strain curves

    International Nuclear Information System (INIS)

    Fedorov, Timofey V.; Morrev, Pavel G.

    2016-01-01

    A compact universal representation of monotonic experimental stress-strain curves of metals and alloys is proposed. It is based on the nonuniform rational Bezier splines (NURBS) of second order and may be used in a computer library of materials. Only six parameters per curve are needed; this is equivalent to a specification of only three points in a stress-strain plane. NURBS-functions of higher order prove to be surplus. Explicit expressions for both yield stress and hardening modulus are given. Two types of curves are considered: at a finite interval of strain and at infinite one. A broad class of metals and alloys of various chemical compositions subjected to various types of preliminary thermo-mechanical working is selected from a comprehensive data base in order to test the methodology proposed. The results demonstrate excellent correspondence to the experimental data. Keywords: work hardening, stress-strain curve, spline approximation, nonuniform rational B-spline, NURBS.

  15. Coupled states approximation for scattering of two diatoms

    International Nuclear Information System (INIS)

    Heil, T.G.; Green, S.; Kouri, D.J.

    1978-01-01

    The coupled states (CS) approximation is developed in detail for the general case of two colliding diatomic molecules. The high energy limit of the exact Lippmann-Schwinger equation is used to obtain the CS equations so that the sufficiency conditions of Kouri, Heil, and Shimoni apply. In addition, care is taken to ensure correct treatment of parity in the CS, as well as correct labeling of the CS by an effective orbital angular momentum. The analysis follows that given by Shimoni and Kouri for atom-diatom collisions where the coupled rotor angular momentum j 12 and projection lambda 12 replace the single diatom angular momentum j and projection lambda. The result is an expression for the differential scattering amplitude which is a generalization of the highly successful McGuire-Kouri differential scattering amplitude for atom-diatom collisions. Also, the opacity function is found to be a generalization of the Clebsch-Gordon weight atom-diatom expression of Shimoni and Kouri. The diatom-diatom CS body frame T matrix T/sup J/(j 1 'j 2 'j 12 'lambda 12 'vertical-bar j 1 j 2 j 12 lambda 12 ) is also found to be nondiagonal in lambda' 12 ,lambda 12 , just as in the atom-diatom case. The parity and identical molecule interchange symmetries are also considered in detail in both the exact close coupling and CS approximations. Symmetrized expressions for all relevant quantities are obtained, along with the symmetrized coupled equations one must solve. The properly labeled and symmetrized CS equations have not been derived before this present work. The present correctly labeled CS theory is tested computationally by applications to three different diatom-diatom potentials. First we carry out calculations for para-para, ortho-ortho, and ortho-para H 2 -H 2 collisions using the experimental potential of Farrar and Lee

  16. Quantum mechanics

    CERN Document Server

    Ghosh, P K

    2014-01-01

    Quantum mechanics, designed for advanced undergraduate and graduate students of physics, mathematics and chemistry, provides a concise yet self-contained introduction to the formal framework of quantum mechanics, its application to physical problems and the interpretation of the theory. Starting with a review of some of the necessary mathematics, the basic concepts are carefully developed in the text. After building a general formalism, detailed treatment of the standard material - the harmonic oscillator, the hydrogen atom, angular momentum theory, symmetry transformations, approximation methods, identical particle and many-particle systems, and scattering theory - is presented. The concluding chapter discusses the interpretation of quantum mechanics. Some of the important topics discussed in the book are the rigged Hilbert space, deformation quantization, path integrals, coherent states, geometric phases, decoherene, etc. This book is characterized by clarity and coherence of presentation.

  17. Apparatus for carrying out ultrasonic inspection of pressure vessels

    International Nuclear Information System (INIS)

    Dent, K.H.; Challender, R.S.

    1975-01-01

    A carriage-supported manipulator for taking an ultrasonic scanner mechanism into a coolant nozzle of a nuclear reactor pressure vessel is described. The manupulator is rotatable about the axis of the nozzle and is radially expansible to urge the scanner mechanism into a scanning position within the nozzle

  18. Foreign exchange predictability and the carry trade: a decomposition approach

    Czech Academy of Sciences Publication Activity Database

    Anatolyev, Stanislav; Gospodinov, N.; Jamali, I.; Liu, X.

    2017-01-01

    Roč. 42, June (2017), s. 199-211 ISSN 0927-5398 Institutional support: Progres-Q24 Keywords : exchange rate forecasting * carry trade * return decomposition Subject RIV: AH - Economics OBOR OECD: Finance Impact factor: 0.979, year: 2016

  19. Debris-carrying camouflage among diverse lineages of Cretaceous insects.

    Science.gov (United States)

    Wang, Bo; Xia, Fangyuan; Engel, Michael S; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A; Wappler, Torsten; Rust, Jes

    2016-06-01

    Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects.

  20. MRSA carrying mecC in captive mara

    DEFF Research Database (Denmark)

    Gongora, Carmen Espinosa; Harrison, Ewan M; Moodley, Arshnee

    2015-01-01

    C-carrying MRSA ST130 clone is widespread in a variety of unrelated hosts in Denmark. Since the mara at Copenhagen Zoo have limited contact with humans and other animal species, it remains unclear whether mara are natural hosts of ST130 or acquired this lineage from unknown sources. The broad host range of MRSA...