WorldWideScience

Sample records for measuring icf-target burn

  1. Burn performance of deuterium-tritium, deuterium-deuterium, and catalyzed deuterium ICF targets

    International Nuclear Information System (INIS)

    Harris, D.B.; Blue, T.E.

    1983-01-01

    The University of Illinois hydrodynamic burn code, AFBURN, has been used to model the performance of homogeneous D-T, D 2 , and catalyzed deuterium ICF targets. Yields and gains are compared for power-producing targets. AFBURN is a one-dimensional, two-temperature, single-fluid hydrodynamic code with non-local fusion product energy deposition. The initial conditions for AFBURN are uniformly compressed targets with central hot spots. AFBURN predicts that maximum D 2 target gains are obtained for target rhoR and spark rhoR about seven times larger than the target and spark rhoR for maximum D-T target gains, that the maximum D 2 target gain is approximately one third of the maximum D-T target gain, and that the corresponding yields are approximately equal. By recycling tritium and 3 He from previous targets, D 2 target performance can be improved by about 10%. (author)

  2. 25-ps neutron detector for measuring ICF-target burn history

    International Nuclear Information System (INIS)

    Lerche, R.A.; Phillion, D.W.; Tietbohl, G.L.

    1994-01-01

    We have developed a fast, sensitive neutron detector for recording the fusion reaction-rate history of inertial-confinement fusion (ICF) experiments. The detector is based on the fast rise-time of a commercial plastic scintillator (BC-422) and has a response 8 and 2 x 10 13 neutrons

  3. Wetted foam liquid fuel ICF target experiments

    International Nuclear Information System (INIS)

    Olson, R E; Leeper, R J; Yi, S A; Kline, J L; Zylstra, A B; Peterson, R R; Shah, R; Braun, T; Biener, J; Kozioziemski, B J; Sater, J D; Biener, M M; Hamza, A V; Nikroo, A; Hopkins, L Berzak; Ho, D; LePape, S; Meezan, N B

    2016-01-01

    We are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We will use the liquid fuel layer capsules in a NIF sub-scale experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the predictability of hot spot formation. DT liquid layer ICF capsules allow for flexibility in hot spot CR via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR∼15), but will become less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In the initial experiments, we will test our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, and we will advance from sub-scale to full-scale NIF experiments to determine if 1D-like behavior at low CR is retained as the scale-size is increased. The long-term objective is to develop a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation. (paper)

  4. Nuclear diagnostics in support of ICF experiments

    International Nuclear Information System (INIS)

    Moran, M.J.; Hall, J.

    1996-01-01

    As the yields of Inertial Confinement Fusion (ICF) experiments increase to NIF levels new diagnostic techniques for studying details of fusion burn behavior will become feasible. The new techniques will provide improved measurements of fusion burn temperature and history. Improved temperature measurements might be achieved with magnetic spectroscopy of fusion neutrons. High-bandwidth fusion reaction history will be measured with fusion-specific γ-ray diagnostics. Additional energy-resolved γ-ray might be able to study a selection of specific behaviors during fusion burn. Present ICF yields greater than 10 13 neutrons are sufficient to demonstrate the basic methods that underlie the new techniques. As ICF yields increase, the diagnostics designs adjusted accordingly in order to provide clear and specific data on fusion burn performance

  5. Dependence of ICF reaction dynamics on target structure

    International Nuclear Information System (INIS)

    Kumar, Kamal; Dutt, Sunil; GulI, Muntazir; Ahmad, Tauseef; Rizvi, I.A.; Ali, Sabir; Agarwal, Avinash; Kumar, R.; Chaubey, A.K.

    2016-01-01

    The projectile structure is also found responsible for the ICF reaction processes. It is found that projectile having bigger alpha cluster is more unstable towards break up. In this context, a comparative study of 12 C and 16 O ion-beams induced reactions with different targets has been done. The deduced ICF contributions for different systems have been plotted against the target charge of different targets. It is observed that target properties may also be responsible for the interplay between CF and ICF reaction dynamics

  6. Transition from equilibrium ignition to non-equilibrium burn for ICF capsules surrounded by a high-Z pusher

    International Nuclear Information System (INIS)

    Li, Ji W.; Chang, Lei; Li, Yun S.; Li, Jing H.

    2011-01-01

    For the ICF capsule surrounded by a high-Z pusher which traps the radiation and confines the hot fuel, the fuel will first be ignited in thermal equilibrium with radiation at a much lower temperature than hot-spot ignition, which is also the low temperature ignition. Because of the lower areal density for ICF capsules, the equilibrium ignition must be developed into a non-equilibrium burn to shorten the reaction time and lower the drive energy. In this paper, the transition from the equilibrium ignition to non-equilibrium burn is discussed and the energy deposited by α particles required for the equilibrium ignition and non-equilibrium burn to occur is estimated.

  7. ICF-based classification and measurement of functioning.

    Science.gov (United States)

    Stucki, G; Kostanjsek, N; Ustün, B; Cieza, A

    2008-09-01

    If we aim towards a comprehensive understanding of human functioning and the development of comprehensive programs to optimize functioning of individuals and populations we need to develop suitable measures. The approval of the International Classification, Disability and Health (ICF) in 2001 by the 54th World Health Assembly as the first universally shared model and classification of functioning, disability and health marks, therefore an important step in the development of measurement instruments and ultimately for our understanding of functioning, disability and health. The acceptance and use of the ICF as a reference framework and classification has been facilitated by its development in a worldwide, comprehensive consensus process and the increasing evidence regarding its validity. However, the broad acceptance and use of the ICF as a reference framework and classification will also depend on the resolution of conceptual and methodological challenges relevant for the classification and measurement of functioning. This paper therefore describes first how the ICF categories can serve as building blocks for the measurement of functioning and then the current state of the development of ICF based practical tools and international standards such as the ICF Core Sets. Finally it illustrates how to map the world of measures to the ICF and vice versa and the methodological principles relevant for the transformation of information obtained with a clinical test or a patient-oriented instrument to the ICF as well as the development of ICF-based clinical and self-reported measurement instruments.

  8. Magnetron co-sputtering system for coating ICF targets

    International Nuclear Information System (INIS)

    Hsieh, E.J.; Meyer, S.F.; Halsey, W.G.; Jameson, G.T.; Wittmayer, F.J.

    1981-01-01

    Fabrication of Inertial Confinement Fusion (ICF) targets requires deposition of various types of coatings on microspheres. The mechanical strength, and surface finish of the coatings are of concern in ICF experiments. The tensile strength of coatings can be controlled through grain refinement, selective doping and alloy formation. We have constructed a magnetron co-sputtering system to produce variable density profile coatings with high tensile strength on microspheres

  9. ICF burn-history measurments using 17-MeV fusion gamma rays

    International Nuclear Information System (INIS)

    Lerche, R.A.; Cable, M.D.; Dendooven, P.G.

    1995-01-01

    Fusion reaction rate for inertial-confinement fusion (ICF) experiments at the Nova Laser Facility is measured with 30-ps resolution using a high-speed neutron detector. We are investigating a measurement technique based on the 16.7-MeV gamma rays that are released in deuterium-tritium fusion. Our concept is to convert gamma-ray energy into a fast burst of Cerenkov light that can be recorded with a high-speed optical detector. We have detected fusion gamma rays in preliminary experiments conducted at Nova where we used a tungsten/aerogel converter to generate Cerenkov light and an optical streak camera to record the signal

  10. Spin-polarized fuel in ICF pellets

    International Nuclear Information System (INIS)

    Wakuta, Yoshihisa; Emoto, Nobuya; Nakao, Yasuyuki; Honda, Takuro; Honda, Yoshinori; Nakashima, Hideki.

    1990-01-01

    The use of parallel spin-polarized DT or D 3 He fuel increases the fusion cross-section by 50%. By implosion-burn simulation for inertially confined fusion (ICF) pellets of the spin-polarized fuels, we found that the input energy requirement could be reduced by nearly a fact of two. These pellets taken up here include large-high-aspect-ratio DT target proposed in ILE Osaka University and DT ignitor/D 3 He fuel pellet proposed by our group. We also found that the polarized state could survive during the implosion-burn phase. (author)

  11. ICF gamma-ray reaction history diagnostics

    International Nuclear Information System (INIS)

    Herrmann, H W; Young, C S; Mack, J M; Kim, Y H; McEvoy, A; Evans, S; Sedillo, T; Batha, S; Schmitt, M; Wilson, D C; Langenbrunner, J R; Malone, R; Kaufman, M I; Cox, B C; Frogget, B; Tunnell, T W; Miller, E K; Ali, Z A; Stoeffl, W; Horsfield, C J

    2010-01-01

    Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ∼6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 10 13 -10 17 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 10 16 -10 20 yield range expected during the DT ignition campaign, providing higher temporal resolution

  12. ICF gamma-ray reaction history diagnostics

    Science.gov (United States)

    Herrmann, H. W.; Young, C. S.; Mack, J. M.; Kim, Y. H.; McEvoy, A.; Evans, S.; Sedillo, T.; Batha, S.; Schmitt, M.; Wilson, D. C.; Langenbrunner, J. R.; Malone, R.; Kaufman, M. I.; Cox, B. C.; Frogget, B.; Miller, E. K.; Ali, Z. A.; Tunnell, T. W.; Stoeffl, W.; Horsfield, C. J.; Rubery, M.

    2010-08-01

    Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ~6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 1013-1017 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 1016-1020 yield range expected during the DT ignition campaign, providing higher temporal resolution for the

  13. Analysis of directly driven ICF targets

    International Nuclear Information System (INIS)

    Velarde, G.; Aragones, J.M.; Gago, J.A.

    1986-01-01

    The current capabilities at DENIM for the analysis of directly driven targets are presented. These include theoretical, computational and applied physical studies and developments of detailed simulation models for the most relevant processes in ICF. The simulation of directly driven ICF targets is carried out with the one-dimensional NORCLA code developed at DENIM. This code contains two main segments: NORMA and CLARA, able to work fully coupled and in an iterative manner. NORMA solves the hydrodynamic equations in a lagrangian mesh. It has modular programs couple to it to treat the laser or particle beam interaction with matter. Equations of state, opacities and conductivities are taken from a DENIM atomic data library, generated externally with other codes that will also be explained in this work. CLARA solves the transport equation for neutrons, as well as for charged particles, and suprathermal electrons using discrete ordinates and finite element methods in the computational procedure. Parametric calculations of multilayered single-shell targets driven by heavy ion beams are also analyzed. Finally, conclusions are focused on the ongoing developments in the areas of interest such as: radiation transport, atomic physics, particle in cell method, charged particle transport, two-dimensional calculations and instabilities. (author)

  14. Monte Carlo Methods in ICF

    Science.gov (United States)

    Zimmerman, George B.

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.

  15. Monte Carlo methods in ICF

    International Nuclear Information System (INIS)

    Zimmerman, George B.

    1997-01-01

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials

  16. Towards an ICF-based clinical measure of functioning in people with ankylosing spondylitis: a methodological exploration.

    Science.gov (United States)

    Cieza, A; Hilfiker, R; Boonen, A; van der Heijde, D; Braun, J; Stucki, G

    2009-01-01

    To explore whether it is possible to construct clinical measures of functioning for patients with ankylosing spondylitis (AS) by integrating information obtained across categories of the International Classification of Functioning, Disability and Health (ICF). Sixty-eight ICF categories that were identified as relevant by patients with AS and that covered body functions, structures, and activity and participation were analysed based on the Rasch model for ordered response options. The following properties were studied: unidimensionality, reliability, fit of the ICF categories to the Rasch model, the appropriateness of the order of the response options of the ICF qualifier, and the targeting between the ICF categories and the person's abilities. After accounting for disordered thresholds and misfitting ICF categories, a clinical measure of functioning for AS was proposed that contained 64 ICF categories. On the basis of a transformation table, the raw scores obtained by adding the answers to the 64 ICF categories can be transformed to the Rasch logit scale and to a meaningful interval scale ranging from zero to 100. For the first time, it has been shown that clinical measures of functioning, in principle, can be constructed based on the comprehensive ICF framework covering body functions and structures and activities and participation domains. The results of this investigation are preliminary and must be validated, but they are promising and can contribute to the acceptance and usefulness of the ICF in clinical practice.

  17. X-ray ablation measurements and modeling for ICF applications

    International Nuclear Information System (INIS)

    Anderson, A.T.

    1996-09-01

    X-ray ablation of material from the first wall and other components of an ICF (Inertial Confinement Fusion) chamber is a major threat to the laser final optics. Material condensing on these optics after a shot may cause damage with subsequent laser shots. To ensure the successful operation of the ICF facility, removal rates must be predicted accurately. The goal for this dissertation is to develop an experimentally validated x-ray response model, with particular application to the National Ignition Facility (NIF). Accurate knowledge of the x-ray and debris emissions from ICF targets is a critical first step in the process of predicting the performance of the target chamber system. A number of 1-D numerical simulations of NIF targets have been run to characterize target output in terms of energy, angular distribution, spectrum, and pulse shape. Scaling of output characteristics with variations of both target yield and hohlraum wall thickness are also described. Experiments have been conducted at the Nova laser on the effects of relevant x-ray fluences on various materials. The response was diagnosed using post-shot examinations of the surfaces with scanning electron microscope and atomic force microscope instruments. Judgments were made about the dominant removal mechanisms for each material. Measurements of removal depths were made to provide data for the modeling. The finite difference ablation code developed here (ABLATOR) combines the thermomechanical response of materials to x-rays with models of various removal mechanisms. The former aspect refers to energy deposition in such small characteristic depths (∼ micron) that thermal conduction and hydrodynamic motion are significant effects on the nanosecond time scale. The material removal models use the resulting time histories of temperature and pressure-profiles, along with ancillary local conditions, to predict rates of surface vaporization and the onset of conditions that would lead to spallation

  18. Moving finite element method for ICF target implosion

    Science.gov (United States)

    Furuta, J.; Kawata, S.; Niu, K.

    1985-03-01

    One dimensional hydrodynamic codes for the analysis of internal confinement fusion (ICF) target implosion which include various effects were developed, but most of them utilize the artificial viscosity (e.g., Von Neumann's viscosity) which cannot reveal accurately the shock waves. A gain of ICF target implosion is much due to the dissipation at the shock fronts, so it is necessary to express correctly the shock waves which are affected by the viscosity. The width of the shock waves is usually a few times as large as the length of mean free path, therefore the meshes for the shock waves must be set to about 10 to the 4th to 10 to the 5th power. It is a serious problem because of the computational memories or CPU time. In the moving finite element (MPE) method, both nodal amplitudes and nodal positions move continuously with time in such a way as to satisfy simultaneous ordinary differential equations (OPDs) which minimize partial differential equation (PDE) residuals.

  19. Monte Carlo methods in ICF

    International Nuclear Information System (INIS)

    Zimmerman, G.B.

    1997-01-01

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials. copyright 1997 American Institute of Physics

  20. Kinetic studies of ICF target dynamics with ePLAS

    Science.gov (United States)

    Mason, R. J.

    2016-10-01

    The ePLAS code was recently used1 to show that a modeling change from artificial to real viscosity can result in a decrease of the predicted performance of ICF targets. This code typically follows either fluid or PIC electrons with fluid ions in self-consistent E - and B - fields computed by the Implicit Moment Method2. For the present study the ions have instead been run as PIC particles undergoing Krook-like self-collisions. The ePLAS collision model continually redistributes the ion particle properties toward a local Maxwellian, while conserving the mean density, momentum and energy. Whereas the use of real viscosity captures large Knudsen Number effects as the active target dimensions shrink below the ion mean-free-path, the new kinetic modeling can manifest additional effects such as collisional shock precursors3 from the escape and streaming of the fastest particle ions. In 2D cylindrical geometry we will explore how such kinetic shock extensions might affect shell and core compression dynamics in ICF target implosions.

  1. A TDC module used in nTOF of ICF

    International Nuclear Information System (INIS)

    Zhang Yuehua; Li Feng; Jin Ge; Yu Xiaoqi; Jiang Xiao

    2007-01-01

    Neutron time-of-flight (TOF) can provide important information about the fuel-ion burn temperature in various inertial-confinement-fusion (ICF) target designs. The sensitive neutron detector array is used to increase sensitivity while maintaining good time resolution for low-yield targets. It has been a standard technique to diagnose the average density-radius product(pR), which is a very important parameter in ICF experiments. The time resolution of the sensitive neutron detector array which will be used in 'Shen Guang III' system is expected to be 1 ns, and the one of the electronic system connected with the detectors is 100 ps. Based on the next generation of TDCs from ACAM, TDC-GP2, a VME-plug-in multi-chanel TDC module, with a time-resolution of less than 61 ps, has been designed. (authors)

  2. Experiment of ambient temperature distribution in ICF driver's target building

    International Nuclear Information System (INIS)

    Zhou Yi; He Jie; Yang Shujuan; Zhang Junwei; Zhou Hai; Feng Bin; Xie Na; Lin Donghui

    2009-01-01

    An experiment is designed to explore the ambient temperature distribution in an ICF driver's target building, Multi-channel PC-2WS temperature monitoring recorders and PTWD-2A precision temperature sensors are used to measure temperatures on the three vertical cross-sections in the building, and the collected data have been handled by MATLAB. The experiment and analysis show that the design of the heating ventilation and air conditioning (HVAC) system can maintain the temperature stability throughout the building. However, because of the impact of heat in the target chamber, larger local environmental temperature gradients appear near the marshalling yard, the staff region on the middle floor, and equipments on the lower floor which needs to be controlled. (authors)

  3. The ICF has made a difference to functioning and disability measurement and statistics.

    Science.gov (United States)

    Madden, Rosamond H; Bundy, Anita

    2018-02-12

    Fifteen years after the publication of the International Classification of Functioning, Disability and Health (ICF), we investigated: How ICF applications align with ICF aims, contents and principles, and how the ICF has been used to improve measurement of functioning and related statistics. In a scoping review, we investigated research published 2001-2015 relating to measurement and statistics for evidence of: a change in thinking; alignment of applications with ICF specifications and philosophy; and the emergence of new knowledge. The ICF is used in diverse applications, settings and countries, with processes largely aligned with the ICF and intended to improve measurement and statistics: new national surveys, information systems and ICF-based instruments; and international efforts to improve disability data. Knowledge is growing about the components and interactions of the ICF model, the diverse effects of the environment on functioning, and the meaning and measurement of participation. The ICF provides specificity and a common language in the complex world of functioning and disability and is stimulating new thinking, new applications in measurement and statistics, and the assembling of new knowledge. Nevertheless, the field needs to mature. Identified gaps suggest ways to improve measurement and statistics to underpin policies, services and outcomes. Implications for Rehabilitation The ICF offers a conceptualization of functioning and disability that can underpin assessment and documentation in rehabilitation, with a growing body of experience to draw on for guidance. Experience with the ICF reminds practitioners to consider all the domains of participation, the effect of the environment on participation and the importance of involving clients/patients in assessment and service planning. Understanding the variability of functioning within everyday environments and designing interventions for removing barriers in various environments is a vital part of

  4. Monte Carlo Methods in ICF (LIRPP Vol. 13)

    Science.gov (United States)

    Zimmerman, George B.

    2016-10-01

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved SOX in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.

  5. Experimental techniques for measuring Rayleigh-Taylor instability in inertial confinement fusion (ICF)

    Energy Technology Data Exchange (ETDEWEB)

    Smalyuk, V A

    2012-06-07

    Rayleigh-Taylor (RT) instability is one of the major concerns in inertial confinement fusion (ICF) because it amplifies target modulations in both acceleration and deceleration phases of implosion, which leads to shell disruption and performance degradation of imploding targets. This article reviews experimental results of the RT growth experiments performed on OMEGA laser system, where targets were driven directly with laser light. RT instability was studied in the linear and nonlinear regimes. The experiments were performed in acceleration phase, using planar and spherical targets, and in deceleration phase of spherical implosions, using spherical shells. Initial target modulations consisted of 2-D pre-imposed modulations, and 2-D and 3-D modulations imprinted on targets by the non-uniformities in laser drive. In planar geometry, the nonlinear regime was studied using 3-D modulations with broadband spectra near nonlinear saturation levels. In acceleration-phase, the measured modulation Fourier spectra and nonlinear growth velocities are in good agreement with those predicted by Haan's model [Haan S W 1989 Phys. Rev. A 39 5812]. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions [Oron D et al 2001 Phys. Plasmas 8, 2883]. The 3-D, inner-surface modulations were measured to grow throughout the deceleration phase of spherical implosions. RT growth rates are very sensitive to the drive conditions, therefore they can be used to test and validate drive physics in hydrodynamic codes used to design ICF implosions. Measured growth rates of pre-imposed 2-D target modulations below nonlinear saturation levels were used to validate non-local thermal electron transport model in laser-driven experiments.

  6. A Phoswich Detector System to Measure Sub-Second Half-Lives using ICF Reactions

    Science.gov (United States)

    Coats, Micah; Cook, Katelyn; Yuly, Mark; Padalino, Stephen; Sangster, Craig; Regan, Sean

    2017-10-01

    The 3H(t,γ)6He cross section has not been measured at any bombarding energy due to the difficulties of simultaneously producing both a tritium beam and target at accelerator labs. An alternative technique may be to use an ICF tt implosion at the OMEGA Laser Facility. The 3H(t,γ)6He cross section could be determined in situ by measuring the beta decay of 6He beginning a few milliseconds after the shot along with other ICF diagnostics. A dE-E phoswich system capable of surviving in the OMEGA target chamber was tested using the SUNY Geneseo pelletron to create neutrons via 2H(d,n)3He and subsequently 6He via 9Be(n,α)6He in a beryllium target. The phoswich dE-E detector system was used to select beta decay events and measure the 807 ms half-life of 6He. It is composed of a thin, 2 ns decay time dE scintillator optically coupled to a thick, 285 ns E scintillator, with a linear gate to separate the short dE pulse from the longer E tail. Funded in part by a Grant from the DOE through the Laboratory for Laser Energetics.

  7. ICF research at Los Alamos

    International Nuclear Information System (INIS)

    Goldstone, P.D.; Ackerhalt, J.R.; Blair, L.S.

    1987-01-01

    It is apparent that short wavelength lasers (<500 nm) provide efficient coupling of laser energy into ICF target compression. KrF lasers (248 nm) operate at near-optimum wavelength and provide other potential benefits to ICF target coupling (e.g., bandwidth) and applications (high wallplug efficiency and relatively low cost). However, no driver technology has yet been shown to meet all of the requirements for a high-gain ICF capability at a currently acceptable cost, and there are still significant uncertainties in the driver-target coupling and capsule hydrodynamics that must be addressed. The Los Alamos research program is designed to assess the potential of KrF lasers for ICF and to determine the feasibility of achieving high gain in the laboratory with a KrF laser driver. Major efforts in KrF laser development and technology, target fabrication and materials development, and laser-matter interaction and hydrodynamics research are discussed. 27 refs., 10 figs

  8. Ignition and burn in inertially confined magnetized fuel

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.; Lindemuth, I.R.

    1991-01-01

    At the third International Conference on Emerging Nuclear Energy Systems, we presented computational results which suggested that ''breakeven'' experiments in inertial confinement fusion (ICF) may be possible with existing driver technology. We recently used the ICF simulation code LASNEX to calculate the performance of an idealized magnetized fuel target. The parameter space in which magnetized fuel operates is remote from that of both ''conventional'' ICF and magnetic confinement fusion devices. In particular, the plasma has a very high β and is wall confined, not magnetically confined. The role of the field is to reduce the electron thermal conductivity and to partially trap the DT alphas. The plasma is contained in a pusher which is imploded to compress and adiabatically heat the plasma from an initial condition of preheat and pre-magnetization to the conditions necessary for fusion ignition. The initial density must be quite low by ICF standards in order to insure that the electron thermal conductivity is suppressed and to minimize the generation of radiation from the plasma. Because the energy loss terms are effectively suppressed, the implosion may proceed at a relatively slow rate of about 1 to 3 cm/μs. Also, the need for low density fuel dictates a much larger target, so that magnetized fuel can use drivers with much lower power and power density. Therefore, magnetized fuel allows the use of efficient drivers that are not suitable for laser or particle beam fusion due to insufficient focus or too long pulse length. The ignition and burn of magnetized fuel involves very different dominant physical processes than does ''conventional'' ICF. The fusion time scale becomes comparable to the hydrodynamic time scale, but other processes that limit the burn in unmagnetized fuel are of no consequence. The idealized low gain magnetized fuel target presented here is large and requires a very low implosion velocity. 11 refs

  9. The Edward Teller Medal Lecture: the Evolution Toward Indirect Drive and Two Decades of Progress Toward Icf Ignition and Burn

    Science.gov (United States)

    Lindl, John D.

    In 1972, I joined the Livermore ICF Theory and Target Design group led by John Nuckolls, shortly after publication of John's seminal Nature article on ICF. My primary role, working with others in the target design program including Mordy Rosen, Steve Haan, and Larry Suter, has been as a target designer and theorist who utilized the LASNEX code to perform numerical experiments, which along with analysis of laboratory and underground thermonuclear experiments allowed me to develop a series of models and physical insights which have been used to set the direction and priorities of the Livermore program.

  10. Kinetic physics in ICF: present understanding and future directions

    Science.gov (United States)

    Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; Collins, G.

    2018-06-01

    Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (〈Ti 〉) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred 〈Ti 〉. Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior; the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.

  11. 1996 ICF program overview

    International Nuclear Information System (INIS)

    Correll, D

    1996-01-01

    The continuing objective of the Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship and Management (SSM) Program. The extension of current program research capabilities in the National Ignition Facility (NIF) is necessary for the ICF Program to satisfy its stewardship responsibilities. ICF resources (people and facilities) are increasingly being redirected in support of the performance, schedule, and cost goals of the NIF. One of the more important aspects of ICF research is the national nature of the program. Lawrence Livermore National Laboratory's (LLNL's) ICF Program falls within DOE's national ICF Program, which includes the Nova and Beamlet laser facilities at LLNL and the OMEGA, Nike, and Trident laser facilities at the University of Rochester (Laboratory for Laser Energetics, UR/LLE), the Naval Research Laboratory (NRL), and Los Alamos National Laboratory (LANL), respectively. The Particle Beam Fusion Accelerator (PBFA) and Saturn pulsed-power facilities are at Sandia National Laboratories (SNL). General Atomics, Inc. (GA) develops and provides many of the targets for the above experimental facilities. LLNL's ICF Program supports activities in two major interrelated areas: (1) target physics and technology (experimental, theoretical, and computational research); and (2) laser science and optics technology development. Experiments on LLNL's Nova laser primarily support ignition and weapons physics research. Experiments on LLNL's Beamlet laser support laser science and optics technology development. In addition, ICF sciences and technologies, developed as part of the DP mission goals, continue to support additional DOE objectives. These objectives are (1) to achieve diversity in energy sources

  12. ICF in the U.S.: Facilities and diagnostics

    International Nuclear Information System (INIS)

    Coleman, L.W.

    1988-08-01

    In the last few years there has been significant progress in ICF research in laboratories in the United States and elsewhere. These advances have occurred in areas that range from demonstrating an innovative laser beam smoothing techniques important for both directly and indirectly driven ICF, to achieving a more complete understanding of capsule implosions and related physics. This progress has been possible because of the capabilities provided by the ICF laser-target facilities currently in operation and the new developments in diagnostics, particularly for measurements of the implosion process and the conditions in the compressed capsule core. Both of these topics, facilities and selected new diagnostics capabilities in the US ICF Program, are summarized in this paper. 32 refs., 19 figs., 6 tabs

  13. Absence of molecular deuterium dissociation during room-temperature permeation into polystyrene ICF target shells

    International Nuclear Information System (INIS)

    Honig, A.; Alexander, N.; Fan, Q.; Gram, R.; Kim, H.

    1991-01-01

    Polystyrene microshells filled with deuterium and tritium gas are important target shells for inertially confined fusion (ICF) and are particularly promising for target containing spin-polarized hydrogens fuels. A currently active approach to the latter uses polarized D in HD, in a method which requires preservation of the high purity of the initially prepared HD (very low specified H 2 and D 2 concentrations). This would not be possible if dissociation should occur during permeation into the target shells. We have thus tested polystyrene shells using a novel method which employs very pure polystyrene shells using a novel method which employs very pure ortho-D 2 as the test gas. An upper limit of 6 x 10 -4 was deduced for the dissociation of D 2 upon room temperature permeation through an approximately 8 um wall of polystyrene, clearing the way for use of polystyrene target shells for ICF fusion experiments with spin-polarized hydrogens fuels. 19 refs., 1 fig

  14. Status and progress in the Chinese ICF program

    International Nuclear Information System (INIS)

    He, X.T.; Deng, X.M.; Fan, D.Y.; Zhang, X.M.; Lin, Z.Q.; Wang, N.Y.; Zheng, Z.J.; Liu, J.R.

    1999-01-01

    The Chinese ICF program is aimed towards inertial fusion energy in the 21st century and other applications. In this presentation, driver developments involving solid state lasers, i.e. Shenguang series, and the gas laser, i.e. KrF excimer laser, are presented; the theoretical and experimental studies for target physics, the equipment development for diagnostics, and the target fabrication are described; the achievements of ICF research in the past few years are mentioned. Precision physics is the basic point in ICF research of target physics in China. And the prospects for the Chinese ICF program are encouraging. (orig.)

  15. Measurement of activity limitations and participation restrictions: examination of ICF-linked content and scale properties of the FIM and PC-PART instruments.

    Science.gov (United States)

    Darzins, Susan W; Imms, Christine; Di Stefano, Marilyn

    2017-05-01

    To explore the operationalization of activity and participation-related measurement constructs through comparison of item phrasing, item response categories and scoring (scale properties) for two separate instruments targeting activities of daily living. Personal Care Participation Assessment and Resource Tool (PC-PART) item content was linked to ICF categories using established linking rules. Previously reported ICF-linked FIM content categories and ICF-linked PC-PART content categories were compared to identify common ICF categories between the instruments. Scale properties of both instruments were compared using a patient scenario to explore the instruments' separate measurement constructs. The PC-PART and FIM shared 15 of the 53 level two ICF-linked categories identified across both instruments. Examination of the instruments' scale properties for items with overlapping ICF content, and exploration through a patient scenario, provided supportive evidence that the instruments measure different constructs. While the PC-PART and FIM share common ICF-linked content, they measure separate constructs. Measurement construct was influenced by the instruments' scale properties. The FIM was observed to measure activity limitations and the PC-PART measured participation restrictions. Scrutiny of instruments' scale properties in addition to item content is critical in the operationalization of activity and participation-related measurement constructs. Implications for Rehabilitation When selecting outcome measures for use in rehabilitation it is necessary to examine both the content of the instruments' items and item phrasing, response categories and scoring, to clarify the construct being measured. Measurement of activity limitations as well as participation restrictions in activities of daily living required for community life provides a more comprehensive measurement of rehabilitation outcomes than measurement of either construct alone. To measure the effects of

  16. Theranostic Approach for Metastatic Pigmented Melanoma Using ICF15002, a Multimodal Radiotracer for Both PET Imaging and Targeted Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    Latifa Rbah-Vidal

    2017-01-01

    Full Text Available PURPOSE: This work reports, in melanoma models, the theranostic potential of ICF15002 as a single fluorinated and iodinated melanin-targeting compound. METHODS: Studies were conducted in the murine syngeneic B16BL6 model and in the A375 and SK-MEL-3 human xenografts. ICF15002 was radiolabeled with fluorine-18 for positron emission tomography (PET imaging and biodistribution, with iodine-125 for metabolism study, and iodine-131 for targeted radionuclide therapy (TRT. TRT efficacy was assessed by tumor volume measurement, with mechanistics and dosimetry parameters being determined in the B16BL6 model. Intracellular localization of ICF15002 was characterized by secondary ion mass spectrometry (SIMS. RESULTS: PET imaging with [18F]ICF15002 evidenced tumoral uptake of 14.33 ± 2.11%ID/g and 4.87 ± 0.93%ID/g in pigmented B16BL6 and SK-MEL-3 models, respectively, at 1 hour post inoculation. No accumulation was observed in the unpigmented A375 melanoma. SIMS demonstrated colocalization of ICF15002 signal with melanin polymers in melanosomes of the B16BL6 tumors. TRT with two doses of 20 MBq [131I]ICF15002 delivered an absorbed dose of 102.3 Gy to B16BL6 tumors, leading to a significant tumor growth inhibition [doubling time (DT of 2.9 ± 0.5 days in treated vs 1.8 ± 0.3 in controls] and a prolonged median survival (27 days vs 21 in controls. P53S15 phosphorylation and P21 induction were associated with a G2/M blockage, suggesting mitotic catastrophe. In the human SK-MEL-3 model, three doses of 25 MBq led also to a DT increase (26.5 ± 7.8 days vs 11.0 ± 3.8 in controls and improved median survival (111 days vs 74 in controls. CONCLUSION: Results demonstrate that ICF15002 fulfills suitable properties for bimodal imaging/TRT management of patients with pigmented melanoma.

  17. The Edward Teller medal lecture: The evolution toward Indirect Drive and two decades of progress toward ICF ignition and burn

    International Nuclear Information System (INIS)

    Lindl, J.D.

    1993-12-01

    In 1972, I joined the Livermore ICF Theory and Target Design group led by John Nuckolls, shortly after publication of John's seminal Nature article on ICF. My primary role, working with others in the target design program including Mordy Rosen, Steve Haan, and Larry Suter, has been as a target designer and theorist who utilized the LASNEX code to perform numerical experiments, which along with analysis of laboratory and underground thermonuclear experiments allowed me to develop a series of models and physical insights which have been used to set the direction and priorities of the Livermore program. I have had the good fortune of working with an outstanding team of scientists who have established LLNL as the premier ICF laboratory in the world. John Emmett and the LLNL Laser Science team were responsible for developing a series of lasers from Janus to Nova which have given LLNL unequaled facilities. George Zimmerman and the LASNEX group developed the numerical models essential for projecting future performance and requirements as well as for designing and analyzing the experiments. Bill Kruer, Bruce Langdon and others in the plasma theory group developed the fundamental understanding of laser plasma interactions which have played such an important role in ICF. And a series of experiment program leaders including Mike Campbell and Joe Kilkenny and their laser experimental teams developed the experimental techniques and diagnostic capabilities which have allowed us to c increasingly complex and sophisticated experiments

  18. The Edward Teller medal lecture: The evolution toward Indirect Drive and two decades of progress toward ICF ignition and burn

    Energy Technology Data Exchange (ETDEWEB)

    Lindl, J.D.

    1993-12-01

    In 1972, I joined the Livermore ICF Theory and Target Design group led by John Nuckolls, shortly after publication of John`s seminal Nature article on ICF. My primary role, working with others in the target design program including Mordy Rosen, Steve Haan, and Larry Suter, has been as a target designer and theorist who utilized the LASNEX code to perform numerical experiments, which along with analysis of laboratory and underground thermonuclear experiments allowed me to develop a series of models and physical insights which have been used to set the direction and priorities of the Livermore program. I have had the good fortune of working with an outstanding team of scientists who have established LLNL as the premier ICF laboratory in the world. John Emmett and the LLNL Laser Science team were responsible for developing a series of lasers from Janus to Nova which have given LLNL unequaled facilities. George Zimmerman and the LASNEX group developed the numerical models essential for projecting future performance and requirements as well as for designing and analyzing the experiments. Bill Kruer, Bruce Langdon and others in the plasma theory group developed the fundamental understanding of laser plasma interactions which have played such an important role in ICF. And a series of experiment program leaders including Mike Campbell and Joe Kilkenny and their laser experimental teams developed the experimental techniques and diagnostic capabilities which have allowed us to c increasingly complex and sophisticated experiments.

  19. The Development of a Framework for Target Diagnostic Centralized Control System (TDCCS) in ICF Experiments

    International Nuclear Information System (INIS)

    Zhang Chi; Wang Jian; Yu Xiaoqi; Yang Dong

    2008-01-01

    A framework for target diagnostic centralized control system (TDCCS) in inertial confinement fusion (ICF) experiment has been developed. The developed framework is based on the common object request broker architecture (CORBA) standard and part of the concept from the ICFRoot (a framework based on ROOT for ICF experiments) framework design. This framework is of a component architecture, including a message bus, command executer, status processor, parser and proxy. To test the function of the framework, a simplified prototype of the TDCCS has been developed as well.

  20. Effect of experimentally observed hydrogenic fractionation on inertial confinement fusion ignition target performance

    International Nuclear Information System (INIS)

    McKenty, P. W.; Wittman, M. D.; Harding, D. R.

    2006-01-01

    The need of cryogenic hydrogenic fuels in inertial confinement fusion (ICF) ignition targets has been long been established. Efficient implosion of such targets has mandated keeping the adiabat of the main fuel layer at low levels to ensure drive energies are kept at reasonable minima. The use of cryogenic fuels helps meet this requirement and has therefore become the standard in most ICF ignition designs. To date most theoretical ICF ignition target designs have assumed a homogeneous layer of deuterium-tritium (DT) fuel kept slightly below the triple point. However, recent work has indicated that, as cryogenic fuel layers are formed inside an ICF capsule, isotopic dissociation of the tritium (T), deuterium (D), and DT takes place leading to a 'fractionation' of the final ice layer. This paper will numerically investigate the effects that various scenarios of fractionation have on hot-spot formation, ignition, and burn in ICF ignition target designs

  1. Can the ICF osteoarthritis core set represent a future clinical tool in measuring functioning in persons with osteoarthritis undergoing hip and knee joint replacement?

