WorldWideScience

Sample records for measuring quantitative distance

  1. Measuring distances between complex networks

    International Nuclear Information System (INIS)

    Andrade, Roberto F.S.; Miranda, Jose G.V.; Pinho, Suani T.R.; Lobao, Thierry Petit

    2008-01-01

    A previously introduced concept of higher order neighborhoods in complex networks, [R.F.S. Andrade, J.G.V. Miranda, T.P. Lobao, Phys. Rev. E 73 (2006) 046101] is used to define a distance between networks with the same number of nodes. With such measure, expressed in terms of the matrix elements of the neighborhood matrices of each network, it is possible to compare, in a quantitative way, how far apart in the space of neighborhood matrices two networks are. The distance between these matrices depends on both the network topologies and the adopted node numberings. While the numbering of one network is fixed, a Monte Carlo algorithm is used to find the best numbering of the other network, in the sense that it minimizes the distance between the matrices. The minimal value found for the distance reflects differences in the neighborhood structures of the two networks that arise only from distinct topologies. This procedure ends up by providing a projection of the first network on the pattern of the second one. Examples are worked out allowing for a quantitative comparison for distances among distinct networks, as well as among distinct realizations of random networks

  2. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  3. Distance-based microfluidic quantitative detection methods for point-of-care testing.

    Science.gov (United States)

    Tian, Tian; Li, Jiuxing; Song, Yanling; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong James

    2016-04-07

    Equipment-free devices with quantitative readout are of great significance to point-of-care testing (POCT), which provides real-time readout to users and is especially important in low-resource settings. Among various equipment-free approaches, distance-based visual quantitative detection methods rely on reading the visual signal length for corresponding target concentrations, thus eliminating the need for sophisticated instruments. The distance-based methods are low-cost, user-friendly and can be integrated into portable analytical devices. Moreover, such methods enable quantitative detection of various targets by the naked eye. In this review, we first introduce the concept and history of distance-based visual quantitative detection methods. Then, we summarize the main methods for translation of molecular signals to distance-based readout and discuss different microfluidic platforms (glass, PDMS, paper and thread) in terms of applications in biomedical diagnostics, food safety monitoring, and environmental analysis. Finally, the potential and future perspectives are discussed.

  4. Shape anisotropy: tensor distance to anisotropy measure

    Science.gov (United States)

    Weldeselassie, Yonas T.; El-Hilo, Saba; Atkins, M. S.

    2011-03-01

    Fractional anisotropy, defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assessment of degenerative brain diseases. Despite its extensive use in DT-MRI community, however, not much attention has been given to the mathematical correctness of its derivation from diffusion tensors which is achieved using Euclidean dot product in 9D space. But, recent progress in DT-MRI has shown that the space of diffusion tensors does not form a Euclidean vector space and thus Euclidean dot product is not appropriate for tensors. In this paper, we propose a novel and robust rotationally invariant diffusion anisotropy measure derived using the recently proposed Log-Euclidean and J-divergence tensor distance measures. An interesting finding of our work is that given a diffusion tensor, its closest isotropic tensor is different for different tensor distance metrics used. We demonstrate qualitatively that our new anisotropy measure reveals superior white matter profile of DT-MR brain images and analytically show that it has a higher signal to noise ratio than fractional anisotropy.

  5. ORDERED WEIGHTED DISTANCE MEASURE

    Institute of Scientific and Technical Information of China (English)

    Zeshui XU; Jian CHEN

    2008-01-01

    The aim of this paper is to develop an ordered weighted distance (OWD) measure, which is thegeneralization of some widely used distance measures, including the normalized Hamming distance, the normalized Euclidean distance, the normalized geometric distance, the max distance, the median distance and the min distance, etc. Moreover, the ordered weighted averaging operator, the generalized ordered weighted aggregation operator, the ordered weighted geometric operator, the averaging operator, the geometric mean operator, the ordered weighted square root operator, the square root operator, the max operator, the median operator and the min operator axe also the special cases of the OWD measure. Some methods depending on the input arguments are given to determine the weights associated with the OWD measure. The prominent characteristic of the OWD measure is that it can relieve (or intensify) the influence of unduly large or unduly small deviations on the aggregation results by assigning them low (or high) weights. This desirable characteristic makes the OWD measure very suitable to be used in many actual fields, including group decision making, medical diagnosis, data mining, and pattern recognition, etc. Finally, based on the OWD measure, we develop a group decision making approach, and illustrate it with a numerical example.

  6. Distance and Cable Length Measurement System

    Science.gov (United States)

    Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay

    2009-01-01

    A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169

  7. Heterogeneity Measurement Based on Distance Measure for Polarimetric SAR Data

    Science.gov (United States)

    Xing, Xiaoli; Chen, Qihao; Liu, Xiuguo

    2018-04-01

    To effectively test the scene heterogeneity for polarimetric synthetic aperture radar (PolSAR) data, in this paper, the distance measure is introduced by utilizing the similarity between the sample and pixels. Moreover, given the influence of the distribution and modeling texture, the K distance measure is deduced according to the Wishart distance measure. Specifically, the average of the pixels in the local window replaces the class center coherency or covariance matrix. The Wishart and K distance measure are calculated between the average matrix and the pixels. Then, the ratio of the standard deviation to the mean is established for the Wishart and K distance measure, and the two features are defined and applied to reflect the complexity of the scene. The proposed heterogeneity measure is proceeded by integrating the two features using the Pauli basis. The experiments conducted on the single-look and multilook PolSAR data demonstrate the effectiveness of the proposed method for the detection of the scene heterogeneity.

  8. Electromagnetic distance measurement

    CERN Document Server

    1967-01-01

    This book brings together the work of forty-eight geodesists from twenty-five countries. They discuss various new electromagnetic distance measurement (EDM) instruments - among them the Tellurometer, Geodimeter, and air- and satellite-borne systems - and investigate the complex sources of error.

  9. Method of measuring distance between fuel element

    International Nuclear Information System (INIS)

    Urata, Megumu.

    1991-01-01

    The distance between fuel elements contained in a pool is measured in a contactless manner even for a narrow distance less than 1 mm. That is, the equipment for measuring the distance between spent fuel elements of a spent fuel assembly in a nuclear reactor comprises a optical fiber scope, a lens, an industrial TV camera and a monitor TV. The top end of the optical fiber scope is inserted between fuel elements to be measured. The state thereof is displayed on the TV screen to measure the distance between the fuel elements. The measured results are compared with a previously formed calibration curve to determine the value between the fuel elements. Then, the distance between the fuel elements can be determined in the pool of a power plant without dismantling the fuel assembly, to investigate the state of the bending and estimate the fuel working life. (I.S.)

  10. Distance between images

    Science.gov (United States)

    Gualtieri, J. A.; Le Moigne, J.; Packer, C. V.

    1992-01-01

    Comparing two binary images and assigning a quantitative measure to this comparison finds its purpose in such tasks as image recognition, image compression, and image browsing. This quantitative measurement may be computed by utilizing the Hausdorff distance of the images represented as two-dimensional point sets. In this paper, we review two algorithms that have been proposed to compute this distance, and we present a parallel implementation of one of them on the MasPar parallel processor. We study their complexity and the results obtained by these algorithms for two different types of images: a set of displaced pairs of images of Gaussian densities, and a comparison of a Canny edge image with several edge images from a hierarchical region growing code.

  11. Measuring and testing dependence by correlation of distances

    OpenAIRE

    Székely, Gábor J.; Rizzo, Maria L.; Bakirov, Nail K.

    2007-01-01

    Distance correlation is a new measure of dependence between random vectors. Distance covariance and distance correlation are analogous to product-moment covariance and correlation, but unlike the classical definition of correlation, distance correlation is zero only if the random vectors are independent. The empirical distance dependence measures are based on certain Euclidean distances between sample elements rather than sample moments, yet have a compact representation analogous to the clas...

  12. A Complete Quantitative Deduction System for the Bisimilarity Distance on Markov Chains

    DEFF Research Database (Denmark)

    Bacci, Giovanni; Bacci, Giorgio; Larsen, Kim Guldstrand

    2017-01-01

    In this paper we propose a complete axiomatization of the bisimilarity distance of Desharnais et al. for the class of finite labelled Markov chains. Our axiomatization is given in the style of a quantitative extension of equational logic recently proposed by Mardare, Panangaden, and Plotkin (LICS...... an axiom for dealing with the Kantorovich distance between probability distributions. The axiomatization is then used to propose a metric extension of a Kleene's style representation theorem for finite labelled Markov chains, that was proposed (in a more general coalgebraic fashion) by Silva et al. (Inf...

  13. Lesion measurement in non-radioactive DNA by quantitative gel electrophoresis

    International Nuclear Information System (INIS)

    Sutherland, J.C.; Chen, Chun Zhang; Emrick, A.; Hacham, H; Monteleone, D.; Ribeiro, E.; Trunk, J.; Sutherland, B.M.

    1989-01-01

    The gel electrophoresis method developed during the past ten years in our laboratories makes possible the quantitation of UV induced pyrimidine dimers, gamma ray induced single- and double-strand breaks and many other types of lesions in nanogram quantities of DNA. The DNA does not have to be labeled with radionuclides or of a particular conformation, thus facilitating the use of the method in measuring damage levels and repair rates in the DNA of intact organisms -- including man. The gel method can quantitate any lesion in DNA that either is, or can be converted to a single- or double-strand break. The formation of a strand break produces two shorter DNA molecules for each molecule that existed before the treatment that produced the break. Determining the number of breaks, and hence the number of lesions, becomes a matter of comparing the average lengths of molecules in samples differing only in lesion-induced breaks. This requires that we determine the distribution of mass of DNA on a gel as a function of its distance of migration and also the dispersion function of its distance of migration and also the dispersion function (the relationship between molecular length and distance of migration) in the gel electrophoresis system. 40 refs., 5 figs

  14. Is linear distance measured by panoramic radiography reliable?

    International Nuclear Information System (INIS)

    Nishikawa, Keiichi; Wakoh, Mamoru; Sano, Tsukasa; Suehiro, Atsushi; Sekine, Hideshi; Kousuge, Yuuji

    2010-01-01

    The objective of this study was to re-examine the reliability of distance measurements on clinical panoramic radiographs by comparing them with computed tomography (CT) images, from which the most accurate distance measurement is possible. Twenty pairs of images from patients examined both with panoramic radiography and CT for dental implant treatment planning in the premolar and molar regions of the mandible were used. The vertical linear distance between the alveolar crest and the closest mandibular canal was measured by three experienced oral radiologists on both images. The distances measured on panoramic radiographs were corrected for the magnification factor at the focal plane. Double-oblique cross-sectional images were used for CT. Pearson's correlation coefficient was calculated between distances obtained from both images. The paired t test was performed for statistical comparison. Error levels with the panoramic radiograph versus the CT image were also calculated. Pearson's correlation coefficient showed a significant strong linear correlation (R=0.90; p<0.01). However, the corrected value of distance measured on panoramic radiographs tended to be too small, and a significant difference was observed (p<0.05). The error level was approximately 10% (9.6±7.3%). Distance measurement on clinical panoramic radiographs is less reliable than CT images and cannot be recommended. (author)

  15. Femtosecond frequency comb based distance measurement in air.

    Science.gov (United States)

    Balling, Petr; Kren, Petr; Masika, Pavel; van den Berg, S A

    2009-05-25

    Interferometric measurement of distance using a femtosecond frequency comb is demonstrated and compared with a counting interferometer displacement measurement. A numerical model of pulse propagation in air is developed and the results are compared with experimental data for short distances. The relative agreement for distance measurement in known laboratory conditions is better than 10(-7). According to the model, similar precision seems feasible even for long-distance measurement in air if conditions are sufficiently known. It is demonstrated that the relative width of the interferogram envelope even decreases with the measured length, and a fringe contrast higher than 90% could be obtained for kilometer distances in air, if optimal spectral width for that length and wavelength is used. The possibility of comb radiation delivery to the interferometer by an optical fiber is shown by model and experiment, which is important from a practical point of view.

  16. A Survey of Binary Similarity and Distance Measures

    Directory of Open Access Journals (Sweden)

    Seung-Seok Choi

    2010-02-01

    Full Text Available The binary feature vector is one of the most common representations of patterns and measuring similarity and distance measures play a critical role in many problems such as clustering, classification, etc. Ever since Jaccard proposed a similarity measure to classify ecological species in 1901, numerous binary similarity and distance measures have been proposed in various fields. Applying appropriate measures results in more accurate data analysis. Notwithstanding, few comprehensive surveys on binary measures have been conducted. Hence we collected 76 binary similarity and distance measures used over the last century and reveal their correlations through the hierarchical clustering technique.

  17. A Distance Measure for Genome Phylogenetic Analysis

    Science.gov (United States)

    Cao, Minh Duc; Allison, Lloyd; Dix, Trevor

    Phylogenetic analyses of species based on single genes or parts of the genomes are often inconsistent because of factors such as variable rates of evolution and horizontal gene transfer. The availability of more and more sequenced genomes allows phylogeny construction from complete genomes that is less sensitive to such inconsistency. For such long sequences, construction methods like maximum parsimony and maximum likelihood are often not possible due to their intensive computational requirement. Another class of tree construction methods, namely distance-based methods, require a measure of distances between any two genomes. Some measures such as evolutionary edit distance of gene order and gene content are computational expensive or do not perform well when the gene content of the organisms are similar. This study presents an information theoretic measure of genetic distances between genomes based on the biological compression algorithm expert model. We demonstrate that our distance measure can be applied to reconstruct the consensus phylogenetic tree of a number of Plasmodium parasites from their genomes, the statistical bias of which would mislead conventional analysis methods. Our approach is also used to successfully construct a plausible evolutionary tree for the γ-Proteobacteria group whose genomes are known to contain many horizontally transferred genes.

  18. Single-Image Distance Measurement by a Smart Mobile Device.

    Science.gov (United States)

    Chen, Shangwen; Fang, Xianyong; Shen, Jianbing; Wang, Linbo; Shao, Ling

    2017-12-01

    Existing distance measurement methods either require multiple images and special photographing poses or only measure the height with a special view configuration. We propose a novel image-based method that can measure various types of distance from single image captured by a smart mobile device. The embedded accelerometer is used to determine the view orientation of the device. Consequently, pixels can be back-projected to the ground, thanks to the efficient calibration method using two known distances. Then the distance in pixel is transformed to a real distance in centimeter with a linear model parameterized by the magnification ratio. Various types of distance specified in the image can be computed accordingly. Experimental results demonstrate the effectiveness of the proposed method.

  19. Distance Measurement Solves Astrophysical Mysteries

    Science.gov (United States)

    2003-08-01

    Location, location, and location. The old real-estate adage about what's really important proved applicable to astrophysics as astronomers used the sharp radio "vision" of the National Science Foundation's Very Long Baseline Array (VLBA) to pinpoint the distance to a pulsar. Their accurate distance measurement then resolved a dispute over the pulsar's birthplace, allowed the astronomers to determine the size of its neutron star and possibly solve a mystery about cosmic rays. "Getting an accurate distance to this pulsar gave us a real bonanza," said Walter Brisken, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Monogem Ring The Monogem Ring, in X-Ray Image by ROSAT satellite CREDIT: Max-Planck Institute, American Astronomical Society (Click on Image for Larger Version) The pulsar, called PSR B0656+14, is in the constellation Gemini, and appears to be near the center of a circular supernova remnant that straddles Gemini and its neighboring constellation, Monoceros, and is thus called the Monogem Ring. Since pulsars are superdense, spinning neutron stars left over when a massive star explodes as a supernova, it was logical to assume that the Monogem Ring, the shell of debris from a supernova explosion, was the remnant of the blast that created the pulsar. However, astronomers using indirect methods of determining the distance to the pulsar had concluded that it was nearly 2500 light-years from Earth. On the other hand, the supernova remnant was determined to be only about 1000 light-years from Earth. It seemed unlikely that the two were related, but instead appeared nearby in the sky purely by a chance juxtaposition. Brisken and his colleagues used the VLBA to make precise measurements of the sky position of PSR B0656+14 from 2000 to 2002. They were able to detect the slight offset in the object's apparent position when viewed from opposite sides of Earth's orbit around the Sun. This effect, called parallax, provides a direct measurement of

  20. Femtosecond frequency comb based distance measurement in air

    NARCIS (Netherlands)

    Balling, P.; Kren, P.; Masika, P.; van den Berg, S.A.

    2009-01-01

    Interferometric measurement of distance using a femtosecond frequency comb is demonstrated and compared with a counting interferometer displacement measurement. A numerical model of pulse propagation in air is developed and the results are compared with experimental data for short distances. The

  1. A cognitively grounded measure of pronunciation distance.

    Directory of Open Access Journals (Sweden)

    Martijn Wieling

    Full Text Available In this study we develop pronunciation distances based on naive discriminative learning (NDL. Measures of pronunciation distance are used in several subfields of linguistics, including psycholinguistics, dialectology and typology. In contrast to the commonly used Levenshtein algorithm, NDL is grounded in cognitive theory of competitive reinforcement learning and is able to generate asymmetrical pronunciation distances. In a first study, we validated the NDL-based pronunciation distances by comparing them to a large set of native-likeness ratings given by native American English speakers when presented with accented English speech. In a second study, the NDL-based pronunciation distances were validated on the basis of perceptual dialect distances of Norwegian speakers. Results indicated that the NDL-based pronunciation distances matched perceptual distances reasonably well with correlations ranging between 0.7 and 0.8. While the correlations were comparable to those obtained using the Levenshtein distance, the NDL-based approach is more flexible as it is also able to incorporate acoustic information other than sound segments.

  2. Laser distance measurement using a newly developed composite-type optical fiberscope for fetoscopic laser surgery

    Science.gov (United States)

    Seki, Takeshi; Oka, Kiyoshi; Naganawa, Akihiro; Yamashita, Hiromasa; Kim, Keri; Chiba, Toshio

    2010-10-01

    Twin-twin transfusion syndrome (TTTS) is a condition of twins disproportionately sharing blood by the communicating vessels in the shared placenta and resulting in the significantly high fetal and perinatal mortality rate. Fetoscopic laser surgery is performed to block these communicating vessels. It is difficult, however, to perceive the distance from the tip of the fetoscope to the placental surface with only a two-dimensional fetoscopic view. When the distance is too short it causes excessive irradiation and even the risk of inadvertent damage to the placenta. On the other hand, not only target vessels but also adjacent tissues can be irradiated when it is too long. We have developed a composite-type optical fiberscope (COF) that was able to observe the target area and also to perform laser irradiation at the same time. In this paper, we studied a method to estimate the distance from the tip of the COF to the target area. We combined the COF with a laser blood-flow meter. Using laser light from the meter, we measured the total amount of light received ("REFLEX") and estimated the relation between the "REFLEX" value and the laser irradiation distance. Further in vivo experiments were subsequently carried out using porcine mesenteric blood vessels. The results showed that the distance and the "REFLEX" value were inversely proportional, irrespective of the experimental environment (e.g. in air, water and amniotic fluid-like solution) and the target object. In the in vivo experiments, we quantitatively measured the distance within an accuracy of ±1 mm (approximately 10%). In conclusion, our new system was able to measure the distance in vivo enabling a surgeon to safely and effectively perform laser irradiation at a suitable distance. The system can be used not only for fetoscopic surgery but also for general endoscopic surgery.

  3. Distance measurement using frequency scanning interferometry with mode-hoped laser

    Science.gov (United States)

    Medhat, M.; Sobee, M.; Hussein, H. M.; Terra, O.

    2016-06-01

    In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability ±3.9×10-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).

  4. Measures of lexical distance between languages

    Science.gov (United States)

    Petroni, Filippo; Serva, Maurizio

    2010-06-01

    The idea of measuring distance between languages seems to have its roots in the work of the French explorer Dumont D’Urville (1832) [13]. He collected comparative word lists for various languages during his voyages aboard the Astrolabe from 1826 to 1829 and, in his work concerning the geographical division of the Pacific, he proposed a method for measuring the degree of relation among languages. The method used by modern glottochronology, developed by Morris Swadesh in the 1950s, measures distances from the percentage of shared cognates, which are words with a common historical origin. Recently, we proposed a new automated method which uses the normalized Levenshtein distances among words with the same meaning and averages on the words contained in a list. Recently another group of scholars, Bakker et al. (2009) [8] and Holman et al. (2008) [9], proposed a refined version of our definition including a second normalization. In this paper we compare the information content of our definition with the refined version in order to decide which of the two can be applied with greater success to resolve relationships among languages.

  5. An adaptive distance measure for use with nonparametric models

    International Nuclear Information System (INIS)

    Garvey, D. R.; Hines, J. W.

    2006-01-01

    Distance measures perform a critical task in nonparametric, locally weighted regression. Locally weighted regression (LWR) models are a form of 'lazy learning' which construct a local model 'on the fly' by comparing a query vector to historical, exemplar vectors according to a three step process. First, the distance of the query vector to each of the exemplar vectors is calculated. Next, these distances are passed to a kernel function, which converts the distances to similarities or weights. Finally, the model output or response is calculated by performing locally weighted polynomial regression. To date, traditional distance measures, such as the Euclidean, weighted Euclidean, and L1-norm have been used as the first step in the prediction process. Since these measures do not take into consideration sensor failures and drift, they are inherently ill-suited for application to 'real world' systems. This paper describes one such LWR model, namely auto associative kernel regression (AAKR), and describes a new, Adaptive Euclidean distance measure that can be used to dynamically compensate for faulty sensor inputs. In this new distance measure, the query observations that lie outside of the training range (i.e. outside the minimum and maximum input exemplars) are dropped from the distance calculation. This allows for the distance calculation to be robust to sensor drifts and failures, in addition to providing a method for managing inputs that exceed the training range. In this paper, AAKR models using the standard and Adaptive Euclidean distance are developed and compared for the pressure system of an operating nuclear power plant. It is shown that using the standard Euclidean distance for data with failed inputs, significant errors in the AAKR predictions can result. By using the Adaptive Euclidean distance it is shown that high fidelity predictions are possible, in spite of the input failure. In fact, it is shown that with the Adaptive Euclidean distance prediction

  6. Application of discriminant analysis and generalized distance measures to uranium exploration

    International Nuclear Information System (INIS)

    Beauchamp, J.J.; Begovich, C.L.; Kane, V.E.; Wolf, D.A.

    1979-10-01

    The National Uranium Resource Evaluation (NURE) Project has as its goal estimation of the nation's uranium resources. It is possible to use discriminant analysis methods on hydrogeochemical data collected in the NURE Program to aid in formulating geochemical models which can be used to identify the anomalous regions necessary for resource estimation. Discriminant analysis methods have been applied to data from the Plainview, Texas Quadrangle which has approximately 850 groundwater samples with more than 40 quantitative measurements per sample. Discriminant analysis topics involving estimation of misclassification probabilities, variable selection, and robust discrimination are applied. A method using generalized distance measures is given which enables assigning samples to a background population or a mineralized population whose parameters were estimated from separate studies. Each topic is related to its relevance in identifying areas of possible interest to uranium exploration

  7. In-vivo quantitative measurement

    International Nuclear Information System (INIS)

    Ito, Takashi

    1992-01-01

    So far by positron CT, the quantitative analyses of oxygen consumption rate, blood flow distribution, glucose metabolic rate and so on have been carried out. The largest merit of using the positron CT is the observation and verification of mankind have become easy. Recently, accompanying the rapid development of the mapping tracers for central nervous receptors, the observation of many central nervous receptors by the positron CT has become feasible, and must expectation has been placed on the elucidation of brain functions. The conditions required for in vitro processes cannot be realized in strict sense in vivo. The quantitative measurement of in vivo tracer method is carried out by measuring the accumulation and movement of a tracer after its administration. The movement model of the mapping tracer for central nervous receptors is discussed. The quantitative analysis using a steady movement model, the measurement of dopamine receptors by reference method, the measurement of D 2 receptors using 11C-Racloprode by direct method, and the possibility of measuring dynamics bio-reaction are reported. (K.I.)

  8. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    Science.gov (United States)

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  9. Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Chung, Jae Hun; Hwang, Gwang Seok; Jung, Eui Han; Kwon, Oh Myoung [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

  10. Study of probe-sample distance for biomedical spectra measurement

    Directory of Open Access Journals (Sweden)

    Li Lei

    2011-11-01

    Full Text Available Abstract Background Fiber-based optical spectroscopy has been widely used for biomedical applications. However, the effect of probe-sample distance on the collection efficiency has not been well investigated. Method In this paper, we presented a theoretical model to maximize the illumination and collection efficiency in designing fiber optic probes for biomedical spectra measurement. This model was in general applicable to probes with single or multiple fibers at an arbitrary incident angle. In order to demonstrate the theory, a fluorescence spectrometer was used to measure the fluorescence of human finger skin at various probe-sample distances. The fluorescence spectrum and the total fluorescence intensity were recorded. Results The theoretical results show that for single fiber probes, contact measurement always provides the best results. While for multi-fiber probes, there is an optimal probe distance. When a 400- μm excitation fiber is used to deliver the light to the skin and another six 400- μm fibers surrounding the excitation fiber are used to collect the fluorescence signal, the experimental results show that human finger skin has very strong fluorescence between 475 nm and 700 nm under 450 nm excitation. The fluorescence intensity is heavily dependent on the probe-sample distance and there is an optimal probe distance. Conclusions We investigated a number of probe-sample configurations and found that contact measurement could be the primary choice for single-fiber probes, but was very inefficient for multi-fiber probes. There was an optimal probe-sample distance for multi-fiber probes. By carefully choosing the probe-sample distance, the collection efficiency could be enhanced by 5-10 times. Our experiments demonstrated that the experimental results of the probe-sample distance dependence of collection efficiency in multi-fiber probes were in general agreement with our theory.

  11. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    Science.gov (United States)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  12. Evaluation of Distance Measures Between Gaussian Mixture Models of MFCCs

    DEFF Research Database (Denmark)

    Jensen, Jesper Højvang; Ellis, Dan P. W.; Christensen, Mads Græsbøll

    2007-01-01

    In music similarity and in the related task of genre classification, a distance measure between Gaussian mixture models is frequently needed. We present a comparison of the Kullback-Leibler distance, the earth movers distance and the normalized L2 distance for this application. Although...

  13. Pairwise Comparison and Distance Measure of Hesitant Fuzzy Linguistic Term Sets

    Directory of Open Access Journals (Sweden)

    Han-Chen Huang

    2014-01-01

    Full Text Available A hesitant fuzzy linguistic term set (HFLTS, allowing experts using several possible linguistic terms to assess a qualitative linguistic variable, is very useful to express people’s hesitancy in practical decision-making problems. Up to now, a little research has been done on the comparison and distance measure of HFLTSs. In this paper, we present a comparison method for HFLTSs based on pairwise comparisons of each linguistic term in the two HFLTSs. Then, a distance measure method based on the pairwise comparison matrix of HFLTSs is proposed, and we prove that this distance is equal to the distance of the average values of HFLTSs, which makes the distance measure much more simple. Finally, the pairwise comparison and distance measure methods are utilized to develop two multicriteria decision-making approaches under hesitant fuzzy linguistic environments. The results analysis shows that our methods in this paper are more reasonable.

  14. Application of discriminant analysis and generalized distance measures to uranium exploration

    International Nuclear Information System (INIS)

    Beauchamp, J.J.; Begovich, C.L.; Kane, V.E.; Wolf, D.A.

    1980-01-01

    The National Uranium Resource Evaluation (NURE) Program has as its goal the estimation of the nation's uranium resources. It is possile to use discriminant analysis methods on hydrogeochemical data collected in the NURE Program to aid in fomulating geochemical models that can be used to identify the anomalous areas used in resource estimation. Discriminant' analysis methods have been applied to data from the Plainview, Texas Quadrangle which has approximately 850 groundwater samples with more than 40 quantitative measurements per sample. Discriminant analysis topics involving estimation of misclassification probabilities, variable selection, and robust discrimination are applied. A method using generalized distance measures is given which enables the assignment of samples to a background population or a mineralized population whose parameters were estimated from separate studies. Each topic is related to its relevance in identifying areas of possible interest to uranium exploration. However, the methodology presented here is applicable to the identification of regions associated with other types of resources. 8 figures, 3 tables

  15. Evaluation of gene-expression clustering via mutual information distance measure

    Directory of Open Access Journals (Sweden)

    Maimon Oded

    2007-03-01

    Full Text Available Abstract Background The definition of a distance measure plays a key role in the evaluation of different clustering solutions of gene expression profiles. In this empirical study we compare different clustering solutions when using the Mutual Information (MI measure versus the use of the well known Euclidean distance and Pearson correlation coefficient. Results Relying on several public gene expression datasets, we evaluate the homogeneity and separation scores of different clustering solutions. It was found that the use of the MI measure yields a more significant differentiation among erroneous clustering solutions. The proposed measure was also used to analyze the performance of several known clustering algorithms. A comparative study of these algorithms reveals that their "best solutions" are ranked almost oppositely when using different distance measures, despite the found correspondence between these measures when analysing the averaged scores of groups of solutions. Conclusion In view of the results, further attention should be paid to the selection of a proper distance measure for analyzing the clustering of gene expression data.

  16. Handwriting individualization using distance and rarity

    Science.gov (United States)

    Tang, Yi; Srihari, Sargur; Srinivasan, Harish

    2012-01-01

    Forensic individualization is the task of associating observed evidence with a specific source. The likelihood ratio (LR) is a quantitative measure that expresses the degree of uncertainty in individualization, where the numerator represents the likelihood that the evidence corresponds to the known and the denominator the likelihood that it does not correspond to the known. Since the number of parameters needed to compute the LR is exponential with the number of feature measurements, a commonly used simplification is the use of likelihoods based on distance (or similarity) given the two alternative hypotheses. This paper proposes an intermediate method which decomposes the LR as the product of two factors, one based on distance and the other on rarity. It was evaluated using a data set of handwriting samples, by determining whether two writing samples were written by the same/different writer(s). The accuracy of the distance and rarity method, as measured by error rates, is significantly better than the distance method.

  17. Quantitative graph theory mathematical foundations and applications

    CERN Document Server

    Dehmer, Matthias

    2014-01-01

    The first book devoted exclusively to quantitative graph theory, Quantitative Graph Theory: Mathematical Foundations and Applications presents and demonstrates existing and novel methods for analyzing graphs quantitatively. Incorporating interdisciplinary knowledge from graph theory, information theory, measurement theory, and statistical techniques, this book covers a wide range of quantitative-graph theoretical concepts and methods, including those pertaining to real and random graphs such as:Comparative approaches (graph similarity or distance)Graph measures to characterize graphs quantitat

  18. Distance Measures for Information System Reengineering

    NARCIS (Netherlands)

    Poels, G.; Viaene, S.; Dedene, G.; Wangler, B.; Bergman, L.

    2000-01-01

    We present an approach to assess the magnitude and impact of information system reengineering caused by business process change. This approach is based on two concepts: object-oriented business modeling and distance measurement. The former concept is used to visualize changes in the business layer

  19. High Precision Infrared Temperature Measurement System Based on Distance Compensation

    Directory of Open Access Journals (Sweden)

    Chen Jing

    2017-01-01

    Full Text Available To meet the need of real-time remote monitoring of human body surface temperature for optical rehabilitation therapy, a non-contact high-precision real-time temperature measurement method based on distance compensation was proposed, and the system design was carried out. The microcontroller controls the infrared temperature measurement module and the laser range module to collect temperature and distance data. The compensation formula of temperature with distance wass fitted according to the least square method. Testing had been performed on different individuals to verify the accuracy of the system. The results indicate that the designed non-contact infrared temperature measurement system has a residual error of less than 0.2°C and the response time isless than 0.1s in the range of 0 to 60cm. This provides a reference for developing long-distance temperature measurement equipment in optical rehabilitation therapy.

  20. MEASURING ORGANIZATIONAL CULTURE: A QUANTITATIVE-COMPARATIVE ANALYSIS [doi: 10.5329/RECADM.20100902007

    Directory of Open Access Journals (Sweden)

    Valderí de Castro Alcântara

    2010-11-01

    Full Text Available This article aims at the analysis of the organizational culture at enterprises located in two towns with distinct quantitative traits, Rio Paranaíba and Araxá. While the surveyed enterprises in Rio Paranaíba are mostly micro and small enterprises (86%, in Araxá there are mostly medium and large companies (53%. The overall objective is to verify if there are significant differences in organizational culture among these enterprises and if they can be explained by the organization size. The research was quantitative and instruments for data collection were a questionnaire and a scale for measuring organizational culture containing four dimensions: Hierarchical Distance Index (IDH, Individualism Index (INDI, Masculinity Index (MASC and the Uncertainty Control Index (CINC. Tabulation and analysis of data were performed using the PASW Statistics 18, doing descriptive and inferential statistical procedures. Using a Reduction Factor (-21 the achieved indexes were classified into 5 intensity categories (from "very low" to "very high". The Student t test for two means was performed, revealing significant differences in Hierarchical Distance and Individualism between Araxá and Rio Paranaíba enterprises (p <0.05.   Keywords Organizational Culture; Dimensions of Organizational Culture; Araxá; Rio Paranaíba.

  1. Quantitative Ultrasound Measurements at the Heel

    DEFF Research Database (Denmark)

    Daugschies, M.; Brixen, K.; Hermann, P.

    2015-01-01

    Calcaneal quantitative ultrasound can be used to predict osteoporotic fracture risk, but its ability to monitor therapy is unclear possibly because of its limited precision. We developed a quantitative ultrasound device (foot ultrasound scanner) that measures the speed of sound at the heel...... with the foot ultrasound scanner reduced precision errors by half (p quantitative ultrasound measurements is feasible. (E-mail: m.daugschies@rad.uni-kiel.de) (C) 2015 World Federation for Ultrasound in Medicine & Biology....

  2. How to measure distance visual acuity

    Directory of Open Access Journals (Sweden)

    Janet Marsden

    2014-04-01

    Full Text Available Visual acuity (VA is a measure of the ability of the eye to distinguish shapes and the details of objects at a given distance. It is important to assess VA in a consistent way in order to detect any changes in vision. One eye is tested at a time.

  3. A Novel Method for Short Distance Measurements

    International Nuclear Information System (INIS)

    Fernandez, M.G.; Ferrando, A.; Josa, M.I.; Molinero, A.; Oller, J.C.; Arce, P.; Calvo, E.; Figueroa, C.F.; Garcia, C.F.; Rodigrido, T.; Vila, I.; Virto, A.L.

    1998-01-01

    A new, accurate and un expensive device for measuring short distances, intended for monitoring in LHC experiments is presented. Data taken with a very simple prototype are shown and performance is extracted. (Author) 4 refs

  4. Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung

    International Nuclear Information System (INIS)

    Mohammadi, Sara; Larsson, Emanuel; Alves, Frauke; Dal Monego, Simeone; Biffi, Stefania; Garrovo, Chiara; Lorenzon, Andrea; Tromba, Giuliana; Dullin, Christian

    2014-01-01

    Quantitative analysis concerning the application of a single-distance phase-retrieval algorithm on in-line phase-contrast images of a mouse lung at different sample-to-detector distances is presented. Propagation-based X-ray phase-contrast computed tomography (PBI) has already proven its potential in a great variety of soft-tissue-related applications including lung imaging. However, the strong edge enhancement, caused by the phase effects, often hampers image segmentation and therefore the quantitative analysis of data sets. Here, the benefits of applying single-distance phase retrieval prior to the three-dimensional reconstruction (PhR) are discussed and quantified compared with three-dimensional reconstructions of conventional PBI data sets in terms of contrast-to-noise ratio (CNR) and preservation of image features. The PhR data sets show more than a tenfold higher CNR and only minor blurring of the edges when compared with PBI in a predominately absorption-based set-up. Accordingly, phase retrieval increases the sensitivity and provides more functionality in computed tomography imaging

  5. Recoil distance lifetime measurements in 122,124Xe

    Science.gov (United States)

    Govil, I. M.; Kumar, A.; Iyer, H.; Li, H.; Garg, U.; Ghugre, S. S.; Johnson, T.; Kaczarowski, R.; Kharraja, B.; Naguleswaran, S.; Walpe, J. C.

    1998-02-01

    Lifetimes of the lower-excited states in 122,124Xe are measured using the recoil-distance Doppler-shift technique. The reactions 110Pd(16O,4n)122Xe and 110Pd(18O,4n)124Xe at a beam energy of 66 MeV were used for this experiment. The lifetimes of the 2+, 4+, 6+, and 8+ states of the ground state band were extracted using the computer code LIFETIME including the corrections due to the side feeding and the nuclear deorientation effects. The lifetime of the 2+ state in 122Xe agrees with the recoil distance method (RDM) measurements but for the 124Xe it does not agree with the RDM measurements but agrees with the Coulomb-excitation experiment. The measured B(E2) values for both the nuclei are compared with the standard algebraic and the multishell models.

  6. Measuring sidewalk distances using Google Earth

    Directory of Open Access Journals (Sweden)

    Janssen Ian

    2012-03-01

    Full Text Available Abstract Background Physical activity is an important determinant of health. Walking is the most common physical activity performed by adults and the presence of sidewalks along roads is a determinant of walking. Geographic information systems (GIS can be used to measure sidewalks; however, GIS sidewalk data are difficult to access. The purpose of this study was to present a new GIS method for measuring the distance and coverage of sidewalks along roadways. Methods The new method contains three stages. Stage 1 involves calculating the distance of all road segments within the region of interest (e.g., neighborhood, extracting geospatial information on these road segments, and saving this information as a Google Earth file. This stage was performed in ArcGIS software. Stage 2 involves opening the extracted road segment geospatial data in Google Earth, visually examining road segments to see if they contain sidewalks, and deleting road segments without sidewalks. Stage 3 involves importing the modified road geospatial data into ArcGIS and calculating the length of road segments with sidewalks. The new method was tested in 315 sites across Canada. Each site consisted of a one km radius circular buffer surrounding a school. Results A detailed, step-by-step protocol is provided in the paper. The length of road segments with sidewalks in the testing sites ranged from 0.00 to 55.05 km (median 16.20 km. When expressed relative to the length of all road segments, the length of road segments with sidewalks ranged from 0% to 100% (median 53%. By comparison to urban testing sites, rural sites had shorter sidewalk lengths and a smaller proportion of the roads had sidewalk coverage. Conclusion This study provides a new GIS protocol that researchers can use to measure the distance and coverage of sidewalks along roadways.

  7. Quantitative autoradiography - a method of radioactivity measurement

    International Nuclear Information System (INIS)

    Treutler, H.C.; Freyer, K.

    1988-01-01

    In the last years the autoradiography has been developed to a quantitative method of radioactivity measurement. Operating techniques of quantitative autoradiography are demonstrated using special standard objects. Influences of irradiation quality, of backscattering in sample and detector materials, and of sensitivity and fading of the detectors are considered. Furthermore, questions of quantitative evaluation of autoradiograms are dealt with, and measuring errors are discussed. Finally, some practical uses of quantitative autoradiography are demonstrated by means of the estimation of activity distribution in radioactive foil samples. (author)

  8. Ultrasound measurement of transcranial distance during head-down tilt

    Science.gov (United States)

    Torikoshi, S.; Wilson, M. H.; Ballard, R. E.; Watenpaugh, D. E.; Murthy, G.; Yost, W. T.; Cantrell, J. H.; Chang, D. S.; Hargens, A. R.

    1995-01-01

    Exposure to microgravity elevates blood pressure and flow in the head, which may increase intracranial volume (ICV) and intracranial pressure (ICP). Rhesus monkeys exposed to simulated microgravity in the form of 6 degree head-down tilt (HDT) experience elevated ICP. With humans, twenty-four hours of 6 degree HDT bed rest increases cerebral blood flow velocity relative to pre-HDT upright posture. Humans exposed to acute 6 degree HDT experiments increased ICP, measured with the tympanic membrane displacement (TMD) technique. Other studies suggest that increased ICP in humans and cats causes measurable cranial bone movement across the sagittal suture. Due to the slightly compliant nature of the cranium, elevation of the ICP will increase ICV and transcranial distance. Currently, several non-invasive approaches to monitor ICP are being investigated. Such techniques include TMD and modal analysis of the skull. TMD may not be reliable over a large range of ICP and neither method is capable of measuring the small changes in pressure. Ultrasound, however, may reliably measure small distance changes that accompany ICP fluctuations. The purpose of our study was to develop and evaluate an ultrasound technique to measure transcranial distance changes during HDT.

  9. An Introduction to Distance Measurement in Astronomy

    CERN Document Server

    de Grijs, Richard

    2011-01-01

    Distance determination is an essential technique in astronomy, and is briefly covered in most textbooks on astrophysics and cosmology. It is rarely covered as a coherent topic in its own right. When it is discussed the approach is frequently very dry, splitting the teaching into, for example, stars, galaxies and cosmologies, and as a consequence, books lack depth and are rarely comprehensive. Adopting a unique and engaging approach to the subject An Introduction to distance Measurement in Astronomy will take the reader on a journey from the solar neighbourhood to the edge of the Universe, dis

  10. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    International Nuclear Information System (INIS)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-01-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution

  11. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    Science.gov (United States)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  12. A Scale Elasticity Measure for Directional Distance Function and its Dual

    OpenAIRE

    Valentin Zelenyuk

    2011-01-01

    In this paper we introduce a scale elasticity measure based on directional distance function for multi-output-multi-input technologies and explore its fundamental properties. Specifically, we derive necessary and sufficient condition for equivalence of the scale elasticity measure based on the directional distance function with the input oriented and output oriented scale elasticity measures. We also establish duality relationship between the scale elasticity measure based on the directional ...

  13. Improved Iris Recognition through Fusion of Hamming Distance and Fragile Bit Distance.

    Science.gov (United States)

    Hollingsworth, Karen P; Bowyer, Kevin W; Flynn, Patrick J

    2011-12-01

    The most common iris biometric algorithm represents the texture of an iris using a binary iris code. Not all bits in an iris code are equally consistent. A bit is deemed fragile if its value changes across iris codes created from different images of the same iris. Previous research has shown that iris recognition performance can be improved by masking these fragile bits. Rather than ignoring fragile bits completely, we consider what beneficial information can be obtained from the fragile bits. We find that the locations of fragile bits tend to be consistent across different iris codes of the same eye. We present a metric, called the fragile bit distance, which quantitatively measures the coincidence of the fragile bit patterns in two iris codes. We find that score fusion of fragile bit distance and Hamming distance works better for recognition than Hamming distance alone. To our knowledge, this is the first and only work to use the coincidence of fragile bit locations to improve the accuracy of matches.

  14. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    Science.gov (United States)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  15. Polynomial-time Algorithms for Computing Distances of Fuzzy Transition Systems

    OpenAIRE

    Chen, Taolue; Han, Tingting; Cao, Yongzhi

    2017-01-01

    Behaviour distances to measure the resemblance of two states in a (nondeterministic) fuzzy transition system have been proposed recently in the literature. Such a distance, defined as a pseudo-ultrametric over the state space of the model, provides a quantitative analogue of bisimilarity. In this paper, we focus on the problem of computing these distances. We first extend the definition of the pseudo-ultrametric by introducing discount such that the discounting factor being equal to 1 capture...

  16. Calibration Base Lines for Electronic Distance Measuring Instruments (EDMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A calibration base line (CBL) is a precisely measured, straight-line course of approximately 1,400 m used to calibrate Electronic Distance Measuring Instruments...

  17. Geometric model of pseudo-distance measurement in satellite location systems

    Science.gov (United States)

    Panchuk, K. L.; Lyashkov, A. A.; Lyubchinov, E. V.

    2018-04-01

    The existing mathematical model of pseudo-distance measurement in satellite location systems does not provide a precise solution of the problem, but rather an approximate one. The existence of such inaccuracy, as well as bias in measurement of distance from satellite to receiver, results in inaccuracy level of several meters. Thereupon, relevance of refinement of the current mathematical model becomes obvious. The solution of the system of quadratic equations used in the current mathematical model is based on linearization. The objective of the paper is refinement of current mathematical model and derivation of analytical solution of the system of equations on its basis. In order to attain the objective, geometric analysis is performed; geometric interpretation of the equations is given. As a result, an equivalent system of equations, which allows analytical solution, is derived. An example of analytical solution implementation is presented. Application of analytical solution algorithm to the problem of pseudo-distance measurement in satellite location systems allows to improve the accuracy such measurements.

  18. GENETIC AND MORPHOAGRONOMIC DIVERSITY OF Passiflora spp. BASED ON QUANTITATIVE MEASUREMENTS OF FLOWERS AND FRUITS

    Directory of Open Access Journals (Sweden)

    JAMILE DA SILVA OLIVEIRA

    Full Text Available ABSTRACT The aim of this study was to characterize Passiflora spp. accessions and its genetic diversity based on quantitative morphological descriptors of flowers and fruits. The study was conducted at Embrapa Cerrados, Planaltina-DF. Fifteen Passiflora spp. accessions were characterized using 14 quantitative morphological descriptors. Genetic distances among accessions were estimated based on Mahalanobis’ generalized distance. Cluster analysis via dendrogram and graphic dispersion was analyzed. The relative contribution of characters for accession divergence was also calculated. The morphoagronomic characterization based on quantitative descriptors of flowers and fruits contributed to the differentiation of Passiflora spp. accessions, serving as an important tool for variability quantification. This information is useful to perform Passiflora spp. characterization and genetic diversity studies.

  19. Improvement of Ultrasonic Distance Measuring System

    Directory of Open Access Journals (Sweden)

    Jiang Yu

    2018-01-01

    Full Text Available This paper mainly introduces a kind of ultrasonic distance measuring system with AT89C51 single chip as the core component. The paper expounds the principle of ultrasonic sensor and ultrasonic ranging, hardware circuit and software program, and the results of experiment and analysis.The hardware circuit based on SCM, the software design adopts the advanced microcontroller programming language.The amplitude of the received signal and the time of ultrasonic propagation are regulated by closed loop control. [1,2]The double closed loop control technology for amplitude and time improves the measuring accuracy of the instrument. The experimental results show that greatly improves the measurement accuracy of the system.

  20. Change of Measure between Light Travel Time and Euclidean Distances

    Directory of Open Access Journals (Sweden)

    Heymann Y.

    2013-04-01

    Full Text Available The problem of cosmological distances is approached using a method based on the propagation of light in an expanding Universe. From the chan ge of measure between Light Travel Time and Euclidean Distances, a formula is deri ved to compute distances as a function of redshift. This formula is identical to Matti g’s formula (with q 0 = 1 / 2 which is based on Friedmann’s equations of general relativi ty.

  1. Interface Simulation Distances

    Directory of Open Access Journals (Sweden)

    Pavol Černý

    2012-10-01

    Full Text Available The classical (boolean notion of refinement for behavioral interfaces of system components is the alternating refinement preorder. In this paper, we define a distance for interfaces, called interface simulation distance. It makes the alternating refinement preorder quantitative by, intuitively, tolerating errors (while counting them in the alternating simulation game. We show that the interface simulation distance satisfies the triangle inequality, that the distance between two interfaces does not increase under parallel composition with a third interface, and that the distance between two interfaces can be bounded from above and below by distances between abstractions of the two interfaces. We illustrate the framework, and the properties of the distances under composition of interfaces, with two case studies.

  2. Metrics for measuring distances in configuration spaces

    International Nuclear Information System (INIS)

    Sadeghi, Ali; Ghasemi, S. Alireza; Schaefer, Bastian; Mohr, Stephan; Goedecker, Stefan; Lill, Markus A.

    2013-01-01

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices

  3. Measuring short distance dispersal of Alliaria petiolata and determining potential long distance dispersal mechanisms

    Directory of Open Access Journals (Sweden)

    Christopher A. Loebach

    2018-03-01

    Full Text Available Introduction Alliaria petiolata, an herbaceous plant, has invaded woodlands in North America. Its ecology has been thoroughly studied, but an overlooked aspect of its biology is seed dispersal distances and mechanisms. We measured seed dispersal distances in the field and tested if epizoochory is a potential mechanism for long-distance seed dispersal. Methods Dispersal distances were measured by placing seed traps in a sector design around three seed point sources, which consisted of 15 second-year plants transplanted within a 0.25 m radius circle. Traps were placed at intervals ranging from 0.25–3.25 m from the point source. Traps remained in the field until a majority of seeds were dispersed. Eight probability density functions were fitted to seed trap counts via maximum likelihood. Epizoochory was tested as a potential seed dispersal mechanism for A. petiolata through a combination of field and laboratory experiments. To test if small mammals transport A. petiolata seeds in their fur, experimental blocks were placed around dense A. petiolata patches. Each block contained a mammal inclusion treatment (MIT and control. The MIT consisted of a wood-frame (31 × 61× 31 cm covered in wire mesh, except for the two 31 × 31 cm ends, placed over a germination tray filled with potting soil. A pan filled with bait was placed in the center of the tray. The control frame (11 × 31 × 61 cm was placed over a germination tray and completely covered in wire mesh to exclude animal activity. Treatments were in the field for peak seed dispersal. In March, trays were moved to a greenhouse and A. petiolata seedlings were counted and then compared between treatments. To determine if A. petiolata seeds attach to raccoon (Procyon lotor and white-tailed deer (Odocoileus virginianus fur, wet and dry seeds were dropped onto wet and dry fur. Furs were rotated 180 degrees and the seeds that remained attached were counted. To measure seed retention, seeds

  4. Connecting long distance: semantic distance in analogical reasoning modulates frontopolar cortex activity.

    Science.gov (United States)

    Green, Adam E; Kraemer, David J M; Fugelsang, Jonathan A; Gray, Jeremy R; Dunbar, Kevin N

    2010-01-01

    Solving problems often requires seeing new connections between concepts or events that seemed unrelated at first. Innovative solutions of this kind depend on analogical reasoning, a relational reasoning process that involves mapping similarities between concepts. Brain-based evidence has implicated the frontal pole of the brain as important for analogical mapping. Separately, cognitive research has identified semantic distance as a key characteristic of the kind of analogical mapping that can support innovation (i.e., identifying similarities across greater semantic distance reveals connections that support more innovative solutions and models). However, the neural substrates of semantically distant analogical mapping are not well understood. Here, we used functional magnetic resonance imaging (fMRI) to measure brain activity during an analogical reasoning task, in which we parametrically varied the semantic distance between the items in the analogies. Semantic distance was derived quantitatively from latent semantic analysis. Across 23 participants, activity in an a priori region of interest (ROI) in left frontopolar cortex covaried parametrically with increasing semantic distance, even after removing effects of task difficulty. This ROI was centered on a functional peak that we previously associated with analogical mapping. To our knowledge, these data represent a first empirical characterization of how the brain mediates semantically distant analogical mapping.

  5. A comparison between using distance sensors for measuring the pantograph vertically movement

    Science.gov (United States)

    Rob, R.; Panoiu, C.; Rusu-Anghel, S.; Panoiu, M.

    2018-01-01

    In railway transportation the most important problem to solve consists in assuring the safety traffic of people and freight. In this scope some of the geometrical parameters regarding the contact line must be measured. One of this parameter is the pantograph vertically movement, so it must use distance sensors. Present paper studies the performance of two kinds of distance sensors, an ultrasonic distance sensor and an infrared sensor. The performances are studied from the point of view of error distance measurement and the possibility of using a real time acquisition system. The researches were made on a laboratory model for the pantograph realized at the scale 1:2.

  6. On the importance of the distance measures used to train and test knowledge-based potentials for proteins.

    Directory of Open Access Journals (Sweden)

    Martin Carlsen

    Full Text Available Knowledge-based potentials are energy functions derived from the analysis of databases of protein structures and sequences. They can be divided into two classes. Potentials from the first class are based on a direct conversion of the distributions of some geometric properties observed in native protein structures into energy values, while potentials from the second class are trained to mimic quantitatively the geometric differences between incorrectly folded models and native structures. In this paper, we focus on the relationship between energy and geometry when training the second class of knowledge-based potentials. We assume that the difference in energy between a decoy structure and the corresponding native structure is linearly related to the distance between the two structures. We trained two distance-based knowledge-based potentials accordingly, one based on all inter-residue distances (PPD, while the other had the set of all distances filtered to reflect consistency in an ensemble of decoys (PPE. We tested four types of metric to characterize the distance between the decoy and the native structure, two based on extrinsic geometry (RMSD and GTD-TS*, and two based on intrinsic geometry (Q* and MT. The corresponding eight potentials were tested on a large collection of decoy sets. We found that it is usually better to train a potential using an intrinsic distance measure. We also found that PPE outperforms PPD, emphasizing the benefits of capturing consistent information in an ensemble. The relevance of these results for the design of knowledge-based potentials is discussed.

  7. The Edit Distance as a Measure of Perceived Rhythmic Similarity

    Directory of Open Access Journals (Sweden)

    Olaf Post

    2012-07-01

    Full Text Available The ‘edit distance’ (or ‘Levenshtein distance’ measure of distance between two data sets is defined as the minimum number of editing operations – insertions, deletions, and substitutions – that are required to transform one data set to the other (Orpen and Huron, 1992. This measure of distance has been applied frequently and successfully in music information retrieval, but rarely in predicting human perception of distance. In this study, we investigate the effectiveness of the edit distance as a predictor of perceived rhythmic dissimilarity under simple rhythmic alterations. Approaching rhythms as a set of pulses that are either onsets or silences, we study two types of alterations. The first experiment is designed to test the model’s accuracy for rhythms that are relatively similar; whether rhythmic variations with the same edit distance to a source rhythm are also perceived as relatively similar by human subjects. In addition, we observe whether the salience of an edit operation is affected by its metric placement in the rhythm. Instead of using a rhythm that regularly subdivides a 4/4 meter, our source rhythm is a syncopated 16-pulse rhythm, the son. Results show a high correlation between the predictions by the edit distance model and human similarity judgments (r = 0.87; a higher correlation than for the well-known generative theory of tonal music (r = 0.64. In the second experiment, we seek to assess the accuracy of the edit distance model in predicting relatively dissimilar rhythms. The stimuli used are random permutations of the son’s inter-onset intervals: 3-3-4-2-4. The results again indicate that the edit distance correlates well with the perceived rhythmic dissimilarity judgments of the subjects (r = 0.76. To gain insight in the relationships between the individual rhythms, the results are also presented by means of graphic phylogenetic trees.

  8. A Relative-Localization Algorithm Using Incomplete Pairwise Distance Measurements for Underwater Applications

    Directory of Open Access Journals (Sweden)

    Kae Y. Foo

    2010-01-01

    Full Text Available The task of localizing underwater assets involves the relative localization of each unit using only pairwise distance measurements, usually obtained from time-of-arrival or time-delay-of-arrival measurements. In the fluctuating underwater environment, a complete set of pair-wise distance measurements can often be difficult to acquire, thus hindering a straightforward closed-form solution in deriving the assets' relative coordinates. An iterative multidimensional scaling approach is presented based upon a weighted-majorization algorithm that tolerates missing or inaccurate distance measurements. Substantial modifications are proposed to optimize the algorithm, while the effects of refractive propagation paths are considered. A parametric study of the algorithm based upon simulation results is shown. An acoustic field-trial was then carried out, presenting field measurements to highlight the practical implementation of this algorithm.

  9. Index of Refraction Measurements Using a Laser Distance Meter

    Science.gov (United States)

    Ochoa, Romulo; Fiorillo, Richard; Ochoa, Cris

    2014-01-01

    We present a simple method to determine the refractive indices of transparent media using a laser distance meter. Indices of refraction have been obtained by measuring the speed of light in materials. Some speed of light techniques use time-of-flight measurements in which pulses are emitted by lasers and the time interval is measured for the pulse…

  10. Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA

    OpenAIRE

    Kelly, Brendan J.; Gross, Robert; Bittinger, Kyle; Sherrill-Mix, Scott; Lewis, James D.; Collman, Ronald G.; Bushman, Frederic D.; Li, Hongzhe

    2015-01-01

    Motivation: The variation in community composition between microbiome samples, termed beta diversity, can be measured by pairwise distance based on either presence–absence or quantitative species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of variance to a matrix of pairwise distances, partitions within-group and between-group distances to permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled microbiome. Within-...

  11. Anatomy-Based navigation for ventriculostomy: Nasion-coronal suture distance measurement

    Directory of Open Access Journals (Sweden)

    Mevci Özdemir

    2014-09-01

    Full Text Available Objective: In this study we aimed to determine a landmark that can be measured through the skin with nasal mid-point (bregma to coronal suture, and additionally an average value was calculated. We report, to our knowledge, the distance between the nasion-coronal sutures is reported for the first time in Turkish population. Methods: The study included 30 craniums and 30 frontal bones. Each skull from midline nasal suture to coronal suture curved up at the distance was measured with tape measure. Results: Mean values were determined. Nasal suture between coronal suture distance average 12,2 cm (min10,3 cm, up to 13,5 cm were detected. Conclusion: Nasal suture is an easily palpable area through the skin. A small incision is carried down through skin to bone at the spot 12 cm back from the nasion 3 cm lateral to the midline for ventricular drainage operation. This data provide practical information for neurosurgeon and is available everywhere. J Clin Exp Invest 2014; 5 (3: 368-370

  12. DISTANCES TO DARK CLOUDS: COMPARING EXTINCTION DISTANCES TO MASER PARALLAX DISTANCES

    International Nuclear Information System (INIS)

    Foster, Jonathan B.; Jackson, James M.; Stead, Joseph J.; Hoare, Melvin G.; Benjamin, Robert A.

    2012-01-01

    We test two different methods of using near-infrared extinction to estimate distances to dark clouds in the first quadrant of the Galaxy using large near-infrared (Two Micron All Sky Survey and UKIRT Infrared Deep Sky Survey) surveys. Very long baseline interferometry parallax measurements of masers around massive young stars provide the most direct and bias-free measurement of the distance to these dark clouds. We compare the extinction distance estimates to these maser parallax distances. We also compare these distances to kinematic distances, including recent re-calibrations of the Galactic rotation curve. The extinction distance methods agree with the maser parallax distances (within the errors) between 66% and 100% of the time (depending on method and input survey) and between 85% and 100% of the time outside of the crowded Galactic center. Although the sample size is small, extinction distance methods reproduce maser parallax distances better than kinematic distances; furthermore, extinction distance methods do not suffer from the kinematic distance ambiguity. This validation gives us confidence that these extinction methods may be extended to additional dark clouds where maser parallaxes are not available.

  13. Comparison of efficiency of distance measurement methodologies in mango (Mangifera indica) progenies based on physicochemical descriptors.

    Science.gov (United States)

    Alves, E O S; Cerqueira-Silva, C B M; Souza, A M; Santos, C A F; Lima Neto, F P; Corrêa, R X

    2012-03-14

    We investigated seven distance measures in a set of observations of physicochemical variables of mango (Mangifera indica) submitted to multivariate analyses (distance, projection and grouping). To estimate the distance measurements, five mango progeny (total of 25 genotypes) were analyzed, using six fruit physicochemical descriptors (fruit weight, equatorial diameter, longitudinal diameter, total soluble solids in °Brix, total titratable acidity, and pH). The distance measurements were compared by the Spearman correlation test, projection in two-dimensional space and grouping efficiency. The Spearman correlation coefficients between the seven distance measurements were, except for the Mahalanobis' generalized distance (0.41 ≤ rs ≤ 0.63), high and significant (rs ≥ 0.91; P < 0.001). Regardless of the origin of the distance matrix, the unweighted pair group method with arithmetic mean grouping method proved to be the most adequate. The various distance measurements and grouping methods gave different values for distortion (-116.5 ≤ D ≤ 74.5), cophenetic correlation (0.26 ≤ rc ≤ 0.76) and stress (-1.9 ≤ S ≤ 58.9). Choice of distance measurement and analysis methods influence the.

  14. A Test of the Validity of Projective and Quasi-Projective Measures of Interpersonal Distance.

    Science.gov (United States)

    Jones, Stanley E.; Aiello, John R.

    1979-01-01

    Discusses research supporting the conclusion that projective and quasi-projective measures of interpersonal distance do not measure the same phenomena as interactional measures. It is possible that they are more indicative of psychological rather than physical distance. (JMF)

  15. An International Parallax Campaign to Measure Distance to the Moon and Mars

    Science.gov (United States)

    Cenadelli, D.; Zeni, M.; Bernagozzi, A.; Calcidese, P.; Ferreira, L.; Hoang, C.; Rijsdijk, C.

    2009-01-01

    Trigonometric parallax is a powerful method to work out the distance of celestial bodies, and it was used in the past to measure the distance of the Moon, Venus, Mars and nearby stars. We set up an observation campaign for high school and undergraduate students with the purpose to measure both the Moon's and Mars' parallax. To have a large enough…

  16. EPR-based distance measurements at ambient temperature

    Science.gov (United States)

    Krumkacheva, Olesya; Bagryanskaya, Elena

    2017-07-01

    Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0 nm. It was proposed more than 30 years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (T biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities.

  17. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry.

    Science.gov (United States)

    Wang, Guochao; Tan, Lilong; Yan, Shuhua

    2018-02-07

    We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He-Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10 -8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.