    Science.gov (United States)

    Alviar, Maria Jenelyn; Olver, John; Pallant, Julie F; Brand, Caroline; de Steiger, Richard; Pirpiris, Marinis; Bucknill, Andrew; Khan, Fary

    2012-11-01

    To determine the dimensionality, reliability, model fit, adequacy of the qualifier levels, response patterns across different factors, and targeting of the International Classification of Functioning, Disability and Health (ICF) osteoarthritis core set categories in people with osteoarthritis undergoing hip and knee arthroplasty. The osteoarthritis core set was rated in 316 persons with osteoarthritis who were either in the pre-operative or within one year post-operative stage. Rasch analyses were performed using the RUMM 2030 program. Twelve of the 13 body functions categories and 13 of the 19 activity and participation categories had good model fit. The qualifiers displayed disordered thresholds necessitating rescoring. There was uneven spread of ICF categories across the full range of the patients' scores indicating off--targeting. Subtest analysis of the reduced ICF categories of body functions and activity and participation showed that the two components could be integrated to form one measure. The results suggest that it is possible to measure functioning using a unidimensional construct based on ICF osteoarthritis core set categories of body functions and activity and participation in this population. However, omission of some categories and reduction in qualifier levels are necessary. Further studies are needed to determine whether better targeting is achieved, particularly during the pre-operative and during the sub-acute care period.

  2. Parameter measurement of target

    International Nuclear Information System (INIS)

    Gao Dangzhong

    2001-01-01

    The progress of parameter measurement of target (ICF-15) in 1999 are presented, including the design and contract of the microsphere equator profiler, the precise air bearing manufacturing, high-resolution X-ray image of multi-layer shells and the X-ray photos processed with special image and data software, some plastic shells measured in precision of 0.3 μm, the high-resolution observation and photograph system of 'dew-point method', special fixture of target and its temperature distribution measuring, the dew-point temperature and fuel gas pressure of shells measuring with internal pressure of 5 - 15 (x10 5 ) Pa D 2 and wall thickness of 1.5∼3 μm

  3. The Edward Teller Medal Lecture: the Evolution Toward Indirect Drive and Two Decades of Progress Toward Icf Ignition and Burn (lirpp Vol. 11)

    Science.gov (United States)

    Lindl, John D.

    2016-10-01

    In 1972, I joined the Livermore ICF Theory and Target Design group led by John Nuckolls, shortly after publication of John's seminal Nature article on ICF. My primary role, working with others in the target design program including Mordy Rosen, Steve Haan, and Larry Suter, has been as a target designer and theorist who utilized the LASNEX code to perform numerical experiments, which along with analysis of laboratory and underground thermonuclear experiments allowed me to develop a series of models and physical insights which have been used to set the direction and priorities of the Livermore program...

  4. Numerical Simulation of Doped Targets for ICF

    Science.gov (United States)

    Phillips, Lee; Gardner, John H.; Bodner, Stephen E.; Colombant, Denis; Klapisch, Marcel; Bar-Shalom, Avraham

    1997-11-01

    The ablative Rayleigh-Taylor (RT) instability can be reduced by preheating the ablator, thereby reducing the peak density and increasing the mass ablation velocity. The ablator can be preheated with radiation from higher Z dopants.(Gardner, J.H., Bodner, S.E., Dahlburg, J.P., Phys. Fluids 3), 1070 (1991) Dopants also reduce the density gradient at the ablator, which provides a second mechanism to reduce the RT growth rate. We have recently developed a more sophisticated and detailed radiation package that uses opacities generated by an STA code, with non-LTE radiation transport based on the Busquet method. This radiation package has been incorporated into NRL's FAST2D radiation hydrodynamics code, which has been used to evaluate and optimize the use of various dopants that can provide interesting levels of preheat for an ICF target.

  5. ICF ETF and its engineering development requirements

    International Nuclear Information System (INIS)

    Blink, J.A.; Allen, W.O.; Billman, K.

    1980-10-01

    Inertial confinement fusion driver development and ICF target physics are being intensively explored both theoretically and experimentally. However, engineering considerations of harnessing the fusion energy pulses that are an ultimate product and goal of the ICF physics program are only being addressed on a small scale. Experience with development of other new technologies indicates that engineering development time will be substantial for ICF energy converters. The authors met at Livermore in July 1980 to form an ICF Reactor Technology Working Group to address this issue. This paper outlines the current state of planning for an ICF Engineering Test Facility (ETF) and the engineering development that must precede it

  6. Dissipation terms in one-dimensional hydrodynamic code for ICF target

    International Nuclear Information System (INIS)

    Tamba, Moritake; Niu, Keishiro.

    1985-01-01

    The one-dimensional hydrodynamic code so far used for the simulation of the target improsion in ICF, the artificial viscosity has been employed as the dissipation terms. This artificial viscosity depends on the mesh width of the space using in the simulation and is much large in comparison with the real viscosity. In this paper, it is shown that this artificial viscosity leads to the unreasonable fusion parameters depending on the used mesh width of the space. Several methods to modify the dissipation term are given in this paper. (author)

  7. Fusion-product energy loss in inertial confinement fusion plasmas with applications to target burns

    International Nuclear Information System (INIS)

    Harris, D.B.; Miley, G.H.

    1984-01-01

    Inertial confinement fusion (ICF) has been proposed as a competitor to magnetic fusion in the drive towards energy production, but ICF target performance still contains many uncertainties. One such area is the energy-loss rate of fusion products. This situation is due in part to the unique plasma parameters encountered in ICF plasmas which are compressed to more than one-thousand times solid density. The work presented here investigates three aspects of this uncertainty

  8. Precise focusing and diagnosis technology for laser beams in ICF target chamber

    International Nuclear Information System (INIS)

    Zhu Qixiang

    1999-01-01

    The precise focusing and diagnosis experimental system for laser beams in ICF target chamber is introduced. The system is controlled by computer. In process of focusing a series data of displacement in axial direction and relative area of focus spots are acquired. According to the functional curvature the accurate position of focal plane is determined. The construction of the system is simple, the system is controlled conveniently and runs quickly

  9. An efficient method of fuel ice formation in moving free-standing ICF/IFE targets

    Science.gov (United States)

    Aleksandrova, I. V.; Bazdenkov, S. V.; Chtcherbakov, V. I.; Gromov, A. I.; Koresheva, E. R.; Koshelev, E. A.; Osipov, I. E.; Yaguzinskiy, L. S.

    2004-04-01

    Currently, research fields related to the elaboration of efficient layering methods for ICF/IFE applications are rapidly expanding. Significant progress has been made in the technology development based on rapid fuel layering inside moving free-standing targets (FST) which is referred to as the FST layering method. This paper presents our new results obtained in this area and describes technologically elegant solutions towards demonstrating a credible pathway for mass production of IFE cryogenic targets.

  10. An efficient method of fuel ice formation in moving free-standing ICF/IFE targets

    International Nuclear Information System (INIS)

    Aleksandrova, I V; Bazdenkov, S V; Chtcherbakov, V I; Gromov, A I; Koresheva, E R; Koshelev, E A; Osipov, I E; Yaguzinskiy, L S

    2004-01-01

    Currently, research fields related to the elaboration of efficient layering methods for ICF/IFE applications are rapidly expanding. Significant progress has been made in the technology development based on rapid fuel layering inside moving free-standing targets (FST) which is referred to as the FST layering method. This paper presents our new results obtained in this area and describes technologically elegant solutions towards demonstrating a credible pathway for mass production of IFE cryogenic targets

  11. ICF target technology at the Russian Federal Nuclear Center

    International Nuclear Information System (INIS)

    Veselov, A.V.; Drozhin, V.S.; Druzhinin, A.A.; Izgorodin, V.M.; Iiyushechkin, B.N.; Kirillov, G.A.; Komleva, G.V.; Korochkin, A.M.; Medvedev, E.F.; Nikolaev, G.P.; Pikulin, I.V.; Pinegin, A.V.; Punin, V.T.; Romaev, V.N.; Sumatokhin, V.L.; Tarasova, N.N.; Tachaev, G.V.; Cherkesova, I.N.

    1995-01-01

    The main effort of the ICF target fabrication group is support of the experiments performed on the 'ISKRA-4' and 'ISKRA-5' laser systems. The main types of targets used in these experiments are direct drive, inverted corona, and indirect drive. For production of direct drive targets, manufacturing techniques have been developed for both hollow glass and polystyrene microspheres. Hollow glass microspheres are fabricated by free-fall of liquid glass drops or dry gel in a 4 meter vertical kiln. These methods allow us to manufacture glass microspheres with diameters from 50 μm to 1 mm, wall thicknesses from 0.5 to 10 μm, and aspect ratios (radius/ wall) from 20 to 500. The microspheres have a thickness inhomogeneity less than 5% and non-sphericity less than 1%. Polystyrene microspheres are fabricated from polystyrene particles with a blowing agent in a similar vertical kiln. Polystyrene microspheres are fabricated with diameter up to 800 μm and wall thicknesses from 1 to 10 μm. 15 refs., 8 figs

  12. Comparing contents of outcome measures in cerebral palsy using the International Classification of Functioning (ICF-CY): a systematic review.

    Science.gov (United States)

    Schiariti, Veronica; Klassen, Anne F; Cieza, Alarcos; Sauve, Karen; O'Donnell, Maureen; Armstrong, Robert; Mâsse, Louise C

    2014-01-01

    The International Classification of Functioning children and youth version (ICF-CY) provides a universal framework for defining and classifying functioning and disability in children worldwide. To facilitate the application of the ICF in practice, ICF based-tools like the "ICF Core Sets" are being developed. In the context of the development of the ICF-CY Core Sets for children with Cerebral Palsy (CP), the aims of this study were as follows: to identify and compare the content of outcome measures used in studies of children with CP using the ICF-CY coding system; and to describe the most frequently addressed areas of functioning in those studies. We searched multiple databases likely to capture studies involving children with CP from January 1998 to March 2012. We included all English language articles that studied children aged 2-18 years and described an interventional or observational study. Constructs of the outcome measures identified in studies were linked to the ICF-CY by two trained professionals. We found 231 articles that described 238 outcome measures. The outcome measures contained 2193 concepts that were linked to the ICF-CY and covered 161 independent ICF-CY categories. Out of the 161 categories, 53 (33.5%) were related to body functions, 75 (46%) were related to activities/participation, 26 (16.1%) were related to environmental factors, and 7 (4.3%) were related to body structures. This systematic review provides information about content of measures that may guide researchers and clinicians in their selection of an outcome measure for use in a study and/or clinical practice with children with CP. Copyright © 2013 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  13. Two-dimensional integrated Z-pinch ICF design simulations

    International Nuclear Information System (INIS)

    Lash, J.S.

    1999-01-01

    The dynamic hohlraum ICF concept for a Z-pinch driver utilizes the imploding wire array collision with a target to produce a radiation history suitable for driving an embedded inertial confinement fusion (ICF) capsule. This target may consist of various shaped layers of low-density foams or solid-density materials. The use of detailed radiation magneto-hydrodynamic (RMHD) modeling is required for understanding and designing these complex systems. Critical to producing credible simulations and designs is inclusion of the Rayleigh-Taylor unstable wire-array dynamics; the bubble and spike structure of the collapsing sheath may yield regions of low-opacity enhancing radiation loss as well as introduce non-uniformities in the capsule's radiation drive. Recent improvements in LASNEX have allowed significant progress to be made in the modeling of unstable z-pinch implosions. Combining this with the proven ICF capsule design capabilities of LASNEX, the authors now have the modeling tools to produce credible, fully-integrated ICF dynamic hohlraum simulations. They present detailed two-dimensional RMHD simulations of recent ICF dynamic hohlraum experiments on the Sandia Z-machine as well as design simulations for the next-generation Z-pinch facility and future high-yield facility

  14. Two-dimensional integrated Z-pinch ICF design simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lash, J.S.

    1999-07-01

    The dynamic hohlraum ICF concept for a Z-pinch driver utilizes the imploding wire array collision with a target to produce a radiation history suitable for driving an embedded inertial confinement fusion (ICF) capsule. This target may consist of various shaped layers of low-density foams or solid-density materials. The use of detailed radiation magneto-hydrodynamic (RMHD) modeling is required for understanding and designing these complex systems. Critical to producing credible simulations and designs is inclusion of the Rayleigh-Taylor unstable wire-array dynamics; the bubble and spike structure of the collapsing sheath may yield regions of low-opacity enhancing radiation loss as well as introduce non-uniformities in the capsule's radiation drive. Recent improvements in LASNEX have allowed significant progress to be made in the modeling of unstable z-pinch implosions. Combining this with the proven ICF capsule design capabilities of LASNEX, the authors now have the modeling tools to produce credible, fully-integrated ICF dynamic hohlraum simulations. They present detailed two-dimensional RMHD simulations of recent ICF dynamic hohlraum experiments on the Sandia Z-machine as well as design simulations for the next-generation Z-pinch facility and future high-yield facility.

  15. Enhancing Ignition Probability and Fusion Yield in NIF Indirect Drive Targets with Applied Magnetic Fields

    Science.gov (United States)

    Perkins, L. John; Logan, B. Grant; Ho, Darwin; Zimmerman, George; Rhodes, Mark; Blackfield, Donald; Hawkins, Steven

    2017-10-01

    Imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under capsule compression may relax conditions for ignition and propagating burn in indirect-drive ICF targets. This may allow attainment of ignition, or at least significant fusion energy yields, in presently-performing ICF targets on the National Ignition Facility that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation. Results of detailed 2D radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction and stabilization of higher-mode RT instabilities. Optimum initial applied fields are around 50 T. Off-line testing has been performed of a hohlraum coil and pulsed power supply that could be integrated on NIF; axial fields of 58T were obtained. Given the full plasma structure at capsule stagnation may be governed by 3-D resistive MHD, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to assess the potential of applied magnetic fields to NIF ICF ignition and burn. Work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  16. Integration of the Aurora KrF ICF laser system at Los Alamos

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Blair, L.S.

    1988-01-01

    The Aurora laser system, under construction at the Los Alamos National Laboratory for the past few years, is now being integrated into a working system for examining the applicability of high-power KrF lasers to inertial confinement fusion (ICF). The design principles of the system have been described in detail in earlier publications and conferences. Multikilojoule 248-nm 5-ns duration laser pulses, which have been derived from angular-multiplexed electron-beam-driven KrF amplifiers, are to be delivered to ICF targets when the system is fully integrated. The authors describe the progress of the Aurora system toward the goal of delivering energy (MkJ/48 pulses stacked into one 5-ns pulse/200-μm spot) to ICF targets. Integrated performance to date of the front end optical multiplexer/demultiplexer e-beam-driven amplifiers and alignment hardware are discussed in particular. They have concentrated on the demonstration of system integration at a modest (--100-J) level of energy on-target (without the final amplifier stage). They discuss the amplifier gain measurements, the extraction of energy from a chain of three e-beam-driven machines, and progress toward the delivery of on-target energy

  17. Recent advances in indirect drive ICF target physics at CEA

    International Nuclear Information System (INIS)

    Tassart, J.

    2001-01-01

    The objective of Target Physics Program at CEA is the achievement of ignition on the LMJ, a glass laser facility of 1.8 MJ which will be completed by 2008. It is composed of theoretical work, experimental work and numerical simulations. An important part of experimental studies is made in collaboration with U.S. DOE Laboratories: Lawrence Livermore National Laboratory, Los Alamos National Laboratory and the Laboratory for Laser Energetics at the University of Rochester. Experiments were performed on Phebus, NOVA (LLNL) and OMEGA (LLE) ; they included diagnostics developments. Recent efforts have been focused on Laser Plasma Interaction, hohlraum energetics, symmetry, ablator physics and hydrodynamic instabilities. Ongoing work prepare the first experiments on the LIL which is a prototype facility of the LMJ (8 of its 240 beams). They will be performed by 2002. Recent progress in ICF target physics allows us to precise laser specifications to achieve ignition with reasonable margin. (author)

  18. Contributions to the Genesis and Progress of ICF

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    2006-01-01

    Inertial confinement fusion (ICF) has progressed from the detonation of large-scale fusion explosions initiated by atomic bombs in the early 1950s to final preparations for initiating small-scale fusion explosions with giant lasers. The next major step after ignition will be development of high performance targets that can be initiated with much smaller, lower cost lasers. In the 21st century and beyond, ICF's grand challenge is to develop practical power plants that generate low cost, clean, inexhaustible fusion energy. In this chapter, I first describe the origin in 1960-61 of ICF target concepts, early speculations on laser driven 'Thermonuclear Engines' for power production and rocket propulsion, and encouraging large-scale nuclear explosive experiments conducted in 1962. Next, I recall the 40-year, multi-billion dollar ignition campaign - to develop a matched combination of sufficiently high-performance implosion lasers and sufficiently stable targets capable of igniting small fusion explosions. I conclude with brief comments on the NIF ignition campaign and very high-performance targets, and speculations on ICF's potential in a centuries-long Darwinian competition of future energy systems. My perspectives in this chapter are those of a nuclear explosive designer, optimistic proponent of ICF energy, and Livermore Laboratory leader. The perspectives of Livermore's post 1970 laser experts and builders, and laser fusion experimentalists are provided in a chapter written by John Holzrichter, a leading scientist and leader in Livermore's second generation laser fusion program. In a third chapter, Ray Kidder, a theoretical physicist and early laser fusion pioneer, provides his perspectives including the history of the first generation laser fusion program he led from 1962-1972.

  19. Scattered and (n,2n) neutrons as a measure of areal density in ICF capsules

    CERN Document Server

    Wilson, D C; Disdier, L; Houry, M; Bourgade, J L; Murphy, T J

    2002-01-01

    The fraction of low-energy neutrons created from 14 MeV neutrons by elastic scattering and (n,2n) reactions on D and T has been proposed as a measure of the areal density (radial integral of density) of ICF targets. In simple situations the fraction of neutrons between 9.4 (the upper energy of T+T neutrons) and 13 MeV (below the Doppler broadened 14.1 MeV peak) is proportional to the at the time of neutron production. This ratio does not depend upon the temperature of the fuel, as does the number of reaction-in-flight neutrons. The ratio of neutrons elastically scattered at a specific energy (e.g. 13 MeV) to the total number of neutrons can be measured along different lines of sight. The ratio of two perpendicular measurements provides a quantitative measure of asymmetry. A detector can be placed inside the target chamber to measure these low-energy neutrons. If it is close enough to the target that measurements are made before the 14 MeV neutrons reach the chamber wall, gamma rays can be a negligible back...

  20. Exploring use of the ICF in health education.

    Science.gov (United States)

    Bornbaum, Catherine C; Day, Adam M B; Izaryk, Kristen; Morrison, Stephanie J; Ravenek, Michael J; Sleeth, Lindsay E; Skarakis-Doyle, Elizabeth

    2015-01-01

    Currently, little is known regarding use of the International Classification of Functioning, Disability and Health (ICF) in health education applications. Therefore, this review sought to examine the scope of work that has been conducted regarding the application of the ICF in health education. A review of the current literature related to use of the ICF in health education programs was conducted. Twelve electronic databases were searched in accordance with a search protocol developed by a health sciences librarian. In total, 17,878 records were reviewed, and 18 articles met the criteria for inclusion in this review. Current evidence regarding use of the ICF in healthcare education revealed that program and participant properties can be essential facilitators or barriers to successful education programs. In addition, gaps in comprehensive outcome measurement were revealed as areas for future attention. Educational applications of the ICF are very much a work in progress as might be expected given the ICF's existence for only a little over a decade. To advance use of the ICF in education, it is important to incorporate the measurement of both knowledge acquisition and behavior change related to ICF-based programs. Ultimately, widespread implementation of the ICF represents not only a substantial opportunity but also poses a significant challenge.

  1. Contributions to the Genesis and Progress of ICF

    Energy Technology Data Exchange (ETDEWEB)

    Nuckolls, J H

    2006-02-15

    Inertial confinement fusion (ICF) has progressed from the detonation of large-scale fusion explosions initiated by atomic bombs in the early 1950s to final preparations for initiating small-scale fusion explosions with giant lasers. The next major step after ignition will be development of high performance targets that can be initiated with much smaller, lower cost lasers. In the 21st century and beyond, ICF's grand challenge is to develop practical power plants that generate low cost, clean, inexhaustible fusion energy. In this chapter, I first describe the origin in 1960-61 of ICF target concepts, early speculations on laser driven 'Thermonuclear Engines' for power production and rocket propulsion, and encouraging large-scale nuclear explosive experiments conducted in 1962. Next, I recall the 40-year, multi-billion dollar ignition campaign - to develop a matched combination of sufficiently high-performance implosion lasers and sufficiently stable targets capable of igniting small fusion explosions. I conclude with brief comments on the NIF ignition campaign and very high-performance targets, and speculations on ICF's potential in a centuries-long Darwinian competition of future energy systems. My perspectives in this chapter are those of a nuclear explosive designer, optimistic proponent of ICF energy, and Livermore Laboratory leader. The perspectives of Livermore's post 1970 laser experts and builders, and laser fusion experimentalists are provided in a chapter written by John Holzrichter, a leading scientist and leader in Livermore's second generation laser fusion program. In a third chapter, Ray Kidder, a theoretical physicist and early laser fusion pioneer, provides his perspectives including the history of the first generation laser fusion program he led from 1962-1972.

  2. Preparation of germanium doped plasma polymerized coatings as ICF target ablators

    International Nuclear Information System (INIS)

    Brusasco, R.M.; Saculla, M.D.; Cook, R.C.

    1994-01-01

    Targets for Inertial Confinement Fusion (ICF) experiments at the Lawrence Livermore National Laboratory (LLNL) utilize an organic (CH) ablator coating prepared by plasma polymerization. Some of these experiments require a mid-Z dopant in the ablator coating to modify the opacity of the shell. Bromine had been used in the past, but the surface finish of brominated CH degrades rapidly with time upon exposure to air. This paper describes the preparation and characterization of plasma polymer layers containing germanium as a dopant at concentrations of between 1.25 and 2.25 atom percent. The coatings are stable in air and have an rms surface roughness of 7--9 nm (modes 10--1,000) which is similar to that obtained with undoped coatings. High levels of dopant result in cracking of the inner mandrel during target assembly. Possible explanations for the observed cracking behavior will be discussed

  3. Progress and prospects for indirect drive ICF

    International Nuclear Information System (INIS)

    Lindl, J.D.

    1992-08-01

    During the past few years, a great deal of progress has been made toward demonstrating the requirements for ignition and high gain ICF targets. Because of this progress, the 1990 National Academy of Science (NAS) and Fusion Policy Advisory Committee (FPAC) reviews recommended that the US National ICF Program focus on the physics of ignition. Subject to successful completion of a series of experiments to be carried out on the Nova laser at Lawrence Livermore National Laboratory (LLNL), these reviews advocated construction of a 1 to 2 MJ glass laser, whose purpose would be demonstration of ignition and modest-gain ICF targets within about a decade. The LLNL proposal for this National Ignition Facility, which was endorsed by the NAS and FPAC as the most timely and cost effective path to this goal, is referred to as the ''Nova Upgrade.'' This paper reviews recent progress on the Nova laser and the performance expected with the Nova Upgrade

  4. Shock physics with the nova laser for ICF applications. Revision 1

    International Nuclear Information System (INIS)

    Hammel, B.A.; Cauble, R.; Celliers, P.

    1995-01-01

    The physics of high pressure shocks plays a central role in Inertial Confinement Fusion (ICF). In indirect drive ICF, x-rays from a gold cavity (hohlraum) are used to ablatively drive a series of high pressure shocks into a spherical target (capsule). These shocks converge at the center, compressing the fuel and forming a hot dense core. The target performance, such as peak fuel density and temperature and neutron yield, depends critically on hock timing, and material compressibility. Accurate predictions of NIF target performance depends critically on shock timing and material compressibility. Current measurement techniques enable us to accurately determine shock timing in planar samples of abator material as a function of laser drive. Although this technique does not separately address uncertainties in material EOS and opacity, it does allow us to tune the laser drive until the desired shock timing is achieved. Experiments to directly address the EOS of D 2 ice are planned to further increase the margin for ignition in current target designs

  5. Burn patients' return to daily activities and participation as defined by the International Classification of Functioning, Disability and Health: A systematic review.

    Science.gov (United States)

    Osborne, Candice L; Meyer, Walter J; Ottenbacher, Kenneth J; Arcari, Christine M

    2017-06-01

    The World Health Organization's International Classification of Functioning, Disability and Health (ICF) is a universal classification system of health and health-related domains. The ICF has been successfully applied to a wide range of health conditions and diseases; however, its application in the field of burn recovery has been minimal. This systematic review uses the domains of the ICF component 'activities and participation' to explore: (1) the extent to which return to daily activities and community participation after burn has been examined in the pediatric population, (2) the most common assessments used to determine activity and participation outcomes, and (3) what activity and participation areas are most affected in the pediatric burn population after discharge from acute care. Results determined that it is difficult to draw overarching conclusions in the area of return to 'activities and participation' for children with burn based on the paucity of current evidence. Of the studies conducted, few examined the same subtopics or used similar measurements. This suggests a need for more robust studies in this area in order to inform and improve burn rehabilitation practices to meet the potential needs of burn patients beyond an acute care setting. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  6. Equilibrium ignition for ICF capsules

    International Nuclear Information System (INIS)

    Lackner, K.S.; Colgate, S.A.; Johnson, N.L.; Kirkpatrick, R.C.; Menikoff, R.; Petschek, A.G.

    1993-01-01

    There are two fundamentally different approaches to igniting DT fuel in an ICF capsule which can be described as equilibrium and hot spot ignition. In both cases, a capsule which can be thought of as a pusher containing the DT fuel is imploded until the fuel reaches ignition conditions. In comparing high-gain ICF targets using cryogenic DT for a pusher with equilibrium ignition targets using high-Z pushers which contain the radiation. The authors point to the intrinsic advantages of the latter. Equilibrium or volume ignition sacrifices high gain for lower losses, lower ignition temperature, lower implosion velocity and lower sensitivity of the more robust capsule to small fluctuations and asymmetries in the drive system. The reduction in gain is about a factor of 2.5, which is small enough to make the more robust equilibrium ignition an attractive alternative

  7. ICF

    International Nuclear Information System (INIS)

    Chandrasekharaiah, M.N.; Dubben, G.; Kolster, B.H.

    1992-01-01

    Federal tax credits for producing U.S. unconventional gas should be changed to restore original energy objectives of Congress, says ICF Resources Inc., Fairfax, Va. This paper reports that ICF suggests how Section 29 tax credits might be changed in an analysis drawing on a confidential survey of 60 producers of unconventional gas resources (UGRs) and two earlier ICF Section 29 studies. The analysis comes at a time when Section 29 incentives are stirring debate in Congress and controversy in the U.S. gas industry. ICF says Section 29 credits for developing and producing UGRs no longer provide the incentives Congress intended because, despite sweeping changes in the U.S. gas industry, the credit's scope and mechanism have not changed since its inception in 1980. The company says Congress implemented Section 29 to speed development and production of unconventional gas, mostly in marginal or otherwise uneconomic tight sand, coal seam, and Devonian shale reservoirs

  8. Block Ignition Inertial Confinement Fusion (ICF) with Condensed Matter Cluster Type Targets for p-B11 Powered Space Propulsion

    International Nuclear Information System (INIS)

    Miley, George H.; Hora, H.; Badziak, J.; Wolowski, J.; Sheng Zhengming; Zhang Jie; Osman, F.; Zhang Weiyan; Tuhe Xia

    2009-01-01

    The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either 'direct' or 'in-direct x-ray driven' type target irradiation. Important new directions have opened for laser ICF in recent years following the development of 'chirped' lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of 'fast ignition (FI)' to achieve higher energy gains from target implosions. In a recent publication the authors showed that use of a modified type of FI, termed 'block ignition' (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter 'clusters' of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B 11 with proton clusters imbedded. This then makes p-B 11 fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B 11 power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants

  9. Block Ignition Inertial Confinement Fusion (ICF) with Condensed Matter Cluster Type Targets for p-B11 Powered Space Propulsion

    Science.gov (United States)

    Miley, George H.; Hora, H.; Badziak, J.; Wolowski, J.; Sheng, Zheng-Ming; Zhang, Jie; Osman, F.; Zhang, Weiyan; tu He, Xia

    2009-03-01

    The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either "direct "or "in-direct x-ray driven" type target irradiation. Important new directions have opened for laser ICF in recent years following the development of "chirped" lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of "fast ignition (FI)" to achieve higher energy gains from target implosions. In a recent publication the authors showed that use of a modified type of FI, termed "block ignition" (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter "clusters" of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B11 with proton clusters imbedded. This then makes p-B11 fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B11 power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants using p

  10. Light ion beam approach to ICF ignition, gain, and energy production

    International Nuclear Information System (INIS)

    Olson, R.; Allshouse, G.; Cook, D.

    1993-01-01

    The US Department of Energy is supporting research oriented toward both near-term defense applications as well as long-term energy applications of inertial confinement fusion (ICF). The ICF programs at Sandia National Laboratories (SNL) is directed toward validating light ions as an efficient driver for these applications. The light ion laboratory microfusion facility (LMF) is envisioned as a facility in which high gain ICF targets could be developed and utilized in defense-related experiments. The LIBRA light ion beam commercial reactor study provides a baseline approach towards the use of the high gain light ion ICF technology as a source of commercial electrical energy

  11. Light ion beam approach to ICF ignition, gain, and energy production

    International Nuclear Information System (INIS)

    Olson, R.; Allshouse, G.; Cook, D.

    1994-01-01

    The U.S. Department of Energy is supporting research oriented toward both near-term defense applications as well as long-term energy applications of inertial confinement fusion (ICF). The ICF program at Sandia National Laboratories (SNL) is directed toward validating light ions as an efficient driver for these applications. The light ion laboratory microfusion facility (LMF) is envisioned as a facility in which high gain ICF targets could be developed and utilized in defense-related experiments. The LIBRA light ion beam commercial reactor study provides a baseline approach towards the use of the high gain light ion ICF technology as a source of commercial electrical energy. (author)

  12. High-energy fusion-product energy-loss measurements. Final technical report, January 1, 1981-December 31, 1983

    International Nuclear Information System (INIS)

    Miley, G.H.

    1983-12-01

    An experiment designed to examine the slowing down of charged fusion products in ICF plasmas was done. A time-of-flight spectrometer was used to simultaneously measure the energy spectra of D-T alphas and D 2 protons escaping from imploded glass microballoons. In order to model fusion-product slowing down in plasmas with nonclassical plasma parameters, the Ion-Sphere (or hard-sphere) potential has been used. The deceleration of fast test ions slowing down off of this potential has been calculated in a straightforward way. An interpolation between the classical slowing-down formula and the Ion-Sphere slowing-down expression in the region between classical and nonclassical plasmas has been derived. This expression, called the Ion-Sphere Interpolation Model, is valid for all fully ionized non-degenerate plasmas. Fusion-product energy deposition in the fuel is necessary for self-heating and burnwave propagation - two effects required for high-gain ICF. The University of Illinois advanced fuel hydrodynamic-burn code, AFBURN, has been used to test the sensitivity of reactor-sized targets to dE/dx. It was found that strongly burning targets are insensitive to both factor of two changes in dE/dx and inclusion of large plasma parameter effects in dE/dx. It was also found that weakly burning targets exhibit a markedly increased sensitivity to these effects

  13. Introduction to the physics of ICF capsules

    International Nuclear Information System (INIS)

    Lindl, J.D.

    1989-01-01

    Inertial Confinement Fusion is an approach to fusion which relies on the inertia of the fuel mass to provide confinement. To achieve conditions under which this confinement is sufficient for efficient thermonuclear burn, high gain ICF targets designed to be imploded directly by laser light. These capsules are generally a spherical shell which is filled with low density DT gas. The shell is composed of an outer region which forms the ablator and an inner region of frozen or liquid DT which forms the main fuel. Energy from the driver is delivered to the ablator which heats up and expands. As the ablator expands and blows outward, the rest of the shell is forced inward to conserve momentum. In this implosion process, several features are important. We define the in-flight-aspect-ratio (IFAR) as the ratio of the shell radius R as it implodes to its thickness ΔR. Hydrodynamic instabilities during the implosion impose limits on this ratio which results in a minimum pressure requirement of about 100 Mbar. The convergence ratio is defined as the ratio of the initial outer radius of the ablator to the final compressed radius of the hot spot. This hot spot is the central region of the compressed fuel which is required to ignite the main fuel in high gain designs. Typical convergence ratios are 30--40. To maintain a nearly spherical shape during the implosion, when convergence ratios are this large, the flux delivered to the capsule must be uniform to a few percent. The remainder of this paper discusses the conditions necessary to achieve thermonuclear ignition in these ICF capsules

  14. Numerical modeling of ICF plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, J.P.; Gardner, J.H.; Schmitt, A.J.; Colombant, D.; Klapisch, M.; Phillips, L.

    1999-07-01

    Radiation transport hydrodynamics codes play an important role in the design and development of ignition-regime and high-gain direct drive Inertial Confinement Fusion (ICF) pellets. In this concept, laser light is used to symmetrically implode a spherical pellet to sufficiently high densities and temperatures to achieve thermonuclear fusion. This requires a very symmetric illumination and a stable hydrodynamic implosion. Simulations of the dynamics of both planar and spherical targets are being performed to provide better understanding of how to control the Rayleigh-Taylor (RT) instability, using the 1-, 2- and 3-dimensional laser matter interaction (LMI) code FAST. To benchmark FAST, and the Super Transition Array material opacities used in the pellet design simulations, comparisons are being made with experimental data obtained in planar LMI experiments on the Naval Research Laboratory Nike KrF laser. One of the major efforts is to understand the behavior of the RT instability in planar laser-accelerated targets. Since this is one of the primary obstacles to successful ICF, experimental comparison is not only providing for code benchmarking, but will also lead to a better understanding of how to control this basic instability. Code benchmarking is also being performed using data from Nike opacity experiments, and from equation of state experiments in ICF-relevant regimes. In this talk they present an overview of FAST and a comparison of simulation results with data from ongoing laboratory experiments.

  15. Numerical modeling of ICF plasmas

    International Nuclear Information System (INIS)

    Dahlburg, J.P.; Gardner, J.H.; Schmitt, A.J.; Colombant, D.; Klapisch, M.; Phillips, L.

    1999-01-01

    Radiation transport hydrodynamics codes play an important role in the design and development of ignition-regime and high-gain direct drive Inertial Confinement Fusion (ICF) pellets. In this concept, laser light is used to symmetrically implode a spherical pellet to sufficiently high densities and temperatures to achieve thermonuclear fusion. This requires a very symmetric illumination and a stable hydrodynamic implosion. Simulations of the dynamics of both planar and spherical targets are being performed to provide better understanding of how to control the Rayleigh-Taylor (RT) instability, using the 1-, 2- and 3-dimensional laser matter interaction (LMI) code FAST. To benchmark FAST, and the Super Transition Array material opacities used in the pellet design simulations, comparisons are being made with experimental data obtained in planar LMI experiments on the Naval Research Laboratory Nike KrF laser. One of the major efforts is to understand the behavior of the RT instability in planar laser-accelerated targets. Since this is one of the primary obstacles to successful ICF, experimental comparison is not only providing for code benchmarking, but will also lead to a better understanding of how to control this basic instability. Code benchmarking is also being performed using data from Nike opacity experiments, and from equation of state experiments in ICF-relevant regimes. In this talk they present an overview of FAST and a comparison of simulation results with data from ongoing laboratory experiments

  16. Core science and technology development plan for indirect-drive ICF ignition. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Powell, H.T.; Kilkenny, J.D. [eds.

    1995-12-01

    To define the development work needed to support inertial confinement fusion (ICF) program goals, the authors have assembled this Core Science and Technology (CS and T) Plan that encompasses nearly all science research and technology development in the ICF program. The objective of the CS and T Plan described here is to identify the development work needed to ensure the success of advanced ICF facilities, in particular the National Ignition Facility (NIF). This plan is intended as a framework to facilitate planning and coordination of future ICF programmatic activities. The CS and T Plan covers all elements of the ICF program including laser technology, optic manufacturing, target chamber, target diagnostics, target design and theory, target components and fabrication, and target physics experiments. The CS and T Plan has been divided into these seven different technology development areas, and they are used as level-1 categories in a work breakdown structure (WBS) to facilitate the organization of all activities in this plan. The scope of the CS and T Plan includes all research and development required to support the NIF leading up to the activation and initial operation as an indirect-drive facility. In each of the CS and T main development areas, the authors describe the technology and issues that need to be addressed to achieve NIF performance goals. To resolve all issues and achieve objectives, an extensive assortment of tasks must be performed in a coordinated and timely manner. The authors describe these activities and present planning schedules that detail the flow of work to be performed over a 10-year period corresponding to estimated time needed to demonstrate fusion ignition with the NIF. Besides the benefits to the ICF program, the authors also discuss how the commercial sector and the nuclear weapons science may profit from the proposed research and development program.

  17. Core science and technology development plan for indirect-drive ICF ignition. Revision 1

    International Nuclear Information System (INIS)

    Powell, H.T.; Kilkenny, J.D.