  18. THE DISTANCE MEASUREMENT OF NGC 1313 WITH CEPHEIDS

    International Nuclear Information System (INIS)

    Qing, Gao; Wang, Wei; Liu, Ji-Feng; Yoachim, Peter

    2015-01-01

    We present the detection of Cepheids in the barred spiral galaxy NGC 1313, using the Wide Field and Planetary Camera 2 on the Hubble Space Telescope. Twenty B(F450W) and V(F555W) epochs of observations spanning over three weeks were obtained, on which the profile-fitting photometry of all stars in the monitored field was performed using the package HSTphot. A sample of 26 variable stars have been identified to be Cepheids, with periods between 3 and 14 days. Based on the derived period-luminosity relations in B- and V-bands, we obtain an extinction-corrected distance modulus of μ NGC 1313 = 28.32 ± 0.08 (random) ± 0.06 (systematic), employing the Large Magellanic Cloud as the distance zero point calibrator. The above moduli correspond to a distance of 4.61 ± 0.17 (random) ±0.13 (systematic) Mpc, consistent with previous measurements reported in the literature within uncertainties. In addition, the reddening to NGC 1313 is found to be small

  19. Connecting qualitative observation and quantitative measurement for enhancing quantitative literacy in plant anatomy course

    Science.gov (United States)

    Nuraeni, E.; Rahmat, A.

    2018-05-01

    Forming of cognitive schemes of plant anatomy concepts is performed by processing of qualitative and quantitative data obtained from microscopic observations. To enhancing student’s quantitative literacy, strategy of plant anatomy course was modified by adding the task to analyze quantitative data produced by quantitative measurement of plant anatomy guided by material course. Participant in this study was 24 biology students and 35 biology education students. Quantitative Literacy test, complex thinking in plant anatomy test and questioner used to evaluate the course. Quantitative literacy capability data was collected by quantitative literacy test with the rubric from the Association of American Colleges and Universities, Complex thinking in plant anatomy by test according to Marzano and questioner. Quantitative literacy data are categorized according to modified Rhodes and Finley categories. The results showed that quantitative literacy of biology education students is better than biology students.

  20. Experience of precision measuring distances by invar wires at accelerators

    International Nuclear Information System (INIS)

    Porubaj, N.I.

    1977-01-01

    With a view to determining the deformations and displacements of the ring foundation of the ITEP accelerator, the method of very accurate distance measurements by means of invar wires and strips is described. Measurement errors are analyzed. This method has allowed to measure distances up to 40 m with a mean-square error of less than 40 μm. The calibration accuracy of 3 and 25-m measuring wires has been determined to be +- 27 μm. Time instability of the wires is +- 16 μm. It is shown that strips are more stable in time than wires. Elongation of 6, 19, 25 and 38 m invar wires has been measured as function of the tension time. The error due to tension of a 38-m wire may be tangible. Data on thermal coefficient variation in time has been obtained for invar wires and strips. The multiannual measurements of the ring foundation deformations show that variations of the mean radius are caused by increases of concrete temperature. Temperature increase by only 1 deg caused mean radius increase of 0.3 mm

  1. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry

    Directory of Open Access Journals (Sweden)

    Guochao Wang

    2018-02-01

    Full Text Available We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He–Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10−8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.

  2. Geometric measures of quantum correlations: characterization, quantification, and comparison by distances and operations

    International Nuclear Information System (INIS)

    Roga, W; Illuminati, F; Spehner, D

    2016-01-01

    We investigate and compare three distinguished geometric measures of bipartite quantum correlations that have been recently introduced in the literature: the geometric discord, the measurement-induced geometric discord, and the discord of response, each one defined according to three contractive distances on the set of quantum states, namely the trace, Bures, and Hellinger distances. We establish a set of exact algebraic relations and inequalities between the different measures. In particular, we show that the geometric discord and the discord of response based on the Hellinger distance are easy to compute analytically for all quantum states whenever the reference subsystem is a qubit. These two measures thus provide the first instance of discords that are simultaneously fully computable, reliable (since they satisfy all the basic Axioms that must be obeyed by a proper measure of quantum correlations), and operationally viable (in terms of state distinguishability). We apply the general mathematical structure to determine the closest classical-quantum state of a given state and the maximally quantum-correlated states at fixed global state purity according to the different distances, as well as a necessary condition for a channel to be quantumness breaking. (paper)

  3. Distance measurements from supernovae and dark energy constraints

    International Nuclear Information System (INIS)

    Wang Yun

    2009-01-01

    Constraints on dark energy from current observational data are sensitive to how distances are measured from Type Ia supernova (SN Ia) data. We find that flux averaging of SNe Ia can be used to test the presence of unknown systematic uncertainties, and yield more robust distance measurements from SNe Ia. We have applied this approach to the nearby+SDSS+ESSENCE+SNLS+HST set of 288 SNe Ia, and the 'Constitution' set of 397 SNe Ia. Combining the SN Ia data with cosmic microwave background anisotropy data from Wilkinson Microwave Anisotropy Probe 5 yr observations, the Sloan Digital Sky Survey baryon acoustic oscillation measurements, the data of 69 gamma-ray bursts (GRBs) , and the Hubble constant measurement from the Hubble Space Telescope project SHOES, we measure the dark energy density function X(z)≡ρ X (z)/ρ X (0) as a free function of redshift (assumed to be a constant at z>1 or z>1.5). Without the flux averaging of SNe Ia, the combined data using the Constitution set of SNe Ia seem to indicate a deviation from a cosmological constant at ∼95% confidence level at 0 98% confidence level for z≤0.75 using the combined data with 288 SNe Ia from nearby+SDSS+ESSENCE+SNLS+HST, independent of the assumptions about X(z≥1). We quantify dark energy constraints without assuming a flat Universe using the dark energy figure of merit for both X(z) and a dark energy equation-of-state linear in the cosmic scale factor.

  4. Bullet Ultrasonic Obstruction Detection & Distance Measurement Using AVR Microcontroller

    Directory of Open Access Journals (Sweden)

    Satish Pandey

    2008-08-01

    Full Text Available This paper describes the practical implementation of a short range ultrasonic obstruction detection and distance measurement device. By employing an ultrasonic transducer pair for producing ultrasonic sounds and sensing the reflected sound waves, the obstructions are detected. The hardware interface uses an Atmel ATmega8 AVR microcontroller to facilitate the generation of 40 kHz signal burst which is used in the transmitter circuit, and also to process the received signal for measuring the time of flight of reflected waves and exact distance of the obstruction. The program for this device is developed in WinAVR, and the code generated is dumped into microcontroller using AVR Studio. Educational aspects of this project include the mastery of a programming language and corresponding tools, the design of a functional and intuitive embedded application, and the development of appropriate hardware to build the device.

  5. Measuring the Accuracy of Simple Evolving Connectionist System with Varying Distance Formulas

    Science.gov (United States)

    Al-Khowarizmi; Sitompul, O. S.; Suherman; Nababan, E. B.

    2017-12-01

    Simple Evolving Connectionist System (SECoS) is a minimal implementation of Evolving Connectionist Systems (ECoS) in artificial neural networks. The three-layer network architecture of the SECoS could be built based on the given input. In this study, the activation value for the SECoS learning process, which is commonly calculated using normalized Hamming distance, is also calculated using normalized Manhattan distance and normalized Euclidean distance in order to compare the smallest error value and best learning rate obtained. The accuracy of measurement resulted by the three distance formulas are calculated using mean absolute percentage error. In the training phase with several parameters, such as sensitivity threshold, error threshold, first learning rate, and second learning rate, it was found that normalized Euclidean distance is more accurate than both normalized Hamming distance and normalized Manhattan distance. In the case of beta fibrinogen gene -455 G/A polymorphism patients used as training data, the highest mean absolute percentage error value is obtained with normalized Manhattan distance compared to normalized Euclidean distance and normalized Hamming distance. However, the differences are very small that it can be concluded that the three distance formulas used in SECoS do not have a significant effect on the accuracy of the training results.

  6. Measuring the Distance of Moving Objects from Big Trajectory Data

    Directory of Open Access Journals (Sweden)

    Khaing Phyo Wai

    2017-03-01

    Full Text Available Location-based services have become important in social networking, mobile applications, advertising, traffic monitoring, and many other domains. The growth of location sensing devices has led to the vast generation of dynamic spatial-temporal data in the form of moving object trajectories which can be characterized as big trajectory data. Big trajectory data enables the opportunities such as analyzing the groups of moving objects. To obtain such facilities, the issue of this work is to find a distance measurement method that respects the geographic distance and the semantic similarity for each trajectory. Measurement of similarity between moving objects is a difficult task because not only their position changes but also their semantic features vary. In this research, a method to measure trajectory similarity based on both geographical features and semantic features of motion is proposed. Finally, the proposed methods are practically evaluated by using real trajectory dataset.

  7. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry.

    Science.gov (United States)

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Li, Jianshuang; Qu, Xinghua

    2016-10-17

    Two-color interferometry is powerful for the correction of the air refractive index especially in the turbulent air over long distance, since the empirical equations could introduce considerable measurement uncertainty if the environmental parameters cannot be measured with sufficient precision. In this paper, we demonstrate a method for absolute distance measurement with high-accuracy correction of air refractive index using two-color dispersive interferometry. The distances corresponding to the two wavelengths can be measured via the spectrograms captured by a CCD camera pair in real time. In the long-term experiment of the correction of air refractive index, the experimental results show a standard deviation of 3.3 × 10-8 for 12-h continuous measurement without the precise knowledge of the environmental conditions, while the variation of the air refractive index is about 2 × 10-6. In the case of absolute distance measurement, the comparison with the fringe counting interferometer shows an agreement within 2.5 μm in 12 m range.

  8. Reliability of linear distance measurement for dental implant length with standardized periapical radiographs

    International Nuclear Information System (INIS)

    Wakoh, Mamoru; Harada, Takuya; Otonari, Takamichi

    2006-01-01

    The purpose of this study was to investigate the accuracy of distance measurements of implant length based on periapical radiographs compared with that of other modalities. We carried out an experimental trial to compare precision in distance measurement. Dental implant fixtures were buried in the canine and first molar regions. These were then subjected to periapical (PE) radiography, panoramic (PA) radiography conventional (CV) and medical computed (CT) tomography. The length of the implant fixture on each film was measured by nine observers and degree of precision was statistically analyzed. The precision of both PE radiographs and CT tomograms was closest at the highest level. Standardized PE radiography, in particular, was superior to CT tomography in the first molar region. This suggests that standardized PE radiographs should be utilized as a reliable modality for longitudinal and linear distance measurement, depending on implant length at local implantation site. (author)

  9. The Relationship between Quantitative and Qualitative Measures of Writing Skills.

    Science.gov (United States)

    Howerton, Mary Lou P.; And Others

    The relationships of quantitative measures of writing skills to overall writing quality as measured by the E.T.S. Composition Evaluation Scale (CES) were examined. Quantitative measures included indices of language productivity, vocabulary diversity, spelling, and syntactic maturity. Power of specific indices to account for variation in overall…

  10. New Trends Of Measurement And Assessment In Distance Education

    Directory of Open Access Journals (Sweden)

    Zeki KAYA

    2014-01-01

    Full Text Available Distance education is a discipline that offers solutions to some important education problems. Distance education, contribute to the solution to the problems such as; inequality of opportunities, lifelong education, the implementation of a series of individual and social goals that can contribute to and benefit from educational technology and self-learning. In distance education, methods of measurement and assessment must be consistent with the objectives and contents of teaching. A major interest of formative assessment is determining the students’ learning level of each behavior in the interested unit. In summative assessment, performances of students on some units are measured broader than formative assessment. A computerized adaptive testing, CAT, is the test managed by computer in which each item is introduced and the decision to stop are dynamically imposed based on the students answers and his/her estimated knowledge level. In CAT applications, students do not take the same test. Despite item numbers and properties of items are different for the students; the precise of measures improves in positioning students on an ability or success continuum in CAT applications. In CAT applications, questions answered by a student depend on the student's ability or learning level. In item response theory, there are some models to estimate a student’s ability level, such as three-parameter logistic model. Cheating in exams or other academic assignments can be defined as use resources not allowed to use or having someone else to take exams or assignments. Some precautions must be taken about cheating such as a live proctoring, using web cams, and using a plagiarism detection program.

  11. Measurement of a Cosmographic Distance Ratio with Galaxy and Cosmic Microwave Background Lensing.

    Science.gov (United States)

    Miyatake, Hironao; Madhavacheril, Mathew S; Sehgal, Neelima; Slosar, Anže; Spergel, David N; Sherwin, Blake; van Engelen, Alexander

    2017-04-21

    We measure the gravitational lensing shear signal around dark matter halos hosting constant mass galaxies using light sources at z∼1 (background galaxies) and at the surface of last scattering at z∼1100 (the cosmic microwave background). The galaxy shear measurement uses data from the CFHTLenS survey, and the microwave background shear measurement uses data from the Planck satellite. The ratio of shears from these cross-correlations provides a purely geometric distance measurement across the longest possible cosmological lever arm. This is because the matter distribution around the halos, including uncertainties in galaxy bias and systematic errors such as miscentering, cancels in the ratio for halos in thin redshift slices. We measure this distance ratio in three different redshift slices of the constant mass (CMASS) sample and combine them to obtain a 17% measurement of the distance ratio, r=0.390_{-0.062}^{+0.070}, at an effective redshift of z=0.53. This is consistent with the predicted ratio from the Planck best-fit cold dark matter model with a cosmological constant cosmology of r=0.419.

  12. Clustering by Partitioning around Medoids using Distance-Based Similarity Measures on Interval-Scaled Variables

    Directory of Open Access Journals (Sweden)

    D. L. Nkweteyim

    2018-03-01

    Full Text Available It is reported in this paper, the results of a study of the partitioning around medoids (PAM clustering algorithm applied to four datasets, both standardized and not, and of varying sizes and numbers of clusters. The angular distance proximity measure in addition to the two more traditional proximity measures, namely the Euclidean distance and Manhattan distance, was used to compute object-object similarity. The data used in the study comprise three widely available datasets, and one that was constructed from publicly available climate data. Results replicate some of the well known facts about the PAM algorithm, namely that the quality of the clusters generated tend to be much better for small datasets, that the silhouette value is a good, even if not perfect, guide for the optimal number of clusters to generate, and that human intervention is required to interpret generated clusters. Additionally, results also indicate that the angular distance measure, which traditionally has not been widely used in clustering, outperforms both the Euclidean and Manhattan distance metrics in certain situations.

  13. Superheterodyne configuration for two-wavelength interferometry applied to absolute distance measurement

    International Nuclear Information System (INIS)

    Le Floch, Sebastien; Salvade, Yves; Droz, Nathalie; Mitouassiwou, Rostand; Favre, Patrick

    2010-01-01

    We present a new superheterodyne technique for long-distance measurements by two-wavelength interferometry (TWI). While conventional systems use two acousto-optic modulators to generate two different heterodyne frequencies, here the two frequencies result from synchronized sweeps of optical and radio frequencies. A distributed feedback laser source is injected in an intensity modulator that is driven at the half-wave voltage mode. A radio-frequency signal is applied to this intensity modulator to generate two optical sidebands around the optical carrier. This applied radio frequency consists of a digital ramp between 13 and 15 GHz, with 1 ms duration and with an accuracy of better than 1 ppm. Simultaneously, the laser source is frequency modulated by a current modulation that is synchronized on the radio-frequency ramp as well as on a triangle waveform. These two frequency-swept optical signals at the output of the modulator illuminate a Michelson interferometer and create two distinct distance-dependent heterodyne frequencies on the photodetector. The superheterodyne signal is then detected and bandpass filtered to retrieve the absolute distance measurement. Experiments between 1 and 15 m confirm the validity of this new concept, leading to a distance accuracy of ± 50 μm for a 1 ms acquisition time.

  14. Precision lifetime measurements using the recoil distance method

    International Nuclear Information System (INIS)

    Kruecken, R.

    2000-01-01

    The recoil distance method (RDM) for the measurements of lifetimes of excited nuclear levels in the range from about 1 ps to 1,000 ps is reviewed. The New Yale Plunger Device for RDM experiments is introduced and the Differential Decay Curve Method for their analysis is reviewed. Results from recent RDM experiments on SD bands in the mass-190 region, shears bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. Perspectives for the use of RDM measurements in the study of neutron-rich nuclei are discussed

  15. Precision Lifetime Measurements Using the Recoil Distance Method

    Science.gov (United States)

    Krücken, R.

    2000-01-01

    The recoil distance method (RDM) for the measurements of lifetimes of excited nuclear levels in the range from about 1 ps to 1000 ps is reviewed. The New Yale Plunger Device for RDM experiments is introduced and the Differential Decay Curve Method for their analysis is reviewed. Results from recent RDM experiments on SD bands in the mass-190 region, shears bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. Perspectives for the use of RDM measurements in the study of neutron-rich nuclei are discussed. PMID:27551587

  16. Air temperature measurements based on the speed of sound to compensate long distance interferometric measurements

    Directory of Open Access Journals (Sweden)

    Astrua Milena

    2014-01-01

    Full Text Available A method to measure the real time temperature distribution along an interferometer path based on the propagation of acoustic waves is presented. It exploits the high sensitivity of the speed of sound in air to the air temperature. In particular, it takes advantage of a special set-up where the generation of the acoustic waves is synchronous with the amplitude modulation of a laser source. A photodetector converts the laser light to an electronic signal considered as reference, while the incoming acoustic waves are focused on a microphone and generate a second signal. In this condition, the phase difference between the two signals substantially depends on the temperature of the air volume interposed between the sources and the receivers. The comparison with the traditional temperature sensors highlighted the limit of the latter in case of fast temperature variations and the advantage of a measurement integrated along the optical path instead of a sampling measurement. The capability of the acoustic method to compensate the interferometric distance measurements due to air temperature variations has been demonstrated for distances up to 27 m.

  17. Performance considerations of ultrasonic distance measurement with well defined properties

    International Nuclear Information System (INIS)

    Elmer, Hannes; Schweinzer, Herbert

    2005-01-01

    Conventional ultrasonic distance measurement systems based on narrow bandwidth ultrasonic bursts and amplitude detection are often used because of their low costs and easy implementation. However, the achievable results strongly depend on the actual environments where the system is implemented: in case of well defined objects that are always located near the measurement direction of the system, in general good results are obtained. If arbitrary objects are expected that are moreover located in arbitrary positions in front of the sensor, strongly object dependent areas where objects are detected with decreasing accuracy towards their borders must be taken into account. In previous works we developed an ultrasonic measurement system that provides accurate distance measurement values within a well defined detection area that is independent of the reflection properties of the objects. This measurement system is based on the One Bit Correlation method that is described in the following. To minimise its implementation efforts, it is necessary to examine the influence of the system parameters as e.g. the correlation length to the results that are expected in case of different signal to noise ratios of the received signal. In the following, these examinations are shown and the obtained results are discussed that allow getting a well conditioned system that makes best use of given system resources

  18. Automation by microcomputer of a geodetic distance measuring instrument: The distinvar

    International Nuclear Information System (INIS)

    Bain, G.; Bore, C.; Coosemans, W.; Dupont, J.; Fabre, J.P.; Gavaggio, R.; Peron, F.

    1985-01-01

    The distinvar is an instrument for the precision measurement of distances up to 50 m. This report describes the latest developments at CERN which have improved its resolution to 2 μm and increased its speed of use. Measurements are automated by incorporating a microcomputer programmed in BASIC. (orig.)

  19. Automation by microprocessor of an geodesic distance measuring instrument: The distinvar

    International Nuclear Information System (INIS)

    Bain, G.; Bore, C.; Coosemans, W.; Dupont, J.; Fabre, J.P.; Gavaggio, R.; Peron, F.

    1984-01-01

    The distinvar is an instrument for the precision measurement of distances up to 50 m. This report describes the latest developments at CERN which have improved its resolution to 2 micrometers and increased its speed of use. Measurements are automated by incorporating a microcomputer programmed in BASIC. (orig.)

  20. Measuring the Dust Grains and Distance to X Persei Via Its X-ray Halo

    Science.gov (United States)

    Smith, Randall

    2006-09-01

    We propose to observe the X-ray halo of the high mass X-ray binary pulsar X Per to measure interstellar dust grains along the line of sight (LOS) and to determine the distance to X Per. The X-ray halo is formed by scattering from grains along the LOS, which for X Per appear to be concentrated in one molecular cloud. Unlike many other X-ray halo observations, this low-absorption high-latitude sightline is well-characterized from absorption spectroscopy done with HST, Copernicus, and FUSE. This halo observation will measure the distance to the cloud and the dust size distribution in it. We will also be able to determine the distance to X Per by measuring the time delayed pulses in the X-ray halo.

  1. Smile line assessment comparing quantitative measurement and visual estimation.

    Science.gov (United States)

    Van der Geld, Pieter; Oosterveld, Paul; Schols, Jan; Kuijpers-Jagtman, Anne Marie

    2011-02-01

    Esthetic analysis of dynamic functions such as spontaneous smiling is feasible by using digital videography and computer measurement for lip line height and tooth display. Because quantitative measurements are time-consuming, digital videography and semiquantitative (visual) estimation according to a standard categorization are more practical for regular diagnostics. Our objective in this study was to compare 2 semiquantitative methods with quantitative measurements for reliability and agreement. The faces of 122 male participants were individually registered by using digital videography. Spontaneous and posed smiles were captured. On the records, maxillary lip line heights and tooth display were digitally measured on each tooth and also visually estimated according to 3-grade and 4-grade scales. Two raters were involved. An error analysis was performed. Reliability was established with kappa statistics. Interexaminer and intraexaminer reliability values were high, with median kappa values from 0.79 to 0.88. Agreement of the 3-grade scale estimation with quantitative measurement showed higher median kappa values (0.76) than the 4-grade scale estimation (0.66). Differentiating high and gummy smile lines (4-grade scale) resulted in greater inaccuracies. The estimation of a high, average, or low smile line for each tooth showed high reliability close to quantitative measurements. Smile line analysis can be performed reliably with a 3-grade scale (visual) semiquantitative estimation. For a more comprehensive diagnosis, additional measuring is proposed, especially in patients with disproportional gingival display. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  2. Evaluating the impact of distance measures on deforestation simulations in the fluvial landscapes of amazonia.

    Science.gov (United States)

    Salonen, Maria; Maeda, Eduardo Eiji; Toivonen, Tuuli

    2014-10-01

    Land use and land cover change (LUCC) models frequently employ different accessibility measures as a proxy for human influence on land change processes. Here, we simulate deforestation in Peruvian Amazonia and evaluate different accessibility measures as LUCC model inputs. We demonstrate how the selection, and different combinations, of accessibility measures impact simulation results. Out of the individual measures, time distance to market center catches the essential aspects of accessibility in our study area. The most accurate simulation is achieved when time distance to market center is used in association with distance to transport network and additional landscape variables. Although traditional Euclidean measures result in clearly lower simulation accuracy when used separately, the combination of two complementary Euclidean measures enhances simulation accuracy significantly. Our results highlight the need for site and context sensitive selection of accessibility variables. More sophisticated accessibility measures can potentially improve LUCC models' spatial accuracy, which often remains low.

  3. A Scale Elasticity Measure for Directional Distance Function and its Dual: Theory and DEA Estimation

    OpenAIRE

    Valentin Zelenyuk

    2012-01-01

    In this paper we focus on scale elasticity measure based on directional distance function for multi-output-multi-input technologies, explore its fundamental properties and show its equivalence with the input oriented and output oriented scale elasticity measures. We also establish duality relationship between the scale elasticity measure based on the directional distance function with scale elasticity measure based on the profit function. Finally, we discuss the estimation issues of the scale...

  4. Evaluation of airway protection: Quantitative timing measures versus penetration/aspiration score.

    Science.gov (United States)

    Kendall, Katherine A

    2017-10-01

    Quantitative measures of swallowing function may improve the reliability and accuracy of modified barium swallow (MBS) study interpretation. Quantitative study analysis has not been widely instituted, however, secondary to concerns about the time required to make measures and a lack of research demonstrating impact on MBS interpretation. This study compares the accuracy of the penetration/aspiration (PEN/ASP) scale (an observational visual-perceptual assessment tool) to quantitative measures of airway closure timing relative to the arrival of the bolus at the upper esophageal sphincter in identifying a failure of airway protection during deglutition. Retrospective review of clinical swallowing data from a university-based outpatient clinic. Swallowing data from 426 patients were reviewed. Patients with normal PEN/ASP scores were identified, and the results of quantitative airway closure timing measures for three liquid bolus sizes were evaluated. The incidence of significant airway closure delay with and without a normal PEN/ASP score was determined. Inter-rater reliability for the quantitative measures was calculated. In patients with a normal PEN/ASP score, 33% demonstrated a delay in airway closure on at least one swallow during the MBS study. There was no correlation between PEN/ASP score and airway closure delay. Inter-rater reliability for the quantitative measure of airway closure timing was nearly perfect (intraclass correlation coefficient = 0.973). The use of quantitative measures of swallowing function, in conjunction with traditional visual perceptual methods of MBS study interpretation, improves the identification of airway closure delay, and hence, potential aspiration risk, even when no penetration or aspiration is apparent on the MBS study. 4. Laryngoscope, 127:2314-2318, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  5. In-situ position and vibration measurement of rough surfaces using laser Doppler distance sensors

    Science.gov (United States)

    Czarske, J.; Pfister, T.; Günther, P.; Büttner, L.

    2009-06-01

    In-situ measurement of distances and shapes as well as dynamic deformations and vibrations of fast moving and especially rotating objects, such as gear shafts and turbine blades, is an important task at process control. We recently developed a laser Doppler distance frequency sensor, employing two superposed fan-shaped interference fringe systems with contrary fringe spacing gradients. Via two Doppler frequency evaluations the non-incremental position (i.e. distance) and the tangential velocity of rotating bodies are determined simultaneously. The distance uncertainty is in contrast to e.g. triangulation in principle independent of the object velocity. This unique feature allows micrometer resolutions of fast moved rough surfaces. The novel sensor was applied at turbo machines in order to control the tip clearance. The measurements at a transonic centrifugal compressor were performed during operation at up to 50,000 rpm, i.e. 586 m/s velocity of the blade tips. Due to the operational conditions such as temperatures of up to 300 °C, a flexible and robust measurement system with a passive fiber-coupled sensor, using diffractive optics, has been realized. Since the tip clearance of individual blades could be temporally resolved an analysis of blade vibrations was possible. A Fourier transformation of the blade distances results in an average period of 3 revolutions corresponding to a frequency of 1/3 of the rotary frequency. Additionally, a laser Doppler distance sensor using two tilted fringe systems and phase evaluation will be presented. This phase sensor exhibits a minimum position resolution of σz = 140 nm. It allows precise in-situ shape measurements at grinding and turning processes.

  6. Quantitative approach to small-scale nonequilibrium systems

    DEFF Research Database (Denmark)

    Dreyer, Jakob K; Berg-Sørensen, Kirstine; Oddershede, Lene B

    2006-01-01

    In a nano-scale system out of thermodynamic equilibrium, it is important to account for thermal fluctuations. Typically, the thermal noise contributes fluctuations, e.g., of distances that are substantial in comparison to the size of the system and typical distances measured. If the thermal...... propose an approximate but quantitative way of dealing with such an out-of-equilibrium system. The limits of this approximate description of the escape process are determined through optical tweezers experiments and comparison to simulations. Also, this serves as a recipe for how to use the proposed...

  7. Measuring Algorithm for the Distance to a Preceding Vehicle on Curve Road Using On-Board Monocular Camera

    Science.gov (United States)

    Yu, Guizhen; Zhou, Bin; Wang, Yunpeng; Wun, Xinkai; Wang, Pengcheng

    2015-12-01

    Due to more severe challenges of traffic safety problems, the Advanced Driver Assistance Systems (ADAS) has received widespread attention. Measuring the distance to a preceding vehicle is important for ADAS. However, the existing algorithm focuses more on straight road sections than on curve measurements. In this paper, we present a novel measuring algorithm for the distance to a preceding vehicle on a curve road using on-board monocular camera. Firstly, the characteristics of driving on the curve road is analyzed and the recognition of the preceding vehicle road area is proposed. Then, the vehicle detection and distance measuring algorithms are investigated. We have verified these algorithms on real road driving. The experimental results show that this method proposed in the paper can detect the preceding vehicle on curve roads and accurately calculate the longitudinal distance and horizontal distance to the preceding vehicle.

  8. Quantitative tomographic measurements of opaque multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O' HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  9. Calibration of quantitative neutron radiography method for moisture measurement

    International Nuclear Information System (INIS)

    Nemec, T.; Jeraj, R.

    1999-01-01

    Quantitative measurements of moisture and hydrogenous matter in building materials by neutron radiography (NR) are regularly performed at TRIGA Mark II research of 'Jozef Stefan' Institute in Ljubljana. Calibration of quantitative method is performed using standard brick samples with known moisture content and also with a secondary standard, plexiglas step wedge. In general, the contribution of scattered neutrons to the neutron image is not determined explicitly what introduces an error to the measured signal. Influence of scattered neutrons is significant in regions with high gradients of moisture concentrations, where the build up of scattered neutrons causes distortion of the moisture concentration profile. In this paper detailed analysis of validity of our calibration method for different geometrical parameters is presented. The error in the measured hydrogen concentration is evaluated by an experiment and compared with results obtained by Monte Carlo calculation with computer code MCNP 4B. Optimal conditions are determined for quantitative moisture measurements in order to minimize the error due to scattered neutrons. The method is tested on concrete samples with high moisture content.(author)

  10. Comparing alternative approaches to measuring the geographical accessibility of urban health services: Distance types and aggregation-error issues

    Directory of Open Access Journals (Sweden)

    Riva Mylène

    2008-02-01

    Full Text Available Abstract Background Over the past two decades, geographical accessibility of urban resources for population living in residential areas has received an increased focus in urban health studies. Operationalising and computing geographical accessibility measures depend on a set of four parameters, namely definition of residential areas, a method of aggregation, a measure of accessibility, and a type of distance. Yet, the choice of these parameters may potentially generate different results leading to significant measurement errors. The aim of this paper is to compare discrepancies in results for geographical accessibility of selected health care services for residential areas (i.e. census tracts computed using different distance types and aggregation methods. Results First, the comparison of distance types demonstrates that Cartesian distances (Euclidean and Manhattan distances are strongly correlated with more accurate network distances (shortest network and shortest network time distances across the metropolitan area (Pearson correlation greater than 0.95. However, important local variations in correlation between Cartesian and network distances were observed notably in suburban areas where Cartesian distances were less precise. Second, the choice of the aggregation method is also important: in comparison to the most accurate aggregation method (population-weighted mean of the accessibility measure for census blocks within census tracts, accessibility measures computed from census tract centroids, though not inaccurate, yield important measurement errors for 5% to 10% of census tracts. Conclusion Although errors associated to the choice of distance types and aggregation method are only important for about 10% of census tracts located mainly in suburban areas, we should not avoid using the best estimation method possible for evaluating geographical accessibility. This is especially so if these measures are to be included as a dimension of the

  11. Distance-Based Functional Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers

    Science.gov (United States)

    Chiu, Chun-Huo; Chao, Anne

    2014-01-01

    Hill numbers (or the “effective number of species”) are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify “the effective number of equally abundant and (functionally) equally distinct species” in an assemblage. We also propose a class of mean functional diversity (per species), which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-assemblage functional generalizations of

  12. Distance-based functional diversity measures and their decomposition: a framework based on Hill numbers.

    Directory of Open Access Journals (Sweden)

    Chun-Huo Chiu

    Full Text Available Hill numbers (or the "effective number of species" are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify "the effective number of equally abundant and (functionally equally distinct species" in an assemblage. We also propose a class of mean functional diversity (per species, which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation measures, including N-assemblage functional

  13. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis – data from the Osteoarthritis Initiative

    Science.gov (United States)

    Emmanuel, K.; Quinn, E.; Niu, J.; Guermazi, A.; Roemer, F.; Wirth, W.; Eckstein, F.; Felson, D.

    2017-01-01

    SUMMARY Objective To test the hypothesis that quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis (KOA), prior to the advent of radiographic disease. Methods 206 knees with incident radiographic KOA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline, developing KLG 2 or greater with a definite osteophyte and joint space narrowing (JSN) grade ≥1 by year 4) were matched to 232 control knees not developing incident KOA. Manual segmentation of the central five slices of the medial and lateral meniscus was performed on coronal 3T DESS MRI and quantitative meniscus position was determined. Cases and controls were compared using conditional logistic regression adjusting for age, sex, BMI, race and clinical site. Sensitivity analyses of early (year [Y] 1/2) and late (Y3/4) incidence was performed. Results Mean medial extrusion distance was significantly greater for incident compared to non-incident knees (1.56 mean ± 1.12 mm SD vs 1.29 ± 0.99 mm; +21%, P meniscus (25.8 ± 15.8% vs 22.0 ± 13.5%; +17%, P meniscus in incident medial KOA, or for the tibial plateau coverage between incident and non-incident knees. Restricting the analysis to medial incident KOA at Y1/2 differences were attenuated, but reached significance for extrusion distance, whereas no significant differences were observed at incident KOA in Y3/4. Conclusion Greater medial meniscus extrusion predicts incident radiographic KOA. Early onset KOA showed greater differences for meniscus position between incident and non-incident knees than late onset KOA. PMID:26318658

  14. Application of digital image correlation for long-distance bridge deflection measurement

    Science.gov (United States)

    Tian, Long; Pan, Bing; Cai, Youfa; Liang, Hui; Zhao, Yan

    2013-06-01

    Due to its advantages of non-contact, full-field and high-resolution measurement, digital image correlation (DIC) method has gained wide acceptance and found numerous applications in the field of experimental mechanics. In this paper, the application of DIC for real-time long-distance bridge deflection detection in outdoor environments is studied. Bridge deflection measurement using DIC in outdoor environments is more challenging than regular DIC measurements performed under laboratory conditions. First, much more image noise due to variations in ambient light will be presented in the images recorded in outdoor environments. Second, how to select the target area becomes a key factor because long-distance imaging results in a large field of view of the test object. Finally, the image acquisition speed of the camera must be high enough (larger than 100 fps) to capture the real-time dynamic motion of a bridge. In this work, the above challenging issues are addressed and several improvements were made to DIC method. The applicability was demonstrated by real experiments. Experimental results indicate that the DIC method has great potentials in motion measurement in various large building structures.

  15. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis--data from the Osteoarthritis Initiative.

    Science.gov (United States)

    Emmanuel, K; Quinn, E; Niu, J; Guermazi, A; Roemer, F; Wirth, W; Eckstein, F; Felson, D

    2016-02-01

    To test the hypothesis that quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis (KOA), prior to the advent of radiographic disease. 206 knees with incident radiographic KOA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline, developing KLG 2 or greater with a definite osteophyte and joint space narrowing (JSN) grade ≥1 by year 4) were matched to 232 control knees not developing incident KOA. Manual segmentation of the central five slices of the medial and lateral meniscus was performed on coronal 3T DESS MRI and quantitative meniscus position was determined. Cases and controls were compared using conditional logistic regression adjusting for age, sex, BMI, race and clinical site. Sensitivity analyses of early (year [Y] 1/2) and late (Y3/4) incidence was performed. Mean medial extrusion distance was significantly greater for incident compared to non-incident knees (1.56 mean ± 1.12 mm SD vs 1.29 ± 0.99 mm; +21%, P meniscus (25.8 ± 15.8% vs 22.0 ± 13.5%; +17%, P meniscus in incident medial KOA, or for the tibial plateau coverage between incident and non-incident knees. Restricting the analysis to medial incident KOA at Y1/2 differences were attenuated, but reached significance for extrusion distance, whereas no significant differences were observed at incident KOA in Y3/4. Greater medial meniscus extrusion predicts incident radiographic KOA. Early onset KOA showed greater differences for meniscus position between incident and non-incident knees than late onset KOA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. EPR-based distance measurements at ambient temperature.

    Science.gov (United States)

    Krumkacheva, Olesya; Bagryanskaya, Elena

    2017-07-01

    Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0nm. It was proposed more than 30years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (TEPR as well as other approaches based on EPR (e.g., relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Distance measurement using frequency-modulated continuous-wave ladar with calibration by a femtosecond frequency comb

    Science.gov (United States)

    Liu, Yang; Yang, Linghui; Lin, Jiarui; Zhu, Jigui

    2018-01-01

    Precise distance measurement is of interest for large-scale manufacturing, future space satellite missions, and other industrial applications. The ranging system with femtosecond optical frequency comb (FOFC) could offer high accuracy, stability and direct traceability to SI definition of the meter. Here, we propose a scheme for length measurement based on the frequency-modulated continuous-wave (FMCW) ladar with a FOFC. In this scheme, the reference interferometer in the FMCW ladar is calibrated by the intensity detection using the FOFC in the time domain within an optical wavelength resolution. With analysis of the theoretical model, this system has the potential to a high-speed, high-accuracy absolute distance measurement. Then, based on the experimental results, the evaluation of the performance of the calibration of the reference arm is discussed. In addition, the performance of this system is evaluated by a single position measurement with different tuning velocities of wavelength. The experimental results show that the reproducibility of the distance measurement is 10-5 level.

  18. Identification and uncertainty estimation of vertical reflectivity profiles using a Lagrangian approach to support quantitative precipitation measurements by weather radar

    Science.gov (United States)

    Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Delrieu, G.; Uijlenhoet, R.

    2013-09-01

    This paper presents a novel approach to estimate the vertical profile of reflectivity (VPR) from volumetric weather radar data using both a traditional Eulerian as well as a newly proposed Lagrangian implementation. For this latter implementation, the recently developed Rotational Carpenter Square Cluster Algorithm (RoCaSCA) is used to delineate precipitation regions at different reflectivity levels. A piecewise linear VPR is estimated for either stratiform or neither stratiform/convective precipitation. As a second aspect of this paper, a novel approach is presented which is able to account for the impact of VPR uncertainty on the estimated radar rainfall variability. Results show that implementation of the VPR identification and correction procedure has a positive impact on quantitative precipitation estimates from radar. Unfortunately, visibility problems severely limit the impact of the Lagrangian implementation beyond distances of 100 km. However, by combining this procedure with the global Eulerian VPR estimation procedure for a given rainfall type (stratiform and neither stratiform/convective), the quality of the quantitative precipitation estimates increases up to a distance of 150 km. Analyses of the impact of VPR uncertainty shows that this aspect accounts for a large fraction of the differences between weather radar rainfall estimates and rain gauge measurements.

  19. Source-to-detector distance and beam center do not affect radiographic measurements of acetabular morphology

    International Nuclear Information System (INIS)

    Goldman, Ashton H.; Hoover, Kevin B.

    2017-01-01

    Multiple radiographic acquisition techniques have been evaluated for their effect on measurements of acetabular morphology. This cadaveric study examined the effect of two acquisition parameters not previously evaluated: beam center position and source-to-detector distance. This study also evaluated the effect of reader differences on measurements. Following calibration of measurements between two readers using five clinical radiographs (training), radiographs were obtained from two cadavers using four different source-to-detector distances and three different radiographic centers for a total of 12 radiographic techniques (experimental). Two physician readers acquired four types of measurements from each cadaver radiograph: lateral center edge angle, peak-to-edge distance, Sharp's angle, and the Tonnis angle. All measurements were evaluated for intra-class correlation coefficient (ICC), kappa statistics for hip dysplasia, and factors that resulted in measurement differences using a mixed statistical model. After training of the two physician readers, there was strong agreement in their hip morphology measurements (ICC 0.84-0.93), agreement in the presence of hip dysplasia (κ = 0.58-1.0), and no measurement difference between physician readers (p = 0.12-1.0). Experimental cadaver measurements showed moderate-to-strong agreement of the readers (ICC 0.74-0.93) and complete agreement on dysplasia (κ = 1). After accounting for reader and radiographic technique, there was no difference in hip morphology measurements (p = 0.83-0.99). In this cadaveric study, measurements of hip morphology were not affected by varying source-to-detector distance or beam center. We conclude that these acquisition parameters are not likely to affect the diagnosis of hip dysplasia in a clinical setting. (orig.)

  20. Source-to-detector distance and beam center do not affect radiographic measurements of acetabular morphology

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Ashton H. [Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA (United States); Hoover, Kevin B. [Virginia Commonwealth University, Department of Radiology, 1250 E Marshall St. 3rd Floor, PO Box 980615, Richmond, VA (United States)

    2017-04-15

    Multiple radiographic acquisition techniques have been evaluated for their effect on measurements of acetabular morphology. This cadaveric study examined the effect of two acquisition parameters not previously evaluated: beam center position and source-to-detector distance. This study also evaluated the effect of reader differences on measurements. Following calibration of measurements between two readers using five clinical radiographs (training), radiographs were obtained from two cadavers using four different source-to-detector distances and three different radiographic centers for a total of 12 radiographic techniques (experimental). Two physician readers acquired four types of measurements from each cadaver radiograph: lateral center edge angle, peak-to-edge distance, Sharp's angle, and the Tonnis angle. All measurements were evaluated for intra-class correlation coefficient (ICC), kappa statistics for hip dysplasia, and factors that resulted in measurement differences using a mixed statistical model. After training of the two physician readers, there was strong agreement in their hip morphology measurements (ICC 0.84-0.93), agreement in the presence of hip dysplasia (κ = 0.58-1.0), and no measurement difference between physician readers (p = 0.12-1.0). Experimental cadaver measurements showed moderate-to-strong agreement of the readers (ICC 0.74-0.93) and complete agreement on dysplasia (κ = 1). After accounting for reader and radiographic technique, there was no difference in hip morphology measurements (p = 0.83-0.99). In this cadaveric study, measurements of hip morphology were not affected by varying source-to-detector distance or beam center. We conclude that these acquisition parameters are not likely to affect the diagnosis of hip dysplasia in a clinical setting. (orig.)

  1. Recoil distance measurements of litetimes of levels in 2120F and 16N

    International Nuclear Information System (INIS)

    Kozub, R.L.; Mateja, J.F.; Lin, J.; Lister, C.J.; Olness, J.; Warburton, E.K.; Bynum, M.R.; Matthews, T.L.

    1981-01-01

    The previously-reported measurements of meanlives of 20 21 F levels using the recoil-distance method (RDM) and 18 O + 7 Li reactions have been repeated using improved experimental techniques. In addition, the lifetimes of two 16 N levels were measured, using the same experimental setup and 11 B + 7 Li reactions. Data were taken using the BNL precision plunger, in which were mounted a stretched Ta stopper foil (approx. 20 /sub cm 2 //sup mg/ thick) and a 300 μg/cm 2 - thick Li target condensed onto a stretched, 1.4 mg/cm 2 - thick Ta backing. Changes in target-to-stopper distance (d) could be controlled to an accuracy of about +- 1 μm, and were monitored by measuring target-to-stopper capacitance

  2. A Game Map Complexity Measure Based on Hamming Distance

    Science.gov (United States)

    Li, Yan; Su, Pan; Li, Wenliang

    With the booming of PC game market, Game AI has attracted more and more researches. The interesting and difficulty of a game are relative with the map used in game scenarios. Besides, the path-finding efficiency in a game is also impacted by the complexity of the used map. In this paper, a novel complexity measure based on Hamming distance, called the Hamming complexity, is introduced. This measure is able to estimate the complexity of binary tileworld. We experimentally demonstrated that Hamming complexity is highly relative with the efficiency of A* algorithm, and therefore it is a useful reference to the designer when developing a game map.

  3. A clinical distance measure for evaluating treatment plan quality difference with Pareto fronts in radiotherapy

    Directory of Open Access Journals (Sweden)

    Kristoffer Petersson

    2017-07-01

    Full Text Available We present a clinical distance measure for Pareto front evaluation studies in radiotherapy, which we show strongly correlates (r = 0.74 and 0.90 with clinical plan quality evaluation. For five prostate cases, sub-optimal treatment plans located at a clinical distance value of >0.32 (0.28–0.35 from fronts of Pareto optimal plans, were assessed to be of lower plan quality by our (12 observers (p < .05. In conclusion, the clinical distance measure can be used to determine if the difference between a front and a given plan (or between different fronts corresponds to a clinically significant plan quality difference.

  4. Lifetime measurements using the recoil distance method—achievements and perspectives

    Science.gov (United States)

    Krücken, R.

    2001-07-01

    The recoil distance method (RDM) for measuring pico-second nuclear level lifetimes and its use in nuclear structure studies is reviewed and perspectives for the future are presented. High precision measurements in the mass-130 region, studies of multi-phonon states in rare earth nuclei, the investigation of shape coexistence and the recently discovered phenomenon of "magnetic rotation" are reviewed. Prospects for lifetime measurements in exotic regions of nuclei such as the measurement of lifetimes in neutron rich nuclei populated via spontaneous and heavy-ion induced fission are discussed. Other prospects include the use of the RDM technique in conjunction with recoil separators. The relevance of these techniques for experiments with radioactive ion beams will be discussed.

  5. Lifetime measurements using the recoil distance method - achievements and perspectives

    International Nuclear Information System (INIS)

    Kruecken, R.

    2001-01-01

    The recoil distance method (RDM) for measuring pico-second nuclear level lifetimes and its use in nuclear structure studies is reviewed and perspectives for the future are presented. High precision measurements in the mass-130 region, studies of multi-phonon states in rare earth nuclei, the investigation of shape coexistence and the recently discovered phenomenon of 'magnetic rotation' are reviewed. Prospects for lifetime measurements in exotic regions of nuclei such as the measurement of lifetimes in neutron rich nuclei populated via spontaneous and heavy-ion induced fission are discussed. Other prospects include the use of the RDM technique in conjunction with recoil separators. The relevance of these techniques for experiments with radioactive ion beams will be discussed

  6. Quantitative angle-insensitive flow measurement using relative standard deviation OCT.

    Science.gov (United States)

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-30

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo .

  7. The Quantitative Linear-Time–Branching-Time Spectrum

    DEFF Research Database (Denmark)

    Thrane, Claus; Fahrenberg, Uli; Legay, Axel

    2011-01-01

    We present a distance-agnostic approach to quantitative verification. Taking as input an unspecified distance on system traces, or executions, we develop a game-based framework which allows us to define a spectrum of different interesting system distances corresponding to the given trace distance...

  8. Distance Measurement Methods for Improved Insider Threat Detection

    Directory of Open Access Journals (Sweden)

    Owen Lo

    2018-01-01

    Full Text Available Insider threats are a considerable problem within cyber security and it is often difficult to detect these threats using signature detection. Increasing machine learning can provide a solution, but these methods often fail to take into account changes of behaviour of users. This work builds on a published method of detecting insider threats and applies Hidden Markov method on a CERT data set (CERT r4.2 and analyses a number of distance vector methods (Damerau–Levenshtein Distance, Cosine Distance, and Jaccard Distance in order to detect changes of behaviour, which are shown to have success in determining different insider threats.

  9. The Hetu'u Global Network: Measuring the Distance to the Sun with the Transit of Venus

    Science.gov (United States)

    Rodriguez, David; Faherty, J.

    2013-01-01

    In the spirit of historic astronomical endeavors, we invited school groups across the globe to collaborate in a solar distance measurement using the 2012 transit of Venus. In total, our group (stationed at Easter Island, Chile) recruited 19 school groups spread over 6 continents and 10 countries to participate in our Hetu’u Global Network. Applying the methods of French astronomer Joseph-Nicolas Delisle, we used individual second and third Venus-Sun contact times to calculate the distance to the Sun. Ten of the sites in our network had amiable weather; 8 of which measured second contact and 5 of which measured third contact leading to consistent solar distance measurements of 152+/-30 million km and 163+/-30 million km respectively. The distance to the Sun at the time of the transit was 152.25 million km; therefore, our measurements are also consistent within 1-sigma of the known value. The goal of our international school group network was to inspire the next generation of scientists using the excitement and accessibility of such a rare astronomical event. In the process, we connected hundreds of participating students representing a diverse, multi-cultural group with differing political, economic, and racial backgrounds.

  10. The Czech national long distances measuring standard Koštice - State of play

    Directory of Open Access Journals (Sweden)

    Ladislav Červinka

    2009-11-01

    Full Text Available This article gives information about new Czech national long distances measuring standard, which has been preparedat the distance base near the Koštice village. Submitter of the project is the Czech Office for Standards, Metrology and Testing.Research and document preparation for creation of the measuring standard were ensured by the Research Institute of Geodesy,Topography and Cartography. Interlaboratory comparisons were made by staff of the Bundeswehr University in Munich. The paperreports about works, which will be carried out on national standard in the second half of this year. Purpose of this works is to improvecharacteristics of accuracy of national etalon.

  11. Quantitative 99mTc diphosphonate uptake measurements

    International Nuclear Information System (INIS)

    Smith, M.L.

    1987-01-01

    There are several different techniques currently in use for quantifying diphosphonate uptake by the skeleton. These can be considered in two main categories: local bone or whole-body uptake measurements. The choice of technique depends on the clinical problem being investigated and also on available equipment an expertise. The wide variety of approaches to diphosphonate quantitation ensures that these measurements can be obtained in almost any nuclear medicine department. This chapter discusses the general factors which may influence diphosphonate uptake measurements and outlines the techniques most relevant to current clinical practice

  12. Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser

    Science.gov (United States)

    Jang, Yoon-Soo; Lee, Keunwoo; Han, Seongheum; Lee, Joohyung; Kim, Young-Jin; Kim, Seung-Woo

    2014-12-01

    We revisit the method of synthetic wavelength interferometry (SWI) for absolute measurement of long distances using the radio-frequency harmonics of the pulse repetition rate of a mode-locked femtosecond laser. Our intention here is to extend the nonambiguity range (NAR) of the SWI method using a coarse virtual wavelength synthesized by shifting the pulse repetition rate. The proposed concept of NAR extension is experimentally verified by measuring a ˜13-m distance with repeatability of 9.5 μm (root-mean-square). The measurement precision is estimated to be 31.2 μm in comparison with an incremental He-Ne laser interferometer. This extended SWI method is found to be well suited for long-distance measurements demanded in the fields of large-scale precision engineering, geodetic survey, and future space missions.

  13. A Chroma-based Tempo-insensitive Distance Measure for Cover Song Identification

    DEFF Research Database (Denmark)

    Jensen, Jesper Højvang; Ellis, Dan P. W.; Christensen, Mads Græsbøll

    In the context of music, a cover version is a remake of a song, often with significant stylistic variation. In this paper we describe a distance measure between sampled audio files that is designed to be insensitive to instrumentation, time shift, temporal scaling and transpositions. The algorithm...

  14. Recoil distance method lifetime measurements at TRIUMF-ISAC using the TIGRESS Integrated Plunger

    Science.gov (United States)

    Chester, A.; Ball, G. C.; Bernier, N.; Cross, D. S.; Domingo, T.; Drake, T. E.; Evitts, L. J.; Garcia, F. H.; Garnsworthy, A. B.; Hackman, G.; Hallam, S.; Henderson, J.; Henderson, R.; Krücken, R.; MacConnachie, E.; Moukaddam, M.; Padilla-Rodal, E.; Paetkau, O.; Pore, J. L.; Rizwan, U.; Ruotsalainen, P.; Shoults, J.; Smallcombe, J.; Smith, J. K.; Starosta, K.; Svensson, C. E.; Van Wieren, K.; Williams, J.; Williams, M.

    2018-02-01

    The TIGRESS Integrated Plunger device (TIP) has been developed for recoil distance method (RDM) lifetime measurements using the TIGRESS array of HPGe γ-ray detectors at TRIUMF's ISAC-II facility. A commissioning experiment was conducted utilizing a 250 MeV 84Kr beam at ≈ 2 × 108 particles per second. The 84Kr beam was Coulomb excited to the 21+ state on a movable 27Al target. A thin Cu foil fixed downstream from the target was used as a degrader. Excited nuclei emerged from the target and decayed by γ-ray emission at a distance determined by their velocity and the lifetime of the 21+ state. The ratio of decays which occur between the target and degrader to those occurring after traversing the degrader changes as a function of the target-degrader separation distance. Gamma-ray spectra at 13 target-degrader separation distances were measured and compared to simulated lineshapes to extract the lifetime. The result of τ = 5 . 541 ± 0 . 013(stat.) ± 0 . 063(sys.) ps is shorter than the literature value of 5 . 84 ± 0 . 18 ps with a reduction in uncertainty by a factor of approximately two. The TIP plunger device, experimental technique, analysis tools, and result are discussed.

  15. Smile line assessment comparing quantitative measurement and visual estimation

    NARCIS (Netherlands)

    Geld, P. Van der; Oosterveld, P.; Schols, J.; Kuijpers-Jagtman, A.M.

    2011-01-01

    INTRODUCTION: Esthetic analysis of dynamic functions such as spontaneous smiling is feasible by using digital videography and computer measurement for lip line height and tooth display. Because quantitative measurements are time-consuming, digital videography and semiquantitative (visual) estimation

  16. Measuring distance “as the horse runs”: Cross-scale comparison of terrain-based metrics

    Science.gov (United States)

    Buttenfield, Barbara P.; Ghandehari, M; Leyk, S; Stanislawski, Larry V.; Brantley, M E; Qiang, Yi

    2016-01-01

    Distance metrics play significant roles in spatial modeling tasks, such as flood inundation (Tucker and Hancock 2010), stream extraction (Stanislawski et al. 2015), power line routing (Kiessling et al. 2003) and analysis of surface pollutants such as nitrogen (Harms et al. 2009). Avalanche risk is based on slope, aspect, and curvature, all directly computed from distance metrics (Gutiérrez 2012). Distance metrics anchor variogram analysis, kernel estimation, and spatial interpolation (Cressie 1993). Several approaches are employed to measure distance. Planar metrics measure straight line distance between two points (“as the crow flies”) and are simple and intuitive, but suffer from uncertainties. Planar metrics assume that Digital Elevation Model (DEM) pixels are rigid and flat, as tiny facets of ceramic tile approximating a continuous terrain surface. In truth, terrain can bend, twist and undulate within each pixel.Work with Light Detection and Ranging (lidar) data or High Resolution Topography to achieve precise measurements present challenges, as filtering can eliminate or distort significant features (Passalacqua et al. 2015). The current availability of lidar data is far from comprehensive in developed nations, and non-existent in many rural and undeveloped regions. Notwithstanding computational advances, distance estimation on DEMs has never been systematically assessed, due to assumptions that improvements are so small that surface adjustment is unwarranted. For individual pixels inaccuracies may be small, but additive effects can propagate dramatically, especially in regional models (e.g., disaster evacuation) or global models (e.g., sea level rise) where pixels span dozens to hundreds of kilometers (Usery et al 2003). Such models are increasingly common, lending compelling reasons to understand shortcomings in the use of planar distance metrics. Researchers have studied curvature-based terrain modeling. Jenny et al. (2011) use curvature to generate

  17. Quantitative methods for the analysis of electron microscope images

    DEFF Research Database (Denmark)

    Skands, Peter Ulrik Vallø

    1996-01-01

    The topic of this thesis is an general introduction to quantitative methods for the analysis of digital microscope images. The images presented are primarily been acquired from Scanning Electron Microscopes (SEM) and interfermeter microscopes (IFM). The topic is approached though several examples...... foundation of the thesis fall in the areas of: 1) Mathematical Morphology; 2) Distance transforms and applications; and 3) Fractal geometry. Image analysis opens in general the possibility of a quantitative and statistical well founded measurement of digital microscope images. Herein lies also the conditions...

  18. How the Measurement of Store Choice Behaviour Moderates the Relationship between Distance and Store Choice Behaviour

    DEFF Research Database (Denmark)

    Hansen, Torben; Cumberland, Flemming; Solgaard, Hans Stubbe

    2013-01-01

    The influence of distance on consumer store choice behaviour has been considered in many studies. In that respect, frequency and budget share are frequently used methods of measurement to determine the consumer's store choice behavour. In this study, we propose that the significance of distance...... is influenced by the way in which store choice behaviour is conceptualized. A survey among 631 consuemrs was performed in order to examine the research proposition. Structural equation results suggest that the negative effect of distance on store choice behaviour is larger when store choice behaviour...... is measured as number of visits to a particular store than wehen store cjoice behaviour is measured as the percentage of budget spend at a particular store. Our results indicate that researchers should carefully consider the measurement of store choice behaviour when carrying out empirical research invlving...

  19. Censoring distances based on labeled cortical distance maps in cortical morphometry.

    Science.gov (United States)

    Ceyhan, Elvan; Nishino, Tomoyuki; Alexopolous, Dimitrios; Todd, Richard D; Botteron, Kelly N; Miller, Michael I; Ratnanather, J Tilak

    2013-01-01

    It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  20. Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry

    Directory of Open Access Journals (Sweden)

    Elvan eCeyhan

    2013-10-01

    Full Text Available It has been demonstrated that shape differences are manifested in cortical structures due to neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM voxels with respect to GM/white matter (WM surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information con-tained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs of subjects with major depressive disorder (MDD, subjects at high risk (HR of MDD, and healthy control (Ctrl subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  1. Quantitative measurements of shear displacement using atomic force microscopy

    International Nuclear Information System (INIS)

    Wang, Wenbo; Wu, Weida; Sun, Ying; Zhao, Yonggang

    2016-01-01

    We report a method to quantitatively measure local shear deformation with high sensitivity using atomic force microscopy. The key point is to simultaneously detect both torsional and buckling motions of atomic force microscopy (AFM) cantilevers induced by the lateral piezoelectric response of the sample. This requires the quantitative calibration of torsional and buckling response of AFM. This method is validated by measuring the angular dependence of the in-plane piezoelectric response of a piece of piezoelectric α-quartz. The accurate determination of the amplitude and orientation of the in-plane piezoelectric response, without rotation, would greatly enhance the efficiency of lateral piezoelectric force microscopy.

  2. An uncertainty importance measure using a distance metric for the change in a cumulative distribution function

    International Nuclear Information System (INIS)

    Chun, Moon-Hyun; Han, Seok-Jung; Tak, Nam-IL

    2000-01-01

    A simple measure of uncertainty importance using the entire change of cumulative distribution functions (CDFs) has been developed for use in probability safety assessments (PSAs). The entire change of CDFs is quantified in terms of the metric distance between two CDFs. The metric distance measure developed in this study reflects the relative impact of distributional changes of inputs on the change of an output distribution, while most of the existing uncertainty importance measures reflect the magnitude of relative contribution of input uncertainties to the output uncertainty. The present measure has been evaluated analytically for various analytical distributions to examine its characteristics. To illustrate the applicability and strength of the present measure, two examples are provided. The first example is an application of the present measure to a typical problem of a system fault tree analysis and the second one is for a hypothetical non-linear model. Comparisons of the present result with those obtained by existing uncertainty importance measures show that the metric distance measure is a useful tool to express the measure of uncertainty importance in terms of the relative impact of distributional changes of inputs on the change of an output distribution

  3. Quantitative analysis of single muscle fibre action potentials recorded at known distances

    NARCIS (Netherlands)

    Albers, B.A.; Put, J.H.M.; Wallinga, W.; Wirtz, P.

    1989-01-01

    In vivo records of single fibre action potentials (SFAPs) have always been obtained at unknown distance from the active muscle fibre. A new experimental method has been developed enabling the derivation of the recording distance in animal experiments. A single fibre is stimulated with an

  4. A quantitative measure of myelination development in infants, using MR images

    International Nuclear Information System (INIS)

    Carmody, Dennis P.; Dunn, Stanley M.; Boddie-Willis, Akiza S.; DeMarco, J. Kevin; Lewis, Michael

    2004-01-01

    The objective of this study was to measure myelination of frontal lobe changes in infants and young children. Twenty-four cases of infants and children (age range 12-121 months) were evaluated by a quantitative assessment of T2-weighted MR image features. Reliable quantitative changes between white and gray matter correlated with developmental age in a group of children with no neurological findings. Myelination appears to be an increasing exponential function with the greatest rate of change occurring over the first 3 years of life. The quantitative changes observed were in accordance with previous qualitative judgments of myelination development. Children with periventricular leukomalacia (PVL) showed delays in achieving levels of myelination when compared to normal children and adjusted for chronological age. The quantitative measure of myelination development may prove to be useful in assessing the stages of development and helpful in the quantitative descriptions of white matter disorders such as PVL. (orig.)

  5. A quantitative measure of myelination development in infants, using MR images

    Energy Technology Data Exchange (ETDEWEB)

    Carmody, Dennis P. [Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Dunn, Stanley M.; Boddie-Willis, Akiza S. [The State University of New Jersey, Rutgers, New Brunswick, NJ (United States); DeMarco, J. Kevin [Laurie Imaging Center, New Brunswick, NJ (United States); Lewis, Michael [Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Institute for the Study of Child Development, New Brunswick (United States)

    2004-09-01

    The objective of this study was to measure myelination of frontal lobe changes in infants and young children. Twenty-four cases of infants and children (age range 12-121 months) were evaluated by a quantitative assessment of T2-weighted MR image features. Reliable quantitative changes between white and gray matter correlated with developmental age in a group of children with no neurological findings. Myelination appears to be an increasing exponential function with the greatest rate of change occurring over the first 3 years of life. The quantitative changes observed were in accordance with previous qualitative judgments of myelination development. Children with periventricular leukomalacia (PVL) showed delays in achieving levels of myelination when compared to normal children and adjusted for chronological age. The quantitative measure of myelination development may prove to be useful in assessing the stages of development and helpful in the quantitative descriptions of white matter disorders such as PVL. (orig.)

  6. Student Performance in Measuring Distance with Wavelengths in Various Settings

    Science.gov (United States)

    White, Gary

    2015-04-01

    When physics students are asked to measure the distance between two fixed locations using a pre-defined wavelength as a ruler, there is a surprising failure rate, at least partially due to the fact that the ``ruler'' to be used is not fixed in length (see ``Is a Simple Measurement Task a Roadblock to Student Understanding of Wave Phenomena?,'' by and references therein). I will show some data from introductory classes (algebra- and calculus-based) that replicate this result, and also show some interesting features when comparing a setting involving slinkies with a setting involving surface waves on water.

  7. Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey

    DEFF Research Database (Denmark)

    Donahue, Chad J.; Sotiropoulos, Stamatios N.; Jbabdi, Saad

    2016-01-01

    of tractography for analyzing interareal corticocortical connectivity in nonhuman primates and a framework for assessing future tractography methodological refinements objectively. SIGNIFICANCE STATEMENT Tractography based on diffusion MRI has great potential for a variety of applications, including estimation......Tractography based on diffusion MRI offers the promise of characterizing many aspects of long-distance connectivity in the brain, but requires quantitative validation to assess its strengths and limitations. Here, we evaluate tractography's ability to estimate the presence and strength...... of connections between areas of macaque neocortex by comparing its results with published data from retrograde tracer injections. Probabilistic tractography was performed on high-quality postmortem diffusion imaging scans from two Old World monkey brains. Tractography connection weights were estimated using...

  8. Measurement of the phase difference between short- and long-distance amplitudes in the [Formula: see text] decay.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Berezhnoy, A; Bernet, R; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, T; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevens, H; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zucchelli, S

    2017-01-01

    A measurement of the phase difference between the short- and long-distance contributions to the [Formula: see text] decay is performed by analysing the dimuon mass distribution. The analysis is based on pp collision data corresponding to an integrated luminosity of 3[Formula: see text] collected by the LHCb experiment in 2011 and 2012. The long-distance contribution to the [Formula: see text] decay is modelled as a sum of relativistic Breit-Wigner amplitudes representing different vector meson resonances decaying to muon pairs, each with their own magnitude and phase. The measured phases of the [Formula: see text] and [Formula: see text] resonances are such that the interference with the short-distance component in dimuon mass regions far from their pole masses is small. In addition, constraints are placed on the Wilson coefficients, [Formula: see text] and [Formula: see text], and the branching fraction of the short-distance component is measured.

  9. Revisitation of FRET methods to measure intraprotein distances in Human Serum Albumin

    Energy Technology Data Exchange (ETDEWEB)

    Santini, S.; Bizzarri, A.R.; Cannistraro, S., E-mail: cannistr@unitus.it

    2016-11-15

    We revisited the FRET methods to measure the intraprotein distance between Trp-214 (used as donor) of Human Serum Albumin and its Cys-34, labelled with 1.5-Iaedans (used as acceptor). Variation of Trp fluorescence emission in terms of both intensity and lifetime, as well the enhancement of the acceptor fluorescence emission upon Trp excitation, have been monitored. A careful statistical analysis of the fluorescence results from ten independently prepared samples, combined with suitable spectral corrections, provided reproducible distances estimations by each one of the three methods. Even if monitoring of the donor lifetime variation in the presence of the acceptor reproduces at the best the crystallographic data, by allowing even sub-nanometre distance variations to be appreciated, we suggest that a comparative analysis of all the three methods, applied with statistical significance, should be preferred to achieve a better reliability of the FRET technique.

  10. The Study on the Quantitative Analysis in LPG Tank's Fire and Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Bae, S.J.; Kim, B.J. [Department of chemical Engineering, Soongsil University, Seoul (Korea)

    1999-04-01

    Chemical plant's fire and explosion does not only damage to the chemical plants themselves but also damage to people in or near of the accident spot and the neighborhood of chemical plant. For that reason, Chemical process safety management has become important. One of safety management methods is called 'the quantitative analysis', which is used to reduce and prevent the accident. The results of the quantitative analysis could be used to arrange the equipments, evaluate the minimum safety distance, prepare the safety equipments. In this study we make the computer program to make easy to do quantitative analysis of the accident. The output of the computer program is the magnitude of fire(pool fire and fireball) and explosion (UVCE and BLEVE) effects. We used the thermal radiation as a measure of fire magnitude and used the overpressure as a measure of explosion magnitude. In case of BLEVE, the fly distance of fragment can be evaluated. Also probit analysis was done in every case. As the case study, Buchun LPG explosion accident in Korea was analysed by the program developed. The simulation results showed that the permissible distance was 800m and probit analysis showed that 1st degree burn, 2nd degree burn, and death distances are 450, 280, 260m, respectively. the simulation results showed the good agreement with the result from SAFER PROGRAM made by DuPont. 13 refs., 4 figs., 2 tabs.

  11. Distance stereotest using a 3-dimensional monitor for adult subjects.

    Science.gov (United States)

    Kim, Jongshin; Yang, Hee Kyung; Kim, Youngmin; Lee, Byoungho; Hwang, Jeong-Min

    2011-06-01

    To evaluate the validity and test-retest reliability of a contour-based 3-dimensional (3-D) monitor distance stereotest (distance 3-D stereotest) and to measure the maximum horizontal disparity that can be fused with disparity vergence for determining the largest measurable disparity of true stereopsis. Observational case series. Sixty-four normal adult subjects (age range, 23 to 39 years) were recruited. Contour-based circles (crossed disparity, 5000 to 20 seconds of arc; Microsoft Visual Studio C(++) 6.0; Microsoft, Inc, Seattle, Washington, USA) were generated on a 3-D monitor (46-inch stereoscopic display) using polarization glasses and were presented to subjects with normal binocularity at 3 m. While the position of the stimulus changed among 4 possible locations, the subjects were instructed to press the corresponding position of the stimulus on a keypad. The results with the new distance 3-D stereotest were compared with those from the distance Randot stereotest. The results of the distance 3-D stereotest and the distance Randot stereotests were identical in 64% and within 1 disparity level in 97% of normal adults. Scores obtained with the 2 tests showed a statistically significant correlation (r = 0.324, P = .009). The half-width of the 95% limit of agreement was 0.47 log seconds of arc (1.55 octaves) using the distance 3-D stereotest--similar to or better than that obtained with conventional distance stereotests. The maximum binocular disparity that can be fused with vergence was 1828 ± 794 seconds of arc (range, 4000 to 500). The distance 3-D stereotest showed good concordance with the distance Randot stereotest and relatively good test-retest reliability, supporting the validity of the distance 3-D stereotest. The normative data set obtained from the present study can serve as a useful reference for quantitative assessment of a wide range of binocular sensory abnormalities. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Comparative Study of Nei�s D with other Genetic Distance Measures between Barak Valley Muslims and other Nations for ABO Locus

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2012-02-01

    Full Text Available Quantification of the genetic distance between populations is essential in many genetic research programs. Several formulae were proposed for the estimation of genetic distance between populations using gene frequency data. But the selection of a suitable measure for estimating genetic distance between real-world human populations is a very difficult task despite the widely used measure Neis D. The present study was undertaken to estimate the genetic distance between Barak Valley Muslims (BVM and other twenty-four nations using seven different measures with ABO blood group gene frequency data for comparative analysis and to estimate the correlation coefficients between distance measures and to work out the linear regression equations. Seven genetic distance measures namely Neis D, Neis Nm, La, Neis Da, Dc, Re and Neis Ne were estimated between BVM and other 24 nations enroute the journey of mankind from Africa that commenced about 200,000 years ago (www.bradshawfoundation.com. Correlation coefficients between Neis D with other measures were estimated to find out which other genetic distance measures were closely related to Neis D. Neis D showed highly significant (p=0.01 positive correlation with Cavalli-Sforza and Edwards chord distance Dc (0.90, Reynolds Re (0.90, Neis Da (0.74 and Neis Ne (0.63 but negative correlation with Neis Nm and La. Linear regression equations of Neis D with other distance measures were estimated as Da = -0.80 + 1.34D, Dc = 1.91 + 4.44D, Re = -0.51 + 0.24D and Ne = -7.60 + 1.30D.

  13. Comparison of Travel-Time and Amplitude Measurements for Deep-Focusing Time-Distance Helioseismology

    Science.gov (United States)

    Pourabdian, Majid; Fournier, Damien; Gizon, Laurent

    2018-04-01

    The purpose of deep-focusing time-distance helioseismology is to construct seismic measurements that have a high sensitivity to the physical conditions at a desired target point in the solar interior. With this technique, pairs of points on the solar surface are chosen such that acoustic ray paths intersect at this target (focus) point. Considering acoustic waves in a homogeneous medium, we compare travel-time and amplitude measurements extracted from the deep-focusing cross-covariance functions. Using a single-scattering approximation, we find that the spatial sensitivity of deep-focusing travel times to sound-speed perturbations is zero at the target location and maximum in a surrounding shell. This is unlike the deep-focusing amplitude measurements, which have maximum sensitivity at the target point. We compare the signal-to-noise ratio for travel-time and amplitude measurements for different types of sound-speed perturbations, under the assumption that noise is solely due to the random excitation of the waves. We find that, for highly localized perturbations in sound speed, the signal-to-noise ratio is higher for amplitude measurements than for travel-time measurements. We conclude that amplitude measurements are a useful complement to travel-time measurements in time-distance helioseismology.

  14. Brownian distance covariance

    OpenAIRE

    Székely, Gábor J.; Rizzo, Maria L.

    2010-01-01

    Distance correlation is a new class of multivariate dependence coefficients applicable to random vectors of arbitrary and not necessarily equal dimension. Distance covariance and distance correlation are analogous to product-moment covariance and correlation, but generalize and extend these classical bivariate measures of dependence. Distance correlation characterizes independence: it is zero if and only if the random vectors are independent. The notion of covariance with...

  15. RFDR with Adiabatic Inversion Pulses: Application to Internuclear Distance Measurements

    International Nuclear Information System (INIS)

    Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2004-01-01

    In the context of the structural characterisation of biomolecular systems via MAS solid state NMR, the potential utility of homonuclear dipolar recoupling with adiabatic inversion pulses has been assessed via numerical simulations and experimental measurements. The results obtained suggest that it is possible to obtain reliable estimates of internuclear distances via an analysis of the initial cross-peak intensity buildup curves generated from two-dimensional adiabatic inversion pulse driven longitudinal magnetisation exchange experiments

  16. Experimental study on performance verification tests for coordinate measuring systems with optical distance sensors

    Science.gov (United States)

    Carmignato, Simone

    2009-01-01

    Optical sensors are increasingly used for dimensional and geometrical metrology. However, the lack of international standards for testing optical coordinate measuring systems is currently limiting the traceability of measurements and the easy comparison of different optical systems. This paper presents an experimental investigation on artefacts and procedures for testing coordinate measuring systems equipped with optical distance sensors. The work is aimed at contributing to the standardization of testing methods. The VDI/VDE 2617-6.2:2005 guideline, which is probably the most complete document available at the state of the art for testing systems with optical distance sensors, is examined with specific experiments. Results from the experiments are discussed, with particular reference to the tests used for determining the following characteristics: error of indication for size measurement, probing error and structural resolution. Particular attention is given to the use of artefacts alternative to gauge blocks for determining the error of indication for size measurement.

  17. Functional claudication distance: a reliable and valid measurement to assess functional limitation in patients with intermittent claudication

    Directory of Open Access Journals (Sweden)

    Prins Martin H

    2009-03-01

    Full Text Available Abstract Background Disease severity and functional impairment in patients with intermittent claudication is usually quantified by the measurement of pain-free walking distance (intermittent claudication distance, ICD and maximal walking distance (absolute claudication distance, ACD. However, the distance at which a patient would prefer to stop because of claudication pain seems a definition that is more correspondent with the actual daily life walking distance. We conducted a study in which the distance a patient prefers to stop was defined as the functional claudication distance (FCD, and estimated the reliability and validity of this measurement. Methods In this clinical validity study we included patients with intermittent claudication, following a supervised exercise therapy program. The first study part consisted of two standardised treadmill tests. During each test ICD, FCD and ACD were determined. Primary endpoint was the reliability as represented by the calculated intra-class correlation coefficients. In the second study part patients performed a standardised treadmill test and filled out the Rand-36 questionnaire. Spearman's rho was calculated to assess validity. Results The intra-class correlation coefficients of ICD, FCD and ACD were 0.940, 0.959, and 0.975 respectively. FCD correlated significantly with five out of nine domains, namely physical function (rho = 0.571, physical role (rho = 0.532, vitality (rho = 0.416, pain (rho = 0.416 and health change (rho = 0.414. Conclusion FCD is a reliable and valid measurement for determining functional capacity in trained patients with intermittent claudication. Furthermore it seems that FCD better reflects the actual functional impairment. In future studies, FCD could be used alongside ICD and ACD.

  18. Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature.

    Science.gov (United States)

    Han, Young-Geun; Tran, T V A; Kim, Sang-Hyuck; Lee, Sang Bae

    2005-06-01

    We propose a simple and flexible multiwavelength Raman-fiber-laser-based long-distance remote-sensing scheme for simultaneous measurement of strain and temperature by use of fiber Bragg gratings. By combining two uniform fiber Bragg gratings with a tunable chirped fiber grating, we readily achieve simultaneous two-channel sensing probes with a high extinction ratio of more than approximately 50 dB over a 50-km distance. When strain and temperature are applied, lasing wavelength separation and shift occur, respectively, since the two uniform fiber Bragg gratings have identical material composition and different cladding diameters. This allows simultaneous measurement of strain and temperature for long-distance sensing applications of more than 50 km.

  19. Quantitative measurement of cerebral blood flow on patients with early syphilis

    International Nuclear Information System (INIS)

    Zhong Jijun; Wu Jinchang; Yang Yi; Tang Jun; Liu Zengli; Shi Xin

    2005-01-01

    To study quantitative change of cerebral blood flow (CBF) on patients with early syphilis, the authors have established a method on absolute measurement of rCBF by using SPECT with Ethyl Cysteinate Dimmer (ECD) as imaging agent, and the method was applied to measure rCBF on patients with early syphilis. The rCBF values measured by this method are highly consistent with the values measured by other classical methods such as SPECT ( 123 I-IMP) and PET( 15 O-H 2 O). The rCBF values for early syphilis patients and the normal control show some statistical differences. A routine quantitative absolute measurement of rCBF featured with simple procedures is therefore on the way of maturation. (authors)

  20. Measurement of distances between anatomical structures using a translating stage with mounted endoscope

    Science.gov (United States)

    Kahrs, Lueder A.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Labadie, Robert F.

    2012-02-01

    During endoscopic procedures it is often desirable to determine the distance between anatomical features. One such clinical application is percutaneous cochlear implantation (PCI), which is a minimally invasive approach to the cochlea via a single, straight drill path and can be achieved accurately using bone-implanted markers and customized microstereotactic frame. During clinical studies to validate PCI, traditional open-field cochlear implant surgery was performed and prior to completion of the surgery, a customized microstereotactic frame designed to achieve the desired PCI trajectory was attached to the bone-implanted markers. To determine whether this trajectory would have safely achieved the target, a sham drill bit is passed through the frame to ensure that the drill bit would reach the cochlea without damaging vital structures. Because of limited access within the facial recess, the distances from the bit to anatomical features could not be measured with calipers. We hypothesized that an endoscope mounted on a sliding stage that translates only along the trajectory, would provide sufficient triangulation to accurately measure these distances. In this paper, the design, fabrication, and testing of such a system is described. The endoscope is mounted so that its optical axis is approximately aligned with the trajectory. Several images are acquired as the stage is moved, and threedimensional reconstruction of selected points allows determination of distances. This concept also has applicability in a large variety of rigid endoscopic interventions including bronchoscopy, laparoscopy, and sinus endoscopy.

  1. Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement

    Science.gov (United States)

    Liu, Yang; Yang, Linghui; Guo, Yin; Lin, Jiarui; Cui, Pengfei; Zhu, Jigui

    2018-02-01

    An interferometer technique based on temporal coherence function of femtosecond pulses is demonstrated for practical distance measurement. Here, the pulse-to-pulse alignment is analyzed for large delay distance measurement. Firstly, a temporal coherence function model between two femtosecond pulses is developed in the time domain for the dispersive unbalanced Michelson interferometer. Then, according to this model, the fringes analysis and the envelope extraction process are discussed. Meanwhile, optimization methods of pulse-to-pulse alignment for practical long distance measurement are presented. The order of the curve fitting and the selection of points for envelope extraction are analyzed. Furthermore, an averaging method based on the symmetry of the coherence function is demonstrated. Finally, the performance of the proposed methods is evaluated in the absolute distance measurement of 20 μ m with path length difference of 9 m. The improvement of standard deviation in experimental results shows that these approaches have the potential for practical distance measurement.

  2. A new lowry's technique for quantitative measurement of protein

    International Nuclear Information System (INIS)

    Chen Ge; Zou Wenquan; Sun Jianzhong; Zhang Yanggang; Shu Bohua; Liu Shenpei; Gong Xiaoliang

    1990-01-01

    According to the queneching principle in beta ray measurement, liquid scintillation counters are used for quantitative measurement of protein. The results show linear relationship between the colored protein samples with different concentrations and the counting rate of LSC. It is proved that LSC method is less erroneous and has larger measurement range than the traditional photoelectric colorimetry, and the analysis is easy to be automatized

  3. Radioactive means for measuring distance intervals between anomalies in an earth formation

    International Nuclear Information System (INIS)

    Sandier, G.; Nels, J.P.

    1975-01-01

    In earth formation measurements an investigating tool having a first and a second detector at a relatively small spacing from each other and a third detector at a relatively great spacing from the first and second detectors is moved through a borehole having anomalies such as radioactive bullets or casing joints which are relatively uniformly spaced from each other by a distance which is of the order of said great spacing between the third detector and the first and the second detectors. The first and second detectors generate detection signal peaks for the same anomaly within a short time interval, and the third detector generates a detection signal peak for an adjacent anomaly at about the same time. By means of a defined apparatus, electrical signals representing the times of occurrence of the detection signal peaks from the first and second detectors for the same anomaly and the known small spacing between these detectors are used to obtain an electrical signal for the speed of the investigating tool at that time, and at least some of these electrical signals are combined with electrical signals representing the time of occurrence of the detection signal peak from the third detector for an adjacent anomaly and at least one of the known distances between the detectors to thereby obtain an accurate measure of the distance interval between the pair of adjacent anomalies. (U.S.)

  4. Measurement Invariance: A Foundational Principle for Quantitative Theory Building

    Science.gov (United States)

    Nimon, Kim; Reio, Thomas G., Jr.

    2011-01-01

    This article describes why measurement invariance is a critical issue to quantitative theory building within the field of human resource development. Readers will learn what measurement invariance is and how to test for its presence using techniques that are accessible to applied researchers. Using data from a LibQUAL+[TM] study of user…

  5. Encyclopedia of distances

    CERN Document Server

    Deza, Michel Marie

    2016-01-01

    This 4th edition of the leading reference volume on distance metrics is characterized by updated and rewritten sections on some items suggested by experts and readers, as well a general streamlining of content and the addition of essential new topics. Though the structure remains unchanged, the new edition also explores recent advances in the use of distances and metrics for e.g. generalized distances, probability theory, graph theory, coding theory, data analysis. New topics in the purely mathematical sections include e.g. the Vitanyi multiset-metric, algebraic point-conic distance, triangular ratio metric, Rossi-Hamming metric, Taneja distance, spectral semimetric between graphs, channel metrization, and Maryland bridge distance. The multidisciplinary sections have also been supplemented with new topics, including: dynamic time wrapping distance, memory distance, allometry, atmospheric depth, elliptic orbit distance, VLBI distance measurements, the astronomical system of units, and walkability distance. Lea...

  6. THE DISTANCE TO M51

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W. [University of Texas at Austin, McDonald Observatory, 2515 Speedway, Stop C1400 Austin, TX 78712 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Berg, Danielle [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Kennicutt, Robert, E-mail: kmcquinn@astro.as.utexas.edu [Institute for Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2016-07-20

    Great investments of observing time have been dedicated to the study of nearby spiral galaxies with diverse goals ranging from understanding the star formation process to characterizing their dark matter distributions. Accurate distances are fundamental to interpreting observations of these galaxies, yet many of the best studied nearby galaxies have distances based on methods with relatively large uncertainties. We have started a program to derive accurate distances to these galaxies. Here we measure the distance to M51—the Whirlpool galaxy—from newly obtained Hubble Space Telescope optical imaging using the tip of the red giant branch method. We measure the distance modulus to be 8.58 ± 0.10 Mpc (statistical), corresponding to a distance modulus of 29.67 ± 0.02 mag. Our distance is an improvement over previous results as we use a well-calibrated, stable distance indicator, precision photometry in a optimally selected field of view, and a Bayesian Maximum Likelihood technique that reduces measurement uncertainties.

  7. COOPERATIVE LEARNING IN DISTANCE LEARNING: A MIXED METHODS STUDY

    Directory of Open Access Journals (Sweden)

    Lori Kupczynski

    2012-07-01

    Full Text Available Distance learning has facilitated innovative means to include Cooperative Learning (CL in virtual settings. This study, conducted at a Hispanic-Serving Institution, compared the effectiveness of online CL strategies in discussion forums with traditional online forums. Quantitative and qualitative data were collected from 56 graduate student participants. Quantitative results revealed no significant difference on student success between CL and Traditional formats. The qualitative data revealed that students in the cooperative learning groups found more learning benefits than the Traditional group. The study will benefit instructors and students in distance learning to improve teaching and learning practices in a virtual classroom.

  8. Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection

    International Nuclear Information System (INIS)

    Yang, Ruitao; Pollinger, Florian; Meiners-Hagen, Karl; Krystek, Michael; Bosse, Harald; Tan, Jiubin

    2015-01-01

    We present a dual-comb-based heterodyne multi-wavelength absolute interferometer capable of long distance measurements. The phase information of the various comb modes is extracted in parallel by a multi-channel digital lock-in phase detection scheme. Several synthetic wavelengths of the same order are constructed and the corresponding phases are averaged to deduce the absolute lengths with significantly reduced uncertainty. Comparison experiments with an incremental HeNe reference interferometer show a combined relative measurement uncertainty of 5.3 × 10 −7 at a measurement distance of 20 m. Combining the advantage of synthetic wavelength interferometry and dual-comb interferometry, our compact and simple approach provides sufficient precision for many industrial applications. (paper)

  9. Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection

    Science.gov (United States)

    Yang, Ruitao; Pollinger, Florian; Meiners-Hagen, Karl; Krystek, Michael; Tan, Jiubin; Bosse, Harald

    2015-08-01

    We present a dual-comb-based heterodyne multi-wavelength absolute interferometer capable of long distance measurements. The phase information of the various comb modes is extracted in parallel by a multi-channel digital lock-in phase detection scheme. Several synthetic wavelengths of the same order are constructed and the corresponding phases are averaged to deduce the absolute lengths with significantly reduced uncertainty. Comparison experiments with an incremental HeNe reference interferometer show a combined relative measurement uncertainty of 5.3 × 10-7 at a measurement distance of 20 m. Combining the advantage of synthetic wavelength interferometry and dual-comb interferometry, our compact and simple approach provides sufficient precision for many industrial applications.

  10. Motor fatigue measurement by distance-induced slow down of walking speed in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Rémy Phan-Ba

    Full Text Available BACKGROUND AND RATIONALE: Motor fatigue and ambulation impairment are prominent clinical features of people with multiple sclerosis (pMS. We hypothesized that a multimodal and comparative assessment of walking speed on short and long distance would allow a better delineation and quantification of gait fatigability in pMS. Our objectives were to compare 4 walking paradigms: the timed 25-foot walk (T25FW, a corrected version of the T25FW with dynamic start (T25FW(+, the timed 100-meter walk (T100MW and the timed 500-meter walk (T500MW. METHODS: Thirty controls and 81 pMS performed the 4 walking tests in a single study visit. RESULTS: The 4 walking tests were performed with a slower WS in pMS compared to controls even in subgroups with minimal disability. The finishing speed of the last 100-meter of the T500MW was the slowest measurable WS whereas the T25FW(+ provided the fastest measurable WS. The ratio between such slowest and fastest WS (Deceleration Index, DI was significantly lower only in pMS with EDSS 4.0-6.0, a pyramidal or cerebellar functional system score reaching 3 or a maximum reported walking distance ≤ 4000 m. CONCLUSION: The motor fatigue which triggers gait deceleration over a sustained effort in pMS can be measured by the WS ratio between performances on a very short distance and the finishing pace on a longer more demanding task. The absolute walking speed is abnormal early in MS whatever the distance of effort when patients are unaware of ambulation impairment. In contrast, the DI-measured ambulation fatigability appears to take place later in the disease course.

  11. Investigation of shear distance in Michelson interferometer-based shearography for mechanical characterization

    International Nuclear Information System (INIS)

    Lee, Jung-Ryul; Yoon, Dong-Jin; Kim, Jung-Seok; Vautrin, Alain

    2008-01-01

    Shearography is a growing industrial field in both quantitative mechanical characterization and relatively qualitative non-destructive testing. In shearography, shear distance is the most important parameter to control measurement performances. In this paper, the role of the shear distance is systematically investigated, focusing on the application of full-field mechanical characterization. A modified Michelson interferometer is considered as the shearing device, which is most commonly adopted for mechanical characterization applications because it enables easy and precise shearing and phase shifting. This paper also includes theoretical and experimental investigations of the relationship between shear distance and performance issues such as the immeasurable zone in the target with discontinuity, signal-to-noise ratio, sensitivity and shear distortion. In addition, this study is verified with actual shearographic results and a phase-shifting grid method capable of full-field displacement evaluation in the submicrometer regime

  12. Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems.

    Science.gov (United States)

    Günther, Philipp; Kuschmierz, Robert; Pfister, Thorsten; Czarske, Jürgen W

    2013-05-01

    The precise distance measurement of fast-moving rough surfaces is important in several applications such as lathe monitoring. A nonincremental interferometer based on two mutually tilted interference fringe systems has been realized for this task. The distance is coded in the phase difference between the generated interference signals corresponding to the fringe systems. Large tilting angles between the interference fringe systems are necessary for a high sensitivity. However, due to the speckle effect at rough surfaces, different envelopes and phase jumps of the interference signals occur. At large tilting angles, these signals become dissimilar, resulting in a small correlation coefficient and a high measurement uncertainty. Based on a matching of illumination and receiving optics, the correlation coefficient and the phase difference estimation have been improved significantly. For axial displacement measurements of recurring rough surfaces, laterally moving with velocities of 5 m/s, an uncertainty of 110 nm has been attained. For nonrecurring surfaces, a distance measurement uncertainty of 830 nm has been achieved. Incorporating the additionally measured lateral velocity and the rotational speed, the two-dimensional shape of rotating objects results. Since the measurement uncertainty of the displacement, distance, and shape is nearly independent of the lateral surface velocity, this technique is predestined for fast-rotating objects, such as crankshafts, camshafts, vacuum pump shafts, or turning parts of lathes.

  13. Which Aspects of the English Language Do Distance Learners Find Difficult?

    Science.gov (United States)

    Teoh, George Boon Sai; Lin, Agnes Liau Wei; Belaja, Kathy

    2016-01-01

    This study reports the findings of a research carried out on distance learners at the School of Distance Education (SDE), University Sains Malaysia (USM). The study was explorative in nature with the purpose identifying the aspects of the English language which distance learners found difficult to learn. A quantitative survey questionnaire design…

  14. Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

    Directory of Open Access Journals (Sweden)

    Hyungjik Oh

    2016-03-01

    Full Text Available This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

  15. Semi-automatic quantitative measurements of intracranial internal carotid artery stenosis and calcification using CT angiography

    International Nuclear Information System (INIS)

    Bleeker, Leslie; Berg, Rene van den; Majoie, Charles B.; Marquering, Henk A.; Nederkoorn, Paul J.

    2012-01-01

    Intracranial carotid artery atherosclerotic disease is an independent predictor for recurrent stroke. However, its quantitative assessment is not routinely performed in clinical practice. In this diagnostic study, we present and evaluate a novel semi-automatic application to quantitatively measure intracranial internal carotid artery (ICA) degree of stenosis and calcium volume in CT angiography (CTA) images. In this retrospective study involving CTA images of 88 consecutive patients, intracranial ICA stenosis was quantitatively measured by two independent observers. Stenoses were categorized with cutoff values of 30% and 50%. The calcification in the intracranial ICA was qualitatively categorized as absent, mild, moderate, or severe and quantitatively measured using the semi-automatic application. Linear weighted kappa values were calculated to assess the interobserver agreement of the stenosis and calcium categorization. The average and the standard deviation of the quantitative calcium volume were calculated for the calcium categories. For the stenosis measurements, the CTA images of 162 arteries yielded an interobserver correlation of 0.78 (P < 0.001). Kappa values of the categorized stenosis measurements were moderate: 0.45 and 0.58 for cutoff values of 30% and 50%, respectively. The kappa value for the calcium categorization was 0.62, with a good agreement between the qualitative and quantitative calcium assessment. Quantitative degree of stenosis measurement of the intracranial ICA on CTA is feasible with a good interobserver agreement ICA. Qualitative calcium categorization agrees well with quantitative measurements. (orig.)

  16. Dynamic Time Warping Distance Method for Similarity Test of Multipoint Ground Motion Field

    Directory of Open Access Journals (Sweden)

    Yingmin Li

    2010-01-01

    Full Text Available The reasonability of artificial multi-point ground motions and the identification of abnormal records in seismic array observations, are two important issues in application and analysis of multi-point ground motion fields. Based on the dynamic time warping (DTW distance method, this paper discusses the application of similarity measurement in the similarity analysis of simulated multi-point ground motions and the actual seismic array records. Analysis results show that the DTW distance method not only can quantitatively reflect the similarity of simulated ground motion field, but also offers advantages in clustering analysis and singularity recognition of actual multi-point ground motion field.

  17. Note: Optical and electronic design of an amplitude-modulated continuous-wave laser scanner for high-accuracy distance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Junhwan; Hwang, Sungui; Park, Kyihwan, E-mail: khpark@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju (Korea, Republic of)

    2015-04-15

    To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical system and signal processing design are performed using 3D measurements.

  18. Note: Optical and electronic design of an amplitude-modulated continuous-wave laser scanner for high-accuracy distance measurement

    International Nuclear Information System (INIS)

    Jang, Junhwan; Hwang, Sungui; Park, Kyihwan

    2015-01-01

    To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical system and signal processing design are performed using 3D measurements

  19. THE DISTANCE TO M104

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W. [University of Texas at Austin, McDonald Observatory, 2515 Speedway, Stop C1400 Austin, TX 78712 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, SE, University of Minnesota, Minneapolis, MN 55455 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Berg, Danielle [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Kennicutt, Robert, E-mail: kmcquinn@astro.as.utexas.edu [Institute for Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2016-11-01

    M104 (NGC 4594; the Sombrero galaxy) is a nearby, well-studied elliptical galaxy included in scores of surveys focused on understanding the details of galaxy evolution. Despite the importance of observations of M104, a consensus distance has not yet been established. Here, we use newly obtained Hubble Space Telescope optical imaging to measure the distance to M104 based on the tip of the red giant branch (TRGB) method. Our measurement yields the distance to M104 to be 9.55 ± 0.13 ± 0.31 Mpc equivalent to a distance modulus of 29.90 ± 0.03 ± 0.07 mag. Our distance is an improvement over previous results as we use a well-calibrated, stable distance indicator, precision photometry in a optimally selected field of view, and a Bayesian maximum likelihood technique that reduces measurement uncertainties. The most discrepant previous results are due to Tully–Fisher method distances, which are likely inappropriate for M104 given its peculiar morphology and structure. Our results are part of a larger program to measure accurate distances to a sample of well-known spiral galaxies (including M51, M74, and M63) using the TRGB method.

  20. Robustness of Distance-to-Default

    DEFF Research Database (Denmark)

    Jessen, Cathrine; Lando, David

    2013-01-01

    Distance-to-default is a remarkably robust measure for ranking firms according to their risk of default. The ranking seems to work despite the fact that the Merton model from which the measure is derived produces default probabilities that are far too small when applied to real data. We use...... simulations to investigate the robustness of the distance-to-default measure to different model specifications. Overall we find distance-to-default to be robust to a number of deviations from the simple Merton model that involve different asset value dynamics and different default triggering mechanisms....... A notable exception is a model with stochastic volatility of assets. In this case both the ranking of firms and the estimated default probabilities using distance-to-default perform significantly worse. We therefore propose a volatility adjustment of the distance-to-default measure, that significantly...

  1. A Framework for Mixing Methods in Quantitative Measurement Development, Validation, and Revision: A Case Study

    Science.gov (United States)

    Luyt, Russell

    2012-01-01

    A framework for quantitative measurement development, validation, and revision that incorporates both qualitative and quantitative methods is introduced. It extends and adapts Adcock and Collier's work, and thus, facilitates understanding of quantitative measurement development, validation, and revision as an integrated and cyclical set of…

  2. Prediction of Coronal Mass Ejections from Vector Magnetograms: Quantitative Measures as Predictors

    Science.gov (United States)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2001-05-01

    In a pilot study of 4 active regions (Falconer, D.A. 2001, JGR, in press), we derived two quantitative measures of an active region's global nonpotentiality from the region's vector magnetogram, 1) the net current (IN), and 2) the length of the strong-shear, strong-field main neutral line (LSS), and used these two measures of the CME productivity of the active regions. We compared the global nonpotentiality measures to the active regions' CME productivity determined from GOES and Yohkoh/SXT observations. We found that two of the active regions were highly globally nonpotential and were CME productive, while the other two active regions had little global nonpotentiality and produced no CMEs. At the Fall 2000 AGU (Falconer, Moore, & Gary, 2000, EOS 81, 48 F998), we reported on an expanded study (12 active regions and 17 magnetograms) in which we evaluated four quantitative global measures of an active region's magnetic field and compared these measures with the CME productivity. The four global measures (all derived from MSFC vector magnetograms) included our two previous measures (IN and LSS) as well as two new ones, the total magnetic flux (Φ ) (a measure of an active region's size), and the normalized twist (α =μ IN/Φ ). We found that the three measures of global nonpotentiality (IN, LSS, α ) were all well correlated (>99% confidence level) with an active region's CME productivity within (2 days of the day of the magnetogram. We will now report on our findings of how good our quantitative measures are as predictors of active-region CME productivity, using only CMEs that occurred after the magnetogram. We report the preliminary skill test of these quantitative measures as predictors. We compare the CME prediction success of our quantitative measures to the CME prediction success based on an active region's past CME productivity. We examine the cases of the handful of false positive and false negatives to look for improvements to our predictors. This work is

  3. Comparing two distance measures in the spatial mapping of food deserts: The case of Petržalka, Slovakia

    Directory of Open Access Journals (Sweden)

    Bilková Kristína

    2017-06-01

    Full Text Available Over the last twenty years or so, researchers’ attention to the issue of food deserts has increased in the geographical literature. Accessibility to large-scale retail units is one of the essential and frequently-used indicators leading to the identification and mapping of food deserts. Numerous accessibility measures of various types are available for this purpose. Euclidean distance and street network distance rank among the most frequently-used approaches, although they may lead to slightly different results. The aim of this paper is to compare various approaches to the accessibility to food stores and to assess the differences in the results gained by these methods. Accessibility was measured for residential block centroids, with applications of various accessibility measures in a GIS environment. The results suggest a strong correspondence between Euclidean distance and a little more accurate street network distance approach, applied in the case of the urban environment of Bratislava-Petržalka, Slovakia.

  4. CORSEN, a new software dedicated to microscope-based 3D distance measurements: mRNA-mitochondria distance, from single-cell to population analyses.

    Science.gov (United States)

    Jourdren, Laurent; Delaveau, Thierry; Marquenet, Emelie; Jacq, Claude; Garcia, Mathilde

    2010-07-01

    Recent improvements in microscopy technology allow detection of single molecules of RNA, but tools for large-scale automatic analyses of particle distributions are lacking. An increasing number of imaging studies emphasize the importance of mRNA localization in the definition of cell territory or the biogenesis of cell compartments. CORSEN is a new tool dedicated to three-dimensional (3D) distance measurements from imaging experiments especially developed to access the minimal distance between RNA molecules and cellular compartment markers. CORSEN includes a 3D segmentation algorithm allowing the extraction and the characterization of the cellular objects to be processed--surface determination, aggregate decomposition--for minimal distance calculations. CORSEN's main contribution lies in exploratory statistical analysis, cell population characterization, and high-throughput assays that are made possible by the implementation of a batch process analysis. We highlighted CORSEN's utility for the study of relative positions of mRNA molecules and mitochondria: CORSEN clearly discriminates mRNA localized to the vicinity of mitochondria from those that are translated on free cytoplasmic polysomes. Moreover, it quantifies the cell-to-cell variations of mRNA localization and emphasizes the necessity for statistical approaches. This method can be extended to assess the evolution of the distance between specific mRNAs and other cellular structures in different cellular contexts. CORSEN was designed for the biologist community with the concern to provide an easy-to-use and highly flexible tool that can be applied for diverse distance quantification issues.

  5. 2H{ 19F} REDOR for distance measurements in biological solids using a double resonance spectrometer

    Science.gov (United States)

    Grage, Stephan L.; Watts, Jude A.; Watts, Anthony

    2004-01-01

    A new approach for distance measurements in biological solids employing 2H{ 19F} rotational echo double resonance was developed and validated on 2H, 19F- D-alanine and an imidazopyridine based inhibitor of the gastric H +/K +-ATPase. The 2H- 19F double resonance experiments presented here were performed without 1H decoupling using a double resonance NMR spectrometer. In this way, it was possible to benefit from the relatively longer distance range of fluorine without the need of specialized fluorine equipment. A distance of 2.5 ± 0.3 Å was measured in the alanine derivative, indicating a gauche conformation of the two labels. In the case of the imidazopyridine compound a lower distance limit of 5.2 Å was determined and is in agreement with an extended conformation of the inhibitor. Several REDOR variants were compared, and their advantages and limitations discussed. Composite fluorine dephasing pulses were found to enhance the frequency bandwidth significantly, and to reduce the dependence of the performance of the experiment on the exact choice of the transmitter frequency.

  6. Measurement repeatability of tibial tuberosity-trochlear groove offset distance in red fox (Vulpes vulpes) cadavers

    NARCIS (Netherlands)

    Miles, J.E.; Jensen, B.R.; Kirpensteijn, J.; Svalastoga, E.L.; Eriksen, T.

    2013-01-01

    Abstract OBJECTIVE: To describe CT image reconstruction criteria for measurement of the tibial tuberosity-trochlear groove (TT-TG) offset distance, evaluate intra- and inter-reconstruction repeatability, and identify key sources of error in the measurement technique, as determined in vulpine hind

  7. The Distance Standard Deviation

    OpenAIRE

    Edelmann, Dominic; Richards, Donald; Vogel, Daniel

    2017-01-01

    The distance standard deviation, which arises in distance correlation analysis of multivariate data, is studied as a measure of spread. New representations for the distance standard deviation are obtained in terms of Gini's mean difference and in terms of the moments of spacings of order statistics. Inequalities for the distance variance are derived, proving that the distance standard deviation is bounded above by the classical standard deviation and by Gini's mean difference. Further, it is ...

  8. A simple, semi-quantitative method for measuring pulsed soft x-rays

    International Nuclear Information System (INIS)

    Takahama, Y.; Du, J.; Yanagidaira, T.; Hirano, K.

    1993-01-01

    A simple semi-quantitative measurement and image processing system for pulsed soft X-rays with a time and spatial resolution is proposed. Performance of the system is examined using a cylindrical soft X-ray source generated with a plasma device. The system consists of commercial facilities which are easily obtained such as a microchannel plate-phosphor screen combination, a CCD camera, an image memory board and a personal computer. To make a quantitative measurement possible, the image processing and observation of the phosphor screen current are used in conjunction. (author)

  9. Radioisotope studies for quantitative measurement of manganese absorption

    International Nuclear Information System (INIS)

    Helbig, U.

    1981-01-01

    Purpose of the present study was to quantitatively determine the manganese absorption in growing rats by means of radioisotopes. First of all the following factors had to be investigated, which are significant for this determination: Measurability of stable and radioactive Mn in rat tissues; labelling of stable Mn and distribution of stable and radioactive Mn in the organism; verification of the isotope dilution method and of the comparative balance method with regard to its applicability for the determination of the true Mn absorption. We useed male and female Sprague-Dawley rats. The most important results are summarized in the following: in some separate tissues measurement of stable Mn was accompanied by difficulties. The measurement of radioactive Mn however, could be performed without any problems. 10 d after i.m. injection of 54 Mn only 17% of the administered Mn was still detectable in the organism. However, there was no uniform tissue labelling found. Therefore it is possible to an only restricted extent to draw quantitative conclusions on the content of stable Mn. A high percentage of stable and radioactive Mn was found above all in the liver. The isotope dilution method permits by feces analysis to differentiate between unabsorbed Mn coming from the food and endogenic Mn coming from the organism itself. The effective Mn absorption was also determined by means of the comparative balance method. By means of the isotope dilution method we determined the quantitative Mn-absorption with staged Mn administration and the contribution of absorption and excretion to the homeostatic regulation mechanisms of Mn. We found that absorption and excretion help the organism to keep an almost constant Mn concentration even with a differing Mn supply. (orig./MG) [de

  10. Radioimmunoassay to quantitatively measure cell surface immunoglobulins

    International Nuclear Information System (INIS)

    Krishman, E.C.; Jewell, W.R.

    1975-01-01

    A radioimmunoassay techniques developed to quantitatively measure the presence of immunoglobulins on the surface of cells, is described. The amount of immunoglobulins found on different tumor cells varied from 200 to 1140 ng/10 6 cells. Determination of immunoglobulins on the peripheral lymphocytes obtained from different cancer patients varied between 340 to 1040 ng/10 6 cells. Cultured tumor cells, on the other hand, were found to contain negligible quantities of human IgG [pt

  11. REPRESENTATIONS OF DISTANCE: DIFFERENCES IN UNDERSTANDING DISTANCE ACCORDING TO TRAVEL METHOD

    Directory of Open Access Journals (Sweden)

    Gunvor Riber Larsen

    2017-12-01

    Full Text Available This paper explores how Danish tourists represent distance in relation to their holiday mobility and how these representations of distance are a result of being aero-mobile as opposed to being land-mobile. Based on interviews with Danish tourists, whose holiday mobility ranges from the European continent to global destinations, the first part of this qualitative study identifies three categories of representations of distance that show how distance is being ‘translated’ by the tourists into non-geometric forms: distance as resources, distance as accessibility, and distance as knowledge. The representations of distance articulated by the Danish tourists show that distance is often not viewed in ‘just’ kilometres. Rather, it is understood in forms that express how transcending the physical distance through holiday mobility is dependent on individual social and economic contexts, and on whether the journey was undertaken by air or land. The analysis also shows that being aeromobile is the holiday transportation mode that removes the tourists the furthest away from physical distance, resulting in the distance travelled by air being represented in ways that have the least correlation, in the tourists’ minds, with physical distance measured in kilometres.

  12. Machine learning enhanced optical distance sensor

    Science.gov (United States)

    Amin, M. Junaid; Riza, N. A.

    2018-01-01

    Presented for the first time is a machine learning enhanced optical distance sensor. The distance sensor is based on our previously demonstrated distance measurement technique that uses an Electronically Controlled Variable Focus Lens (ECVFL) with a laser source to illuminate a target plane with a controlled optical beam spot. This spot with varying spot sizes is viewed by an off-axis camera and the spot size data is processed to compute the distance. In particular, proposed and demonstrated in this paper is the use of a regularized polynomial regression based supervised machine learning algorithm to enhance the accuracy of the operational sensor. The algorithm uses the acquired features and corresponding labels that are the actual target distance values to train a machine learning model. The optimized training model is trained over a 1000 mm (or 1 m) experimental target distance range. Using the machine learning algorithm produces a training set and testing set distance measurement errors of learning. Applications for the proposed sensor include industrial scenario distance sensing where target material specific training models can be generated to realize low <1% measurement error distance measurements.

  13. Distance Education, Disciplinary Environments and Deep Learning: A Quantitative Exploration of Faculty Instruction

    Science.gov (United States)

    Bucci, David Andrew

    2014-01-01

    Many institutions have increasingly turned to distance education as a way to meet student and institutional needs while living within a constantly shrinking budget. While distance education has the potential to meet many resource-based challenges, its presence provides additional challenges to the faculty who direct the learning environment and…

  14. Quantitative computed tomography for measuring bone mineral content

    International Nuclear Information System (INIS)

    Felsenberg, D.; Kalender, W.A.; Banzer, D.; Schmilinsky, G.; Heyse, M.; Fischer, E.; Schneider, U.; Siemens A.G., Erlangen; Krankenhaus Zehlendorf, Berlin

    1988-01-01

    Quantitative computed tomography (QCT) for measuring bone mineral content of lumbar vertebrae is increasingly used internationally. The effect of using conventional CT (single energy CT, SE-CT) and dual energy CT (DE-CT) on reproducibility has been examined. We defined a standard measurement protocol, which automatically evaluates a calibration phantom. This should ensure an in vivo reproducibility of 1 to 2%. Reference data, which has been obtained with this protocol from 113 normal subjects, using SE-CT ad DE-CT, are presented. (orig.) [de

  15. Computer controlled scanning systems for quantitative track measurements

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Preston, C.C.; Ruddy, F.H.

    1982-01-01

    The status of three computer cntrolled systems for quantitative track measurements is described. Two systems, an automated optical track scanner (AOTS) and an automated scanning electron microscope (ASEM) are used for scanning solid state track recorders (SSTR). The third system, the emulsion scanning processor (ESP), is an interactive system used to measure the length of proton tracks in nuclear research emulsions (NRE). Recent advances achieved with these systems are presented, with emphasis placed upon the current limitation of these systems for reactor neutron dosimetry

  16. Anogenital distance and penile width measurements in The Infant Development and the Environment Study (TIDES): methods and predictors.

    Science.gov (United States)

    Sathyanarayana, Sheela; Grady, Richard; Redmon, J B; Ivicek, Kristy; Barrett, Emily; Janssen, Sarah; Nguyen, Ruby; Swan, Shanna H

    2015-04-01

    Anogenital distance (AGD) is an androgen responsive anatomic measurement that may have significant utility in clinical and epidemiological research studies. We describe development of standardized measurement methods and predictors of AGD outcomes. We examined infants born to 758 participants in The Infant Development and the Environment Study (TIDES cohort) in four clinical centers in 2011-2013. We developed and implemented a detailed training protocol that incorporated multiple quality control (QC) measures. In males, we measured anoscrotal distance (AGDAS), anopenile distance (AGDAP), and penile width (PW) and in females, anofourchette distance (AGDAF,) and anoclitoral distance (AGDAC). A single examiner obtained three repetitions of all measurements, and a second examiner obtained independent measurements for 14% of infants. We used the intra-rater ICC to assess within-examiner variability and the inter-rater ICC to assess between-examiner variability. We used multivariable linear regression to examine predictors of AGD outcomes including: gestational age at birth, birth weight, gestational age, several measures of body size, race, maternal age, and study center. In the full TIDES cohort, including 758 mothers and children, significant predictors of AGD and PW included: age at exam, gestational age at birth, weight-for-length Z-score, maternal age and study center. In 371 males, the mean (SD) AGDAS, AGDAP, and PW were 24.7 (4.5), 49.6 (5.9), and 10.8 (1.3) mm, respectively. In 387 females, the mean (SD) AGDAF and AGDAC were 16.0 (3.2) mm and 36.7 (3.8) mm, respectively. The intra-examiner ICC and inter-examiner ICC averaged over all subjects and examiners were between 0.89-0.92 and 0.69-0.84 respectively. Our study confirms that with appropriate training and quality control measures, AGD and PW measurements can be performed reliably and accurately in male and female infants. In order for reliable interpretation, these measurements should be adjusted for

  17. Advanced quantitative measurement methodology in physics education research

    Science.gov (United States)

    Wang, Jing

    parts. The first part involves the comparison between item response theory (IRT) and classical test theory (CTT). The two theories both provide test item statistics for educational inferences and decisions. The two theories are both applied to Force Concept Inventory data obtained from students enrolled in The Ohio State University. Effort was made to examine the similarity and difference between the two theories, and the possible explanation to the difference. The study suggests that item response theory is more sensitive to the context and conceptual features of the test items than classical test theory. The IRT parameters provide a better measure than CTT parameters for the educational audience to investigate item features. The second part of the dissertation is on the measure of association for binary data. In quantitative assessment, binary data is often encountered because of its simplicity. The current popular measures of association fail under some extremely unbalanced conditions. However, the occurrence of these conditions is not rare in educational data. Two popular association measures, the Pearson's correlation and the tetrachoric correlation are examined. A new method, model based association is introduced, and an educational testing constraint is discussed. The existing popular methods are compared with the model based association measure with and without the constraint. Connections between the value of association and the context and conceptual features of questions are discussed in detail. Results show that all the methods have their advantages and disadvantages. Special attention to the test and data conditions is necessary. The last part of the dissertation is focused on exploratory factor analysis (EFA). The theoretical advantages of EFA are discussed. Typical misunderstanding and misusage of EFA are explored. The EFA is performed on Lawson's Classroom Test of Scientific Reasoning (LCTSR), a widely used assessment on scientific reasoning skills. The

  18. Quantitative measurement of the cerebral blood flow

    International Nuclear Information System (INIS)

    Houdart, R.; Mamo, H.; Meric, P.; Seylaz, J.

    1976-01-01

    The value of the cerebral blood flow measurement (CBF) is outlined, its limits are defined and some future prospects discussed. The xenon 133 brain clearance study is at present the most accurate quantitative method to evaluate the CBF in different regions of the brain simultaneously. The method and the progress it has led to in the physiological, physiopathological and therapeutic fields are described. The major disadvantage of the method is shown to be the need to puncture the internal carotid for each measurement. Prospects are discussed concerning methods derived from the same general principle but using a simpler, non-traumatic way to introduce the radio-tracer, either by breathing into the lungs or intraveinously [fr

  19. Measuring Astronomical Distances with Linear Programming

    Science.gov (United States)

    Narain, Akshar

    2015-01-01

    A few years ago it was suggested that the distance to celestial bodies could be computed by tracking their position over about 24 hours and then solving a regression problem. One only needed to use inexpensive telescopes, cameras, and astrometry tools, and the experiment could be done from one's backyard. However, it is not obvious to an amateur…

  20. A magneto-optical microscope for quantitative measurement of magnetic microstructures.

    Science.gov (United States)

    Patterson, W C; Garraud, N; Shorman, E E; Arnold, D P

    2015-09-01

    An optical system is presented to quantitatively map the stray magnetic fields of microscale magnetic structures, with field resolution down to 50 μT and spatial resolution down to 4 μm. The system uses a magneto-optical indicator film (MOIF) in conjunction with an upright reflective polarizing light microscope to generate optical images of the magnetic field perpendicular to the image plane. A novel single light path construction and discrete multi-image polarimetry processing method are used to extract quantitative areal field measurements from the optical images. The integrated system including the equipment, image analysis software, and experimental methods are described. MOIFs with three different magnetic field ranges are calibrated, and the entire system is validated by measurement of the field patterns from two calibration samples.

  1. Pulse EPR distance measurements to study multimers and multimerisation

    Science.gov (United States)

    Ackermann, Katrin; Bode, Bela E.

    2018-06-01

    Pulse dipolar electron paramagnetic resonance (PD-EPR) has become a powerful tool for structural biology determining distances on the nanometre scale. Recent advances in hardware, methodology, and data analysis have widened the scope to complex biological systems. PD-EPR can be applied to systems containing lowly populated conformers or displaying large intrinsic flexibility, making them all but intractable for cryo-electron microscopy and crystallography. Membrane protein applications are of particular interest due to the intrinsic difficulties for obtaining high-resolution structures of all relevant conformations. Many drug targets involved in critical cell functions are multimeric channels or transporters. Here, common approaches for introducing spin labels for PD-EPR cause the presence of more than two electron spins per multimeric complex. This requires careful experimental design to overcome detrimental multi-spin effects and to secure sufficient distance resolution in presence of multiple distances. In addition to obtaining mere distances, PD-EPR can also provide information on multimerisation degrees allowing to study binding equilibria and to determine dissociation constants.

  2. Quantitative Reasoning in Environmental Science: Rasch Measurement to Support QR Assessment

    Directory of Open Access Journals (Sweden)

    Robert L. Mayes

    2015-07-01

    Full Text Available The ability of middle and high school students to reason quantitatively within the context of environmental science was investigated. A quantitative reasoning (QR learning progression, with associated QR assessments in the content areas of biodiversity, water, and carbon, was developed based on three QR progress variables: quantification act, quantitative interpretation, and quantitative modeling. Diagnostic instruments were developed specifically for the progress variable quantitative interpretation (QI, each consisting of 96 Likert-scale items. Each content version of the instrument focused on three scale levels (macro scale, micro scale, and landscape scale and four elements of QI identified in prior research (trend, translation, prediction, and revision. The QI assessments were completed by 362, 6th to 12th grade students in three U.S. states. Rasch (1960/1980 measurement was used to determine item and person measures for the QI instruments, both to examine validity and reliability characteristics of the instrument administration and inform the evolution of the learning progression. Rasch methods allowed identification of several QI instrument revisions, including modification of specific items, reducing number of items to avoid cognitive fatigue, reconsidering proposed item difficulty levels, and reducing Likert scale to 4 levels. Rasch diagnostics also indicated favorable levels of instrument reliability and appropriate targeting of item abilities to student abilities for the majority of participants. A revised QI instrument is available for STEM researchers and educators.

  3. Initial Description of a Quantitative, Cross-Species (Chimpanzee-Human) Social Responsiveness Measure

    Science.gov (United States)

    Marrus, Natasha; Faughn, Carley; Shuman, Jeremy; Petersen, Steve E.; Constantino, John N.; Povinelli, Daniel J.; Pruett, John R., Jr.

    2011-01-01

    Objective: Comparative studies of social responsiveness, an ability that is impaired in autism spectrum disorders, can inform our understanding of both autism and the cognitive architecture of social behavior. Because there is no existing quantitative measure of social responsiveness in chimpanzees, we generated a quantitative, cross-species…

  4. The Distance to M51

    Science.gov (United States)

    McQuinn, Kristen. B. W.; Skillman, Evan D.; Dolphin, Andrew E.; Berg, Danielle; Kennicutt, Robert

    2016-07-01

    Great investments of observing time have been dedicated to the study of nearby spiral galaxies with diverse goals ranging from understanding the star formation process to characterizing their dark matter distributions. Accurate distances are fundamental to interpreting observations of these galaxies, yet many of the best studied nearby galaxies have distances based on methods with relatively large uncertainties. We have started a program to derive accurate distances to these galaxies. Here we measure the distance to M51—the Whirlpool galaxy—from newly obtained Hubble Space Telescope optical imaging using the tip of the red giant branch method. We measure the distance modulus to be 8.58 ± 0.10 Mpc (statistical), corresponding to a distance modulus of 29.67 ± 0.02 mag. Our distance is an improvement over previous results as we use a well-calibrated, stable distance indicator, precision photometry in a optimally selected field of view, and a Bayesian Maximum Likelihood technique that reduces measurement uncertainties. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  5. Portable instrumentation for quantitatively measuring radioactive surface contaminations, including 90Sr

    International Nuclear Information System (INIS)

    Brodzinski, R.L.

    1983-10-01

    In order to measure the effectiveness of decontamination efforts, a quantitative analysis of the radiocontamination is necessary, both before and after decontamination. Since it is desirable to release the decontaminated material for unrestricted use or disposal, the assay equipment must provide adequate sensitivity to measure the radioactivity at or below the release limit. In addition, the instrumentation must be capable of measuring all kinds of radiocontaminants including fission products, activation products, and transuranic materials. Finally, the survey instrumentation must be extremely versatile in order to assay the wide variety of contaminated surfaces in many environments, some of which may be extremely hostile or remote. This communication describes the development and application of portable instrumentation capable of quantitatively measuring most transuranics, activation products, and fission products, including 90 Sr, on almost any contaminated surface in nearly any location

  6. Structures of peptide families by nuclear magnetic resonance spectroscopy and distance geometry

    Energy Technology Data Exchange (ETDEWEB)

    Pease, J.H.

    1989-12-01

    The three dimensional structures of several small peptides were determined using a combination of {sup 1}H nuclear magnetic resonance (NMR) and distance geometry calculations. These techniques were found to be particularly helpful for analyzing structural differences between related peptides since all of the peptides' {sup 1}H NMR spectra are very similar. The structures of peptides from two separate classes are presented. Peptides in the first class are related to apamin, an 18 amino acid peptide toxin from honey bee venom. The {sup 1}H NMR assignments and secondary structure determination of apamin were done previously. Quantitative NMR measurements and distance geometry calculations were done to calculate apamin's three dimensional structure. Peptides in the second class are 48 amino acid toxins from the sea anemone Radianthus paumotensis. The {sup 1}H NMR assignments of toxin II were done previously. The {sup 1}H NMR assignments of toxin III and the distance geometry calculations for both peptides are presented.

  7. Fast Computing for Distance Covariance

    OpenAIRE

    Huo, Xiaoming; Szekely, Gabor J.

    2014-01-01

    Distance covariance and distance correlation have been widely adopted in measuring dependence of a pair of random variables or random vectors. If the computation of distance covariance and distance correlation is implemented directly accordingly to its definition then its computational complexity is O($n^2$) which is a disadvantage compared to other faster methods. In this paper we show that the computation of distance covariance and distance correlation of real valued random variables can be...

  8. Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA.

    Science.gov (United States)

    Kelly, Brendan J; Gross, Robert; Bittinger, Kyle; Sherrill-Mix, Scott; Lewis, James D; Collman, Ronald G; Bushman, Frederic D; Li, Hongzhe

    2015-08-01

    The variation in community composition between microbiome samples, termed beta diversity, can be measured by pairwise distance based on either presence-absence or quantitative species abundance data. PERMANOVA, a permutation-based extension of multivariate analysis of variance to a matrix of pairwise distances, partitions within-group and between-group distances to permit assessment of the effect of an exposure or intervention (grouping factor) upon the sampled microbiome. Within-group distance and exposure/intervention effect size must be accurately modeled to estimate statistical power for a microbiome study that will be analyzed with pairwise distances and PERMANOVA. We present a framework for PERMANOVA power estimation tailored to marker-gene microbiome studies that will be analyzed by pairwise distances, which includes: (i) a novel method for distance matrix simulation that permits modeling of within-group pairwise distances according to pre-specified population parameters; (ii) a method to incorporate effects of different sizes within the simulated distance matrix; (iii) a simulation-based method for estimating PERMANOVA power from simulated distance matrices; and (iv) an R statistical software package that implements the above. Matrices of pairwise distances can be efficiently simulated to satisfy the triangle inequality and incorporate group-level effects, which are quantified by the adjusted coefficient of determination, omega-squared (ω2). From simulated distance matrices, available PERMANOVA power or necessary sample size can be estimated for a planned microbiome study. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Quantitative analysis of tip-sample interaction in non-contact scanning force spectroscopy

    International Nuclear Information System (INIS)

    Palacios-Lidon, Elisa; Colchero, Jaime

    2006-01-01

    Quantitative characterization of tip-sample interaction in scanning force microscopy is fundamental for optimum image acquisition as well as data interpretation. In this work we discuss how to characterize the electrostatic and van der Waals contribution to tip-sample interaction in non-contact scanning force microscopy precisely. The spectroscopic technique presented is based on the simultaneous measurement of cantilever deflection, oscillation amplitude and frequency shift as a function of tip-sample voltage and tip-sample distance as well as on advanced data processing. Data are acquired at a fixed lateral position as interaction images, with the bias voltage as fast scan, and tip-sample distance as slow scan. Due to the quadratic dependence of the electrostatic interaction with tip-sample voltage the van der Waals force can be separated from the electrostatic force. Using appropriate data processing, the van der Waals interaction, the capacitance and the contact potential can be determined as a function of tip-sample distance. The measurement of resonance frequency shift yields very high signal to noise ratio and the absolute calibration of the measured quantities, while the acquisition of cantilever deflection allows the determination of the tip-sample distance

  10. Cepheids Geometrical Distances Using Space Interferometry

    Science.gov (United States)

    Marengo, M.; Karovska, M.; Sasselov, D. D.; Sanchez, M.

    2004-05-01

    A space based interferometer with a sub-milliarcsecond resolution in the UV-optical will provide a new avenue for the calibration of primary distance indicators with unprecedented accuracy, by allowing very accurate and stable measurements of Cepheids pulsation amplitudes at wavelengths not accessible from the ground. Sasselov & Karovska (1994) have shown that interferometers allow very accurate measurements of Cepheids distances by using a ``geometric'' variant of the Baade-Wesselink method. This method has been succesfully applied to derive distances and radii of nearby Cepheids using ground-based near-IR and optical interferometers, within a 15% accuracy level. Our study shows that the main source of error in these measurements is due to the perturbing effects of the Earth atmosphere, which is the limiting factor in the interferometer stability. A space interferometer will not suffer from this intrinsic limitations, and can potentially lead to improve astronomical distance measurements by an order of magnitude in precision. We discuss here the technical requirements that a space based facility will need to carry out this project, allowing distance measurements within a few percent accuracy level. We will finally discuss how a sub-milliarcsecond resolution will allow the direct distance determination for hundreds of galactic sources, and provide a substantial improvement in the zero-point of the Cepheid distance scale.