    1995-12-01

    To define the development work needed to support inertial confinement fusion (ICF) program goals, the authors have assembled this Core Science and Technology (CS and T) Plan that encompasses nearly all science research and technology development in the ICF program. The objective of the CS and T Plan described here is to identify the development work needed to ensure the success of advanced ICF facilities, in particular the National Ignition Facility (NIF). This plan is intended as a framework to facilitate planning and coordination of future ICF programmatic activities. The CS and T Plan covers all elements of the ICF program including laser technology, optic manufacturing, target chamber, target diagnostics, target design and theory, target components and fabrication, and target physics experiments. The CS and T Plan has been divided into these seven different technology development areas, and they are used as level-1 categories in a work breakdown structure (WBS) to facilitate the organization of all activities in this plan. The scope of the CS and T Plan includes all research and development required to support the NIF leading up to the activation and initial operation as an indirect-drive facility. In each of the CS and T main development areas, the authors describe the technology and issues that need to be addressed to achieve NIF performance goals. To resolve all issues and achieve objectives, an extensive assortment of tasks must be performed in a coordinated and timely manner. The authors describe these activities and present planning schedules that detail the flow of work to be performed over a 10-year period corresponding to estimated time needed to demonstrate fusion ignition with the NIF. Besides the benefits to the ICF program, the authors also discuss how the commercial sector and the nuclear weapons science may profit from the proposed research and development program

  18. Materials processing in space: ICF target fabrication implications

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1982-01-01

    During the last quarter of 1982, the Novette laser will become operational at Lawrence Livermore National Laboratory. The primary characteristics of the Novette laser are shown. In many ways, the new laser will serve as a proving ground and test bed for the Nova laser which is also under construction and should be operational in early 1985. Tables provide the Nova operational characteristics. The advent of the two new lasers, Novette and Nova, will make it possible to study many new and exciting aspects of laser-target interactions and of many implosion physics experiments which have previously not been possible. Some of the most interesting and exciting work will be the exploration of the parameters critical to the ignition of a significant thermonuclear burn in the deuterium-tritium fuel in the targets

  19. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    Science.gov (United States)

    Hansen, Stephanie

    2017-10-01

    The burning core of an inertial confinement fusion (ICF) plasma at stagnation is surrounded by a shell of warm, dense matter whose properties are difficult both to model (due to a complex interplay of thermal, degeneracy, and strong coupling effects) and to diagnose (due to low emissivity and high opacity). We demonstrate a promising technique to study the warm dense shells of ICF plasmas based on the fluorescence emission of dopants or impurities in the shell material. This emission, which is driven by x-rays produced in the hot core, exhibits signature changes in response to compression and heating. High-resolution measurements of absorption and fluorescence features can refine our understanding of the electronic structure of material under high compression, improve our models of density-driven phenomena such as ionization potential depression and plasma polarization shifts, and help diagnose shell density, temperature, mass distribution, and residual motion in ICF plasmas at stagnation. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. This work was supported by the U.S. Department of Energy, Office of Science Early Career Research Program, Office of Fusion Energy Sciences under FWP-14-017426.

  20. A dual-PIXE tomography setup for reconstruction of Germanium in ICF target

    Science.gov (United States)

    Guo, N.; Lu, H. Y.; Wang, Q.; Meng, J.; Gao, D. Z.; Zhang, Y. J.; Liang, X. X.; Zhang, W.; Li, J.; Ma, X. J.; Shen, H.

    2017-08-01

    Inertial Confinement Fusion (ICF) is one type of fusion energy research which could initiate nuclear fusion reactions through heating and compressing thermonuclear fuel. Compared to a pure plastic target, Germanium doping into the CH ablator layer by Glow Discharge Polymer (GDP) technique can increase the ablation velocity and the standoff distance between the ablation front and laser-deposition region. During target fabrication process, quantitative doping of Ge should be accurately controlled. Particle Induced X-ray Emission Tomography (PIXE-T) can make not only quantification of the concentration, but also reconstruction of the spatial distribution of doped element. The Si (Li) detector for PIXE tomography technique had a disadvantage of low counting rate. To make up this deficiency, another detector of Si (Li) with the same configuration positioned at the opposite side with the same detective angle 135° have been implemented. Simultaneously acquired elemental maps of Ge obtained using two detectors may be different because of the X-ray absorption along the X-ray exit route in the target. In this paper, the X-ray detection efficiency is drastically improved by this dual-PIXE tomography system.

  1. Burn-up measurements coupling gamma spectrometry and neutron measurement

    Energy Technology Data Exchange (ETDEWEB)

    Toubon, H.; Pin, P. [AREVA/CANBERRA, 1 rue des Herons, 78182 St Quentin-en-Yvelines Cedex (France); Lebrun, A. [IAEA, Wagramer Strasse 5, PO Box 100, Vienna (Austria); Oriol, L.; Saurel, N. [CEA Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Gain, T. [AREVA/COGEMA Reprocessing Business Unit, La Hague, 50444 Beaumont Hague Cedex (France)

    2006-07-01

    The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)

  2. Burn-up measurements coupling gamma spectrometry and neutron measurement

    International Nuclear Information System (INIS)

    Toubon, H.; Pin, P.; Lebrun, A.; Oriol, L.; Saurel, N.; Gain, T.

    2006-01-01

    The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)

  3. Progress in the US ICF Program

    International Nuclear Information System (INIS)

    Sluyter, M.M.

    1996-01-01

    The ICF Program has made exciting progress in the past year towards its goal of the achievement of fusion ignition and gain in the laboratory. A series of experiments on the Nova laser facility has resolved the major technical issues involved in the design of an ignition target. A baseline target has been designed that ignites (calculationally) with a nominal drive of 1.35 MJ (at 351 nm). In parallel, a detailed conceptual design for the National Ignition Facility (NIF-a 1.8 MJ glass laser) has been completed and a successful laser beam line prototype has validated its architecture. As a result, the Department of Energy has requested funding for the preliminary design for the NIF from the U.S. Congress. With these developments, the attainment of the long-sought goal is in sight. In addition, two new laser facilities (OMEGA Upgrade and Nike) have recently been completed, and ion-beam fusion driver development is encouraging. Their availability expands the capability of the program to perform advanced ICF and plasma experiments. copyright 1996 American Institute of Physics

  4. Inertial confinement fusion (ICF)

    International Nuclear Information System (INIS)

    Nuckolls, J.

    1977-01-01

    The principal goal of the inertial confinement fusion program is the development of a practical fusion power plant in this century. Rapid progress has been made in the four major areas of ICF--targets, drivers, fusion experiments, and reactors. High gain targets have been designed. Laser, electron beam, and heavy ion accelerator drivers appear to be feasible. Record-breaking thermonuclear conditions have been experimentally achieved. Detailed diagnostics of laser implosions have confirmed predictions of the LASNEX computer program. Experimental facilities are being planned and constructed capable of igniting high gain fusion microexplosions in the mid 1980's. A low cost long lifetime reactor design has been developed

  5. FIRST STEP towards ICF commercialization

    International Nuclear Information System (INIS)

    Saylor, W.W.; Pendergrass, J.H.; Dudziak, D.J.

    1984-01-01

    Production of tritium for weapons and fusion R and D programs and successful development of Inertial Confinement Fusion (ICF) technologies are important national goals. A conceptual design for an ICF facility to meet these goals is presented. FIRST STEP (Fusion, Inertial, Reduced-Requirements Systems Test for Special Nuclear Material, Tritium, and Energy Production) is a concept for a plant to produce SNM, tritium, and energy while serving as a test bed for ICF technology development. A credible conceptual design for an ICF SNM and tritium production facility that competes favorably with fission technology on the bases of cost, production quality, and safety was sought. FIRST STEP is also designed to be an engineering test facility that integrates systems required for an ICF power plant and that is intermediate in scale between proof-of-principle experiment and commercial power plant. FIRST STEP driver and pellet performance requirements are moderate and represent reasonable intermediate goals in an R and D plan for ICF commercialization. Repetition rate requirements for FIRST STEP are similar to those of commercial size plants and FIRST STEP can be used to integrate systems under realistic ICF conditions

  6. Burning nuclear wastes in fusion reactors

    International Nuclear Information System (INIS)

    Meldner, H.W.; Howard, W.M.

    1979-01-01

    A study was made up of actinide burn-up in ICF reactor pellets; i.e. 14 Mev neutron fission of the very long-lived actinides that pose storage problems. A major advantage of pellet fuel region burn-up is safety: only milligrams of highly toxic and active material need to be present in the fusion chamber, whereas blanket burn-up requires the continued presence of tons of actinides in a small volume. The actinide data tables required for Monte Carlo calculations of the burn-up of /sup 241/Am and /sup 243/Am are discussed in connection with a study of the sensitivity to cross section uncertainties. More accurate and complete cross sections are required for realistic quantitative calculations. 13 refs

  7. Using the ICF in Ireland.

    LENUS (Irish Health Repository)

    Good, Anne

    2011-05-01

    This paper reflects on the use of ICF in Ireland, taking as a case study the experience of the first National Disability Survey (NDS). There were four clear effects in Ireland of using ICF as a framework for the NDS: a) that a broader range of people with disabilities was encompassed; b) that the environmental factors included from the ICF were comprehensive and policy relevant; c) that both barriers and facilitators were incorporated into the model; and d) that a focus on research ethics was encouraged. Some general conclusions regarding the benefits and limitations of ICF based on this experience are also drawn.

  8. The Disabilities of the Arm, Shoulder and Hand Questionnaire (DASH can measure the impairment, activity limitations and participation restriction constructs from the International Classification of Functioning, Disability and Health (ICF

    Directory of Open Access Journals (Sweden)

    McQueen Margaret

    2008-08-01

    Full Text Available Abstract Background The International Classification of Functioning, Disability and Health (ICF model of the consequences of disease identifies three health outcomes, impairment, activity limitations and participation restrictions. However, few orthopaedic health outcome measures were developed with reference to the ICF. This study examined the ability of a valid and frequently used measure of upper limb function, namely the Disabilities of the Arm, Shoulder and Hand Questionnaire (DASH, to operationalise the ICF. Methods Twenty-four judges used the method of Discriminant Content Validation to allocate the 38 items of the DASH to the theoretical definition of one or more ICF outcome. One-sample t-tests classified each item as measuring, impairment, activity limitations, participation restrictions, or a combination thereof. Results The DASH contains items able to measure each of the three ICF outcomes with discriminant validity. The DASH contains five pure impairment items, 19 pure activity limitations items and three participation restriction items. In addition, seven items measured both activity limitations and participation restrictions. Conclusion The DASH can measure the three health outcomes identified by the ICF. Consequently the DASH could be used to examine the impact of trauma and subsequent interventions on each health outcome in the absence of measurement confound.

  9. X-ray Thomson Scattering from Spherically Imploded ICF Ablators

    Science.gov (United States)

    Kritcher, Andrea; Doeppner, Tilo; Landen, Otto; Glenzer, Siegfried

    2010-11-01

    Time-resolved X-ray Thomson scattering measurements from spherically imploded inertial fusion capsules-type targets have been obtained for the first time at the Omega OMEGA laser facility to characterize the in-flight properties of ICF ablators. In these experiments, the non-collective, or microscopic particle behavior, of imploding CH and Be shells, was probed using a 9 keV Zn He-alpha x-ray source at scattering angles of 113^o and 135^o. for two drive pulse shapes.As an example, the analysis of In-flight scattering measurements from one set of directly-driven compressed 8600 μm-diameter, 40-μm thick Be shells taken (4.2 ns after the start of the compression beamswhen compressed a factor of 4.83x) yielded electron densities of ˜ 1.2±0.23x10^24cm-3, temperatures of ˜13±32 eV, and an ionization state of Be(+2), with uncertainties in the temperature and density of about 40% and 20%. These conditions resulting in an inferred adiabat (ratio of plasma pressure to Fermi degenerate pressure) of 1.797 +0.3/-.5 with an error of about 30%. The high signal-to-noise and high signal-to-background ratio of data obtained in these experiments provides a platform for studying the adiabat of other indirect-drive ICF ablators such as CH and High Density Carbon (HDC) ablators and demonstrates the viability of using this diagnostic to study the in-flight properties adiabat of implosion targets at the National Ignition Facility (NIF).

  10. Inertial confinement fusion. 1995 ICF annual report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    Lawrence Livermore National Laboratory`s (LLNL`s) Inertial Confinement Fusion (ICF) Program is a Department of Energy (DOE) Defense Program research and advanced technology development program focused on the goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory. During FY 1995, the ICF Program continued to conduct ignition target physics optimization studies and weapons physics experiments in support of the Defense Program`s stockpile stewardship goals. It also continued to develop technologies in support of the performance, cost, and schedule goals of the National Ignition Facility (NIF) Project. The NIF is a key element of the DOE`s Stockpile Stewardship and Management Program. In addition to its primary Defense Program goals, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application to inertial fusion energy (IFE). Also, ICF technologies have had spin-off applications for industrial and governmental use. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  11. Burn site groundwater interim measures work plan.

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Jonathan L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID)

    2005-05-01

    This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

  12. Investigation of fusion gain in fast ignition with conical targets

    Directory of Open Access Journals (Sweden)

    MJ Tabatabaei

    2011-03-01

    Full Text Available Fast ignition is a new scheme for inertial confinement fusion (ICF. In this scheme, at first the interaction of ultraintense laser beam with the hohlraum wall surrounding a capsule containing deuterium-tritium (D-T fuel causes implosion and compression of fuel to high density and then laser produced protons penetrate in the compressed fuel and deposit their energy in it as the ignition hot spot is created. In this paper, following the energy gain of spherical target and considering relationship of the burn fraction to burn duration, we have obtained the energy gain of conical targets characterized by the angle β, and found a hemispherical capsule (β=π/2 has a gain as high as 96% of that of the whole spherical capsule. The results obtained in this study are qualitatively consistent with Atzeni et al.'s studies of simulations.

  13. Preparation of multishell ICF target plastic-foam cushion materials by thermally induced phase-inversion processes

    International Nuclear Information System (INIS)

    Young, A.T.; Moreno, D.K.; Marsters, R.G.

    1981-01-01

    Homogenous, low-density plastic foams for ICF targets have been prepared by thermally induced phase inversion processes. Uniform, open cell foams have been obtained by the rapid freezing of water solutions of modified cellulose polymers with densities in the range of 5 mg/cm 3 to 0.7 mg/cm 3 and respective average cell sizes of 2 to 40 micrometers. In addition, low-density, microcellular foams have been prepared from the hydrocarbon polymer poly(4-methyl-l-pentene) via a similar phase inversion process using homogenous solutions in organic solvents. These foams have densities from 2 to 5 mg/cm 3 and average cell sizes of 20 micrometers. The physical-chemical aspects of the thermally induced phase inversion process is presented

  14. Towards ICF implementation in menopause healthcare: a systematic review of ICF application in Switzerland.

    Science.gov (United States)

    Zangger, Martina; Poethig, Dagmar; Meissner, Florian; von Wolff, Michael; Stute, Petra

    2017-12-28

    To present a systematic literature review on the application and degree of implementation of the International Classification of Functioning, Disability and Health (ICF) across different health conditions and regions in Switzerland in order to develop an ICF classification of the climacteric syndrome in the medium term. A systematic literature search was conducted through Embase and Medline covering the period between 2011 and August 2016. Inclusion criteria were the term ICF in title or abstract and Switzerland as the workplace of the first author. Identified publications were analysed as descriptive statistics. A total of 83 articles were included in the analysis. Forty-seven different first authors from 24 different institutions were identified. The majority of publications were from Swiss Paraplegic Research (68.7%) and focused on neurology (31.3%). Forty-six cohort studies were identified. In most of them, the ICF was used to set up a general language for comparing patients' information (82.9%). Only one paper from the medical specialty gynaecology was identified; this was on breast cancer. No paper on the menopause was found. In Switzerland, the ICF is actively used in various areas of healthcare, especially in the field of neurology and rehabilitation. There is a need for ICF core sets in other medical fields, such as menopause healthcare, in order to accomplish the goal of the European Menopause and Andropause Society, which is a healthcare model for healthy menopause and aging.

  15. Imipenem in burn patients: pharmacokinetic profile and PK/PD target attainment.

    Science.gov (United States)

    Gomez, David S; Sanches-Giraud, Cristina; Silva, Carlindo V; Oliveira, Amanda M Ribas Rosa; da Silva, Joao Manoel; Gemperli, Rolf; Santos, Silvia R C J

    2015-03-01

    Unpredictable pharmacokinetics (PK) in burn patients may result in plasma concentrations below concentrations that are effective against common pathogens. The present study evaluated the imipenem PK profile and pharmacokinetic/pharmacodynamics (PK/PD) correlation in burn patients. Fifty-one burn patients, 38.7 years of age (mean), 68.0 kg, 36.3% total burn surface area (TBSA), of whom 84% (43/51) exhibited thermal injury, 63% inhalation injury and 16% electrical injury (8/51), all of whom were receiving imipenem treatment were investigated. Drug plasma monitoring, PK study (120 sets of plasma levels) and PK/PD correlation were performed in a series of blood samples. Only 250 μl of plasma samples were required for drug plasma measurements using the ultra filtration technique for the purification of biological matrix and quantification using liquid chromatography. Probability of target attainment (PTA) was calculated using a PD target of 40% free drug concentrations above the minimum inhibitory concentration (40%fT>MIC). Significant differences in PK parameters (medians), such as biological half-life (2.2 vs 5.5 h), plasma clearance (16.2 vs 1.4 l h(-1)) and volume of distribution (0.86 vs 0.19 l kg(-1)), were registered in burn patients via comparisons of set periods with normal renal function against periods of renal failure. Correlations between creatinine clearance and total body plasma clearance were also obtained. In addition, the PK profile did not change according to TBSA during sets when renal function was preserved. PTA was >89% for MIC values up to 4 mg l(-1). In conclusion, imipenem efficacy for the control of hospital infection on the basis of PK/PD correlation was guaranteed for burn in patients at the recommended dose regimens for normal renal function (31.1±9.7 mg kg(-1) daily), but the daily dose must be reduced to 17.2±9.7 mg kg(-1) during renal failure to avoid neurotoxicity.

  16. Progress on LMJ targets for ignition

    International Nuclear Information System (INIS)

    Cherfils-Clerouin, C; Boniface, C; Bonnefille, M; Fremerye, P; Galmiche, D; Gauthier, P; Giorla, J; Lambert, F; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Masson-Laborde, P E; Monteil, M C; Poggi, F; Seytor, P; Wagon, F; Willien, J L

    2010-01-01

    Targets designed to produce ignition on the Laser MegaJoule are presented. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-shaped cocktail hohlraum. 1D and 2D robustness evaluations of these different targets shed light on critical points for ignition, that can be traded off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  17. Progress on LMJ targets for ignition

    Energy Technology Data Exchange (ETDEWEB)

    Cherfils-Clerouin, C; Boniface, C; Bonnefille, M; Fremerye, P; Galmiche, D; Gauthier, P; Giorla, J; Lambert, F; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Masson-Laborde, P E; Monteil, M C; Poggi, F; Seytor, P; Wagon, F; Willien, J L, E-mail: catherine.cherfils@cea.f [CEA, DAM, DIF, F-91297 Arpajon (France)

    2010-08-01

    Targets designed to produce ignition on the Laser MegaJoule are presented. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-shaped cocktail hohlraum. 1D and 2D robustness evaluations of these different targets shed light on critical points for ignition, that can be traded off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  18. Advances in commercial ICF technology since 1986

    International Nuclear Information System (INIS)

    Kulcinski, G.L.

    1989-01-01

    Progress in the march toward commercial ICF fusion reactors has been uneven in the past few years. Considerable advances have been made in the area of light ion beam fusion through the development of rep ratable drivers (i.e., HERMES-III technology) and diodes (i.e., applied B configuration with renewable Li surfaces). Significant progress in the development of lasers to compress targets has also been made through the KrF Aurura program. The possibility of lowering the cost of glass in the advanced solid state lasers has been given serious consideration. The development of the Induced Spatial Incoherence (ISI) technique to improve the uniformity of the laser beam has allowed physicists and engineers to once again contemplate the use of symmetric illumination. This would reduce the driver energy required to achieve high gains but it also introduces difficulty in the reactor design. Relatively little progress in commercial heavy ion beam drivers has been made over the past few years aside from an indepth study (HIFSA) of the desirable operating regimes to be pursued. Other areas where little progress has been made are conceptual reactor studies, target declassification and specific experimental programs to address commercial ICF reactor technology needs

  19. Performance of the Aurora KrF ICF laser system

    International Nuclear Information System (INIS)

    Jones, J.E.; Czuchlewski, S.J.; Turner, T.P.; Watt, R.G.; Thomas, S.J.; Netz, D.A.; Tallman, C.R.; Mack, J.M.; Figueira, J.F.

    1990-01-01

    Because short wavelength lasers are attractive for inertial confinement fusion (ICF), the Department of Energy is sponsoring work at Los Alamos National Laboratory in krypton-fluoride (KrF) laser technology. Aurora is a short-pulse, high-power, KrF laser system. It serves as an end-to-end technology demonstration prototype for large-scale ultraviolet laser systems for short wavelength ICF research. The system employs optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers. The 1 to 5 ns pulse of the Aurora front end is split into 96 beams which are angularly and temporally multiplexed to produce a 480 ns pulse train for amplification by four KrF laser amplifiers. In the present system configuration half (48) of the amplified pulses are demultiplexed using different optical path lengths and delivered simultaneously to target. This paper discusses how the Aurora laser system has entered the initial operational phase by delivering pulse energies of greater than one kilojoule to target

  20. Burn prevention in Zambia: a targeted epidemiological approach.

    Science.gov (United States)

    Heard, Jason P; Latenser, Barbara A; Liao, Junlin

    2013-01-01

    The aim of this study is to assess primary burn prevention knowledge in a rural Zambian population that is disproportionately burdened by burn injuries. A 10-question survey was completed by youths, and a 15-question survey was completed by adults. The survey was available in both English and Nyanja. The surveys were designed to test their knowledge in common causes, first aid, and emergency measures regarding burn injuries. Logistic regression analysis was used to explore relationships between burn knowledge, age, school, and socioeconomic variables. A burn prevention coloring book, based on previous local epidemiological data, was also distributed to 800 school age youths. Five hundred fifty youths and 39 adults completed the survey. The most significant results show knowledge deficits in common causes of burns, first aid treatment of a burn injury, and what to do in the event of clothing catching fire. Younger children were more likely to do worse than older children. The adults performed better than the youths, but still lack fundamental burn prevention and treatment knowledge. Primary burn prevention data from the youths and adults surveyed demonstrate a clear need for burn prevention and treatment education in this population. In a country where effective and sustainable burn care is lacking, burn prevention may be a better investment to reduce burn injury than large investments in healthcare resources.

  1. Hydrodynamick instabilities on ICF capsules

    International Nuclear Information System (INIS)

    Haan, S.W.

    1991-01-01

    This article summarizes our current understanding of hydrodynamic instabilities as relevant to ICF. First we discuss classical, single mode Rayleigh-Taylor instability, and nonlinear effects in the evolution of a single mode. Then we discuss multimode systems, considering: (1) the onset of nonlinearity; (2) a second order mode coupling theory for weakly nonlinear effects, and (3) the fully nonlinear regime. Two stabilization mechanisms relevant to ICF are described next: gradient scale length and convective stabilization. Then we describe a model which is meant to estimate the weakly nonlinear evolution of multi-mode systems as relevant to ICF, given the short-wavelength stabilization. Finally, we discuss the relevant code simulation capability, and experiments. At this time we are quite optimistic about our ability to estimate instability growth on ICF capsules, but further experiments and simulations are needed to verify the modeling. 52 refs

  2. Identification of candidate categories of the International Classification of Functioning Disability and Health (ICF for a Generic ICF Core Set based on regression modelling

    Directory of Open Access Journals (Sweden)

    Üstün Bedirhan T

    2006-07-01

    Full Text Available Abstract Background The International Classification of Functioning, Disability and Health (ICF is the framework developed by WHO to describe functioning and disability at both the individual and population levels. While condition-specific ICF Core Sets are useful, a Generic ICF Core Set is needed to describe and compare problems in functioning across health conditions. Methods The aims of the multi-centre, cross-sectional study presented here were: a to propose a method to select ICF categories when a large amount of ICF-based data have to be handled, and b to identify candidate ICF categories for a Generic ICF Core Set by examining their explanatory power in relation to item one of the SF-36. The data were collected from 1039 patients using the ICF checklist, the SF-36 and a Comorbidity Questionnaire. ICF categories to be entered in an initial regression model were selected following systematic steps in accordance with the ICF structure. Based on an initial regression model, additional models were designed by systematically substituting the ICF categories included in it with ICF categories with which they were highly correlated. Results Fourteen different regression models were performed. The variance the performed models account for ranged from 22.27% to 24.0%. The ICF category that explained the highest amount of variance in all the models was sensation of pain. In total, thirteen candidate ICF categories for a Generic ICF Core Set were proposed. Conclusion The selection strategy based on the ICF structure and the examination of the best possible alternative models does not provide a final answer about which ICF categories must be considered, but leads to a selection of suitable candidates which needs further consideration and comparison with the results of other selection strategies in developing a Generic ICF Core Set.

  3. Multiuser development scenario for ICF

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1985-10-01

    An outline is given of some of the various possible applications of ICF technology. Developmental paths for each application are briefly described. The implications on design and operation of the ICF facilities if multipurpose use is allowed are examined

  4. Optical design of Kirkpatrick-Baez microscope for ICF

    International Nuclear Information System (INIS)

    Mu Baozhong; Yi Shengzhen; Huang Shengling; Wang Zhanshan

    2008-01-01

    A new flux-resolution optical design method of Kirkpatrick-Baez microscope (KB microscope) is proposed. In X-ray imaging diagnostics of inertial confinement fusion(ICF), spatial resolution and flux are always the key parameters. While the traditional optical design of KB microscope is to correct on-axis spherical aberration and astigmatic aberration, flux-resolution method is based on lateral aberration of full field and astigmatic aberration. Thus the spatial resolution related to field dimension and light flux can be estimated. By the expressions of spatial resolution and actual limits in ICF, rules of how to set original structure and optical design flow are summarized. An instance is presented and it shows that the design has met the original targets and overcome the shortcomings of image characterization in compressed core by traditional spherical aberration correction. (authors)

  5. The LLNL [Lawrence Livermore National Laboratory] ICF [Inertial Confinement Fusion] Program: Progress toward ignition in the Laboratory

    International Nuclear Information System (INIS)

    Storm, E.; Batha, S.H.; Bernat, T.P.; Bibeau, C.; Cable, M.D.; Caird, J.A.; Campbell, E.M.; Campbell, J.H.; Coleman, L.W.; Cook, R.C.; Correll, D.L.; Darrow, C.B.; Davis, J.I.; Drake, R.P.; Ehrlich, R.B.; Ellis, R.J.; Glendinning, S.G.; Haan, S.W.; Haendler, B.L.; Hatcher, C.W.; Hatchett, S.P.; Hermes, G.L.; Hunt, J.P.; Kania, D.R.; Kauffman, R.L.; Kilkenny, J.D.; Kornblum, H.N.; Kruer, W.L.; Kyrazis, D.T.; Lane, S.M.; Laumann, C.W.; Lerche, R.A.; Letts, S.A.; Lindl, J.D.; Lowdermilk, W.H.; Mauger, G.J.; Montgomery, D.S.; Munro, D.H.; Murray, J.R.; Phillion, D.W.; Powell, H.T.; Remington, B.R.; Ress, D.B.; Speck, D.R.; Suter, L.J.; Tietbohl, G.L.; Thiessen, A.R.; Trebes, J.E.; Trenholme, J.B.; Turner, R.E.; Upadhye, R.S.; Wallace, R.J.; Wiedwald, J.D.; Woodworth, J.G.; Young, P.M.; Ze, F.

    1990-01-01

    The Inertial Confinement Fusion (ICF) Program at the Lawrence Livermore National Laboratory (LLNL) has made substantial progress in target physics, target diagnostics, and laser science and technology. In each area, progress required the development of experimental techniques and computational modeling. The objectives of the target physics experiments in the Nova laser facility are to address and understand critical physics issues that determine the conditions required to achieve ignition and gain in an ICF capsule. The LLNL experimental program primarily addresses indirect-drive implosions, in which the capsule is driven by x rays produced by the interaction of the laser light with a high-Z plasma. Experiments address both the physics of generating the radiation environment in a laser-driven hohlraum and the physics associated with imploding ICF capsules to ignition and high-gain conditions in the absence of alpha deposition. Recent experiments and modeling have established much of the physics necessary to validate the basic concept of ignition and ICF target gain in the laboratory. The rapid progress made in the past several years, and in particular, recent results showing higher radiation drive temperatures and implosion velocities than previously obtained and assumed for high-gain target designs, has led LLNL to propose an upgrade of the Nova laser to 1.5 to 2 MJ (at 0.35 μm) to demonstrate ignition and energy gains of 10 to 20 -- the Nova Upgrade

  6. [Functioning and disability: the International Classification of Functioning, Disability and Health (ICF)].

    Science.gov (United States)

    Fernández-López, Juan Antonio; Fernández-Fidalgo, María; Geoffrey, Reed; Stucki, Gerold; Cieza, Alarcos

    2009-01-01

    The World Health Organization's International Classification of Functioning, Disability and Health (ICF) has provided a new foundation for our understanding of health, functioning, and disability. It covers most of the health and health-related domains that make up the human experience, and the most environmental factors that influence that experience of functioning and disability. With the exhaustive ICF, patients' functioning -including its components body functions and structures and activities and participation-, becomes a central perspective in medicine. To implement the ICF in medicine and other fields, practical tools (= ICF Core Sets) have been developed. They are selected sets of categories out of the whole classification which serve as minimal standards for the assessment and reporting of functioning and health for clinical studies and clinical encounters (Brief ICF Core Set) or as standards for multiprofessional comprehensive assessment (Comprehensive ICF Core Set). Different from generic and condition-specific health-status measures, the ICF Core Sets include important body functions and structures and contextual factors. The use of the ICF Core Sets provides an important step towards improved communications between healthcare providers and professionals, and will enable patients and their families to understand and communicate with health professionals about their functioning and treatment goals. Specific applications include multi- and interdisciplinary assessment in clinical settings and in legal expert evaluations and use in disease or functioning-management programs. The ICF has also a potential as a conceptual framework to clarify an interrelated universe of health-related concepts which can be elucidated based on the ICF and therefore will be an ideal tool for teaching students in all medical fields and may open doors to multi-professional learning.

  7. Standardized reporting of functioning information on ICF-based common metrics.

    Science.gov (United States)

    Prodinger, Birgit; Tennant, Alan; Stucki, Gerold

    2018-02-01

    In clinical practice and research a variety of clinical data collection tools are used to collect information on people's functioning for clinical practice and research and national health information systems. Reporting on ICF-based common metrics enables standardized documentation of functioning information in national health information systems. The objective of this methodological note on applying the ICF in rehabilitation is to demonstrate how to report functioning information collected with a data collection tool on ICF-based common metrics. We first specify the requirements for the standardized reporting of functioning information. Secondly, we introduce the methods needed for transforming functioning data to ICF-based common metrics. Finally, we provide an example. The requirements for standardized reporting are as follows: 1) having a common conceptual framework to enable content comparability between any health information; and 2) a measurement framework so that scores between two or more clinical data collection tools can be directly compared. The methods needed to achieve these requirements are the ICF Linking Rules and the Rasch measurement model. Using data collected incorporating the 36-item Short Form Health Survey (SF-36), the World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0), and the Stroke Impact Scale 3.0 (SIS 3.0), the application of the standardized reporting based on common metrics is demonstrated. A subset of items from the three tools linked to common chapters of the ICF (d4 Mobility, d5 Self-care and d6 Domestic life), were entered as "super items" into the Rasch model. Good fit was achieved with no residual local dependency and a unidimensional metric. A transformation table allows for comparison between scales, and between a scale and the reporting common metric. Being able to report functioning information collected with commonly used clinical data collection tools with ICF-based common metrics enables clinicians

  8. Coherent structures in ablatively compressed ICF targets and Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Pant, H.C.; Desai, T.

    1996-01-01

    One of the major issues in laser induced inertial confinement fusion (ICF) is a stable ablative compression of spherical fusion pellets. The main impediment in achievement of this objective is Rayleigh-Taylor instability at the pellet's ablation front. Under sufficiently high acceleration this instability can grow out of noise. However, it can also arise either due to non-uniform laser intensity distribution over the pellet surface or due to pellet wall areal mass irregularity. Coherent structures in the dense target behind the ablation front can be effectively utilised for stabilisation of the Rayleigh-Taylor phenomenon. Such coherent structures in the form of a super lattice can be created by doping the pellet pusher with high atomic number (Z) micro particles. A compressed-cool pusher under laser irradiation behaves like a strongly correlated non ideal plasma when compressed to sufficiently high density such that the non ideality parameter exceeds unity. Moreover, the nonideality parameter for high Z microinclusions may exceed a critical value of 180 and as a consequence they remain in the form of intact clusters, maintaining the superlattice intact during ablative acceleration. Micro-hetrogeneity and its superlattice plays an important role in stabilization of Rayleigh-Taylor instability, through a variety of mechanisms. (orig.)

  9. Target technologies for laser inertial confinement fusion: state-of-the-art and future perspective

    International Nuclear Information System (INIS)

    Zhang Lin; Du Kai

    2013-01-01

    Targets are physical base of the laser inertial confinement fusion (ICF) researches. The quality of the targets has extremely important influences on the reliabilities and degree of precision of the ICF experimental results. The characteristics of the ICF targets, such as complexity and microscale, high precision, determine that the target fabrication process must be a system engineering. This paper presents progresses on the fabrication technologies of ICF targets. The existing problem and the future needs of ICF target fabrication technologies are also discussed. (authors)

  10. The reliability, validity, and applicability of an English language version of the Mini-ICF-APP.

    Science.gov (United States)

    Molodynski, Andrew; Linden, Michael; Juckel, George; Yeeles, Ksenija; Anderson, Catriona; Vazquez-Montes, Maria; Burns, Tom

    2013-08-01

    This study aimed at establishing the validity and reliability of an English language version of the Mini-ICF-APP. One hundred and five patients under the care of secondary mental health care services were assessed using the Mini-ICF-APP and several well-established measures of functioning and symptom severity. 47 (45 %) patients were interviewed on two occasions to ascertain test-retest reliability and 50 (48 %) were interviewed by two researchers simultaneously to determine the instrument's inter-rater reliability. Occupational and sick leave status were also recorded to assess construct validity. The Mini-ICF-APP was found to have substantial internal consistency (Chronbach's α 0.869-0.912) and all 13 items correlated highly with the total score. Analysis also showed that the Mini-ICF-APP had good test-retest (ICC 0.832) and inter-rater (ICC 0.886) reliability. No statistically significant association with length of sick leave was found, but the unemployed scored higher on the Mini ICF-APP than those in employment (mean 18.4, SD 9.1 vs. 9.4, SD 6.4, p Mini-ICF-APP correlated highly with the other measures of illness severity and functioning considered in the study. The English version of the Mini-ICF-APP is a reliable and valid measure of disorders of capacity as defined by the International Classification of Functioning. Further work is necessary to establish whether the scale could be divided into sub scales which would allow the instrument to more sensitively measure an individual's specific impairments.

  11. The effects of pre-mix on burn in ICF capsules

    International Nuclear Information System (INIS)

    Wilson, D C; Kyrala, G A; Jr, J F Benage; Wysocki, F J; Gunderson, M A; Herrman, H W; Cooley, J H; Welser-Sherrill, L; Garbett, W J; Horsfield, C J; Glebov, V Y; Yaakobi, B; Roberts, S A; Frenje, J

    2008-01-01

    Directly driven implosions at the Omega laser have tested the effects of pre-mix of Ar, Kr, and Xe in D 2 + 3 He filled glass micro-balloons. Diagnostics included: D+D and D+T neutron yields, D+ 3 He proton yields and spectra, Doppler broadened ion temperatures, time dependent neutron and proton burn rates, and time gated, high energy filtered, X-ray images. Yields are better calculated by XSN LTE than by non-LTE. Yields with a small amount of pre-mix, atom fractions of ∼5e-3 for Ar, 2e-3 Kr, and Xe for 5e-4, are more degraded than calculated, while the measured ion temperatures are the same as without pre-mix. There is also a decrease in fuel ρr. The neutron burn histories suggest that the early yield coming before the reflected shock strikes the incoming shell is un-degraded, with yield degradation occurring afterwards. Adding 20 atm % 3 He to pure D fuel seems to produce a similar degradation. Calculated gated X-ray images agree with observed when the reflected shock strikes the incoming shell, but are smaller than observed afterward. This partially explains yield degradation and both the low fuel and whole capsule ρr's observed in secondary T+D neutrons and slowing of the D+ 3 He protons. Neither LTE on non-LTE captures the degradation by 3 He or at low pre-mix levels, nor matches the large shell radii after impact of the reflected shock

  12. Recent laser experiments on the Aurora KrF/ICF laser system

    International Nuclear Information System (INIS)

    Turner, T.P.; Jones, J.E.; Czuchlewski, S.J.; Watt, R.G.; Thomas, S.J.; Kang, M.; Tallman, C.R.; Mack, J.M.; Figueira, J.F.

    1990-01-01

    The Aurora KrF/ICF Laser Facility at Los Alamos is operational at the kilojoule-level for both laser and target experiments. We report on recent laser experiments on the system and resulting system improvements. 3 refs., 4 figs

  13. ICF-DOC: the ICF dedicated checklist for evaluating functioning and disability in people with disorders of consciousness.