  11. Time domain simulation of Gd3+-Gd3+ distance measurements by EPR

    Science.gov (United States)

    Manukovsky, Nurit; Feintuch, Akiva; Kuprov, Ilya; Goldfarb, Daniella

    2017-07-01

    Gd3+-based spin labels are useful as an alternative to nitroxides for intramolecular distance measurements at high fields in biological systems. However, double electron-electron resonance (DEER) measurements using model Gd3+ complexes featured a low modulation depth and an unexpected broadening of the distance distribution for short Gd3+-Gd3+ distances, when analysed using the software designed for S = 1/2 pairs. It appears that these effects result from the different spectroscopic characteristics of Gd3+—the high spin, the zero field splitting (ZFS), and the flip-flop terms in the dipolar Hamiltonian that are often ignored for spin-1/2 systems. An understanding of the factors affecting the modulation frequency and amplitude is essential for the correct analysis of Gd3+-Gd3+ DEER data and for the educated choice of experimental settings, such as Gd3+ spin label type and the pulse parameters. This work uses time-domain simulations of Gd3+-Gd3+ DEER by explicit density matrix propagation to elucidate the factors shaping Gd3+ DEER traces. The simulations show that mixing between the |+½, -½> and |-½, +½> states of the two spins, caused by the flip-flop term in the dipolar Hamiltonian, leads to dampening of the dipolar modulation. This effect may be mitigated by a large ZFS or by pulse frequency settings allowing for a decreased contribution of the central transition and the one adjacent to it. The simulations reproduce both the experimental line shapes of the Fourier-transforms of the DEER time domain traces and the trends in the behaviour of the modulation depth, thus enabling a more systematic design and analysis of Gd3+ DEER experiments.

  12. Accuracy of Positioning Autonomous Biomimetic Underwater Vehicle Using Additional Measurement of Distances

    Directory of Open Access Journals (Sweden)

    Naus Krzysztof

    2016-12-01

    Full Text Available The article describes a study of problem of estimating the position coordinates of Autonomous Biomimetic Underwater Vehicle (ABUV using two methods: dead reckoning (DR and extended Kalman filter (EKF. In the first part of the paper, navigation system of ABUV is described and scientific problem with underwater positioning is formulated. The main part describes a way of estimating the position coordinates using DR and EKF and a numerical experiment involving motion of ABUV along the predetermined test distance. The final part of the paper contains a comparative statistical analysis of the results, carried out for assessing the accuracy of estimation of the position coordinates using DR and EKF methods. It presents the generalized conclusions from the research and the problems relating to the proper placement of the components of the system measuring distances.

  13. Correlation measure to detect time series distances, whence economy globalization

    Science.gov (United States)

    Miśkiewicz, Janusz; Ausloos, Marcel

    2008-11-01

    An instantaneous time series distance is defined through the equal time correlation coefficient. The idea is applied to the Gross Domestic Product (GDP) yearly increments of 21 rich countries between 1950 and 2005 in order to test the process of economic globalisation. Some data discussion is first presented to decide what (EKS, GK, or derived) GDP series should be studied. Distances are then calculated from the correlation coefficient values between pairs of series. The role of time averaging of the distances over finite size windows is discussed. Three network structures are next constructed based on the hierarchy of distances. It is shown that the mean distance between the most developed countries on several networks actually decreases in time, -which we consider as a proof of globalization. An empirical law is found for the evolution after 1990, similar to that found in flux creep. The optimal observation time window size is found ≃15 years.

  14. Quantitative phase microscopy for cellular dynamics based on transport of intensity equation.

    Science.gov (United States)

    Li, Ying; Di, Jianglei; Ma, Chaojie; Zhang, Jiwei; Zhong, Jinzhan; Wang, Kaiqiang; Xi, Teli; Zhao, Jianlin

    2018-01-08

    We demonstrate a simple method for quantitative phase imaging of tiny transparent objects such as living cells based on the transport of intensity equation. The experiments are performed using an inverted bright field microscope upgraded with a flipping imaging module, which enables to simultaneously create two laterally separated images with unequal defocus distances. This add-on module does not include any lenses or gratings and is cost-effective and easy-to-alignment. The validity of this method is confirmed by the measurement of microlens array and human osteoblastic cells in culture, indicating its potential in the applications of dynamically measuring living cells and other transparent specimens in a quantitative, non-invasive and label-free manner.

  15. Coherent dual-frequency lidar system design for distance and speed measurements

    Science.gov (United States)

    Zheng, Xingyuan; Zhao, Changming; Zhang, Haiyang; Zheng, Zheng; Yang, Hongzhi

    2018-01-01

    Lidars have a wide range of applications in military detection and civilian remote sensing. Coherent Dual-Frequency Lidar (CDFL) is a new concept of laser radar that is using electrical coherence instead of optical coherence. It uses laser with two coherent frequency components as transmitting wave. The method is based on the use of an optically-carried radio frequency (RF) signal, which is the frequency difference between the two components, which is specially designed for distance and speed measurements. It not only ensures the system has the characteristics of high spatial resolution, high ranging and velocity precision of laser radar, but also can use mature signal processing technology of microwave radar, and it is a research direction that attracts more concern in recent years. A CDFL detection system is constructed and field experiment is carried out. In the system, a narrow linewidth fiber laser with a wavelength of 1064nm is adopted. The dual-frequency laser with frequency difference of 200MHz and 200.6MHz is obtained by acousto-optic frequency shift and recombination. The maximum output power of dual frequency laser is 200mW. The receiver consists of all-fiber balanced InGaAs photo-detector and homemade analog signal processing board. The experimental results show that the distance resolution and velocity resolution of the system are 0.1m and 0.1m/s separately when the working distance is greater than 200m, and the spatial resolution is 0.5mrad.

  16. A Systematic Review of Quantitative Resilience Measures for Water Infrastructure Systems

    Directory of Open Access Journals (Sweden)

    Sangmin Shin

    2018-02-01

    Full Text Available Over the past few decades, the concept of resilience has emerged as an important consideration in the planning and management of water infrastructure systems. Accordingly, various resilience measures have been developed for the quantitative evaluation and decision-making of systems. There are, however, numerous considerations and no clear choice of which measure, if any, provides the most appropriate representation of resilience for a given application. This study provides a critical review of quantitative approaches to measure the resilience of water infrastructure systems, with a focus on water resources and distribution systems. A compilation of 11 criteria evaluating 21 selected resilience measures addressing major features of resilience is developed using the Axiomatic Design process. Existing gaps of resilience measures are identified based on the review criteria. The results show that resilience measures have generally paid less attention to cascading damage to interrelated systems, rapid identification of failure, physical damage of system components, and time variation of resilience. Concluding the paper, improvements to resilience measures are recommended. The findings contribute to our understanding of gaps and provide information to help further improve resilience measures of water infrastructure systems.

  17. Quality Assurance of Distance Education: Multiple Assessment Measures Used in a Business, Career, and Technical Education Department

    Directory of Open Access Journals (Sweden)

    Dr. Elizabeth HODGE

    2004-04-01

    Full Text Available Quality Assurance of Distance Education: Multiple Assessment Measures Used in a Business, Career, and Technical Education Department Assistant Professor Dr. Shelia TUCKER East Carolina University, Greenville, NC, USA Assistant Professor Dr. Elizabeth HODGE East Carolina University, Greenville, NC, USA ABSTRACT Educational institutions are being encouraged by accrediting agencies to move beyond the traditional measures of success such as satisfaction surveys from students, employers, and alumni. They stress the use of a variety of measurement tools to audit students’ work. Thus, this study will seek to identify multiple assessment strategies that can be used to evaluate the effectiveness of distance education courses within an entire degree program. Comparisons of three courses being taught simultaneously on line and in the classroom were made. There were no significant differences noted in student outcomes assessments. Additionally, the same assessment measures used for SACS for the traditional classroom were equated with the distance education classes for those in the field of Family and Consumer Sciences, Business Education, the BE/ME program, the MAEd program in Technical teaching, and Information Technologies. No significant differences were noted in student outcomes assessments.

  18. Measurements in quantitative research: how to select and report on research instruments.

    Science.gov (United States)

    Hagan, Teresa L

    2014-07-01

    Measures exist to numerically represent degrees of attributes. Quantitative research is based on measurement and is conducted in a systematic, controlled manner. These measures enable researchers to perform statistical tests, analyze differences between groups, and determine the effectiveness of treatments. If something is not measurable, it cannot be tested.

  19. Distance measurement and wave dispersion in a Liouville-string approach to quantum gravity

    CERN Document Server

    Amelino-Camelia, G; Mavromatos, Nikolaos E; Nanopoulos, Dimitri V

    1997-01-01

    Within a Liouville approach to non-critical string theory, we discuss space-time foam effects on the propagation of low-energy particles. We find an induced frequency-dependent dispersion in the propagation of a wave packet, and observe that this would affect the outcome of measurements involving low-energy particles as probes. In particular, the maximum possible order of magnitude of the space-time foam effects would give rise to an error in the measurement of distance comparable to that independently obtained in some recent heuristic quantum-gravity analyses. We also briefly compare these error estimates with the precision of astrophysical measurements.

  20. Modern Geometric Methods of Distance Determination

    Science.gov (United States)

    Thévenin, Frédéric; Falanga, Maurizio; Kuo, Cheng Yu; Pietrzyński, Grzegorz; Yamaguchi, Masaki

    2017-11-01

    Building a 3D picture of the Universe at any distance is one of the major challenges in astronomy, from the nearby Solar System to distant Quasars and galaxies. This goal has forced astronomers to develop techniques to estimate or to measure the distance of point sources on the sky. While most distance estimates used since the beginning of the 20th century are based on our understanding of the physics of objects of the Universe: stars, galaxies, QSOs, the direct measures of distances are based on the geometric methods as developed in ancient Greece: the parallax, which has been applied to stars for the first time in the mid-19th century. In this review, different techniques of geometrical astrometry applied to various stellar and cosmological (Megamaser) objects are presented. They consist in parallax measurements from ground based equipment or from space missions, but also in the study of binary stars or, as we shall see, of binary systems in distant extragalactic sources using radio telescopes. The Gaia mission will be presented in the context of stellar physics and galactic structure, because this key space mission in astronomy will bring a breakthrough in our understanding of stars, galaxies and the Universe in their nature and evolution with time. Measuring the distance to a star is the starting point for an unbiased description of its physics and the estimate of its fundamental parameters like its age. Applying these studies to candles such as the Cepheids will impact our large distance studies and calibration of other candles. The text is constructed as follows: introducing the parallax concept and measurement, we shall present briefly the Gaia satellite which will be the future base catalogue of stellar astronomy in the near future. Cepheids will be discussed just after to demonstrate the state of the art in distance measurements in the Universe with these variable stars, with the objective of 1% of error in distances that could be applied to our closest

  1. The usefulness of 3D quantitative analysis with using MRI for measuring osteonecrosis of the femoral head

    International Nuclear Information System (INIS)

    Hwang, Ji Young; Lee, Sun Wha; Park, Youn Soo

    2006-01-01

    We wanted to evaluate the usefulness of MRI 3D quantitative analysis for measuring osteonecrosis of the femoral head in comparison with MRI 2D quantitative analysis and quantitative analysis of the specimen. For 3 months at our hospital, 14 femoral head specimens with osteonecrosis were obtained after total hip arthroplasty. The patients preoperative MRIs were retrospectively reviewed for quantitative analysis of the size of the necrosis. Each necrotic fraction of the femoral head was measured by 2D quantitative analysis with using mid-coronal and mid-sagittal MRIs, and by 3D quantitative analysis with using serial continuous coronal MRIs and 3D reconstruction software. The necrotic fraction of the specimen was physically measured by the fluid displacement method. The necrotic fraction according to MRI 2D or 3D quantitative analysis was compared with that of the specimen by using Spearman's correlation test. On the correlative analysis, the necrotic fraction by MRI 2D quantitative analysis and quantitative analysis of the specimen showed moderate correlation (r = 0.657); on the other hand, the necrotic fraction by MRI 3D quantitative analysis and quantitative analysis of the specimen demonstrated a strong correlation (r = 0.952) (ρ < 0.05). MRI 3D quantitative analysis was more accurate than 2D quantitative analysis using MRI for measuring osteonecrosis of the femoral head. Therefore, it may be useful for predicting the clinical outcome and deciding the proper treatment option

  2. Quantitative measurement of intervertebral disc signal using MRI

    International Nuclear Information System (INIS)

    Niemelaeinen, R.; Videman, T.; Dhillon, S.S.; Battie, M.C.

    2008-01-01

    Aim: To investigate the spinal cord as an alternative intra-body reference to cerebrospinal fluid (CSF) in evaluating thoracic disc signal intensity. Materials and methods: T2-weighted magnetic resonance imaging (MRI) images of T6-T12 were obtained using 1.5 T machines for a population-based sample of 523 men aged 35-70 years. Quantitative data on the signal intensities were acquired using an image analysis program (SpEx (copy right) ). A random sample of 30 subjects and intraclass correlation coeffcients (ICC) were used to examine the repeatability of the spinal cord measurements. The validity of using the spinal cord as a reference was examined by correlating cord and CSF samples. Finally, thoracic disc signal was validated by correlating it with age without adjustment and adjusting for either cord or CSF. Pearson's r was used for correlational analyses. Results: The repeatability of the spinal cord signal measurements was extremely high (≥0.99). The correlations between the signals of spinal cord and CSF by level were all above 0.9. The spinal cord-adjusted disc signal and age correlated similarly with CSF-adjusted disc signal and age (r = -0.30 to -0.40 versus r = -0.26 to -0.36). Conclusion: Adjacent spinal cord is a good alternative reference to the current reference standard, CSF, for quantitative measurements of disc signal intensity. Clearly fewer levels were excluded when using spinal cord as compared to CSF due to missing reference samples

  3. Quantitative measurement of intervertebral disc signal using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Niemelaeinen, R. [Faculty of Rehabilitation Medicine, University of Alberta, Edmonton (Canada)], E-mail: riikka.niemelainen@ualberta.ca; Videman, T. [Faculty of Rehabilitation Medicine, University of Alberta, Edmonton (Canada); Dhillon, S.S. [Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton (Canada); Battie, M.C. [Faculty of Rehabilitation Medicine, University of Alberta, Edmonton (Canada)

    2008-03-15

    Aim: To investigate the spinal cord as an alternative intra-body reference to cerebrospinal fluid (CSF) in evaluating thoracic disc signal intensity. Materials and methods: T2-weighted magnetic resonance imaging (MRI) images of T6-T12 were obtained using 1.5 T machines for a population-based sample of 523 men aged 35-70 years. Quantitative data on the signal intensities were acquired using an image analysis program (SpEx (copy right) ). A random sample of 30 subjects and intraclass correlation coeffcients (ICC) were used to examine the repeatability of the spinal cord measurements. The validity of using the spinal cord as a reference was examined by correlating cord and CSF samples. Finally, thoracic disc signal was validated by correlating it with age without adjustment and adjusting for either cord or CSF. Pearson's r was used for correlational analyses. Results: The repeatability of the spinal cord signal measurements was extremely high ({>=}0.99). The correlations between the signals of spinal cord and CSF by level were all above 0.9. The spinal cord-adjusted disc signal and age correlated similarly with CSF-adjusted disc signal and age (r = -0.30 to -0.40 versus r = -0.26 to -0.36). Conclusion: Adjacent spinal cord is a good alternative reference to the current reference standard, CSF, for quantitative measurements of disc signal intensity. Clearly fewer levels were excluded when using spinal cord as compared to CSF due to missing reference samples.

  4. Distance matrices and quadratic embedding of graphs

    Directory of Open Access Journals (Sweden)

    Nobuaki Obata

    2018-04-01

    Full Text Available A connected graph is said to be of QE class if it admits  a quadratic embedding in a Hilbert space, or equivalently, if the distance matrix is conditionally negative definite. Several criteria for a graph to be of QE class are derived from the point of view of graph operations. For a quantitative criterion the QE constant is introduced and concrete examples are shown with explicit calculation. If the distance matrix admits a constant row sum, the QE constant coincides with the second largest eigenvalue of the distance matrix. The QE constants are determined for all graphs on $n$ vertices with $n\\le5$, among which two are not of QE class.

  5. Low-enriched uranium holdup measurements in Kazakhstan

    International Nuclear Information System (INIS)

    Barham, M.A.; Ceo, R.; Smith, S.E.

    1998-01-01

    Quantification of the residual nuclear material remaining in process equipment has long been a challenge to those who work with nuclear material accounting systems. Fortunately, nuclear material has spontaneous radiation emissions that can be measured. If gamma-ray measurements can be made, it is easy to determine what isotope a deposit contains. Unfortunately, it can be quite difficult to relate this measured signal to an estimate of the mass of the nuclear deposit. Typically, the measurement expert must work with incomplete or inadequate information to determine a quantitative result. Simplified analysis models, the distribution of the nuclear material, any intervening attenuation, background(s), and the source-to-detector distance(s) can have significant impacts on the quantitative result. This presentation discusses the application of a generalized-geometry holdup model to the low-enriched uranium fuel pellet fabrication plant in Ust-Kamenogorsk, Kazakhstan. Preliminary results will be presented. Software tools have been developed to assist the facility operators in performing and documenting the measurements. Operator feedback has been used to improve the user interfaces

  6. Distance Between the Malleoli and the GroundA New Clinical Method to Measure Leg-Length Discrepancy.

    Science.gov (United States)

    Aguilar, Estela Gomez; Domínguez, Águeda Gómez; Peña-Algaba, Carolina; Castillo-López, José M

    2017-03-01

    The aim of this work is to introduce a useful method for the clinical diagnosis of leg-length inequality: distance between the malleoli and the ground (DMG). A transversal observational study was performed on 17 patients with leg-length discrepancy. Leg-length inequality was determined with different clinical methods: with a tape measure in a supine position from the anterior superior iliac spine (ASIS) to the internal and external malleoli, as the difference between the iliac crests when standing (pelvimeter), and as asymmetry between ASISs (PALpation Meter [PALM]; A&D Medical Products Healthcare, San Jose, California). The Foot Posture Index (FPI) and the navicular drop test were also used. The DMG with Perthes rule (perpendicular to the foot when standing), the distance between the internal malleolus and the ground (DIMG), and the distance between the external malleolus and the ground were designed by the authors. The DIMG is directly related to the traditional ASIS-external malleolus measurement (P = .003), the FPI (P = .010), and the navicular drop test (P DMG) is useful for diagnosing leg-length discrepancy and is related to the ASIS-external malleolus measurement. The DIMG is significantly inversely proportional to the degree of pronation according to the FPI. Conversely, determination of leg-length discrepancy with a tape measure from the ASIS to the malleoli cannot be performed interchangeably at the level of the internal or external malleolus.

  7. Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine.

    Science.gov (United States)

    Blotevogel, Thomas; Hartmann, Matthias; Rottengruber, Hermann; Leipertz, Alfred

    2008-12-10

    A measurement technique for the quantitative investigation of mixture formation processes in hydrogen internal combustion engines (ICEs) has been developed using tracer-based laser-induced fluorescence (TLIF). This technique can be employed to fired and motored engine operation. The quantitative TLIF fuel/air-ratio results have been verified by means of linear Raman scattering measurements. Exemplary results of the simultaneous investigation of mixture formation and combustion obtained at an optical accessible hydrogen ICE are shown.

  8. Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins

    International Nuclear Information System (INIS)

    Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune

    2012-01-01

    NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional [U- 13 C, 15 N]-proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across disulfide bonds. We describe a robust approach for alleviating such difficulties, by using proteins selectively labeled with an equimolar mixture of (2R, 3S)-[β- 13 C; α,β- 2 H 2 ] Cys and (2R, 3R)-[β- 13 C; α,β- 2 H 2 ] Cys, but otherwise fully deuterated. Since either one of the prochiral methylene protons, namely β2 (proS) or β3 (proR), is always replaced with a deuteron and no other protons remain in proteins prepared by this labeling scheme, all four of the expected NOEs for the β-protons across disulfide bonds could be measured without any spin diffusion interference, even with long mixing times. Therefore, the NOEs for the β2 and β3 pairs across each of the disulfide bonds could be observed at high sensitivity, even though they are 25% of the theoretical maximum for each pair. With the NOE information, the disulfide bond connectivities can be unambiguously established for proteins with multiple disulfide bonds. In addition, the conformations around disulfide bonds, namely χ 2 and χ 3 , can be determined based on the precise proton distances of the four β-proton pairs, by quantitative measurements of the NOEs across the disulfide bonds. The feasibility of this method is demonstrated for bovine pancreatic trypsin inhibitor, which has three disulfide bonds.

  9. Functional connectivity and structural covariance between regions of interest can be measured more accurately using multivariate distance correlation.

    Science.gov (United States)

    Geerligs, Linda; Cam-Can; Henson, Richard N

    2016-07-15

    Studies of brain-wide functional connectivity or structural covariance typically use measures like the Pearson correlation coefficient, applied to data that have been averaged across voxels within regions of interest (ROIs). However, averaging across voxels may result in biased connectivity estimates when there is inhomogeneity within those ROIs, e.g., sub-regions that exhibit different patterns of functional connectivity or structural covariance. Here, we propose a new measure based on "distance correlation"; a test of multivariate dependence of high dimensional vectors, which allows for both linear and non-linear dependencies. We used simulations to show how distance correlation out-performs Pearson correlation in the face of inhomogeneous ROIs. To evaluate this new measure on real data, we use resting-state fMRI scans and T1 structural scans from 2 sessions on each of 214 participants from the Cambridge Centre for Ageing & Neuroscience (Cam-CAN) project. Pearson correlation and distance correlation showed similar average connectivity patterns, for both functional connectivity and structural covariance. Nevertheless, distance correlation was shown to be 1) more reliable across sessions, 2) more similar across participants, and 3) more robust to different sets of ROIs. Moreover, we found that the similarity between functional connectivity and structural covariance estimates was higher for distance correlation compared to Pearson correlation. We also explored the relative effects of different preprocessing options and motion artefacts on functional connectivity. Because distance correlation is easy to implement and fast to compute, it is a promising alternative to Pearson correlations for investigating ROI-based brain-wide connectivity patterns, for functional as well as structural data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions.

    Science.gov (United States)

    Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B

    2014-09-15

    Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case.

  11. Extended VIKOR Method for Intuitionistic Fuzzy Multiattribute Decision-Making Based on a New Distance Measure

    Directory of Open Access Journals (Sweden)

    Xiao Luo

    2017-01-01

    Full Text Available An intuitionistic fuzzy VIKOR (IF-VIKOR method is proposed based on a new distance measure considering the waver of intuitionistic fuzzy information. The method aggregates all individual decision-makers’ assessment information based on intuitionistic fuzzy weighted averaging operator (IFWA, determines the weights of decision-makers and attributes objectively using intuitionistic fuzzy entropy, calculates the group utility and individual regret by the new distance measure, and then reaches a compromise solution. It can be effectively applied to multiattribute decision-making (MADM problems where the weights of decision-makers and attributes are completely unknown and the attribute values are intuitionistic fuzzy numbers (IFNs. The validity and stability of this method are verified by example analysis and sensitivity analysis, and its superiority is illustrated by the comparison with the existing method.

  12. Poster - 35: Monitoring patient positioning during deep inspiration breath hold with a distance measuring laser

    International Nuclear Information System (INIS)

    Weston, Mark; Juhasz, Janos

    2016-01-01

    Purpose: The accuracy of treatment delivery for left breast/chest wall patients using deep inspiration breath hold (DIBH) is being monitored using a distance measuring laser (DML) Methods: A commercially available DML (DLS-C15, Dimetix) was mounted behind a Varian TrilogyTM linac. Relative to the machine isocenter, the laser from the beam was offset by 8 cm to the left and by 1 cm in the superior direction. This position was selected because this point is situated on the sternum for the majority of the left breast/chest-wall patients treated at our institution. The Varian Real-Time Positioning Management™ (RPM) guided DIBH treatments at our institution is delivered by placing the system’s tracking block on the patient’s abdomen. The treatment beam is enabled only when the block is in between a predefined abdomen motion range as determined during the CT simulation process. A LabVIEW program was developed to record both beam status (i.e. on/off) and distance measurements. In this study the DML was only used to monitor the position of a single point on the chest and no clinical decisions/adjustments were made based on these measurements. Results and Conclusions: Thus far, 34 fractions have been recorded for 4 patients. As such, the performance of our DIBH treatment technique cannot be fairly evaluated at this point. However, deviations between expected and measured distances have been observed and if these are found to be reproducible, then modifications in our treatment procedures and policies will have to take place.

  13. Poster - 35: Monitoring patient positioning during deep inspiration breath hold with a distance measuring laser

    Energy Technology Data Exchange (ETDEWEB)

    Weston, Mark; Juhasz, Janos [Juravinski Cancer Centre (Canada)

    2016-08-15

    Purpose: The accuracy of treatment delivery for left breast/chest wall patients using deep inspiration breath hold (DIBH) is being monitored using a distance measuring laser (DML) Methods: A commercially available DML (DLS-C15, Dimetix) was mounted behind a Varian TrilogyTM linac. Relative to the machine isocenter, the laser from the beam was offset by 8 cm to the left and by 1 cm in the superior direction. This position was selected because this point is situated on the sternum for the majority of the left breast/chest-wall patients treated at our institution. The Varian Real-Time Positioning Management™ (RPM) guided DIBH treatments at our institution is delivered by placing the system’s tracking block on the patient’s abdomen. The treatment beam is enabled only when the block is in between a predefined abdomen motion range as determined during the CT simulation process. A LabVIEW program was developed to record both beam status (i.e. on/off) and distance measurements. In this study the DML was only used to monitor the position of a single point on the chest and no clinical decisions/adjustments were made based on these measurements. Results and Conclusions: Thus far, 34 fractions have been recorded for 4 patients. As such, the performance of our DIBH treatment technique cannot be fairly evaluated at this point. However, deviations between expected and measured distances have been observed and if these are found to be reproducible, then modifications in our treatment procedures and policies will have to take place.

  14. Interferometric 30 m bench for calibrations of 1D scales and optical distance measuring instruments

    International Nuclear Information System (INIS)

    Unkuri, J; Rantanen, A; Manninen, J; Esala, V-P; Lassila, A

    2012-01-01

    During construction of a new metrology building for MIKES, a 30 m interferometric bench was designed. The objective was to implement a straight, stable, adjustable and multifunctional 30 m measuring bench for calibrations. Special attention was paid to eliminating the effects of thermal expansion and inevitable concrete shrinkage. The linear guide, situated on top of a monolithic concrete beam, comprises two parallel round shafts with adjustable fixtures every 1 m. A carriage is moved along the rail and its position is followed by a reference interferometer. Depending on the measurement task, one or two retro-reflectors are fixed on the carriage. A microscope with a CCD camera and a monitor can be used to detect line mark positions on different line standards. When calibrating optical distance measuring instruments, various targets can be fixed to the carriage. For the most accurate measurements an online Abbe-error correction based on simultaneous carriage pitch measurement by a separate laser interferometer is applied. The bench is used for calibrations of machinist scales, tapes, circometers, electronic distance meters, total stations and laser trackers. The estimated expanded uncertainty for 30 m displacement for highest accuracy calibrations is 2.6 µm. (paper)

  15. Quantitative mixture fraction measurements in combustion system via laser induced breakdown spectroscopy

    KAUST Repository

    Mansour, Mohy S.

    2015-01-01

    Laser induced breakdown spectroscopy (LIBS) technique has been applied to quantitative mixture fraction measurements in flames. The measured spectra of different mixtures of natural gas and air are used to obtain the calibration parameters for local elemental mass fraction measurements and hence calculate the mixture fraction. The results are compared with the mixture fraction calculations based on the ratios of the spectral lines of H/N elements, H/O elements and C/(N+O) and they show good agreement within the reaction zone of the flames. Some deviations are observed outside the reaction zone. The ability of LIBS technique as a tool for quantitative mixture fraction as well as elemental fraction measurements in reacting and non-reacting of turbulent flames is feasible. © 2014 Elsevier Ltd. All rights reserved.

  16. Distance covariance for stochastic processes

    DEFF Research Database (Denmark)

    Matsui, Muneya; Mikosch, Thomas Valentin; Samorodnitsky, Gennady

    2017-01-01

    The distance covariance of two random vectors is a measure of their dependence. The empirical distance covariance and correlation can be used as statistical tools for testing whether two random vectors are independent. We propose an analog of the distance covariance for two stochastic processes...

  17. Investigating the Effect of Situational Awareness on Persistence of Doctoral Distance Learners

    Science.gov (United States)

    Harleman, Thomas G.

    2013-01-01

    This quantitative study sought to identify the effect of heightened situational awareness (SA) on persistence of doctoral distance learners. Factors in the distance learners' micro-environment, vis-à-vis Urie Bronfenbrenner's (1979) ecology theory of human development, were the focus. Study participants included new doctoral candidates continuing…

  18. Quantitative measures of walking and strength provide insight into brain corticospinal tract pathology in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Nora E Fritz

    2017-01-01

    Quantitative measures of strength and walking are associated with brain corticospinal tract pathology. The addition of these quantitative measures to basic clinical information explains more of the variance in corticospinal tract fractional anisotropy and magnetization transfer ratio than the basic clinical information alone. Outcome measurement for multiple sclerosis clinical trials has been notoriously challenging; the use of quantitative measures of strength and walking along with tract-specific imaging methods may improve our ability to monitor disease change over time, with intervention, and provide needed guidelines for developing more effective targeted rehabilitation strategies.

  19. On the importance of the distance measures used to train and test knowledge-based potentials for proteins

    DEFF Research Database (Denmark)

    Carlsen, Martin; Koehl, Patrice; Røgen, Peter

    2014-01-01

    (PPD), while the other had the set of all distances filtered to reflect consistency in an ensemble of decoys (PPE). We tested four types of metric to characterize the distance between the decoy and the native structure, two based on extrinsic geometry (RMSD and GTD-TS*), and two based on intrinsic...... geometry (Q* and MT). The corresponding eight potentials were tested on a large collection of decoy sets. We found that it is usually better to train a potential using an intrinsic distance measure. We also found that PPE outperforms PPD, emphasizing the benefits of capturing consistent information...

  20. Association between light absorption measurements of PM2.5 and distance from heavy traffic roads in the Mexico City metropolitan area.

    Science.gov (United States)

    Cortez-Lugo, Marlene; Escamilla-Núñez, Consuelo; Barraza-Villarreal, Albino; Texcalac-Sangrador, José Luis; Chow, Judith; Watson, John; Hernández-Cadena, Leticia; Romieu, Isabelle

    2013-04-01

    To study the relationship between light absorption measurements of PM2.5 at various distances from heavy traffic roads and diesel vehicle counts in Mexico City. PM2.5 samples were obtained from June 2003-June 2005 in three MCMA regions. Light absorption (b abs) in a subset of PM2.5 samples was determined. We evaluated the effect of distance and diesel vehicle counts to heavy traffic roads on PM2.5 b abs using generalized estimating equation models. Median PM2.5 b abs measurements significantly decrease as distance from heavy traffic roads increases (proads. Our model predicts that PM2.5 b abs measurements would increase by 20% (CI95% 3-38) as the hourly heavy diesel vehicle count increases by 150 per hour. PM2.5 b abs measurements are significantly associated with distance from motorways and traffic density and therefore can be used to assess human exposure to traffic-related emissions.

  1. Ultrasound measurement of rotator cuff thickness and acromio-humeral distance in the diagnosis of subacromial impingement syndrome of the shoulder.

    Science.gov (United States)

    Cholewinski, Jerzy J; Kusz, Damian J; Wojciechowski, Piotr; Cielinski, Lukasz S; Zoladz, Miroslaw P

    2008-04-01

    The usefulness of ultrasound measurements in the diagnosis of the subacromial impingement syndrome of the shoulder was evaluated. Fifty-seven patients with unilateral symptoms of the impingement syndrome underwent ultrasound examination of both shoulder joints, which included assessment of rotator cuff integrity, measurement of rotator cuff thickness and the distance between the infero-lateral edge of acromion and the apex of the greater tuberosity of humerus (AGT distance) in the standard ultrasonographic positions. As a control group, 36 volunteers (72 shoulders) with no history of shoulder pain were examined sonographically. Ultrasonographic assessment of humeral head elevation, measured as the AGT distance, proved to be useful in establishing the diagnosis of the subacromial impingement syndrome of the shoulder. A difference in rotator cuff thickness of more than 1.1 mm and a difference in the AGT distance of more than 2.1 mm between both shoulder joints may reflect dysfunction of rotator cuff muscles.

  2. Questionnaire-based person trip visualization and its integration to quantitative measurements in Myanmar

    Science.gov (United States)

    Kimijiama, S.; Nagai, M.

    2016-06-01

    With telecommunication development in Myanmar, person trip survey is supposed to shift from conversational questionnaire to GPS survey. Integration of both historical questionnaire data to GPS survey and visualizing them are very important to evaluate chronological trip changes with socio-economic and environmental events. The objectives of this paper are to: (a) visualize questionnaire-based person trip data, (b) compare the errors between questionnaire and GPS data sets with respect to sex and age and (c) assess the trip behaviour in time-series. Totally, 345 individual respondents were selected through random stratification to assess person trip using a questionnaire and GPS survey for each. Conversion of trip information such as a destination from the questionnaires was conducted by using GIS. The results show that errors between the two data sets in the number of trips, total trip distance and total trip duration are 25.5%, 33.2% and 37.2%, respectively. The smaller errors are found among working-age females mainly employed with the project-related activities generated by foreign investment. The trip distant was yearly increased. The study concluded that visualization of questionnaire-based person trip data and integrating them to current quantitative measurements are very useful to explore historical trip changes and understand impacts from socio-economic events.

  3. Cross-population validation of statistical distance as a measure of physiological dysregulation during aging.

    Science.gov (United States)

    Cohen, Alan A; Milot, Emmanuel; Li, Qing; Legault, Véronique; Fried, Linda P; Ferrucci, Luigi

    2014-09-01

    Measuring physiological dysregulation during aging could be a key tool both to understand underlying aging mechanisms and to predict clinical outcomes in patients. However, most existing indices are either circular or hard to interpret biologically. Recently, we showed that statistical distance of 14 common blood biomarkers (a measure of how strange an individual's biomarker profile is) was associated with age and mortality in the WHAS II data set, validating its use as a measure of physiological dysregulation. Here, we extend the analyses to other data sets (WHAS I and InCHIANTI) to assess the stability of the measure across populations. We found that the statistical criteria used to determine the original 14 biomarkers produced diverging results across populations; in other words, had we started with a different data set, we would have chosen a different set of markers. Nonetheless, the same 14 markers (or the subset of 12 available for InCHIANTI) produced highly similar predictions of age and mortality. We include analyses of all combinatorial subsets of the markers and show that results do not depend much on biomarker choice or data set, but that more markers produce a stronger signal. We conclude that statistical distance as a measure of physiological dysregulation is stable across populations in Europe and North America. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Quantitative mixture fraction measurements in combustion system via laser induced breakdown spectroscopy

    KAUST Repository

    Mansour, Mohy S.; Imam, Hisham; Elsayed, Khaled A.; Elbaz, Ayman M.; Abbass, Wafaa

    2015-01-01

    Laser induced breakdown spectroscopy (LIBS) technique has been applied to quantitative mixture fraction measurements in flames. The measured spectra of different mixtures of natural gas and air are used to obtain the calibration parameters for local

  5. Representing distance, consuming distance

    DEFF Research Database (Denmark)

    Larsen, Gunvor Riber

    Title: Representing Distance, Consuming Distance Abstract: Distance is a condition for corporeal and virtual mobilities, for desired and actual travel, but yet it has received relatively little attention as a theoretical entity in its own right. Understandings of and assumptions about distance...... are being consumed in the contemporary society, in the same way as places, media, cultures and status are being consumed (Urry 1995, Featherstone 2007). An exploration of distance and its representations through contemporary consumption theory could expose what role distance plays in forming...

  6. Detecting Genetic Interactions for Quantitative Traits Using m-Spacing Entropy Measure

    Directory of Open Access Journals (Sweden)

    Jaeyong Yee

    2015-01-01

    Full Text Available A number of statistical methods for detecting gene-gene interactions have been developed in genetic association studies with binary traits. However, many phenotype measures are intrinsically quantitative and categorizing continuous traits may not always be straightforward and meaningful. Association of gene-gene interactions with an observed distribution of such phenotypes needs to be investigated directly without categorization. Information gain based on entropy measure has previously been successful in identifying genetic associations with binary traits. We extend the usefulness of this information gain by proposing a nonparametric evaluation method of conditional entropy of a quantitative phenotype associated with a given genotype. Hence, the information gain can be obtained for any phenotype distribution. Because any functional form, such as Gaussian, is not assumed for the entire distribution of a trait or a given genotype, this method is expected to be robust enough to be applied to any phenotypic association data. Here, we show its use to successfully identify the main effect, as well as the genetic interactions, associated with a quantitative trait.

  7. Fundamental tests and measures of the structure of matter at short distances

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1981-07-01

    Recent progress in gauge field theories has led to a new perspective on the structure of matter and basic interactions at short distances. It is clear that at very high energies quantum electrodynamics, together with the weak and strong interactions, are part of a unified theory with new fundamental constants, new symmetries, and new conservation laws. A non-technical introduction to these topics is given, with emphasis on fundamental tests and measurements. 21 references

  8. Quantitative computed tomography measures of emphysema and airway wall thickness are related to respiratory symptoms

    DEFF Research Database (Denmark)

    Grydeland, Thomas B; Dirksen, Asger; Coxson, Harvey O

    2010-01-01

    There is limited knowledge about the relationship between respiratory symptoms and quantitative high-resolution computed tomography measures of emphysema and airway wall thickness.......There is limited knowledge about the relationship between respiratory symptoms and quantitative high-resolution computed tomography measures of emphysema and airway wall thickness....

  9. [Cholinesterases in total blood measured with a semiquantitative technique, and plasma or erythrocyte cholinesterases measured with quantitative techniques].

    Science.gov (United States)

    Carmona-Fonseca, Jaime

    2007-06-01

    An equivalence model which allows comparison of blood cholinesterase values, measured by Lovibond (semiquantitative technique), and Michel, EQM, Monotest (erythrocyte and plasma cholinesterases) values measured by quantitative techniques is required. The performance of Lovibond (Edson tintometric and Limperos & Ranta techniques) were compared with quantitative techniques. The experimental design was descriptive, cross-sectional, and prospective. From a working population (18-59 years) in Valle de Aburrá and Near East of Antioquia. 827 representative samples were chosen for their lack of exposure to cholinesterase-inhibiting plaguicides and affiliated to the Social Security System. (1) 827 workers were classified by Lovibond in four categories: 821 values with 75% of cholinesterase activity or greater (categories 75, 87.5 and 100%) and 6 with cholinesterase activity smaller than 75%. (2) With each quantitative method, the mean values of erythrocyte and plasmatic cholinesterase corresponding to the four values obtained with Lovibond were statistically different to each other. (3) The mean values of each quantitative technique increased when increased the tintometric method value. (4) Lovibond classified the low enzymatic erythrocyte activity very poorly (61-73%), but the classification of the low enzymatic plasma activity was almost completely in error (94-96%). The values of erythrocyte or plasma cholinesterase were adequately estimated by both the quantitative techniques of Michel and EQM and by Lovibond, but only when the enzymatic activity is normal. Lovibond, however, had a poor capacity to designate as "low" the values that were low according to the quantitative tests.

  10. Agreement between intraoperative measurements and optical coherence tomography of the limbus-insertion distance of the extraocular muscles.

    Science.gov (United States)

    de-Pablo-Gómez-de-Liaño, L; Fernández-Vigo, J I; Ventura-Abreu, N; Morales-Fernández, L; García-Feijóo, J; Gómez-de-Liaño, R

    2016-12-01

    To assess the agreement between intraoperative measurements of the limbus-insertion distance of the extraocular muscles with those measured by spectral domain optical coherence tomography. An analysis was made of a total of 67 muscles of 21 patients with strabismus. The limbus-insertion distance of the horizontal rectus muscles were measured using pre-operative SD-OCT and intra-operatively in 2 ways: 1) direct, after a conjunctival dissection in patients who underwent surgery, or 2) transconjunctival in patients who were treated with botulinum toxin, or in those who were not going to be operated. The intraclass correlation coefficient and Bland-Altman plots were calculated to determine the concordance between the 2 methods. The mean age was 45.9 ±20.9 years (range 16 to 85), with 52% being women. The percentage of identification by direct intraoperative measurement was 95.6% (22/23), by transconjunctival intraoperative measurement 90.9% (40/44), and by OCT 85% (57/67), with 22 muscles finally being analysed for the agreement study between direct intraoperative measurement and OCT measurements, and 35 muscles for the agreement between transconjuctival intraoperative measurement and OCT. The intraclass correlation coefficient showed good agreement with OCT and direct intraoperative measurements (0.931; 95% confidence interval (95% CI): 0.839-0.972; P<.001), and with transconjunctival intraoperative measurements (0.889; 95% CI: 0.790-0.942; P<.001). The SD-OCT is an effective technique to measure the distance from the insertion of the horizontal rectus muscles to the limbus, with a high agreement with intraoperative measurements being demonstrated. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Practical quantitative measures of ALARA

    International Nuclear Information System (INIS)

    Kathren, R.L.; Larson, H.V.

    1982-06-01

    Twenty specific quantitative measures to assist in evaluating the effectiveness of as low as reasonably achievable (ALARA) programs are described along with their applicability, practicality, advantages, disadvantages, and potential for misinterpretation or dortion. Although no single index or combination of indices is suitable for all facilities, generally, these five: (1) mean individual dose equivalent (MIDE) to the total body from penetrating radiations; (2) statistical distribution of MIDE to the whole body from penetrating radiations; (3) cumulative penetrating whole body dose equivalent; (4) MIDE evaluated by job classification; and (5) MIDE evaluated by work location-apply to most programs. Evaluation of other programs may require other specific dose equivalent based indices, including extremity exposure data, cumulative dose equivalent to organs or to the general population, and nonpenetrating radiation dose equivalents. Certain nondose equivalent indices, such as the size of the radiation or contamination area, may also be used; an airborne activity index based on air concentration, room volume, and radiotoxicity is developed for application in some ALARA programs

  12. Quantitative Comparison of Tolerance-Based Feature Transforms

    OpenAIRE

    Reniers, Dennie; Telea, Alexandru

    2006-01-01

    Tolerance-based feature transforms (TFTs) assign to each pixel in an image not only the nearest feature pixels on the boundary (origins), but all origins from the minimum distance up to a user-defined tolerance. In this paper, we compare four simple-to-implement methods for computing TFTs for binary images. Of these, two are novel methods and two extend existing distance transform algorithms. We quantitatively and qualitatively compare all algorithms on speed and accuracy of both distance and...

  13. Challenge in Enhancing the Teaching and Learning of Variable Measurements in Quantitative Research

    Science.gov (United States)

    Kee, Chang Peng; Osman, Kamisah; Ahmad, Fauziah

    2013-01-01

    Statistical analysis is one component that cannot be avoided in a quantitative research. Initial observations noted that students in higher education institution faced difficulty analysing quantitative data which were attributed to the confusions of various variable measurements. This paper aims to compare the outcomes of two approaches applied in…

  14. Quantitative lymphoscintigraphy in post-mastectomy lymphedema: correlation with circumferential measurements

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joon Young; Lee, Kyung Han; Kim, Sang Eun; Kim, Byung Tae; Hwang, Jee Hea; Lee, Byung Boong [Samsung Medical Center, Seoul (Korea, Republic of)

    1997-07-01

    An objective measure for the severity and progression is important for the management of lymphedema. To evaluate the usefulness of lympho-scintigraphy in this regard, we compared various quantitative indices from upper extremity lymphoscintigraphy with circumferential measurements, before and after physiotheraphy. Upper extremity lymphoscintigraphy was performed in 38 patients with unilateral postmastectomy lymphedema. Tc-99m antimony sulfide colloid (37 MBq) was injected s.c. into the second and third interdigital spaces. The injection sites were imaged immediately after injection. After standardized exercise for 15 min, upper extremity images were acquired 30 min, 1 hr and 2 hr after injection. The clearance of the injection site (CL), and % uptake in regional lymph nodes (%LN) and soft tissue of the extremity (i.e., the degree of dermal backflow) (%EXT) compared to the initial injection site were calculated. Circumference of each extremity was measured at 7 levels; the severity of lymphedema was expressed as the percentage difference of total circumferential difference (TCD) between healthy and edematous extremities compared to the total circumference of healthy extremity (%TCD). In 19 patients who received physiotherapy, the therapeutic effect was measured by % decrease of TCD (%DTCD) before and after therapy (Raines. et al., 1977). The quantitative indices calculated in the image at 2 hr p.i. had better correlation with either %TCD or %DTCD than those from earlier images (Table). The CL, %LN and %EXT of edematous extremity had a significant correlation with TCD. The %EXT was correlated best with either TCD or %DTCD. The results suggest that the %EXT which corresponds to the degree of dermal backflow may be a simple and useful quantitative index for evaluating the severity and progression in lymphedema and predicting the effect of therapy.

  15. Quantitative lymphoscintigraphy in post-mastectomy lymphedema: correlation with circumferential measurements

    International Nuclear Information System (INIS)

    Choi, Joon Young; Lee, Kyung Han; Kim, Sang Eun; Kim, Byung Tae; Hwang, Jee Hea; Lee, Byung Boong

    1997-01-01

    An objective measure for the severity and progression is important for the management of lymphedema. To evaluate the usefulness of lympho-scintigraphy in this regard, we compared various quantitative indices from upper extremity lymphoscintigraphy with circumferential measurements, before and after physiotheraphy. Upper extremity lymphoscintigraphy was performed in 38 patients with unilateral postmastectomy lymphedema. Tc-99m antimony sulfide colloid (37 MBq) was injected s.c. into the second and third interdigital spaces. The injection sites were imaged immediately after injection. After standardized exercise for 15 min, upper extremity images were acquired 30 min, 1 hr and 2 hr after injection. The clearance of the injection site (CL), and % uptake in regional lymph nodes (%LN) and soft tissue of the extremity (i.e., the degree of dermal backflow) (%EXT) compared to the initial injection site were calculated. Circumference of each extremity was measured at 7 levels; the severity of lymphedema was expressed as the percentage difference of total circumferential difference (TCD) between healthy and edematous extremities compared to the total circumference of healthy extremity (%TCD). In 19 patients who received physiotherapy, the therapeutic effect was measured by % decrease of TCD (%DTCD) before and after therapy (Raines. et al., 1977). The quantitative indices calculated in the image at 2 hr p.i. had better correlation with either %TCD or %DTCD than those from earlier images (Table). The CL, %LN and %EXT of edematous extremity had a significant correlation with TCD. The %EXT was correlated best with either TCD or %DTCD. The results suggest that the %EXT which corresponds to the degree of dermal backflow may be a simple and useful quantitative index for evaluating the severity and progression in lymphedema and predicting the effect of therapy

  16. Measuring distance through dense weighted networks: The case of hospital-associated pathogens.

    Directory of Open Access Journals (Sweden)

    Tjibbe Donker

    2017-08-01

    Full Text Available Hospital networks, formed by patients visiting multiple hospitals, affect the spread of hospital-associated infections, resulting in differences in risks for hospitals depending on their network position. These networks are increasingly used to inform strategies to prevent and control the spread of hospital-associated pathogens. However, many studies only consider patients that are received directly from the initial hospital, without considering the effect of indirect trajectories through the network. We determine the optimal way to measure the distance between hospitals within the network, by reconstructing the English hospital network based on shared patients in 2014-2015, and simulating the spread of a hospital-associated pathogen between hospitals, taking into consideration that each intermediate hospital conveys a delay in the further spread of the pathogen. While the risk of transferring a hospital-associated pathogen between directly neighbouring hospitals is a direct reflection of the number of shared patients, the distance between two hospitals far-away in the network is determined largely by the number of intermediate hospitals in the network. Because the network is dense, most long distance transmission chains in fact involve only few intermediate steps, spreading along the many weak links. The dense connectivity of hospital networks, together with a strong regional structure, causes hospital-associated pathogens to spread from the initial outbreak in a two-step process: first, the directly surrounding hospitals are affected through the strong connections, second all other hospitals receive introductions through the multitude of weaker links. Although the strong connections matter for local spread, weak links in the network can offer ideal routes for hospital-associated pathogens to travel further faster. This hold important implications for infection prevention and control efforts: if a local outbreak is not controlled in time

  17. The distances of the Galactic Novae

    Science.gov (United States)

    Ozdonmez, Aykut; Guver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-07-01

    Using location of the RC stars on the CMDs obtained from the UKIDSS, VISTA and 2MASS photometry, we have derived the reddening-distance relations towards each Galactic nova for which at least one independent reddening measurement exists. We were able to determine the distances of 72 Galactic novae and set lower limits on the distances of 45 systems. The reddening curves of the systems are presented. These curves can be also used to estimate reddening or the distance of any source, whose location is close to the position of the nova in our sample. The distance measurement method in our study can be easily applicable to any source, especially for ones that concentrated along the Galactic plane.

  18. An improved fast neutron radiography quantitative measurement method

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito; Hibiki, Takashi; Mishima, Kaichiro; Yoshii, Koji; Okamoto, Koji

    2004-01-01

    The validity of a fast neutron radiography quantification method, the Σ-scaling method, which was originally proposed for thermal neutron radiography was examined with Monte Carlo calculations and experiments conducted at the YAYOI fast neutron source reactor. Water and copper were selected as comparative samples for a thermal neutron radiography case and a dense object, respectively. Although different characteristics on effective macroscopic cross-sections were implied by the simulation, the Σ-scaled experimental results with the fission neutron spectrum cross-sections were well fitted to the measurements for both the water and copper samples. This indicates that the Σ-scaling method could be successfully adopted for quantitative measurements in fast neutron radiography

  19. Heterodyne laser Doppler distance sensor with phase coding measuring stationary as well as laterally and axially moving objects

    International Nuclear Information System (INIS)

    Pfister, T; Günther, P; Nöthen, M; Czarske, J

    2010-01-01

    Both in production engineering and process control, multidirectional displacements, deformations and vibrations of moving or rotating components have to be measured dynamically, contactlessly and with high precision. Optical sensors would be predestined for this task, but their measurement rate is often fundamentally limited. Furthermore, almost all conventional sensors measure only one measurand, i.e. either out-of-plane or in-plane distance or velocity. To solve this problem, we present a novel phase coded heterodyne laser Doppler distance sensor (PH-LDDS), which is able to determine out-of-plane (axial) position and in-plane (lateral) velocity of rough solid-state objects simultaneously and independently with a single sensor. Due to the applied heterodyne technique, stationary or purely axially moving objects can also be measured. In addition, it is shown theoretically as well as experimentally that this sensor offers concurrently high temporal resolution and high position resolution since its position uncertainty is in principle independent of the lateral object velocity in contrast to conventional distance sensors. This is a unique feature of the PH-LDDS enabling precise and dynamic position and shape measurements also of fast moving objects. With an optimized sensor setup, an average position resolution of 240 nm was obtained

  20. New possibilities for quantitative measurements of regional cerebral blood flow with Au-195 m

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1984-01-01

    A previously reported theory for quantitative cerebral blood flow measurement for nondiffusible radiotracers has been applied on patients after stroke and an volunteers undergoing a mental stimulation exercise. Quantitative measurements of cerebral blood flow patterns not only in p-a. but also in lateral views of the brain are possible by the use of the recently developed generator for the short lived (30 sec) isotope Au-195 m. The energy spectrum of the eluate of the generator shows two strong photon peaks, one at an energy level of 68 KeV and a second at an energy-level of 262 KeV. The low energy peak is suitable for perfusion studies in lateral views of the hemispheres, no ''look through'' effect is seen. The high energy level is good for studies in p-a-positions. The studies last less than 1 minute and can be repeated after 3 minutes. Parametric images for quantitative regional cerebral blood flow can be generated. The area of occluded vessels in the case of stroke can be detected. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. The results prove that not only with freely diffusible indicators like Xenon but also with nondiffusible indicators it is possible to measure quantitatively cerebral blood flow patterns. (orig.)

  1. Correcting for variable laser-target distances of laser-induced breakdown spectroscopy measurements with ChemCam using emission lines of Martian dust spectra

    Energy Technology Data Exchange (ETDEWEB)

    Melikechi, N.; Mezzacappa, A. [Optical Science Center for Applied Research, Delaware State University, Dover, DE (United States); Cousin, A.; Lanza, N.L. [Los Alamos National Laboratory, Los Alamos, NM (United States); Lasue, J. [Institut de Recherche en Astophysique et Planetologie (IRAP), Universite' Paul Sabatier, Toulouse (France); Clegg, S.M. [Los Alamos National Laboratory, Los Alamos, NM (United States); Berger, G. [Institut de Recherche en Astophysique et Planetologie (IRAP), Universite' Paul Sabatier, Toulouse (France); Wiens, R.C. [Los Alamos National Laboratory, Los Alamos, NM (United States); Maurice, S. [Institut de Recherche en Astophysique et Planetologie (IRAP), Universite' Paul Sabatier, Toulouse (France); Tokar, R.L.; Bender, S. [Planetary Science Institute, Flagstaff, AZ (United States); Forni, O. [Institut de Recherche en Astophysique et Planetologie (IRAP), Universite' Paul Sabatier, Toulouse (France); Breves, E.A.; Dyar, M.D. [Dept. of Astronomy, Mount Holyoke College, South Hadley, MA (United States); Frydenvang, J. [The Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Delapp, D. [Los Alamos National Laboratory, Los Alamos, NM (United States); Gasnault, O. [Institut de Recherche en Astophysique et Planetologie (IRAP), Universite' Paul Sabatier, Toulouse (France); Newsom, H.; Ollila, A.M. [Earth and Planetary Sciences, University of New Mexico, Alburquerque, NM (United States); Lewin, E. [Institut des Sciences de la Terre, Universite Grenoble l-CNRS, Grenoble (France); and others

    2014-06-01

    As part of the Mars Science Laboratory, the ChemCam instrument acquires remote laser induced breakdown spectra at distances that vary between 1.56 m and 7 m. This variation in distance affects the intensities of the measured LIBS emission lines in non-trivial ways. To determine the behavior of a LIBS emission line with distance, it is necessary to separate the effects of many parameters such as laser energy, laser spot size, target homogeneity, and optical collection efficiency. These parameters may be controlled in a laboratory on Earth but for field applications or in space this is a challenge. In this paper, we show that carefully selected ChemCam LIBS emission lines acquired from the Martian dust can be used to build an internal proxy spectroscopic standard. This in turn, allows for a direct measurement of the effects of the distance of various LIBS emission lines and hence can be used to correct ChemCam LIBS spectra for distance variations. When tested on pre-launch LIBS calibration data acquired under Martian-like conditions and with controlled and well-calibrated targets, this approach yields much improved agreement between targets observed at various distances. This work lays the foundation for future implementation of automated routines to correct ChemCam spectra for differences caused by variable distance. - Highlights: • Selected Martian dust emission lines are used to correct for variable laser-target distances. • The correction model yields improved agreement between targets observed at various distances. • The impact of the model reduces the bias between predicted and actual compositions by as much as 70%. • When implemented, the model will yield spectral corrections for various ChemCam measurements. • This work is a foundation to perform novel stand-off LIBS measurements on Earth and other planets.

  2. Tracking frequency laser distance gauge

    International Nuclear Information System (INIS)

    Phillips, J.D.; Reasenberg, R.D.

    2005-01-01

    Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require laser distance gauges of substantially improved performance. We describe a laser gauge, based on Pound-Drever-Hall locking, in which the optical frequency is adjusted to maintain an interferometer's null condition. This technique has been demonstrated with pm performance. Automatic fringe hopping allows it to track arbitrary distance changes. The instrument is intrinsically free of the nm-scale cyclic bias present in traditional (heterodyne) high-precision laser gauges. The output is a radio frequency, readily measured to sufficient accuracy. The laser gauge has operated in a resonant cavity, which improves precision, can suppress the effects of misalignments, and makes possible precise automatic alignment. The measurement of absolute distance requires little or no additional hardware, and has also been demonstrated. The proof-of-concept version, based on a stabilized HeNe laser and operating on a 0.5 m path, has achieved 10 pm precision with 0.1 s integration time, and 0.1 mm absolute distance accuracy. This version has also followed substantial distance changes as fast as 16 mm/s. We show that, if the precision in optical frequency is a fixed fraction of the linewidth, both incremental and absolute distance precision are independent of the distance measured. We discuss systematic error sources, and present plans for a new version of the gauge based on semiconductor lasers and fiber-coupled components

  3. Measurements of anterior chamber depth, white-to-white distance, anterior chamber angle, and pupil diameter using two Scheimpflug imaging devices

    Directory of Open Access Journals (Sweden)

    Alberto Domínguez-Vicent

    2014-08-01

    Full Text Available Purpose: To compare the ocular anterior chamber depth, white-to-white distance, anterior chamber angle, and pupil diameter, as measured with two different Scheimpflug imaging devices. Methods: This transversal study included 80 right eyes from 80 subjects aged from 20 to 40 years. Their spherical equivalents ranged from -4.25 to +1.00 diopters (D. Each eye's anterior chamber depth, white-to-white distance, anterior chamber angle, and pupil diameter, were measured for far vision using both the Galilei G4 (double Scheimpflug camera and the Pentacam HR (single Scheimpflug camera systems. Results: Mean anterior chamber depths were calculated as 3.12 ± 0.23 mm and 3.19 ± 0.24 mm when measured with the Galilei G4 and the Pentacam HR, respectively. The mean white-to-white distance measured was 11.84 ± 0.31 mm and 11.90 ± 0.43 mm when measured with the Galilei G4 and the Pentacam HR, respectively. Mean pupil diameters were measured as 3.22 ± 0.58 mm and 3.22 ± 0.52 mm when measured with the Galilei G4 and the Pentacam HR, respectively. Finally, the mean anterior chamber angle was 34.30 ± 2.86 degrees when it was measured with the Galilei G4, and 39.26 ± 2.85 degrees when measured with the Pentacam HR. A comparative analysis revealed that the Galilei G4 yielded a significantly lower (P0.05 for both devices were obtained for the white-to-white distance measurements. Conclusion: The Galilei G4 and Pentacam HR Scheimpflug systems cannot be used interchangeably because they produce significant measurement differences.

  4. Quantitative measurement of maritime sediment movement using radioactive tracers

    International Nuclear Information System (INIS)

    Makovski, E.; Grissener, G.

    1967-01-01

    The quantitative method described in the paper involves burying appropriate detectors over a given area of the sea bottom, the detectors being connected to recording equipment which is itself buried in the sediment or situated on the shore. Detectors arranged in this way are covered by a certain layer of radioactive sediment whose activity is proportional to its mass. Before the labelled sediments are removed, their initial activity is measured, and then, as the covering is removed, measurements are made of the gradual decrease in activity corresponding to loss of the surface layer of the bottom deposit area under investigation, expressed in g/cm 2 . The tracers used in the investigations discussed were natural ones such as sea with 31 Si and artificial ones such as activated fragments of sodium glass (with a 6.5% admixture of Fe 2 O 3 ) with 24 Na . The proportional dependence of activity on mass has been confirmed for both tracers; this is an essential point for a tracer intended for quantitative measurements. This proportionality is very well maintained if a sample of highly active sediment is introduced into a large mass of inactive sediments (10 -2 - 10 -3 ). The concluding section describes the advantages of this method as a possible way of using radioisotopes with a short half-life and a low total activity of the order of a few millicuries. (author)

  5. Distribution of distances between DNA barcode labels in nanochannels close to the persistence length

    Science.gov (United States)

    Reinhart, Wesley F.; Reifenberger, Jeff G.; Gupta, Damini; Muralidhar, Abhiram; Sheats, Julian; Cao, Han; Dorfman, Kevin D.

    2015-02-01

    We obtained experimental extension data for barcoded E. coli genomic DNA molecules confined in nanochannels from 40 nm to 51 nm in width. The resulting data set consists of 1 627 779 measurements of the distance between fluorescent probes on 25 407 individual molecules. The probability density for the extension between labels is negatively skewed, and the magnitude of the skewness is relatively insensitive to the distance between labels. The two Odijk theories for DNA confinement bracket the mean extension and its variance, consistent with the scaling arguments underlying the theories. We also find that a harmonic approximation to the free energy, obtained directly from the probability density for the distance between barcode labels, leads to substantial quantitative error in the variance of the extension data. These results suggest that a theory for DNA confinement in such channels must account for the anharmonic nature of the free energy as a function of chain extension.

  6. Reliability of reference distances used in photogrammetry.

    Science.gov (United States)

    Aksu, Muge; Kaya, Demet; Kocadereli, Ilken

    2010-07-01

    To determine the reliability of the reference distances used for photogrammetric assessment. The sample consisted of 100 subjects with mean ages of 22.97 +/- 2.98 years. Five lateral and four frontal parameters were measured directly on the subjects' faces. For photogrammetric assessment, two reference distances for the profile view and three reference distances for the frontal view were established. Standardized photographs were taken and all the parameters that had been measured directly on the face were measured on the photographs. The reliability of the reference distances was checked by comparing direct and indirect values of the parameters obtained from the subjects' faces and photographs. Repeated measure analysis of variance (ANOVA) and Bland-Altman analyses were used for statistical assessment. For profile measurements, the indirect values measured were statistically different from the direct values except for Sn-Sto in male subjects and Prn-Sn and Sn-Sto in female subjects. The indirect values of Prn-Sn and Sn-Sto were reliable in both sexes. The poorest results were obtained in the indirect values of the N-Sn parameter for female subjects and the Sn-Me parameter for male subjects according to the Sa-Sba reference distance. For frontal measurements, the indirect values were statistically different from the direct values in both sexes except for one in male subjects. The indirect values measured were not statistically different from the direct values for Go-Go. The indirect values of Ch-Ch were reliable in male subjects. The poorest results were obtained according to the P-P reference distance. For profile assessment, the T-Ex reference distance was reliable for Prn-Sn and Sn-Sto in both sexes. For frontal assessment, Ex-Ex and En-En reference distances were reliable for Ch-Ch in male subjects.

  7. Measuring teamwork in primary care: Triangulation of qualitative and quantitative data.

    Science.gov (United States)

    Brown, Judith Belle; Ryan, Bridget L; Thorpe, Cathy; Markle, Emma K R; Hutchison, Brian; Glazier, Richard H

    2015-09-01

    This article describes the triangulation of qualitative dimensions, reflecting high functioning teams, with the results of standardized teamwork measures. The study used a mixed methods design using qualitative and quantitative approaches to assess teamwork in 19 Family Health Teams in Ontario, Canada. This article describes dimensions from the qualitative phase using grounded theory to explore the issues and challenges to teamwork. Two quantitative measures were used in the study, the Team Climate Inventory (TCI) and the Providing Effective Resources and Knowledge (PERK) scale. For the triangulation analysis, the mean scores of these measures were compared with the qualitatively derived ratings for the dimensions. The final sample for the qualitative component was 107 participants. The qualitative analysis identified 9 dimensions related to high team functioning such as common philosophy, scope of practice, conflict resolution, change management, leadership, and team evolution. From these dimensions, teams were categorized numerically as high, moderate, or low functioning. Three hundred seventeen team members completed the survey measures. Mean site scores for the TCI and PERK were 3.87 and 3.88, respectively (of 5). The TCI was associated will all dimensions except for team location, space allocation, and executive director leadership. The PERK was associated with all dimensions except team location. Data triangulation provided qualitative and quantitative evidence of what constitutes teamwork. Leadership was pivotal in forging a common philosophy and encouraging team collaboration. Teams used conflict resolution strategies and adapted to the changes they encountered. These dimensions advanced the team's evolution toward a high functioning team. (c) 2015 APA, all rights reserved).

  8. Effect of Voltage Measurement on the Quantitative Identification of Transverse Cracks by Electrical Measurements

    KAUST Repository

    Selvakumaran, Lakshmi

    2016-03-24

    Electrical tomography can be used as a structural health monitoring technique to identify different damage mechanisms in composite laminates. Previous work has established the link between transverse cracking density and mesoscale conductivity of the ply. Through the mesoscale relationship, the conductivity obtained from electrical tomography can be used as a measure of the transverse cracking density. Interpretation of this measure will be accurate provided the assumptions made during homogenization are valid. One main assumption of mesoscale homogenization is that the electric field is in the plane. Here, we test the validity of this assumption for laminates with varying anisotropy ratios and for different distances between the cracked ply and surface that is instrumented with electrodes. We also show the equivalence in electrical response between measurements from cracked laminates and their equivalent mesoscale counterparts. Finally, we propose some general guidelines on the measurement strategy for maximizing the accuracy of transverse cracks identification.

  9. Measuring the e-Learning Autonomy of Distance Education Students

    Directory of Open Access Journals (Sweden)

    Mehmet Firat

    2016-08-01

    Full Text Available Previous studies have provided evidence that learner autonomy is an important factor in academic achievement. However, few studies have investigated the autonomy of distance education students in e-learning environments. The purpose of this study is to evaluate the e-learning autonomy of distance education students who are responsible for their own learning. For this purpose, as the first step of the study, an e-learning autonomy scale was developed. Analyses of the validity and reliability of the scale were carried out with the participation of 1,152 distance education students from Anadolu University, Open Education System. The scale has an internal consistency coefficient of α = 0.952 and a single factorial model that explains 66.58% of the total variance. The scale was implemented with 3,293 students from 42 different programs. According to the findings, student autonomy in e-learning environments is directly proportional to level of ICT use but not affected by program or gender.

  10. Quantitative sub-surface and non-contact imaging using scanning microwave microscopy

    International Nuclear Information System (INIS)

    Gramse, Georg; Kasper, Manuel; Hinterdorfer, Peter; Brinciotti, Enrico; Rankl, Christian; Kienberger, Ferry; Lucibello, Andrea; Marcelli, Romolo; Patil, Samadhan B.; Giridharagopal, Rajiv

    2015-01-01

    The capability of scanning microwave microscopy for calibrated sub-surface and non-contact capacitance imaging of silicon (Si) samples is quantitatively studied at broadband frequencies ranging from 1 to 20 GHz. Calibrated capacitance images of flat Si test samples with varying dopant density (10 15 –10 19 atoms cm −3 ) and covered with dielectric thin films of SiO 2 (100–400 nm thickness) are measured to demonstrate the sensitivity of scanning microwave microscopy (SMM) for sub-surface imaging. Using standard SMM imaging conditions the dopant areas could still be sensed under a 400 nm thick oxide layer. Non-contact SMM imaging in lift-mode and constant height mode is quantitatively demonstrated on a 50 nm thick SiO 2 test pad. The differences between non-contact and contact mode capacitances are studied with respect to the main parameters influencing the imaging contrast, namely the probe tip diameter and the tip–sample distance. Finite element modelling was used to further analyse the influence of the tip radius and the tip–sample distance on the SMM sensitivity. The understanding of how the two key parameters determine the SMM sensitivity and quantitative capacitances represents an important step towards its routine application for non-contact and sub-surface imaging. (paper)

  11. Repeated stimulation, inter-stimulus interval and inter-electrode distance alters muscle contractile properties as measured by Tensiomyography

    Science.gov (United States)

    Johnson, Mark I.; Francis, Peter

    2018-01-01

    Context The influence of methodological parameters on the measurement of muscle contractile properties using Tensiomyography (TMG) has not been published. Objective To investigate the; (1) reliability of stimulus amplitude needed to elicit maximum muscle displacement (Dm), (2) effect of changing inter-stimulus interval on Dm (using a fixed stimulus amplitude) and contraction time (Tc), (3) the effect of changing inter-electrode distance on Dm and Tc. Design Within subject, repeated measures. Participants 10 participants for each objective. Main outcome measures Dm and Tc of the rectus femoris, measured using TMG. Results The coefficient of variance (CV) and the intra-class correlation (ICC) of stimulus amplitude needed to elicit maximum Dm was 5.7% and 0.92 respectively. Dm was higher when using an inter-electrode distance of 7cm compared to 5cm [P = 0.03] and when using an inter-stimulus interval of 10s compared to 30s [P = 0.017]. Further analysis of inter-stimulus interval data, found that during 10 repeated stimuli Tc became faster after the 5th measure when compared to the second measure [P<0.05]. The 30s inter-stimulus interval produced the most stable Tc over 10 measures compared to 10s and 5s respectively. Conclusion Our data suggest that the stimulus amplitude producing maximum Dm of the rectus femoris is reliable. Inter-electrode distance and inter-stimulus interval can significantly influence Dm and/ or Tc. Our results support the use of a 30s inter-stimulus interval over 10s or 5s. Future studies should determine the influence of methodological parameters on muscle contractile properties in a range of muscles. PMID:29451885

  12. Technique for long and absolute distance measurement based on laser pulse repetition frequency sweeping

    Science.gov (United States)

    Castro Alves, D.; Abreu, Manuel; Cabral, A.; Jost, Michael; Rebordão, J. M.

    2017-11-01

    In this work we present a technique to perform long and absolute distance measurements based on mode-locked diode lasers. Using a Michelson interferometer, it is possible to produce an optical cross-correlation between laser pulses of the reference arm with the pulses from the measurement arm, adjusting externally their degree of overlap either changing the pulse repetition frequency (PRF) or the position of the reference arm mirror for two (or more) fixed frequencies. The correlation of the travelling pulses for precision distance measurements relies on ultra-short pulse durations, as the uncertainty associated to the method is dependent on the laser pulse width as well as on a highly stable PRF. Mode-locked Diode lasers are a very appealing technology for its inherent characteristics, associated to compactness, size and efficiency, constituting a positive trade-off with regard to other mode-locked laser sources. Nevertheless, main current drawback is the non-availability of frequency-stable laser diodes. The laser used is a monolithic mode-locked semiconductor quantum-dot (QD) laser. The laser PRF is locked to an external stabilized RF reference. In this work we will present some of the preliminary results and discuss the importance of the requirements related to laser PRF stability in the final metrology system accuracy.

  13. NOTE ON TRAVEL TIME SHIFTS DUE TO AMPLITUDE MODULATION IN TIME-DISTANCE HELIOSEISMOLOGY MEASUREMENTS

    International Nuclear Information System (INIS)

    Nigam, R.; Kosovichev, A. G.

    2010-01-01

    Correct interpretation of acoustic travel times measured by time-distance helioseismology is essential to get an accurate understanding of the solar properties that are inferred from them. It has long been observed that sunspots suppress p-mode amplitude, but its implications on travel times have not been fully investigated so far. It has been found in test measurements using a 'masking' procedure, in which the solar Doppler signal in a localized quiet region of the Sun is artificially suppressed by a spatial function, and using numerical simulations that the amplitude modulations in combination with the phase-speed filtering may cause systematic shifts of acoustic travel times. To understand the properties of this procedure, we derive an analytical expression for the cross-covariance of a signal that has been modulated locally by a spatial function that has azimuthal symmetry and then filtered by a phase-speed filter typically used in time-distance helioseismology. Comparing this expression to the Gabor wavelet fitting formula without this effect, we find that there is a shift in the travel times that is introduced by the amplitude modulation. The analytical model presented in this paper can be useful also for interpretation of travel time measurements for the non-uniform distribution of oscillation amplitude due to observational effects.

  14. Relative distance between tracers as a measure of diffusivity within moving aggregates

    Science.gov (United States)

    Pönisch, Wolfram; Zaburdaev, Vasily

    2018-02-01

    Tracking of particles, be it a passive tracer or an actively moving bacterium in the growing bacterial colony, is a powerful technique to probe the physical properties of the environment of the particles. One of the most common measures of particle motion driven by fluctuations and random forces is its diffusivity, which is routinely obtained by measuring the mean squared displacement of the particles. However, often the tracer particles may be moving in a domain or an aggregate which itself experiences some regular or random motion and thus masks the diffusivity of tracers. Here we provide a method for assessing the diffusivity of tracer particles within mobile aggregates by measuring the so-called mean squared relative distance (MSRD) between two tracers. We provide analytical expressions for both the ensemble and time averaged MSRD allowing for direct identification of diffusivities from experimental data.

  15. Accuracy Improvement of Discharge Measurement with Modification of Distance Made Good Heading

    Directory of Open Access Journals (Sweden)

    Jongkook Lee

    2016-01-01

    Full Text Available Remote control boats equipped with an Acoustic Doppler Current Profiler (ADCP are widely accepted and have been welcomed by many hydrologists for water discharge, velocity profile, and bathymetry measurements. The advantages of this technique include high productivity, fast measurements, operator safety, and high accuracy. However, there are concerns about controlling and operating a remote boat to achieve measurement goals, especially during extreme events such as floods. When performing river discharge measurements, the main error source stems from the boat path. Due to the rapid flow in a flood condition, the boat path is not regular and this can cause errors in discharge measurements. Therefore, improvement of discharge measurements requires modification of boat path. As a result, the measurement errors in flood flow conditions are 12.3–21.8% before the modification of boat path, but 1.2–3.7% after the DMG modification of boat path. And it is considered that the modified discharges are very close to the observed discharge in the flood flow conditions. In this study, through the distance made good (DMG modification of the boat path, a comprehensive discharge measurement with high accuracy can be achieved.

  16. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    Science.gov (United States)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  17. Miniature rainbow schlieren deflectometry system for quantitative measurements in microjets and flames

    International Nuclear Information System (INIS)

    Satti, Rajani P.; Kolhe, Pankaj S.; Olcmen, Semih; Agrawal, Ajay K.

    2007-01-01

    Recent interest in small-scale flow devices has created the need for miniature instruments capable of measuring scalar flow properties with high spatial resolution. We present a miniature rainbow schlieren deflectometry system to nonintrusively obtain quantitative species concentration and temperature data across the whole field. The optical layout of the miniature system is similar to that of a macroscale system, although the field of view is smaller by an order of magnitude. Employing achromatic lenses and a CCD array together with a camera lens and extension tubes, we achieved spatial resolution down to 4 μm. Quantitative measurements required a careful evaluation of the optical components. The capability of the system is demonstrated by obtaining concentration measurements in a helium microjet (diameter, d=650 μm) and temperature and concentration measurements in a hydrogen jet diffusion flame from a microinjector(d=50 μm). Further, the flow field of underexpanded nitrogen jets is visualized to reveal details of the shock structures existing downstream of the jet exit

  18. Accurate measurements of E2 lifetimes using the coincidence recoil-distance method

    International Nuclear Information System (INIS)

    Bhalla, R.K.; Poletti, A.R.

    1984-01-01

    Mean lives of four E2 transitions in the (2s, 1d) shell have been measured using the recoil-distance method (RDM). γ-rays de-exciting the level of interest were detected in coincidence with particles detected in an annular detector at a backward angle thereby reducing the background and producing a beam of recoiling nuclei of well-defined energy and recoil direction. Lifetimes measured were: 22 Ne, 1.275 MeV level (2 + -> 0 + ), 5.16 +- 0.13 ps; 26 Mg, 3.588 MeV level (0 + -> 2 + ), 9.29 +- 0.23 ps; 30 Si, 3.788 MeV level (0 + -> 2 + ), 12.00 +- 0.70 ps; 38 Ar, 3.377 MeV level (0 + -> 2 + ), 34.5 +- 1.5 ps. The present measurements are compared to those of previous investigators. For the 22 Ne level, averaged results from four different measurement techniques are compared and found to be in good agreement. The experimental results are compared to shell-model calculations. (orig.)

  19. A quantitative method to measure and evaluate the peelability of shrimps (Pandalus borealis)

    DEFF Research Database (Denmark)

    Gringer, Nina; Dang, Tem Thi; Orlien, Vibeke

    2018-01-01

    A novel, standardized method has been developed in order to provide a quantitative description of shrimp peelability. The peeling process was based on the measure of the strength of the shell-muscle attachment of the shrimp using a texture analyzer, and calculated into the peeling work. The self......-consistent method, insensitive of the shrimp size, was proven valid for assessment of ice maturation of shrimps. The quantitative peeling efficiency (peeling work) and performance (degree of shell removal) showed that the decrease in peeling work correlated with the amount of satisfactory peeled shrimps, indicating...... an effective weakening of the shell-muscle attachment. The developed method provides the industry with a quantitative analysis for measurement of peeling efficiency and peeling performance of shrimps. It may be used for comparing different maturation conditions in relation to optimization of shrimps peeling....

  20. A pneumatic bellows-driven setup for controlled-distance electrochemical impedance measurements of Zircaloy-2 in simulated BWR conditions

    International Nuclear Information System (INIS)

    Arilahti, E.; Bojinov, M.; Hansson-Lyyra, L.

    2004-01-01

    This paper describes a novel pneumatic bellows-driven arrangement designed for controlled distance electrochemistry (CDE) measurements. The feasibility of the new arrangement has been verified by performing contact electric impedance measurements to study corrosion of Zircaloy-2 in a re-circulation loop simulating the BWR conditions. Until now, the measurements have been carried out using a step-motor driven controlled-distance electrochemistry (CDE) arrangement. The electrical and electrochemical properties of the pre transition oxide on Zircaloy-2 determined from these measurements were in good agreement with those estimated from measurements with a step-motor driven CDE. Furthermore, the results indicate that the bellows-driven CDE device is less sensitive to the contact pressure variation than the step-motor driven arrangement. This property combined with the bellows driven displacement mechanism provides a clear advantage for future in-core corrosion studies of fuel cladding materials. (Author)

  1. A quantitative method for measuring the quality of history matches

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, T.S. [Kerr-McGee Corp., Oklahoma City, OK (United States); Knapp, R.M. [Univ. of Oklahoma, Norman, OK (United States)

    1997-08-01

    History matching can be an efficient tool for reservoir characterization. A {open_quotes}good{close_quotes} history matching job can generate reliable reservoir parameters. However, reservoir engineers are often frustrated when they try to select a {open_quotes}better{close_quotes} match from a series of history matching runs. Without a quantitative measurement, it is always difficult to tell the difference between a {open_quotes}good{close_quotes} and a {open_quotes}better{close_quotes} matches. For this reason, we need a quantitative method for testing the quality of matches. This paper presents a method for such a purpose. The method uses three statistical indices to (1) test shape conformity, (2) examine bias errors, and (3) measure magnitude of deviation. The shape conformity test insures that the shape of a simulated curve matches that of a historical curve. Examining bias errors assures that model reservoir parameters have been calibrated to that of a real reservoir. Measuring the magnitude of deviation assures that the difference between the model and the real reservoir parameters is minimized. The method was first tested on a hypothetical model and then applied to published field studies. The results showed that the method can efficiently measure the quality of matches. It also showed that the method can serve as a diagnostic tool for calibrating reservoir parameters during history matching.

  2. Weighing evidence: quantitative measures of the importance of bitemark evidence.

    Science.gov (United States)

    Kittelson, J M; Kieser, J A; Buckingham, D M; Herbison, G P

    2002-12-01

    Quantitative measures of the importance of evidence such as the "likelihood ratio" have become increasingly popular in the courtroom. These measures have been used by expert witnesses formally to describe their certainty about a piece of evidence. These measures are commonly interpreted as the amount by which the evidence should revise the opinion of guilt, and thereby summarize the importance of a particular piece of evidence. Unlike DNA evidence, quantitative measures have not been widely used by forensic dentists to describe their certainty when testifying about bitemark evidence. There is, however, no inherent reason why they should not be used to evaluate bitemarks. The purpose of this paper is to describe the likelihood ratio as it might be applied to bitemark evidence. We use a simple bitemark example to define the likelihood ratio, its application, and interpretation. In particular we describe how the jury interprets the likelihood ratio from a Bayesian perspective when evaluating the impact of the evidence on the odds that the accused is guilty. We describe how the dentist would calculate the likelihood ratio based on frequentist interpretations. We also illustrate some of the limitations of the likelihood ratio, and show how those limitations apply to bitemark evidence. We conclude that the quality of bitemark evidence cannot be adequately summarized by the likelihood ratio, and argue that its application in this setting may be more misleading than helpful.

  3. Characterization of the spatial structure of local functional connectivity using multi-distance average correlation measures.

    Science.gov (United States)

    Macia, Didac; Pujol, Jesus; Blanco-Hinojo, Laura; Martínez-Vilavella, Gerard; Martín-Santos, Rocío; Deus, Joan

    2018-04-24

    There is ample evidence from basic research in neuroscience of the importance of local cortico-cortical networks. Millimetric resolution is achievable with current functional MRI (fMRI) scanners and sequences, and consequently a number of "local" activity similarity measures have been defined to describe patterns of segregation and integration at this spatial scale. We have introduced the use of Iso-Distant local Average Correlation (IDAC), easily defined as the average fMRI temporal correlation of a given voxel with other voxels placed at increasingly separated iso-distant intervals, to characterize the curve of local fMRI signal similarities. IDAC curves can be statistically compared using parametric multivariate statistics. Furthermore, by using RGB color-coding to display jointly IDAC values belonging to three different distance lags, IDAC curves can also be displayed as multi-distance IDAC maps. We applied IDAC analysis to a sample of 41 subjects scanned under two different conditions, a resting state and an auditory-visual continuous stimulation. Multi-distance IDAC mapping was able to discriminate between gross anatomo-functional cortical areas and, moreover, was sensitive to modulation between the two brain conditions in areas known to activate and de-activate during audio-visual tasks. Unlike previous fMRI local similarity measures already in use, our approach draws special attention to the continuous smooth pattern of local functional connectivity.

  4. Quantitative CT measures of emphysema and airway wall thickness are related to D(L)CO

    DEFF Research Database (Denmark)

    Grydeland, Thomas B; Thorsen, Einar; Dirksen, Asger

    2011-01-01

    There is limited knowledge on the relationship between diffusing capacity of the lung for carbon monoxide (D(L)CO) and quantitative computed tomography (CT) measures of emphysema and airway wall thickness.......There is limited knowledge on the relationship between diffusing capacity of the lung for carbon monoxide (D(L)CO) and quantitative computed tomography (CT) measures of emphysema and airway wall thickness....

  5. Quantitative measures of healthy aging and biological age

    Science.gov (United States)

    Kim, Sangkyu; Jazwinski, S. Michal

    2015-01-01

    Numerous genetic and non-genetic factors contribute to aging. To facilitate the study of these factors, various descriptors of biological aging, including ‘successful aging’ and ‘frailty’, have been put forth as integrative functional measures of aging. A separate but related quantitative approach is the ‘frailty index’, which has been operationalized and frequently used. Various frailty indices have been constructed. Although based on different numbers and types of health variables, frailty indices possess several common properties that make them useful across different studies. We have been using a frailty index termed FI34 based on 34 health variables. Like other frailty indices, FI34 increases non-linearly with advancing age and is a better indicator of biological aging than chronological age. FI34 has a substantial genetic basis. Using FI34, we found elevated levels of resting metabolic rate linked to declining health in nonagenarians. Using FI34 as a quantitative phenotype, we have also found a genomic region on chromosome 12 that is associated with healthy aging and longevity. PMID:26005669

  6. Quantitative Measurements using Ultrasound Vector Flow Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2016-01-01

    scanner for pulsating flow mimicking the femoral artery from a CompuFlow 1000 pump (Shelley Medical). Data were used in four estimators based on directional transverse oscillation for velocity, flow angle, volume flow, and turbulence estimation and their respective precisions. An adaptive lag scheme gave...... the ability to estimate a large velocity range, or alternatively measure at two sites to find e.g. stenosis degree in a vessel. The mean angle at the vessel center was estimated to 90.9◦±8.2◦ indicating a laminar flow from a turbulence index being close to zero (0.1 ±0.1). Volume flow was 1.29 ±0.26 mL/stroke...... (true: 1.15 mL/stroke, bias: 12.2%). Measurements down to 160 mm were obtained with a relative standard deviation and bias of less than 10% for the lateral component for stationary, parabolic flow. The method can, thus, find quantitative velocities, angles, and volume flows at sites currently...

  7. Repeated stimulation, inter-stimulus interval and inter-electrode distance alters muscle contractile properties as measured by Tensiomyography.

    Directory of Open Access Journals (Sweden)

    Hannah V Wilson

    Full Text Available The influence of methodological parameters on the measurement of muscle contractile properties using Tensiomyography (TMG has not been published.To investigate the; (1 reliability of stimulus amplitude needed to elicit maximum muscle displacement (Dm, (2 effect of changing inter-stimulus interval on Dm (using a fixed stimulus amplitude and contraction time (Tc, (3 the effect of changing inter-electrode distance on Dm and Tc.Within subject, repeated measures.10 participants for each objective.Dm and Tc of the rectus femoris, measured using TMG.The coefficient of variance (CV and the intra-class correlation (ICC of stimulus amplitude needed to elicit maximum Dm was 5.7% and 0.92 respectively. Dm was higher when using an inter-electrode distance of 7cm compared to 5cm [P = 0.03] and when using an inter-stimulus interval of 10s compared to 30s [P = 0.017]. Further analysis of inter-stimulus interval data, found that during 10 repeated stimuli Tc became faster after the 5th measure when compared to the second measure [P<0.05]. The 30s inter-stimulus interval produced the most stable Tc over 10 measures compared to 10s and 5s respectively.Our data suggest that the stimulus amplitude producing maximum Dm of the rectus femoris is reliable. Inter-electrode distance and inter-stimulus interval can significantly influence Dm and/ or Tc. Our results support the use of a 30s inter-stimulus interval over 10s or 5s. Future studies should determine the influence of methodological parameters on muscle contractile properties in a range of muscles.

  8. Research on in-situ measurement technique of three-dimensional distance

    International Nuclear Information System (INIS)

    Shiraishi, Masatake; Aoshima, Shinichi; Aose, Shinichi; Takeuchi, Masayuki

    2004-04-01

    Equipments used in the nuclear facility must be done the adequate maintenance and should be exchanged to new ones by the remote control. For this aim, we need information about the objects such as a distance, a profile, and an inclination with the required accuracy. The aim of this research is, thus, to establish and equipment exchanging method by controlling the position of equipments and parts. In order to catch the whole position condition of objects, a rough measurement system was developed, and information was obtained from the front side of parts. Then, a precise measurement system that performs local measurement was constructed to obtain the information around the shade portion of the objects, which is not obtainable by the rough measurement system. Therefore, the new system performs two measurements: a rough measurement and a precise measurement. Consequently, it was found to be effective for acquiring a lot of information that are not obtained only by the rough measurement system form the front side only. Before exchanging equipments, we need to know their conditions whether they are still applicable or not. The another point of this research is, therefore, to develop an on-line deterioration diagnosis method of equipments. Specifically, a new approach in which the laser light is projected onto the equipment surface is proposed to check the contrast of the reflection pattern. Because the contrast is corresponding to the condition of the measured surface and therefore we can conjecture the surface states of the object surface by obtaining the contrast. We examined those states empirically by changing the laser angle of incidence and the receiving angle of camera. As a result, the validity of the on-line diagnosis was confirmed through various experiments. Finally, the possibility of applying VR method was discussed as a control of robot manipulator, although this research is on going. (author)

  9. New possibilities for quantitative measurements of regional cerebral blood flow with gold-195m

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1985-01-01

    A previously reported theory for quantitative cerebral blood flow measurement for nondiffusible radiotracers has been applied to patients after stroke and to volunteers undergoing a mental stimulation exercise. The energy spectrum of gold-195m shows two strong photon peaks, one at an energy level of 68 keV and a second at an energy-level of 262 keV. The low energy peak is suitable for perfusion studies in lateral views of the hemispheres; no look-through effect is seen. The high energy level is good for studies in posterior-anterior positions. Parametric images for quantitative regional cerebral blood flow can be generated. The area of occluded vessels in the case of stroke can be detected. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. The results prove that, not only with freely diffusible indicators like xenon but also with nondiffusible indicators, it is possible to measure quantitatively cerebral blood flow patterns

  10. Catharsis – Philosophical and Spiritual Aspects of Long-Distance Running

    Directory of Open Access Journals (Sweden)

    Nemec Marcel

    2016-05-01

    Full Text Available The purpose of the study was to identify and analyze the occurrence of cathartic states in a sample of long-distance runners. Data collected via questionnaires were used to evaluate quantitative variables complemented by heuristics while aiming at qualitatively categorize the areas of cathartic states in the context of philosophical and spiritual aspects of long-distance running. The study findings objectify philosophical and spiritual aspects affecting personalities of long-distance runners. The study findings have shown that catharsis represents a relevant philosophical and spiritual aspect affecting long-distance running. We assume that authentic experience of catharsis and its effects motivates runners to perform regular physical activity. The analysis of philosophical and spiritual aspects of long-distance running has revealed a multi-spectral holistic relevance based on the transfer affecting a specific way of life, spectrum of values, ethical personality traits, and also the quality of long-distance runners’ lives.

  11. Quantitation of chemical exchange rates using pulsed-field-gradient diffusion measurements

    International Nuclear Information System (INIS)

    Andrec, Michael; Prestegard, James H.

    1997-01-01

    A new approach to the quantitation of chemical exchange rates is presented, and its utility is illustrated with application to the exchange of protein amide protons with bulk water. The approach consists of a selective-inversion exchange HMQC experiment in which a short spin echo diffusion filter has been inserted into the exchange period. In this way, the kinetics of exchange are encoded directly in an apparent diffusion coefficient which is a function of the position of the diffusion filter in the pulse sequence. A detailed theoretical analysis of this experiment indicates that, in addition to the measurement of simple exchange rates, the experiment is capable of measuring the effect of mediated exchange, e.g. the transfer of magnetization from bulk water to an amide site mediated by an internal bound water molecule or a labile protein side-chain proton in fast exchange with bulk water. Experimental results for rapid water/amide exchange in acyl carrier protein are shown to be quantitatively consistent with the exchange rates measured using a selective-inversion exchange experiment

  12. Hierarchical traits distances explain grassland Fabaceae species' ecological niches distances

    Science.gov (United States)

    Fort, Florian; Jouany, Claire; Cruz, Pablo

    2015-01-01

    Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e., ecological niches. We measured a wide range of functional traits (root traits, leaf traits, and whole plant traits) in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species' ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems) are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems) are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance. PMID:25741353

  13. Hierarchical traits distances explain grassland Fabaceae species’ ecological niches distances

    Directory of Open Access Journals (Sweden)

    Florian eFort

    2015-02-01

    Full Text Available Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e. ecological niches. We measured a wide range of functional traits (root traits, leaf traits and whole plant traits in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species’ ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance.

  14. A Short-Range Distance Sensor with Exceptional Linearity

    Science.gov (United States)

    Simmons, Steven; Youngquist, Robert

    2013-01-01

    A sensor has been demonstrated that can measure distance over a total range of about 300 microns to an accuracy of about 0.1 nm (resolution of about 0.01 nm). This represents an exceptionally large dynamic range of operation - over 1,000,000. The sensor is optical in nature, and requires the attachment of a mirror to the object whose distance is being measured. This work resulted from actively developing a white light interferometric system to be used to measure the depths of defects in the Space Shuttle Orbiter windows. The concept was then applied to measuring distance. The concept later expanded to include spectrometer calibration. In summary, broadband (i.e., white) light is launched into a Michelson interferometer, one mirror of which is fixed and one of which is attached to the object whose distance is to be measured. The light emerging from the interferometer has traveled one of two distances: either the distance to the fixed mirror and back, or the distance to the moving mirror and back. These two light beams mix and produce an interference pattern where some wavelengths interfere constructively and some destructively. Sending this light into a spectrometer allows this interference pattern to be analyzed, yielding the net distance difference between the two paths. The unique feature of this distance sensor is its ability to measure accurately distance over a dynamic range of more than one million, the ratio of its range (about 300 microns) to its accuracy (about 0.1 nanometer). Such a large linear operating range is rare and arises here because both amplitude and phase-matching algorithms contribute to the performance. The sensor is limited by the need to attach a mirror of some kind to the object being tracked, and by the fairly small total range, but the exceptional dynamic range should make it of interest.

  15. Prenatal Triclosan Exposure and Anthropometric Measures Including Anogenital Distance in Danish Infants

    DEFF Research Database (Denmark)

    Lassen, Tina Harmer; Frederiksen, Hanne; Kyhl, Henriette Boye

    2016-01-01

    , Swan SH, Main KM, Andersson AM, Lind DV, Husby S, Wohlfahrt-Veje C, Skakkebæk NE, Jensen TK. 2016. Prenatal triclosan exposure and anthropometric measures including anogenital distance in Danish infants. Environ Health Perspect 124:1261-1268; http://dx.doi.org/10.1289/ehp.1409637.......BACKGROUND: Triclosan (TCS) is widely used as an antibacterial agent in consumer products such as hand soap and toothpaste, and human exposure is widespread. TCS is suspected of having endocrine-disrupting properties, but few human studies have examined the developmental effects of prenatal TCS...

  16. Qualitative pattern classification of shear wave elastography for breast masses: how it correlates to quantitative measurements.

    Science.gov (United States)

    Yoon, Jung Hyun; Ko, Kyung Hee; Jung, Hae Kyoung; Lee, Jong Tae

    2013-12-01

    To determine the correlation of qualitative shear wave elastography (SWE) pattern classification to quantitative SWE measurements and whether it is representative of quantitative SWE values with similar performances. From October 2012 to January 2013, 267 breast masses of 236 women (mean age: 45.12 ± 10.54 years, range: 21-88 years) who had undergone ultrasonography (US), SWE, and subsequent biopsy were included. US BI-RADS final assessment and qualitative and quantitative SWE measurements were recorded. Correlation between pattern classification and mean elasticity, maximum elasticity, elasticity ratio and standard deviation were evaluated. Diagnostic performances of grayscale US, SWE parameters, and US combined to SWE values were calculated and compared. Of the 267 breast masses, 208 (77.9%) were benign and 59 (22.1%) were malignant. Pattern classifications significantly correlated with all quantitative SWE measurements, showing highest correlation with maximum elasticity, r = 0.721 (P0.05). Pattern classification shows high correlation to maximum stiffness and may be representative of quantitative SWE values. When combined to grayscale US, SWE improves specificity of US. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Quantitative nanoscale surface voltage measurement on organic semiconductor blends

    International Nuclear Information System (INIS)

    Cuenat, Alexandre; Muñiz-Piniella, Andrés; Muñoz-Rojo, Miguel; Murphy, Craig E; Tsoi, Wing C

    2012-01-01

    We report on the validation of a method based on Kelvin probe force microscopy (KPFM) able to measure the different phases and the relative work function of polymer blend heterojunctions at the nanoscale. The method does not necessitate complex ultra-high vacuum setup. The quantitative information that can be extracted from the topography and the Kelvin probe measurements is critically analysed. Surface voltage difference can be observed at the nanoscale on poly(3-hexyl-thiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) blends and dependence on the annealing condition and the regio-regularity of P3HT is observed. (paper)

  18. An improved in situ measurement of offset phase shift towards quantitative damping-measurement with AFM

    International Nuclear Information System (INIS)

    Minary-Jolandan, Majid; Yu Minfeng

    2008-01-01

    An improved approach is introduced in damping measurement with atomic force microscope (AFM) for the in situ measurement of the offset phase shift needed for determining the intrinsic mechanical damping in nanoscale materials. The offset phase shift is defined and measured at a point of zero contact force according to the deflection part of the AFM force plot. It is shown that such defined offset phase shift is independent of the type of sample material, varied from hard to relatively soft materials in this study. This improved approach allows the self-calibrated and quantitative damping measurement with AFM. The ability of dynamic mechanical analysis for the measurement of damping in isolated one-dimensional nanostructures, e.g. individual multiwalled carbon nanotubes, was demonstrated

  19. Ethnical distance in Vojvodina: Research results

    Directory of Open Access Journals (Sweden)

    Lazar Žolt

    2005-01-01

    Full Text Available This article presents the results of the ethnical distance measuring in Vojvodina, the north Province of the Republic of Serbia. The measuring was carried out on autumn 2002, during realization of the wider project of multiculturalism research in the mentioned region. According to the results the ethnical distances in Vojvodina are quite equalized and they are grouped around the attitude "all the same". Vojvodinian Serbs are more favorable partners for the majority of social contacts, and the relatively largest distance is shown toward Roma. The ethnical distance results also discovers two very important factors for understanding the interethnic relations in Vojvodina: first, the "rational" kind of social contacts with the members of the other ethnical groups are more preferable for the majority of respondents, and second, they have very equal distances toward their own ethnical groups.

  20. Quantitative Measurement of Oxygen in Microgravity Combustion

    Science.gov (United States)

    Silver, Joel A.

    1997-01-01

    A low-gravity environment, in space or in ground-based facilities such as drop towers, provides a unique setting for studying combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as for better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Due to restrictions associated with performing measurements in reduced gravity, diagnostic methods which have been applied to microgravity combustion studies have generally been limited to capture of flame emissions on film or video, laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated diagnostic methods are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the models. When the demands of space flight are considered, the need for improved diagnostic systems which are rugged, compact, reliable, and operate at low power becomes apparent. The objective of this research is twofold. First, we want to develop a better understanding of the relative roles of diffusion and reaction of oxygen in microgravity combustion. As the primary oxidizer species, oxygen plays a major role in controlling the observed properties of flames, including flame front speed (in solid or liquid flames), extinguishment characteristics, flame size and flame temperature. The second objective is to develop better diagnostics based on diode laser absorption which can be of real value in both microgravity combustion research and as a sensor on-board Spacelab as either an air quality monitor or as part of a fire detection system. In our prior microgravity work, an eight line-of-sight fiber optic system measured

  1. A new trend to determine biochemical parameters by quantitative FRET assays.

    Science.gov (United States)

    Liao, Jia-yu; Song, Yang; Liu, Yan

    2015-12-01

    Förster resonance energy transfer (FRET) has been widely used in biological and biomedical research because it can determine molecule or particle interactions within a range of 1-10 nm. The sensitivity and efficiency of FRET strongly depend on the distance between the FRET donor and acceptor. Historically, FRET assays have been used to quantitatively deduce molecular distances. However, another major potential application of the FRET assay has not been fully exploited, that is, the use of FRET signals to quantitatively describe molecular interactive events. In this review, we discuss the use of quantitative FRET assays for the determination of biochemical parameters, such as the protein interaction dissociation constant (K(d)), enzymatic velocity (k(cat)) and K(m). We also describe fluorescent microscopy-based quantitative FRET assays for protein interaction affinity determination in cells as well as fluorimeter-based quantitative FRET assays for protein interaction and enzymatic parameter determination in solution.

  2. Design of a Michelson Interferometer for Quantitative Refraction Index Profile Measurements

    NARCIS (Netherlands)

    Nijholt, J.L.M.

    1998-01-01

    This book describes the theoretical design of a three camera Michelson interferometer set-up for quantitative refractive index measuerments. Although a two camera system is easier to align and less expensive, a three camera interferometer is preferred because the expected measuring accuracy is much

  3. Pushing Stellarium to the Limit for Astronomy Distance Education

    Science.gov (United States)

    Connors, Martin

    2016-01-01

    The freeware planetarium program Stellarium (www.stellarium.org) provides a high quality astronomical simulation which can be stimulating for students of all ages. Athabasca University has been offering distance education astronomy courses using computer simulations of the night sky for nearly three decades. A recurring theme has been the challenge of matching available software to the computers available to students in their homes. Stellarium is useful in this respect in being available as downloadable freeware for Windows, Mac, and linux, and available from third parties for other platforms. Stellarium is useful for giving a qualitative idea of sky movements that take place slowly in nature. A night, or even a year, can be presented in sped up time, or with large time steps allowing to see changes. Our Science-stream freshman course emphasizes quantitative analysis, and Stellarium is also useful for this. Plotting the Sun's position at noon (allowing for Daylight Savings Time) gives an analemma from which the obliquity can be readily calculated. The Moon's daily motion can be measured in degrees with local declination lines as a reference, allowing the eccentricity of its orbit to be demonstrated. Plotting retrograde loops for outer planets corrects the misimpression students sometimes develop that this is a phenomenon restricted to Mars. For both inner and outer planets, the relation of synodic and sidereal periods may be explored quantitatively. Most recently we are exploring the possibility of replacing our HR diagram and Hubble Law plots with data gathered from Stellarium. Data in these is not directly measured as are the variables in planetary motion labs, but an observational feel can be added to labs that otherwise (if done using published tables of data) could seem divorced from observation. Stellarium can help attain a large number of objectives in introductory astronomy education, from truly understanding basic phenomena to making and interpreting

  4. Quantitative density measurements from a real-time neutron radiography system

    International Nuclear Information System (INIS)

    McRae, D.D.; Jenkins, R.W. Jr.; Brenizer, J.S.; Tobin, K.W.; Hosticka, B.; Sulcoski, M.F.

    1986-01-01

    An advanced video system has been assembled from commercially available equipment to support the real-time neutron radiography facility established jointly by the University of Virginia Department of Nuclear Engineering and Engineering Physics, and the Philip Morris Research Center. A schematic diagram of the equipment used for real-time neutron radiography is presented. To obtain quantitative density measurements with this system, several modifications of both hardware and image processing software were required. After implementation of these changes, the system was capable of determining material densities by measuring the degree of neutron attenuation

  5. Alfalfa discovery of the nearby gas-rich dwarf galaxy Leo P. IV. Distance measurement from LBT optical imaging

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Berg, Danielle [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Salzer, John J.; Rhode, Katherine L. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Dolphin, Andrew, E-mail: kmcquinn@astro.umn.edu, E-mail: skillman@astro.umn.edu, E-mail: berg@astro.umn.edu, E-mail: jcannon@macalester.edu, E-mail: rhode@astro.indiana.edu, E-mail: slaz@astro.indiana.edu, E-mail: betsey@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States)

    2013-12-01

    Leo P is a low-luminosity dwarf galaxy discovered through the blind H I Arecibo Legacy Fast ALFA survey. The H I and follow-up optical observations have shown that Leo P is a gas-rich dwarf galaxy with both active star formation and an underlying older population, as well as an extremely low oxygen abundance. Here, we measure the distance to Leo P by applying the tip of the red giant branch (TRGB) distance method to photometry of the resolved stellar population from new Large Binocular Telescope V and I band imaging. We measure a distance modulus of 26.19{sub −0.50}{sup +0.17} mag corresponding to a distance of 1.72{sub −0.40}{sup +0.14} Mpc. Although our photometry reaches 3 mag below the TRGB, the sparseness of the red giant branch yields higher uncertainties on the lower limit of the distance. Leo P is outside the Local Group with a distance and velocity consistent with the local Hubble flow. While located in a very low-density environment, Leo P lies within ∼0.5 Mpc of a loose association of dwarf galaxies which include NGC 3109, Antlia, Sextans A, and Sextans B, and 1.1 Mpc away from its next nearest neighbor, Leo A. Leo P is one of the lowest metallicity star-forming galaxies known in the nearby universe, comparable in metallicity to I Zw 18 and DDO 68, but with stellar characteristics similar to dwarf spheriodals (dSphs) in the Local Volume such as Carina, Sextans, and Leo II. Given its physical properties and isolation, Leo P may provide an evolutionary link between gas-rich dwarf irregular galaxies and dSphs that have fallen into a Local Group environment and been stripped of their gas.

  6. Complete Axiomatization for the Bisimilarity Distance on Markov Chains

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Bacci, Giovanni; Larsen, Kim Guldstrand

    2016-01-01

    In this paper we propose a complete axiomatization of the bisimilarity distance of Desharnais et al. for the class of finite labelled Markov chains. Our axiomatization is given in the style of a quantitative extension of equational logic recently proposed by Mardare, Panangaden, and Plotkin (LICS...

  7. Leader–Member Skill Distance, Team Cooperation, and Team Performance

    DEFF Research Database (Denmark)

    Tian, Longwei; Li, Yuan; Li, Peter Ping

    2015-01-01

    –member skill distance on team performance. We find the empirical support for our views with a mixed-methods design: a qualitative study interviewing informants in different cultures to clarify the psychological mechanisms, and also a quantitative study analyzing the data from US’s National Basketball...

  8. Accurate measurements of E2 lifetimes using the coincidence recoil-distance method

    Science.gov (United States)

    Bhalla, R. K.; Poletti, A. R.

    1984-05-01

    Mean lives of four E2 transitions in the (2s, 1d) shell have been measured using the recoil-distance method (RDM), γ-rays de-exciting the level of interest were detected in coincidence with particles detected in an annular detector at a backward angle thereby reducing the background and producing a beam of recoiling nuclei of well-defined energy and recoil direction. Lifetimes measured were: 22Ne, 1.275 MeV level (2 + → 0 +), 5.16±0.13 ps; 26Mg, 3.588 MeV level (0 + → 2 +), 9.29±0.23 ps; 30Si, 3.788 MeV level (0 +→ 2 +), 12.00±0.70 ps; 38Ar, 3.377 MeV level (0 + → 2 +), 34.5±1.5 ps. The present measurements are compared to those of previous investigators. For the 22Ne level, averaged results from four different measurement techniques are compared and found to be in good agreement. The experimental results are compared to shell-model calculations.

  9. Quantitative 3-D imaging topogrammetry for telemedicine applications

    Science.gov (United States)

    Altschuler, Bruce R.

    1994-01-01

    The technology to reliably transmit high-resolution visual imagery over short to medium distances in real time has led to the serious considerations of the use of telemedicine, telepresence, and telerobotics in the delivery of health care. These concepts may involve, and evolve toward: consultation from remote expert teaching centers; diagnosis; triage; real-time remote advice to the surgeon; and real-time remote surgical instrument manipulation (telerobotics with virtual reality). Further extrapolation leads to teledesign and telereplication of spare surgical parts through quantitative teleimaging of 3-D surfaces tied to CAD/CAM devices and an artificially intelligent archival data base of 'normal' shapes. The ability to generate 'topogrames' or 3-D surface numerical tables of coordinate values capable of creating computer-generated virtual holographic-like displays, machine part replication, and statistical diagnostic shape assessment is critical to the progression of telemedicine. Any virtual reality simulation will remain in 'video-game' realm until realistic dimensional and spatial relational inputs from real measurements in vivo during surgeries are added to an ever-growing statistical data archive. The challenges of managing and interpreting this 3-D data base, which would include radiographic and surface quantitative data, are considerable. As technology drives toward dynamic and continuous 3-D surface measurements, presenting millions of X, Y, Z data points per second of flexing, stretching, moving human organs, the knowledge base and interpretive capabilities of 'brilliant robots' to work as a surgeon's tireless assistants becomes imaginable. The brilliant robot would 'see' what the surgeon sees--and more, for the robot could quantify its 3-D sensing and would 'see' in a wider spectral range than humans, and could zoom its 'eyes' from the macro world to long-distance microscopy. Unerring robot hands could rapidly perform machine-aided suturing with

  10. Robustness of Distance-to-Default

    DEFF Research Database (Denmark)

    Jessen, Cathrine; Lando, David

    2013-01-01

    . A notable exception is a model with stochastic volatility of assets. In this case both the ranking of firms and the estimated default probabilities using distance-to-default perform significantly worse. We therefore propose a volatility adjustment of the distance-to-default measure, that significantly...

  11. A tentative theory of large distance physics

    International Nuclear Information System (INIS)

    Friedan, Daniel

    2003-01-01

    A theoretical mechanism is devised to determine the large distance physics of spacetime. It is a two dimensional nonlinear model, the lambda model, set to govern the string world surface in an attempt to remedy the failure of string theory, as it stands. The lambda model is formulated to cancel the infrared divergent effects of handles at short distance on the world surface. The target manifold is the manifold of background spacetimes. The coupling strength is the spacetime coupling constant. The lambda model operates at 2d distance Δ -1 , very much shorter than the 2d distance μ -1 where the world surface is seen. A large characteristic spacetime distance L is given by L 2 ln(Δ/μ). Spacetime fields of wave number up to 1=L are the local coordinates for the manifold of spacetimes. The distribution of fluctuations at 2d distances shorter than Δ -1 gives the a priori measure on the target manifold, the manifold of spacetimes. If this measure concentrates at a macroscopic spacetime, then, nearby, it is a measure on the spacetime fields. The lambda model thereby constructs a spacetime quantum field theory, cutoff at ultraviolet distance L, describing physics at distances larger than L. The lambda model also constructs an effective string theory with infrared cutoff L, describing physics at distances smaller than L. The lambda model evolves outward from zero 2d distance, Δ -1 = 0, building spacetime physics starting from L ∞ and proceeding downward in L. L can be taken smaller than any distance practical for experiments, so the lambda model, if right, gives all actually observable physics. The harmonic surfaces in the manifold of spacetimes are expected to have novel nonperturbative effects at large distances. (author)

  12. Haptic Discrimination of Distance

    Science.gov (United States)

    van Beek, Femke E.; Bergmann Tiest, Wouter M.; Kappers, Astrid M. L.

    2014-01-01

    While quite some research has focussed on the accuracy of haptic perception of distance, information on the precision of haptic perception of distance is still scarce, particularly regarding distances perceived by making arm movements. In this study, eight conditions were measured to answer four main questions, which are: what is the influence of reference distance, movement axis, perceptual mode (active or passive) and stimulus type on the precision of this kind of distance perception? A discrimination experiment was performed with twelve participants. The participants were presented with two distances, using either a haptic device or a real stimulus. Participants compared the distances by moving their hand from a start to an end position. They were then asked to judge which of the distances was the longer, from which the discrimination threshold was determined for each participant and condition. The precision was influenced by reference distance. No effect of movement axis was found. The precision was higher for active than for passive movements and it was a bit lower for real stimuli than for rendered stimuli, but it was not affected by adding cutaneous information. Overall, the Weber fraction for the active perception of a distance of 25 or 35 cm was about 11% for all cardinal axes. The recorded position data suggest that participants, in order to be able to judge which distance was the longer, tried to produce similar speed profiles in both movements. This knowledge could be useful in the design of haptic devices. PMID:25116638

  13. Haptic discrimination of distance.

    Directory of Open Access Journals (Sweden)

    Femke E van Beek

    Full Text Available While quite some research has focussed on the accuracy of haptic perception of distance, information on the precision of haptic perception of distance is still scarce, particularly regarding distances perceived by making arm movements. In this study, eight conditions were measured to answer four main questions, which are: what is the influence of reference distance, movement axis, perceptual mode (active or passive and stimulus type on the precision of this kind of distance perception? A discrimination experiment was performed with twelve participants. The participants were presented with two distances, using either a haptic device or a real stimulus. Participants compared the distances by moving their hand from a start to an end position. They were then asked to judge which of the distances was the longer, from which the discrimination threshold was determined for each participant and condition. The precision was influenced by reference distance. No effect of movement axis was found. The precision was higher for active than for passive movements and it was a bit lower for real stimuli than for rendered stimuli, but it was not affected by adding cutaneous information. Overall, the Weber fraction for the active perception of a distance of 25 or 35 cm was about 11% for all cardinal axes. The recorded position data suggest that participants, in order to be able to judge which distance was the longer, tried to produce similar speed profiles in both movements. This knowledge could be useful in the design of haptic devices.

  14. Weighted Evidence Combination Rule Based on Evidence Distance and Uncertainty Measure: An Application in Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2018-01-01

    Full Text Available Conflict management in Dempster-Shafer theory (D-S theory is a hot topic in information fusion. In this paper, a novel weighted evidence combination rule based on evidence distance and uncertainty measure is proposed. The proposed approach consists of two steps. First, the weight is determined based on the evidence distance. Then, the weight value obtained in first step is modified by taking advantage of uncertainty. Our proposed method can efficiently handle high conflicting evidences with better performance of convergence. A numerical example and an application based on sensor fusion in fault diagnosis are given to demonstrate the efficiency of our proposed method.

  15. Continuity Properties of Distances for Markov Processes

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Mao, Hua; Larsen, Kim Guldstrand

    2014-01-01

    In this paper we investigate distance functions on finite state Markov processes that measure the behavioural similarity of non-bisimilar processes. We consider both probabilistic bisimilarity metrics, and trace-based distances derived from standard Lp and Kullback-Leibler distances. Two desirable...

  16. I Agree to Sit Next to You. Does That Mean I Like You? Measuring Using the Wrong Tapeline--The Lack of 'Social Distance' Measures for Inclusive School Development and Research--A Review of the Literature

    Science.gov (United States)

    Gerullis, Anita; Huber, Christian

    2018-01-01

    This review provides an overview of definitions and measurements of 'Social Distance' and attitudes children without disabilities carry towards children with disabilities. Measures include explicit and implicit approaches but clearly, the 'Bogardus Social Distance Scale' ("A Social Distance Scale," 1933, 14 May 2014) is the most used…

  17. Damage measurement of structural material by electron backscatter diffraction. Quantification of measurement quality toward standardization of measurement procedure

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2011-01-01

    Several attempts have been made to assess the damage induced in materials by crystal orientation distributions identified using electron backscatter diffraction (EBSD). In particular, the local misorientation, which is the misorientation between neighboring measurement points, was shown to correlate well with the degree of material damage such as plastic strain, fatigue and creep. However, the damage assessments conducted using the local misorientations were qualitative rather than quantitative. The local misorientation can be correlated theoretically with physical parameters such as dislocation density. However, the error in crystal orientation measurements makes quantitative evaluation of the local misorientation difficult. Furthermore, the local misorientation depends on distance between the measurement points (step size). For a quantitative assessment of the local misorientation, the error in the crystal orientation measurements must be reduced or the degree of error must be shown quantitatively. In this study, first, the influence of the quality of measurements (accuracy of measurements) and step size on the local misorientation was investigated using stainless steel specimens damaged by tensile deformation or fatigue. By performing the crystal orientation measurements with different conditions, it was shown that the quality of measurement could be represented by the error index, which was previously proposed by the author. Secondly, a filtering process was applied in order to improve the accuracy of crystal orientation measurements and its effect was investigated using the error index. It was revealed that the local misorientations obtained under different measurement conditions could be compared quantitatively only when the error index and the step size were almost or exactly the same. It was also shown that the filtering process could successfully reduce the measurement error and step size dependency of the local misorientations. By applying the filtering

  18. Walking Behavior of Zoo Elephants: Associations between GPS-Measured Daily Walking Distances and Environmental Factors, Social Factors, and Welfare Indicators.

    Directory of Open Access Journals (Sweden)

    Matthew R Holdgate

    Full Text Available Research with humans and other animals suggests that walking benefits physical health. Perhaps because these links have been demonstrated in other species, it has been suggested that walking is important to elephant welfare, and that zoo elephant exhibits should be designed to allow for more walking. Our study is the first to address this suggestion empirically by measuring the mean daily walking distance of elephants in North American zoos, determining the factors that are associated with variations in walking distance, and testing for associations between walking and welfare indicators. We used anklets equipped with GPS data loggers to measure outdoor daily walking distance in 56 adult female African (n = 33 and Asian (n = 23 elephants housed in 30 North American zoos. We collected 259 days of data and determined associations between distance walked and social, housing, management, and demographic factors. Elephants walked an average of 5.3 km/day with no significant difference between species. In our multivariable model, more diverse feeding regimens were correlated with increased walking, and elephants who were fed on a temporally unpredictable feeding schedule walked 1.29 km/day more than elephants fed on a predictable schedule. Distance walked was also positively correlated with an increase in the number of social groupings and negatively correlated with age. We found a small but significant negative correlation between distance walked and nighttime Space Experience, but no other associations between walking distances and exhibit size were found. Finally, distance walked was not related to health or behavioral outcomes including foot health, joint health, body condition, and the performance of stereotypic behavior, suggesting that more research is necessary to determine explicitly how differences in walking may impact elephant welfare.

  19. Walking Behavior of Zoo Elephants: Associations between GPS-Measured Daily Walking Distances and Environmental Factors, Social Factors, and Welfare Indicators.

    Science.gov (United States)

    Holdgate, Matthew R; Meehan, Cheryl L; Hogan, Jennifer N; Miller, Lance J; Soltis, Joseph; Andrews, Jeff; Shepherdson, David J

    2016-01-01

    Research with humans and other animals suggests that walking benefits physical health. Perhaps because these links have been demonstrated in other species, it has been suggested that walking is important to elephant welfare, and that zoo elephant exhibits should be designed to allow for more walking. Our study is the first to address this suggestion empirically by measuring the mean daily walking distance of elephants in North American zoos, determining the factors that are associated with variations in walking distance, and testing for associations between walking and welfare indicators. We used anklets equipped with GPS data loggers to measure outdoor daily walking distance in 56 adult female African (n = 33) and Asian (n = 23) elephants housed in 30 North American zoos. We collected 259 days of data and determined associations between distance walked and social, housing, management, and demographic factors. Elephants walked an average of 5.3 km/day with no significant difference between species. In our multivariable model, more diverse feeding regimens were correlated with increased walking, and elephants who were fed on a temporally unpredictable feeding schedule walked 1.29 km/day more than elephants fed on a predictable schedule. Distance walked was also positively correlated with an increase in the number of social groupings and negatively correlated with age. We found a small but significant negative correlation between distance walked and nighttime Space Experience, but no other associations between walking distances and exhibit size were found. Finally, distance walked was not related to health or behavioral outcomes including foot health, joint health, body condition, and the performance of stereotypic behavior, suggesting that more research is necessary to determine explicitly how differences in walking may impact elephant welfare.

  20. A study of the normal interpedicular distance of the spine in Korean teenagers (Estimation of normal range by roentgenographic measurement)

    International Nuclear Information System (INIS)

    Lee, Myung Uk

    1979-01-01

    The radiological measurement of the interpedicular disease using a routine antero-posterior view of the spine gives important clinical criteria in evaluation of the intraspinal tumor and stenosis of the spinal canal, and aids for diagnosis of the lesions. In 1934 Elsberg and Dyke reported values of interpedicular distance as determined on roentgenograms for spine of white adult, and in 1968 Song prepared normal values of interpedicular distance for Korean adult. The present investigation was undertaken to provide normal interpedicular distance of Korean teenagers. The author observed the antero-posterior films of the spine of 200 normal teenagers which were composed of 100 male and 100 female. The normal values of the interpedicular distance of Korean teenagers were obtained, as well as 90% tolerance range for clinical use. In this statistical analysis, there were noted significant differences between male and female, and each age groups. It was observed that average male measurement were consistently larger than female by about 1 mm and the growth of the spinal canal appeared to be continued.

  1. Measuring Oral Proficiency in Distance, Face-to-Face, and Blended Classrooms

    Directory of Open Access Journals (Sweden)

    Robert Blake

    2008-10-01

    Full Text Available Although the foreign-language profession routinely stresses the importance of technology for the curriculum, many teachers still harbor deep-seated doubts as to whether or not a hybrid course, much less a completely distance-learning class, could provide L2 learners with a way to reach linguistic proficiency, especially with respect to oral language skills. In this study, we examine the case of Spanish Without Walls (SWW, a first-year language course offered at the University of California - Davis in both hybrid and distance-learning formats. The SWW curriculum includes materials delivered via CD-ROM/DVD programs, online content-based web pages, and synchronous bimodal chat that includes sound and text. The contribution of each of these components is evaluated in the context of a successful technologically assisted course. To address the issue of oral proficiency, we compare the results from both classroom and distance-learning students who took the 20-minute Versant for Spanish test, delivered by phone and automatically graded. The data generated by this instrument shows that classroom, hybrid, and distance L2 learners reach comparable levels of oral proficiency during their first year of study. Reference is also made to two other ongoing efforts to provide distance-learning courses in Arabic and Punjabi, two languages where special difficulties in their writing systems have an impact on the design of the distant-learning format. The rationale for offering language courses in either a hybrid or distance-learning format is examined in light of increasing societal pressures to help L2 learners reach advanced proficiency, especially in less commonly taught languages (LCTLs.

  2. Philtrum length and intercommissural distance measurements at mixed dentition period.

    Science.gov (United States)

    Mostafa, Mostafa; Hassib, Nehal; Sayed, Inas; Neamat, Amany; Ramzy, Magda; El-Badry, Tarek; ElGabry, Hisham; Salem, Haidy; Omar, Nada; Ismail, Amira; Ibrahim, Yousra; Shebaita, Amr; Allam, Ahmed; Mostafa, Magdy

    2018-05-01

    Anthropometric measurements of the lip and mouth are of great importance in clinical dysmorphology as well as reconstructive plastic surgery. In this study, the philtrum length (PhL) and intercommissural distance (ICmD) nomograms for Egyptian children in the mixed dentition period were established. A group of 1,338 Egyptian students in primary schools (735 boys and 603 girls) were included in the study. The students were at mixed dentition period and their ages ranged from 7 to 12 years. Anthropometric norms of PhL and ICmD were developed with significant sex difference in certain groups. A ratio between PhL and ICmD was developed. These data will help facilitate both objective and subjective evaluation of the lip and mouth for proper diagnosis of orofacial anomalies and variations as well as for ideal treatment plans. © 2018 Wiley Periodicals, Inc.

  3. A numerical method to account for distance in a farmer's willingness to pay for land

    NARCIS (Netherlands)

    Bakker, Martha M.; Heuvelink, Gerard B.M.; Vrugt, Jasper A.; Polman, Nico; Brookhuis, Bart; Kuhlman, Tom

    2018-01-01

    Land transactions between farmers are responsible for landscape changes in rural areas. The price a farmer is willing to pay (WTP) for vacant land depends on the distance of the parcel to the farmstead. Detailed quantitative knowledge of this WTP– distance relationship is of utmost importance for

  4. Quantitative Spectral Radiance Measurements in the HYMETS Arc Jet

    Science.gov (United States)

    Danehy, Paul M.; Hires, Drew V.; Johansen, Craig T.; Bathel, Brett F.; Jones, Stephen B.; Gragg, Jeffrey G.; Splinter, Scott C.

    2012-01-01

    Calibrated spectral radiance measurements of gaseous emission spectra have been obtained from the HYMETS (Hypersonic Materials Environmental Test System) 400 kW arc-heated wind tunnel at NASA Langley Research Center. A fiber-optic coupled spectrometer collected natural luminosity from the flow. Spectral radiance measurements are reported between 340 and 1000 nm. Both Silicon Carbide (SiC) and Phenolic Impregnated Carbon Ablator (PICA) samples were placed in the flow. Test gases studied included a mostly-N2 atmosphere (95% nitrogen, 5% argon), a simulated Earth Air atmosphere (75% nitrogen, 20% oxygen, 5% argon) and a simulated Martian atmosphere (71% carbon dioxide, 24% nitrogen, 5% argon). The bulk enthalpy of the flow was varied as was the location of the measurement. For the intermediate flow enthalpy tested (20 MJ/kg), emission from the Mars simulant gas was about 10 times higher than the Air flow and 15 times higher than the mostly-N2 atmosphere. Shock standoff distances were estimated from the spectral radiance measurements. Within-run, run-to-run and day-to-day repeatability of the emission were studied, with significant variations (15-100%) noted.