    Science.gov (United States)

    Leonardi, Matilde; Covelli, Venusia; Giovannetti, Ambra M; Raggi, Alberto; Sattin, Davide

    2014-09-01

    Clinicians need a comprehensive description of patients' functioning state to capture the complex interaction between symptoms and environmental factors, and to determine the actual level of functioning in patients in a vegetative state or a minimally conscious state. The aim of this study is to develop an International Classification of Functioning, Disability, and Health (ICF) checklist for patients with disorders of consciousness (DOC) so as to capture and describe, with a tailored list of categories, the most common health, disability, and functioning issues of adult patients with DOC. The WHO ICF checklist was used as a basis for collecting data. This was an observational, cross-sectional, multicenter study conducted in 69 Italian centers. Specific methodological procedures were used to identify the most appropriate categories for DOC patients to be added to or deleted from the ICF checklist so as to develop the ICF-DOC checklist. A total of 566 adult patients were enrolled: 398 in a vegetative state and 168 in a minimally conscious state. A total of 127 ICF categories reached the threshold of 20% concerning the presence of a problem: 37 categories from the body functions chapter, 13 from the body structures chapter, 46 from the activities and participations chapter, and 31 from the environmental factors chapter. ICF categories identified in this study can be useful guidelines for clinicians and researchers to collect data on functioning and disability of adult patients with DOC. The new ICF-DOC checklist allows monitoring of the effects of interventions on functional areas and possible changes in each patient in follow-up studies.

  14. Encke-Beta Predictor for Orion Burn Targeting and Guidance

    Science.gov (United States)

    Robinson, Shane; Scarritt, Sara; Goodman, John L.

    2016-01-01

    The state vector prediction algorithm selected for Orion on-board targeting and guidance is known as the Encke-Beta method. Encke-Beta uses a universal anomaly (beta) as the independent variable, valid for circular, elliptical, parabolic, and hyperbolic orbits. The variable, related to the change in eccentric anomaly, results in integration steps that cover smaller arcs of the trajectory at or near perigee, when velocity is higher. Some burns in the EM-1 and EM-2 mission plans are much longer than burns executed with the Apollo and Space Shuttle vehicles. Burn length, as well as hyperbolic trajectories, has driven the use of the Encke-Beta numerical predictor by the predictor/corrector guidance algorithm in place of legacy analytic thrust and gravity integrals.

  15. Advances in radiation-hydrodynamics and atomic physics simulation for current and new neutron-less targets

    International Nuclear Information System (INIS)

    Velarde, G.; Minguez, E.; Bravo, E.

    2003-01-01

    We present advances in advanced fusion cycles, atomic physics and radiation hydrodynamics. With ARWEN code we analyze a target design for ICF based on jet production. ARWEN is 2D Adaptive Mesh Refinement fluid dynamic and multigroup radiation transport. We are designing, by using also ARWEN, a target for laboratory simulation of astrophysical phenomena. We feature an experimental device to reproduce collisions of two shock waves, scaled to roughly represent cosmic supernova remnants. Opacity calculations are obtained with ANALOP code, which uses parametric potentials fitting to self-consistent potentials. It includes temperature and density effects by linearized Debye-Hueckel and it treats excited configurations and H+He-like lines. Advanced fusion cycles, as the a neutronic proton-boron 11 reaction, require very high ignition temperatures. Plasma conditions for a fusion-burning wave to propagate at such temperatures are rather extreme and complex, because of the overlapping effects of the main energy transport mechanisms. Calculations on the most appropriate ICF regimes for this purpose are presented. (author)

  16. The physics of radiation driven ICF hohlraums

    International Nuclear Information System (INIS)

    Rosen, M.D.

    1995-01-01

    On the Nova Laser at LLNL, we have recently demonstrated many of the key elements required for assuring that the next proposed laser, the National Ignition Facility (NIF) will drive an Inertial Confinement Fusion (ICF) target to ignition. The target uses the recently declassified indirect drive (sometimes referred to as open-quotes radiation driveclose quotes) approach which converts laser light to x-rays inside a gold cylinder, which then acts as an x-ray open-quotes ovenclose quotes (called a hohlraum) to drive the fusion capsule in its center. On Nova we've demonstrated good understanding of the temperatures reached in hohlraums and of the ways to control the uniformity with which the x-rays drive the spherical fusion capsules. In this lecture we briefly review the fundamentals of ICF, and describe the capsule implosion symmetry advantages of the hohlraum approach. We then concentrate on a quantitative understanding of the scaling of radiation drive with hohlraum size and wall material, and with laser pulse length and power. We demonstrate that coupling efficiency of x-ray drive to the capsule increases as we proceed from Nova to the NIF and eventually to a reactor, thus increasing the gain of the system

  17. Progress on LMJ targets for ignition

    Energy Technology Data Exchange (ETDEWEB)

    Cherfils-Clerouin, C; Boniface, C; Bonnefille, M; Dattolo, E; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Masson-Laborde, P E; Monteil, M C; Poggi, F; Seytor, P; Wagon, F; Willien, J L, E-mail: catherine.cherfils@cea.f [CEA, DAM, DIF, F-91297 Arpajon (France)

    2009-12-15

    Targets designed to produce ignition on the Laser Megajoule (LMJ) are being simulated in order to set specifications for target fabrication. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4 MJ and 380 TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-ball shaped cocktail hohlraum; with these improvements, a target based on the 240-beam A1040 capsule can be included in the 160-beam laser energy-power space. Robustness evaluations of these different targets shed light on critical points for ignition, which can trade off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  18. Progress on LMJ targets for ignition

    International Nuclear Information System (INIS)

    Cherfils-Clerouin, C; Boniface, C; Bonnefille, M; Dattolo, E; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Masson-Laborde, P E; Monteil, M C; Poggi, F; Seytor, P; Wagon, F; Willien, J L

    2009-01-01

    Targets designed to produce ignition on the Laser Megajoule (LMJ) are being simulated in order to set specifications for target fabrication. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4 MJ and 380 TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-ball shaped cocktail hohlraum; with these improvements, a target based on the 240-beam A1040 capsule can be included in the 160-beam laser energy-power space. Robustness evaluations of these different targets shed light on critical points for ignition, which can trade off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  19. Accuracy of real time radiography burning rate measurement

    Science.gov (United States)

    Olaniyi, Bisola

    The design of a solid propellant rocket motor requires the determination of a propellant's burning-rate and its dependency upon environmental parameters. The requirement that the burning-rate be physically measured, establishes the need for methods and equipment to obtain such data. A literature review reveals that no measurement has provided the desired burning rate accuracy. In the current study, flash x-ray modeling and digitized film-density data were employed to predict motor-port area to length ratio. The pre-fired port-areas and base burning rate were within 2.5% and 1.2% of their known values, respectively. To verify the accuracy of the method, a continuous x-ray and a solid propellant rocket motor model (Plexiglas cylinder) were used. The solid propellant motor model was translated laterally through a real-time radiography system at different speeds simulating different burning rates. X-ray images were captured and the burning-rate was then determined. The measured burning rate was within 1.65% of the known values.

  20. Using absolute x-ray spectral measurements to infer stagnation conditions in ICF implosions

    Science.gov (United States)

    Patel, Pravesh; Benedetti, L. R.; Cerjan, C.; Clark, D. S.; Hurricane, O. A.; Izumi, N.; Jarrott, L. C.; Khan, S.; Kritcher, A. L.; Ma, T.; Macphee, A. G.; Landen, O.; Spears, B. K.; Springer, P. T.

    2016-10-01

    Measurements of the continuum x-ray spectrum emitted from the hot-spot of an ICF implosion can be used to infer a number thermodynamic properties at stagnation including temperature, pressure, and hot-spot mix. In deuterium-tritium (DT) layered implosion experiments on the National Ignition Facility (NIF) we field a number of x-ray diagnostics that provide spatial, temporal, and spectrally-resolved measurements of the radiated x-ray emission. We report on analysis of these measurements using a 1-D hot-spot model to infer thermodynamic properties at stagnation. We compare these to similar properties that can be derived from DT fusion neutron measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Design and fabrication of a CH/Al dual-layer perturbation target for hydrodynamic instability experiments in ICF

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Xie, Zhiyong [Shanghai Institute of Laser Plasma, Shanghai 201800 (China); Du, Ai [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Ye, Junjian [Shanghai Institute of Laser Plasma, Shanghai 201800 (China); Zhang, Zhihua; Shen, Jun [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Zhou, Bin, E-mail: zhoubin863@tongji.edu.cn [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China)

    2014-04-15

    Highlights: • Sinusoidal perturbed Al foil was prepared by single-point diamond turning. • Perturbed Al foil was measured by surface profiler and white light interferometer. • Perturbed Al foil and CH layer adhered with each other via a hot-press process. • Parameters and cross-section of the CH–Al perturbation target was characterized. - Abstract: A polystyrene (CH)/aluminum (Al) dual-layer perturbation target for hydrodynamic instability experiments in inertial confinement fusion (ICF) was designed and fabricated. The target was composed of a perturbed 40 μm Al foil and a CH layer. The detailed fabrication method consisted of four steps. The 40 μm Al foil was first prepared by roll and polish process; the perturbation patterns were then introduced on the surface of the Al foil by the single-point diamond turning (SPDT) technology; the CH layer was prepared via a simple method which called spin-coating process; finally, the CH layer was directly coated on the perturbation surface of Al foil by a hot-press process to avoid the use of a sticker and to eliminate the gaps between the CH layer and the Al foil. The parameters of the target, such as the perturbation wavelength (T) and perturbation amplitude (A), were characterized by a QC-5000 tool microscope, an alpha-step 500 surface profiler and a NT1100 white light interferometer. The results showed that T and A of the target were about 52 μm and 7.34 μm, respectively. Thickness of the Al foil (H1), thickness of the CH layer (H2), and cross-section of the dual-layer target were characterized by a QC-5000 tool microscope and a scanning electron microscope (SEM). H1 and H2 were about 40 μm and 15 μm, respectively, the cross-sectional photographs of the target showed that the CH layer and the Al foil adhered perfectly with each other.

  2. Dynamic hohlraum and ICF pellet implosion experiments on Z

    International Nuclear Information System (INIS)

    Nash, T.J.; Derzon, M.S.; Chandler, G.A.

    1999-01-01

    By stabilizing an imploding z-pinch on Z (20 MA, 100 ns) with a solid current return can and a nested wire array the authors have achieved dynamic hohlraum radiation temperatures over 200 eV at a diameter of approximately 1 mm. The pinch configuration yielding this temperature is a nested tungsten wire array of 240 and 120 wires at 4 and 2 cm diameters weighing 2 and 1 mg, 1 cm long, imploding onto a 5 mm diameter, 14 mg/cc cylindrical CH foam, weighing 3 mg. They have used a single 4 cm diameter tungsten wire array to drive a 1.6 mm diameter ICF capsule mounted in a 6 mg/cc foam inside a 3 mg copper annulus at 5 mm diameter, and measured x-ray emissions indicative of the pellet implosion. Mounting the pellet in foam may have caused the hohlraum to become equator-hot. They will present results from upcoming pellet experiments in which the pellet is mounted by thread and driven by a larger diameter, 6 or 7 mm, copper annulus to improve radiation drive symmetry. They will also discuss designs for tapered foam annular targets that distort a cylindrical pinch into a quasi-sphere that will wrap around an ICF pellet to further improve drive symmetry

  3. Advances in ICF power reactor design

    International Nuclear Information System (INIS)

    Hogan, W.J.; Kulcinski, G.L.

    1985-01-01

    Fifteen ICF power reactor design studies published since 1980 are reviewed to illuminate the design trends they represent. There is a clear, continuing trend toward making ICF reactors inherently safer and environmentally benign. Since this trend accentuates inherent advantages of ICF reactors, we expect it to be further emphasized in the future. An emphasis on economic competitiveness appears to be a somewhat newer trend. Lower cost of electricity, smaller initial size (and capital cost), and more affordable development paths are three of the issues being addressed with new studies

  4. [The "Mini-ICF-Rating for Mental Disorders (Mini-ICF-P)". A short instrument for the assessment of disabilities in mental disorders].

    Science.gov (United States)

    Linden, M; Baron, S

    2005-06-01

    Supplementary to the description of diseases at symptom level, the International Classification of Functioning, Disability and Health (ICF), edited by the WHO, for the first time enables a systematic description also at the level of disabilities and impairments. The Mini-ICF-Rating for Mental Disorders (Mini-ICF-P) is a short observer rating instrument for the assessment of disabilities, especially with regard to occupational functioning. The Mini-ICF-P was first evaluated empirically in 125 patients of a Department of Behavioural Medicine and Psychosomatics. Parallel-test reliability was r = 0.59. Correlates were found with cognitive and motivational variables and duration of sick leave from work. In summary, the Mini-ICF-P is a quick and practicable instrument.

  5. Target support for inertial confinement fusion

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1995-08-01

    General Atomics (GA) plays an important industrial support role for the US Inertial Confinement Fusion (ICF) program in the area of target technology. This includes three major activities: target fabrication support, target handling systems development, and target chamber design. The work includes target fabrication for existing ICF experiments, target and target system development for future experiments, and target research and target chamber design for experiments on future machines, such as the National Ignition Facility (NIF)

  6. Status of Indirect Drive ICF Experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Dewald, E.

    2016-01-01

    In the quest to demonstrate Inertial Confinement Fusion (ICF) ignition of deuterium-tritium (DT) filled capsules and propagating thermonuclear burn with net energy gain (fusion energy/laser energy >1), recent experiments on the National Ignition Facility (NIF) have shown progress towards increasing capsule hot spot temperature (T ion >5 keV) and fusion neutron yield (~10 16 ), while achieving ~2x yield amplification by alpha particle deposition. At the same time a performance cliff was reached, resulting in lower fusion yields than expected as the implosion velocity was increased. Ongoing studies of the hohlraum and capsule physics are attempting to disseminate possible causes for this performance ceiling.

  7. Compact torus accelerator as a driver for ICF

    International Nuclear Information System (INIS)

    Tobin, M.T.; Meier, W.R.; Morse, E.C.

    1986-01-01

    The authors have carried out further investigations of the technical issues associated with using a compact torus (CT) accelerator as a driver for inertial confinement fusion (ICF). In a CT accelerator, a magnetically confined, torus-shaped plasma is compressed, accelerated, and focused by two concentric electrodes. After its initial formation, the torus shape is maintained for lifetimes exceeding 1 ms by inherent poloidal and toroidal currents. Hartman suggests acceleration and focusing of such a plasma ring will not cause dissolution within certain constraints. In this study, we evaluated a point design based on an available capacitor bank energy of 9.2 MJ. This accelerator, which was modeled by a zero-dimensional code, produces a xenon plasma ring with a 0.73-cm radius, a velocity of 4.14 x 10 9 cm/s, and a mass of 4.42 μg. The energy of the plasma ring as it leaves the accelerator is 3.8 MJ, or 41% of the capacitor bank energy. Our studies confirm the feasibility of producing a plasma ring with the characteristics required to induce fusion in an ICF target with a gain greater than 50. The low cost and high efficiency of the CT accelerator are particularly attractive. Uncertainties concerning propagation, accelerator lifetime, and power supply must be resolved to establish the viability of the accelerator as an ICF driver

  8. Towards ICF implementation in menopause healthcare: a systematic review of ICF application in Switzerland.

    OpenAIRE

    Zangger, Martina; Poethig, Dagmar; Meissner, Florian; von Wolff, Michael; Stute, Petra

    2017-01-01

    AIMS OF THE STUDY To present a systematic literature review on the application and degree of implementation of the International Classification of Functioning, Disability and Health (ICF) across different health conditions and regions in Switzerland in order to develop an ICF classification of the climacteric syndrome in the medium term. METHODS A systematic literature search was conducted through Embase and Medline covering the period between 2011 and August 2016. Inclusion crite...

  9. Towards system-wide implementation of the International Classification of Functioning, Disability and Health (ICF) in routine practice: Developing simple, intuitive descriptions of ICF categories in the ICF Generic and Rehabilitation Set.

    Science.gov (United States)

    Prodinger, Birgit; Reinhardt, Jan D; Selb, Melissa; Stucki, Gerold; Yan, Tiebin; Zhang, Xia; Li, Jianan

    2016-06-13

    A national, multi-phase, consensus process to develop simple, intuitive descriptions of International Classification of Functioning, Disability and Health (ICF) categories contained in the ICF Generic and Rehabilitation Sets, with the aim of enhancing the utility of the ICF in routine clinical practice, is presented in this study. A multi-stage, national, consensus process was conducted. The consensus process involved 3 expert groups and consisted of a preparatory phase, a consensus conference with consecutive working groups and 3 voting rounds (votes A, B and C), followed by an implementation phase. In the consensus conference, participants first voted on whether they agreed that an initially developed proposal for simple, intuitive descriptions of an ICF category was in fact simple and intuitive. The consensus conference was held in August 2014 in mainland China. Twenty-one people with a background in physical medicine and rehabilitation participated in the consensus process. Four ICF categories achieved consensus in vote A, 16 in vote B, and 8 in vote C. This process can be seen as part of a larger effort towards the system-wide implementation of the ICF in routine clinical and rehabilitation practice to allow for the regular and comprehensive evaluation of health outcomes most relevant for the monitoring of quality of care.

  10. Target design for high fusion yield with the double Z-pinch-driven hohlraum

    International Nuclear Information System (INIS)

    Vesey, R. A.; Herrmann, M. C.; Lemke, R. W.; Desjarlais, M. P.; Cuneo, M. E.; Stygar, W. A.; Bennett, G. R.; Campbell, R. B.; Christenson, P. J.; Mehlhorn, T. A.; Porter, J. L.; Slutz, S. A.

    2007-01-01

    A key demonstration on the path to inertial fusion energy is the achievement of high fusion yield (hundreds of MJ) and high target gain. Toward this goal, an indirect-drive high-yield inertial confinement fusion (ICF) target involving two Z-pinch x-ray sources heating a central secondary hohlraum is described by Hammer et al. [Phys. Plasmas 6, 2129 (1999)]. In subsequent research at Sandia National Laboratories, theoretical/computational models have been developed and an extensive series of validation experiments have been performed to study hohlraum energetics, capsule coupling, and capsule implosion symmetry for this system. These models have been used to design a high-yield Z-pinch-driven ICF target that incorporates the latest experience in capsule design, hohlraum symmetry control, and x-ray production by Z pinches. An x-ray energy output of 9 MJ per pinch, suitably pulse-shaped, is sufficient for this concept to drive 0.3-0.5 GJ capsules. For the first time, integrated two-dimensional (2D) hohlraum/capsule radiation-hydrodynamics simulations have demonstrated adequate hohlraum coupling, time-dependent radiation symmetry control, and the successful implosion, ignition, and burn of a high-yield capsule in the double Z-pinch hohlraum. An important new feature of this target design is mode-selective symmetry control: the use of burn-through shields offset from the capsule that selectively tune certain low-order asymmetry modes (P 2 ,P 4 ) without significantly perturbing higher-order modes and without a significant energy penalty. This paper will describe the capsule and hohlraum design that have produced 0.4-0.5 GJ yields in 2D simulations, provide a preliminary estimate of the Z-pinch load and accelerator requirements necessary to drive the system, and suggest future directions for target design work

  11. Studies of implosion dynamics of D3He gas-filled plastic targets using nuclear diagnostics at OMEGA

    International Nuclear Information System (INIS)

    Falk, Magnus

    2004-09-01

    Information about target-implosion dynamics is essential for understanding how assembly occurs. Without carefully tailored assembly of the fuel, hot-spot ignition on National Ignition Facility (NIF) will fail. Hot spot ignition relies on shock convergence to 'ignite' the hot spot (shock burn), followed by propagation of the burn into the compressed shell material (compressive burn). The relationship between these events must be understood to ensure the success of Inertial Confinement Fusion (ICF) ignition. To further improve our knowledge about the timing of these events, temporal evolution of areal density (density times radius, normally referred to as ρR) and burn of direct-drive, D 3 He gas-filled plastic target implosions have been studied using dd neutrons and d 3 He protons. The proton temporal diagnostic (PTD) code was developed for this purpose. ρR asymmetries were observed at shock-bang time (time of peak burn during shock phase) and grew approximately twice as fast as the average ρR, without any phase changes. Furthermore, it was observed that the shock-bang and compression-bang time occur earlier, and that the time difference between these events decreases for higher laser energy on target, which indicates that the compression-bang time is more sensitive to the variation of laser energy on target. It was also observed that the duration of shock and compression phase might decrease for higher laser energy on target

  12. [The International Classification of Functioning, Disability and Health (ICF) : The implementation of the ICF Core Sets for Hand Conditions in clinical routine as an example of application].

    Science.gov (United States)

    Coenen, Michaela; Rudolf, Klaus-Dieter; Kus, Sandra; Dereskewitz, Caroline

    2018-05-24

    The International Classification of Functioning, Disability and Health (ICF) provides a standardized language of almost 1500 ICF categories for coding information about functioning and contextual factors. Short lists (ICF Core Sets) are helpful tools to support the implementation of the ICF in clinical routine. In this paper we report on the implementation of ICF Core Sets in clinical routine using the "ICF Core Sets for Hand Conditions" and the "Lighthouse Project Hand" as an example. Based on the ICF categories of the "Brief ICF Core Set for Hand Conditions", the ICF-based assessment tool (ICF Hand A ) was developed aiming to guide the assessment and treatment of patients with injuries and diseases located at the hand. The ICF Hand A facilitates the standardized assessment of functioning - taking into consideration of a holistic view of the patients - along the continuum of care ranging from acute care to rehabilitation and return to work. Reference points for the assessment of the ICF Hand A are determined in treatment guidelines for selected injuries and diseases of the hand along with recommendations for acute treatment and care, procedures and interventions of subsequent treatment and rehabilitation. The assessment of the ICF Hand A according to the defined reference points can be done using electronic clinical assessment tools and allows for an automatic generation of a timely medical report of a patient's functioning. In the future, the ICF Hand A can be used to inform the coding of functioning in ICD-11.

  13. Towards a common disability assessment framework: theoretical and methodological issues for providing public services and benefits using ICF.

    Science.gov (United States)

    Francescutti, Carlo; Frattura, Lucilla; Troiano, Raffaella; Gongolo, Francesco; Martinuzzi, Andrea; Sala, Marina; Meucci, Paolo; Raggi, Alberto; Russo, Emanuela; Buffoni, Mara; Gorini, Giovanna; Conclave, Mario; Petrangeli, Agostino; Solipaca, Alessandro; Leonardi, Matilde

    2009-01-01

    To report on the preliminary results of an Italian project on the implementation of an ICF-based protocol for providing public services and benefits for persons with disabilities. The UN Convention on the Rights of persons with disabilities (UNC) was mapped to the ICF, and core elements were implemented in an ICF-based evaluation protocol. A person-environment interaction classification (PEIC) tree was also developed for defining evaluation outputs. The PEIC and the ICF-based protocol are the guideline and the data interpretation source, respectively, for providing public services and benefits. They enable to assign persons to different services, from surveillance and monitoring to facilitator provision or sustain over time, to barrier removal or to the reorganisation of environmental factors provision. A detailed description of the target intervention is made available through the implementation of a protocol, which points out the effect of personal support and other environmental factors. The detailed description of functioning and disability provided by our methodology can help policy makers and administrators in decision making, on the basis of a description of real needs, and in targeting person-tailored interventions.

  14. Studies of implosion dynamics of D{sup 3}He gas-filled plastic targets using nuclear diagnostics at OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Falk, Magnus

    2004-09-01

    Information about target-implosion dynamics is essential for understanding how assembly occurs. Without carefully tailored assembly of the fuel, hot-spot ignition on National Ignition Facility (NIF) will fail. Hot spot ignition relies on shock convergence to 'ignite' the hot spot (shock burn), followed by propagation of the burn into the compressed shell material (compressive burn). The relationship between these events must be understood to ensure the success of Inertial Confinement Fusion (ICF) ignition. To further improve our knowledge about the timing of these events, temporal evolution of areal density (density times radius, normally referred to as {rho}R) and burn of direct-drive, D{sup 3}He gas-filled plastic target implosions have been studied using dd neutrons and d{sup 3}He protons. The proton temporal diagnostic (PTD) code was developed for this purpose. {rho}R asymmetries were observed at shock-bang time (time of peak burn during shock phase) and grew approximately twice as fast as the average {rho}R, without any phase changes. Furthermore, it was observed that the shock-bang and compression-bang time occur earlier, and that the time difference between these events decreases for higher laser energy on target, which indicates that the compression-bang time is more sensitive to the variation of laser energy on target. It was also observed that the duration of shock and compression phase might decrease for higher laser energy on target.

  15. Resolving a central ICF issue for ignition: Implosion symmertry

    International Nuclear Information System (INIS)

    Cray, M.; Delamater, N.D.; Fernandez, J.C.

    1994-01-01

    The Los Alamos National Laboratory Inertial Confinement Fusion (ICF) Program focuses on resolving key target-physics issues and developing technology needed for the National Ignition Facility (NIF). This work is being performed in collaboration with Lawrence Livermore National Laboratory (LLNL). A major requirement for the indirect-drive NIF ignition target is to achieve the irradiation uniformity on the capsule surface needed for a symmetrical high-convergence implosion. Los Alamos employed an integrated modeling technique using the Lasnex radiation-hydrodynamics code to design two different targets that achieve ignition and moderate gain. Los Alamos is performing experiments on the Nova Laser at LLNL in order to validate our NIF ignition calculations

  16. NIF Target Assembly Metrology Methodology and Results

    Energy Technology Data Exchange (ETDEWEB)

    Alger, E. T. [General Atomics, San Diego, CA (United States); Kroll, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dzenitis, E. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montesanti, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hughes, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swisher, M. [IAP, Livermore, CA (United States); Taylor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Segraves, K. [IAP, Livermore, CA (United States); Lord, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castro, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edwards, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-01-01

    During our inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) we require cryogenic targets at the 1-cm scale to be fabricated, assembled, and metrologized to micron-level tolerances. During assembly of these ICF targets, there are physical dimensmetrology is completed using optical coordinate measurement machines that provide repeatable measurements with micron precision, while also allowing in-process data collection for absolute accuracy in assembly. To date, 51 targets have been assembled and metrologized, and 34 targets have been successfully fielded on NIF relying on these metrology data. In the near future, ignition experiments on NIF will require tighter tolerances and more demanding target assembly and metrology capability. Metrology methods, calculations, and uncertainty estimates will be discussed. Target diagnostic port alignment, target position, and capsule location results will be reviewed for the 2009 Energetics Campaign. The information is presented via control charts showing the effect of process improvements that were made during target production. Certain parameters, including capsule position, met the 2009 campaign specifications but will have much tighter requirements in the future. Finally, in order to meet these new requirements assembly process changes and metrology capability upgrades will be necessary.

  17. Ignition and burn propagation with suprathermal electron auxiliary heating

    International Nuclear Information System (INIS)

    Han Shensheng; Wu Yanqing

    2000-01-01

    The rapid development in ultrahigh-intensity lasers has allowed the exploration of applying an auxiliary heating technique in inertial confinement fusion (ICF) research. It is hoped that, compared with the 'standard fast ignition' scheme, raising the temperature of a hot-spot over the ignition threshold based on the shock-heated temperature will greatly reduce the required output energy of an ignition ultrahigh-intensity pulse. One of the key issues in ICF auxiliary heating is: how can we transport the exogenous energy efficiently into the hot-spot of compressed DT fuel? A scheme is proposed with three phases. First, a partial-spherical-shell capsule, such as double-conical target, is imploded as in the conventional approach to inertial fusion to assemble a high-density fuel configuration with a hot-spot of temperature lower than the ignition threshold. Second, a hole is bored through the shell outside the hot-spot by suprathermal electron explosion boring. Finally, the fuel is ignited by suprathermal electrons produced in the high-intensity ignition laser-plasma interactions. Calculations with a simple hybrid model show that the new scheme can possibly lead to ignition and burn propagation with a total drive energy of a few tens of kilojoules and an output energy as low as hundreds of joules for a single ignition ultrahigh-intensity pulse. (author)

  18. Validating Inertial Confinement Fusion (ICF) predictive capability using perturbed capsules

    Science.gov (United States)

    Schmitt, Mark; Magelssen, Glenn; Tregillis, Ian; Hsu, Scott; Bradley, Paul; Dodd, Evan; Cobble, James; Flippo, Kirk; Offerman, Dustin; Obrey, Kimberly; Wang, Yi-Ming; Watt, Robert; Wilke, Mark; Wysocki, Frederick; Batha, Steven

    2009-11-01

    Achieving ignition on NIF is a monumental step on the path toward utilizing fusion as a controlled energy source. Obtaining robust ignition requires accurate ICF models to predict the degradation of ignition caused by heterogeneities in capsule construction and irradiation. LANL has embarked on a project to induce controlled defects in capsules to validate our ability to predict their effects on fusion burn. These efforts include the validation of feature-driven hydrodynamics and mix in a convergent geometry. This capability is needed to determine the performance of capsules imploded under less-than-optimum conditions on future IFE facilities. LANL's recently initiated Defect Implosion Experiments (DIME) conducted at Rochester's Omega facility are providing input for these efforts. Recent simulation and experimental results will be shown.

  19. MTR fuel element burn-up measurements by the reactivity method

    International Nuclear Information System (INIS)

    Zuniga, A.; Cuya, T.R.; Ravnik, M.

    2003-01-01

    Fuel element burn-up was measured by the reactivity method in the 10 MW Peruvian MTR reactor RP-10. The main purpose of the experiment was testing the reactivity method for an MTR reactor as the reactivity method was originally developed for TRIGA reactors. The reactivity worth of each measured fuel element was measured in its original core position in order to measure the burn-up of the fuel elements that were part of the experimental core. The burn-up of each measured fuel element was derived by interpolating its reactivity worth from the reactivity worth of two reference fuel elements of known burn-up, whose reactivity worth was measured in the position of the measured fuel element. The accuracy of the method was improved by separating the reactivity effect of burn-up from the effect of the position in the core. The results of the experiment showed that the modified reactivity method for fuel element burn-up determination could be applied also to MTR reactors. (orig.)

  20. Application of reactivity method to MTR fuel burn-up measurement

    International Nuclear Information System (INIS)

    Zuniga, A.; Ravnik, M.; Cuya, R.

    2001-01-01

    Fuel element burn-up has been measured for the first time by reactivity method in a MTR reactor. The measurement was performed in RP-10 reactor of Peruvian Institute for Nuclear Energy (IPEN) in Lima. It is a pool type 10MW material testing reactor using standard 20% enriched uranium plate type fuel elements. A fresh element and an element with well defined burn-up were selected as reference elements. Several elements in the core were selected for burn-up measurement. Each of them was replaced in its original position by both reference elements. Change in excess reactivity was measured using control rod calibration curve. The burn-up reactivity worth of fuel elements was plotted as a function of their calculated burnup. Corrected burn-up values of the measured fuel elements were calculated using the fitting function at experimental reactivity for all elements. Good agreement between measured and calculated burn-up values was observed indicating that the reactivity method can be successfully applied also to MTR fuel element burn-up determination.(author)

  1. Novel burn device for rapid, reproducible burn wound generation.

    Science.gov (United States)

    Kim, J Y; Dunham, D M; Supp, D M; Sen, C K; Powell, H M

    2016-03-01

    Scarring following full thickness burns leads to significant reductions in range of motion and quality of life for burn patients. To effectively study scar development and the efficacy of anti-scarring treatments in a large animal model (female red Duroc pigs), reproducible, uniform, full-thickness, burn wounds are needed to reduce variability in observed results that occur with burn depth. Prior studies have proposed that initial temperature of the burner, contact time with skin, thermal capacity of burner material, and the amount of pressure applied to the skin need to be strictly controlled to ensure reproducibility. The purpose of this study was to develop a new burner that enables temperature and pressure to be digitally controlled and monitored in real-time throughout burn wound creation and compare it to a standard burn device. A custom burn device was manufactured with an electrically heated burn stylus and a temperature control feedback loop via an electronic microstat. Pressure monitoring was controlled by incorporation of a digital scale into the device, which measured downward force. The standard device was comprised of a heat resistant handle with a long rod connected to the burn stylus, which was heated using a hot plate. To quantify skin surface temperature and internal stylus temperature as a function of contact time, the burners were heated to the target temperature (200±5°C) and pressed into the skin for 40s to create the thermal injuries. Time to reach target temperature and elapsed time between burns were recorded. In addition, each unit was evaluated for reproducibility within and across three independent users by generating burn wounds at contact times spanning from 5 to 40s at a constant pressure and at pressures of 1 or 3lbs with a constant contact time of 40s. Biopsies were collected for histological analysis and burn depth quantification using digital image analysis (ImageJ). The custom burn device maintained both its internal

  2. Inertial-confinement-fusion targets

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1981-01-01

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques have been devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented

  3. The ICF-CY and Goal Attainment Scaling: benefits of their combined use for pediatric practice.

    Science.gov (United States)

    McDougall, Janette; Wright, Virginia

    2009-01-01

    There is much heterogeneity and disconnect in the approaches used by service providers to conduct needs assessments, set goals and evaluate outcomes for clients receiving pediatric rehabilitation services. The purpose of this article is to describe how the International Classification of Functioning, Disability and Health-Child and Youth (ICF-CY) can be used in combination with Goal Attainment Scaling (GAS), an individualised measure of change, to connect the various phases of the therapeutic process to provide consistent clinical care that is family-centred, collaborative, well directed and accountable. A brief description of both the ICF-CY and GAS as they pertain to pediatric rehabilitation is provided as background. An explanation is given of how the ICF-CY offers a framework through which clients, families and service providers can together identify the areas of clients' needs. In addition, the article discusses how the use of GAS facilitates translation of clients' identified needs into distinct, measurable goals set collaboratively by clients, their families and service providers. Examples of integrated GAS goals set for the various components of the ICF-CY are provided. The utility of GAS as a measure of clinical outcomes for individual clients is also discussed. Used in combination, the ICF-CY and GAS can serve to coordinate, simplify and standardise assessment and outcome evaluation practices for individual clients receiving pediatric rehabilitation services.

  4. Targeting burn prevention in Ukraine: evaluation of base knowledge in burn prevention and first aid treatment.

    Science.gov (United States)

    Gamelli, Liza; Mykychack, Iryna; Kushnir, Antin; Driscoll, Daniel N; Fuzaylov, Gennadiy

    2015-01-01

    Burn prevention has been identified by the World Health Organization (WHO) as a topic in need of further investigation and education throughout the world, with an increased need in low-income countries. It has been noted that implementing educational programs for prevention in high income countries has aided in lowering the rate of burn injuries. The purpose of this study is to evaluate the current education level of knowledge of prevention and first aid treatment of scald burns. A prevention campaign will target these educational needs as a part of an outreach program to improve burn care in Ukraine. The research team evaluated the current health structure in Ukraine and how it could benefit from the increased knowledge of burn prevention and first aid. A test was designed to assess the baseline level of knowledge with regard to first aid and scald prevention in parents, pregnant woman, and healthcare and daycare providers. A total of 14,456 tests were sent to pediatric clinics, obstetrician clinics, and daycare facilities to test respondents. A total of 6,120 completed tests were returned. Doctors presented with the highest level of knowledge averaging 77.0% on prevention and 67.5% on first aid while daycare workers presented the largest gap in knowledge at 65.0% in prevention and 54.3% in first aid. Interest in further educational materials was reported by 92% of respondents. The results of this study clearly show a lack of knowledge in first aid and prevention of scald burn injury in all the populations tested.

  5. Safety aspects of tritium in ICF reactors with internally-breeding targets

    International Nuclear Information System (INIS)

    Ragheb, M.; Miley, G.H.; University of Illinois, Urbana, IL)

    1985-01-01

    The LOTRIT inertial confinement reactor concept employs a deuterium burning target with a DT spark trigger core. This eliminates the need for tritium breeding in a blanket, and leads to a minimization of the tritium inventory and of the possibility of metal fire hazards if lead is used instead of lithium for first wall protection. The active fuel inventory in the fuel cycle and blanket per MJ of energy produced is only 5 percent of the DT case. The most significant reduction in the total tritium inventory is in the target manufacture and storage areas, and is about 1.8% of the DT case per unit of fusion energy produced. If the goal is to reduce the risk from tritium releases from fusion reactors to below that of fission reactors, it is estimated that the tritium releases must be maintained at 0.13-5.0 Ci/day. Attaining these values will be costly, technologically difficult and will constrain the design options in DTbased systems, but may be within the realm of systems using the LOTRIT concept

  6. Physics issues related to the confinement of ICF experiments in the US National Ignition Facility

    International Nuclear Information System (INIS)

    Tobin, M.; Anderson, A.; Latkowski, J.

    1995-04-01

    ICF experiments planned for the proposed US National Ignition Facility (NIF) will produce emissions of neutrons, x rays, debris, and shrapnel. The NIF Target Area (TA) must acceptably confine these emissions and respond to their effects to allow an efficient rate of experiments, from 600 to possibly 1500 per year, and minimal down time for maintenance. Detailed computer code predictions of emissions are necessary to study their effects and impacts on Target Area operations. Preliminary results show that the rate of debris shield transmission loss (and subsequent periodicity of change-out) due to ablated material deposition is acceptable, neutron effects on optics are manageable, and preliminary safety analyses show a facility rating of low hazard, non-nuclear. Therefore, NIF Target Area design features such as fused silica debris shields, refractory first wall coating, and concrete shielding are effective solutions to confinement of ICF experiment emissions

  7. Fabrication technology for a series of cylindrical thin-wall cavity targets

    CERN Document Server

    Zheng Yong; Sun Zu Oke; Wang Ming Da; Zhou La; Zhou Zhi Yun

    2002-01-01

    Cylindrical thin-wall cavity targets have been fabricated to study the behavior of superthermal electrons and their effects on inertial confinement fusion (ICF). Self-supporting cavity targets having adjustable, uniform wall thickness, and low surface roughness were required. This required production of high-quality mandrels, coating them by sputtering or electroplating, developing techniques for measurement of wall thickness and other cavity parameters, improving the uniformity of rotation of the mandrels, and preventing damage to the targets during removal from the mandrels. Details of the fabrication process are presented. Experimental results from the use of these targets are presented. These results, in good agreement with simulations, indicate that the use of thin-wall cavity targets is an effective method for studying superthermal electrons in ICF.