  5. Single-case synthesis tools II: Comparing quantitative outcome measures.

    Science.gov (United States)

    Zimmerman, Kathleen N; Pustejovsky, James E; Ledford, Jennifer R; Barton, Erin E; Severini, Katherine E; Lloyd, Blair P

    2018-03-07

    Varying methods for evaluating the outcomes of single case research designs (SCD) are currently used in reviews and meta-analyses of interventions. Quantitative effect size measures are often presented alongside visual analysis conclusions. Six measures across two classes-overlap measures (percentage non-overlapping data, improvement rate difference, and Tau) and parametric within-case effect sizes (standardized mean difference and log response ratio [increasing and decreasing])-were compared to determine if choice of synthesis method within and across classes impacts conclusions regarding effectiveness. The effectiveness of sensory-based interventions (SBI), a commonly used class of treatments for young children, was evaluated. Separately from evaluations of rigor and quality, authors evaluated behavior change between baseline and SBI conditions. SBI were unlikely to result in positive behavior change across all measures except IRD. However, subgroup analyses resulted in variable conclusions, indicating that the choice of measures for SCD meta-analyses can impact conclusions. Suggestions for using the log response ratio in SCD meta-analyses and considerations for understanding variability in SCD meta-analysis conclusions are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Quantitative rock-fall hazard and risk assessment for Yosemite Valley, California

    Science.gov (United States)

    Stock, G. M.; Luco, N.; Collins, B. D.; Harp, E.; Reichenbach, P.; Frankel, K. L.

    2011-12-01

    Rock falls are a considerable hazard in Yosemite Valley, California with more than 835 rock falls and other slope movements documented since 1857. Thus, rock falls pose potentially significant risk to the nearly four million annual visitors to Yosemite National Park. Building on earlier hazard assessment work by the U.S. Geological Survey, we performed a quantitative rock-fall hazard and risk assessment for Yosemite Valley. This work was aided by several new data sets, including precise Geographic Information System (GIS) maps of rock-fall deposits, airborne and terrestrial LiDAR-based point cloud data and digital elevation models, and numerical ages of talus deposits. Using Global Position Systems (GPS), we mapped the positions of over 500 boulders on the valley floor and measured their distance relative to the mapped base of talus. Statistical analyses of these data yielded an initial hazard zone that is based on the 90th percentile distance of rock-fall boulders beyond the talus edge. This distance was subsequently scaled (either inward or outward from the 90th percentile line) based on rock-fall frequency information derived from a combination of cosmogenic beryllium-10 exposure dating of boulders beyond the edge of the talus, and computer model simulations of rock-fall runout. The scaled distances provide the basis for a new hazard zone on the floor of Yosemite Valley. Once this zone was delineated, we assembled visitor, employee, and resident use data for each structure within the hazard zone to quantitatively assess risk exposure. Our results identify areas within the new hazard zone that may warrant more detailed study, for example rock-fall susceptibility, which can be assessed through examination of high-resolution photographs, structural measurements on the cliffs, and empirical calculations derived from LiDAR point cloud data. This hazard and risk information is used to inform placement of existing and potential future infrastructure in Yosemite Valley.

  7. Cross-method validation as a solution to the problem of excessive simplification of measurement in quantitative IR research

    DEFF Research Database (Denmark)

    Beach, Derek

    2007-01-01

    The purpose of this article is to make IR scholars more aware of the costs of choosing quantitative methods. The article first shows that quantification can have analytical ‘costs’ when the measures created are too simple to capture the essence of the systematized concept that was supposed...... detail based upon a review of the democratic peace literature. I then offer two positive suggestions for a way forward. First, I argue that quantitative scholars should spend more time validating their measures, and in particular should engage in multi-method partnerships with qualitative scholars...... that have a deep understanding of particular cases in order to exploit the comparative advantages of qualitative methodology, using the more accurate qualitative measures to validate their own quantitative measures. Secondly, quantitative scholars should lower their level of ambition given the often poor...

  8. Quantitative liquid and vapor distribution measurements in evaporating fuel sprays using laser-induced exciplex fluorescence

    International Nuclear Information System (INIS)

    Fansler, Todd D; Drake, Michael C; Gajdeczko, Boguslaw; Düwel, Isabell; Koban, Wieland; Zimmermann, Frank P; Schulz, Christof

    2009-01-01

    Fully quantitative two-dimensional measurements of liquid- and vapor-phase fuel distributions (mass per unit volume) from high-pressure direct-injection gasoline injectors are reported for conditions of both slow and rapid vaporization in a heated, high-pressure spray chamber. The measurements employ the coevaporative gasoline-like fluorobenzene (FB)/diethylmethylamine (DEMA)/hexane exciplex tracer/fuel system. In contrast to most previous laser-induced exciplex-fluorescence (LIEF) experiments, the quantitative results here include regions in which liquid and vapor fuel coexist (e.g. near the injector exit). A unique aspect is evaluation of both vapor- and liquid-phase distributions at varying temperature and pressure using only in situ vapor-phase fluorescence calibration measurements at room temperature and atmospheric pressure. This approach draws on recent extensive measurements of the temperature-dependent spectroscopic properties of the FB–DEMA exciplex system, in particular on knowledge of the quantum efficiencies of the vapor-phase and liquid-phase (exciplex) fluorescence. In addition to procedures necessary for quantitative measurements, we discuss corrections for liquid–vapor crosstalk (liquid fluorescence that overlaps the vapor-fluorescence bandpass), the unknown local temperature due to vaporization-induced cooling, and laser-sheet attenuation by scattering and absorption

  9. Dual energy quantitative computed tomography (QCT). Precision of the mineral density measurements

    International Nuclear Information System (INIS)

    Braillon, P.; Bochu, M.

    1989-01-01

    The improvement that could be obtained in quantitative bone mineral measurements by dual energy computed tomography was tested in vitro. From the results of 15 mineral density measurements (in mg Ca/cm 3 , done on a precise lumbar spine phantom (Hologic) and referred to the values obtained on the same slices on a Siemens Osteo-CT phantom, the precision found was 0.8%, six times better than the precision calculated from the uncorrected measured values [fr

  10. Fast and accurate measurement of on-axis gain and on-axis polarization at a finite distance

    DEFF Research Database (Denmark)

    Pivnenko, S.; Breinbjerg, O.

    2013-01-01

    -field substitution technique in which the measurement distance is defined between the phase centres of the antennas. The location of the phase centre of the antenna under test (AUT) is found from a quick pattern measurement consisting of only four cuts including the main and diagonal planes. Additionally, in order...... to reduce the amount of measurement data and thus measurement time, the phase centre location is found on a sparse frequency grid and the values in the intermediate points are found by interpolation. The antenna polarization is determined from the amplitude/phase frequency sweeps with two orthogonal AUT...

  11. Multi-Segment Radius Measurement Using an Absolute Distance Meter Through a Null Assembly

    Science.gov (United States)

    Merle, Cormic; Wick, Eric; Hayden, Joseph

    2011-01-01

    This system was one of the test methods considered for measuring the radius of curvature of one or more of the 18 segmented mirrors that form the 6.5 m diameter primary mirror (PM) of the James Webb Space Telescope (JWST). The assembled telescope will be tested at cryogenic temperatures in a 17-m diameter by 27-m high vacuum chamber at the Johnson Space Center. This system uses a Leica Absolute Distance Meter (ADM), at a wavelength of 780 nm, combined with beam-steering and beam-shaping optics to make a differential distance measurement between a ring mirror on the reflective null assembly and individual PM segments. The ADM is located inside the same Pressure-Tight Enclosure (PTE) that houses the test interferometer. The PTE maintains the ADM and interferometer at ambient temperature and pressure so that they are not directly exposed to the telescope s harsh cryogenic and vacuum environment. This system takes advantage of the existing achromatic objective and reflective null assembly used by the test interferometer to direct four ADM beamlets to four PM segments through an optical path that is coincident with the interferometer beam. A mask, positioned on a linear slide, contains an array of 1.25 mm diameter circular subapertures that map to each of the 18 PM segments as well as six positions around the ring mirror. A down-collimated 4 mm ADM beam simultaneously covers 4 adjacent PM segment beamlets and one ring mirror beamlet. The radius, or spacing, of all 18 segments can be measured with the addition of two orthogonally-oriented scanning pentaprisms used to steer the ADM beam to any one of six different sub-aperture configurations at the plane of the ring mirror. The interferometer beam, at a wavelength of 687 nm, and the ADM beamlets, at a wavelength of 780 nm, pass through the objective and null so that the rays are normally incident on the parabolic PM surface. After reflecting off the PM, both the ADM and interferometer beams return to their respective

  12. Longitudinal change in quantitative meniscus measurements in knee osteoarthritis - data from the Osteoarthritis Initiative

    International Nuclear Information System (INIS)

    Bloecker, Katja; Wirth, W.; Eckstein, F.; Guermazi, A.; Hitzl, W.; Hunter, D.J.

    2015-01-01

    We aimed to apply 3D MRI-based measurement technology to studying 2-year change in quantitative measurements of meniscus size and position. Forty-seven knees from the Osteoarthritis Initiative with medial radiographic joint space narrowing had baseline and 2-year follow-up MRIs. Quantitative measures were obtained from manual segmentation of the menisci and tibia using coronal DESSwe images. The standardized response mean (SRM = mean/SD change) was used as measure of sensitivity to longitudinal change. Medial tibial plateau coverage decreased from 34.8 % to 29.9 % (SRM -0.82; p < 0.001). Change in medial meniscus extrusion in a central image (SRM 0.18) and in the central five slices (SRM 0.22) did not reach significance, but change in extrusion across the entire meniscus (SRM 0.32; p = 0.03) and in the relative area of meniscus extrusion (SRM 0.56; p < 0.001) did. There was a reduction in medial meniscus volume (10 %; p < 0.001), width (7 %; p < 0.001), and height (2 %; p = 0.08); meniscus substance loss was strongest in the posterior (SRM -0.51; p = 0.001) and weakest in the anterior horn (SRM -0.15; p = 0.31). This pilot study reports, for the first time, longitudinal change in quantitative 3D meniscus measurements in knee osteoarthritis. It provides evidence of improved sensitivity to change of 3D measurements compared with single slice analysis. (orig.)

  13. Longitudinal change in quantitative meniscus measurements in knee osteoarthritis - data from the Osteoarthritis Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Bloecker, Katja [Paracelsus Medical University Salzburg and Nuremberg (Austria); Salzburg, Institute of Anatomy, Salzburg (Austria); BHS Linz, Department of Orthopaedics, Linz (Austria); Wirth, W.; Eckstein, F. [Paracelsus Medical University Salzburg and Nuremberg (Austria); Salzburg, Institute of Anatomy, Salzburg (Austria); Chondrometrics GmbH, Ainring (Germany); Guermazi, A. [Boston University School of Medicine, Boston, MA (United States); Boston Imaging Core Lab (BICL), Boston, MA (United States); Hitzl, W. [Paracelsus Medical University Salzburg and Nuremberg, Research Office, Salzburg (Austria); Hunter, D.J. [University of Sydney, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, Sydney (Australia)

    2015-10-15

    We aimed to apply 3D MRI-based measurement technology to studying 2-year change in quantitative measurements of meniscus size and position. Forty-seven knees from the Osteoarthritis Initiative with medial radiographic joint space narrowing had baseline and 2-year follow-up MRIs. Quantitative measures were obtained from manual segmentation of the menisci and tibia using coronal DESSwe images. The standardized response mean (SRM = mean/SD change) was used as measure of sensitivity to longitudinal change. Medial tibial plateau coverage decreased from 34.8 % to 29.9 % (SRM -0.82; p < 0.001). Change in medial meniscus extrusion in a central image (SRM 0.18) and in the central five slices (SRM 0.22) did not reach significance, but change in extrusion across the entire meniscus (SRM 0.32; p = 0.03) and in the relative area of meniscus extrusion (SRM 0.56; p < 0.001) did. There was a reduction in medial meniscus volume (10 %; p < 0.001), width (7 %; p < 0.001), and height (2 %; p = 0.08); meniscus substance loss was strongest in the posterior (SRM -0.51; p = 0.001) and weakest in the anterior horn (SRM -0.15; p = 0.31). This pilot study reports, for the first time, longitudinal change in quantitative 3D meniscus measurements in knee osteoarthritis. It provides evidence of improved sensitivity to change of 3D measurements compared with single slice analysis. (orig.)

  14. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  15. A definition of distance and method of making space-time measurements

    International Nuclear Information System (INIS)

    Brisson, D.W.

    1980-01-01

    The paper explores an extended definition of the absolute value of a complex number and thus a new definition of distance. This new definition, called the nabsolute value of a complex number, is (Z) where Z = (a or ia) + (b or ib), so that (Z) is equivalent to [α 2 + β 2 ]sup(1/2), and α = a or ia, β = b or ib. This is shown on a superimposed X,Y plot and iX,iY plot so that four dimensions are represented in a plane. The application of this scheme to space-time measurement is then identified with the Minkowski Plane which has identical properties with the complex plane, with this new interpretation of the absolute value of a complex number. (Auth.)

  16. Quantitative stress measurement of elastic deformation using mechanoluminescent sensor: An intensity ratio model

    Science.gov (United States)

    Cai, Tao; Guo, Songtao; Li, Yongzeng; Peng, Di; Zhao, Xiaofeng; Liu, Yingzheng

    2018-04-01

    The mechanoluminescent (ML) sensor is a newly developed non-invasive technique for stress/strain measurement. However, its application has been mostly restricted to qualitative measurement due to the lack of a well-defined relationship between ML intensity and stress. To achieve accurate stress measurement, an intensity ratio model was proposed in this study to establish a quantitative relationship between the stress condition and its ML intensity in elastic deformation. To verify the proposed model, experiments were carried out on a ML measurement system using resin samples mixed with the sensor material SrAl2O4:Eu2+, Dy3+. The ML intensity ratio was found to be dependent on the applied stress and strain rate, and the relationship acquired from the experimental results agreed well with the proposed model. The current study provided a physical explanation for the relationship between ML intensity and its stress condition. The proposed model was applicable in various SrAl2O4:Eu2+, Dy3+-based ML measurement in elastic deformation, and could provide a useful reference for quantitative stress measurement using the ML sensor in general.

  17. Phase-coded microwave signal generation based on a single electro-optical modulator and its application in accurate distance measurement.

    Science.gov (United States)

    Zhang, Fangzheng; Ge, Xiaozhong; Gao, Bindong; Pan, Shilong

    2015-08-24

    A novel scheme for photonic generation of a phase-coded microwave signal is proposed and its application in one-dimension distance measurement is demonstrated. The proposed signal generator has a simple and compact structure based on a single dual-polarization modulator. Besides, the generated phase-coded signal is stable and free from the DC and low-frequency backgrounds. An experiment is carried out. A 2 Gb/s phase-coded signal at 20 GHz is successfully generated, and the recovered phase information agrees well with the input 13-bit Barker code. To further investigate the performance of the proposed signal generator, its application in one-dimension distance measurement is demonstrated. The measurement accuracy is less than 1.7 centimeters within a measurement range of ~2 meters. The experimental results can verify the feasibility of the proposed phase-coded microwave signal generator and also provide strong evidence to support its practical applications.

  18. Moving gantry method for electron beam dose profile measurement at extended source-to-surface distances.

    Science.gov (United States)

    Fekete, Gábor; Fodor, Emese; Pesznyák, Csilla

    2015-03-08

    A novel method has been put forward for very large electron beam profile measurement. With this method, absorbed dose profiles can be measured at any depth in a solid phantom for total skin electron therapy. Electron beam dose profiles were collected with two different methods. Profile measurements were performed at 0.2 and 1.2 cm depths with a parallel plate and a thimble chamber, respectively. 108cm × 108 cm and 45 cm × 45 cm projected size electron beams were scanned by vertically moving phantom and detector at 300 cm source-to-surface distance with 90° and 270° gantry angles. The profiles collected this way were used as reference. Afterwards, the phantom was fixed on the central axis and the gantry was rotated with certain angular steps. After applying correction for the different source-to-detector distances and incidence of angle, the profiles measured in the two different setups were compared. Correction formalism has been developed. The agreement between the cross profiles taken at the depth of maximum dose with the 'classical' scanning and with the new moving gantry method was better than 0.5 % in the measuring range from zero to 71.9 cm. Inverse square and attenuation corrections had to be applied. The profiles measured with the parallel plate chamber agree better than 1%, except for the penumbra region, where the maximum difference is 1.5%. With the moving gantry method, very large electron field profiles can be measured at any depth in a solid phantom with high accuracy and reproducibility and with much less time per step. No special instrumentation is needed. The method can be used for commissioning of very large electron beams for computer-assisted treatment planning, for designing beam modifiers to improve dose uniformity, and for verification of computed dose profiles.

  19. Qualitative pattern classification of shear wave elastography for breast masses: How it correlates to quantitative measurements

    International Nuclear Information System (INIS)

    Yoon, Jung Hyun; Ko, Kyung Hee; Jung, Hae Kyoung; Lee, Jong Tae

    2013-01-01

    Objective: To determine the correlation of qualitative shear wave elastography (SWE) pattern classification to quantitative SWE measurements and whether it is representative of quantitative SWE values with similar performances. Methods: From October 2012 to January 2013, 267 breast masses of 236 women (mean age: 45.12 ± 10.54 years, range: 21–88 years) who had undergone ultrasonography (US), SWE, and subsequent biopsy were included. US BI-RADS final assessment and qualitative and quantitative SWE measurements were recorded. Correlation between pattern classification and mean elasticity, maximum elasticity, elasticity ratio and standard deviation were evaluated. Diagnostic performances of grayscale US, SWE parameters, and US combined to SWE values were calculated and compared. Results: Of the 267 breast masses, 208 (77.9%) were benign and 59 (22.1%) were malignant. Pattern classifications significantly correlated with all quantitative SWE measurements, showing highest correlation with maximum elasticity, r = 0.721 (P < 0.001). Sensitivity was significantly decreased in US combined to SWE measurements to grayscale US: 69.5–89.8% to 100.0%, while specificity was significantly improved: 62.5–81.7% to 13.9% (P < 0.001). Area under the ROC curve (A z ) did not show significant differences between grayscale US to US combined to SWE (P > 0.05). Conclusion: Pattern classification shows high correlation to maximum stiffness and may be representative of quantitative SWE values. When combined to grayscale US, SWE improves specificity of US

  20. Qualitative pattern classification of shear wave elastography for breast masses: How it correlates to quantitative measurements

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung Hyun, E-mail: lvjenny0417@gmail.com [Department of Radiology, CHA Bundang Medical Center, CHA University, School of Medicine (Korea, Republic of); Department of Radiology, Research Institute of Radiological Science, Yonsei University, College of Medicine (Korea, Republic of); Ko, Kyung Hee, E-mail: yourheeya@cha.ac.kr [Department of Radiology, CHA Bundang Medical Center, CHA University, School of Medicine (Korea, Republic of); Jung, Hae Kyoung, E-mail: AA40501@cha.ac.kr [Department of Radiology, CHA Bundang Medical Center, CHA University, School of Medicine (Korea, Republic of); Lee, Jong Tae, E-mail: jtlee@cha.ac.kr [Department of Radiology, CHA Bundang Medical Center, CHA University, School of Medicine (Korea, Republic of)

    2013-12-01

    Objective: To determine the correlation of qualitative shear wave elastography (SWE) pattern classification to quantitative SWE measurements and whether it is representative of quantitative SWE values with similar performances. Methods: From October 2012 to January 2013, 267 breast masses of 236 women (mean age: 45.12 ± 10.54 years, range: 21–88 years) who had undergone ultrasonography (US), SWE, and subsequent biopsy were included. US BI-RADS final assessment and qualitative and quantitative SWE measurements were recorded. Correlation between pattern classification and mean elasticity, maximum elasticity, elasticity ratio and standard deviation were evaluated. Diagnostic performances of grayscale US, SWE parameters, and US combined to SWE values were calculated and compared. Results: Of the 267 breast masses, 208 (77.9%) were benign and 59 (22.1%) were malignant. Pattern classifications significantly correlated with all quantitative SWE measurements, showing highest correlation with maximum elasticity, r = 0.721 (P < 0.001). Sensitivity was significantly decreased in US combined to SWE measurements to grayscale US: 69.5–89.8% to 100.0%, while specificity was significantly improved: 62.5–81.7% to 13.9% (P < 0.001). Area under the ROC curve (A{sub z}) did not show significant differences between grayscale US to US combined to SWE (P > 0.05). Conclusion: Pattern classification shows high correlation to maximum stiffness and may be representative of quantitative SWE values. When combined to grayscale US, SWE improves specificity of US.

  1. Anogenital distance: A longitudinal evaluation of its variants and indices in boys and girls of Sonora, Mexico.

    Science.gov (United States)

    Loreto-Gómez, Carmen; Farías, Paulina; Moreno-Macías, Hortensia; Romano-Riquer, S P; Riojas-Rodríguez, Horacio

    2017-10-01

    There is no consensus on which anogenital distance (AGD) variant to use and how to adjust it by body size in humans. This study quantitatively evaluated AGD variants and body size adjustments to determine which would be the best choice. AGD variants, height, and weight were measured on five occasions during the first year of life of 307 infants. The ratio of anoscrotal distance (ASD) in boys and anofourchette distance (AFD) in girls increased from 1.9 at birth to 2.3 at 12 months of age. Each AGD variant was divided by each body size variable to generate different indices. Such indices were standardized to make them comparable when analyzing their performance through mixed models. ASD and AFD adjusted by height generated precise (p<0.05) AGD indices: 0.4-0.5 and 0.2, respectively. Results suggest that the best body size adjustment for all AGD variants in the first year of life is height. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Pancreaticobiliary duct changes of periampullary carcinomas: Quantitative analysis at MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dong Sheng, E-mail: victoryhope@163.com [Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041 (China); Department of Radiology, No.4 West China Teaching Hospital of Sichuan University, Chengdu 610041 (China); Chen, Wei Xia, E-mail: wxchen25@126.com [Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041 (China); Wang, Xiao Dong, E-mail: tyfs03yz@163.com [Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041 (China); Acharya, Riwaz, E-mail: riwaz007@hotmail.com [Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041 (China); Jiang, Xing Hua, E-mail: 13881865517@163.com [Department of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041 (China)

    2012-09-15

    Purpose: To quantitatively analyse the pancreaticobiliary duct changes of periampullary carcinomas with volumetric interpolated breath-hold examination (VIBE) and true fast imaging with steady-state precession (true FISP) sequence, and investigate the value of these findings in differentiation and preoperative evaluation. Materials and methods: Magnetic resonance (MR) images of 71 cases of periampullary carcinomas (34 cases of pancreatic head carcinoma, 16 cases of intrapancreatic bile duct carcinoma and 21 cases of ampullary carcinoma) confirmed histopathologically were analysed. The maximum diameter of the common bile duct (CBD) and main pancreatic duct (MPD), dilated pancreaticobiliary duct angle and the distance from the end of the proximal dilated pancreaticobiliary duct to the major papilla were measured. Analysis of variance and the Chi-squared test were performed. Results: These findings showed significant differences among the three subtypes: the distance from the end of proximal dilated pancreaticobiliary duct to the major papilla and pancreaticobiliary duct angle. The distance and the pancreaticobiliary duct angle were least for ampullary carcinoma among the three subtypes. The percentage of dilated CBD was 94.1%, 93.8%, and 100% for pancreatic head carcinoma, intrapancreatic bile duct carcinoma and ampullary carcinoma, respectively. And that for the dilated MPD was 58.8%, 43.8%, and 42.9%, respectively. Conclusion: Quantitative analysis of the pancreaticobiliary ductal system can provide accurate and objective assessment of the pancreaticobiliary duct changes. Although benefit in differential diagnosis is limited, these findings are valuable in preoperative evaluation for both radical resection and palliative surgery.

  3. DL-sQUAL: A Multiple-Item Scale for Measuring Service Quality of Online Distance Learning Programs

    Science.gov (United States)

    Shaik, Naj; Lowe, Sue; Pinegar, Kem

    2006-01-01

    Education is a service with multiplicity of student interactions over time and across multiple touch points. Quality teaching needs to be supplemented by consistent quality supporting services for programs to succeed under the competitive distance learning landscape. ServQual and e-SQ scales have been proposed for measuring quality of traditional…

  4. Quantitative shearography: error reduction by using more than three measurement channels

    International Nuclear Information System (INIS)

    Charrett, Tom O. H.; Francis, Daniel; Tatam, Ralph P.

    2011-01-01

    Shearography is a noncontact optical technique used to measure surface displacement derivatives. Full surface strain characterization can be achieved using shearography configurations employing at least three measurement channels. Each measurement channel is sensitive to a single displacement gradient component defined by its sensitivity vector. A matrix transformation is then required to convert the measured components to the orthogonal displacement gradients required for quantitative strain measurement. This transformation, conventionally performed using three measurement channels, amplifies any errors present in the measurement. This paper investigates the use of additional measurement channels using the results of a computer model and an experimental shearography system. Results are presented showing that the addition of a fourth channel can reduce the errors in the computed orthogonal components by up to 33% and that, by using 10 channels, reductions of around 45% should be possible.

  5. Measurement error of a simplified protocol for quantitative sensory tests in chronic pain patients

    DEFF Research Database (Denmark)

    Müller, Monika; Biurrun Manresa, José; Limacher, Andreas

    2017-01-01

    BACKGROUND AND OBJECTIVES: Large-scale application of Quantitative Sensory Tests (QST) is impaired by lacking standardized testing protocols. One unclear methodological aspect is the number of records needed to minimize measurement error. Traditionally, measurements are repeated 3 to 5 times...

  6. Energy balance measurements for the determination of physical and technical operation parameters of thermionic converters

    International Nuclear Information System (INIS)

    Ritz, K.

    1975-01-01

    An introduction into the fundamental theoretical principles of the thermionic Cs converter is followed by the set-up of a special measuring converter as proposed by J. Bohdansky which permits the defined setting of the electrode distance under service conditions. Measurements thus carried out present quantitative data on efficiency, on energy transfer between the electrodes by means of radiation and heat transfer, and on the actual collector potential, the latter which surprisingly shows a distance dependency. (orig./GG) [de

  7. Investigation of the genetic association between quantitative measures of psychosis and schizophrenia

    DEFF Research Database (Denmark)

    Derks, Eske M; Vorstman, Jacob A S; Ripke, Stephan

    2012-01-01

    The presence of subclinical levels of psychosis in the general population may imply that schizophrenia is the extreme expression of more or less continuously distributed traits in the population. In a previous study, we identified five quantitative measures of schizophrenia (positive, negative, d...

  8. Absolute distance measurement with micrometer accuracy using a Michelson interferometer and the iterative synthetic wavelength principle.

    Science.gov (United States)

    Alzahrani, Khaled; Burton, David; Lilley, Francis; Gdeisat, Munther; Bezombes, Frederic; Qudeisat, Mohammad

    2012-02-27

    We present a novel system that can measure absolute distances of up to 300 mm with an uncertainty of the order of one micrometer, within a timeframe of 40 seconds. The proposed system uses a Michelson interferometer, a tunable laser, a wavelength meter and a computer for analysis. The principle of synthetic wave creation is used in a novel way in that the system employs an initial low precision estimate of the distance, obtained using a triangulation, or time-of-flight, laser system, or similar, and then iterates through a sequence of progressively smaller synthetic wavelengths until it reaches micrometer uncertainties in the determination of the distance. A further novel feature of the system is its use of Fourier transform phase analysis techniques to achieve sub-wavelength accuracy. This method has the major advantages of being relatively simple to realize, offering demonstrated high relative precisions better than 5 × 10(-5). Finally, the fact that this device does not require a continuous line-of-sight to the target as is the case with other configurations offers significant advantages.

  9. The interuncal distance in elderly patients with dementia

    International Nuclear Information System (INIS)

    Hanyu, Haruo; Takasaki, Masaru; Sugiyama, Takeshi; Abe, Shinei; Kobayashi, Yasutaka; Maehata, Yukihiko; Katsunuma, Hidetaka.

    1993-01-01

    The interuncal distance between the unci of the temporal lobes was measured from axial MR images of the brain in elderly patients with dementia including dementia of the Alzheimer type (DAT), vascular dementia (VD), and others. The measured value of the interuncal distance completely separated patients with DAT from normal controls, and there was significant diference in the interuncal distance between patients with DAT and VD. This measurement is a practical method of assessing hippocampal atrophy and appears to be a useful adjunct in the clinical diagnosis of DAT. (author)

  10. Quantitative laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine

    NARCIS (Netherlands)

    Verbiezen, K.; Klein-Douwel, R. J. H.; van Viet, A. P.; Donkerbroek, A. J.; Meerts, W. L.; Dam, N. J.; ter Meulen, J. J.

    2007-01-01

    We present quantitative, in-cylinder, UV-laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine. Processing of the raw fluorescence signals includes a detailed correction, based on additional measurements, for the effect of laser beam and fluorescence attenuation, and

  11. Auditory/visual distance estimation: accuracy and variability

    Directory of Open Access Journals (Sweden)

    Paul Wallace Anderson

    2014-10-01

    Full Text Available Past research has shown that auditory distance estimation improves when listeners are given the opportunity to see all possible sound sources when compared to no visual input. It has also been established that distance estimation is more accurate in vision than in audition. The present study investigates the degree to which auditory distance estimation is improved when matched with a congruent visual stimulus. Virtual sound sources based on binaural room impulse response (BRIR measurements made from distances ranging from approximately 0.3 to 9.8 m in a concert hall were used as auditory stimuli. Visual stimuli were photographs taken from the listener’s perspective at each distance in the impulse response measurement setup presented on a large HDTV monitor. Listeners were asked to estimate egocentric distance to the sound source in each of three conditions: auditory only (A, visual only (V, and congruent auditory/visual stimuli (A+V. Each condition was presented within its own block. Sixty-two listeners were tested in order to quantify the response variability inherent in auditory distance perception. Distance estimates from both the V and A+V conditions were found to be considerably more accurate and less variable than estimates from the A condition.

  12. Patellofemoral instability: Quantitative evaluation of predisposing factors by MRI

    Directory of Open Access Journals (Sweden)

    Noha Mohamed Osman, M.D.

    2016-12-01

    Full Text Available Objective: To determine the contribution of MRI in evaluating patellofemoral instability (PFI and to compare the underlying predisposing factors between the study and control groups. Materials and methods: We enrolled knee MRI scans of 38 patients with lateral patellar dislocation (LPD and 38 control subjects. All MRI scans were examined for LPD and patellofemoral joint (PFJ morphological abnormalities. The lateral trochlear inclination angle, sulcus angle and trochlear depth were the MR measures for trochlear dysplasia (TD, patellar height ratio was used for evaluation of patella alta, the patellar tilt angle, and the tibial tuberosity-trochlear groove (TT-TG distance were also measured. Results: MRI confirmed PFI in 84.2% of study group and detected abnormal PFJ morphological factors in all cases. The prevalences and mean values of all MR parameters showed significant differences (p < 0.001 between the study and control groups. MR parameters for TD had the highest sensitivity of 57.9%, while the TT-TG distance was the most specific 97.4% for PFI. The prevalence of combined PFJ abnormal morphological factors was 36.8% in the study group. Conclusion: MRI was useful in quantitative measuring of the predisposing factors contributing to PFI resulting in significant difference in all MR parameters between the study and control groups.

  13. Time-Distance Helioseismology: Noise Estimation

    Science.gov (United States)

    Gizon, L.; Birch, A. C.

    2004-10-01

    As in global helioseismology, the dominant source of noise in time-distance helioseismology measurements is realization noise due to the stochastic nature of the excitation mechanism of solar oscillations. Characterizing noise is important for the interpretation and inversion of time-distance measurements. In this paper we introduce a robust definition of travel time that can be applied to very noisy data. We then derive a simple model for the full covariance matrix of the travel-time measurements. This model depends only on the expectation value of the filtered power spectrum and assumes that solar oscillations are stationary and homogeneous on the solar surface. The validity of the model is confirmed through comparison with SOHO MDI measurements in a quiet-Sun region. We show that the correlation length of the noise in the travel times is about half the dominant wavelength of the filtered power spectrum. We also show that the signal-to-noise ratio in quiet-Sun travel-time maps increases roughly as the square root of the observation time and is at maximum for a distance near half the length scale of supergranulation.

  14. Measuring the performance of visual to auditory information conversion.

    Directory of Open Access Journals (Sweden)

    Shern Shiou Tan

    Full Text Available BACKGROUND: Visual to auditory conversion systems have been in existence for several decades. Besides being among the front runners in providing visual capabilities to blind users, the auditory cues generated from image sonification systems are still easier to learn and adapt to compared to other similar techniques. Other advantages include low cost, easy customizability, and universality. However, every system developed so far has its own set of strengths and weaknesses. In order to improve these systems further, we propose an automated and quantitative method to measure the performance of such systems. With these quantitative measurements, it is possible to gauge the relative strengths and weaknesses of different systems and rank the systems accordingly. METHODOLOGY: Performance is measured by both the interpretability and also the information preservation of visual to auditory conversions. Interpretability is measured by computing the correlation of inter image distance (IID and inter sound distance (ISD whereas the information preservation is computed by applying Information Theory to measure the entropy of both visual and corresponding auditory signals. These measurements provide a basis and some insights on how the systems work. CONCLUSIONS: With an automated interpretability measure as a standard, more image sonification systems can be developed, compared, and then improved. Even though the measure does not test systems as thoroughly as carefully designed psychological experiments, a quantitative measurement like the one proposed here can compare systems to a certain degree without incurring much cost. Underlying this research is the hope that a major breakthrough in image sonification systems will allow blind users to cost effectively regain enough visual functions to allow them to lead secure and productive lives.

  15. Assessing distances and consistency of kinematics in Gaia/TGAS

    Science.gov (United States)

    Schönrich, Ralph; Aumer, Michael

    2017-12-01

    We apply the statistical methods by Schönrich, Binney & Asplund to assess the quality of distances and kinematics in the Radial Velocity Experiment (RAVE)-Tycho-Gaia Astrometric Solution (TGAS) and Large Sky Area Multiobject Fiber Spectroscopic Telescope (LAMOST)-TGAS samples of Solar neighbourhood stars. These methods yield a nominal distance accuracy of 1-2 per cent. Other than common tests on parallax accuracy, they directly test distance estimations including the effects of distance priors. We show how to construct these priors including the survey selection functions (SSFs) directly from the data. We demonstrate that neglecting the SSFs causes severe distance biases. Due to the decline of the SSFs in distance, the simple 1/parallax estimate only mildly underestimates distances. We test the accuracy of measured line-of-sight velocities (vlos) by binning the samples in the nominal vlos uncertainties. We find: (i) the LAMOST vlos have a ∼-5 km s-1 offset; (ii) the average LAMOST measurement error for vlos is ∼7 km s-1, significantly smaller than, and nearly uncorrelated with the nominal LAMOST estimates. The RAVE sample shows either a moderate distance underestimate, or an unaccounted source of vlos dispersion (e∥) from measurement errors and binary stars. For a subsample of suspected binary stars in RAVE, our methods indicate significant distance underestimates. Separating a sample in metallicity or kinematics to select thick-disc/halo stars, discriminates between distance bias and e∥. For LAMOST, this separation yields consistency with pure vlos measurement errors. We find an anomaly near longitude l ∼ (300 ± 60)° and distance s ∼ (0.32 ± 0.03) kpc on both sides of the galactic plane, which could be explained by either a localized distance error or a breathing mode.

  16. Quantitative SPECT brain imaging: Effects of attenuation and detector response

    International Nuclear Information System (INIS)

    Gilland, D.R.; Jaszczak, R.J.; Bowsher, J.E.; Turkington, T.G.; Liang, Z.; Greer, K.L.; Coleman, R.E.

    1993-01-01

    Two physical factors that substantially degrade quantitative accuracy in SPECT imaging of the brain are attenuation and detector response. In addition to the physical factors, random noise in the reconstructed image can greatly affect the quantitative measurement. The purpose of this work was to implement two reconstruction methods that compensate for attenuation and detector response, a 3D maximum likelihood-EM method (ML) and a filtered backprojection method (FB) with Metz filter and Chang attenuation compensation, and compare the methods in terms of quantitative accuracy and image noise. The methods were tested on simulated data of the 3D Hoffman brain phantom. The simulation incorporated attenuation and distance-dependent detector response. Bias and standard deviation of reconstructed voxel intensities were measured in the gray and white matter regions. The results with ML showed that in both the gray and white matter regions as the number of iterations increased, bias decreased and standard deviation increased. Similar results were observed with FB as the Metz filter power increased. In both regions, ML had smaller standard deviation than FB for a given bias. Reconstruction times for the ML method have been greatly reduced through efficient coding, limited source support, and by computing attenuation factors only along rays perpendicular to the detector

  17. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, Aleksander; Proksch, Roger [Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117 (United States)

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  18. Students' Perception on the Quality of Open and Distance Learning ...

    African Journals Online (AJOL)

    This study aimed at assessing the quality of open and distance learning programmes from students‟ point of view. The sample was drawn from the Open University of Tanzania‟s students in nine University regional centres from Tanzania mainland and it constituted 305 students. Both qualitative and quantitative methods ...

  19. Practicable methods for histological section thickness measurement in quantitative stereological analyses.

    Science.gov (United States)

    Matenaers, Cyrill; Popper, Bastian; Rieger, Alexandra; Wanke, Rüdiger; Blutke, Andreas

    2018-01-01

    The accuracy of quantitative stereological analysis tools such as the (physical) disector method substantially depends on the precise determination of the thickness of the analyzed histological sections. One conventional method for measurement of histological section thickness is to re-embed the section of interest vertically to its original section plane. The section thickness is then measured in a subsequently prepared histological section of this orthogonally re-embedded sample. However, the orthogonal re-embedding (ORE) technique is quite work- and time-intensive and may produce inaccurate section thickness measurement values due to unintentional slightly oblique (non-orthogonal) positioning of the re-embedded sample-section. Here, an improved ORE method is presented, allowing for determination of the factual section plane angle of the re-embedded section, and correction of measured section thickness values for oblique (non-orthogonal) sectioning. For this, the analyzed section is mounted flat on a foil of known thickness (calibration foil) and both the section and the calibration foil are then vertically (re-)embedded. The section angle of the re-embedded section is then calculated from the deviation of the measured section thickness of the calibration foil and its factual thickness, using basic geometry. To find a practicable, fast, and accurate alternative to ORE, the suitability of spectral reflectance (SR) measurement for determination of plastic section thicknesses was evaluated. Using a commercially available optical reflectometer (F20, Filmetrics®, USA), the thicknesses of 0.5 μm thick semi-thin Epon (glycid ether)-sections and of 1-3 μm thick plastic sections (glycolmethacrylate/ methylmethacrylate, GMA/MMA), as regularly used in physical disector analyses, could precisely be measured within few seconds. Compared to the measured section thicknesses determined by ORE, SR measures displayed less than 1% deviation. Our results prove the applicability

  20. Energetic and biomechanical constraints on animal migration distance.

    Science.gov (United States)

    Hein, Andrew M; Hou, Chen; Gillooly, James F

    2012-02-01

    Animal migration is one of the great wonders of nature, but the factors that determine how far migrants travel remain poorly understood. We present a new quantitative model of animal migration and use it to describe the maximum migration distance of walking, swimming and flying migrants. The model combines biomechanics and metabolic scaling to show how maximum migration distance is constrained by body size for each mode of travel. The model also indicates that the number of body lengths travelled by walking and swimming migrants should be approximately invariant of body size. Data from over 200 species of migratory birds, mammals, fish, and invertebrates support the central conclusion of the model - that body size drives variation in maximum migration distance among species through its effects on metabolism and the cost of locomotion. The model provides a new tool to enhance general understanding of the ecology and evolution of migration. © 2011 Blackwell Publishing Ltd/CNRS.

  1. Long distance measurement with a femtosecond laser based frequency comb

    Science.gov (United States)

    Bhattacharya, N.; Cui, M.; Zeitouny, M. G.; Urbach, H. P.; van den Berg, S. A.

    2017-11-01

    Recent advances in the field of ultra-short pulse lasers have led to the development of reliable sources of carrier envelope phase stabilized femtosecond pulses. The pulse train generated by such a source has a frequency spectrum that consists of discrete, regularly spaced lines known as a frequency comb. In this case both the frequency repetition and the carrier-envelope-offset frequency are referenced to a frequency standard, like an atomic clock. As a result the accuracy of the frequency standard is transferred to the optical domain, with the frequency comb as transfer oscillator. These unique properties allow the frequency comb to be applied as a versatile tool, not only for time and frequency metrology, but also in fundamental physics, high-precision spectroscopy, and laser noise characterization. The pulse-to-pulse phase relationship of the light emitted by the frequency comb has opened up new directions for long range highly accurate distance measurement.

  2. Interuncal distance measurements in normal controls and patients with dementia. MR imaging study

    International Nuclear Information System (INIS)

    Ishii, Kazunari; Kitagaki, Hajime; Sakamoto, Setsu; Yamaji, Shigeru; Kono, Michio.

    1995-01-01

    To evaluate the utility of measuring interuncal distance (IUD) as a reflection of the limbic system, we compared the IUD of 60 dementia patients with that of 10 normal controls. We also measured the width of the intracranial compartment (W1 and W2) to correct for differences in individual brain size, and calculated the ratio of IUD/W1 and IUD/W2. IUD could not separate patients with dementia from normal controls, but there were significant differences in IUD/W1 and IUD/W2 between patients with dementia and normal controls. IUD, IUD/W1 and IUD/W2 did not correlate with Mini-Mental Examination score or ADAS score in patients with dementia. We conclude that IUD measurement is not helpful in distinguishing patients with mild stage dementia from normal aged people or as a scale for dementia. However, we suggest that IUD/W1 and IUD/W2 can discriminate between cases of mild dementia and normal aged people. (author)

  3. Retention time variability as a mechanism for animal mediated long-distance dispersal.

    Directory of Open Access Journals (Sweden)

    Vishwesha Guttal

    Full Text Available Long-distance dispersal (LDD events, although rare for most plant species, can strongly influence population and community dynamics. Animals function as a key biotic vector of seeds and thus, a mechanistic and quantitative understanding of how individual animal behaviors scale to dispersal patterns at different spatial scales is a question of critical importance from both basic and applied perspectives. Using a diffusion-theory based analytical approach for a wide range of animal movement and seed transportation patterns, we show that the scale (a measure of local dispersal of the seed dispersal kernel increases with the organisms' rate of movement and mean seed retention time. We reveal that variations in seed retention time is a key determinant of various measures of LDD such as kurtosis (or shape of the kernel, thinkness of tails and the absolute number of seeds falling beyond a threshold distance. Using empirical data sets of frugivores, we illustrate the importance of variability in retention times for predicting the key disperser species that influence LDD. Our study makes testable predictions linking animal movement behaviors and gut retention times to dispersal patterns and, more generally, highlights the potential importance of animal behavioral variability for the LDD of seeds.

  4. A Major Locus for Quantitatively Measured Shank Skin Color Traits in Korean Native Chicken

    Directory of Open Access Journals (Sweden)

    S. Jin

    2016-11-01

    Full Text Available Shank skin color of Korean native chicken (KNC shows large color variations. It varies from white, yellow, green, bluish or grey to black, whilst in the majority of European breeds the shanks are typically yellow-colored. Three shank skin color-related traits (i.e., lightness [L*], redness [a*], and yellowness [b*] were measured by a spectrophotometer in 585 progeny from 68 nuclear families in the KNC resource population. We performed genome scan linkage analysis to identify loci that affect quantitatively measured shank skin color traits in KNC. All these birds were genotyped with 167 DNA markers located throughout the 26 autosomes. The SOLAR program was used to conduct multipoint variance-component quantitative trait locus (QTL analyses. We detected a major QTL that affects b* value (logarithm of odds [LOD] = 47.5, p = 1.60×10−49 on GGA24 (GGA for Gallus gallus. At the same location, we also detected a QTL that influences a* value (LOD = 14.2, p = 6.14×10−16. Additionally, beta-carotene dioxygenase 2 (BCDO2, the obvious positional candidate gene under the linkage peaks on GGA24, was investigated by the two association tests: i.e., measured genotype association (MGA and quantitative transmission disequilibrium test (QTDT. Significant associations were detected between BCDO2 g.9367 A>C and a* (PMGA = 1.69×10−28; PQTDT = 2.40×10−25. The strongest associations were between BCDO2 g.9367 A>C and b* (PMGA = 3.56×10−66; PQTDT = 1.68×10−65. However, linkage analyses conditional on the single nucleotide polymorphism indicated that other functional variants should exist. Taken together, we demonstrate for the first time the linkage and association between the BCDO2 locus on GGA24 and quantitatively measured shank skin color traits in KNC.

  5. Nanomechanical characterization by double-pass force-distance mapping

    Energy Technology Data Exchange (ETDEWEB)

    Dagdas, Yavuz S; Tekinay, Ayse B; Guler, Mustafa O; Dana, Aykutlu [UNAM Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Necip Aslan, M, E-mail: aykutlu@unam.bilkent.edu.tr [Department of Physics, Istanbul Technical University, Istanbul (Turkey)

    2011-07-22

    We demonstrate high speed force-distance mapping using a double-pass scheme. The topography is measured in tapping mode in the first pass and this information is used in the second pass to move the tip over the sample. In the second pass, the cantilever dither signal is turned off and the sample is vibrated. Rapid (few kHz frequency) force-distance curves can be recorded with small peak interaction force, and can be processed into an image. Such a double-pass measurement eliminates the need for feedback during force-distance measurements. The method is demonstrated on self-assembled peptidic nanofibers.

  6. Nanomechanical characterization by double-pass force-distance mapping

    International Nuclear Information System (INIS)

    Dagdas, Yavuz S; Tekinay, Ayse B; Guler, Mustafa O; Dana, Aykutlu; Necip Aslan, M

    2011-01-01

    We demonstrate high speed force-distance mapping using a double-pass scheme. The topography is measured in tapping mode in the first pass and this information is used in the second pass to move the tip over the sample. In the second pass, the cantilever dither signal is turned off and the sample is vibrated. Rapid (few kHz frequency) force-distance curves can be recorded with small peak interaction force, and can be processed into an image. Such a double-pass measurement eliminates the need for feedback during force-distance measurements. The method is demonstrated on self-assembled peptidic nanofibers.

  7. Application of the Classification Tree Model in Predicting Learner Dropout Behaviour in Open and Distance Learning

    Science.gov (United States)

    Yasmin, Dr.

    2013-01-01

    This paper demonstrates the meaningful application of learning analytics for determining dropout predictors in the context of open and distance learning in a large developing country. The study was conducted at the Directorate of Distance Education at the University of North Bengal, West Bengal, India. This study employed a quantitative research…

  8. A comparison of 3-D computed tomography versus 2-D radiography measurements of ulnar variance and ulnolunate distance during forearm rotation.

    Science.gov (United States)

    Kawanishi, Y; Moritomo, H; Omori, S; Kataoka, T; Murase, T; Sugamoto, K

    2014-06-01

    Positive ulnar variance is associated with ulnar impaction syndrome and ulnar variance is reported to increase with pronation. However, radiographic measurement can be affected markedly by the incident angle of the X-ray beam. We performed three-dimensional (3-D) computed tomography measurements of ulnar variance and ulnolunate distance during forearm rotation and compared these with plain radiographic measurements in 15 healthy wrists. From supination to pronation, ulnar variance increased in all cases on the radiographs; mean ulnar variance increased significantly and mean ulnolunate distance decreased significantly. However on 3-D imaging, ulna variance decreased in 12 cases on moving into pronation and increased in three cases; neither the mean ulnar variance nor mean ulnolunate distance changed significantly. Our results suggest that the forearm position in which ulnar variance increased varies among individuals. This may explain why some patients with ulnar impaction syndrome complain of wrist pain exacerbated by forearm supination. It also suggests that standard radiographic assessments of ulnar variance are unreliable. © The Author(s) 2013.

  9. A VLBI resolution of the Pleiades distance controversy.

    Science.gov (United States)

    Melis, Carl; Reid, Mark J; Mioduszewski, Amy J; Stauffer, John R; Bower, Geoffrey C

    2014-08-29

    Because of its proximity and its youth, the Pleiades open cluster of stars has been extensively studied and serves as a cornerstone for our understanding of the physical properties of young stars. This role is called into question by the "Pleiades distance controversy," wherein the cluster distance of 120.2 ± 1.5 parsecs (pc) as measured by the optical space astrometry mission Hipparcos is significantly different from the distance of 133.5 ± 1.2 pc derived with other techniques. We present an absolute trigonometric parallax distance measurement to the Pleiades cluster that uses very long baseline radio interferometry (VLBI). This distance of 136.2 ± 1.2 pc is the most accurate and precise yet presented for the cluster and is incompatible with the Hipparcos distance determination. Our results cement existing astrophysical models for Pleiades-age stars. Copyright © 2014, American Association for the Advancement of Science.

  10. Visual characterization and quantitative measurement of artemisinin-induced DNA breakage

    Energy Technology Data Exchange (ETDEWEB)

    Cai Huaihong [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China); Yang Peihui [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China)], E-mail: typh@jnu.edu.cn; Chen Jianan [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China); Liang Zhihong [Experiment and Technology Center, Jinan University, Guangzhou 510632 (China); Chen Qiongyu [Institute of Genetic Engineering, Jinan University, Guangzhou 510632 (China); Cai Jiye [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China)], E-mail: tjycai@jnu.edu.cn

    2009-05-01

    DNA conformational change and breakage induced by artemisinin, a traditional Chinese herbal medicine, have been visually characterized and quantitatively measured by the multiple tools of electrochemistry, UV-vis absorption spectroscopy, atomic force microscopy (AFM), and DNA electrophoresis. Electrochemical and spectroscopic results confirm that artemisinin can intercalate into DNA double helix, which causes DNA conformational changes. AFM imaging vividly demonstrates uneven DNA strand breaking induced by QHS interaction. To assess these DNA breakages, quantitative analysis of the extent of DNA breakage has been performed by analyzing AFM images. Basing on the statistical analysis, the occurrence of DNA breaks is found to depend on the concentration of artemisinin. DNA electrophoresis further validates that the intact DNA molecules are unwound due to the breakages occur at the single strands. A reliable scheme is proposed to explain the process of artemisinin-induced DNA cleavage. These results can provide further information for better understanding the anticancer activity of artemisinin.

  11. A "Virtual Fieldtrip": Service Learning in Distance Education Technical Writing Courses

    Science.gov (United States)

    Soria, Krista M.; Weiner, Brad

    2013-01-01

    This mixed-methods experimental study examined the effect of service learning in a distance education technical writing course. Quantitative analysis of data found evidence for a positive relationship between participation in service learning and technical writing learning outcomes. Additionally, qualitative analysis suggests that service learning…

  12. Developing quantitative tools for measuring aspects of prisonization

    DEFF Research Database (Denmark)

    Kjær Minke, Linda

    2013-01-01

    The article describes and discusses the preparation and completion of a quantitative study among prison officers and prisoners.......The article describes and discusses the preparation and completion of a quantitative study among prison officers and prisoners....

  13. Quantitative analysis of patient-specific dosimetric IMRT verification

    International Nuclear Information System (INIS)

    Budgell, G J; Perrin, B A; Mott, J H L; Fairfoul, J; Mackay, R I

    2005-01-01

    Patient-specific dosimetric verification methods for IMRT treatments are variable, time-consuming and frequently qualitative, preventing evidence-based reduction in the amount of verification performed. This paper addresses some of these issues by applying a quantitative analysis parameter to the dosimetric verification procedure. Film measurements in different planes were acquired for a series of ten IMRT prostate patients, analysed using the quantitative parameter, and compared to determine the most suitable verification plane. Film and ion chamber verification results for 61 patients were analysed to determine long-term accuracy, reproducibility and stability of the planning and delivery system. The reproducibility of the measurement and analysis system was also studied. The results show that verification results are strongly dependent on the plane chosen, with the coronal plane particularly insensitive to delivery error. Unexpectedly, no correlation could be found between the levels of error in different verification planes. Longer term verification results showed consistent patterns which suggest that the amount of patient-specific verification can be safely reduced, provided proper caution is exercised: an evidence-based model for such reduction is proposed. It is concluded that dose/distance to agreement (e.g., 3%/3 mm) should be used as a criterion of acceptability. Quantitative parameters calculated for a given criterion of acceptability should be adopted in conjunction with displays that show where discrepancies occur. Planning and delivery systems which cannot meet the required standards of accuracy, reproducibility and stability to reduce verification will not be accepted by the radiotherapy community

  14. Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure

    Science.gov (United States)

    Kim, Donghyeong; Jeong, Kwang-Yong; Kim, Jinhyung; Ee, Ho-Seok; Kang, Ju-Hyung; Park, Hong-Gyu; Seo, Min-Kyo

    2017-11-01

    Light scattering by nanostructures has facilitated research on various optical phenomena and applications by interfacing the near fields and free-propagating radiation. However, direct quantitative measurement of far-field scattering by a single nanostructure on the wavelength scale or less is highly challenging. Conventional back-focal-plane imaging covers only a limited solid angle determined by the numerical aperture of the objectives and suffers from optical aberration and distortion. Here, we present a quantitative measurement of the differential far-field scattering cross section of a single nanostructure over the full hemisphere. In goniometer-based far-field scanning with a high signal-to-noise ratio of approximately 27.4 dB, weak scattering signals are efficiently isolated and detected under total-internal-reflection illumination. Systematic measurements reveal that the total and differential scattering cross sections of a Au nanorod are determined by the plasmonic Fabry-Perot resonances and the phase-matching conditions to the free-propagating radiation, respectively. We believe that our angle-resolved far-field measurement scheme provides a way to investigate and evaluate the physical properties and performance of nano-optical materials and phenomena.

  15. EDUCATEE'S THESAURUS AS AN OBJECT OF MEASURING LEARNED MATERIAL OF THE DISTANCE LEARNING COURSE

    Directory of Open Access Journals (Sweden)

    Alexander Aleksandrovich RYBANOV

    2013-10-01

    Full Text Available Monitoring and control over the process of studying the distance learning course are based on solving the problem of making out an adequate integral mark to the educatee for mastering entire study course, by testing results. It is suggested to use the degree of correspondence between educatee's thesaurus and the study course thesaurus as an integral mark for the degree of mastering the distance learning course. Study course thesaurus is a set of the course objects with relations between them specified. The article considers metrics of the study course thesaurus complexity, made on the basis of the graph theory and the information theory. It is suggested to use the amount of information contained in the study course thesaurus graph as the metrics of the study course thesaurus complexity. Educatee's thesaurus is considered as an object of measuring educational material learned at the semantic level and is assessed on the basis of amount of information contained in its graph, taking into account the factors of learning the thesaurus objects.

  16. VCSEL-based sensors for distance and velocity

    Science.gov (United States)

    Moench, Holger; Carpaij, Mark; Gerlach, Philipp; Gronenborn, Stephan; Gudde, Ralph; Hellmig, Jochen; Kolb, Johanna; van der Lee, Alexander

    2016-03-01

    VCSEL based sensors can measure distance and velocity in three dimensional space and are already produced in high quantities for professional and consumer applications. Several physical principles are used: VCSELs are applied as infrared illumination for surveillance cameras. High power arrays combined with imaging optics provide a uniform illumination of scenes up to a distance of several hundred meters. Time-of-flight methods use a pulsed VCSEL as light source, either with strong single pulses at low duty cycle or with pulse trains. Because of the sensitivity to background light and the strong decrease of the signal with distance several Watts of laser power are needed at a distance of up to 100m. VCSEL arrays enable power scaling and can provide very short pulses at higher power density. Applications range from extended functions in a smartphone over industrial sensors up to automotive LIDAR for driver assistance and autonomous driving. Self-mixing interference works with coherent laser photons scattered back into the cavity. It is therefore insensitive to environmental light. The method is used to measure target velocity and distance with very high accuracy at distances up to one meter. Single-mode VCSELs with integrated photodiode and grating stabilized polarization enable very compact and cost effective products. Besides the well know application as computer input device new applications with even higher accuracy or for speed over ground measurement in automobiles and up to 250km/h are investigated. All measurement methods exploit the known VCSEL properties like robustness, stability over temperature and the potential for packages with integrated optics and electronics. This makes VCSEL sensors ideally suited for new mass applications in consumer and automotive markets.

  17. Distance of Sample Measurement Points to Prototype Catalog Curve

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Karamehmedovic, Mirza; Perram, John

    2006-01-01

    We discuss strategies for comparing discrete data points to a catalog (reference) curve by means of the Euclidean distance from each point to the curve in a pump's head H vs. flow Qdiagram. In particular we find that a method currently in use is inaccurate. We propose several alternatives...

  18. Quantitative facial asymmetry: using three-dimensional photogrammetry to measure baseline facial surface symmetry.

    Science.gov (United States)

    Taylor, Helena O; Morrison, Clinton S; Linden, Olivia; Phillips, Benjamin; Chang, Johnny; Byrne, Margaret E; Sullivan, Stephen R; Forrest, Christopher R

    2014-01-01

    Although symmetry is hailed as a fundamental goal of aesthetic and reconstructive surgery, our tools for measuring this outcome have been limited and subjective. With the advent of three-dimensional photogrammetry, surface geometry can be captured, manipulated, and measured quantitatively. Until now, few normative data existed with regard to facial surface symmetry. Here, we present a method for reproducibly calculating overall facial symmetry and present normative data on 100 subjects. We enrolled 100 volunteers who underwent three-dimensional photogrammetry of their faces in repose. We collected demographic data on age, sex, and race and subjectively scored facial symmetry. We calculated the root mean square deviation (RMSD) between the native and reflected faces, reflecting about a plane of maximum symmetry. We analyzed the interobserver reliability of the subjective assessment of facial asymmetry and the quantitative measurements and compared the subjective and objective values. We also classified areas of greatest asymmetry as localized to the upper, middle, or lower facial thirds. This cluster of normative data was compared with a group of patients with subtle but increasing amounts of facial asymmetry. We imaged 100 subjects by three-dimensional photogrammetry. There was a poor interobserver correlation between subjective assessments of asymmetry (r = 0.56). There was a high interobserver reliability for quantitative measurements of facial symmetry RMSD calculations (r = 0.91-0.95). The mean RMSD for this normative population was found to be 0.80 ± 0.24 mm. Areas of greatest asymmetry were distributed as follows: 10% upper facial third, 49% central facial third, and 41% lower facial third. Precise measurement permitted discrimination of subtle facial asymmetry within this normative group and distinguished norms from patients with subtle facial asymmetry, with placement of RMSDs along an asymmetry ruler. Facial surface symmetry, which is poorly assessed

  19. INTERPRETING THE DISTANCE CORRELATION RESULTS FOR THE COMBO-17 SURVEY

    International Nuclear Information System (INIS)

    Richards, Mercedes T.; Richards, Donald St. P.; Martínez-Gómez, Elizabeth

    2014-01-01

    The accurate classification of galaxies in large-sample astrophysical databases of galaxy clusters depends sensitively on the ability to distinguish between morphological types, especially at higher redshifts. This capability can be enhanced through a new statistical measure of association and correlation, called the distance correlation coefficient, which has more statistical power to detect associations than does the classical Pearson measure of linear relationships between two variables. The distance correlation measure offers a more precise alternative to the classical measure since it is capable of detecting nonlinear relationships that may appear in astrophysical applications. We showed recently that the comparison between the distance and Pearson correlation coefficients can be used effectively to isolate potential outliers in various galaxy data sets, and this comparison has the ability to confirm the level of accuracy associated with the data. In this work, we elucidate the advantages of distance correlation when applied to large databases. We illustrate how the distance correlation measure can be used effectively as a tool to confirm nonlinear relationships between various variables in the COMBO-17 database, including the lengths of the major and minor axes, and the alternative redshift distribution. For these outlier pairs, the distance correlation coefficient is routinely higher than the Pearson coefficient since it is easier to detect nonlinear relationships with distance correlation. The V-shaped scatter plots of Pearson versus distance correlation coefficients also reveal the patterns with increasing redshift and the contributions of different galaxy types within each redshift range

  20. A multicrystal positron scanner for quantitative studies with positron-emitting radionuclides

    International Nuclear Information System (INIS)

    Ostertag, H.; Kuebler, W.; Kubesch, R.; Lorenz, W.J.

    1981-01-01

    A non-tomographic multicrystal whole-body scanner for quantitative positron imaging has been designed. The detector system consists of 64 coincidence detector pairs arranged in two opposing detector banks. NaI crystals of 38-mm diameter and 76-mm length are used. The patient moves linearly between the stationary transverse detector banks. The scanning area is 64-cm wide and up to 192-cm long. The spatial resolution is 2 cm at a sampling distance of 1 cm. The plane sensitivity amounts to 6400 counts/s for a pure positron emitter of 1 μCi/cm 2 . The accuracy of quantitative activity measurements is better than +- 15% for activities up to a few μCi/cm 2 . The design of the instrument, and its capabilities and limitations, are discussed. Initial experimental and clinical results are presented. (author)

  1. A distance measurement between specific sites on the cytoplasmic surface of bovine rhodopsin in rod outer segment disk membranes.

    Science.gov (United States)

    Albert, A D; Watts, A; Spooner, P; Groebner, G; Young, J; Yeagle, P L

    1997-08-14

    Structural information on mammalian integral membrane proteins is scarce. As part of work on an alternative approach to the structure of bovine rhodopsin, a method was devised to obtain an intramolecular distance between two specific sites on rhodopsin while in the rod outer segment disk membrane. In this report, the distance between the rhodopsin kinase phosphorylation site(s) on the carboxyl terminal and the top of the third transmembrane helix was measured on native rhodopsin. Rhodopsin was labeled with a nuclear spin label (31P) by limited phosphorylation with rhodopsin kinase. Major phosphorylation occurs at serines 343 and 338 on the carboxyl terminal. The phosphorylated rhodopsin was then specifically labeled on cysteine 140 with an electron spin label. Magic angle spinning 31P-nuclear magnetic resonance revealed the resonance arising from the phosphorylated protein. The enhancement of the transverse relaxation of this resonance by the paramagnetic spin label was observed. The strength of this perturbation was used to determine the through-space distance between the phosphorylation site(s) and the spin label position. A distance of 18 +/- 3 A was obtained.