  8. Burning velocity measurements of nitrogen-containing compounds.

    Science.gov (United States)

    Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki; Kondo, Shigeo; Sekiya, Akira

    2008-06-30

    Burning velocity measurements of nitrogen-containing compounds, i.e., ammonia (NH3), methylamine (CH3NH2), ethylamine (C2H5NH2), and propylamine (C3H7NH2), were carried out to assess the flammability of potential natural refrigerants. The spherical-vessel (SV) method was used to measure the burning velocity over a wide range of sample and air concentrations. In addition, flame propagation was directly observed by the schlieren photography method, which showed that the spherical flame model was applicable to flames with a burning velocity higher than approximately 5 cm s(-1). For CH3NH2, the nozzle burner method was also used to confirm the validity of the results obtained by closed vessel methods. We obtained maximum burning velocities (Su0,max) of 7.2, 24.7, 26.9, and 28.3 cm s(-1) for NH3, CH3NH2, C2H5NH2, and C3H7NH2, respectively. It was noted that the burning velocities of NH3 and CH3NH2 were as high as those of the typical hydrofluorocarbon refrigerants difluoromethane (HFC-32, Su0,max=6.7 cm s(-1)) and 1,1-difluoroethane (HFC-152a, Su0,max=23.6 cm s(-1)), respectively. The burning velocities were compared with those of the parent alkanes, and it was found that introducing an NH2 group into hydrocarbon molecules decreases their burning velocity.

  9. Progress in laboratory high gain ICF [inertial confinement fusion]: Prospects for the future

    International Nuclear Information System (INIS)

    Storm, E.; Lindl, J.D.; Campbell, E.M.

    1988-01-01

    Inertial confinement fusion (ICF), a thermonuclear reaction in a small (/approximately/5 mm diameter) fuel capsule filled with a few milligrams of deuterium and tritium, has been the subject of very fruitful experimentation since the early 1970's. High gain ICF is now on the threshold of practical applications. With a Laboratory Microfusion Facility (LMF), these applications will have major implications for national defense, basic and applied science, and power production. With a driver capable of delivering about 10 MJ in a 10-ns pulse at an intensity of /approximately/3 /times/ 10 14 W/cm 2 , an appropriately configured cryogenic capsule could be compressed to a density of about 200 g/cm 3 and a temperature of 3--5 keV. Under these conditions, up to 10 mg of DT could be ignited, and with a burn efficiency of about 30%, release up to 1000 MJ of fusion energy, an energy gain of about 100. A thousand megajoules is equivalent to about one quarter ton of TNT, or about 7 gallons of oil--an amount of energy tractable under laboratory conditions and potentially very useful for a variety of applications. 61 refs., 33 figs

  10. Uniform DT 3T burn: computations and sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Vold, Erik [Los Alamos National Laboratory; Hryniw, Natalia [Los Alamos National Laboratory; Hansen, Jon A [Los Alamos National Laboratory; Kesler, Leigh A [Los Alamos National Laboratory; Li, Frank [Los Alamos National Laboratory

    2011-01-27

    A numerical model was developed in C to integrate the nonlinear deutrium-tritium (DT) burn equations in a three temperature (3T) approximation for spatially uniform test problems relevant to Inertial Confinement Fusion (ICF). Base model results are in excellent agreement with standard 3T results. Data from NDI, SESAME, and TOPS databases is extracted to create fits for the reaction rate parameter, the Planck opacity, and the coupling frequencies of the plasma temperatures. The impact of different fits (e.g., TOPS versus SESAME opacity data, higher order polynomial fits ofNDI data for the reaction rate parameter) were explored, and sensitivity to several model inputs are presented including: opacity data base, Coulomb logarithm, and Bremsstrahlung. Sensitivity to numerical integration time step size, and the relative insensitivity to the discretized numerics and numerical integration method was demonstrated. Variations in the IC for densities and temperatures were explored, showing similar DT burn profiles in most cases once ignition occurs. A coefficient multiplying the Compton coupling term (default, A = 1) can be adjusted to approximate results from more sophisticated models. The coefficient was reset (A = 0.4) to match the maximum temperatures resulting from standard multi-group simulations of the base case test problem. Setting the coefficient to a larger value, (A = 0.6) matches maximum ion temperatures in a kinetic simulation of a high density ICF-like regime. Matching peak temperatures does not match entire temperature-time profiles, indicating the Compton coefficient is density and time dependent as the photon distribution evolves. In the early time burn during the ignition of the DT, the present model with modified Compton coupling provides a very simple method to obtain a much improved match to the more accurate solution from the multi-group radiation model for these DT burn regimes.

  11. Reactor systems modeling for ICF hybrids

    International Nuclear Information System (INIS)

    Berwald, D.H.; Meier, W.R.

    1980-10-01

    The computational models of ICF reactor subsystems developed by LLNL and TRW are described and a computer program was incorporated for use in the EPRI-sponsored Feasibility Assessment of Fusion-Fission Hybrids. Representative parametric variations have been examined. Many of the ICF subsystem models are very preliminary and more quantitative models need to be developed and included in the code

  12. Vocational rehabilitation evaluation and the International Classification of Functioning, Disability, and Health (ICF).

    Science.gov (United States)

    Saltychev, Mikhail; Kinnunen, Aila; Laimi, Katri

    2013-03-01

    To identify the most frequent functional limitations according to the International Classification of Functioning, Disability, and Health (ICF) obtained by unstandardised clinical assessment of patients with chronic musculoskeletal disorders who underwent vocational rehabilitation evaluation; and to compare the obtained list with simplified versions of ICF. The descriptions of functional limitations were retrospectively identified for 32 patients. The original vocational rehabilitation evaluation was conducted by a multi-professional team in an out-patient clinic of a university hospital. The obtained descriptions were converted to ICF codes, the most frequent being compared with the ICF Checklist of the World Health Organization (WHO) and the ICF Comprehensive and Brief Core Sets suggested by the ICF Research Branch. In the study population (53 % women), 141 ICF codes were identified with a preciseness of three or more digits, the average being 21 codes/subject (median 20.0, range 9-40). When truncated to three digits, 84 ICF codes remained (average 18 codes/subject, range 9-25), 45 of which appeared in over 10 % of the study population, 24 also being found in the ICF Comprehensive, 5 in the ICF Brief Core Sets, and 33 in the WHO ICF Checklist. The list of most frequent ICF codes retrospectively obtained in this study from unstandardised records showed a similarity with ICF Comprehensive and Brief Core Sets by ICF Research Branch and the ICF Checklist by WHO, but with a bias towards the identification of body structures and functions. The results support the use of ICF in vocational rehabilitation evaluation to ensure comprehensiveness of evaluation. The ICF Comprehensive Core Set seems to be the most useful for the needs of multiprofessional team when assessing functioning of patients.

  13. [Application of the International Classification of Functioning, Disability and Health (ICF) in Psychosomatic Rehabilitation and Addiction Rehabilitation in Germany - The Current State].

    Science.gov (United States)

    Spies, M; Brütt, A L; Freitag, M; Buchholz, A

    2015-10-01

    The aim of this study was to gather information on the current state of the implementation of the International Classification of Functioning, Disability and Health (ICF) in psychosomatic and addiction rehabilitation. In the summer of 2013, rehabilitation clinics in Germany were surveyed online on their ICF utilization. The questionnaire covered scope and purpose of ICF use, application of ICF core sets and assessments as well as barriers to the use of ICF. Of 359 clinics invited, 104 (30%) participated in the survey. Of those surveyed, 60 (61.9%) claimed to have taken measures to implement the ICF in their clinic; only 37 (38.5%), however, reported using the ICF in their daily work. The main barriers identified were complexity of the ICF, time management issues and training deficits. Approaches to ICF use are not uniform. There is a need for training programs, and guidance from health care insurance providers could help towards uniform implementation of the ICF. © Georg Thieme Verlag KG Stuttgart · New York.

  14. The ICF and Postsurgery Occupational Therapy after Traumatic Hand Injury

    Science.gov (United States)

    Fitinghoff, Helene; Lindqvist, Birgitta; Nygard, Louise; Ekholm, Jan; Schult, Marie-Louise

    2011-01-01

    Recent studies have examined the effectiveness of hand rehabilitation programmes and have linked the outcomes to the concept of ICF but not to specific ICF category codes. The objective of this study was to gain experience using ICF concepts to describe occupational therapy interventions during postsurgery hand rehabilitation, and to describe…

  15. Towards an ICF Core Set for chronic musculoskeletal conditions: commonalities across ICF Core Sets for osteoarthritis, rheumatoid arthritis, osteoporosis, low back pain and chronic widespread pain.

    Science.gov (United States)

    Schwarzkopf, S R; Ewert, T; Dreinhöfer, K E; Cieza, A; Stucki, G

    2008-11-01

    The objective of the study was to identify commonalities among the International Classification of Functioning, Disability and Health (ICF) Core Sets of osteoarthritis (OA), osteoporosis (OP), low back pain (LBP), rheumatoid arthritis (RA) and chronic widespread pain (CWP). The aim is to identify relevant categories for the development of a tentative ICF Core Set for musculoskeletal and pain conditions. The ICF categories common to the five musculoskeletal and pain conditions in the Brief and Comprehensive ICF Core Sets were identified in three steps. In a first step, the commonalities across the Brief and Comprehensive ICF Core Sets for these conditions were examined. In a second and third step, we analysed the increase in commonalities when iteratively excluding one or two of the five conditions. In the first step, 29 common categories out of the total number of 120 categories were identified across the Comprehensive ICF Core Sets of all musculoskeletal and pain conditions, primarily in the component activities and participation. In the second and third step, we found that the exclusion of CWP across the Comprehensive ICF Core Sets increased the commonalities of the remaining four musculoskeletal conditions in a maximum of ten additional categories. The Brief ICF Core Sets of all musculoskeletal and pain conditions contain four common categories out of a total number of 62 categories. The iterative exclusion of a singular condition did not significantly increase the commonalities in the remaining. Based on our analysis, it seems possible to develop a tentative Comprehensive ICF Core Set across a number of musculoskeletal conditions including LBP, OA, OP and RA. However, the profile of functioning in people with CWP differs considerably and should not be further considered for a common ICF Core Set.

  16. [ICF-Checklist to Evaluate Inclusion of Elderlies with Intellectual Disability - Psychometric Properties].

    Science.gov (United States)

    Queri, Silvia; Eggart, Michael; Wendel, Maren; Peter, Ulrike

    2017-11-28

    Background An instrument should have been developed to measure participation as one possible criterion to evaluate inclusion of elderly people with intellectual disability. The ICF was utilized, because participation is one part of health related functioning, respectively disability. Furthermore ICF includes environmental factors (contextual factors) and attaches them an essentially influence on health related functioning, in particular on participation. Thus ICF Checklist additionally identifies environmental barriers for elimination. Methodology A linking process with VINELAND-II yielded 138 ICF items for the Checklist. The sample consists of 50 persons with a light or moderate intellectual disability. Two-thirds are female and the average age is 68. They were directly asked about their perceived quality of life. Additionally, proxy interviews were carried out with responsible staff members concerning necessary support and behavioral deviances. The ICF Checklist was administered twice, once (t2) the current staff member should rate health related functioning at the given time and in addition, a staff member who knows the person at least 10 years before (t1) should rate the former functioning. Content validity was investigated with factor analysis and criterion validity with correlational analysis related to supports need, behavioral deviances and perceived quality of life. Quantitative analysis was validated by qualitative content analysis of patient documentation. Results Factor analysis shows logical variable clusters across the extracted factors but neither interpretable factors. The Checklist is reliable, valid related to the chosen criterions and shows the expected age-related shifts. Qualitative analysis corresponds with quantitative data. Consequences/Conclusion ICF Checklist is appropriate to manage and evaluate patient-centered care. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Nova Upgrade program: ignition and beyond

    International Nuclear Information System (INIS)

    Storm, E.; Campbell, E.M.; Hogan, W.J.; Lindl, J.D.

    1993-01-01

    The Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) Program is addressing the critical physics and technology issues directed toward demonstrating and exploiting ignition and propagating burn to high gain with ICF targets for both defense and civilian applications. Nova is the primary U.S. facility employed in the study of the X-ray-driven (indirect drive) approach to ICF. Nova's principal objective is to demonstrate that laser-driven hohlraums can achieve the conditions of driver-target coupling efficiency, driver irradiation symmetry, driver pulseshaping, target preheat, and hydrodynamic stability required by hot-spot ignition and fuel compression to realize a fusion gain. (author)

  18. Disability and Functional Profiles of Patients with Myasthenia Gravis Measured with ICF Classification

    Science.gov (United States)

    Leonardi, Matilde; Raggi, Alberto; Antozzi, Carlo; Confalonieri, Paolo; Maggi, Lorenzo; Cornelio, Ferdinando; Mantegazza, Renato

    2009-01-01

    The objective of this study is to describe functional profiles of patients with myasthenia gravis (MG), and the relationships among symptoms, activities and environmental factors (EF), by using WHO's International Classification of Functioning Disability and Health (ICF). Patients were consecutively enrolled at the Besta Institute of Milan, Italy.…

  19. Using the ICF in transition research and practice? Lessons from a scoping review.

    Science.gov (United States)

    Nguyen, Tram; Stewart, Debra; Rosenbaum, Peter; Baptiste, Sue; Kraus de Camargo, Olaf; Gorter, Jan Willem

    2018-01-01

    The International Classification of Functioning, Disability and Health (ICF) and subsequent ICF-CY (child and youth version) recognize the importance of personal and environmental factors in facilitating holistic transition planning and service delivery for youth with chronic health conditions (YCHC). The objective of this scoping review is to investigate the degree to which the ICF and ICF-CY have been used in transition research and practice since its initial publication. Arksey and O'Malley's five-stage methodological framework guided the scoping review using the following databases: AMED, CINAHL, EMBASE, HealthSTAR, MEDLINE, and PsycINFO. Keywords included: 'ICF', 'ICF-CY', and 'transition', which were adapted to each database. 25 articles met final inclusion. Two key themes emerged regarding use of the ICF: 1) the ICF enhances transdisciplinary processes to inform transition planning and interventions; and 2) the ICF facilitates comprehensive and developmentally appropriate transition services over a youth's lifecourse. The strengths and limitations of the ICF in guiding the planning and delivery of transition services are discussed. Some limitations include the large number of items inherent within the ICF and a lack of clarity between the components of activity and participation. Key recommendations include: i) further explanation and development of items for quality of life and well-being, personal factors, and psychological issues; and ii) additional research to advance knowledge towards developing empirically- based evidence for the application of the ICF in clinical practice to facilitate transition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fabrication of Foam Shells for ICF Experiments

    Science.gov (United States)

    Czechowicz, D. G.; Acenas, O.; Flowers, J. S.; Nikroo, A.; Paguio, R. R.; Schroen, D. G.; Streit, J.; Takagi, M.

    2004-11-01

    The General Atomics/Schafer team has developed processes to fabricate foam shells targets suitable for ICF experiments. The two most common chemical systems used to produce foam shells have been resorcinol-formaldehyde (R/F) aerogel and divinylbenzene (DVB). Spherical targets have been made in the form of shells and beads having diameters ranging from approximately 0.5 mm to 4.0 mm, and having densities from approximately 100 mg/cc to 250 mg/cc. The work on R/F foam shells has been concentrated on 1) shell fabrication process improvement to obtain high yields ( ˜25%) and 2) depositing a reliable permeation barrier to provide shells for ongoing direct drive experiments at LLE. Development of divinylbenzene foam shells has been mainly directed towards Inertial Fusion Energy applications (at densities as low as 30 mg/cc) and recently for shells for experiments at LLE. Details of the relevant metrology and properties of these foams as well as the range of targets currently available will be discussed.

  1. Inertial fusion and energy production

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1982-01-01

    Inertial-confinement fusion (ICF) is a technology for releasing nuclear energy from the fusion of light nuclei. For energy production, the most reactive hydrogen isotopes (deuterium (D) and tritium (T)) are commonly considered. The energy aplication requires the compression of a few milligrams of a DT mixture to great density, approximately 1000 times its liquid-state density, and to a high temperature, nearly 100 million 0 K. Under these conditions, efficient nuclear-fusion reactions occur, which can result in over 30% burn-up of the fusion fuel. The high density and temperature can be achieved by focusing very powerful laser or ion beams onto the target. The resultant ablation of the outer layers of the target compresses the fuel in the target, DT ignition occurs, and burn-up of the fuel results as the thermonuclear burn wave propagates outward. The DT-fuel burn-up occurs in about 199 picoseconds. On this short time scale, inertial forces are sufficiently strong to prevent target disassembly before fuel burn-up occurs. The energy released by the DT fusion is projected to be several hundred times greater than the energy delivered by the driver. The present statuds of ICF technology is described

  2. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    Science.gov (United States)

    Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.

    2018-05-01

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.

  3. New designs of LMJ targets for early ignition experiments

    International Nuclear Information System (INIS)

    Clerouin, C; Bonnefille, M; Dattolo, E; Fremerye, P; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Poggi, F; Seytor, P

    2008-01-01

    The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 40 laser quads, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness are then designed for this purpose. A first strategy is to use scaled-down cylindrical hohlraums and capsules, taking advantage of our better understanding of the problem, set on theoretical modelling, simulations and experiments. Another strategy is to work specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, which is with parametric instabilities a crucial drawback of indirect drive. An alternative design is proposed, made up of the nominal 60 quads capsule, named A1040, in a rugby-shaped hohlraum. Robustness evaluations of these different targets are in progress

  4. New designs of LMJ targets for early ignition experiments

    Energy Technology Data Exchange (ETDEWEB)

    Clerouin, C; Bonnefille, M; Dattolo, E; Fremerye, P; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Poggi, F; Seytor, P [Commissariat a l' Energie Atomique, DAM-Ile de France, BP 12 91680 Bruyeres-le-Chatel (France)], E-mail: catherine.cherfils@cea.fr

    2008-05-15

    The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 40 laser quads, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness are then designed for this purpose. A first strategy is to use scaled-down cylindrical hohlraums and capsules, taking advantage of our better understanding of the problem, set on theoretical modelling, simulations and experiments. Another strategy is to work specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, which is with parametric instabilities a crucial drawback of indirect drive. An alternative design is proposed, made up of the nominal 60 quads capsule, named A1040, in a rugby-shaped hohlraum. Robustness evaluations of these different targets are in progress.

  5. Measuring children’s distress during burns dressing changes: literature search for measures appropriate for indigenous children in South Africa

    Directory of Open Access Journals (Sweden)

    Louw QA

    2011-09-01

    Full Text Available Quinette Louw1,2, Karen Grimmer-Somers2, Angie Schrikk31Department of Physiotherapy, Stellenbosch University, Cape Town, South Africa; 2International Centre for Allied Health Evidence, University of South Australia, Adelaide, South Australia, Australia; 3Red Cross Children’s Hospital, Cape Town, South AfricaBackground: Virtual reality is consistently reported as effective in reducing pain and anxiety in children during burns dressing changes in recent Western studies. Pain scales are a commonly reported outcome measure. Virtual reality is persuasive for all children in distress during medical procedures, because it is a nonaddictive, novel, and inexpensive form of distraction which can be applied repeatedly with good effect. We intend to use virtual reality in South Africa for the many children hospitalized with severe burns from mechanisms rarely seen in the Western world (paraffin/kerosene stoves exploding, electrical fires, shack/township fires, boiling liquid spills. Many severely burnt children are indigenous South Africans who did not speak English, and whose illiteracy levels, cultures, family dynamics, and experiences of pain potentially invalidate the use of conventional pain scales as outcome measures. The purpose of this study was to identify objective measures with sound psychometric properties and strong clinical utility, to assess distress during burns dressing changes in hospitalized indigenous South African children. Choice of measures was constrained by the burns dressing change environment, the ethics of doing no harm whilst measuring distress in vulnerable children, and of capturing valid measures of distress over the entire burns dressing change procedure.Methods: We conducted two targeted systematic reviews of the literature. All major library databases were searched, and measures with strong psychometric properties and sound clinical utility were sought.Results: Seven potentially useful measures were identified, ie

  6. Comparison of four measures in reducing length of stay in burns: An Asian centre's evolved multimodal burns protocol.

    Science.gov (United States)

    Chong, Si Jack; Kok, Yee Onn; Choke, Abby; Tan, Esther W X; Tan, Kok Chai; Tan, Bien-Keem

    2017-09-01

    Multidisciplinary burns care is constantly evolving to improve outcomes given the numerous modalities available. We examine the use of Biobrane, micrografting, early renal replacement therapy and a strict target time of surgery within 24h of burns on improving outcomes of length of stay, duration of surgery, mean number of surgeries and number of positive tissue cultures in a tertiary burns centre. A post-implementation prospective cohort of inpatient burns patients from 2014 to 2015 (n=137) was compared against a similar pre-implementation cohort from 2013 to 2014 (n=93) using REDCAP, an electronic database. There was no statistically significant difference for comorbidities, age and percentage (%) TBSA between the new protocol and control groups. The protocol group had shorter mean time to surgery (23.5-38.5h) (pburns protocol improved burns care and validated the collective effort of a multi-disciplinary, multipronged burns management supported by surgeons, anesthetists, renal physicians, emergency physicians, nurses, and allied healthcare providers. Biobrane, single stage onlay micrograft/allograft, early CRRT and surgery within 24h were successfully introduced. These are useful adjuncts in the armamentarium to be considered for any burns centre. Copyright © 2017. Published by Elsevier Ltd.

  7. Relationship between work-related attitudes, performance and capacities according to the ICF in patients with mental disorders.

    Science.gov (United States)

    Linden, Michael; Baron, Stefanie; Muschalla, Beate

    2010-01-01

    The International Classification of Functioning Disability and Health (ICF) differentiates between functions, activities/capacities, contextual factors and participation. Dysfunctions can result in impaired capacities, which in turn can lead to problems with participation depending on the context. Motivational and volitional deficits are intervening factors. The question is to what degree work performance (i.e. participation), motivational factors, and the inability to perform activities (i.e. dysfunctions) interact. Incapacities were measured in 213 patients (70% women) admitted to the Department of Behavioral Medicine using the Mini-ICF-Rating for Mental Disorders (Mini-ICF-APP), work performance was measured with the Endicott Work Productivity Scale (EWPS), and volitional and motivational problems in regard to work were assessed with the Arbeitsbezogenes Verhaltens- und Erlebensmuster (AVEM). Sick leave prior to admission and work-related problems were assessed in a special clinical interview. The mean global score of the Mini-ICF-APP across all patients was 0.84 +/- 0.56 (SD), corresponding to 'mild disability'. The highest disabilities in this patient population were found for 'flexibility' (item 3, 1.64 +/- 0.94); the lowest disabilities were found for 'self maintenance' (item 11, 0.19 +/- 0.44) and 'mobility' (item 12, 0.43 +/- 0.85). Partial correlations between the Mini-ICF-APP, AVEM and EWPS showed highly significant correlations between the Mini-ICF-APP and EWPS and no or weak correlations between the AVEM and the Mini-ICF-APP or EWPS. Work performance is primarily related to the inability to perform activities and incapacities, and only due to attitudes or volitional/motivational factors to a much lesser degree. Therefore, capacity and motivation can and must be separated. Copyright (c) 2010 S. Karger AG, Basel.

  8. AUTOMATED BATCH CHARACTERIZATION OF ICF SHELLS WITH VISION-ENABLED OPTICAL MICROSCOPE SYSTEM

    International Nuclear Information System (INIS)

    HUANG, H.; STEPHENS, R.B.; HILL, D.W.; LYON, C.; NIKROO, A.; STEINMAN, D.A.

    2003-09-01

    OAK-B135 Inertial Confinement Fusion (ICF) shells are mesoscale objects with nano-scale dimensional and nano-surface finish requirements. Currently, the shell dimensions are measured by white-light interferometry and an image analysis method. These two methods complement each other and give a rather complete data set on a single shell. The process is, however, labor intensive. They have developed an automation routine to fully characterize a shell in one shot and perform unattended batch measurements. The method is useful to the ICF program both for production screening and for full characterization. It also has potential for Inertial Fusion Energy (IFE) power plant where half a million shells need to be processed daily

  9. Temperature-dependent tensile strength, surface roughness diagnostics, and magnetic support and positioning of polymer ICF shells. Final report, October 1, 1993--April 30, 1995

    International Nuclear Information System (INIS)

    Honig, A.

    1995-01-01

    During the course of this grant, we perfected emissivity and accommodation coefficient measurements on polymer ICF shells in the temperature range 250 to 350 K. Values for polystyrene shells are generally between 10 -2 and 10 -3 , which are very advantageous for ICF at cryogenic temperatures. Preliminary results on Br doped target shells indicate an accommodation coefficient, presumably associated with surface roughness on an atomic scale, about an order of magnitude larger than for ordinary polystyrene target shells. We also constructed apparatus with optical access for low temperature tensile strength and emissivity measurements, and made preliminary tests on this system. Magnetic shells were obtained both from GDP coating and from doping styrene with 10 manometer size ferromagnetic particles. The magnetic properties were measured through electron spin resonance (ESR). These experiments confirm the applicability of the Curie law, and establish the validity of using ESR measurements to determine shell temperature in the low temperature regime from 4K to 250K, thus complementing our presently accessible range. The high electron spin densities (> 10 20 /CM 3 ) suggest magnetic levitation should be feasible at cryogenic temperatures. This work has resulted in two conference presentations, a Technical Report, a paper to be published in Fusion Technology, and a Master's Thesis

  10. [Assessment of functioning in patients with head and neck cancer based on the international classification of functioning, disability and health (ICF)].

    Science.gov (United States)

    Tschiesner, U

    2011-09-01

    The article approaches with the question how preservation of function after treatment of head and neck cancer (HNC) can be defined and measured across treatment approaches. On the basis of the "International Classification of Functioning, Disability and Health (ICF)" a series of efforts are summarized how all relevant aspects of the interdisciplinary team can be integrated into a common concept.Different efforts on the development, validation and implementation of ICF Core Sets for head and neck cancer (ICF-HNC) are discussed. The ICF-HNC covers organ-based problems with food ingestion, breathing, and speech, as well as psychosocial difficulties.Relationships between the ICF-HNC and well-established outcome measures are illustrated. This enables the user to integrate different aspects of functional outcome into a consolidated approach towards preservation/rehabilitation of functioning after HNC - applicable for a variety of treatment-approaches and health-professions. George Thieme Verlag KG Stuttgart · New York.

  11. Conceptual design of a large E-beam-pumped KrF laser for ICF commercial applications

    International Nuclear Information System (INIS)

    Harris, D.B.; Waganer, L.M.; Zuckerman, D.S.; Bowers, D.A.

    1986-01-01

    Two types of KrF lasers appear attractive as a driver for an ICF electric power plant. The original concept uses large electron-beam-pumped amplifiers and pure angular multiplexing to deliver short, shaped pulses to the target. A recently conceived alternate concept uses many small, long-pulse e-beam sustained discharge lasers which transfer their energy through the forward Raman process to a multiplexed set of beams to deliver the energy to target. Preliminary comparisons of the two systems indicate that the original concept has both a lower cost and a lower system efficiency, and both concepts appear to be nearly equally attractive as an ICF driver for an electric power plant. This paper examines a 4.8 MJ, 5 Hz KrF laser system designed using the original concept. The laser uses 24 main amplifiers arranged in eight sets of three amplifiers each. This layout optimizes both the optical system and the gas flow system, and uses a simple target illumination scheme that provides neutron shielding to allow hands-on maintenance in the laser hall

  12. Classification of functioning and impairment: the development of ICF core sets for autism spectrum disorder.

    Science.gov (United States)

    Bölte, Sven; de Schipper, Elles; Robison, John E; Wong, Virginia C N; Selb, Melissa; Singhal, Nidhi; de Vries, Petrus J; Zwaigenbaum, Lonnie

    2014-02-01

    Given the variability seen in Autism Spectrum Disorder (ASD), accurate quantification of functioning is vital to studying outcome and quality of life in affected individuals. The International Classification of Functioning, Disability and Health (ICF) provides a comprehensive, universally accepted framework for the description of health-related functioning. ICF Core Sets are shortlists of ICF categories that are selected to capture those aspects of functioning that are most relevant when describing a person with a specific condition. In this paper, the authors preview the process for developing ICF Core Sets for ASD, a collaboration with the World Health Organization and the ICF Research Branch. The ICF Children and Youth version (ICF-CY) was derived from the ICF and designed to capture the specific situation of the developing child. As ASD affects individuals throughout the life span, and the ICF-CY includes all ICF categories, the ICF-CY will be used in this project ("ICF(-CY)" from now on). The ICF(-CY) categories to be included in the ICF Core Sets for ASD will be determined at an ICF Core Set Consensus Conference, where evidence from four preparatory studies (a systematic review, an expert survey, a patient and caregiver qualitative study, and a clinical cross-sectional study) will be integrated. Comprehensive and Brief ICF Core Sets for ASD will be developed with the goal of providing useful standards for research and clinical practice and generating a common language for functioning and impairment in ASD in different areas of life and across the life span. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  13. Knee posture during gait and global functioning post-stroke: a theoretical ICF framework using current measures in stroke rehabilitation

    OpenAIRE

    Neves Rosa, Marlene Cristina; Marques, Alda; Demain, Sara; Metcalf, Cheryl D.

    2015-01-01

    Purpose: To characterise the global functioning post-stroke in patients with normal knee posture (NKP) and abnormal knee posture (AKP) during loading-response. Methods: 35 people, 6 months post-stroke. with NKP and AKP were identified and assessed using clinical measures classified into the corresponding International Classification of Functioning, Disability and Health (ICF) domains: weight function (body mass index); muscle power (knee isometric strength); muscle tone (Modified Ashworth Sca...

  14. Hotspot ignition using a Z-pinch precursor plasma in a magneto-inertial ICF scheme

    International Nuclear Information System (INIS)

    Chittenden, J.P.; Vincent, P.; Jennings, C.A.; Ciardi, A.

    2006-01-01

    Precursor plasma flow is a common feature of wire array Z-pinches. The precursor flow represents a fraction of the mass of the array which arrives on the axis early in time and remains confined at high density by the inertia of further material bombarding the axis. Later on, the main implosion of the Z-pinch then compresses this precursor to substantially higher density. We show that if the same system can be generated with a Deuterium-Tritium plasma then the precursor provides an ideal target for a cylindrical magneto-inertial ICF scheme. The implosion of the DT Z-pinch produces a dense, low temperature shell which compressively heats the precursor target to high temperatures and tamps its expansion. The azimuthal magnetic field in the hotspot is sufficient to reduce the Larmor radius for the alpha particles to much less than the hotspot size, which dramatically reduces the pR required for ignition. A computational analysis of this approach is presented, including a study of the thermonuclear burn wave propagation. The robustness of the scheme with respect to instabilities, confinement time and drive parameters is examined. The results indicate that a high energy gain can be achieved using Z-pinches with 50-100 MA currents and a few hundred nanosecond rise-times. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057

  15. Hydrodynamic instabilities in astrophysics and ICF

    International Nuclear Information System (INIS)

    Paul Drake, R.

    2005-01-01

    Inertial fusion systems and astrophysical systems both involve hydrodynamic effects, including sources of pressure, shock waves, rarefactions, and plasma flows. In the evolution of such systems, hydrodynamic instabilities naturally evolve. As a result, a fundamental understanding of hydrodynamic instabilities is necessary to understand their behavior. In addition, high-energy-density facilities designed for ICF purposes can be used to provide and experimental basis for understanding astrophysical processes. In this talk. I will discuss the instabilities that appear in astrophysics and ICF from the common perspective of the basic mechanisms at work. Examples will be taken from experiments aimed at ICF, from astrophysical systems, and from experiments using ICF systems to address issues in astrophysics. The high-energy-density research facilities of today can accelerate small but macroscopic amounts of material to velocities above 100 km/s, can heat such material to temperature above 100 eV, can produce pressures far above a million atmospheres (10''12 dybes/cm''2 or 0.1 TPascal), and can do experiments under these conditions that address basic physics issues. This enables on to devise experiments aimed directly at important process such as the Rayleigh Taylor instability at an ablating surface or at an embedded interface that is accelerating, the Richtmeyer Meshkov evolution of shocked interfaces, and the Kelvin-Helmholtz instability of shear flows. The talk will include examples of such phenomena from the laboratory and from astrophysics, and will discuss experiments to study them. (Author)

  16. Towards the joint use of ICD and ICF: a call for contribution.

    Science.gov (United States)

    Kohler, Friedbert; Selb, Melissa; Escorpizo, Reuben; Kostanjsek, Nenad; Stucki, Gerold; Riberto, Marcelo

    2012-10-01

    To optimize patient functioning, rehabilitation professionals often rely on measurements of functioning as well as on classifications. Although the International Classification of Diseases (ICD) and the International Classification of Functioning, Disability and Health (ICF) are used, their joint use has yet to become an established practice. To encourage their joint use in daily practice, the World Health Organization (WHO) has invited all rehabilitation practitioners worldwide to support the ICD-11 revision process by identifying the ICF categories that correspond to specific rehabilitation-relevant health conditions. The first step in completing this task, generating the list of these health conditions, was taken at a February 2012 workshop in São Paulo, Brazil. The objectives of this paper are to present the results of the São Paulo workshop, and to invite practitioners to participate in the ICD-ICF joint use initiative. Alternating plenary and small working group sessions were held and 103 rehabilitation-relevant health conditions were identified. With this list available, WHO together with the International Society of Physical and Rehabilitation Medicine (ISPRM), is reaching out to clinicians of all rehabilitation disciplines to take on the challenge of identifying the ICF categories for at least one of the health conditions listed.

  17. Fuel retention properties of thin-wall glass target in low temperature

    International Nuclear Information System (INIS)

    Gao Dangzhong; Huang Yong; Tang Yongjian; Wen Shuhuai

    2001-01-01

    In room temperature the fuel gas storage half-life of the thin-wall (wall-thickness less than 1μm) glass microsphere is only a few days, it is difficult to be used for ICF. To efficiently prolong the half-life of such type targets, and meet the need of ICF experiments, the special device for storing the targets was developed. All the targets are immerged in liquid-nitrogen (LN 2 ), after being sealed in vacuum. During this period the change of Si 1.74 keV X-ray counts were measured a few times with the low energy X-ray multi-channel analyzer. The results of experiment indicate that, in the environment of -196 degree C, the fuel storage half-life of target has been successfully extended to 100-300 d from 3-10 d. However, the surface roughness of target was not obviously changed

  18. Sirius-T, a symmetrically illuminated ICF tritium production facility

    International Nuclear Information System (INIS)

    Sviatoslavsky, I.N.; Sawan, M.E.; Moses, G.A.; Kulcinski, G.L.; Engelstad, R.L.; Larsen, E.; Lovell, E.; MacFarlane, J.; Peterson, R.R.; Wittenberg, L.J.

    1989-01-01

    A scoping study of a symmetrically illuminated ICF tritium production facility utilizing a KrF laser is presented. A single shell ICF target is illuminated by 92 beams symmetrically distributed around a spherical cavity filled with xenon gas at 1.0 torr. The driver energy and target gain are taken to be 2 MJ and 50 for the optimistic case and 1 MJ and 100 for the conservative case. Based on a graphite dry wall evaporation rate of 0.1 cm/y for a 100 MJ yield, the authors estimate a cavity radius of 3.5 m for a rep-rate of 10 Hz and 3.0 m for 5 Hz. A spherical structural frame has been scoped out capable of supporting 92 blanket modules, each with a beam port in the center. They have selected liquid lithium in vanadium structure as the primary breeding concept utilizing beryllium as a neutron multiplier. A tritium breeding ratio of 1.83 can be achieved in the 3 m radius cavity which at 10 Hz and an availability of 75% provides an annual tritium surplus of 32.6 kg. Assuming 100% debt financing over a 30 year reactor lifetime, the production cost of T 2 for the 2 MJ driver case is $7,325/g for a 5% interest rate and $12,370/g for a 10% interest rate. 8 refs., 3 figs., 4 tabs

  19. Directions of ICF research in the United States

    International Nuclear Information System (INIS)

    Hogan, W.J.; Campbell, E.M.

    1997-01-01

    Inertial confinement fusion (ICF) research in the United States is in a dramatic upswing. Technical progress continues at a rapid pace and with the start of the construction of the National Ignition Facility (NIF) this year the total U.S. budget for ICF for fiscal year 1997 stands at $380 million. The NIF is being built as an essential component of the U.S. Stockpile Stewardship and Management Program which has been formulated to assure the continued safety, reliability, and performance of the downsized nuclear weapons stockpile in the absence of nuclear tests. This paper will discuss some of the directions that the ICF research is now taking. (AIP) copyright 1997 American Institute of Physics

  20. Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, M A; Kane, J; Loosmore, G; DeMuth, J; Latkowski, J

    2010-12-03

    ICF power plants, such as the LIFE scheme at LLNL, may employ a high-Z, target-chamber gas-fill to moderate the first-wall heat-pulse due to x-rays and energetic ions released during target detonation. To reduce the uncertainties of cooling and beam/target propagation through such gas-filled chambers, we present a pulsed plasma source producing 2-5 eV plasma comprised of high-Z gases. We use a 5-kJ, 100-ns theta discharge for high peak plasma-heating-power, an electrode-less discharge for minimizing impurities, and unobstructed axial access for diagnostics and beam (and/or target) propagation studies. We will report on the plasma source requirements, design process, and the system design.

  1. The measurement and analysis of wavefront structure from large aperture ICF optics

    International Nuclear Information System (INIS)

    Wolfe, C.R.; Lawson, J.K.