  2. Quantitative autoradiography of neurochemicals

    International Nuclear Information System (INIS)

    Rainbow, T.C.; Biegon, A.; Bleisch, W.V.

    1982-01-01

    Several new methods have been developed that apply quantitative autoradiography to neurochemistry. These methods are derived from the 2-deoxyglucose (2DG) technique of Sokoloff (1), which uses quantitative autoradiography to measure the rate of glucose utilization in brain structures. The new methods allow the measurement of the rate of cerbral protein synthesis and the levels of particular neurotransmitter receptors by quantitative autoradiography. As with the 2DG method, the new techniques can measure molecular levels in micron-sized brain structures; and can be used in conjunction with computerized systems of image processing. It is possible that many neurochemical measurements could be made by computerized analysis of quantitative autoradiograms

  3. Quantitative measurement of solvation shells using frequency modulated atomic force microscopy

    Science.gov (United States)

    Uchihashi, T.; Higgins, M.; Nakayama, Y.; Sader, J. E.; Jarvis, S. P.

    2005-03-01

    The nanoscale specificity of interaction measurements and additional imaging capability of the atomic force microscope make it an ideal technique for measuring solvation shells in a variety of liquids next to a range of materials. Unfortunately, the widespread use of atomic force microscopy for the measurement of solvation shells has been limited by uncertainties over the dimensions, composition and durability of the tip during the measurements, and problems associated with quantitative force calibration of the most sensitive dynamic measurement techniques. We address both these issues by the combined use of carbon nanotube high aspect ratio probes and quantifying the highly sensitive frequency modulation (FM) detection technique using a recently developed analytical method. Due to the excellent reproducibility of the measurement technique, additional information regarding solvation shell size as a function of proximity to the surface has been obtained for two very different liquids. Further, it has been possible to identify differences between chemical and geometrical effects in the chosen systems.

  4. Semi-quantitative myocardial perfusion measured by computed tomography in patients with refractory angina

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Kühl, Jørgen Tobias; Kjaer, Andreas

    2017-01-01

    INTRODUCTION: Computed tomography (CT) is a novel method for assessment of myocardial perfusion and has not yet been compared to rubidium-82 positron emission tomography (PET). We aimed to compare CT measured semi-quantitative myocardial perfusion with absolute quantified myocardial perfusion usi...

  5. Feasibility of Quantitative Ultrasound Measurement of the Heel Bone in People with Intellectual Disabilities

    Science.gov (United States)

    Mergler, S.; Lobker, B.; Evenhuis, H. M.; Penning, C.

    2010-01-01

    Low bone mineral density (BMD) and fractures are common in people with intellectual disabilities (ID). Reduced mobility in case of motor impairment and the use of anti-epileptic drugs contribute to the development of low BMD. Quantitative ultrasound (QUS) measurement of the heel bone is a non-invasive and radiation-free method for measuring bone…

  6. An Introduction to Quantitative Measures for Software Maintenance of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jo, Hyun Jun; Seong, Poong Hyun

    2007-01-01

    The I and C system of NPP has changed from the analog system to the digital-based system using microcontrollers and software. Thus, software has become very important for NPP control system. The software life cycle is divided into the development and maintenance phase largely. Because poor software maintenance work introduces new errors and makes software much complex, we have to consider the effective maintenance methods for the reliability and maintainability of NPP software. Function Block Diagram (FBD) is a standard application programming language for the Programmable Logic Controller (PLC) and currently being used in the development of a fully-digitalized reactor protection system (RPS) under the KNICS project. Therefore, the maintenance work will be of great importance in a few years. This paper studies on the measures which give quantitative information to software maintainer and manager before and after modification. The remainder of this paper is organized as follows. Section 2 briefly describes software maintenance types and model. In Section 3-5, we introduce the quantitative measures for software maintenance and characteristics of FBD program. A conclusion is provided in Section 6

  7. Comparing alternative approaches to measuring the geographical accessibility of urban health services: Distance types and aggregation-error issues

    OpenAIRE

    Riva Mylène; Abdelmajid Mohamed; Apparicio Philippe; Shearmur Richard

    2008-01-01

    Abstract Background Over the past two decades, geographical accessibility of urban resources for population living in residential areas has received an increased focus in urban health studies. Operationalising and computing geographical accessibility measures depend on a set of four parameters, namely definition of residential areas, a method of aggregation, a measure of accessibility, and a type of distance. Yet, the choice of these parameters may potentially generate different results leadi...

  8. Long distance elementary measurement of the radiation dose ratio produced by neutron activation

    International Nuclear Information System (INIS)

    Zhou Changgeng; Lou Benchao; Wu Chunlei; Hu Yonghong; Li Yan

    2009-04-01

    The working principle and the structure and performances of a long distance controllable individual radiation dose ratio instrument are described. The radiation dose ratio produced by neutron activation is elementarily measured by using this instrument in the neutron generator hall with high neutron yield. When neutron yield arrives to 2 x 10 11 s -1 , the radiation dose ratio produced by neutron activation is 99.9 μSv/h in 1 h after the generator being stopped. The radiation dose ratio is reduced to 24.4 μSv/h in 39 h after the generator being stopped. When neutron yield is 3.2 x 10 10 s -1 , the radiation dose ratio produced by neutron activation is 21.9 μSv/h in 36 min, after the generator being stopped. The measurement results may provide reference for physical experimenters and neutron generator operators. (authors)

  9. The Next Generation Virgo Cluster Survey (NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (and Beyond)

    Science.gov (United States)

    Cantiello, Michele; Blakeslee, John P.; Ferrarese, Laura; Côté, Patrick; Roediger, Joel C.; Raimondo, Gabriella; Peng, Eric W.; Gwyn, Stephen; Durrell, Patrick R.; Cuillandre, Jean-Charles

    2018-04-01

    We describe a program to measure surface brightness fluctuation (SBF) distances to galaxies observed in the Next Generation Virgo Cluster Survey (NGVS), a photometric imaging survey covering 104 deg2 of the Virgo cluster in the u*, g, i, and z bandpasses with the Canada–France–Hawaii Telescope. We describe the selection of the sample galaxies, the procedures for measuring the apparent i-band SBF magnitude {\\overline{m}}i, and the calibration of the absolute Mibar as a function of observed stellar population properties. The multiband NGVS data set provides multiple options for calibrating the SBF distances, and we explore various calibrations involving individual color indices as well as combinations of two different colors. Within the color range of the present sample, the two-color calibrations do not significantly improve the scatter with respect to wide-baseline, single-color calibrations involving u*. We adopt the ({u}* -z) calibration as a reference for the present galaxy sample, with an observed scatter of 0.11 mag. For a few cases that lack good u* photometry, we use an alternative relation based on a combination of (g-i) and (g-z) colors, with only a slightly larger observed scatter of 0.12 mag. The agreement of our measurements with the best existing distance estimates provides confidence that our measurements are accurate. We present a preliminary catalog of distances for 89 galaxies brighter than B T ≈ 13.0 mag within the survey footprint, including members of the background M and W Clouds at roughly twice the distance of the main body of the Virgo cluster. The extension of the present work to fainter and bluer galaxies is in progress.

  10. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    International Nuclear Information System (INIS)

    Gupta, C.K.; Rohilla, Aman; Abhilash, S.R.; Kabiraj, D.; Singh, R.P.; Mehta, D.; Chamoli, S.K.

    2014-01-01

    A thin isotopic 94 Zr target of thickness 520μg/cm 2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm 2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94 Zr from peeling off, a very thin layer of gold has been evaporated on a 94 Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94 Zr target material was utilized for the fabrication of 94 Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC

  11. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    Science.gov (United States)

    Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.

    2014-11-01

    A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  12. The quantitative LOD score: test statistic and sample size for exclusion and linkage of quantitative traits in human sibships.

    Science.gov (United States)

    Page, G P; Amos, C I; Boerwinkle, E

    1998-04-01

    We present a test statistic, the quantitative LOD (QLOD) score, for the testing of both linkage and exclusion of quantitative-trait loci in randomly selected human sibships. As with the traditional LOD score, the boundary values of 3, for linkage, and -2, for exclusion, can be used for the QLOD score. We investigated the sample sizes required for inferring exclusion and linkage, for various combinations of linked genetic variance, total heritability, recombination distance, and sibship size, using fixed-size sampling. The sample sizes required for both linkage and exclusion were not qualitatively different and depended on the percentage of variance being linked or excluded and on the total genetic variance. Information regarding linkage and exclusion in sibships larger than size 2 increased as approximately all possible pairs n(n-1)/2 up to sibships of size 6. Increasing the recombination (theta) distance between the marker and the trait loci reduced empirically the power for both linkage and exclusion, as a function of approximately (1-2theta)4.

  13. Validation, verification and evaluation of a Train to Train Distance Measurement System by means of Colored Petri Nets

    International Nuclear Information System (INIS)

    Song, Haifeng; Liu, Jieyu; Schnieder, Eckehard

    2017-01-01

    Validation, verification and evaluation are necessary processes to assure the safety and functionality of a system before its application in practice. This paper presents a Train to Train Distance Measurement System (TTDMS), which can provide distance information independently from existing onboard equipment. Afterwards, we proposed a new process using Colored Petri Nets to verify the TTDMS system functional safety, as well as to evaluate the system performance. Three main contributions are carried out in the paper: Firstly, this paper proposes a formalized TTDMS model, and the model correctness is validated using state space analysis and simulation-based verification. Secondly, corresponding checking queries are proposed for the purpose of functional safety verification. Further, the TTDMS performance is evaluated by applying parameters in the formal model. Thirdly, the reliability of a functional prototype TTDMS is estimated. It is found that the procedure can cooperate with the system development, and both formal and simulation-based verifications are performed. Using our process to evaluate and verify a system is easier to read and more reliable compared to executable code and mathematical methods. - Highlights: • A new Train to Train Distance Measurement System. • New approach verifying system functional safety and evaluating system performance by means of CPN. • System formalization using the system property concept. • Verification of system functional safety using state space analysis. • Evaluation of system performance applying simulation-based analysis.

  14. Distance-Based Tear Lactoferrin Assay on Microfluidic Paper Device Using Interfacial Interactions on Surface-Modified Cellulose.

    Science.gov (United States)

    Yamada, Kentaro; Henares, Terence G; Suzuki, Koji; Citterio, Daniel

    2015-11-11

    "Distance-based" detection motifs on microfluidic paper-based analytical devices (μPADs) allow quantitative analysis without using signal readout instruments in a similar manner to classical analogue thermometers. To realize a cost-effective and calibration-free distance-based assay of lactoferrin in human tear fluid on a μPAD not relying on antibodies or enzymes, we investigated the fluidic mobilities of the target protein and Tb(3+) cations used as the fluorescent detection reagent on surface-modified cellulosic filter papers. Chromatographic elution experiments in a tear-like sample matrix containing electrolytes and proteins revealed a collapse of attractive electrostatic interactions between lactoferrin or Tb(3+) and the cellulosic substrate, which was overcome by the modification of the paper surface with the sulfated polysaccharide ι-carrageenan. The resulting μPAD based on the fluorescence emission distance successfully analyzed 0-4 mg mL(-1) of lactoferrin in complex human tear matrix with a lower limit of detection of 0.1 mg mL(-1) by simple visual inspection. Assay results of 18 human tear samples including ocular disease patients and healthy volunteers showed good correlation to the reference ELISA method with a slope of 0.997 and a regression coefficient of 0.948. The distance-based quantitative signal and the good batch-to-batch fabrication reproducibility relying on printing methods enable quantitative analysis by simply reading out "concentration scale marks" printed on the μPAD without performing any calibration and using any signal readout instrument.

  15. Effect of Image Linearization on Normalized Compression Distance

    Science.gov (United States)

    Mortensen, Jonathan; Wu, Jia Jie; Furst, Jacob; Rogers, John; Raicu, Daniela

    Normalized Information Distance, based on Kolmogorov complexity, is an emerging metric for image similarity. It is approximated by the Normalized Compression Distance (NCD) which generates the relative distance between two strings by using standard compression algorithms to compare linear strings of information. This relative distance quantifies the degree of similarity between the two objects. NCD has been shown to measure similarity effectively on information which is already a string: genomic string comparisons have created accurate phylogeny trees and NCD has also been used to classify music. Currently, to find a similarity measure using NCD for images, the images must first be linearized into a string, and then compared. To understand how linearization of a 2D image affects the similarity measure, we perform four types of linearization on a subset of the Corel image database and compare each for a variety of image transformations. Our experiment shows that different linearization techniques produce statistically significant differences in NCD for identical spatial transformations.

  16. The Development of Mathematical Knowledge for Teaching for Quantitative Reasoning Using Video-Based Instruction

    Science.gov (United States)

    Walters, Charles David

    Quantitative reasoning (P. W. Thompson, 1990, 1994) is a powerful mathematical tool that enables students to engage in rich problem solving across the curriculum. One way to support students' quantitative reasoning is to develop prospective secondary teachers' (PSTs) mathematical knowledge for teaching (MKT; Ball, Thames, & Phelps, 2008) related to quantitative reasoning. However, this may prove challenging, as prior to entering the classroom, PSTs often have few opportunities to develop MKT by examining and reflecting on students' thinking. Videos offer one avenue through which such opportunities are possible. In this study, I report on the design of a mini-course for PSTs that featured a series of videos created as part of a proof-of-concept NSF-funded project. These MathTalk videos highlight the ways in which the quantitative reasoning of two high school students developed over time. Using a mixed approach to grounded theory, I analyzed pre- and postinterviews using an extant coding scheme based on the Silverman and Thompson (2008) framework for the development of MKT. This analysis revealed a shift in participants' affect as well as three distinct shifts in their MKT around quantitative reasoning with distances, including shifts in: (a) quantitative reasoning; (b) point of view (decentering); and (c) orientation toward problem solving. Using the four-part focusing framework (Lobato, Hohensee, & Rhodehamel, 2013), I analyzed classroom data to account for how participants' noticing was linked with the shifts in MKT. Notably, their increased noticing of aspects of MKT around quantitative reasoning with distances, which features prominently in the MathTalk videos, seemed to contribute to the emergence of the shifts in MKT. Results from this study link elements of the learning environment to the development of specific facets of MKT around quantitative reasoning with distances. These connections suggest that vicarious experiences with two students' quantitative

  17. Autonomy in learning: a relationship between failure and success of Distance Education students

    Directory of Open Access Journals (Sweden)

    Adejalmo Moreira Abadi

    2016-05-01

    Full Text Available This paper presents the results of a research conducted with undergraduate students of distance education at face-to-face support learning centers of Roraima. The research aimed to analyze the relationship between autonomy in distance learning and students’ outcomes. The issue was to investigate which causes related to autonomy contributed to the low performance rate. The theoretical framework deals with Distance Education and autonomy in distance learning. It was a quali-quantitative research, delineated as a case study. The data analysis was structured in order to define the profile of the student, the factors that influence dropout and completion of the courses. The final remarks present evidence of interfering causes in the results and in the relationship with learning autonomy, involving students as learning structure, and the institution as teaching structure.

  18. Calibrating the Type Ia Supernova Distance Scale Using Surface Brightness Fluctuations

    Science.gov (United States)

    Potter, Cicely; Jensen, Joseph B.; Blakeslee, John; Milne, Peter; Garnavich, Peter M.; Brown, Peter

    2018-06-01

    We have observed 20 supernova host galaxies with HST WFC3/IR in the F110W filter, and prepared the data for Surface Brightness Fluctuation (SBF) distance measurements. The purpose of this study is to determine if there are any discrepancies between the SBF distance scale and the type-Ia SN distance scale, for which local calibrators are scarce. We have now measured SBF magnitudes to all early-type galaxies that have hosted SN Ia within 80 Mpc for which SBF measurements are possible. SBF is the only distance measurement technique with statistical uncertainties comparable to SN Ia that can be applied to galaxies out to 80 Mpc.

  19. Quantitative fundus autofluorescence in mice: correlation with HPLC quantitation of RPE lipofuscin and measurement of retina outer nuclear layer thickness.

    Science.gov (United States)

    Sparrow, Janet R; Blonska, Anna; Flynn, Erin; Duncker, Tobias; Greenberg, Jonathan P; Secondi, Roberta; Ueda, Keiko; Delori, François C

    2013-04-17

    Our study was conducted to establish procedures and protocols for quantitative autofluorescence (qAF) measurements in mice, and to report changes in qAF, A2E bisretinoid concentration, and outer nuclear layer (ONL) thickness in mice of different genotypes and age. Fundus autofluorescence (AF) images (55° lens, 488 nm excitation) were acquired in albino Abca4(-/-), Abca4(+/-), and Abca4(+/+) mice (ages 2-12 months) with a confocal scanning laser ophthalmoscope (cSLO). Gray levels (GLs) in each image were calibrated to an internal fluorescence reference. The bisretinoid A2E was measured by quantitative high performance liquid chromatography (HPLC). Histometric analysis of ONL thicknesses was performed. The Bland-Altman coefficient of repeatability (95% confidence interval) was ±18% for between-session qAF measurements. Mean qAF values increased with age (2-12 months) in all groups of mice. qAF was approximately 2-fold higher in Abca4(-/-) mice than in Abca4(+/+) mice and approximately 20% higher in heterozygous mice. HPLC measurements of the lipofuscin fluorophore A2E also revealed age-associated increases, and the fold difference between Abca4(-/-) and wild-type mice was more pronounced (approximately 3-4-fold) than measurable by qAF. Moreover, A2E levels declined after 8 months of age, a change not observed with qAF. The decline in A2E levels in the Abca4(-/-) mice corresponded to reduced photoreceptor cell viability as reflected in ONL thinning beginning at 8 months of age. The qAF method enables measurement of in vivo lipofuscin and the detection of genotype and age-associated differences. The use of this approach has the potential to aid in understanding retinal disease processes and will facilitate preclinical studies.

  20. Comprehensive Comparison of Self-Administered Questionnaires for Measuring Quantitative Autistic Traits in Adults

    Science.gov (United States)

    Nishiyama, Takeshi; Suzuki, Masako; Adachi, Katsunori; Sumi, Satoshi; Okada, Kensuke; Kishino, Hirohisa; Sakai, Saeko; Kamio, Yoko; Kojima, Masayo; Suzuki, Sadao; Kanne, Stephen M.

    2014-01-01

    We comprehensively compared all available questionnaires for measuring quantitative autistic traits (QATs) in terms of reliability and construct validity in 3,147 non-clinical and 60 clinical subjects with normal intelligence. We examined four full-length forms, the Subthreshold Autism Trait Questionnaire (SATQ), the Broader Autism Phenotype…

  1. Quantitative Measurement of Physical Activity in Acute Ischemic Stroke and Transient Ischemic Attack

    DEFF Research Database (Denmark)

    Strømmen, Anna Maria; Christensen, Thomas; Jensen, Kai

    2014-01-01

    BACKGROUND AND PURPOSE: The purpose of this study was to quantitatively measure and describe the amount and pattern of physical activity in patients within the first week after acute ischemic stroke and transient ischemic attack using accelerometers. METHODS: A total of 100 patients with acute is...

  2. Conception and development of an optical methodology applied to long-distance measurement of suspension bridges dynamic displacement

    International Nuclear Information System (INIS)

    Martins, L Lages; Ribeiro, A Silva; Rebordão, J M

    2013-01-01

    This paper describes the conception and development of an optical system applied to suspension bridge structural monitoring, aiming real-time and long-distance measurement of dynamical three-dimensional displacement, namely, in the central section of the main span. The main innovative issues related to this optical approach are described and a comparison with other optical and non-optical measurement systems is performed. Moreover, a computational simulator tool developed for the optical system design and validation of the implemented image processing and calculation algorithms is also presented

  3. Optical method for distance and displacement measurements of the probe-sample separation in a scanning near-field optical microscope

    International Nuclear Information System (INIS)

    Santamaria, L.; Siller, H. R.; Garcia-Ortiz, C. E.; Cortes, R.; Coello, V.

    2016-01-01

    In this work, we present an alternative optical method to determine the probe-sample separation distance in a scanning near-field optical microscope. The experimental method is based in a Lloyd’s mirror interferometer and offers a measurement precision deviation of ∼100 nm using digital image processing and numerical analysis. The technique can also be strategically combined with the characterization of piezoelectric actuators and stability evaluation of the optical system. It also opens the possibility for the development of an automatic approximation control system valid for probe-sample distances from 5 to 500 μm.

  4. Optical method for distance and displacement measurements of the probe-sample separation in a scanning near-field optical microscope

    Energy Technology Data Exchange (ETDEWEB)

    Santamaria, L.; Siller, H. R. [Tecnológico de Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, N.L., 64849 (Mexico); Garcia-Ortiz, C. E., E-mail: cegarcia@cicese.mx [CONACYT Research Fellow – CICESE, Unidad Monterrey, Alianza Centro 504, Apodaca, NL, 66629 (Mexico); Cortes, R.; Coello, V. [CICESE, Unidad Monterrey, PIIT, Alianza Centro 504, Apodaca, NL, 66629 (Mexico)

    2016-04-15

    In this work, we present an alternative optical method to determine the probe-sample separation distance in a scanning near-field optical microscope. The experimental method is based in a Lloyd’s mirror interferometer and offers a measurement precision deviation of ∼100 nm using digital image processing and numerical analysis. The technique can also be strategically combined with the characterization of piezoelectric actuators and stability evaluation of the optical system. It also opens the possibility for the development of an automatic approximation control system valid for probe-sample distances from 5 to 500 μm.

  5. An independent distance estimate to the AGB star R Sculptoris

    Science.gov (United States)

    Maercker, M.; Brunner, M.; Mecina, M.; De Beck, E.

    2018-04-01

    Context. Distance measurements to astronomical objects are essential for understanding their intrinsic properties. For asymptotic giant branch (AGB) stars it is particularly difficult to derive accurate distance estimates. Period-luminosity relationships rely on the correlation of different physical properties of the stars, while the angular sizes and variability of AGB stars make parallax measurements inherently inaccurate. For the carbon AGB star R Sculptoris, the uncertain distance significantly affects the interpretation of observations regarding the evolution of the stellar mass loss during and after the most recent thermal pulse. Aim. We aim to provide a new, independent measurement of the distance to R Sculptoris, reducing the absolute uncertainty of the distance estimate to this source. Methods: R Scl is a semi-regular pulsating star, surrounded by a thin shell of dust and gas created during a thermal pulse ≈2000 years ago. The stellar light is scattered by the dust particles in the shell at a radius of ≈19″. The variation in the stellar light affects the amount of dust-scattered light with the same period and amplitude ratio, but with a phase lag that depends on the absolute size of the shell. We measured this phase lag by observing the star R Scl and the dust-scattered stellar light from the shell at five epochs between June-December 2016. By observing in polarised light, we imaged the shell in the plane of the sky, removing any uncertainty due to geometrical effects. The phase lag gives the absolute size of the shell, and together with the angular size of the shell directly gives the absolute distance to R Sculptoris. Results: We measured a phase lag between the stellar variations and the variation in the shell of 40.0 ± 4.0 days. The angular size of the shell is measured to be 19.″1 ± 0.″7. Combined, this gives an absolute distance to R Sculptoris of 361 ± 44 pc. Conclusions: We independently determined the absolute distance to R Scl with

  6. The Concept of Distance in International Management Research

    DEFF Research Database (Denmark)

    Ambos, Björn; Håkanson, Lars

    2014-01-01

    The effect of distance on firms' performance when entering, operating in and across foreign markets is a central issue in international management. However, our understanding of the impact of distance has long been constrained by flawed conceptualizations and unreliable measures. The papers...... in this issue break new ground both by advancing our theoretical understanding and by introducing new and potentially more useful measures. In this introduction, we provide a brief overview of the evolution of the distance concept before introducing the individual papers. We end by offering observations...... for future research based on the issues they raise....

  7. A novel semi-quantitative method for measuring tissue bleeding.

    Science.gov (United States)

    Vukcevic, G; Volarevic, V; Raicevic, S; Tanaskovic, I; Milicic, B; Vulovic, T; Arsenijevic, S

    2014-03-01

    In this study, we describe a new semi-quantitative method for measuring the extent of bleeding in pathohistological tissue samples. To test our novel method, we recruited 120 female patients in their first trimester of pregnancy and divided them into three groups of 40. Group I was the control group, in which no dilation was applied. Group II was an experimental group, in which dilation was performed using classical mechanical dilators. Group III was also an experimental group, in which dilation was performed using a hydraulic dilator. Tissue samples were taken from the patients' cervical canals using a Novak's probe via energetic single-step curettage prior to any dilation in Group I and after dilation in Groups II and III. After the tissue samples were prepared, light microscopy was used to obtain microphotographs at 100x magnification. The surfaces affected by bleeding were measured in the microphotographs using the Autodesk AutoCAD 2009 program and its "polylines" function. The lines were used to mark the area around the entire sample (marked A) and to create "polyline" areas around each bleeding area on the sample (marked B). The percentage of the total area affected by bleeding was calculated using the formula: N = Bt x 100 / At where N is the percentage (%) of the tissue sample surface affected by bleeding, At (A total) is the sum of the surfaces of all of the tissue samples and Bt (B total) is the sum of all the surfaces affected by bleeding in all of the tissue samples. This novel semi-quantitative method utilizes the Autodesk AutoCAD 2009 program, which is simple to use and widely available, thereby offering a new, objective and precise approach to estimate the extent of bleeding in tissue samples.

  8. Multi-image acquisition-based distance sensor using agile laser spot beam.

    Science.gov (United States)

    Riza, Nabeel A; Amin, M Junaid

    2014-09-01

    We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.

  9. Language distance and tree reconstruction

    International Nuclear Information System (INIS)

    Petroni, Filippo; Serva, Maurizio

    2008-01-01

    Languages evolve over time according to a process in which reproduction, mutation and extinction are all possible. This is very similar to haploid evolution for asexual organisms and for the mitochondrial DNA of complex ones. Exploiting this similarity, it is possible, in principle, to verify hypotheses concerning the relationship among languages and to reconstruct their family tree. The key point is the definition of the distances among pairs of languages in analogy with the genetic distances among pairs of organisms. Distances can be evaluated by comparing grammar and/or vocabulary, but while it is difficult, if not impossible, to quantify grammar distance, it is possible to measure a distance from vocabulary differences. The method used by glottochronology computes distances from the percentage of shared 'cognates', which are words with a common historical origin. The weak point of this method is that subjective judgment plays a significant role. Here we define the distance of two languages by considering a renormalized edit distance among words with the same meaning and averaging over the two hundred words contained in a Swadesh list. In our approach the vocabulary of a language is the analogue of DNA for organisms. The advantage is that we avoid subjectivity and, furthermore, reproducibility of results is guaranteed. We apply our method to the Indo-European and the Austronesian groups, considering, in both cases, fifty different languages. The two trees obtained are, in many respects, similar to those found by glottochronologists, with some important differences as regards the positions of a few languages. In order to support these different results we separately analyze the structure of the distances of these languages with respect to all the others

  10. Language distance and tree reconstruction

    Science.gov (United States)

    Petroni, Filippo; Serva, Maurizio

    2008-08-01

    Languages evolve over time according to a process in which reproduction, mutation and extinction are all possible. This is very similar to haploid evolution for asexual organisms and for the mitochondrial DNA of complex ones. Exploiting this similarity, it is possible, in principle, to verify hypotheses concerning the relationship among languages and to reconstruct their family tree. The key point is the definition of the distances among pairs of languages in analogy with the genetic distances among pairs of organisms. Distances can be evaluated by comparing grammar and/or vocabulary, but while it is difficult, if not impossible, to quantify grammar distance, it is possible to measure a distance from vocabulary differences. The method used by glottochronology computes distances from the percentage of shared 'cognates', which are words with a common historical origin. The weak point of this method is that subjective judgment plays a significant role. Here we define the distance of two languages by considering a renormalized edit distance among words with the same meaning and averaging over the two hundred words contained in a Swadesh list. In our approach the vocabulary of a language is the analogue of DNA for organisms. The advantage is that we avoid subjectivity and, furthermore, reproducibility of results is guaranteed. We apply our method to the Indo-European and the Austronesian groups, considering, in both cases, fifty different languages. The two trees obtained are, in many respects, similar to those found by glottochronologists, with some important differences as regards the positions of a few languages. In order to support these different results we separately analyze the structure of the distances of these languages with respect to all the others.

  11. Measurement Errors Arising When Using Distances in Microeconometric Modelling and the Individuals’ Position Is Geo-Masked for Confidentiality

    Directory of Open Access Journals (Sweden)

    Giuseppe Arbia

    2015-10-01

    Full Text Available In many microeconometric models we use distances. For instance, in modelling the individual behavior in labor economics or in health studies, the distance from a relevant point of interest (such as a hospital or a workplace is often used as a predictor in a regression framework. However, in order to preserve confidentiality, spatial micro-data are often geo-masked, thus reducing their quality and dramatically distorting the inferential conclusions. In particular in this case, a measurement error is introduced in the independent variable which negatively affects the properties of the estimators. This paper studies these negative effects, discusses their consequences, and suggests possible interpretations and directions to data producers, end users, and practitioners.

  12. Quantitative analysis of factors affecting intraoperative precision and stability of optoelectronic and electromagnetic tracking systems

    International Nuclear Information System (INIS)

    Wagner, A.; Schicho, K.; Birkfellner, W.; Figl, M.; Seemann, R.; Koenig, F.; Kainberger, Franz; Ewers, R.

    2002-01-01

    This study aims to provide a quantitative analysis of the factors affecting the actual precision and stability of optoelectronic and electromagnetic tracking systems in computer-aided surgery under real clinical/intraoperative conditions. A 'phantom-skull' with five precisely determined reference distances between marker spheres is used for all measurements. Three optoelectronic and one electromagnetic tracking systems are included in this study. The experimental design is divided into three parts: (1) evaluation of serial- and multislice-CT (computed tomography) images of the phantom-skull for the precision of distance measurements by means of navigation software without a digitizer, (2) digitizer measurements under realistic intraoperative conditions with the factors OR-lamp (radiating into the field of view of the digitizer) or/and 'handling with ferromagnetic surgical instruments' (in the field of view of the digitizer) and (3) 'point-measurements' to analyze the influence of changes in the angle of inclination of the stylus axis. Deviations between reference distances and measured values are statistically investigated by means of analysis of variance. Computerized measurements of distances based on serial-CT data were more precise than based on multislice-CT data. All tracking systems included in this study proved to be considerably less precise under realistic OR conditions when compared to the technical specifications in the manuals of the systems. Changes in the angle of inclination of the stylus axis resulted in deviations of up to 3.40 mm (mean deviations for all systems ranging from 0.49 to 1.42 mm, variances ranging from 0.09 to 1.44 mm), indicating a strong need for improvements of stylus design. The electromagnetic tracking system investigated in this study was not significantly affected by small ferromagnetic surgical instruments

  13. A simple method of measuring tibial tubercle to trochlear groove distance on MRI: description of a novel and reliable technique.

    Science.gov (United States)

    Camp, Christopher L; Heidenreich, Mark J; Dahm, Diane L; Bond, Jeffrey R; Collins, Mark S; Krych, Aaron J

    2016-03-01

    Tibial tubercle-trochlear groove (TT-TG) distance is a variable that helps guide surgical decision-making in patients with patellar instability. The purpose of this study was to compare the accuracy and reliability of an MRI TT-TG measuring technique using a simple external alignment method to a previously validated gold standard technique that requires advanced software read by radiologists. TT-TG was calculated by MRI on 59 knees with a clinical diagnosis of patellar instability in a blinded and randomized fashion by two musculoskeletal radiologists using advanced software and by two orthopaedists using the study technique which utilizes measurements taken on a simple electronic imaging platform. Interrater reliability between the two radiologists and the two orthopaedists and intermethods reliability between the two techniques were calculated using interclass correlation coefficients (ICC) and concordance correlation coefficients (CCC). ICC and CCC values greater than 0.75 were considered to represent excellent agreement. The mean TT-TG distance was 14.7 mm (Standard Deviation (SD) 4.87 mm) and 15.4 mm (SD 5.41) as measured by the radiologists and orthopaedists, respectively. Excellent interobserver agreement was noted between the radiologists (ICC 0.941; CCC 0.941), the orthopaedists (ICC 0.978; CCC 0.976), and the two techniques (ICC 0.941; CCC 0.933). The simple TT-TG distance measurement technique analysed in this study resulted in excellent agreement and reliability as compared to the gold standard technique. This method can predictably be performed by orthopaedic surgeons without advanced radiologic software. II.

  14. Absolute quantitative autoradiography of low concentrations of [125I]-labeled proteins in arterial tissue

    International Nuclear Information System (INIS)

    Schnitzer, J.J.; Morrel, E.M.; Colton, C.K.; Smith, K.A.; Stemerman, M.B.

    1987-01-01

    We developed a method for absolute quantitative autoradiographic measurement of very low concentrations of [ 125 I]-labeled proteins in arterial tissue using Kodak NTB-2 nuclear emulsion. A precise linear relationship between measured silver grain density and isotope concentration was obtained with uniformly labeled standard sources composed of epoxy-embedded gelatin containing glutaraldehyde-fixed [ 125 I]-albumin. For up to 308-day exposures of 1 micron-thick tissue sections, background grain densities ranged from about two to eight grains/1000 micron 2, and the technique was sensitive to as little as about one grain/1000 micron 2 above background, which correspond to a radioactivity concentration of about 2 x 10(4) cpm/ml. A detailed statistical analysis of variability was performed and the sum of all sources of variation quantified. The half distance for spatial resolution was 1.7 micron. Both visual and automated techniques were employed for quantitative grain density analysis. The method was illustrated by measurement of in vivo transmural [ 125 I]-low-density lipoprotein [( 125 I]-LDL) concentration profiles in de-endothelialized rabbit thoracic aortic wall

  15. Influence of the intergonial distance on image distortion in panoramic radiographs.

    Science.gov (United States)

    Ladeira, D B S; Cruz, A D; Almeida, S M; Bóscolo, F N

    2012-07-01

    The aim of this study was to evaluate the influence of the intergonial distance during the formation of panoramic radiographic images by means of horizontal and vertical measurements. 30 macerated mandibles were categorized into 3 different groups (n = 10) according to their intergonial distances as follows: G1, mean distance 8.2 cm, G2, mean distance 9.0 cm and G3, mean distance 9.6 cm. Three metal spheres 0.198 cm in diameter and placed at an incline using an isosceles triangle were separately placed over the internal and external surfaces of the mandibles before radiographic exposure for the purpose of taking the horizontal and vertical measurements. The occlusal planes of the mandibles were horizontally placed on the chin rest of the panoramic machine Orthopantomograph® OP 100 (Instrumentarium Imaging, Tuusula, Finland) and were then radiographed. In the panoramic radiographs, an expert radiologist measured the distances between the metal spheres in the horizontal and vertical directions using a digital caliper. The data were tabled and statistically analysed by Student's t-test and analysis of variance with Tukey post-test (α = 0.05). In all three groups magnification of the distances between spheres was observed when compared with the real distance in both horizontal and vertical measurements (p 0.05). Differences between horizontal and vertical measurements were observed in different regions in all evaluated groups (p image formation in the panoramic radiograph.

  16. Epithelium percentage estimation facilitates epithelial quantitative protein measurement in tissue specimens.

    Science.gov (United States)

    Chen, Jing; Toghi Eshghi, Shadi; Bova, George Steven; Li, Qing Kay; Li, Xingde; Zhang, Hui

    2013-12-01

    The rapid advancement of high-throughput tools for quantitative measurement of proteins has demonstrated the potential for the identification of proteins associated with cancer. However, the quantitative results on cancer tissue specimens are usually confounded by tissue heterogeneity, e.g. regions with cancer usually have significantly higher epithelium content yet lower stromal content. It is therefore necessary to develop a tool to facilitate the interpretation of the results of protein measurements in tissue specimens. Epithelial cell adhesion molecule (EpCAM) and cathepsin L (CTSL) are two epithelial proteins whose expressions in normal and tumorous prostate tissues were confirmed by measuring staining intensity with immunohistochemical staining (IHC). The expressions of these proteins were measured by ELISA in protein extracts from OCT embedded frozen prostate tissues. To eliminate the influence of tissue heterogeneity on epithelial protein quantification measured by ELISA, a color-based segmentation method was developed in-house for estimation of epithelium content using H&E histology slides from the same prostate tissues and the estimated epithelium percentage was used to normalize the ELISA results. The epithelium contents of the same slides were also estimated by a pathologist and used to normalize the ELISA results. The computer based results were compared with the pathologist's reading. We found that both EpCAM and CTSL levels, measured by ELISA assays itself, were greatly affected by epithelium content in the tissue specimens. Without adjusting for epithelium percentage, both EpCAM and CTSL levels appeared significantly higher in tumor tissues than normal tissues with a p value less than 0.001. However, after normalization by the epithelium percentage, ELISA measurements of both EpCAM and CTSL were in agreement with IHC staining results, showing a significant increase only in EpCAM with no difference in CTSL expression in cancer tissues. These results

  17. The Cognition of Maximal Reach Distance in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Satoru Otsuki

    2016-01-01

    Full Text Available This study aimed to investigate whether the cognition of spatial distance in reaching movements was decreased in patients with Parkinson’s disease (PD and whether this cognition was associated with various symptoms of PD. Estimated and actual maximal reaching distances were measured in three directions in PD patients and healthy elderly volunteers. Differences between estimated and actual measurements were compared within each group. In the PD patients, the associations between “error in cognition” of reaching distance and “clinical findings” were also examined. The results showed that no differences were observed in any values regardless of dominance of hand and severity of symptoms. The differences between the estimated and actual measurements were negatively deviated in the PD patients, indicating that they tended to underestimate reaching distance. “Error in cognition” of reaching distance correlated with the items of posture in the motor section of the Unified Parkinson’s Disease Rating Scale. This suggests that, in PD patients, postural deviation and postural instability might affect the cognition of the distance from a target object.

  18. Static and Dynamic Accuracy of an Innovative Miniaturized Wearable Platform for Short Range Distance Measurements for Human Movement Applications

    Directory of Open Access Journals (Sweden)

    Stefano Bertuletti

    2017-06-01

    Full Text Available Magneto-inertial measurement units (MIMU are a suitable solution to assess human motor performance both indoors and outdoors. However, relevant quantities such as step width and base of support, which play an important role in gait stability, cannot be directly measured using MIMU alone. To overcome this limitation, we developed a wearable platform specifically designed for human movement analysis applications, which integrates a MIMU and an Infrared Time-of-Flight proximity sensor (IR-ToF, allowing for the estimate of inter-object distance. We proposed a thorough testing protocol for evaluating the IR-ToF sensor performances under experimental conditions resembling those encountered during gait. In particular, we tested the sensor performance for different (i target colors; (ii sensor-target distances (up to 200 mm and (iii sensor-target angles of incidence (AoI (up to 60 ∘ . Both static and dynamic conditions were analyzed. A pendulum, simulating the oscillation of a human leg, was used to generate highly repeatable oscillations with a maximum angular velocity of 6 rad/s. Results showed that the IR-ToF proximity sensor was not sensitive to variations of both distance and target color (except for black. Conversely, a relationship between error magnitude and AoI values was found. For AoI equal to 0 ∘ , the IR-ToF sensor performed equally well both in static and dynamic acquisitions with a distance mean absolute error <1.5 mm. Errors increased up to 3.6 mm (static and 11.9 mm (dynamic for AoI equal to ± 30 ∘ , and up to 7.8 mm (static and 25.6 mm (dynamic for AoI equal to ± 60 ∘ . In addition, the wearable platform was used during a preliminary experiment for the estimation of the inter-foot distance on a single healthy subject while walking. In conclusion, the combination of magneto-inertial unit and IR-ToF technology represents a valuable alternative solution in terms of accuracy, sampling frequency, dimension and power consumption

  19. Sieve-based device for MALDI sample preparation. III. Its power for quantitative measurements.

    Science.gov (United States)

    Molin, Laura; Cristoni, Simone; Seraglia, Roberta; Traldi, Pietro

    2011-02-01

    The solid sample inhomogeneity is a weak point of traditional MALDI deposition techniques that reflects negatively on quantitative analysis. The recently developed sieve-based device (SBD) sample deposition method, based on the electrospraying of matrix/analyte solutions through a grounded sieve, allows the homogeneous deposition of microcrystals with dimensions smaller than that of the laser spot. In each microcrystal the matrix/analyte molar ratio can be considered constant. Then, by irradiating different portions of the microcrystal distribution an identical response is obtained. This result suggests the employment of SBD in the development of quantitative procedures. For this aim, mixtures of different proteins of known molarity were analyzed, showing a good relationship between molarity and intensity ratios. This behaviour was also observed in the case of proteins with quite different ionic yields. The power of the developed method for quantitative evaluation was also tested by the measurement of the abundance of IGPP[Oxi]GPP[Oxi]GLMGPP (m/z 1219) present in the collagen-α-5(IV) chain precursor, differently expressed in urines from healthy subjects and diabetic-nephropathic patients, confirming its overexpression in the presence of nephropathy. The data obtained indicate that SBD is a particularly effective method for quantitative analysis also in biological fluids of interest. Copyright © 2011 John Wiley & Sons, Ltd.

  20. The interuncal distance in elderly patients with dementia; MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, Haruo; Takasaki, Masaru [Tokyo Medical Coll. (Japan); Sugiyama, Takeshi; Abe, Shinei; Kobayashi, Yasutaka; Maehata, Yukihiko; Katsunuma, Hidetaka

    1993-09-01

    The interuncal distance between the unci of the temporal lobes was measured from axial MR images of the brain in elderly patients with dementia including dementia of the Alzheimer type (DAT), vascular dementia (VD), and others. The measured value of the interuncal distance completely separated patients with DAT from normal controls, and there was significant diference in the interuncal distance between patients with DAT and VD. This measurement is a practical method of assessing hippocampal atrophy and appears to be a useful adjunct in the clinical diagnosis of DAT. (author).

  1. The Carnegie-Chicago Hubble Program. I. An Independent Approach to the Extragalactic Distance Scale Using Only Population II Distance Indicators

    Science.gov (United States)

    Beaton, Rachael L.; Freedman, Wendy L.; Madore, Barry F.; Bono, Giuseppe; Carlson, Erika K.; Clementini, Gisella; Durbin, Meredith J.; Garofalo, Alessia; Hatt, Dylan; Jang, In Sung; Kollmeier, Juna A.; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark; Sturch, Laura; Yang, Soung-Chul

    2016-12-01

    We present an overview of the Carnegie-Chicago Hubble Program, an ongoing program to obtain a 3% measurement of the Hubble constant (H 0) using alternative methods to the traditional Cepheid distance scale. We aim to establish a completely independent route to H 0 using RR Lyrae variables, the tip of the red giant branch (TRGB), and Type Ia supernovae (SNe Ia). This alternative distance ladder can be applied to galaxies of any Hubble type, of any inclination, and, using old stars in low-density environments, is robust to the degenerate effects of metallicity and interstellar extinction. Given the relatively small number of SNe Ia host galaxies with independently measured distances, these properties provide a great systematic advantage in the measurement of H 0 via the distance ladder. Initially, the accuracy of our value of H 0 will be set by the five Galactic RR Lyrae calibrators with Hubble Space Telescope Fine-Guidance Sensor parallaxes. With Gaia, both the RR Lyrae zero-point and TRGB method will be independently calibrated, the former with at least an order of magnitude more calibrators and the latter directly through parallax measurement of tip red giants. As the first end-to-end “distance ladder” completely independent of both Cepheid variables and the Large Magellanic Cloud, this path to H 0 will allow for the high-precision comparison at each rung of the traditional distance ladder that is necessary to understand tensions between this and other routes to H 0. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #13472 and #13691.

  2. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    International Nuclear Information System (INIS)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander; Clausen, Sønnik

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1–200 bar and temperature range 300–1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients of a CO_2–N_2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated spectra, as well as published experimental data. - Highlights: • A ceramic gas cell designed for gas measurements up to 1300 K and 200 bar. • The first recorded absorption spectrum of CO_2 at 1000 K and 101 bar is presented. • Voigt profiles might suffice in the modeling of radiation from CO_2 in combustion.

  3. Validation and measurement uncertainty estimation in food microbiology: differences between quantitative and qualitative methods

    Directory of Open Access Journals (Sweden)

    Vesna Režić Dereani

    2010-09-01

    Full Text Available The aim of this research is to describe quality control procedures, procedures for validation and measurement uncertainty (MU determination as an important element of quality assurance in food microbiology laboratory for qualitative and quantitative type of analysis. Accreditation is conducted according to the standard ISO 17025:2007. General requirements for the competence of testing and calibration laboratories, which guarantees the compliance with standard operating procedures and the technical competence of the staff involved in the tests, recently are widely introduced in food microbiology laboratories in Croatia. In addition to quality manual introduction, and a lot of general documents, some of the most demanding procedures in routine microbiology laboratories are measurement uncertainty (MU procedures and validation experiment design establishment. Those procedures are not standardized yet even at international level, and they require practical microbiological knowledge, altogether with statistical competence. Differences between validation experiments design for quantitative and qualitative food microbiology analysis are discussed in this research, and practical solutions are shortly described. MU for quantitative determinations is more demanding issue than qualitative MU calculation. MU calculations are based on external proficiency testing data and internal validation data. In this paper, practical schematic descriptions for both procedures are shown.

  4. The importance of quantitative measurement methods for uveitis: laser flare photometry endorsed in Europe while neglected in Japan where the technology measuring quantitatively intraocular inflammation was developed.

    Science.gov (United States)

    Herbort, Carl P; Tugal-Tutkun, Ilknur

    2017-06-01

    Laser flare photometry (LFP) is an objective and quantitative method to measure intraocular inflammation. The LFP technology was developed in Japan and has been commercially available since 1990. The aim of this work was to review the application of LFP in uveitis practice in Europe compared to Japan where the technology was born. We reviewed PubMed articles published on LFP and uveitis. Although LFP has been largely integrated in routine uveitis practice in Europe, it has been comparatively neglected in Japan and still has not received FDA approval in the USA. As LFP is the only method that provides a precise measure of intraocular inflammation, it should be used as a gold standard in uveitis centres worldwide.

  5. Qualitative Research in Distance Education: An Analysis of Journal Literature 2005-2012

    Science.gov (United States)

    Hauser, Laura

    2013-01-01

    This review study examines the current research literature in distance education for the years 2005 to 2012. The author found 382 research articles published during that time in four prominent peer-reviewed research journals. The articles were classified and coded as quantitative, qualitative, or mixed methods. Further analysis found another…

  6. Prediction of protein conformational freedom from distance constraints

    NARCIS (Netherlands)

    de Groot, B.L.; van Aalten, D.M.F.; Scheek, R.M.; Amadei, A; Vriend, G.; Berendsen, H.J.C.

    1997-01-01

    A method is presented that generates random protein structures that fulfil a set of upper and lower interatomic distance limits, These limits depend on distances measured in experimental structures and the strength of the interatomic interaction, Structural differences between generated structures

  7. Reliability of Reagent Strips for Semi-quantitative Measurement of Glucosuria in a Neonatal Intensive Care Setting

    Directory of Open Access Journals (Sweden)

    Jolita Bekhof

    2014-12-01

    Conclusion: The reliability of the semi-quantitative measurement of glucosuria in newborn infants using reagent strips is good, even under the conditions of a NICU. Changes in the rating of reagent strips of more than one category are most likely to be beyond measurement error.

  8. PERBANDINGAN EUCLIDEAN DISTANCE DENGAN CANBERRA DISTANCE PADA FACE RECOGNITION

    Directory of Open Access Journals (Sweden)

    Sendhy Rachmat Wurdianarto

    2014-08-01

    Full Text Available Perkembangan ilmu pada dunia komputer sangatlah pesat. Salah satu yang menandai hal ini adalah ilmu komputer telah merambah pada dunia biometrik. Arti biometrik sendiri adalah karakter-karakter manusia yang dapat digunakan untuk membedakan antara orang yang satu dengan yang lainnya. Salah satu pemanfaatan karakter / organ tubuh pada setiap manusia yang digunakan untuk identifikasi (pengenalan adalah dengan memanfaatkan wajah. Dari permasalahan diatas dalam pengenalan lebih tentang aplikasi Matlab pada Face Recognation menggunakan metode Euclidean Distance dan Canberra Distance. Model pengembangan aplikasi yang digunakan adalah model waterfall. Model waterfall beriisi rangkaian aktivitas proses yang disajikan dalam proses analisa kebutuhan, desain menggunakan UML (Unified Modeling Language, inputan objek gambar diproses menggunakan Euclidean Distance dan Canberra Distance. Kesimpulan yang dapat ditarik adalah aplikasi face Recognation menggunakan metode euclidean Distance dan Canverra Distance terdapat kelebihan dan kekurangan masing-masing. Untuk kedepannya aplikasi tersebut dapat dikembangkan dengan menggunakan objek berupa video ataupun objek lainnya.   Kata kunci : Euclidean Distance, Face Recognition, Biometrik, Canberra Distance

  9. The transposition distance for phylogenetic trees

    OpenAIRE

    Rossello, Francesc; Valiente, Gabriel

    2006-01-01

    The search for similarity and dissimilarity measures on phylogenetic trees has been motivated by the computation of consensus trees, the search by similarity in phylogenetic databases, and the assessment of clustering results in bioinformatics. The transposition distance for fully resolved phylogenetic trees is a recent addition to the extensive collection of available metrics for comparing phylogenetic trees. In this paper, we generalize the transposition distance from fully resolved to arbi...

  10. FORMATIVE ASSESSMENT IN DISTANCE EDUCATION: ENHANCING LEARNING THROUGH DIARIES

    Directory of Open Access Journals (Sweden)

    Christiane Heemann

    2015-12-01

    Full Text Available Assessment integrates the teaching and learning process and always has room for discussion in educational processes, requiring technical preparation and observation capacity from those involved. According to Perrenoud (2014, assessment for learning is a mediator in the process of curriculum construction and is closely related to the management of learning by the students. Assessment methods occupy a very important space in the pedagogical practices since assessment cannot be an act that expresses only a quantitative and formal concept. In Distance Education (DE, formative assessment also needs to be prioritized and avoid traditional evaluation which is performed through multiple-choice tests with self-correction. The use of diaries in Distance Education maintains the focus on the evaluation process and not only on the product, configuring itself as a permanent orientation of learning, both for the teacher and for the student, who jointly assume reciprocal commitments. This article presents an experiment conducted with diaries on an undergraduate course offered by Universidade Aberta do Brasil (UAB as a means of formative assessment in Distance Education.

  11. Quantitative analysis of cholesteatoma using high resolution computed tomography

    International Nuclear Information System (INIS)

    Kikuchi, Shigeru; Yamasoba, Tatsuya; Iinuma, Toshitaka.

    1992-01-01

    Seventy-three cases of adult cholesteatoma, including 52 cases of pars flaccida type cholesteatoma and 21 of pars tensa type cholesteatoma, were examined using high resolution computed tomography, in both axial (lateral semicircular canal plane) and coronal sections (cochlear, vestibular and antral plane). These cases were classified into two subtypes according to the presence of extension of cholesteatoma into the antrum. Sixty cases of chronic otitis media with central perforation (COM) were also examined as controls. Various locations of the middle ear cavity were measured in terms of size in comparison with pars flaccida type cholesteatoma, pars tensa type cholesteatoma and COM. The width of the attic was significantly larger in both pars flaccida type and pars tensa type cholesteatoma than in COM. With pars flaccida type cholesteatoma there was a significantly larger distance between the malleus and lateral wall of the attic than with COM. In contrast, the distance between the malleus and medial wall of the attic was significantly larger with pars tensa type cholesteatoma than with COM. With cholesteatoma extending into the antrum, regardless of the type of cholesteatoma, there were significantly larger distances than with COM at the following sites: the width and height of the aditus ad antrum, and the width, height and anterior-posterior diameter of the antrum. However, these distances were not significantly different between cholesteatoma without extension into the antrum and COM. The hitherto demonstrated qualitative impressions of bone destruction in cholesteatoma were quantitatively verified in detail using high resolution computed tomography. (author)

  12. Research of the stopping distance for different road conditions

    Directory of Open Access Journals (Sweden)

    Daniel LYUBENOV

    2011-01-01

    Full Text Available In this paper a modern method for determination of stopping distance is represented. Application of the non-contact VBOX 3i 100Hz GPS Data Logger speed and distance measurement system is represented. A description of the total stopping distance of vehicle main components - driver reaction time, vehicle reaction time and vehicle braking capability has been made. Research of the total stopping distance of a vehicle for different road conditions has been made. The results for the stopping distance can be very useful in the expert practice.

  13. Quantitive DNA Fiber Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-01-28

    Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

  14. Why GPS makes distances bigger than they are.

    Science.gov (United States)

    Ranacher, Peter; Brunauer, Richard; Trutschnig, Wolfgang; Van der Spek, Stefan; Reich, Siegfried

    2016-02-01

    Global navigation satellite systems such as the Global Positioning System (GPS) is one of the most important sensors for movement analysis. GPS is widely used to record the trajectories of vehicles, animals and human beings. However, all GPS movement data are affected by both measurement and interpolation errors. In this article we show that measurement error causes a systematic bias in distances recorded with a GPS; the distance between two points recorded with a GPS is - on average - bigger than the true distance between these points. This systematic 'overestimation of distance' becomes relevant if the influence of interpolation error can be neglected, which in practice is the case for movement sampled at high frequencies. We provide a mathematical explanation of this phenomenon and illustrate that it functionally depends on the autocorrelation of GPS measurement error ( C ). We argue that C can be interpreted as a quality measure for movement data recorded with a GPS. If there is a strong autocorrelation between any two consecutive position estimates, they have very similar error. This error cancels out when average speed, distance or direction is calculated along the trajectory. Based on our theoretical findings we introduce a novel approach to determine C in real-world GPS movement data sampled at high frequencies. We apply our approach to pedestrian trajectories and car trajectories. We found that the measurement error in the data was strongly spatially and temporally autocorrelated and give a quality estimate of the data. Most importantly, our findings are not limited to GPS alone. The systematic bias and its implications are bound to occur in any movement data collected with absolute positioning if interpolation error can be neglected.

  15. Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    Science.gov (United States)

    2011-01-01

    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution. PMID:21338175

  16. Role of effective distance in the fission mechanism study by the double-energy measurement for uranium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto [Osaka Univ., Suita (Japan)] [and others

    1997-09-01

    Fission product kinetic energies were measured by the double-energy method for thermal-neutron fission of {sup 235,233}U and proton-induced fission of {sup 238}U at the 15.8-MeV excitation. From the obtained energy-mass correlation data, the kinetic-energy distribution was constructed from each mass bin to evaluate the first moment of the kinetic energy for a given fragment mass. The resulting kinetic energy was then converted to the effective distance between the charge centers at the moment of scission. The effective distances deduced for the proton-induced fission was concluded to be classified into two constant values, one for asymmetric and the other for symmetric mode, irrespective of the mass though an additional component was further extracted in the asymmetric mass region. This indicates that the fission takes place via two well-defined saddles, followed by the random neck rupture. On the contrary, the effective distances obtained for thermal-neutron induced fission turned out to lie along the contour line at the same level as the equilibrium deformation in the two-dimensional potential map. This strongly suggests that it is essentially a barrier-penetrating type of fission rather than the over-barrier fission. (author). 73 refs.

  17. Role of effective distance in the fission mechanism study by the double-energy measurement for uranium isotopes

    International Nuclear Information System (INIS)

    Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto

    1997-01-01

    Fission product kinetic energies were measured by the double-energy method for thermal-neutron fission of 235,233 U and proton-induced fission of 238 U at the 15.8-MeV excitation. From the obtained energy-mass correlation data, the kinetic-energy distribution was constructed from each mass bin to evaluate the first moment of the kinetic energy for a given fragment mass. The resulting kinetic energy was then converted to the effective distance between the charge centers at the moment of scission. The effective distances deduced for the proton-induced fission was concluded to be classified into two constant values, one for asymmetric and the other for symmetric mode, irrespective of the mass though an additional component was further extracted in the asymmetric mass region. This indicates that the fission takes place via two well-defined saddles, followed by the random neck rupture. On the contrary, the effective distances obtained for thermal-neutron induced fission turned out to lie along the contour line at the same level as the equilibrium deformation in the two-dimensional potential map. This strongly suggests that it is essentially a barrier-penetrating type of fission rather than the over-barrier fission. (author). 73 refs

  18. Distance to VY Canis Majoris with VERA

    OpenAIRE

    Choi, Yoon Kyung; Hirota, Tomoya; Honma, Mareki; Kobayashi, Hideyuki; Bushimata, Takeshi; Imai, Hiroshi; Iwadate, Kenzaburo; Jike, Takaaki; Kameno, Seiji; Kameya, Osamu; Kamohara, Ryuichi; Kan-ya, Yukitoshi; Kawaguchi, Noriyuki; Kijima, Masachika; Kim, Mi Kyoung

    2008-01-01

    We report astrometric observations of H2O masers around the red supergiant VY Canis Majoris (VY CMa) carried out with VLBI Exploration of Radio Astrometry (VERA). Based on astrometric monitoring for 13 months, we successfully measured a trigonometric parallax of 0.88 +/- 0.08 mas, corresponding to a distance of 1.14 +0.11/-0.09 kpc. This is the most accurate distance to VY CMa and the first one based on an annual parallax measurement. The luminosity of VY CMa has been overestimated due to a p...

  19. Quantitative methods and socio-economic applications in GIS

    CERN Document Server

    Wang, Fahui

    2014-01-01

    GIS AND BASIC SPATIAL ANALYSIS TASKSGetting Started with ArcGIS: Data Management and Basic Spatial Analysis ToolsSpatial and Attribute Data Management in ArcGISSpatial Analysis Tools in ArcGIS: Queries, Spatial Joins, and Map OverlaysCase Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, LouisianaSummaryIdentifying Contiguous Polygons by Spatial Analysis ToolsMeasuring Distance and TimeMeasures of DistanceComputing Network Distance and TimeThe Distance Decay RuleCase Study 2: Computing Distances and Tra

  20. Adaptive Distance Protection for Microgrids

    DEFF Research Database (Denmark)

    Lin, Hengwei; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2015-01-01

    is adopted to accelerate the tripping speed of the relays on the weak lines. The protection methodology is tested on a mid-voltage microgrid network in Aalborg, Denmark. The results show that the adaptive distance protection methodology has good selectivity and sensitivity. What is more, this system also has......Due to the increasing penetration of distributed generation resources, more and more microgrids can be found in distribution systems. This paper proposes a phasor measurement unit based distance protection strategy for microgrids in distribution system. At the same time, transfer tripping scheme...

  1. Quantitative biological measurement in Transmission Electron Tomography

    International Nuclear Information System (INIS)

    Mantell, Judith M; Verkade, Paul; Arkill, Kenton P

    2012-01-01

    It has been known for some time that biological sections shrink in the transmission electron microscope from exposure to the electron beam. This phenomenon is especially important in Electron Tomography (ET). The effect on shrinkage of parameters such as embedding medium or sample type is less well understood. In addition anisotropic area shrinkage has largely been ignored. The intention of this study is to explore the shrinkage on a number of samples ranging in thickness from 200 nm to 500 nm. A protocol was developed to determine the shrinkage in area and thickness using the gold fiducials used in electron tomography. In brief: Using low dose philosophy on the section, a focus area was used prior to a separate virgin study area for a series of known exposures on a tilted sample. The shrinkage was determined by measurements on the gold beads from both sides of the section as determined by a confirmatory tomogram. It was found that the shrinkage in area (approximately to 90-95% of the original) and the thickness (approximately 65% of the original at most) agreed with pervious authors, but that a lmost all the shrinkage was in the first minute and that although the direction of the in-plane shrinkage (in x and y) was sometimes uneven the end result was consistent. It was observed, in general, that thinner samples showed more percentage shrinkage than thicker ones. In conclusion, if direct quantitative measurements are required then the protocol described should be used for all areas studied.

  2. Quantitative biological measurement in Transmission Electron Tomography

    Science.gov (United States)

    Mantell, Judith M.; Verkade, Paul; Arkill, Kenton P.

    2012-07-01

    It has been known for some time that biological sections shrink in the transmission electron microscope from exposure to the electron beam. This phenomenon is especially important in Electron Tomography (ET). The effect on shrinkage of parameters such as embedding medium or sample type is less well understood. In addition anisotropic area shrinkage has largely been ignored. The intention of this study is to explore the shrinkage on a number of samples ranging in thickness from 200 nm to 500 nm. A protocol was developed to determine the shrinkage in area and thickness using the gold fiducials used in electron tomography. In brief: Using low dose philosophy on the section, a focus area was used prior to a separate virgin study area for a series of known exposures on a tilted sample. The shrinkage was determined by measurements on the gold beads from both sides of the section as determined by a confirmatory tomogram. It was found that the shrinkage in area (approximately to 90-95% of the original) and the thickness (approximately 65% of the original at most) agreed with pervious authors, but that a lmost all the shrinkage was in the first minute and that although the direction of the in-plane shrinkage (in x and y) was sometimes uneven the end result was consistent. It was observed, in general, that thinner samples showed more percentage shrinkage than thicker ones. In conclusion, if direct quantitative measurements are required then the protocol described should be used for all areas studied.

  3. Method and apparatus for dual-spaced fast/epithermal neutron porosity measurements

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.