    1995-01-01

    This paper discusses the techniques, developed over the past year, for high spatial resolution measurement and analysis of the transmitted and/or reflected wavefront of large aperture ICF optical components. Parts up to 400 mm x 750 mm have been measured and include: laser slabs, windows, KDP crystals and lenses. The measurements were performed using state-of-the-art commercial phase shifting interferometers at a wavelength of 633 μm. Both 1 and 2-D Fourier analysis have been used to characterize the wavefront; specifically the Power Spectral Density, (PSD), function was calculated. The PSDs of several precision optical components will be shown. The PSD(V) is proportional to the (amplitude) 2 of components of the Fourier frequency spectrum. The PSD describes the scattered intensity and direction as a function of scattering angle in the wavefront. The capability of commercial software is limited to 1-D Fourier analysis only. We are developing our own 2-D analysis capability in support of work to revise specifications for NIF optics. 2-D analysis uses the entire wavefront phase map to construct 2D PSD functions. We have been able to increase the signal-to-noise relative to 1-D and can observe very subtle wavefront structure

  2. Phase-modulation interferometer for ICF-target characterization

    International Nuclear Information System (INIS)

    Cooper, D.E.

    1981-01-01

    Characterization requirements for high gain laser fusion targets are severe. We are required to detect defects on the surfaces of opaque and transparent shells with an amplitude resolution of +- 5 nm and a spatial resolution of 1 to 10 μm. To achieve this we have developed a laser-illuminated phase-modulation interferometer. This instrument is based on a photoelastic polarization modulation technique which allows one to convert phase information into an intensity modulation which can be easily and sensitively measured using ac signal processing techniques. This interferometer has detected path length changes as small as 1 nm and the required spatial resolution is assured by using a microscope objective to focus the probe laser beam down to a small (approx. 1 μm) spot on the surface of a microballoon. The interferometer will soon be coupled to an LSI-11 controlled 4π sphere manipulator which will allow us to automatically inspect the entire surface area of a target sphere

  3. The implementation of the ICF among Israeli rehabilitation centers--the case of physical therapy.

    Science.gov (United States)

    Jacob, Tamar

    2013-10-01

    The extent of the implementation of the International Classification of Functioning, Disability and Health (ICF), developed by the WHO, in rehabilitation units and in physical therapy (PT) departments is unknown. The study aims to describe the extent to which the ICF has been implemented in PT services within rehabilitation units in Israel. To update data on ICF implementation since its inception. An online semi-structured survey was administered to 25 physiotherapists in charge of PT departments in all rehabilitation units throughout Israel. Rehabilitation units were grouped into three categories: general, geriatric and pediatric. The questionnaire included items regarding the ICF implementation, its strengths, and weaknesses. Twenty two physiotherapists (88%) completed the questionnaire. The majority was familiar with the ICF and nearly two thirds reported partial implementation in their units. Implementation focused mostly on adopting the biopsychosocial concepts and using ICF terms. The ICF was not used either for evaluating patients, or for reporting or encoding patient information. Physiotherapists, directors of most Israeli PT departments in rehabilitation units are familiar with the ICF; however, its clinical implementation is very limited. There is need for further research into the processes of knowledge transfer and implementation of the ICF, in order to better understand the factors that facilitate and those that impede ICF implementation.

  4. ICF-CY: A Universal Tool for Documentation of Disability

    Science.gov (United States)

    Simeonsson, Rune J.

    2009-01-01

    The "International Classification of Functioning, Disability and Health--ICF" (ICF-CY) conceptual framework offers a new paradigm and taxonomy of human functioning disability, which can be used to guide holistic and interdisciplinary approaches to assessment and intervention. In settings serving children, youth, or adults with disabilities, the…

  5. Comparison of measured and calculated burn-up of AVR-Fuel-Elements

    Energy Technology Data Exchange (ETDEWEB)

    Wagemann, R.

    1974-03-15

    Burn-up comparisons are made for small batches of three types of AVR fuel elements using a coupled EREBUS-MUPO neutronic analysis compared against test results from both nondestructive gamma-ray measurements of cesium-137 activity and destructive mass spectrometry measurements of the ratio of U-233 to U-235. The comparisons are relatively good for average burn-up and reasonably good for burn-up distributions.

  6. Pulsed power, ICF, and SDI

    International Nuclear Information System (INIS)

    Van Devender, J.P.

    1986-01-01

    Pulsed power technology has been developed over many years for nuclear weapon effects simulation, inertial fusion, and directed energy. Every four years there is a factor of ten increase in power available, and we are now near the 100 TW, couple of million joule (MJ) mark, according to the author. 100 TW is sufficient for studying physics relevant to Inertial Confinement Fusion (ICF) or the Strategic Defense Initiative (SDI). Pulsed power can be viewed as a basic technology for making electron beams, X-rays, and ion beams. Applications include ICF, plasmoid-directed energy weapons, and microwave weapons. The author presents a set of tentative requirements for an effective defense, a concept for deploying the defense, and a strategy for making the transition to a defense-dominated world

  7. Constitutive phosphorylation of ATM in lymphoblastoid cell lines from patients with ICF syndrome without downstream kinase activity.

    Science.gov (United States)

    Goldstine, Jimena V; Nahas, Shareef; Gamo, Kristin; Gartler, Stanley M; Hansen, R Scott; Roelfsema, Jeroen H; Gatti, Richard A; Marahrens, York

    2006-04-08

    Double strand DNA breaks in the genome lead to the activation of the ataxia-telangiectasia mutated (ATM) kinase in a process that requires ATM autophosphorylation at serine-1981. ATM autophosphorylation only occurs if ATM is previously acetylated by Tip60. The activated ATM kinase phosphorylates proteins involved in arresting the cell cycle, including p53, and in repairing the DNA breaks. Chloroquine treatment and other manipulations that produce chromatin defects in the absence of detectable double strand breaks also trigger ATM phosphorylation and the phosphorylation of p53 in primary human fibroblasts, while other downstream substrates of ATM that are involved in the repair of DNA double strand breaks remain unphosphorylated. This raises the issue of whether ATM is constitutively activated in patients with genetic diseases that display chromatin defects. We examined lymphoblastoid cell lines (LCLs) generated from patients with different types of chromatin disorders: Immunodeficiency, Centromeric instability, Facial anomalies (ICF) syndrome, Coffin Lowry syndrome, Rubinstein Taybi syndrome and Fascioscapulohumeral Muscular Dystrophy. We show that ATM is phosphorylated on serine-1981 in LCLs derived from ICF patients but not from the other syndromes. The phosphorylated ATM in ICF cells did not phosphorylate the downstream targets NBS1, SMC1 and H2AX, all of which require the presence of double strand breaks. We demonstrate that ICF cells respond normally to ionizing radiation, ruling out the possibility that genetic deficiency in ICF cells renders activated ATM incapable of phosphorylating its downstream substrates. Surprisingly, p53 was also not phosphorylated in ICF cells or in chloroquine-treated wild type LCLs. In this regard the response to chromatin-altering agents differs between primary fibroblasts and LCLs. Our findings indicate that although phosphorylation at serine-1981 is essential in the activation of the ATM kinase, serine-1981 phosphorylation is

  8. Innovative ICF scheme-impact fast ignition

    International Nuclear Information System (INIS)

    Murakami, M.; Nagatomo, H.; Sakaiya, T.; Karasik, M.; Gardner, J.; Bates, J.

    2007-01-01

    A totally new ignition scheme for ICF, impact fast ignition (IFI), is proposed [1], in which the compressed DT main fuel is to be ignited by impact collision of another fraction of separately imploded DT fuel, which is accelerated in the hollow conical target. Two-dimensional hydrodynamic simulation results in full geometry are presented, in which some key physical parameters for the impact shell dynamics such as 10 8 cm/s of the implosion velocity, 200- 300 g/cm 3 of the compressed density, and the converted temperature beyond 5 keV are demonstrated. As the first step toward the proof-of-principle of IFI, we have conducted preliminary experiments under the operation of GEKKO XII/HYPER laser system to achieve a hyper-velocity of the order of 108 cm/s. As a result we have observed a highest velocity, 6.5 x 10 7 cm/s, ever achieved. Furthermore, we have also done the first integrated experiments using the target and observed substantial amount of neutron yields. Reference: [1] M. Murakami and Nagatomo, Nucl. Instrum. Meth. Phys. Res. A 544(2005) 67

  9. A state-of-the-art plasma polymerization coater for ICF targets

    International Nuclear Information System (INIS)

    Devine, G.; Letts, S.; Cook, R.; Brusasco, R.

    1992-01-01

    Increasingly stringent demands on the characteristics of plasma polymer coatings for use in Inertial Confinement Fusion (ICF) experiments have created a need for a plasma Polymerization coating system with the capability of producing a wide variety of different types of coatings as well as one that can be used to do fundamental investigations of the process conditions leading to desirable films. We report on the construction and use of just such a coating instrument. We have recognized the usefulness of computer assisted process monitoring and control, currently being developed by the semiconductor industry, in designing our own, State-of-the-art plasma polymerization device. Our system is fully computer interfaced to provide the user with the capability of collecting system parameter data over the length of the deposition experiment. The system is also designed to allow for any degree of computer control of the deposition process in the future

  10. Health promotion and education: application of the ICF in the US and Canada using an ecological perspective.

    Science.gov (United States)

    Howard, David; Nieuwenhuijsen, Els R; Saleeby, Patricia

    2008-01-01

    Health promotion is an issue comprised of complex and multi-layered concepts that involves a process of enabling people to increase control over and improve their health. The aims and applications of the World Health Organization's International Classification of Functioning, Disability and Health (ICF), with its focus on components of functioning, activities and participation, and environmental factors are salient to health promotion and health education efforts. For individuals with or without disabilities, health promotion occurs within the community in which they reside and is influenced by a complex interaction of personal and environmental factors. The aim of this paper is to discuss how the ICF can be useful in enhancing social change through health promotion and health education for all people, in particular those with disabilities and chronic conditions. In doing so health promotion concepts and the ecological approach linked with the ICF, the relationship of social change and social support to the ICF, the potential role of the ICF for national and local (city) policies, and the role of health professionals in this process will be examined. Building on this body of knowledge, the authors recommend that future research should focus on the relationship between policies and the social participation of people with disabilities in the community, the use of ICF measurement tools to improve the indicators established by the National Organization on Disability, the development of a new ICF core set for community accessibility and inclusion, better interventions to enhance social support, and enhancing the role of professionals in health promotion for people with disabilities or chronic health conditions.

  11. Burn-up measurement in the HTR-module-reactor

    International Nuclear Information System (INIS)

    Gerhards, E.

    1993-05-01

    The burn-up status of spherical HTR-fuel elements is determined by a γ-spectrometric analysis of Cs-137 activity. The γ-spectrum recorded by a semiconductor detector up to now is analyzed by complex mathematical and time-consuming methods. For the operation of the HTR-Module-Reactor, however, a fast evaluation of the burn-up status is necessary. It is shown that this can be ensured by a comparison between the measured spectra and simulation results. Using the computer-program HTROGEN and the program system SPECCALC especially developed for this problem the γ-spectra are evaluated as a function of the burn-up status. The method is applied to results available from the operation of the AVR-reactor. The burn-up status determined with different methods corresponds very well within the limits of accuracy. (orig.)

  12. Burns education for non-burn specialist clinicians in Western Australia.

    Science.gov (United States)

    McWilliams, Tania; Hendricks, Joyce; Twigg, Di; Wood, Fiona

    2015-03-01

    Burn patients often receive their initial care by non-burn specialist clinicians, with increasingly collaborative burn models of care. The provision of relevant and accessible education for these clinicians is therefore vital for optimal patient care. A two phase design was used. A state-wide survey of multidisciplinary non-burn specialist clinicians throughout Western Australia identified learning needs related to paediatric burn care. A targeted education programme was developed and delivered live via videoconference. Pre-post-test analysis evaluated changes in knowledge as a result of attendance at each education session. Non-burn specialist clinicians identified numerous areas of burn care relevant to their practice. Statistically significant differences between perceived relevance of care and confidence in care provision were reported for aspects of acute burn care. Following attendance at the education sessions, statistically significant increases in knowledge were noted for most areas of acute burn care. Identification of learning needs facilitated the development of a targeted education programme for non-burn specialist clinicians. Increased non-burn specialist clinician knowledge following attendance at most education sessions supports the use of videoconferencing as an acceptable and effective method of delivering burns education in Western Australia. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  13. Validation of the Comprehensive ICF Core Set for obstructive pulmonary diseases from the perspective of physiotherapists.

    Science.gov (United States)

    Rauch, Alexandra; Kirchberger, Inge; Stucki, Gerold; Cieza, Alarcos

    2009-12-01

    The 'Comprehensive ICF Core Set for obstructive pulmonary diseases' (OPD) is an application of the International Classification of Functioning, Disability and Health (ICF) and represents the typical spectrum of problems in functioning of patients with OPD. To optimize a multidisciplinary and patient-oriented approach in pulmonary rehabilitation, in which physiotherapy plays an important role, the ICF offers a standardized language and understanding of functioning. For it to be a useful tool for physiotherapists in rehabilitation of patients with OPD, the objective of this study was to validate this Comprehensive ICF Core Set for OPD from the perspective of physiotherapists. A three-round survey based on the Delphi technique of physiotherapists who are experienced in the treatment of OPD asked about the problems, resources and aspects of environment of patients with OPD that physiotherapists treat in clinical practice (physiotherapy intervention categories). Responses were linked to the ICF and compared with the existing Comprehensive ICF Core Set for OPD. Fifty-one physiotherapists from 18 countries named 904 single terms that were linked to 124 ICF categories, 9 personal factors and 16 'not classified' concepts. The identified ICF categories were mainly third-level categories compared with mainly second-level categories of the Comprehensive ICF Core Set for OPD. Seventy of the ICF categories, all personal factors and 15 'not classified' concepts gained more than 75% agreement among the physiotherapists. Of these ICF categories, 55 (78.5%) were covered by the Comprehensive ICF Core Set for OPD. The validity of the Comprehensive ICF Core Set for OPD was largely supported by the physiotherapists. Nevertheless, ICF categories that were not covered, personal factors and not classified terms offer opportunities towards the final ICF Core Set for OPD and further research to strengthen physiotherapists' perspective in pulmonary rehabilitation.

  14. ICF-viitekehyksen soveltuminen kuntoutusprosessin tueksi kehitysvammahuollossa : Työntekijöiden näkemyksiä

    OpenAIRE

    Hellsten, Pirjo; Marin-Vilkkinen, Susanna

    2017-01-01

    Pirkanmaan Sairaanhoitopiirin kehitysvammahuollossa käynnistettiin ICF-projekti vuosille 2015-2018. Projektin tarkoituksena on ottaa ICF-viitekehys käyttöön kuntoutuksen tueksi toimintakyvyn kuvaamisessa. Opinnäytetyön tarkoituksena oli saada tietoa ICF-viitekehyksen soveltumisesta kehitysvammaisen asiakkaan kuntoutusprosessissa ja tavoitteena oli tuottaa tietoa ICF- viitekehyksen käyttöönotosta ICF-projektiryhmän käyttöön. Opinnäytetyö toteutettiin laadullisena tutkimuksena. Tutkimusaine...

  15. Best available control measures for prescribed burning

    International Nuclear Information System (INIS)

    Smith, A.M.; Stoneman, C.S.

    1992-01-01

    Section 190 of the Clean Air Act (CAA) as amended in 1990 requires the US Environmental Protection Agency (EPA) to issue guidance on Best Available Control Measures (BACM) of PM 10 (particulate matter with a nominal aerodynamic diameter less than or equal to 10 micrometers) from urban fugitive dust, residential wood combustion, and prescribed silvicultural and agricultural burning (prescribed burning). The purpose of this guidance is to assist states (especially, but not exclusively, those with PM 10 nonattainment areas which have been classified as serious) in developing a control measure for these three source categories. This guidance is to be issued no later than May 15, 1992 as required under the CAA. The guidance will be issued in the form of a policy guidance generic to all three BACM and in the form of Technical Information Documents (TIDs) for each of the three source categories. The policy guidance will provide the analytical approach for determining BACM and the TID will provide the technical information. The purpose of this paper is to present some insight from the forthcoming TID on what BACM might entail for prescribed burning in a serious PM 10 nonattainment area

  16. Noninvasive measurement of burn wound depth applying infrared thermal imaging (Conference Presentation)

    Science.gov (United States)

    Jaspers, Mariëlle E.; Maltha, Ilse M.; Klaessens, John H.; Vet, Henrica C.; Verdaasdonk, Rudolf M.; Zuijlen, Paul P.

    2016-02-01

    In burn wounds early discrimination between the different depths plays an important role in the treatment strategy. The remaining vasculature in the wound determines its healing potential. Non-invasive measurement tools that can identify the vascularization are therefore considered to be of high diagnostic importance. Thermography is a non-invasive technique that can accurately measure the temperature distribution over a large skin or tissue area, the temperature is a measure of the perfusion of that area. The aim of this study was to investigate the clinimetric properties (i.e. reliability and validity) of thermography for measuring burn wound depth. In a cross-sectional study with 50 burn wounds of 35 patients, the inter-observer reliability and the validity between thermography and Laser Doppler Imaging were studied. With ROC curve analyses the ΔT cut-off point for different burn wound depths were determined. The inter-observer reliability, expressed by an intra-class correlation coefficient of 0.99, was found to be excellent. In terms of validity, a ΔT cut-off point of 0.96°C (sensitivity 71%; specificity 79%) differentiates between a superficial partial-thickness and deep partial-thickness burn. A ΔT cut-off point of -0.80°C (sensitivity 70%; specificity 74%) could differentiate between a deep partial-thickness and a full-thickness burn wound. This study demonstrates that thermography is a reliable method in the assessment of burn wound depths. In addition, thermography was reasonably able to discriminate among different burn wound depths, indicating its potential use as a diagnostic tool in clinical burn practice.

  17. Ion diode optics: measurement of divergence and aiming of beams for transport to light-ion ICF targets

    International Nuclear Information System (INIS)

    Krastelev, E.G.; Kniazev, B.A.; Lindholm, F.; Hammer, D.A.; Kusse, B.R.; Greenly, J.B.

    1996-01-01

    Diagnostic development for measurements of anode plasma structure and ion beam local aiming and micro-divergence are being developed on the COBRA accelerator at Cornell University. Results of streaked-scintillator and tracer target beam diagnostics, and streaked anode light imaging are described. (author). 5 figs., 1 ref

  18. Ion diode optics: measurement of divergence and aiming of beams for transport to light-ion ICF targets

    Energy Technology Data Exchange (ETDEWEB)

    Krastelev, E G; Kniazev, B A; Lindholm, F; Hammer, D A; Kusse, B R; Greenly, J B [Cornell Univ., Ithaca, NY (United States). Lab. of Plasma Studies

    1997-12-31

    Diagnostic development for measurements of anode plasma structure and ion beam local aiming and micro-divergence are being developed on the COBRA accelerator at Cornell University. Results of streaked-scintillator and tracer target beam diagnostics, and streaked anode light imaging are described. (author). 5 figs., 1 ref.

  19. Barriers, activities and participation: Incorporating ICF into service planning datasets.

    LENUS (Irish Health Repository)

    O'Donovan, MA

    2009-05-21

    Purpose. Guided by the World Health Organization\\'s International Classification of Functioning, Disability and Health (ICF), a measure of activity and participation (MAP) was developed and incorporated into the National Physical and Sensory Disability Database in Ireland. The aims of this article are to investigate and explore the relationship between the barriers, participation restriction and functioning levels experienced by people with disabilities. Method. Seven thousand five hundred and sixty-two personal interviews with people meeting specific eligibility criteria for registering onto the database were conducted across four health service executive regions in Ireland. Results. Overall, differences in barriers, participation restriction and activity limitations experienced by people with different types of disabilities were found to be significant. Furthermore, low functioning and experience of barriers were indicators of participation restriction. Conclusions. This article has shown that elements of the ICF have been successfully operationalised in a service planning tool through the development of the MAP. This provides a more holistic view of disability and will enable the impact of service interventions to be measured over time.

  20. The Ignition Target for the National Ignition Facility

    International Nuclear Information System (INIS)

    Atherton, L J; Moses, E I; Carlisle, K; Kilkenny, J

    2007-01-01

    The National Ignition Facility (NIF) is a 192 beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) for performing inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. When completed in 2009, NIF will be able to produce 1.8 MJ, 500 TW of ultraviolet light for target experiments that will create conditions of extreme temperatures (>10 8 K), pressures (10-GBar) and matter densities (> 100 g/cm 3 ). A detailed program called the National Ignition Campaign (NIC) has been developed to enable ignition experiments in 2010, with the goal of producing fusion ignition and burn of a deuterium-tritium (DT) fuel mixture in millimeter-scale target capsules. The first of the target experiments leading up to these ignition shots will begin in 2008. Targets for the National Ignition Campaign are both complex and precise, and are extraordinarily demanding in materials fabrication, machining, assembly, cryogenics and characterization. An overview of the campaign for ignition will be presented, along with technologies for target fabrication, assembly and metrology and advances in growth and x-ray imaging of DT ice layers. The sum of these efforts represents a quantum leap in target precision, characterization, manufacturing rate and flexibility over current state-of-the-art

  1. FUNCTIONAL PROFILE OF ACTIVE OLDER ADULTS WITH LOW BACK PAIN, ACCORDING TO THE ICF

    Directory of Open Access Journals (Sweden)

    Andersom Ricardo Fréz

    Full Text Available ABSTRACT Introduction: The International Classification of Functioning, Disability and Health (ICF considers multiples aspects of functionality. It is believed that this tool can help to classify the functionality of older adults with low back pain (LBP . Objectives: To describe the functionality of active older adults with LBP according to the ICF. Methods: A transversal study was conducted using the brief ICF core set for low back pain, to establish functional profiles of 40 older adults. The ICF categories were considered valid when ≥20% of participants showed some disability. Results: Thirty-two of the 35 categories of the brief ICF core set could be considered representative of the sample. Conclusion: The brief ICF core set for LBP results demonstrated that this classification system is representative for describing the functional profile of the sample.

  2. Study of Alterations in Lipid Profile After Burn Injury.

    Directory of Open Access Journals (Sweden)

    Dr.Asha Khubchandani

    2017-06-01

    Full Text Available Introduction: After burn injury, changes in lipid profile occur in body. Dyslipidemia after burn injury is one of the important alterations. Objective: To check alterations in lipid profile after burn injury. Materials and Method: It was cross sectional study which was carried out on 250 burns patients of both sex, with an age group of 18-45 years, and varying burns percentage of 20-80% of total body surface area (TBSA. Serum cholesterol, serum LDL, serum HDL and serum triglyceride level were measured on XL-640 fully-auto biochemical analyser. Serum LDL and HDL were measured by Accelerator Selective Detergent Method. Serum cholesterol and triglyceride were measured by Trindor’s method. Results: Results showed decrease in serum cholesterol, serum LDL and serum HDL, while increase in serum triglyceride level in burns patients compared to normal subjects. Conclusion: This study clearly showed the importance of measuring serum cholesterol, TG, LDL and HDL in burn patients and targeting changes that occur in their levels along the burns course, which may have beneficial effect in protection from organ damage, increasing survival rates and improving burn outcome.

  3. Heavy ion beam transport through liquid lithium first wall ICF reactor cavities

    International Nuclear Information System (INIS)

    Stroud, P.D.

    1985-01-01

    This analysis addresses the critical issue of the final transport of a heavy ion beam in an inertial confinement fusion reactor. The beam must traverse the reaction chamber from the final focusing lens to the target without being disrupted. This requirement has a strong impact on the reactor design. It is essential to the development of ICF fusion reactor technology, that the restrictions placed on the reactor engineering parameters by final beam transport consideration be understood early on

  4. Diagnostic techniques for measuring temperature transients and stress transients in the first wall of an ICF reactor

    International Nuclear Information System (INIS)

    Melamed, N.T.; Taylor, L.H.

    1983-01-01

    The primary challenge in the design of an Inertial Confinement Fusion (ICF) power reactor is to make the first wall survive the frequent explosions of the pellets. Westinghouse has proposed a dry wall design consisting of steel tubes coated with tantalum. This report describes the design of a test chamber and two diagnostic procedures for experimentally determining the reliability of the Westinghouse design. The test chamber simulates the x-ray and ion pulse irradiation of the wall due to a pellet explosion. The diagnostics consist of remote temperature sensing and surface deformation measurements. The chamber and diagnostics can also be used to test other first-wall designs

  5. Coating requirements for an ICF dry-wall design

    International Nuclear Information System (INIS)

    Taylor, L.H.; Sucov, E.W.

    1981-01-01

    A new concept for protecting the first wall of an ICF reactor has been developed which relies heavily on a coating to protect the steel tubes which comprise the first wall. This coating must survive the pellet explosion, be ductile, and be compatible with the materials in the ICF pellet. Calculations indicate that tantalum is the best choice for the coating material and that tantalum coated steel tubes can handle fusion thermal powers of 3500 MW in a 10 m radius spherical chamber

  6. The development and application of advanced analytical methods to commercial ICF reactor chambers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cousseau, P.; Engelstad, R.; Henderson, D.L. [and others

    1997-10-01

    Progress is summarized in this report for each of the following tasks: (1) multi-dimensional radiation hydrodynamics computer code development; (2) 2D radiation-hydrodynamic code development; (3) ALARA: analytic and Laplacian adaptive radioactivity analysis -- a complete package for analysis of induced activation; (4) structural dynamics modeling of ICF reactor chambers; and (5) analysis of self-consistent target chamber clearing.

  7. The development and application of advanced analytical methods to commercial ICF reactor chambers. Final report

    International Nuclear Information System (INIS)

    Cousseau, P.; Engelstad, R.; Henderson, D.L.

    1997-10-01

    Progress is summarized in this report for each of the following tasks: (1) multi-dimensional radiation hydrodynamics computer code development; (2) 2D radiation-hydrodynamic code development; (3) ALARA: analytic and Laplacian adaptive radioactivity analysis -- a complete package for analysis of induced activation; (4) structural dynamics modeling of ICF reactor chambers; and (5) analysis of self-consistent target chamber clearing

  8. ICF-CY as a Framework for Understanding Child Engagement in Preschool

    Directory of Open Access Journals (Sweden)

    Margareta Adolfsson

    2018-05-01

    Full Text Available Engagement in preschool predicts children's development, learning, and wellbeing in later school years. The time children engage in activities and social interactions is conditional for preschool inclusion. Engagement is part of the construct participation, which is determined by attendance and involvement. Two suggested underlying dimensions of engagement had been identified as essential when assessing children's participation in preschool activities. As engagement is a key question in inclusion of all children, and preschool becomes a common context for them, it is increasingly important to understand the concept of engagement in those settings. In Sweden most children attend preschool but children in need of special support tend not to receive enough support for their everyday functioning. This study aimed to conceptualize child engagement in preschool with ICF-CY as a framework to clarify core and developmental engagement dimensions included in Child Engagement Questionnaire (CEQ. The content of CEQ was identified through linking processes based on ICF linking rules with some exceptions. Specific challenges and solutions were acknowledged. To identify engagement dimensions in the ICF-CY, CEQ items related to ICF-CY chapters were integrated in the two-dimensional model of engagement. Findings showed that engagement measured for preschool ages was mostly related to Learning and Applying knowledge belonging to Activities and Participation but the linkage detected missing areas. Broader perspectives of children's everyday functioning require extended assessment with consideration to mutual influences between activities, participation, body functions, and contextual factors. Related to core and developmental engagement, findings highlight the importance for preschool staff to pay attention to how children do things, not only what they do. Activities related to core engagement include basic skills; those related to developmental engagement set

  9. Radiation assisted thermonuclear burn wave dynamics in heavy ion fast ignition of cylindrical deuterium-tritium fuel target

    International Nuclear Information System (INIS)

    Rehman, S.; Kouser, R.; Nazir, R.; Manzoor, Z.; Tasneem, G.; Jehan, N.; Nasim, M.H.; Salahuddin, M.

    2015-01-01

    Dynamics of thermonuclear burn wave propagation assisted by thermal radiation precursor in a heavy ion fast ignition of cylindrical deuterium-tritium (DT) fuel target are studied by two dimensional radiation hydrodynamic simulations using Multi-2D code. Thermal radiations, as they propagate ahead of the burn wave, suffer multiple reflections and preheat the fuel, are found to play a vital role in burn wave dynamics. After fuel ignition, the burn wave propagates in a steady state manner for some time. Multiple reflection and absorption of radiation at the fuel-tamper interface, fuel ablation and radial implosion driven by ablative shock and fast fusion rates on the fuel axis, at relatively later times, result into filamentary wave front. Strong pressure gradients are developed and sausage like structures behind the front are appeared. The situation leads to relatively reduced and non-uniform radial fuel burning and burn wave propagation. The fuel burning due to DD reaction is also taken into account and overall fusion energy and fusion power density, due to DT and DD reactions, during the burn wave propagation are determined as a function of time. (authors)

  10. Towards comparability of data: using the ICF to map the contrasting definitions of disability in Irish surveys and census, 2000-2006.

    Science.gov (United States)

    O'Donovan, Mary-Ann; Good, Anne

    2010-01-01

    To examine how disability was measured and understood within Irish data sources 2000-2006, using the International Classification of Functioning, Disability and Health (ICF) as a guiding framework for a more comprehensive and transformative definition of disability. During the EU-funded Measuring Health and Disability in Europe (MHADIE) project (2003-2006), an audit of data sources which included a disability identifier question was conducted. Thirty Irish data sources were examined in total. An overview of these data sources was provided in 'Disability Data Sources in Ireland' (National Disability Authority, unpublished, 2007). Using guidelines developed by Cieza et al. (J Rehabil Med 2002;34:205-210, J Rehabil Med 2002;27:212-218) five data sources were selected for detailed examination and were mapped to the ICF. These were the census (2006), National Disability Survey (2006), National Physical and Sensory Disability Database (2006), Survey of Lifestyles, Attitudes and Nutrition (2002), Euro Student Survey (2003). Subsequent work conducted after the completion of the MHADIE project added to the findings. The environmental dimension of disability dominated the data collection exercises which used the ICF as their framework-for the National Disability Survey (NDS) and the National Physical and Sensory Disability Database (NPSDD). Both also had strong focus on activity and participation. When mapped on to the ICF, the data sources which preceded the ICF or did not use it, are shown to focus more on activity and participation data than any other ICF component. Across the five selected data sources, limited information was collected on body function and body structure.

  11. The International Classification of Functioning, Disability and Health (ICF) in Electronic Health Records. A Systematic Literature Review.

    Science.gov (United States)

    Maritz, Roxanne; Aronsky, Dominik; Prodinger, Birgit

    2017-09-20

    The International Classification of Functioning, Disability and Health (ICF) is the World Health Organization's standard for describing health and health-related states. Examples of how the ICF has been used in Electronic Health Records (EHRs) have not been systematically summarized and described yet. To provide a systematic review of peer-reviewed literature about the ICF's use in EHRs, including related challenges and benefits. Peer-reviewed literature, published between January 2001 and July 2015 was retrieved from Medline ® , CINAHL ® , Scopus ® , and ProQuest ® Social Sciences using search terms related to ICF and EHR concepts. Publications were categorized according to three groups: Requirement specification, development and implementation. Information extraction was conducted according to a qualitative content analysis method, deductively informed by the evaluation framework for Health Information Systems: Human, Organization and Technology-fit (HOT-fit). Of 325 retrieved articles, 17 publications were included; 4 were categorized as requirement specification, 7 as development, and 6 as implementation publications. Information regarding the HOT-fit evaluation framework was summarized. Main benefits of using the ICF in EHRs were its unique comprehensive perspective on health and its interdisciplinary focus. Main challenges included the fact that the ICF is not structured as a formal terminology as well as the need for a reduced number of ICF codes for more feasible and practical use. Different approaches and technical solutions exist for integrating the ICF in EHRs, such as combining the ICF with other existing standards for EHR or selecting ICF codes with natural language processing. Though the use of the ICF in EHRs is beneficial as this review revealed, the ICF could profit from further improvements such as formalizing the knowledge representation in the ICF to support and enhance interoperability.

  12. Proceedings of the twelfth target fabrication specialists` meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of an ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research.

  13. Proceedings of the twelfth target fabrication specialists' meeting

    International Nuclear Information System (INIS)

    1999-01-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of an ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research

  14. Identification of relevant ICF categories in patients with chronic health conditions: a Delphi exercise.

    Science.gov (United States)

    Weigl, Martin; Cieza, Alarcos; Andersen, Christina; Kollerits, Barbara; Amann, Edda; Stucki, Gerold

    2004-07-01

    To identify the most typical and relevant categories of the International Classification of Functioning, Disability and Health (ICF) for patients with low back pain, osteoporosis, rheumatoid arthritis, osteoarthritis, chronic generalized pain, stroke, depression, obesity, chronic ischaemic heart disease, obstructive pulmonary disease, diabetes mellitus, and breast cancer. An international expert survey using the Delphi technique was conducted. Data were collected in 3 rounds. Answers were linked to the ICF and analysed for the degree of consensus. Between 21 (osteoporosis, chronic ischaemic heart disease, and obstructive pulmonary disease) and 43 (stroke) experts responded in each of the conditions. In all conditions, with the exception of depression, there were categories in all ICF components that were considered typical and/or relevant by at least 80% of the responders. While all conditions had a distinct typical spectrum of relevant ICF categories, there were also some common relevant categories throughout the majority of conditions. Lists of ICF categories that are considered relevant and typical for specific conditions by international experts could be created. This is an important step towards identifying ICF Core Sets for chronic conditions.

  15. Overlap and Nonoverlap Between the ICF Core Sets for Hearing Loss and Otology and Audiology Intake Documentation.

    Science.gov (United States)

    van Leeuwen, Lisette M; Merkus, Paul; Pronk, Marieke; van der Torn, Marein; Maré, Marcel; Goverts, S Theo; Kramer, Sophia E

    The International Classification of Functioning Disability and Health (ICF) Core Sets for Hearing Loss (HL) were developed to serve as a standard for the assessment and reporting of the functioning and health of patients with HL. The aim of the present study was to compare the content of the intake documentation currently used in secondary and tertiary hearing care settings in the Netherlands with the content of the ICF Core Sets for HL. Research questions were (1) to what extent are the ICF Core Sets for HL represented in the Dutch Otology and Audiology intake documentation? (2) are there any extra ICF categories expressed in the intake documentation that are currently not part of the ICF Core Sets for HL, or constructs expressed that are not part of the ICF? Multicenter patient record study including 176 adult patients from two secondary, and two tertiary hearing care settings. The intake documentation was selected from anonymized patient records. The content was linked to the appropriate ICF category from the whole ICF classification using established linking rules. The extent to which the ICF Core Sets for HL were represented in the intake documentation was determined by assessing the overlap between the ICF categories in the Core Sets and the list of unique ICF categories extracted from the intake documentation. Any extra constructs that were expressed in the intake documentation but are not part of the Core Sets were described as well, differentiating between ICF categories that are not part of the Core Sets and constructs that are not part of the ICF classification. In total, otology and audiology intake documentation represented 24 of the 27 Brief ICF Core Set categories (i.e., 89%), and 60 of the 117 Comprehensive ICF Core Set categories (i.e., 51%). Various ICF Core Sets categories were not represented, including higher mental functions (Body Functions), civic life aspects (Activities and Participation), and support and attitudes of family (Environmental

  16. Z-Pinch Generated X-Rays Demonstrate Indirect-Drive ICF Potential

    International Nuclear Information System (INIS)

    Bowers, R.L.; Chandler, G.A.; Derzon, M.S.; Hebron, D.E.; Leeper, R.J.; Matzen, M.K.; Mock, R.C.; Nash, T.J.; Olson, R.E.; Peterson, D.L.; Ruggles, L.E.; Sanford, T.W.L.; Simpson, W.W.; Struve, K.W.; Vesey, R.A.

    1999-01-01

    Hohlraums (measuring 6-mm in diameter by 7-mm in height) have been heated by x-rays from a z-pinch. Over measured x-ray input powers P of 0.7 to 13 TW, the hohlraum radiation temperature T increases from approximately55 to approximately130 eV, and is in agreement with the Planckian relation P-T 4 . The results suggest that indirect-drive ICF studies involving NIF relevant pulse shapes and <2-mm diameter capsules can he studied using this arrangement

  17. The ICF National Diagnostic Plan (NDP) 9/19/17

    Energy Technology Data Exchange (ETDEWEB)

    Kilkenny, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Richau, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sangster, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Batha, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bell, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Larson, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Leeper, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Herrmann, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bourdon, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hilsabeck, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-02

    A major goal of the Stockpile Stewardship Program (SSP) is to deliver validated numerical models, benchmarked against experiments that address relevant and important issues and provide data that stress the codes and our understanding. DOENNSA has made significant investments in major facilities and high-performance computing to successfully execute the SSP. The more information obtained about the physical state of the plasmas produced, the more stringent the test of theories, models, and codes can be, leading to increased confidence in our predictive capability. To fully exploit the world-leading capabilities of the ICF program, a multi-year program to develop and deploy advanced diagnostics has been developed by the expert scientific community. To formalize these activities NNSA’s Acting Director for the Inertial Confinement Fusion Program directed the formation and duties of the National Diagnostics Working Group (NDWG) in a Memorandum 11/3/16 (Appendix A). The NDWG identified eight transformational diagnostics, shown in Table 1, that will provide unprecedented information from experiments in support of the SSP at NIF, Z and OMEGA. Table 1 shows how the missions of the SSP experiments including materials, complex hydrodynamics, radiation flow and effects and thermo-nuclear burn and boost will produce new observables, which will be measured using a variety of largely new diagnostic technologies used in the eight transformational diagnostics. The data provided by these diagnostics will validate and improve the physics contained within the SSP’s simulations and both uncover and quantify important phenomena that lie beyond our present understanding.

  18. Looking at the ICF and human communication through the lens of classification theory.

    Science.gov (United States)

    Walsh, Regina

    2011-08-01

    This paper explores the insights that classification theory can provide about the application of the International Classification of Functioning, Disability and Health (ICF) to communication. It first considers the relationship between conceptual models and classification systems, highlighting that classification systems in speech-language pathology (SLP) have not historically been based on conceptual models of human communication. It then overviews the key concepts and criteria of classification theory. Applying classification theory to the ICF and communication raises a number of issues, some previously highlighted through clinical application. Six focus questions from classification theory are used to explore these issues, and to propose the creation of an ICF-related conceptual model of communicating for the field of communication disability, which would address some of the issues raised. Developing a conceptual model of communication for SLP purposes closely articulated with the ICF would foster productive intra-professional discourse, while at the same time allow the profession to continue to use the ICF for purposes in inter-disciplinary discourse. The paper concludes by suggesting the insights of classification theory can assist professionals to apply the ICF to communication with the necessary rigour, and to work further in developing a conceptual model of human communication.

  19. The 2015 Indonesian biomass-burning season with extensive peat fires: Remote sensing measurements of biomass burning aerosol optical properties from AERONET and MODIS satellite data

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Giles, D. M.; Smirnov, A.; Slutsker, I.; Sinyuk, A.; Schafer, J.; Sorokin, M. G.; Reid, J. S.; Sayer, A. M.; Hsu, N. Y. C.; Levy, R. C.; Lyapustin, A.; Wang, Y.; Rahman, M. A.; Liew, S. C.; Salinas Cortijo, S. V.; Li, T.; Kalbermatter, D.; Keong, K. L.; Elifant, M.; Aditya, F.; Mohamad, M.; Mahmud, M.; Chong, T. K.; Lim, H. S.; Choon, Y. E.; Deranadyan, G.; Kusumaningtyas, S. D. A.

    2016-12-01

    The strong El Nino event in 2015 resulted in below normal rainfall throughout Indonesia, which in turn allowed for exceptionally large numbers of biomass burning fires (including much peat burning) from Aug though Oct 2015. Over the island of Borneo, three AERONET sites measured monthly mean fine mode aerosol optical depth (AOD) at 500 nm from the spectral deconvolution algorithm in Sep and Oct ranging from 1.6 to 3.7, with daily average AOD as high as 6.1. In fact, the AOD was sometimes too high to obtain significant signal at mid-visible, therefore a newly developed algorithm in the AERONET Version 3 database was invoked to retain the measurements in as many of the longer wavelengths as possible. The AOD at longer wavelengths were then utilized to provide estimates of AOD at 550 nm with maximum values of 9 to 11. Additionally, satellite retrievals of AOD at 550 nm from MODIS data and the Dark Target, Deep Blue, and MAIAC algorithms were analyzed and compared to AERONET measured AOD. The AOD was sometimes too high for the satellite algorithms to make retrievals in the densest smoke regions. Since the AOD was often extremely high there was often insufficient AERONET direct sun signal at 440 nm for the larger solar zenith angles (> 50 degrees) required for almucantar retrievals. However, new hybrid sky radiance scans can attain sufficient scattering angle range even at small solar zenith angles when 440 nm direct beam irradiance can be accurately measured, thereby allowing for more retrievals and at higher AOD levels. The retrieved volume median radius of the fine mode increased from 0.18 to 0.25 micron as AOD increased from 1 to 3 (at 440 nm). These are very large size particles for biomass burning aerosol and are similar in size to smoke particles measured in Alaska during the very dry years of 2004 and 2005 (Eck et al. 2009) when peat soil burning also contributed to the fuel burned. The average single scattering albedo over the wavelength range of 440 to 1020 nm

  20. Spinning targets for laser fusion

    International Nuclear Information System (INIS)

    Baldwin, D.E.; Ryutov, D.D.

    1995-09-01

    Several techniques for spinning the ICF targets up prior to or in the course of their compression are suggested. Interference of the rotational shear flow with Rayleigh-Taylor instability is briefly discussed and possible consequences for the target performance are pointed out

  1. Towards an ICF- and IMMPACT-based pain vocational rehabilitation core set in the Netherlands.

    Science.gov (United States)

    Reneman, M F; Beemster, T T; Edelaar, M J A; van Velzen, J M; van Bennekom, C; Escorpizo, R

    2013-12-01

    For clinical use and research of pain within the context of vocational rehabilitation, a specific core set of measurements is needed. The recommendations of the International Classification of Functioning, Disability and Health (ICF) brief Core Set for Vocational Rehabilitation (VR) and those of Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT) cover two broad areas. These two sources can be integrated when made applicable to vocational rehabilitation and pain. Objective To develop a core set of diagnostic and evaluative measures specifically for vocational rehabilitation of patients with subacute and chronic musculoskeletal pain, while using the brief ICF core set for VR as the reference framework in VR, and the IMMPACT recommendations in the outcome measurements around pain. Three main steps were taken. The first step was to remove irrelevant and duplicate domains of the brief ICF Core Set for Vocational Rehabilitation and the IMMPACT recommendations around pain. The second step was to match the remaining domains with existing instruments or measures. Instruments were proposed based on availability and its proven use in Dutch practice and based on proof of sufficient clinimetric properties. In step 3, the preliminary VR-Pain core set was presented to 3 expert panels: proposed users, Dutch pain rehabilitation experts, and international VR experts. Experts agreed with the majority of the proposed domains and instruments. The final VR-Pain Core Set consists of 18 domains measured with 12 instruments. All instruments possessed basic clinimetric properties. An agreed-upon VR-Pain Core Set with content that covers relevant domains for pain and VR and validated instruments measuring these domains has been developed. The VR-Pain Core Set may be used for regular clinical purposes and research in the field of vocational rehabilitation and pain, but adaptations should be considered for use outside the Netherlands.

  2. Experimental study on ablative stabilization of Rayleigh-Taylor instability of laser-irradiated targets

    Science.gov (United States)

    Shigemori, Keisuke; Sakaiya, Tatsuhiko; Otani, Kazuto; Fujioka, Shinsuke; Nakai, Mitsuo; Azechi, Hiroshi; Shiraga, Hiroyuki; Tamari, Yohei; Okuno, Kazuki; Sunahara, Atsushi; Nagatomo, Hideo; Murakami, Masakatsu; Nishihara, Katsunobu; Izawa, Yasukazu

    2004-09-01

    Hydrodynamic instabilities are key issues of the physics of inertial confinement fusion (ICF) targets. Among the instabilities, Rayleigh-Taylor (RT) instability is the most important because it gives the largest growth factor in the ICF targets. Perturbations on the laser irradiated surface grow exponentially, but the growth rate is reduced by ablation flow. The growth rate γ is written as Takabe-Betti formula: γ = [kg/(1+kL)]1/2-βkm/pa, where k is wave number of the perturbation, g is acceleration, L is density scale-length, β is a coefficient, m is mass ablation rate per unit surface, and ρa is density at the ablation front. We experimentally measured all the parameters in the formula for polystyrene (CH) targets. Experiments were done on the HIPER laser facility at Institute of Laser Engineering, Osaka University. We found that the β value in the formula is ~ 1.7, which is in good agreements with the theoretical prediction, whereas the β for certain perturbation wavelengths are larger than the prediction. This disagreement between the experiment and the theory is mainly due to the deformation of the cutoff surface, which is created by non-uniform ablation flow from the ablation surface. We also found that high-Z doped plastic targets have multiablation structure, which can reduce the RT growth rate. When a low-Z target with high-Z dopant is irradiated by laser, radiation due to the high-Z dopant creates secondary ablation front deep inside the target. Since, the secondary ablation front is ablated by x-rays, the mass ablation rate is larger than the laser-irradiated ablation surface, that is, further reduction of the RT growth is expected. We measured the RT growth rate of Br-doped polystyrene targets. The experimental results indicate that of the CHBr targets show significantly small growth rate, which is very good news for the design of the ICF targets.

  3. Fusion yield rate recovery by escaping hot-spot fast ions in the neighboring fuel layer

    Science.gov (United States)

    Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.

    2014-02-01

    Free-streaming loss by fast ions can deplete the tail population in the hot spot of an inertial confinement fusion (ICF) target. Escaping fast ions in the neighboring fuel layer of a cryogenic target can produce a surplus of fast ions locally. In contrast to the Knudsen layer effect that reduces hot-spot fusion reactivity due to tail ion depletion, the inverse Knudsen layer effect increases fusion reactivity in the neighboring fuel layer. In the case of a burning ICF target in the presence of significant hydrodynamic mix which aggravates the Knudsen layer effect, the yield recovery largely compensates for the yield reduction. For mix-dominated sub-ignition targets, the yield reduction is the dominant process.

  4. Z-Pinch Generated X-Rays Demonstrate Indirect-Drive ICF Potential

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, R.L.; Chandler, G.A.; Derzon, M.S.; Hebron, D.E.; Leeper, R.J.; Matzen, M.K.; Mock, R.C.; Nash, T.J.; Olson, R.E.; Peterson, D.L.; Ruggles, L.E.; Sanford, T.W.L.; Simpson, W.W.; Struve, K.W.; Vesey, R.A.

    1999-06-16

    Hohlraums (measuring 6-mm in diameter by 7-mm in height) have been heated by x-rays from a z-pinch. Over measured x-ray input powers P of 0.7 to 13 TW, the hohlraum radiation temperature T increases from {approximately}55 to {approximately}130 eV, and is in agreement with the Planckian relation P-T{sup 4}. The results suggest that indirect-drive ICF studies involving NIF relevant pulse shapes and <2-mm diameter capsules can he studied using this arrangement.

  5. Hybrid Monte-Carlo method for ICF calculations

    International Nuclear Information System (INIS)

    Clouet, J.F.; Samba, G.

    2003-01-01

    Numerical simulation of Inertial Confinement Fusion targets in indirect drive requires an accurate description of the radiation transport flow. Laser energy is first converted to X-ray in the gold wall and then transferred to the fusion target through an hohlraum filled with gas. The emissive region is moving in the gold wall which is rapidly expanding into the hohlraum so that the resolution of the radiative transfer equations has to be coupled with hydrodynamic motion. Scientific computing is actually the only tool for an accurate design of ICF targets: one of the difficulties is to compute the non-isotropic irradiation on the capsule and to control them by an appropriate balance between the energy of the different laser beams. Hence an approximate description of radiation transport is not relevant and a transport method has to be chosen. On the other hand transport methods are known to be more or less inefficient in optically thick regions: for instance in the gold wall before it is sufficiently heated and ablated to become optically thin. In these regions, diffusion approximation of the transfer equations is an accurate description of the physical phenomenon; moreover it is much more cheaper to solve numerically than the full transport equations. This is why we developed an hybrid method for radiation transport where the lower part of the energy spectrum is treated in the diffusion approximation whereas the higher part is treated by a transport method. We introduced the notion of spectral cut-off to describe this separation between the two descriptions. The method is dynamic in the sense that the spectral cut-off evolves with time and space localization. The method has been introduced in our ICF code FCl2: this is a 2D radiation hydrodynamics code in cylindrical geometry which has been used for several years at the CEA for laser studies. It is a Lagrangian code with Arbitrary Lagrangian Eulerian capabilities, flux-limited thermal (electronic and ionic

  6. Evaluation of Reading, Writing, and Watching TV Using the Dutch ICF Activity Inventory

    NARCIS (Netherlands)

    Bruijning, J.E.; van Rens, G.H.M.B.; Knol, D.L.; van Nispen, R.M.A.

    2014-01-01

    PURPOSE: To investigate the longitudinal outcomes of rehabilitation (from baseline to 4 and 12 months) at a multidisciplinary rehabilitation center. The three goals (“Reading,” “Writing,” and “Watching TV”) were measured with the Dutch ICF Activity Inventory (D-AI). In addition, outcomes were

  7. Italian ICF training programs: describing and promoting human functioning and research.

    Science.gov (United States)

    Francescutti, Carlo; Fusaro, Guido; Leonardi, Matilde; Martinuzzi, Andrea; Sala, Marina; Russo, Emanuela; Frare, Mara; Pradal, Monica; Zampogna, Daniela; Cosentino, Alessandro; Raggi, Alberto

    2009-01-01

    Purpose of the article is to report on 5 years of ICF training experiences in Italy aimed at promoting a consistent approach to ICF's field application. More than 7000 persons participated in around 150 training events: almost half were organised by political bodies, at national, regional or local level, directly linked to implementation experiences. Few training events were organised by the school sector, while training commissioned by NGOs represent a relevant area and, in our opinion, constitute the first step towards a full inclusion of persons with disabilities. Central pillars of our training modules are: the inclusion of all ICF components in the description of functional profiles, the need of providing brief theoretical background information before moving to practical aspects and the importance of providing personalised face to face training modules, in contrast to self-administered learning modules, or web-based protocols. On the basis of our experience, we can conclude that training's objectives are generally reached: trainees improved their knowledge of the ICF and its related tools, and are able to begin practical applications in their contexts.

  8. Substantial reductions of input energy and peak power requirements in targets for heavy ion fusion

    International Nuclear Information System (INIS)

    Mark, J.W.K.; Pan, Y.L.

    1986-01-01

    Two ways of reducing the requirements of the heavy ion driver for inertial confinement fusion (ICF) target implosion are described. Compared to estimates of target gain not using these methods, the target input energy and peak power may be reduced by about a factor of two with the use of the hybrid-implosion concept. Another factor of two reduction in input energy may be obtained with the use of spin-polarized DT fuel in the ICF target

  9. Prevalence and features of ICF-disability in Spain as captured by the 2008 National Disability Survey

    Directory of Open Access Journals (Sweden)

    Maierhofer Sarah

    2011-11-01

    which prevalence decreased when measured by reference to performance. Moreover, global scores indicated that severe/complete disability in these same domains was frequent among the moderately disabled group. Conclusions The EDAD 2008 affords an insufficient data set to be ICF-framed when it comes to the Activity and Participation domains. Notwithstanding their unknown validity, ratings for available ICF domains may, however, be suitable for consideration under the ADL model of functional dependency, suggesting that there are approximately 500,000 persons suffering from severe/complete disability and 1,000,000 suffering from moderate disability, with half the latter being severely disabled in domains capable of benefiting from technical or personal aid. Application of EDAD data to the planning of services for regions and other subpopulations means that need for personal help must be assessed, unmet needs ascertained, and knowledge of social participation and support, particularly for the mentally ill, improved. International, WHO-supported co-operation in ICF planning and use of NDSs in Spain and other countries is needed.

  10. Prevalence and features of ICF-disability in Spain as captured by the 2008 National Disability Survey

    Science.gov (United States)

    2011-01-01

    when measured by reference to performance. Moreover, global scores indicated that severe/complete disability in these same domains was frequent among the moderately disabled group. Conclusions The EDAD 2008 affords an insufficient data set to be ICF-framed when it comes to the Activity and Participation domains. Notwithstanding their unknown validity, ratings for available ICF domains may, however, be suitable for consideration under the ADL model of functional dependency, suggesting that there are approximately 500,000 persons suffering from severe/complete disability and 1,000,000 suffering from moderate disability, with half the latter being severely disabled in domains capable of benefiting from technical or personal aid. Application of EDAD data to the planning of services for regions and other subpopulations means that need for personal help must be assessed, unmet needs ascertained, and knowledge of social participation and support, particularly for the mentally ill, improved. International, WHO-supported co-operation in ICF planning and use of NDSs in Spain and other countries is needed. PMID:22122806

  11. Physics of ignition for ICF capsules

    International Nuclear Information System (INIS)

    Lindl, J.D.

    1989-01-01

    The implosion of an ICF capsule must accomplish both compression of the main fuel to several hundred grams per cubic centimeter and heating and compression of the central region of the fuel to ignition. This report discusses the physics of these conditions

  12. Mapping of a standard documentation template to the ICF core sets for arthritis and low back pain.

    Science.gov (United States)

    Escorpizo, Reuben; Davis, Kandace; Stumbo, Teri

    2010-12-01

    To identify the contents of a documentation template in The Guide to Physical Therapist Practice using the International Classification of Functioning, Disability, and Health (ICF) Core Sets for rheumatoid arthritis, osteoarthritis, and low back pain (LBP) as reference. Concepts were identified from items of an outpatient documentation template and mapped to the ICF using established linking rules. The ICF categories that were linked were compared with existing arthritis and LBP Core Sets. Based on the ICF, the template had the highest number (29%) of linked categories under Activities and participation while Body structures had the least (17%). ICF categories in the arthritis and LBP Core Sets had a 37-55% match with the ICF categories found in the template. We found 164 concepts that were not classified or not defined and 37 as personal factors. The arthritis and LBP Core Sets were reflected in the contents of the template. ICF categories in the Core Sets were reflected in the template (demonstrating up to 55% match). Potential integration of ICF in documentation templates could be explored and examined in the future to enhance clinical encounters and multidisciplinary communication. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Towards an ICF- and IMMPACT-Based Pain Vocational Rehabilitation Core Set in the Netherlands

    NARCIS (Netherlands)

    Reneman, M. F.; Beemster, T. T.; Edelaar, M. J. A.; van Velzen, J. M.; van Bennekom, C.; Escorpizo, R.

    2013-01-01

    Background For clinical use and research of pain within the context of vocational rehabilitation, a specific core set of measurements is needed. The recommendations of the International Classification of Functioning, Disability and Health (ICF) brief Core Set for Vocational Rehabilitation (VR) and

  14. ICF quarterly report January - March 1997 volume 7, number 3; TOPICAL

    International Nuclear Information System (INIS)

    Murray, J

    1998-01-01

    The National Ignition Facility Project The mission of the National Ignition Facility (NIF) is to produce ignition and modest energy gain in inertial confinement fusion (ICF) targets. Achieving these goals will maintain U.S. world leadership in ICF and will directly benefit the U.S. Department of Energy (DOE) missions in national security, science and technology, energy resources, and industrial competitiveness. Development and operation of the NIF are consistent with DOE goals for environmental quality, openness to the community, and nuclear nonproliferation and arms control. Although the primary mission of inertial fusion is for defense applications, inertial fusion research will provide critical information for the development of inertial fusion energy. The NIF, under construction at Lawrence Livermore National Laboratory (LLNL), is a cornerstone of the DOE's science-based Stockpile Stewardship Program for addressing high-energy-density physics issues in the absence of nuclear weapons testing. In pursuit of this mission, the DOE's Defense Programs has developed a state-of-the-art capability with the NIF to investigate high-energy-density physics in the laboratory with a microfusion capability for defense and energy applications. As a Strategic System Acquisition, the NIF Project has a separate and disciplined reporting chain to DOE as shown below

  15. High performance inertial fusion targets

    International Nuclear Information System (INIS)

    Nuckolls, J.H.; Bangerter, R.O.; Lindl, J.D.; Mead, W.C.; Pan, Y.L.

    1978-01-01

    Inertial confinement fusion (ICF) target designs are considered which may have very high gains (approximately 1000) and low power requirements (< 100 TW) for input energies of approximately one megajoule. These include targets having very low density shells, ultra thin shells, central ignitors, magnetic insulation, and non-ablative acceleration

  16. Towards the development of clinical measures for spinal cord injury based on the International Classification of Functioning, Disability and Health with Rasch analyses.

    Science.gov (United States)

    Ballert, Carolina S; Stucki, Gerold; Biering-Sørensen, Fin; Cieza, Alarcos

    2014-09-01

    To determine whether the International Classification of Functioning, Disability and Health (ICF) categories relevant to spinal cord injury (SCI) can be integrated in clinical measures and to obtain insights to guide their future operationalization. Specific aims are to find out whether the ICF categories relevant to SCI fit a Rasch model taking into consideration the dimensionality found in previous investigations, local item dependencies, or differential item functioning. All second-level ICF categories collected in the Development of ICF Core Sets for SCI project in specialized centers within 15 countries from 2006 through 2008. Secondary data analysis. Adults (N=1048) with SCI from the early postacute and long-term living context. Not applicable. Two unidimensional Rasch analyses: one for the ICF categories from body functions and body structures components and another for the ICF categories from the activities and participation component. Results support good reliability and targeting of the ICF categories in both dimensions. In each dimension, few ICF categories were subject to misfit. Local item dependency was observed between ICF categories of the same chapters. Group effects for age and sex were observed only to a small extent. The validity of ICF categories to develop measures of functioning in SCI for clinical practice and research is to some extent supported. Model adjustments were suggested to further improve their operationalization and psychometrics. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Measurement of the burning velocity of propane-air mixtures using soap bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yukio

    1988-12-20

    By filling a soap bubble with propane-air mixture of spacified equivalence ratio and by igniting it at the center, the flame propagation velocity was measured applying multiplex exposure Schlieren method. And the flow velocity of the unburnt propane-air mixture was also measured by a hot-wire anemometer. From the differences of the above two velocities, the burning velocity was obtained. The values of the burning velocity agreed well with the highly accurate results of usual measurements. The maximum value of the burning velocity, which exists at an equivalence ratio of 1.1, was 50cm/s. This value agreed well with the theoretical calculation result on the on-dimensional flame by Warnatz. The burning velocity in the range of from 0.7 to 1.5 equivalence ratios decreases symmetrically with the maximum value at the center. The velocity decrease in the excessive concentration range of fuel is only a little and converges between 7 and 10 cm/s. To evade the influence of the flame-front instability, measurements were done from 2 to 5cm from the ignition center. Thus accurate values were obtained. 23 refs., 5 figs.

  18. Understanding Yield Anomalies in ICF Implosions via Fully Kinetic Simulations

    Science.gov (United States)

    Taitano, William

    2017-10-01

    In the quest towards ICF ignition, plasma kinetic effects are among prime candidates for explaining some significant discrepancies between experimental observations and rad-hydro simulations. To assess their importance, high-fidelity fully kinetic simulations of ICF capsule implosions are needed. Owing to the extremely multi-scale nature of the problem, kinetic codes have to overcome nontrivial numerical and algorithmic challenges, and very few options are currently available. Here, we present resolutions of some long-standing yield discrepancy conundrums using a novel, LANL-developed, 1D-2V Vlasov-Fokker-Planck code iFP. iFP possesses an unprecedented fidelity and features fully implicit time-stepping, exact mass, momentum, and energy conservation, and optimal grid adaptation in phase space, all of which are critically important for ensuring long-time numerical accuracy of the implosion simulations. Specifically, we concentrate on several anomalous yield degradation instances observed in Omega campaigns, with the so-called ``Rygg effect'', or an anomalous yield scaling with the fuel composition, being a prime example. Understanding the physical mechanisms responsible for such degradations in non-ignition-grade Omega experiments is of great interest, as such experiments are often used for platform and diagnostic development, which are then used in ignition-grade experiments on NIF. In the case of Rygg's experiments, effects of a kinetic stratification of fuel ions on the yield have been previously proposed as the anomaly explanation, studied with a kinetic code FPION, and found unimportant. We have revisited this issue with iFP and obtained excellent yield-over-clean agreement with the original Rygg results, and several subsequent experiments. This validates iFP and confirms that the kinetic fuel stratification is indeed at the root of the observed yield degradation. This work was sponsored by the Metropolis Postdoctoral Fellowship, LDRD office, Thermonuclear Burn

  19. JOYO MK-III performance test. Criticality test, excess reactivity measurement and burn-up coefficient measurement

    International Nuclear Information System (INIS)

    Maeda, Shigetaka; Sekine, Takashi; Kitano, Akihiro; Nagasaki, Hideaki

    2005-03-01

    The MK-III performance test began in June 2003 to fully characterize the upgraded core and heat transfer system of the experimental fast reactor JOYO. This paper describes the results of the approach to criticality, the excess reactivity evaluation and the burn-up coefficient measurement. In the approach to criticality test, the MK-III core achieved initial criticality at the control rod bank position of 412.8 mm on 14:03 July 2nd, 2003. Because the replacement of the outer two rows of reflector subassemblies with shielding subassemblies reduced the source range monitor signals by a factor of 3 at the same reactor power compared with those in the MK-II core, we measured the change of the monitor's response and determined the count rate 2x10 4 cps.' as an appropriate value judging the zero power criticality. In the excess reactivity evaluation, the zero power excess reactivity at 250degC was 2.99±0.10%Δk/kk' based on the measured critical rod bank position and the measured control rod worths. The predicted value by the JOYO core management code system HESTIA was 3.13±0.16%Δk/kk', showing good agreement with the measured value. The measured excess reactivity was within the safety requirement limit. In the burn-up coefficient measurement, the excess reactivity change versus the reactor burn-up was evaluated. The measurement method adopted was to measure the control rod positions during the rated power operation. A value of -2.12x10 -4 Δk/kk'/MWd was obtained as a measured burn-up coefficient. The value calculated by HESTIA was -2.12x10 -4 Δk/kk'/MWd, and it agreed well with the measured value. All technical safety requirements for MK-III core were satisfied and the calculation accuracy of the core management code system HESTIA was confirmed. (author)

  20. Identification of relevant ICF categories by patients in the acute hospital.

    Science.gov (United States)

    Grill, Eva; Huber, Erika Omega; Stucki, Gerold; Herceg, Malvina; Fialka-Moser, Veronika; Quittan, Michael

    To describe functioning and health of patients in the acute hospital and to identify the most common problems using the International Classification of Functioning, Disability and Health (ICF). Cross-sectional survey in a convenience sample of neurological, musculoskeletal and cardiopulmonary patients requiring rehabilitation in the acute hospital. The second level categories of the ICF were used to collect information on patients' problems. For the ICF components Body Functions, Body Structures and Activities and Participation absolute and relative frequencies of impairments/limitations in the study population were reported. For the component Environmental Factors absolute and relative frequencies of perceived barriers or facilitators were reported. The mean age in the sample was 57.6 years with a median age of 60.5, 49% of the patients were female. In 101 patients with neurological conditions, 115 ICF categories had a prevalence of 30% and more: 32 categories of Body Functions, 13 categories of Body Structures, 32 categories of Activities and Participation and 38 categories of Environmental Factors. In 105 patients with cardiopulmonary conditions, 80 categories had a prevalence of 30% and more: 36 categories of Body Functions, eight categories of Body Structures, 10 categories of Activities and Participation and 26 categories of Environmental Factors. In 90 patients with musculoskeletal conditions, 61 categories had a prevalence of 30% and more: 14 categories of Body Functions, five categories of Body Structures, 16 categories of Activities and Participation and 26 categories of Environmental Factors. This study is a first step towards the development of ICF Core Sets for patients in the acute hospital.

  1. Identification of ICF categories relevant for nursing in the situation of acute and early post-acute rehabilitation

    Science.gov (United States)

    Mueller, Martin; Boldt, Christine; Grill, Eva; Strobl, Ralf; Stucki, Gerold

    2008-01-01

    Background The recovery of patients after an acute episode of illness or injury depends both on adequate medical treatment and on the early identification of needs for rehabilitation care. The process of early beginning rehabilitation requires efficient communication both between health professionals and the patient in order to effectively address all rehabilitation goals. The currently used nursing taxonomies, however, are not intended for interdisciplinary use and thus may not contribute to efficient rehabilitation management and an optimal patient outcome. The ICF might be the missing link in this communication process. The objective of this study was to identify the categories of the International Classification of Functioning, Disability and Health (ICF) categories relevant for nursing care in the situation of acute and early post-acute rehabilitation. Methods First, in a consensus process, "Leistungserfassung in der Pflege" (LEP) nursing interventions relevant for the situation of acute and early post-acute rehabilitation were selected. Second, in an integrated two-step linking process, two nursing experts derived goals of LEP nursing interventions from their practical knowledge and selected corresponding ICF categories most relevant for patients in acute and post-acute rehabilitation (ICF Core Sets). Results Eighty-seven percent of ICF Core Set categories could be linked to goals of at least one nursing intervention variable of LEP. The ICF categories most frequently linked with LEP nursing interventions were respiration functions, experience of self and time functions and focusing attention. Thirteen percent of ICF Core Set categories could not be linked with LEP nursing interventions. The LEP nursing interventions which were linked with the highest number of different ICF-categories of all were "therapeutic intervention", "patient-nurse communication/information giving" and "mobilising". Conclusion The ICF Core Sets for the acute hospital and early post

  2. Identification of ICF categories relevant for nursing in the situation of acute and early post-acute rehabilitation

    Directory of Open Access Journals (Sweden)

    Strobl Ralf

    2008-02-01

    Full Text Available Abstract Background The recovery of patients after an acute episode of illness or injury depends both on adequate medical treatment and on the early identification of needs for rehabilitation care. The process of early beginning rehabilitation requires efficient communication both between health professionals and the patient in order to effectively address all rehabilitation goals. The currently used nursing taxonomies, however, are not intended for interdisciplinary use and thus may not contribute to efficient rehabilitation management and an optimal patient outcome. The ICF might be the missing link in this communication process. The objective of this study was to identify the categories of the International Classification of Functioning, Disability and Health (ICF categories relevant for nursing care in the situation of acute and early post-acute rehabilitation. Methods First, in a consensus process, "Leistungserfassung in der Pflege" (LEP nursing interventions relevant for the situation of acute and early post-acute rehabilitation were selected. Second, in an integrated two-step linking process, two nursing experts derived goals of LEP nursing interventions from their practical knowledge and selected corresponding ICF categories most relevant for patients in acute and post-acute rehabilitation (ICF Core Sets. Results Eighty-seven percent of ICF Core Set categories could be linked to goals of at least one nursing intervention variable of LEP. The ICF categories most frequently linked with LEP nursing interventions were respiration functions, experience of self and time functions and focusing attention. Thirteen percent of ICF Core Set categories could not be linked with LEP nursing interventions. The LEP nursing interventions which were linked with the highest number of different ICF-categories of all were "therapeutic intervention", "patient-nurse communication/information giving" and "mobilising". Conclusion The ICF Core Sets for the acute

  3. Progress toward development of a platform for studying burn in the presence of mix on the National Ignition Facility

    Science.gov (United States)

    Murphy, T. J.; Kyrala, G. A.; Bradley, P. A.; Krasheninnikova, N. S.; Cobble, J. A.; Tregillis, I. L.; Obrey, K. A. D.; Hsu, S. C.; Shah, R. C.; Hakel, P.; Kline, J. L.; Grim, G. P.; Baumgaertel, J. A.; Schmitt, M. J.; Kanzleiter, R. J.; Batha, S. H.

    2013-10-01

    Mix of shell material into ICF capsule fuel can degrade implosion performance through a number of mechanisms. One way is by dilution of the fusion fuel, which affects performance by an amount that is dependent on the degree of mix at the atomic level. Experiments are underway to quantify the mix of shell material into fuel using directly driven capsules on the National Ignition Facility. Deuterated plastic shells will be utilized with tritium fill so that the production of DT neutrons is indicative of mix at the atomic level. Neutron imaging will locate the burn region and spectroscopic imaging of the doped layers will reveal the location, temperature, and density of the shell material. Correlation of the two will be used to determine the degree of atomic mixing of the shell into the fuel and will be compared to models. This talk will review progress toward the development of an experimental platform to measure burn in the presence of measured mix. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  4. Progress in the development of the MARBLE platform for studying thermonuclear burn in the presence of heterogeneous mix on OMEGA and the National Ignition Facility

    Science.gov (United States)

    Murphy, T. J.; Douglas, M. R.; Fincke, J. R.; Olson, R. E.; Cobble, J. A.; Haines, B. M.; Hamilton, C. E.; Lee, M. N.; Oertel, J. A.; Parra-Vasquez, N. A. G.; Randolph, R. B.; Schmidt, D. W.; Shah, R. C.; Smidt, J. M.; Tregillis, I. L.

    2016-05-01

    Mix of ablator material into fuel of an ICF capsule adds non-burning material, diluting the fuel and reducing burn. The amount of the reduction is dependent in part on the morphology of the mix. A probability distribution function (PDF) burn model has been developed [6] that utilizes the average concentration of mixed materials as well as the variance in this quantity across cells provided by the BHR turbulent transport model [3] and its revisions [4] to describe the mix in terms of a PDF of concentrations of fuel and ablator material, and provides the burn rate in mixed material. Work is underway to develop the MARBLE ICF platform for use on the National Ignition Facility in experiments to quantify the influence of heterogeneous mix on fusion burn. This platform consists of a plastic (CH) capsule filled with a deuterated plastic foam (CD) with a density of a few tens of milligrams per cubic centimeter, with tritium gas filling the voids in the foam. This capsule will be driven using x-ray drive on NIF, and the resulting shocks will induce turbulent mix that will result in the mixing of deuterium from the foam with the tritium gas. In order to affect the morphology of the mix, engineered foams with voids of diameter up to 100 microns will be utilized. The degree of mix will be determined from the ratio of DT to DD neutron yield. As the mix increases, the yield from reactions between the deuterium of the CD foam with tritium from the gas will increase. The ratio of DT to DD neutrons will be compared to a variation of the PDF burn model that quantifies reactions from initially separated reactants.

  5. Comparison of three ICF reactor designs

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1984-01-01

    Three concepts for inertial confinement fusion (ICF) reactors are described and compared with each other, and with magnetic fusion and fission reactors on the basis of environmental impact, safety and efficiency. The critical technical developments of each concept are described. The three concepts represent alternative development paths for inertial fusion

  6. Preliminary performance and ICF target experiments with Nova

    International Nuclear Information System (INIS)

    Drake, R.P.

    1985-11-01

    In December 1984, the Nova facility fired all ten laser arms, converted the output 1.05 micron energy to 0.35 micron light, and focused the 0.35 micron light through a 4 mm pinhole in the ten-beam target chamber. Since that time, a two-beam target chamber has been added, the performance of the laser evaluated, and preparation has been made for target experiments. This paper summarizes the performance of Nova and describes progress and plans for target experiments

  7. Assessment of functioning in the acute hospital: operationalisation and reliability testing of ICF categories relevant for physical therapists interventions.

    Science.gov (United States)

    Grill, Eva; Gloor-Juzi, Thomas; Huber, Erika O; Stucki, Gerold

    2011-01-01

    To operationalize items based on categories of the International Classification of Functioning, Disability and Health (ICF) relevant to patient problems that are addressed by physiotherapeutic interventions in the acute hospital, and to test the reliability of these items when applied by physiotherapists. A selection of 124 ICF categories was operation-alized in a formal decision-making and consensus process. The reliability of the newly operationalized item list was tested with a cross-sectional study with repeated measurements. The item writing process resulted in 94 dichotomous and 30 polytomous items. Data were collected in a convenience sample of 28 patients with neurological, musculoske-letal, cardiopulmonary, or internal organ conditions, requiring physical therapy in an acute hospital. Fifty-six percent of the polytomous and 68% of the dichotomous items had a raw agreement of 0.7 or above, whereas 36% of all polytomous and 34% of all dichotomous items had a kappa coefficient of 0.7 and above. The study supports that the ICF is adaptable to professional and setting-specific needs of physiotherapists. Further research towards the development of reliable instruments for physiotherapists based on the ICF seems justified. :

  8. [Qualitative research on pain experiences of adult burn patients].

    Science.gov (United States)

    Li, L; Pan, Q; Xu, L; Lin, R Q; Dai, J X; Chen, Z H

    2018-03-20

    Objective: To explore the pain experiences of adult burn patients so as to lay foundation for practical analgesic measures. Methods: Using phenomenological method in qualitative research, semi-structured interviews were conducted on 12 adult burn patients hospitalized in our burn units from May to November 2015, aiming at pain experiences from immediately after burns to 3 to 7 months after being discharged from hospital. Then the Colaizzi's analysis method was applied to analyze, induce, and refine themes of interview data. Results: After analysis, pain experiences of adult burn patients were generalized into 6 themes: deep pain experiences, heavy psychological burden, limited daily life, poor assessment and treatment of pain, different attributions of pain, and different ways of coping of pain. Conclusions: Burn pain brings harm to the patients' physiology, mentality, and daily life. Nevertheless, pain processing modes of medical staff and patients themselves are the key factors affecting patients' pain experiences. Therefore, according to the deficiency of current situation of pain management, the targeted analgesic intervention measures should be carried out from the perspectives of medical staff and patients.

  9. Measurements of the laminar burning velocity of hydrogen-air premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Pareja, Jhon; Burbano, Hugo J. [Science and Technology of Gases and Rational Use of Energy Group, Faculty of Engineering, University of Antioquia, Calle 67 N 53, 108 Bloque 20, 447 Medellin (Colombia); Ogami, Yasuhiro [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2010-02-15

    Experimental and numerical studies on laminar burning velocities of hydrogen-air mixtures were performed at standard pressure and room temperature varying the equivalence ratio from 0.8 to 3.0. The flames were generated using a contoured slot-type nozzle burner (4 mm x 10 mm). Measurements of laminar burning velocity were conducted using particle tracking velocimetry (PTV) combined with Schlieren photography. This technique provides the information of instantaneous local burning velocities in the whole region of the flame front, and laminar burning velocities were determined using the mean value of local burning velocities in the region of non-stretch. Additionally, average laminar burning velocities were determined using the angle method and compared with the data obtained with the PTV method. Numerical calculations were also conducted using detailed reaction mechanisms and transport properties. The experimental results from the PTV method are in good agreement with the numerical results at every equivalence ratio of the range of study. Differences between the results obtained with the angle method and those with the PTV method are reasonably small when the effects of flame stretch and curvature are reduced by using a contoured slot-type nozzle. (author)

  10. The VISTA spacecraft: Advantages of ICF [Inertial Confinement Fusion] for interplanetary fusion propulsion applications

    International Nuclear Information System (INIS)

    Orth, C.D.; Klein, G.; Sercel, J.; Hoffman, N.; Murray, K.; Chang-Diaz, F.