    1986-01-01

    A method is described for determining the porosity of earth formations in the vicinity of a well borehole, comprising: (a) irradiating the earth formations in the vicinity of the well borehole with a continuous chemical type source of fast neutrons, (b) detecting the fast neutron population at a first shorter spaced distance from the neutron source in the borehole and generating signals representative thereof, (c) detecting the epithermal neutron population at a second space distance from the neutron source in the borehole and generating signals representative thereof, the second spaced distance being greater than the first spaced distance from the neutron source, (d) forming a ratio of the signals representing the fast and epithermal neutron populations to derive a measurement signal functionally related to the porosity of the earth formations in the vicinity of the borehole, and (e) calibrating the measurement signal according to a predetermined functional relationship to derive a porosity signal quantitatively representative of the porosity of the earth formations in the vicinity of the borehole

  4. Distance Learning

    National Research Council Canada - National Science Library

    Braddock, Joseph

    1997-01-01

    A study reviewing the existing Army Distance Learning Plan (ADLP) and current Distance Learning practices, with a focus on the Army's training and educational challenges and the benefits of applying Distance Learning techniques...

  5. Reineke’s stand density index: a quantitative and non-unitless measure of stand density

    Science.gov (United States)

    Curtis L. VanderSchaaf

    2013-01-01

    When used as a measure of relative density, Reineke’s stand density index (SDI) can be made unitless by relating the current SDI to a standard density but when used as a quantitative measure of stand density SDI is not unitless. Reineke’s SDI relates the current stand density to an equivalent number of trees per unit area in a stand with a quadratic mean diameter (Dq)...

  6. Evaluation of quantitative PCR measurement of bacterial colonization of epithelial cells.

    Science.gov (United States)

    Schmidt, Marcin T; Olejnik-Schmidt, Agnieszka K; Myszka, Kamila; Borkowska, Monika; Grajek, Włodzimierz

    2010-01-01

    Microbial colonization is an important step in establishing pathogenic or probiotic relations to host cells and in biofilm formation on industrial or medical devices. The aim of this work was to verify the applicability of quantitative PCR (Real-Time PCR) to measure bacterial colonization of epithelial cells. Salmonella enterica and Caco-2 intestinal epithelial cell line was used as a model. To verify sensitivity of the assay a competition of the pathogen cells to probiotic microorganism was tested. The qPCR method was compared to plate count and radiolabel approach, which are well established techniques in this area of research. The three methods returned similar results. The best quantification accuracy had radiolabel method, followed by qPCR. The plate count results showed coefficient of variation two-times higher than this of qPCR. The quantitative PCR proved to be a reliable method for enumeration of microbes in colonization assay. It has several advantages that make it very useful in case of analyzing mixed populations, where several different species or even strains can be monitored at the same time.

  7. Three-dimensional image analysis of the skull using variable CT scanning protocols-effect of slice thickness on measurement in the three-dimensional CT images

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho Gul; Kim, Kee Deog; Park, Hyok; Kim, Dong Ook; Jeong, Hai Jo; Kim, Hee Joung; Yoo, Sun Kook; Kim, Yong Oock; Park, Chang Seo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2004-07-15

    To evaluate the quantitative accuracy of three-dimensional (3D) images by mean of comparing distance measurements on the 3D images with direct measurements of dry human skull according to slice thickness and scanning modes. An observer directly measured the distance of 21 line items between 12 orthodontic landmarks on the skull surface using a digital vernier caliper and each was repeated five times. The dry human skull was scanned with a Helical CT with various slice thickness (3, 5, 7 mm) and acquisition modes (Conventional and Helical). The same observer measured corresponding distance of the same items on reconstructed 3D images with the internal program of V-works 4.0 (Cybermed Inc., Seoul, Korea). The quantitative accuracy of distance measurements were statistically evaluated with Wilcoxons' two-sample test. 11 line items in Conventional 3 mm, 8 in Helical 3 mm, 11 in Conventional 5 mm, 10 in Helical 5 mm, 5 in Conventional 7 mm and 9 in Helical 7 mm showed no statistically significant difference. Average difference between direct measurements and measurements on 3D CT images was within 2 mm in 19 line items of Conventional 3 mm. 20 of Helical 3 mm, 15 of Conventional 5 mm, 18 of Helical 5 mm, 11 of Conventional 7 mm and 16 of Helical 7 mm. Considering image quality and patient's exposure time, scanning protocol of Helical 5 mm is recommended for 3D image analysis of the skull in CT.

  8. Computed Tomography Based Three-dimensional Measurements of Spine Shortening Distance After Posterior Three-column Osteotomies for the Treatment of Severe and Stiff Scoliosis.

    Science.gov (United States)

    Li, Xue-Shi; Huang, Zi-Fang; Deng, Yao-Long; Fan, Heng-Wei; Sui, Wen-Yuan; Wang, Chong-Wen; Yang, Jun-Lin

    2017-07-15

    Retrospective study. This study is to measure and analyze the changes of three-dimensional (3D) distances of spinal column and spinal canal at the three-column osteotomy sites and address their clinical and neurologic significance. Three-column osteotomies were developed to treat severe and stiff spine deformities with insufficient understanding on the safe limit of spine shortening and the relationship between the shortening distance of the spinal column and that of the spinal canal. Records of 52 continuous patients with severe and stiff scoliosis treated with three-column spine osteotomies at our institution from July 2013 to June 2015 were reviewed. The preoperative spinal cord function classification were type A in 31 cases, type B in 10 cases, and type C in 11 cases. The types of osteotomies carried out were extended pedicle subtraction osteotomy in nine patients and posterior vertebral column resection in 43 patients. Multimodality neuromonitoring strategies were adopted intraoperatively. 3D pre- and postoperative spine models were reconstructed from the computed tomography (CT) scans. The distances of convex and concave spinal column and the spinal canal shortening were measured and analyzed. The spinal column shortening distance (SCSD) measured on the 3D models (27.8 mm) were statistically shorter than those measured intraoperatively (32.8 mm) (P column strut graft than in those with bone-on-bone fusion (P column cannot represent that of the central spinal canal in patients with severe scoliosis. The spinal column shortening procedure in appropriately selected patient groups with bone-on-bone fusion is a viable option with the CCSD being significantly shorter than the convex SCSD. 4.

  9. Quantitative measurements of intercellular adhesion between a macrophage and cancer cells using a cup-attached AFM chip.

    Science.gov (United States)

    Kim, Hyonchol; Yamagishi, Ayana; Imaizumi, Miku; Onomura, Yui; Nagasaki, Akira; Miyagi, Yohei; Okada, Tomoko; Nakamura, Chikashi

    2017-07-01

    Intercellular adhesion between a macrophage and cancer cells was quantitatively measured using atomic force microscopy (AFM). Cup-shaped metal hemispheres were fabricated using polystyrene particles as a template, and a cup was attached to the apex of the AFM cantilever. The cup-attached AFM chip (cup-chip) approached a murine macrophage cell (J774.2), the cell was captured on the inner concave of the cup, and picked up by withdrawing the cup-chip from the substrate. The cell-attached chip was advanced towards a murine breast cancer cell (FP10SC2), and intercellular adhesion between the two cells was quantitatively measured. To compare cell adhesion strength, the work required to separate two adhered cells (separation work) was used as a parameter. Separation work was almost 2-fold larger between a J774.2 cell and FP10SC2 cell than between J774.2 cell and three additional different cancer cells (4T1E, MAT-LyLu, and U-2OS), two FP10SC2 cells, or two J774.2 cells. FP10SC2 was established from 4T1E as a highly metastatic cell line, indicates separation work increased as the malignancy of cancer cells became higher. One possible explanation of the strong adhesion of macrophages to cancer cells observed in this study is that the measurement condition mimicked the microenvironment of tumor-associated macrophages (TAMs) in vivo, and J774.2 cells strongly expressed CD204, which is a marker of TAMs. The results of the present study, which were obtained by measuring cell adhesion strength quantitatively, indicate that the fabricated cup-chip is a useful tool for measuring intercellular adhesion easily and quantitatively. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Quantitative echocardiographic measures in the assessment of single ventricle function post-Fontan: Incorporation into routine clinical practice.

    Science.gov (United States)

    Rios, Rodrigo; Ginde, Salil; Saudek, David; Loomba, Rohit S; Stelter, Jessica; Frommelt, Peter

    2017-01-01

    Quantitative echocardiographic measurements of single ventricular (SV) function have not been incorporated into routine clinical practice. A clinical protocol, which included quantitative measurements of SV deformation (global circumferential and longitudinal strain and strain rate), standard deviation of time to peak systolic strain, myocardial performance index (MPI), dP/dT from an atrioventricular valve regurgitant jet, and superior mesenteric artery resistance index, was instituted for all patients with a history of Fontan procedure undergoing echocardiography. All measures were performed real time during clinically indicated studies and were included in clinical reports. A total of 100 consecutive patients (mean age = 11.95±6.8 years, range 17 months-31.3 years) completed the protocol between September 1, 2014 to April 29, 2015. Deformation measures were completed in 100% of the studies, MPI in 93%, dP/dT in 55%, and superior mesenteric artery Doppler in 82%. The studies were reviewed to assess for efficiency in completing the protocol. The average time for image acquisition was 27.4±8.8 (range 10-62 minutes). The average time to perform deformation measures was 10.8±5.5 minutes (range 5-35 minutes) and time from beginning of imaging to report completion was 53.4±13.7 minutes (range 27-107 minutes). There was excellent inter-observer reliability when deformation indices were blindly repeated. Patients with a single left ventricle had significantly higher circumferential strain and strain rate, longitudinal strain and strain rate, and dP/dT compared to a single right ventricle. There were no differences in quantitative indices of ventricular function between patients 10 years post-Fontan. Advanced quantitative assessment of SV function post-Fontan can be consistently and efficiently performed real time during clinically indicated echocardiograms with excellent reliability. © 2016, Wiley Periodicals, Inc.

  11. Measuring the sustainability of a natural system by using multi-criteria distance function methods: Some critical issues.

    Science.gov (United States)

    Diaz-Balteiro, L; Belavenutti, P; Ezquerro, M; González-Pachón, J; Ribeiro Nobre, S; Romero, C

    2018-05-15

    There is an important body of literature using multi-criteria distance function methods for the aggregation of a battery of sustainability indicators in order to obtain a composite index. This index is considered to be a proxy of the sustainability goodness of a natural system. Although this approach has been profusely used in the literature, it is not exempt from difficulties and potential pitfalls. Thus, in this paper, a significant number of critical issues have been identified showing different procedures capable of avoiding, or at least of mitigating, the inherent potential pitfalls associated with each one. The recommendations made in the paper could increase the theoretical soundness of the multi-criteria distance function methods when this type of approach is applied in the sustainability field, thus increasing the accuracy and realism of the sustainability measurements obtained. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. So, What is Actually the Distance from the Equator to the Pole? – Overview of the Meridian Distance Approximations

    Directory of Open Access Journals (Sweden)

    Adam Weintrit

    2013-06-01

    Full Text Available In the paper the author presents overview of the meridian distance approximations. He would like to find the answer for the question what is actually the distance from the equator to the pole - the polar distance. In spite of appearances this is not such a simple question. The problem of determining the polar distance is a great opportunity to demonstrate the multitude of possible solutions in common use. At the beginning of the paper the author discusses some approximations and a few exact expressions (infinite sums to calculate perimeter and quadrant of an ellipse, he presents convenient measurement units of the distance on the surface of the Earth, existing methods for the solution of the great circle and great elliptic sailing, and in the end he analyses and compares geodetic formulas for the meridian arc length.

  13. A novel method for quantitative geosteering using azimuthal gamma-ray logging

    International Nuclear Information System (INIS)

    Yuan, Chao; Zhou, Cancan; Zhang, Feng; Hu, Song; Li, Chaoliu

    2015-01-01

    A novel method for quantitative geosteering by using azimuthal gamma-ray logging is proposed. Real-time up and bottom gamma-ray logs when a logging tool travels through a boundary surface with different relative dip angles are simulated with the Monte Carlo method. Study results show that response points of up and bottom gamma-ray logs when the logging tool moves towards a highly radioactive formation can be used to predict the relative dip angle, and then the distance from the drilling bit to the boundary surface is calculated. - Highlights: • A new method is proposed for geosteering by using azimuthal gamma-ray logging. • The new method can quantitatively determine the distance from the drilling bit to the boundary surface while the traditional geosteering method can only qualitatively guide the drilling bit in reservoirs. • The response points of real-time upper and lower gamma line when the logging tool meets high radioactive formation are used to predict the relative dip angles, and then the distance from the drilling bit to the boundary surface is calculated

  14. Quantitative Measures of Swallowing Deficits in Patients With Parkinson's Disease.

    Science.gov (United States)

    Ellerston, Julia K; Heller, Amanda C; Houtz, Daniel R; Kendall, Katherine A

    2016-05-01

    Dysphagia and associated aspiration pneumonia are commonly reported sequelae of Parkinson's disease (PD). Previous studies of swallowing in patients with PD have described prolonged pharyngeal transit time, delayed onset of pharyngeal transit, cricopharyngeal (CP) achalasia, reduced pharyngeal constriction, and slowed hyolaryngeal elevation. These studies were completed using inconsistent evaluation methodology, reliance on qualitative analysis, and a lack of a large control group, resulting in concerns regarding diagnostic precision. The purpose of this study was to investigate swallowing function in patients with PD using a norm-referenced, quantitative approach. This retrospective study includes 34 patients with a diagnosis of PD referred to a multidisciplinary voice and swallowing clinic. Modified barium swallow studies were performed using quantitative measures of pharyngeal transit time, hyoid displacement, CP sphincter opening, area of the pharynx at maximal constriction, and timing of laryngeal vestibule closure relative to bolus arrival at the CP sphincter. Reduced pharyngeal constriction was found in 30.4%, and a delay in airway closure relative to arrival of the bolus at the CP sphincter was the most common abnormality, present in 62% of patients. Previously reported findings of prolonged pharyngeal transit, poor hyoid elevation, and CP achalasia were not identified as prominent features. © The Author(s) 2015.

  15. A quantitative ELISA procedure for the measurement of membrane-bound platelet-associated IgG (PAIgG).

    Science.gov (United States)

    Lynch, D M; Lynch, J M; Howe, S E

    1985-03-01

    A quantitative ELISA assay for the measurement of in vivo bound platelet-associated IgG (PAIgG) using intact patient platelets is presented. The assay requires quantitation and standardization of the number of platelets bound to microtiter plate wells and an absorbance curve using quantitated IgG standards. Platelet-bound IgG was measured using an F(ab')2 peroxidase labeled anti-human IgG and o-phenylenediamine dihydrochloride (OPD) as the substrate. Using this assay, PAIgG for normal individuals was 2.8 +/- 1.6 fg/platelet (mean +/- 1 SD; n = 30). Increased levels were found in 28 of 30 patients with clinical autoimmune thrombocytopenia (ATP) with a range of 7.0-80 fg/platelet. Normal PAIgG levels were found in 26 of 30 patients with nonimmune thrombocytopenia. In the sample population studied, the PAIgG assay showed a sensitivity of 93%, specificity of 90%, a positive predictive value of 0.90, and a negative predictive value of 0.93. The procedure is highly reproducible (CV = 6.8%) and useful in evaluating patients with suspected immune mediated thrombocytopenia.

  16. Fabrication of {sup 94}Zr thin target for recoil distance doppler shift method of lifetime measurement

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, C.K.; Rohilla, Aman [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Abhilash, S.R.; Kabiraj, D.; Singh, R.P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Mehta, D. [Department of Physics, Panjab University, Chandigarh 160014 (India); Chamoli, S.K., E-mail: skchamoli@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-11-11

    A thin isotopic {sup 94}Zr target of thickness 520μg/cm{sup 2} has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm{sup 2} thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of {sup 94}Zr from peeling off, a very thin layer of gold has been evaporated on a {sup 94}Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched {sup 94}Zr target material was utilized for the fabrication of {sup 94}Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  17. Quantitative measurement of blood circulation in tests of rats using nuclear medical methods

    International Nuclear Information System (INIS)

    Ripke, R.

    1980-01-01

    The experiments show that is it is possible to quantitatively assess the blood circulation and, within limits, the germinative function of tests by measuring the impulses of an incorporated radionuclide (99-Tc-pertechnetate) using an uptake measuring instrument. This is a rapid and unbloody method to be adopted in human medicine. 'Acute tests' or pre-damaged tests can thus be exactly diagnosed. In the former case the circulation modification and in the latter the evaluation of the germinative function ability is of main interest. The most important measuring criterion is the 15-minute-uptake U; it represents the blood circulation in the tests measured. The germinative function ability is evaluated on the basis of the accumulation activity Nsub(max). (orig./MG) [de

  18. Quantitative measurement of lightning-induced electron precipitation using VLF remote sensing

    Science.gov (United States)

    Peter, William Bolton

    This dissertation examines the detection of lightning-induced energetic electron precipitation via subionospheric Very Low Frequency (VLF) remote sensing. The primary measurement tool used is a distributed set of VLF observing sites, the Holographic Array for Ionospheric/Lightning Research (HAIL), located along the eastern side of the Rocky Mountains in the Central United States. Measurements of the VLF signal perturbations indicate that 90% of the precipitation occurs over a region ˜8 degrees in latitudinal extent, with the peak of the precipitation poleward displaced ˜7 degrees from the causative discharge. A comparison of the VLF signal perturbations recorded on the HAIL array with a comprehensive model of LEP events allows for the quantitative measurement of electron precipitation and ionospheric density enhancement with unprecedented quantitative detail. The model consists of three major components: a test-particle model of gyroresonant whistler-induced electron precipitation; a Monte Carlo simulation of energy deposition into the ionosphere; and a model of VLF subionospheric signal propagation. For the two representative LEP events studied, the model calculates peak VLF amplitude and phase perturbations within a factor of three of those observed, well within the expected variability of radiation belt flux levels. The modeled precipitated energy flux (E>45 keV) peaks at ˜1 x 10-2 [ergs s-1 cm -2], resulting in a peak loss of ˜0.001% from a single flux tube at L˜2.2, consistent with previous satellite measurements of LEP events. Metrics quantifying the ionospheric density enhancement (N ILDE) and the electron precipitation (Gamma) are strongly correlated with the VLF signal perturbations calculated by the model. A conversion ratio Psi relates VLF signal amplitude perturbations (DeltaA) to the time-integrated precipitation (100-300 keV) along the VLF path (Psi=Gamma / DeltaA). The total precipitation (100-300 keV) induced by one of the representative LEP

  19. Quantitative computed tomography measurements to evaluate airway disease in chronic obstructive pulmonary disease: Relationship to physiological measurements, clinical index and visual assessment of airway disease

    International Nuclear Information System (INIS)

    Nambu, Atsushi; Zach, Jordan; Schroeder, Joyce; Jin, Gongyoung; Kim, Song Soo; Kim, Yu-IL; Schnell, Christina; Bowler, Russell; Lynch, David A.

    2016-01-01

    Purpose: To correlate currently available quantitative CT measurements for airway disease with physiological indices and the body-mass index, airflow obstruction, dyspnea, and exercise capacity (BODE) index in patients with chronic obstructive pulmonary disease (COPD). Materials and methods: This study was approved by our institutional review board (IRB number 2778). Written informed consent was obtained from all subjects. The subjects included 188 current and former cigarette smokers from the COPDGene cohort who underwent inspiratory and expiratory CT and also had physiological measurements for the evaluation of airflow limitation, including FEF25-75%, airway resistance (Raw), and specific airway conductance (sGaw). The BODE index was used as the index of clinical symptoms. Quantitative CT measures included % low attenuation areas [% voxels ≤ 950 Hounsfield unit (HU) on inspiratory CT, %LAA −950ins ], percent gas trapping (% voxels ≤ −856 HU on expiratory CT, %LAA −856exp ), relative inspiratory to expiratory volume change of voxels with attenuation values from −856 to −950 HU [Relative Volume Change (RVC) −856 to −950 ], expiratory to inspiratory ratio of mean lung density (E/I-ratio MLD ), Pi10, and airway wall thickness (WT), luminal diameter (LD) and airway wall area percent (WA%) in the segmental, subsegmental and subsubsegmental bronchi on inspiratory CT. Correlation coefficients were calculated between the QCT measurements and physiological measurements in all subjects and in the subjects with mild emphysema (%LAA −950ins <10%). Univariate and multiple variable analysis for the BODE index were also performed. Adjustments were made for age, gender, smoking pack years, FEF25-75%, Raw, and sGaw. Results: Quantitative CT measurements had significant correlations with physiological indices. Among them, E/I-ratio MLD had the strongest correlations with FEF25-75% (r = −0.648, <0.001) and sGaw (r = −0.624, <0.001) while in the subjects with

  20. Quantitative and simultaneous non-invasive measurement of skin hydration and sebum levels

    Science.gov (United States)

    Ezerskaia, Anna; Pereira, S. F.; Urbach, H. Paul; Verhagen, Rieko; Varghese, Babu

    2016-01-01

    We report a method on quantitative and simultaneous non-contact in-vivo hydration and sebum measurements of the skin using an infrared optical spectroscopic set-up. The method utilizes differential detection with three wavelengths 1720, 1750, and 1770 nm, corresponding to the lipid vibrational bands that lay “in between” the prominent water absorption bands. We have used an emulsifier containing hydro- and lipophilic components to mix water and sebum in various volume fractions which was applied to the skin to mimic different oily-dry skin conditions. We also measured the skin sebum and hydration values on the forehead under natural conditions and its variations to external stimuli. Good agreement was found between our experimental results and reference values measured using conventional biophysical methods such as Corneometer and Sebumeter. PMID:27375946

  1. Piezoelectric tuning fork biosensors for the quantitative measurement of biomolecular interactions

    International Nuclear Information System (INIS)

    Gonzalez, Laura; Maria Benito, Angel; Puig-Vidal, Manel; Otero, Jorge; Rodrigues, Mafalda; Pérez-García, Lluïsa

    2015-01-01

    The quantitative measurement of biomolecular interactions is of great interest in molecular biology. Atomic force microscopy (AFM) has proved its capacity to act as a biosensor and determine the affinity between biomolecules of interest. Nevertheless, the detection scheme presents certain limitations when it comes to developing a compact biosensor. Recently, piezoelectric quartz tuning forks (QTFs) have been used as laser-free detection sensors for AFM. However, only a few studies along these lines have considered soft biological samples, and even fewer constitute quantified molecular recognition experiments. Here, we demonstrate the capacity of QTF probes to perform specific interaction measurements between biotin–streptavidin complexes in buffer solution. We propose in this paper a variant of dynamic force spectroscopy based on representing adhesion energies E (aJ) against pulling rates v (nm s"–"1). Our results are compared with conventional AFM measurements and show the great potential of these sensors in molecular interaction studies. (paper)

  2. High accuracy subwavelength distance measurements: A variable-angle standing-wave total-internal-reflection optical microscope

    International Nuclear Information System (INIS)

    Haynie, A.; Min, T.-J.; Luan, L.; Mu, W.; Ketterson, J. B.

    2009-01-01

    We describe an extension of the total-internal-reflection microscopy technique that permits direct in-plane distance measurements with high accuracy (<10 nm) over a wide range of separations. This high position accuracy arises from the creation of a standing evanescent wave and the ability to sweep the nodal positions (intensity minima of the standing wave) in a controlled manner via both the incident angle and the relative phase of the incoming laser beams. Some control over the vertical resolution is available through the ability to scan the incoming angle and with it the evanescent penetration depth.

  3. Cultural Distance Revisited: Towards a More Rigorous Conceptualization and Measurement of Cultural Differences

    OpenAIRE

    Oded Shenkar

    2001-01-01

    Cultural distance is a widely used construct in international business, where it has been applied to foreign investment expansion, entry mode choice, and the performance of foreign invested affiliates, among others. The present paper presents a critical review of the cultural distance construct, outlining its hidden assumptions and challenging its theoretical and methodological properties. A comprehensive framework for the treatment of the construct is developed and concrete steps aimed at en...

  4. Quantitative Social Dialectology : Explaining Linguistic Variation Geographically and Socially

    NARCIS (Netherlands)

    Wieling, Martijn; Nerbonne, John; Baayen, R. Harald

    2011-01-01

    In this study we examine linguistic variation and its dependence on both social and geographic factors. We follow dialectometry in applying a quantitative methodology and focusing on dialect distances, and social dialectology in the choice of factors we examine in building a model to predict word

  5. Gold Nanoparticle Labeling Based ICP-MS Detection/Measurement of Bacteria, and Their Quantitative Photothermal Destruction

    Science.gov (United States)

    Lin, Yunfeng

    2015-01-01

    Bacteria such as Salmonella and E. coli present a great challenge in public health care in today’s society. Protection of public safety against bacterial contamination and rapid diagnosis of infection require simple and fast assays for the detection and elimination of bacterial pathogens. After utilizing Salmonella DT104 as an example bacterial strain for our investigation, we report a rapid and sensitive assay for the qualitative and quantitative detection of bacteria by using antibody affinity binding, popcorn shaped gold nanoparticle (GNPOPs) labeling, surfance enchanced Raman spectroscopy (SERS), and inductively coupled plasma mass spectrometry (ICP-MS) detection. For qualitative analysis, our assay can detect Salmonella within 10 min by Raman spectroscopy; for quantitative analysis, our assay has the ability to measure as few as 100 Salmonella DT104 in a 1 mL sample (100 CFU/mL) within 40 min. Based on the quantitative detection, we investigated the quantitative destruction of Salmonella DT104, and the assay’s photothermal efficiency in order to reduce the amount of GNPOPs in the assay to ultimately to eliminate any potential side effects/toxicity to the surrounding cells in vivo. Results suggest that our assay may serve as a promising candidate for qualitative and quantitative detection and elimination of a variety of bacterial pathogens. PMID:26417447

  6. The distance from CERN to LNGS

    CERN Document Server

    Jones, M; Crespi, M; Colosimo, G; Mazzoni, A; Durand, S

    2012-01-01

    The calculation of the distance from CERN to Gran Sasso involves the combination of three independent sets of measurements: the calculation of the distance between pillars included in the geodetic reference network at CERN and the Lab Nationale Gran Sasso (LNGS); and the transfer on each site of coordinates, from the geodetic surface network, underground into the tunnel or experiment hall installations. The transfer of coordinates, from the surface, underground at the two sites was not done as part of the CNGS Project. Initial survey concerns for the project were directed towards the orientation of the beamline from CERN to LNGS to within ~100 m. Gyro-theodolite measurements underground were planned at CERN so a transfer would effectively only translate the target point. Given the precision estimated for previous transfers, it was decided not to undertake expensive and time-consuming measurements campaigns for a negligible gain in accuracy. Therefore only GPS measurements at the two sites were carried out. Th...

  7. Spectral interferometry including the effect of transparent thin films to measure distances and displacements

    International Nuclear Information System (INIS)

    Hlubina, P.

    2004-01-01

    A spectral-domain interferometric technique is applied for measuring mirror distances and displacements in a dispersive Michelson interferometer when the effect of transparent thin films coated onto the interferometer beam splitter and compensator is known. We employ a low-resolution spectrometer in two experiments with different amounts of dispersion in a Michelson interferometer that includes fused-silica optical sample. Knowing the thickness of the optical sample and the nonlinear phase function of the thin films, the positions of the interferometer mirror are determined precisely by a least-squares fitting of the theoretical spectral interferograms to the recorded ones. We compare the results of the processing that include and do not include the effect of transparent thin films (Author)

  8. RSSI-Based Distance Estimation Framework Using a Kalman Filter for Sustainable Indoor Computing Environments

    Directory of Open Access Journals (Sweden)

    Yunsick Sung

    2016-11-01

    Full Text Available Given that location information is the key to providing a variety of services in sustainable indoor computing environments, it is required to obtain accurate locations. Locations can be estimated by three distances from three fixed points. Therefore, if the distance between two points can be measured or estimated accurately, the location in indoor environments can be estimated. To increase the accuracy of the measured distance, noise filtering, signal revision, and distance estimation processes are generally performed. This paper proposes a novel framework for estimating the distance between a beacon and an access point (AP in a sustainable indoor computing environment. Diverse types of received strength signal indications (RSSIs are used for WiFi, Bluetooth, and radio signals, and the proposed distance estimation framework is unique in that it is independent of the specific wireless signal involved, being based on the Bluetooth signal of the beacon. Generally, RSSI measurement, noise filtering, and revision are required for distance estimation using RSSIs. The employed RSSIs are first measured from an AP, with multiple APs sometimes used to increase the accuracy of the distance estimation. Owing to the inevitable presence of noise in the measured RSSIs, the application of noise filtering is essential, and further revision is used to address the inaccuracy and instability that characterizes RSSIs measured in an indoor environment. The revised RSSIs are then used to estimate the distance. The proposed distance estimation framework uses one AP to measure the RSSIs, a Kalman filter to eliminate noise, and a log-distance path loss model to revise the measured RSSIs. In the experimental implementation of the framework, both a RSSI filter and a Kalman filter were respectively used for noise elimination to comparatively evaluate the performance of the latter for the specific application. The Kalman filter was found to reduce the accumulated errors by 8

  9. The HST Key Project on the Extragalactic Distance Scale. XV. A Cepheid Distance to the Fornax Cluster and Its Implications

    OpenAIRE

    Madore, Barry F.; Freedman, Wendy L.; Silbermann, N.; Harding, Paul; Huchra, John; Mould, Jeremy; Graham, John; Ferrarese, Laura; Gibson, Brad; Han, Mingsheng; Hoessel, John; Hughes, Shaun; Illingworth, Garth; Phelps, Randy; Sakai, Shoko

    1998-01-01

    Using the Hubble Space Telescope (HST) 37 long-period Cepheid variables have been discovered in the Fornax Cluster spiral galaxy NGC 1365. The resulting V and I period-luminosity relations yield a true distance modulus of 31.35 +/- 0.07 mag, which corresponds to a distance of 18.6 +/- 0.6 Mpc. This measurement provides several routes for estimating the Hubble Constant. (1) Assuming this distance for the Fornax Cluster as a whole yields a local Hubble Constant of 70 +/-18_{random} [+/-7]_{syst...

  10. The Reliability and Validity of Discrete and Continuous Measures of Psychopathology: A Quantitative Review

    Science.gov (United States)

    Markon, Kristian E.; Chmielewski, Michael; Miller, Christopher J.

    2011-01-01

    In 2 meta-analyses involving 58 studies and 59,575 participants, we quantitatively summarized the relative reliability and validity of continuous (i.e., dimensional) and discrete (i.e., categorical) measures of psychopathology. Overall, results suggest an expected 15% increase in reliability and 37% increase in validity through adoption of a…

  11. Inland Waters - Navigation Distance Mark - Minnesota River (Non-Navigable)

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — A distance mark indicates the distance measured from an origin and consists of a distinct location without special installation, used to serve as a reference along...

  12. Distances, metallicities and origins of high-velocity clouds

    NARCIS (Netherlands)

    van Woerden, H; Wakker, BP; Peletier, RF; Schwarz, UJ; KraanKorteweg, RC; Henning, PA; Andernach, H

    2000-01-01

    A review is given of distances of high-velocity clouds (HVCs) derived from absorption-line measurements, and of the metallicities of HVCs. Chain A definitely lies in the Galactic halo, between 2.5 and 7 kpc above the plane. The distance limits available for other HVCs allow a variety of locations:

  13. Quantitative MRI and strength measurements in the assessment of muscle quality in Duchenne muscular dystrophy.

    Science.gov (United States)

    Wokke, B H; van den Bergen, J C; Versluis, M J; Niks, E H; Milles, J; Webb, A G; van Zwet, E W; Aartsma-Rus, A; Verschuuren, J J; Kan, H E

    2014-05-01

    The purpose of this study was to assess leg muscle quality and give a detailed description of leg muscle involvement in a series of Duchenne muscular dystrophy patients using quantitative MRI and strength measurements. Fatty infiltration, as well as total and contractile (not fatty infiltrated) cross sectional areas of various leg muscles were determined in 16 Duchenne patients and 11 controls (aged 8-15). To determine specific muscle strength, four leg muscle groups (quadriceps femoris, hamstrings, anterior tibialis and triceps surae) were measured and related to the amount of contractile tissue. In patients, the quadriceps femoris showed decreased total and contractile cross sectional area, attributable to muscle atrophy. The total, but not the contractile, cross sectional area of the triceps surae was increased in patients, corresponding to hypertrophy. Specific strength decreased in all four muscle groups of Duchenne patients, indicating reduced muscle quality. This suggests that muscle hypertrophy and fatty infiltration are two distinct pathological processes, differing between muscle groups. Additionally, the quality of remaining muscle fibers is severely reduced in the legs of Duchenne patients. The combination of quantitative MRI and quantitative muscle testing could be a valuable outcome parameter in longitudinal studies and in the follow-up of therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Encyclopedia of distances

    CERN Document Server

    Deza, Michel Marie

    2014-01-01

    This updated and revised third edition of the leading reference volume on distance metrics includes new items from very active research areas in the use of distances and metrics such as geometry, graph theory, probability theory and analysis. Among the new topics included are, for example, polyhedral metric space, nearness matrix problems, distances between belief assignments, distance-related animal settings, diamond-cutting distances, natural units of length, Heidegger’s de-severance distance, and brain distances. The publication of this volume coincides with intensifying research efforts into metric spaces and especially distance design for applications. Accurate metrics have become a crucial goal in computational biology, image analysis, speech recognition and information retrieval. Leaving aside the practical questions that arise during the selection of a ‘good’ distance function, this work focuses on providing the research community with an invaluable comprehensive listing of the main available di...

  15. Striking Distance Determined From High-Speed Videos and Measured Currents in Negative Cloud-to-Ground Lightning

    Science.gov (United States)

    Visacro, Silverio; Guimaraes, Miguel; Murta Vale, Maria Helena

    2017-12-01

    First and subsequent return strokes' striking distances (SDs) were determined for negative cloud-to-ground flashes from high-speed videos exhibiting the development of positive and negative leaders and the pre-return stroke phase of currents measured along a short tower. In order to improve the results, a new criterion was used for the initiation and propagation of the sustained upward connecting leader, consisting of a 4 A continuous current threshold. An advanced approach developed from the combined use of this criterion and a reverse propagation procedure, which considers the calculated propagation speeds of the leaders, was applied and revealed that SDs determined solely from the first video frame showing the upward leader can be significantly underestimated. An original approach was proposed for a rough estimate of first strokes' SD using solely records of current. This approach combines the 4 A criterion and a representative composite three-dimensional propagation speed of 0.34 × 106 m/s for the leaders in the last 300 m propagated distance. SDs determined under this approach showed to be consistent with those of the advanced procedure. This approach was applied to determine the SD of 17 first return strokes of negative flashes measured at MCS, covering a wide peak-current range, from 18 to 153 kA. The estimated SDs exhibit very high dispersion and reveal great differences in relation to the SDs estimated for subsequent return strokes and strokes in triggered lightning.

  16. Quantitative sensory testing measures individual pain responses in emergency department patients

    Directory of Open Access Journals (Sweden)

    Duffy KJ

    2017-05-01

    Full Text Available Kevin J Duffy, Katharyn L Flickinger, Jeffrey T Kristan, Melissa J Repine, Alexandro Gianforcaro, Rebecca B Hasley, Saad Feroz, Jessica M Rupp, Jumana Al-Baghli, Maria L Pacella, Brian P Suffoletto, Clifton W Callaway Department of Emergency Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA Background: Refining and individualizing treatment of acute pain in the emergency department (ED is a high priority, given that painful complaints are the most common reasons for ED visits. Few tools exist to objectively measure pain perception in the ED setting. We speculated that variation in perception of fixed painful stimuli would explain individual variation in reported pain and response to treatment among ED patients. Materials and methods: In three studies, we 1 describe performance characteristics of brief quantitative sensory testing (QST in 50 healthy volunteers, 2 test effects of 10 mg oxycodone versus placebo on QST measures in 18 healthy volunteers, and 3 measure interindividual differences in nociception and treatment responses in 198 ED patients with a painful complaint during ED treatment. QST measures adapted for use in the ED included pressure sensation threshold, pressure pain threshold (PPT, pressure pain response (PPR, and cold pain tolerance (CPT tests. Results: First, all QST measures had high inter-rater reliability and test–retest reproducibility. Second, 10 mg oxycodone reduced PPR, increased PPT, and prolonged CPT. Third, baseline PPT and PPR revealed hyperalgesia in 31 (16% ED subjects relative to healthy volunteers. In 173 (88% ED subjects who completed repeat testing 30 minutes after pain treatment, PPT increased and PPR decreased (Cohen’s dz 0.10–0.19. Verbal pain scores (0–10 for the ED complaint decreased by 2.2 (95% confidence intervals [CI]: 1.9, 2.6 (Cohen’s dz 0.97 but did not covary with the changes in PPT and PPR (r=0.05–0.13. Treatment effects were greatest in ED subjects

  17. A Quantitative Tool for Producing DNA-Based Diagnostic Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Tom J. Whitaker

    2008-07-11

    ODN. Studies were conducted using this technique and comparing the results of the radioactive label vs SIRIS measurements of Pt as a function of ODN length and distance of the Pt label from the attachment end. The SIRIS signal was not proportional to the amount of oligo attached to the surface as determined by the decay of the 33P label. We intentionally tested conditions under which one might expect the atomization efficiency to change and we believe this is the problem. Different lengths of oligos, and different placement of the label in the oligo affected the final signal. This obviously makes use of SIRIS as a quantitative tool for oligonucleotides problematic except under highly controlled situations.

  18. Quantitative Method of Measuring Metastatic Activity

    Science.gov (United States)

    Morrison, Dennis R. (Inventor)

    1999-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated uroldnase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  19. Timed function tests, motor function measure, and quantitative thigh muscle MRI in ambulant children with Duchenne muscular dystrophy: A cross-sectional analysis.

    Science.gov (United States)

    Schmidt, Simone; Hafner, Patricia; Klein, Andrea; Rubino-Nacht, Daniela; Gocheva, Vanya; Schroeder, Jonas; Naduvilekoot Devasia, Arjith; Zuesli, Stephanie; Bernert, Guenther; Laugel, Vincent; Bloetzer, Clemens; Steinlin, Maja; Capone, Andrea; Gloor, Monika; Tobler, Patrick; Haas, Tanja; Bieri, Oliver; Zumbrunn, Thomas; Fischer, Dirk; Bonati, Ulrike

    2018-01-01

    The development of new therapeutic agents for the treatment of Duchenne muscular dystrophy has put a focus on defining outcome measures most sensitive to capture treatment effects. This cross-sectional analysis investigates the relation between validated clinical assessments such as the 6-minute walk test, motor function measure and quantitative muscle MRI of thigh muscles in ambulant Duchenne muscular dystrophy patients, aged 6.5 to 10.8 years (mean 8.2, SD 1.1). Quantitative muscle MRI included the mean fat fraction using a 2-point Dixon technique, and transverse relaxation time (T2) measurements. All clinical assessments were highly significantly inter-correlated with p muscle MRI values significantly correlated with all clinical assessments with the extensors showing the strongest correlation. In contrast to the clinical assessments, quantitative muscle MRI values were highly significantly correlated with age. In conclusion, the motor function measure and timed function tests measure disease severity in a highly comparable fashion and all tests correlated with quantitative muscle MRI values quantifying fatty muscle degeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Safety distance between underground natural gas and water pipeline facilities

    International Nuclear Information System (INIS)

    Mohsin, R.; Majid, Z.A.; Yusof, M.Z.

    2014-01-01

    A leaking water pipe bursting high pressure water jet in the soil will create slurry erosion which will eventually erode the adjacent natural gas pipe, thus causing its failure. The standard 300 mm safety distance used to place natural gas pipe away from water pipeline facilities needs to be reviewed to consider accidental damage and provide safety cushion to the natural gas pipe. This paper presents a study on underground natural gas pipeline safety distance via experimental and numerical approaches. The pressure–distance characteristic curve obtained from this experimental study showed that the pressure was inversely proportional to the square of the separation distance. Experimental testing using water-to-water pipeline system environment was used to represent the worst case environment, and could be used as a guide to estimate appropriate safety distance. Dynamic pressures obtained from the experimental measurement and simulation prediction mutually agreed along the high-pressure water jetting path. From the experimental and simulation exercises, zero effect distance for water-to-water medium was obtained at an estimated horizontal distance at a minimum of 1500 mm, while for the water-to-sand medium, the distance was estimated at a minimum of 1200 mm. - Highlights: • Safe separation distance of underground natural gas pipes was determined. • Pressure curve is inversely proportional to separation distance. • Water-to-water system represents the worst case environment. • Measured dynamic pressures mutually agreed with simulation results. • Safe separation distance of more than 1200 mm should be applied

  1. Distance Adult Students’ Self-Management Strategies of Online Learning Discussion

    Directory of Open Access Journals (Sweden)

    Nur Shaminah binti Mustafa Kamalu

    2013-12-01

    Full Text Available With distance learning getting more attention, the need for self-management strategies of learning becomes more prevalent since online learning is independent of time and place. This study was conducted to explore adult distance online students’ self-management strategies of learning and the importance of computer skill and their level of self-management strategies with regard to age and gender. A quantitative method survey research design was used to carry out the research which used questionnaire as the instrument for data collecting process. Participants involved were a group of first semester distance online learning students who were full time primary school teachers. They had registered for Technology Instruction course. Findings revealed that the level of self-management strategies of learning among these adult learners was moderate. In terms of the difference in selfmanagement strategies of learning between gender and among different categories of age, the results revealed there were no significant differences. Relationship between each component of self-management and computer skill revealed that the highest correlation was between computer skill and evaluation.

  2. A Method for Improving Galactic Cepheid Reddenings and Distances

    Energy Technology Data Exchange (ETDEWEB)

    Madore, Barry F. [The Observatories Carnegie Institution for Science 813 Santa Barbara St., Pasadena, CA 91101 (United States); Freedman, Wendy L.; Moak, Sandy, E-mail: barry.f.madore@gmail.com, E-mail: sandymoak@gmail.com, E-mail: wfreedman@uchicago.edu [Dept. of Astronomy and Astrophysics, University of Chicago, Chicago, IL (United States)

    2017-06-10

    We present a new photometric method by which improved high-precision reddenings and true distance moduli can be determined to individual Galactic Cepheids once distance measurements are available. We illustrate that the relative positioning of stars in the Cepheid period–luminosity (PL) relation (Leavitt law) is preserved as a function of wavelength. This information then provides a powerful constraint for determining reddenings to individual Cepheids, as well as their distances. As a first step, we apply this method to the 59 Cepheids in the compilation of Fouqué et al. Updated reddenings, distance moduli (or parallaxes), and absolute magnitudes in seven (optical through near-infrared) bands are given. From these intrinsic quantities, multiwavelength PL and color–color relations are derived. We find that the V -band period–luminosity–color relation has an rms scatter of only 0.06 mag, so that individual Cepheid distances can be measured to 3%, compared with dispersions of 6 to 13% for the one-parameter K through B PL relations, respectively. This method will be especially useful in conjunction with the new accurate parallax sample upcoming from Gaia .

  3. Measurements of tritium (HTO, TFWT, OBT) in environmental samples at varying distances from a nuclear generating station

    Energy Technology Data Exchange (ETDEWEB)

    Kotzer, T.G.; Workman, W.J.G

    1999-12-01

    Concentrations of tritium have been measured in environmental samples (vegetation, water, soil, air) from sites distal and proximal to a CANDU nuclear generating station in Southern Ontario (OPG-Pickering). Levels of tissue-free water tritium (TFWT) and organically bound tritium (OBT) in vegetation are as high as 24,000 TU immediately adjacent to the nuclear generating station and rapidly decrease to levels of tritium which are comparable to natural ambient concentrations for tritium in the environment (approximately {<=} 60 TU). Tritium concentrations (OBT, TFTW) have also been measured in samples of vegetation and tree rings growing substantial distances away from nuclear generating stations and are within a factor of 1 to 2 of the ambient levels of tritium measured in precipitation in several parts of Canada (approximately {<=}30 TU). (author)

  4. Measurements of tritium (HTO, TFWT, OBT) in environmental samples at varying distances from a nuclear generating station

    International Nuclear Information System (INIS)

    Kotzer, T.G.; Workman, W.J.G.

    1999-12-01

    Concentrations of tritium have been measured in environmental samples (vegetation, water, soil, air) from sites distal and proximal to a CANDU nuclear generating station in Southern Ontario (OPG-Pickering). Levels of tissue-free water tritium (TFWT) and organically bound tritium (OBT) in vegetation are as high as 24,000 TU immediately adjacent to the nuclear generating station and rapidly decrease to levels of tritium which are comparable to natural ambient concentrations for tritium in the environment (approximately ≤ 60 TU). Tritium concentrations (OBT, TFTW) have also been measured in samples of vegetation and tree rings growing substantial distances away from nuclear generating stations and are within a factor of 1 to 2 of the ambient levels of tritium measured in precipitation in several parts of Canada (approximately ≤30 TU). (author)

  5. A new rapid method for rockfall energies and distances estimation

    Science.gov (United States)

    Giacomini, Anna; Ferrari, Federica; Thoeni, Klaus; Lambert, Cedric

    2016-04-01

    and distances at the base to block and slope features. The validation of the proposed approach was conducted by comparing predictions to experimental data collected in the field and gathered from the scientific literature. The method can be used for both natural and constructed slopes and easily extended to more complicated and articulated slope geometries. The study shows its great potential for a quick qualitative hazard assessment providing indication about impact energy and horizontal distance of the first impact at the base of a rock cliff. Nevertheless, its application cannot substitute a more detailed quantitative analysis required for site-specific design of mitigation measures. Acknowledgements The authors gratefully acknowledge the financial support of the Australian Coal Association Research Program (ACARP). References Dorren, L.K.A. (2003) A review of rockfall mechanics and modelling approaches, Progress in Physical Geography 27(1), 69-87. Agliardi, F., Crosta, G.B., Frattini, P. (2009) Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques. Natural Hazards and Earth System Sciences 9(4), 1059-1073. Ferrari, F., Thoeni, K., Giacomini, A., Lambert, C. (2016) A rapid approach to estimate the rockfall energies and distances at the base of rock cliffs. Georisk, DOI: 10.1080/17499518.2016.1139729.

  6. A large catalog of accurate distances to molecular clouds from PS1 photometry

    Energy Technology Data Exchange (ETDEWEB)

    Schlafly, E. F.; Rix, H.-W.; Martin, N. F. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Green, G.; Finkbeiner, D. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Kaiser, N.; Magnier, E. A.; Tonry, J. L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Draper, P. W.; Metcalfe, N. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Price, P. A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-05-01

    Distance measurements to molecular clouds are important but are often made separately for each cloud of interest, employing very different data and techniques. We present a large, homogeneous catalog of distances to molecular clouds, most of which are of unprecedented accuracy. We determine distances using optical photometry of stars along lines of sight toward these clouds, obtained from PanSTARRS-1. We simultaneously infer the reddenings and distances to these stars, tracking the full probability distribution function using a technique presented in Green et al. We fit these star-by-star measurements using a simple dust screen model to find the distance to each cloud. We thus estimate the distances to almost all of the clouds in the Magnani et al. catalog, as well as many other well-studied clouds, including Orion, Perseus, Taurus, Cepheus, Polaris, California, and Monoceros R2, avoiding only the inner Galaxy. Typical statistical uncertainties in the distances are 5%, though the systematic uncertainty stemming from the quality of our stellar models is about 10%. The resulting catalog is the largest catalog of accurate, directly measured distances to molecular clouds. Our distance estimates are generally consistent with available distance estimates from the literature, though in some cases the literature estimates are off by a factor of more than two.

  7. A quantitative method for determining spatial discriminative capacity

    Directory of Open Access Journals (Sweden)

    Dennis Robert G

    2008-03-01

    Full Text Available Abstract Background The traditional two-point discrimination (TPD test, a widely used tactile spatial acuity measure, has been criticized as being imprecise because it is based on subjective criteria and involves a number of non-spatial cues. The results of a recent study showed that as two stimuli were delivered simultaneously, vibrotactile amplitude discrimination became worse when the two stimuli were positioned relatively close together and was significantly degraded when the probes were within a subject's two-point limen. The impairment of amplitude discrimination with decreasing inter-probe distance suggested that the metric of amplitude discrimination could possibly provide a means of objective and quantitative measurement of spatial discrimination capacity. Methods A two alternative forced-choice (2AFC tracking procedure was used to assess a subject's ability to discriminate the amplitude difference between two stimuli positioned at near-adjacent skin sites. Two 25 Hz flutter stimuli, identical except for a constant difference in amplitude, were delivered simultaneously to the hand dorsum. The stimuli were initially spaced 30 mm apart, and the inter-stimulus distance was modified on a trial-by-trial basis based on the subject's performance of discriminating the stimulus with higher intensity. The experiment was repeated via sequential, rather than simultaneous, delivery of the same vibrotactile stimuli. Results Results obtained from this study showed that the performance of the amplitude discrimination task was significantly degraded when the stimuli were delivered simultaneously and were near a subject's two-point limen. In contrast, subjects were able to correctly discriminate between the amplitudes of the two stimuli when they were sequentially delivered at all inter-probe distances (including those within the two-point limen, and improved when an adapting stimulus was delivered prior to simultaneously delivered stimuli. Conclusion

  8. Universal kinematic scaling as a probe of factorized long-distance effects in high-energy quarkonium production

    Energy Technology Data Exchange (ETDEWEB)

    Faccioli, Pietro; Seixas, Joao [LIP and IST, Lisbon (Portugal); Lourenco, Carlos; Araujo, Mariana [CERN, Geneva (Switzerland)

    2018-02-15

    Dimensional analysis reveals general kinematic scaling rules for the momentum, mass, and energy dependence of Drell-Yan and quarkonium cross sections. Their application to mid-rapidity LHC data provides strong experimental evidence supporting the validity of the factorization ansatz, a cornerstone of non-relativistic QCD, still lacking theoretical demonstration. Moreover, data-driven patterns emerge for the factorizable long-distance bound-state formation effects, including a remarkable correlation between the S-wave quarkonium cross sections and their binding energies. Assuming that this scaling can be extended to the P-wave case, we obtain precise predictions for the not yet measured feed-down fractions, thereby providing a complete picture of the charmonium and bottomonium feed-down structure. This is crucial information for quantitative interpretations of quarkonium production data, including studies of the suppression patterns measured in nucleus-nucleus collisions. (orig.)

  9. Quantitative computed tomography measurements to evaluate airway disease in chronic obstructive pulmonary disease: Relationship to physiological measurements, clinical index and visual assessment of airway disease

    Energy Technology Data Exchange (ETDEWEB)

    Nambu, Atsushi, E-mail: nambu-a@gray.plala.or.jp [Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 (United States); Zach, Jordan, E-mail: ZachJ@NJHealth.org [Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 (United States); Schroeder, Joyce, E-mail: Joyce.schroeder@stanfordalumni.org [Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 (United States); Jin, Gongyoung, E-mail: gyjin@chonbuk.ac.kr [Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 (United States); Kim, Song Soo, E-mail: haneul88@hanmail.net [Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 (United States); Kim, Yu-IL, E-mail: kyionly@chonnam.ac.kr [Department of Medicine, National Jewish Health, Denver, CO (United States); Schnell, Christina, E-mail: SchnellC@NJHealth.org [Department of Medicine, National Jewish Health, Denver, CO (United States); Bowler, Russell, E-mail: BowlerR@NJHealth.org [Division of Pulmonary Medicine, Department of Medicine, National Jewish Health (United States); Lynch, David A., E-mail: LynchD@NJHealth.org [Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206 (United States)

    2016-11-15

    Purpose: To correlate currently available quantitative CT measurements for airway disease with physiological indices and the body-mass index, airflow obstruction, dyspnea, and exercise capacity (BODE) index in patients with chronic obstructive pulmonary disease (COPD). Materials and methods: This study was approved by our institutional review board (IRB number 2778). Written informed consent was obtained from all subjects. The subjects included 188 current and former cigarette smokers from the COPDGene cohort who underwent inspiratory and expiratory CT and also had physiological measurements for the evaluation of airflow limitation, including FEF25-75%, airway resistance (Raw), and specific airway conductance (sGaw). The BODE index was used as the index of clinical symptoms. Quantitative CT measures included % low attenuation areas [% voxels ≤ 950 Hounsfield unit (HU) on inspiratory CT, %LAA{sub −950ins}], percent gas trapping (% voxels ≤ −856 HU on expiratory CT, %LAA {sub −856exp}), relative inspiratory to expiratory volume change of voxels with attenuation values from −856 to −950 HU [Relative Volume Change (RVC){sub −856} {sub to} {sub −950}], expiratory to inspiratory ratio of mean lung density (E/I-ratio {sub MLD}), Pi10, and airway wall thickness (WT), luminal diameter (LD) and airway wall area percent (WA%) in the segmental, subsegmental and subsubsegmental bronchi on inspiratory CT. Correlation coefficients were calculated between the QCT measurements and physiological measurements in all subjects and in the subjects with mild emphysema (%LAA{sub −950ins} <10%). Univariate and multiple variable analysis for the BODE index were also performed. Adjustments were made for age, gender, smoking pack years, FEF25-75%, Raw, and sGaw. Results: Quantitative CT measurements had significant correlations with physiological indices. Among them, E/I-ratio {sub MLD} had the strongest correlations with FEF25-75% (r = −0.648, <0.001) and sGaw (r = −0

  10. Bony orbital distances among the Filipino population.

    Science.gov (United States)

    Barone, Constance M; Jimenez, David F; Laskey, Antoinette; Alcantara, Briccio G; Braddock, Stephen R

    2002-03-01

    Six hundred and seventy seven radiographs were selected from the logs of films taken in a major hospital in Metro Manila, Philippines over the course of the previous year. Two hundred and eighty-eight female and 389 male, healthy Filipinos between the ages of birth and twenty years were selected based on the availability of a modified Waters' projection and lateral skull film taken at the same time. Measurements for the lateral orbital wall were made at the site of the suture on the medial surface of the zygomatic bone. The medial orbital wall measurement was the distance between the dacrya using a correction factor formula of CF = D-d/D where D is the target film distance and d is the object film distance (1). The actual bony measurements were calculated. The data was gathered and plotted according to sex and in age in years. Graphs were generated using SAS over a graph software. Lines were smooth using cubic spline technique developed by Reinsch with the smoothest value of 75 (2). The mean plus two, four, and six standard deviations were included in each of the curves.

  11. A passive quantitative measurement of airway resistance using depth data.

    Science.gov (United States)

    Ostadabbas, Sarah; Bulach, Christoph; Ku, David N; Anderson, Larry J; Ghovanloo, Maysam

    2014-01-01

    The Respiratory Syncytial Virus (RSV) is the most common cause of serious lower respiratory tract infections in infants and young children. RSV often causes increased airway resistance, clinically detected as wheezing by chest auscultation. In this disease, expiratory flows are significantly reduced due to the high resistance in patient's airway passages. A quantitative method for measuring resistance can have a great benefit to diagnosis and management of children with RSV infections as well as with other lung diseases. Airway resistance is defined as the lung pressure divided by the airflow. In this paper, we propose a method to quantify resistance through a simple, non-contact measurement of chest volume that can act as a surrogate measure of the lung pressure and volumetric airflow. We used depth data collected by a Microsoft Kinect camera for the measurement of the lung volume over time. In our experimentation, breathing through a number of plastic straws induced different airway resistances. For a standard spirometry test, our volume/flow estimation using Kinect showed strong correlation with the flow data collected by a commercially-available spirometer (five subjects, each performing 20 breathing trials, correlation coefficient = 0.88, with 95% confidence interval). As the number of straws decreased, emulating a higher airway obstruction, our algorithm was sufficient to distinguish between several levels of airway resistance.

  12. Quantitative method for measuring heat flux emitted from a cryogenic object

    Science.gov (United States)

    Duncan, R.V.

    1993-03-16

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.

  13. Quantitative method for measuring heat flux emitted from a cryogenic object

    International Nuclear Information System (INIS)

    Duncan, R.V.

    1993-01-01

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices

  14. Quantitative dual energy CT measurements in rabbit VX2 liver tumors: Comparison to perfusion CT measurements and histopathological findings

    International Nuclear Information System (INIS)

    Zhang, Long Jiang; Wu, Shengyong; Wang, Mei; Lu, Li; Chen, Bo; Jin, Lixin; Wang, Jiandong; Larson, Andrew C.; Lu, Guang Ming

    2012-01-01

    Purpose: To evaluate the correlation between quantitative dual energy CT and perfusion CT measurements in rabbit VX2 liver tumors. Materials and methods: This study was approved by the institutional animal care and use committee at our institution. Nine rabbits with VX2 liver tumors underwent contrast-enhanced dual energy CT and perfusion CT. CT attenuation for the tumors and normal liver parenchyma and tumor-to-liver ratio were obtained at the 140 kVp, 80 kVp, average weighted images and dual energy CT iodine maps. Quantitative parameters for the viable tumor and adjacent liver were measured with perfusion CT. The correlation between the enhancement values of the tumor in iodine maps and perfusion CT parameters of each tumor was analyzed. Radiation dose from dual energy CT and perfusion CT was measured. Results: Enhancement values for the tumor were higher than that for normal liver parenchyma at the hepatic arterial phase (P < 0.05). The highest tumor-to-liver ratio was obtained in hepatic arterial phase iodine map. Hepatic blood flow of the tumor was higher than that for adjacent liver (P < 0.05). Enhancement values of hepatic tumors in the iodine maps positively correlated with permeability of capillary vessel surface (r = 0.913, P < 0.001), hepatic blood flow (r = 0.512, P = 0.010), and hepatic blood volume (r = 0.464, P = 0.022) at the hepatic arterial phases. The effective radiation dose from perfusion CT was higher than that from DECT (P < 0.001). Conclusions: The enhancement values for viable tumor tissues measured in iodine maps were well correlated to perfusion CT measurements in rabbit VX2 liver tumors. Compared with perfusion CT, dual energy CT of the liver required a lower radiation dose.

  15. Quantitative measurement of piezoelectric coefficient of thin film using a scanning evanescent microwave microscope.

    Science.gov (United States)

    Zhao, Zhenli; Luo, Zhenlin; Liu, Chihui; Wu, Wenbin; Gao, Chen; Lu, Yalin

    2008-06-01

    This article describes a new approach to quantitatively measure the piezoelectric coefficients of thin films at the microscopic level using a scanning evanescent microwave microscope. This technique can resolve 10 pm deformation caused by the piezoelectric effect and has the advantages of high scanning speed, large scanning area, submicron spatial resolution, and a simultaneous accessibility to many other related properties. Results from the test measurements on the longitudinal piezoelectric coefficient of PZT thin film agree well with those from other techniques listed in literatures.

  16. A specialized plug-in software module for computer-aided quantitative measurement of medical images.

    Science.gov (United States)

    Wang, Q; Zeng, Y J; Huo, P; Hu, J L; Zhang, J H

    2003-12-01

    This paper presents a specialized system for quantitative measurement of medical images. Using Visual C++, we developed a computer-aided software based on Image-Pro Plus (IPP), a software development platform. When transferred to the hard disk of a computer by an MVPCI-V3A frame grabber, medical images can be automatically processed by our own IPP plug-in for immunohistochemical analysis, cytomorphological measurement and blood vessel segmentation. In 34 clinical studies, the system has shown its high stability, reliability and ease of utility.

  17. Measuring Filament Orientation: A New Quantitative, Local Approach

    Energy Technology Data Exchange (ETDEWEB)

    Green, C.-E.; Cunningham, M. R.; Jones, P. A. [School of Physics, University of New South Wales, Sydney, NSW, 2052 (Australia); Dawson, J. R. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Novak, G. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Fissel, L. M. [National Radio Astronomy Observatory (NRAO), 520 Edgemont Road, Charlottesville, VA, 22903 (United States)

    2017-09-01

    The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitatively on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”.

  18. Measuring Filament Orientation: A New Quantitative, Local Approach

    Science.gov (United States)

    Green, C.-E.; Dawson, J. R.; Cunningham, M. R.; Jones, P. A.; Novak, G.; Fissel, L. M.

    2017-09-01

    The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitatively on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”

  19. Measuring Filament Orientation: A New Quantitative, Local Approach

    International Nuclear Information System (INIS)

    Green, C.-E.; Cunningham, M. R.; Jones, P. A.; Dawson, J. R.; Novak, G.; Fissel, L. M.

    2017-01-01

    The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitatively on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”

  20. Quality evaluation in distance undergraduate courses in Brazil

    Directory of Open Access Journals (Sweden)

    Carla Netto

    2015-01-01

    of distance-run undergraduate courses (D.Ed.. The data from the instruments were then processed according to Discourse Textual Analysis (DTA. The evaluation process for undergraduate distance education courses in the USA was evaluated by identifying those quality indicators adopted by international accreditation agencies. Based on the analysis of the evaluation process of distance undergraduate courses in Brazil, a further study was carried out about the results and impacts of the Brazilian system, especially the indicators used and the level of confidence that existed when measuring the quality of distance-based undergraduate courses. As a result of this research, our researchers observed there was a real need to establish a quality assurance benchmark in Brazil along these conceptual lines, namely one that represents quality in D.Ed. and includes the usage of indicators that reflect the excellence of the degree course that are offered. This level of excellence is assessed on the basis of the training, experience, knowledge and skills of the evaluators, as well as on clear, precise and transparent criteria for measuring the quality-based distance degree courses. On the other hand, it is also necessary to be equipped with a Bank of Evaluators – not only for those who work in this field, but also for a group of experts that is large enough to implement the Brazilian evaluation system in distance education programs.