    1987-01-01

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted

  11. Assessment of functioning in patients with schizophrenia and schizoaffective disorder with the Mini-ICF-APP: a validation study in Italy.

    Science.gov (United States)

    Pinna, Federica; Fiorillo, Andrea; Tusconi, Massimo; Guiso, Beatrice; Carpiniello, Bernardo

    2015-01-01

    The aim of the study was to evaluate validity of the Italian Mini-ICF-APP (Mini-ICF Rating for Limitations of Activities and Participation in Psychological Disorders) in schizophrenia and related disorders. 74 outpatients affected by schizophrenia or schizoaffective disorders attending a University-based community mental health centre were recruited to the study. All participants underwent comprehensive evaluation using standardized instruments to assess clinical, neurocognitive and functional status. Concurrent validity of Mini-ICF-APP was evaluated and compared to severity scores obtained using the Clinical Global Impression-Schizophrenia scale (CGI-SCH), Positive and Negative Syndrome scale (PANSS), Mini Mental State Examination test (MMSE), Brief Assessment of Cognition in Schizophrenia scale (BACS) and Personal and Social Performance scale (PSP). Construct validity was evaluated by comparing scores obtained at Mini-ICF-APP by remitted versus non-remitted patients, and by recovered versus unrecovered patients. Discriminant validity was evaluated comparing scores on Mini-ICF-APP and Subjective Well-being (SWN) scale. the total score and 12 out of the 13 Mini-ICF-APP items correlated significantly with total score at PSP; Mini-ICF-App total score was moreover significantly correlated with total scores at CGI-SCH, PANSS, MMSE, as well as with several BACS items. Total scores obtained at Mini-ICF-APP were significantly higher among remitted and recovered patients. No relevant correlations were found between scores of Mini-ICF-APP and SWN scales. The total score and 12 out of the 13 Mini-ICF-APP items correlated significantly with total score at PSP; Mini-ICF-App total score was moreover significantly correlated with total scores at CGI-SCH, PANSS, MMSE, as well as with several BACS items. Total scores obtained at Mini-ICF-APP were significantly higher among remitted and recovered patients. No relevant correlations were found between scores of Mini-ICF-APP and SWN

  12. Effect of spatial nonuniformity of heating on compression and burning of a thermonuclear target under direct multibeam irradiation by a megajoule laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Bel’kov, S. A.; Bondarenko, S. V. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (Russian Federation); Vergunova, G. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Garanin, S. G. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (Russian Federation); Gus’kov, S. Yu.; Demchenko, N. N.; Doskoch, I. Ya. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Zmitrenko, N. V. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Kuchugov, P. A., E-mail: pkuchugov@gmail.com; Rozanov, V. B.; Stepanov, R. V.; Yakhin, R. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-02-15

    Direct-drive fusion targets are considered at present as an alternative to targets of indirect compression at a laser energy level of about 2 MJ. In this approach, the symmetry of compression and ignition of thermonuclear fuel play the major role. We report on the results of theoretical investigation of compression and burning of spherical direct-drive targets in the conditions of spatial nonuniformity of heating associated with a shift of the target from the beam center of focusing and possible laser radiation energy disbalance in the beams. The investigation involves numerous calculations based on a complex of 1D and 2D codes RAPID, SEND (for determining the target illumination and the dynamics of absorption), DIANA, and NUT (1D and multidimensional hydrodynamics of compression and burning of targets). The target under investigation had the form of a two-layer shell (ablator made of inertial material CH and DT ice) filled with DT gas. We have determined the range of admissible variation of compression and combustion parameters of the target depending on the variation of the spatial nonuniformity of its heating by a multibeam laser system. It has been shown that low-mode (long-wavelength) perturbations deteriorate the characteristics of the central region due to less effective conversion of the kinetic energy of the target shell into the internal energy of the center. Local initiation of burning is also observed in off-center regions of the target in the case of substantial asymmetry of irradiation. In this case, burning is not spread over the entire volume of the DT fuel as a rule, which considerably reduces the thermonuclear yield as compared to that in the case of spherical symmetry and central ignition.

  13. Frost as a first wall for the ICF laboratory microfusion facility

    International Nuclear Information System (INIS)

    Orth, C.D.

    1989-01-01

    The authors introduce the concept of using frost as the first wall of the ICF Laboratory Microfusion Facility being designed to produce 200-1000 MJ of thermonuclear yield. They present one design incorporating 2cm of frost deposited at 0.1 g/cm/sup 3/ on an LN-cooled fiber-reinforced polymer substrate. They calculate that such a frost layer will protect the substrate from ablation by target x rays and debris, and from shock-induced spallation. Postshot washdown with water should permit low-activation operation, and should preserve the original wall properties. The authors expect the impact of the frost on laser optics to be minimal, and expect the preshot lifetime of thermally unprotected cryogenic targets to be extended by operating the wall at 100-150 K. Moreover, they believe that such a frost first wall involves little technical risk, and will be inexpensive to construct and operate

  14. Frost as a first wall for the ICF Laboratory Microfusion Facility

    International Nuclear Information System (INIS)

    Orth, C.D.

    1988-01-01

    We introduce the concept of using frost as the first wall of the ICF Laboratory Microfusion Facility being designed to produce 200--1000 MJ of thermonuclear yield. We present one design incorporating 2 cm of frost deposited at 0.1 g/cm 3 on an LN-cooled fiber-reinforced polymer substrate. We calculate that such a frost layer will protect the substrate from ablation by target x rays and debris, and from shock-induced spallation. Postshot washdown with water should permit low-activation operation, and should preserve the original wall properties. We expect the impact of the frost on laser optics to be minimal, and expect the preshot lifetime of thermally unprotected cryogenic targets to be extended by operating the wall at 100-150 K. Moreover, we believe that such a frost first wall will involve little technical risk, and will be inexpensive to construct and operate. 4 refs., 1 fig

  15. Development of clinical process measures for pediatric burn care: Understanding variation in practice patterns.

    Science.gov (United States)

    Kazis, Lewis E; Sheridan, Robert L; Shapiro, Gabriel D; Lee, Austin F; Liang, Matthew H; Ryan, Colleen M; Schneider, Jeffrey C; Lydon, Martha; Soley-Bori, Marina; Sonis, Lily A; Dore, Emily C; Palmieri, Tina; Herndon, David; Meyer, Walter; Warner, Petra; Kagan, Richard; Stoddard, Frederick J; Murphy, Michael; Tompkins, Ronald G

    2018-04-01

    There has been little systematic examination of variation in pediatric burn care clinical practices and its effect on outcomes. As a first step, current clinical care processes need to be operationally defined. The highly specialized burn care units of the Shriners Hospitals for Children system present an opportunity to describe the processes of care. The aim of this study was to develop a set of process-based measures for pediatric burn care and examine adherence to them by providers in a cohort of pediatric burn patients. We conducted a systematic literature review to compile a set of process-based indicators. These measures were refined by an expert panel of burn care providers, yielding 36 process-based indicators in four clinical areas: initial evaluation and resuscitation, acute excisional surgery and critical care, psychosocial and pain control, and reconstruction and aftercare. We assessed variability in adherence to the indicators in a cohort of 1,076 children with burns at four regional pediatric burn programs in the Shriners Hospital system. The percentages of the cohort at each of the four sites were as follows: Boston, 20.8%; Cincinnati, 21.1%; Galveston, 36.0%; and Sacramento, 22.1%. The cohort included children who received care between 2006 and 2010. Adherence to the process indicators varied both across sites and by clinical area. Adherence was lowest for the clinical areas of acute excisional surgery and critical care, with a range of 35% to 48% across sites, followed by initial evaluation and resuscitation (range, 34%-60%). In contrast, the clinical areas of psychosocial and pain control and reconstruction and aftercare had relatively high adherence across sites, with ranges of 62% to 93% and 71% to 87%, respectively. Of the 36 process indicators, 89% differed significantly in adherence between clinical sites (p measures represents an important step in the assessment of clinical practice in pediatric burn care. Substantial variation was observed

  16. Numerical simulation of direct-drive ICF ignition in spherical geometry

    International Nuclear Information System (INIS)

    Yu Xiaojin

    2006-01-01

    The basic condition required for achieving central ignition is producing a hot spot with 10 keV temperature and 0.3 g/cm 2 surface density. Growth of hydrodynamic instability during deceleration phase will destroy the symmetric-drive, reduce the volume of central hot spot and make a harmful effect on ignition. Based on the LARED-S code, considering the thermonuclear reaction and α-particle heating, a numerical study of direct-drive ICF in spherical geometry is made. One-dimensional results agree well with the NIF ignition target designs, and show that the α-particle heating plays an important role in marginal ignition. Two-dimensional results show that the growth of hydrodynamic instability during deceleration phase makes a harmful effect on ignition. (authors)

  17. A conceptual definition of vocational rehabilitation based on the ICF: building a shared global model.

    Science.gov (United States)

    Escorpizo, Reuben; Reneman, Michiel F; Ekholm, Jan; Fritz, Julie; Krupa, Terry; Marnetoft, Sven-Uno; Maroun, Claude E; Guzman, Julietta Rodriguez; Suzuki, Yoshiko; Stucki, Gerold; Chan, Chetwyn C H

    2011-06-01

    The International Classification of Functioning, Disability and Health (ICF) is a conceptual framework and classification system by the World Health Organization (WHO) to understand functioning. The objective of this discussion paper is to offer a conceptual definition for vocational rehabilitation (VR) based on the ICF. We presented the ICF as a model for application in VR and the rationale for the integration of the ICF. We also briefly reviewed other work disability models. Five essential elements of foci were found towards a conceptual definition of VR: an engagement or re-engagement to work, along a work continuum, involved health conditions or events leading to work disability, patient-centered and evidence-based, and is multi-professional or multidisciplinary. VR refers to a multi-professional approach that is provided to individuals of working age with health-related impairments, limitations, or restrictions with work functioning and whose primary aim is to optimize work participation. We propose that the ICF and VR interface be explored further using empirical and qualitative works and encouraging stakeholders' participation.

  18. Orion Burn Management, Nominal and Response to Failures

    Science.gov (United States)

    Odegard, Ryan; Goodman, John L.; Barrett, Charles P.; Pohlkamp, Kara; Robinson, Shane

    2016-01-01

    An approach for managing Orion on-orbit burn execution is described for nominal and failure response scenarios. The burn management strategy for Orion takes into account per-burn variations in targeting, timing, and execution; crew and ground operator intervention and overrides; defined burn failure triggers and responses; and corresponding on-board software sequencing functionality. Burn-to- burn variations are managed through the identification of specific parameters that may be updated for each progressive burn. Failure triggers and automatic responses during the burn timeframe are defined to provide safety for the crew in the case of vehicle failures, along with override capabilities to ensure operational control of the vehicle. On-board sequencing software provides the timeline coordination for performing the required activities related to targeting, burn execution, and responding to burn failures.

  19. Studies on radiation symmetrization in heavy-ion driven hohlraum targets

    International Nuclear Information System (INIS)

    Temporal, M.; Atzeni, S.

    1993-01-01

    Radiation symmetrization within spherical, ellipsoidal and cylindral hohlraum targets for heavy ion inertial confinement fusion (ICF) is studied by means of a 3-D numerical, static model, in which realistic assumptions are made concerning the geometry of the system and, particularly, of the radiation converters. Among the systems so far studied, only spherical hohlraums with six converters achieve the illumination symmetry of the fusion capsule considered necessary for ICF applications. A parametric study of cylindrical hohlraums enlightens the effect of several parameter changes, and suggests directions for further studies, aiming at the design of two-converter targets

  20. Neutron spectrometer for DD/DT burning ratio measurement in fusion experimental reactor

    International Nuclear Information System (INIS)

    Asai, Keisuke; Naoi, Norihiro; Iguchi, Tetsuo; Watanabe, Kenichi; Kawarabayashi, Jun; Nishitani, Takeo

    2006-01-01

    The most feasible fuels for a fusion reactor are D (Deuterium) and T (Tritium). DD and/or DT fusion reaction or nuclear burning reaction provides two kinds of neutrons, DD neutron and DT neutron, respectively. DD/DT burning ratio, which can be estimated by DD/DT neutron ratio in the burning plasma, is essential for burn control, alpha particle emission rate monitoring and tritium fuel cycle estimation. Here we propose a new neutron spectrometer for the absolute DD/DT burning ratio measurement. The system consists of a Proton Recoil Telescope (PRT) and a Time-of-Flight (TOF) technique. We have conducted preliminary experiments with a prototype detector and a DT neutron beam (φ20 mm) at the Fusion Neutronics Source, Japan Atomic Energy Agency (JAEA), to assess its basic performance. The detection efficiency obtained by the experiment is consistent with the calculation results in PRT, and sufficient energy resolution for the DD/DT neutron discrimination has been achieved in PRT and TOF. The validity of the Monte Carlo calculation has also been confirmed by comparing the experimental results with the calculation results. The design consideration of this system for use in ITER (International Thermonuclear Experimental Reactor) has shown that this system is capable of monitoring the line-integrated DD/DT burning ratio for the plasma core line of sight with the required measurement accuracy of 20% in the upper 4 decades of the ITER operation (fusion power: 100 kW-700 MW). (author)

  1. Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double z-pinch driven hohlraums

    International Nuclear Information System (INIS)

    Bliss, David Emery; Vesey, Roger Alan; Rambo, Patrick K.; Lebedev, Sergey V.; Hanson, David L.; Nash, Thomas J.; Yu, Edmund P.; Matzen, Maurice Keith; Afeyan, Bedros B.; Smith, Ian Craig; Stygar, William A.; Porter, John Larry Jr.; Cuneo, Michael Edward; Bennett, Guy R.; Campbell, Robert B.; Sinars, Daniel Brian; Chittenden, Jeremy Paul; Waisman, Eduardo Mario; Mehlhorn, Thomas Alan

    2005-01-01

    Over the last several years, rapid progress has been made evaluating the double-z-pinch indirect-drive, inertial confinement fusion (ICF) high-yield target concept (Hammer et al 1999 Phys. Plasmas 6 2129). We have demonstrated efficient coupling of radiation from two wire-array-driven primary hohlraums to a secondary hohlraum that is large enough to drive a high yield ICF capsule. The secondary hohlraum is irradiated from two sides by z-pinches to produce low odd-mode radiation asymmetry. This double-pinch source is driven from a single electrical power feed (Cuneo et al 2002 Phys. Rev. Lett. 88 215004) on the 20 MA Z accelerator. The double z-pinch has imploded ICF capsules with even-mode radiation symmetry of 3.1 ± 1.4% and to high capsule radial convergence ratios of 14-21 (Bennett et al 2002 Phys. Rev. Lett. 89 245002; Bennett et al 2003 Phys. Plasmas 10 3717; Vesey et al 2003 Phys. Plasmas 10 1854). Advances in wire-array physics at 20 MA are improving our understanding of z-pinch power scaling with increasing drive current. Techniques for shaping the z-pinch radiation pulse necessary for low adiabat capsule compression have also been demonstrated.

  2. Standardised assessment of functioning in ADHD: consensus on the ICF Core Sets for ADHD.

    Science.gov (United States)

    Bölte, Sven; Mahdi, Soheil; Coghill, David; Gau, Susan Shur-Fen; Granlund, Mats; Holtmann, Martin; Karande, Sunil; Levy, Florence; Rohde, Luis A; Segerer, Wolfgang; de Vries, Petrus J; Selb, Melissa

    2018-02-12

    Attention-deficit/hyperactivity disorder (ADHD) is associated with significant impairments in social, educational, and occupational functioning, as well as specific strengths. Currently, there is no internationally accepted standard to assess the functioning of individuals with ADHD. WHO's International Classification of Functioning, Disability and Health-child and youth version (ICF) can serve as a conceptual basis for such a standard. The objective of this study is to develop a comprehensive, a common brief, and three age-appropriate brief ICF Core Sets for ADHD. Using a standardised methodology, four international preparatory studies generated 132 second-level ICF candidate categories that served as the basis for developing ADHD Core Sets. Using these categories and following an iterative consensus process, 20 ADHD experts from nine professional disciplines and representing all six WHO regions selected the most relevant categories to constitute the ADHD Core Sets. The consensus process resulted in 72 second-level ICF categories forming the comprehensive ICF Core Set-these represented 8 body functions, 35 activities and participation, and 29 environmental categories. A Common Brief Core Set that included 38 categories was also defined. Age-specific brief Core Sets included a 47 category preschool version for 0-5 years old, a 55 category school-age version for 6-16 years old, and a 52 category version for older adolescents and adults 17 years old and above. The ICF Core Sets for ADHD mark a milestone toward an internationally standardised functional assessment of ADHD across the lifespan, and across educational, administrative, clinical, and research settings.

  3. Fancy a cup of scald? - The role of hot beverage burns in paediatric burns admissions in Ireland.

    Science.gov (United States)

    McGuire, F; Hegarty, M; Jennings, P; Marsden, P; Smith, L

    2017-06-09

    Burns and scalds are preventable injuries in children that typically occur in the home. This study aimed to examine the role of hot beverage scalds in paediatric burn admissions in order to identify key target audiences for future safety strategies. Using the Hospital Inpatient Enquiry System (HIPE) a retrospective study of paediatric burn admissions in 2014 examined demographics, cause and severity of injury and location of occurrence. There were 233 paediatric discharges (age 0-18 yrs.) with a principal diagnosis of burn injury; 57% of these occurred in children under three years and 95% of these occurred in the home. Scalds caused 74% of burn injuries; hot beverages accounted for least 33% of these of which 77% were partial thickness and 73% were upper body burns. Effective hot beverage scald prevention strategies, targeted towards caregivers in the home, are required.

  4. U.S. ICF program: status and accomplishments

    Science.gov (United States)

    Crandall, D. H.; Keane, Christopher J.; Bieg, K.; Powers, L. V.; Sluyter, Marshall M.

    1997-12-01

    The paper describes the structure of the ICF program and highlights its latest results. The pre-construction activities of the National Ignition Facility (NIF) project have increased their momentum as a result of the recent Congressional decision to appropriate the requested funds for Fiscal Year 1997 to continue the project. The facility is an essential part of United States nuclear defense program in the absence of underground testing. The near-term goal of the U.S. ICF program is to achieve ignition in the laboratory (i.e. NIF) and to achieve high yield in the future. This paper describes some current results in ignition physics and related areas, as well as the progress in some new concepts that may have application to high yield. International collaborations that have been developed in recent years have contributed to the increased rate of progress. The paper closes with a summary of current and planned international initiatives.

  5. Type C investigation of electrical fabrication projects in ICF Kaiser shops

    International Nuclear Information System (INIS)

    Huckfeldt, R.A.

    1995-06-01

    A Type C Investigation Board was convened to investigate an electrical miswiring problem found during the operation of the electrical distribution trailer for the TWRS Rotary Mode Core Sampling Truck number-sign 2. The trailer was designed by WHC and fabricated ICF KH on site for use in the Characterization Program. This problem resulted in a serious safety hazard since the support truck frame/chassis became electrically energized. This final report provides results of the ''Type C Investigation, Electrical Fabrication Projects in ICF KH Shops, June, 1995.'' It contains the investigation scope, executive summary, relevant facts, analysis, conclusions and corrective actions. DOE Order 5484.1, ''Environmental Protection, Safety and Health Protection Information Reporting Requirements,'' was followed in preparation of this report. Because the incident was electrical in nature and involved both Westinghouse Hanford Company and ICF Kaiser Hanford organizations, the board included members from both contractors and members with considerable electrical expertise

  6. The International Classification of Functioning, Disability and Health (ICF) and nursing.

    Science.gov (United States)

    Kearney, Penelope M; Pryor, Julie

    2004-04-01

    Nursing conceptualizes disability from largely medical and individual perspectives that do not consider its social dimensions. Disabled people are critical of this paradigm and its impact on their health care. The aims of this paper are to review the International Classification of Functioning, Disability and Health (ICF), including its history and the theoretical models upon which it is based and to discuss its relevance as a conceptual framework for nursing. The paper presents a critical overview of concepts of disability and their implications for nursing and argues that a broader view is necessary. It examines ICF and its relationship to changing paradigms of disability and presents some applications for nursing. The ICF, with its acknowledgement of the interaction between people and their environments in health and disability, is a useful conceptual framework for nursing education, practice and research. It has the potential to expand nurses' thinking and practice by increasing awareness of the social, political and cultural dimensions of disability.

  7. Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures

    KAUST Repository

    Bradley, Derek; Lawes, Malcolm; Liu, Kexin; Mansour, Morkous S.

    2013-01-01

    The implosion technique has been used to extend measurements of turbulent burning velocities over greater ranges of fuels and pressures. Measurements have been made up to 3.5 MPa and at strain rate Markstein numbers as low as 23. The implosion technique, with spark ignition at two opposite wall positions within a fan-stirred spherical bomb is capable of measuring turbulent burning velocities, at higher pressures than is possible with central ignition. Pressure records and schlieren high speed photography define the rate of burning and the smoothed area of the flame front. The first aim of the study was to extend the previous measurements with ethanol and propane-air, with further measurements over wider ranges of fuels and equivalence ratios with mixtures of hydrogen, methane, 10% hydrogen-90% methane, toluene, and i-octane, with air. The second aim was to study further the low turbulence regime in which turbulent burning co-exists with laminar flame instabilities. Correlations are presented of turbulent burning velocity normalised by the effective rms turbulent velocity acting on the flame front, ut=u0k , with the Karlovitz stretch factor, K, for different strain rate Markstein numbers, a decrease in which increases ut=u0k . Experimental correlations are presented for the present measurements, combined with previous ones. Different burning regimes are also identified, extending from that of mixed turbulence/laminar instability at low values of K to that at high values of K, in which ut=u0k is gradually reduced due to increasing localised flame extinctions. © 2012 The Combustion Institute.

  8. Identification of relevant ICF categories by geriatric patients in an early post-acute rehabilitation facility.

    Science.gov (United States)

    Grill, Eva; Stucki, Gerold; Boldt, Christine; Joisten, Susanne; Swoboda, Walter

    To describe functioning and health of elderly patients in an early post-acute rehabilitation facility and to identify the most common problems using the International Classification of Functioning, Disability and Health (ICF). Cross-sectional survey in a convenience sample of elderly patients requiring rehabilitation in an early post-acute rehabilitation facility. The second-level categories of the ICF were used to collect information on patients' problems. For the ICF components Body Functions, Body Structures and Activities and Participation, absolute and relative frequencies of impairments/limitations in the study population were reported. For the component Environmental Factors absolute and relative frequencies of perceived barriers or facilitators were reported. The mean age in the sample was 79.9 years. Sixty-nine percent of the patients were female. In 150 patients, 82 ICF categories (34%) had a prevalence of 30% or above. The 82 categories included 22 categories (45%) of the component Body Functions, six categories (15%) of the component Body Structures, 25 categories (34%) of the component Activities and Participation and 29 (57%) categories of the component Environmental Factors. This study is a first step towards the development of ICF Core Sets for geriatric patients in early post-acute rehabilitation facilities.

  9. Rett and ICF syndromes: methylation moves into medicine

    Indian Academy of Sciences (India)

    Two human genetic disorders, Rett and ICF syndromes, have recently been shown to be ... normally until 6–18 months of age, then gradually loose speech and ... (abnormal lateral curvature of the vertebral column), vacant stare, severe ...

  10. Aircraft measurement over the Gulf of Tonkin capturing aloft transport of biomass burning

    Science.gov (United States)

    Yang, Xiaoyang; Xu, Jun; Bi, Fang; Zhang, Zhongzhi; Chen, Yunbo; He, Youjiang; Han, Feng; Zhi, Guorui; Liu, Shijie; Meng, Fan

    2018-06-01

    A suite of aircraft measurements was conducted over the Gulf of Tonkin, located downwind to the east of Mainland Southeast Asia (MSE), between March 23rd and April 6th, 2015. To the best of our knowledge, this campaign of 11 flights (totaling 34.4 h) was the first in-flight measurement over the region. Measurements of sulfur dioxide, nitrogen oxides, ozone, carbon monoxide, black carbon and the particulate scattering coefficient were recorded at approximately 1 500 m (low level) and 3 000 m (high level). Significantly higher measurements of black carbon, carbon monoxide and ozone in the high level on March 23rd and April 5th and 6th were directly related to biomass burning in the MSE and were comparable to severe pollution events at the surface. Similarly, relatively low pollutant concentrations were observed at both altitudes between March 23rd and April 5th. A combined analysis of the measurements with meteorology and satellite data verified that the plumes captured at 3 000 m were attributed to transport in the high altitude originating from biomass burning in northern MSE. Furthermore, each plume captured by the measurements in the high level corresponded to heavy regional air pollution caused by biomass burning in northern MSE. In addition, relatively low levels of the measured pollutants corresponded to relatively light pollution levels in MSE and its adjacent areas. Taken together, these results indicated that aircraft measurements were accurate in characterizing the variation in transport and pollutant levels. During the most active season of biomass burning in MSE, pollutant emissions and their regional impact could vary on an episodic basis. Nonetheless, such concentrated emissions from biomass burning is likely to lead to particularly high atmospheric-loading of pollutants at a regional level and, depending on weather conditions, has the potential of being transported over considerably longer distances. Further investigation of the short-term impacts of

  11. The impact of age and gender on the ICF-based assessment of chronic low back pain.

    Science.gov (United States)

    Fehrmann, Elisabeth; Kotulla, Simone; Fischer, Linda; Kienbacher, Thomas; Tuechler, Kerstin; Mair, Patrick; Ebenbichler, Gerold; Paul, Birgit

    2018-01-12

    To evaluate the impact of age and gender on the international classification of functioning, disability and health (ICF)-based assessment for chronic low back pain. Two hundred forty-four chronic low back pain patients (52% female) with a mean age of 49 years (SD =17.64) were interviewed with the comprehensive ICF core set for activities and participation, and environmental factors. After conducting explorative factor analysis, the impact of age and gender on the different factors was analyzed using analyzes of variances. Results revealed that older patients experienced more limitations within "self-care and mobility" and "walking" but less problems with "transportation" compared to younger patients. Older or middle-aged low back pain patients further perceived more facilitation through "architecture and products for communication", "health services", and "social services and products for mobility" than younger patients. Regarding gender differences, women reported more restriction in "housework" than men. An interaction effect between age and gender was found for "social activities and recreation" with young male patients reporting the highest impairment. The study demonstrated that the comprehensive ICF core set classification for chronic low back pain is influenced by age and gender. This impact is relevant for ICF-based assessments in clinical practice, and should be considered in intervention planning for rehabilitative programs. Implications for rehabilitation It is important to consider age and gender differences when classifying with the ICF. The intervention planning based on the ICF should focus on improvement of bodily functioning and mobility in older patients, facilitation of household activities in women, consideration of work-life balance and recreation (e.g., through mindfulness based stress reduction), and reduction of dissatisfaction with rehabilitation in younger patients. It is important to offer patients the opportunity to participate in

  12. Development of a Z-pinch-driven ICF hohlraum concept on Z

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Porter, J.L. Jr.; Vesey, R.A.

    1999-01-01

    Recent development of high power z-pinches (> 150 MW) on the Z driver has permitted the study of high-temperature, radiation-driven hohlraums. Three complementary, Z-pinch source-hohlraum-ICF capsule configurations are being developed to harness the x-ray output of these Z-pinch's. These are the dynamic-hohlraum, static-wall hohlraum, and Z-pinch-driven hohlraum concepts. Each has different potential strengths and concerns. In this paper, the authors report on the first experiments with the Z-pinch-driven hohlraum (ZPDH) concept. A high-yield ICF capsule design for this concept appears feasible, when driven by z-pinches from a 60 MA-class driver. Initial experiments characterize the behavior of the spoke array on Z-pinch performance and x-ray transmission, and the uniformity of radiation flux incident on a foam capsule in the secondary, for a single-sided drive. Measurements of x-ray wall re-emission power and spectrum, radiation temperatures, spoke-plasma location, and drive uniformity will be presented and compared with 0-D energetics, 2-D Lasnex rad-hydro, and 3-D radiosity calculations of energy transport and drive uniformity

  13. Development of a Z-pinch-driven ICF hohlraum concept on Z

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, M E; Porter, Jr, J L; Vesey, R A [and others

    1999-07-01

    Recent development of high power z-pinches (> 150 MW) on the Z driver has permitted the study of high-temperature, radiation-driven hohlraums. Three complementary, Z-pinch source-hohlraum-ICF capsule configurations are being developed to harness the x-ray output of these Z-pinch's. These are the dynamic-hohlraum, static-wall hohlraum, and Z-pinch-driven hohlraum concepts. Each has different potential strengths and concerns. In this paper, the authors report on the first experiments with the Z-pinch-driven hohlraum (ZPDH) concept. A high-yield ICF capsule design for this concept appears feasible, when driven by z-pinches from a 60 MA-class driver. Initial experiments characterize the behavior of the spoke array on Z-pinch performance and x-ray transmission, and the uniformity of radiation flux incident on a foam capsule in the secondary, for a single-sided drive. Measurements of x-ray wall re-emission power and spectrum, radiation temperatures, spoke-plasma location, and drive uniformity will be presented and compared with 0-D energetics, 2-D Lasnex rad-hydro, and 3-D radiosity calculations of energy transport and drive uniformity.

  14. Effect of initial conditions and Mach number on the Richtmyer-Meshkov instability in ICF like conditions

    Science.gov (United States)

    Rao, Pooja; She, Dan; Lim, Hyunkyung; Glimm, James

    2015-11-01

    The qualitative and quantitative effect of initial conditions (linear and non-linear) and high Mach number (1.3 and 1.45) is studied on the turbulent mixing induced by the Richtmyer-Meshkov instability in idealized ICF conditions. The Richtmyer-Meshkov instability seeds Rayleigh-taylor instabilities in ICF experiments and is one of the factors that contributes to reduced performance of ICF experiments. Its also found in collapsing cores of stars and supersonic combustion. We use the Stony Brook University code, FronTier, which is verified via a code comparison study against the AMR multiphysics code FLASH, and validated against vertical shock tube experiments done by the LANL Extreme Fluids Team. These simulations are designed as a step towards simulating more realistic ICF conditions and quantifying the detrimental effects of mixing on the yield.

  15. Unique capabilities for ICF and HEDP research with the KrF laser

    Science.gov (United States)

    Obenschain, Stephen; Bates, Jason; Chan, Lop-Yung; Karasik, Max; Kehne, David; Sethian, John; Serlin, Victor; Weaver, James; Oh, Jaechul; Jenkins, Bruce; Lehmberg, Robert; Hegeler, Frank; Terrell, Stephen; Aglitskiy, Yefim; Schmitt, Andrew

    2014-10-01

    The krypton-fluoride (KrF) laser provides the shortest wavelength, broadest bandwidth and most uniform target illumination of all developed high-energy lasers. For directly driven targets these characteristics result in higher and more uniform ablation pressures as well as higher intensity thresholds for laser-plasma instability. The ISI beam smoothing scheme implemented on the NRL Nike KrF facility allows easy implementation of focal zooming where the laser radial profile is varied during the laser pulse. The capability for near continuous zooming with KrF would be valuable towards minimizing the effects of cross beam energy transport (CBET) in directly driven capsule implosions. The broad bandwidth ISI beam smoothing that is utilized with the Nike KrF facility may further inhibit certain laser plasma instability. In this presentation we will summarize our current understanding of laser target interaction with the KrF laser and the benefits it provides for ICF and certain HEDP experiments. Status and progress in high-energy KrF laser technology will also be discussed. Work supported by the Deparment of Energy, NNSA.

  16. Using the ICF in economic analyses of Assistive Technology systems: methodological implications of a user standpoint.

    Science.gov (United States)

    Schraner, Ingrid; De Jonge, Desleigh; Layton, Natasha; Bringolf, Jane; Molenda, Agata

    2008-01-01

    This paper identifies key methodological issues for economic analyses of costs and effectiveness of Assistive Technology (AT) systems based on the International Classification of Functioning, Disability and Health (ICF). Following the biopsychosocial model of the ICF, the paper explores the consequences for cost-effectiveness analyses of AT systems when a user centred approach is taken. In so doing, the paper questions the fiction of neutrality in economic analyses and discusses the distinction between weak and strong objectivity. Costs are measured as all resources used when providing a particular level of environmental facilitators and reducing environmental barriers for an AT user, while effectiveness is measured in terms of the resulting increase in activities and participation of the AT user. The ICF's fourth qualifier for activities and participation, which denotes performance without assistance is used to identify the additional performance achieved due to the particular environmental factors in the current situation (first qualifier). A fifth qualifier for activities and participation is introduced to denote performance with optimal assistance, and the fourth qualifier is then again used to identify the increase in activities and participation due to the environmental factors in the situation with optimal assistance. The effectiveness that an AT user achieves in his or her current situation can be compared with the effectiveness he or she could achieve when provided with what is considered an optimal AT system based on current technologies and user priorities. This comparison throws into sharp relief the role of AT systems as well as of universal design (UD) in reducing environmental barriers for AT users in a way that is cost-effective for society as a whole. Cost-effectiveness analysis based on the ICF can provide powerful economic evidence for how best to allocate existing funding for AT systems. We can identify three particular scenarios in which clear

  17. Evaluation of new iodinated acridine derivatives for targeted radionuclide therapy of melanoma using {sup 125}I, an Auger electron emitter

    Energy Technology Data Exchange (ETDEWEB)

    Gardette, M.; Papon, J.; Bonnet, M.; Labarre, P.; Miot-Noirault, E.; Madelmont, J. C.; Chezal, J. M.; Moins, N. [UMR 990, INSERM, Universite d' Auvergne, Clermont-Ferrand (France); Desbois, N. [EA 3660, Universite de Bourgogne, Dijon (France); Wu, T. D.; Guerquin-Kern, J. L. [U 759 INSERM, Institute Curie, Orsay (France)

    2013-06-01

    The full text of the publication follows. The increasing incidence of melanoma and the lack of effective therapy on the disseminated form have led to an urgent need for new specific therapies. Several iodo-benzamides or analogs are known to possess specific affinity for melanoma tissue. New hetero-aromatic derivatives have been designed with a cytotoxic moiety and termed DNA intercalating agents. These compounds could be applied in targeted radionuclide therapy using {sup 125}I, Auger electrons emitter which gives high-energetic localized irradiation. Two iodinated acridine derivatives have been reported to present an in vivo kinetic profile conducive to application in targeted radionuclide therapy. The aim of the present study was to perform a preclinical evaluation of these compounds. The DNA intercalating property was confirmed for both compounds. After radiolabeling with {sup 125}I, the two compounds induced in vitro a significant radiotoxicity on B16F0 melanoma cells. The acridine compound, ICF01040, appeared more radio toxic than the acridone compound, ICF01035. While cellular uptake was similar for both compounds, SIMS analysis and in vitro protocol showed a stronger affinity for melanin with ICF01035, which was able to induce a predominant scavenging process in the melanosome and restrict access to the nucleus. Nevertheless, an important radiotoxicity was measured for the two compounds while the nuclear accumulation was low. Indeed, even if nuclear localization remains the main target sensitive to Auger electrons, the cell membrane remains sensitive to {sup 125}I decays. So, these compounds may induce secondary toxic effects of irradiation, such as membrane lipid damage. Conducted to current experiments are evaluate such hypothesis. Taken together, these results suggest that ICF01040 is a better candidate for application in targeted radionuclide therapy using {sup 125}I. The next step will be in vivo evaluation, where high tumoral vectorization gives

  18. Relationship of plasma proadrenomedullin and cortisol levels with systemic inflammatory response and target organ damage in children with sepsis after burn

    Directory of Open Access Journals (Sweden)

    Xing Wei

    2017-08-01

    Full Text Available Objective: To study the relationship of plasma proadrenomedullin (pro-ADM and cortisol (Cor levels with systemic inflammatory response and target organ damage in children with sepsis after burn. Methods: A total of 30 children with sepsis after burn who were treated in the hospital between August 2014 and August 2016 were collected as observation group, and 30 normal children who received vaccination in the hospital during the same period were collected as normal control group. The pro-ADM and Cor levels in plasma as well as the levels of inflammatory factors, myocardial injury markers and intestinal barrier function indexes in serum of the two groups were determined. Pearson test was used to assess the correlation of plasma pro-ADM and Cor levels with systemic inflammatory response and target organ damage in patients with sepsis after burn. Results: Plasma pro-ADM and Cor levels in observation group were higher than those in normal control group. Serum inflammatory cytokines IL-1, IL-6, IL-10 and TNF-α levels in observation group were higher than those in normal control group; serum myocardial injury markers CK-MB, cTnⅠ and NT-proBNP levels were higher than those in normal control group; serum intestinal barrier function indexes ET, DAO and D-L levels were higher than those in normal control group. Conclusion: Plasma pro-ADM and Cor levels increase in patients with sepsis after burn, and are highly consistent with systemic inflammatory response and target organ injury.

  19. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    International Nuclear Information System (INIS)

    Miley, George H.

    2012-01-01

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of the available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition

  20. Low Back Pain in 17 Countries, a Rasch Analysis of the ICF Core Set for Low Back Pain

    Science.gov (United States)

    Roe, Cecilie; Bautz-Holter, Erik; Cieza, Alarcos

    2013-01-01

    Previous studies indicate that a worldwide measurement tool may be developed based on the International Classification of Functioning Disability and Health (ICF) Core Sets for chronic conditions. The aim of the present study was to explore the possibility of constructing a cross-cultural measurement of functioning for patients with low back pain…

  1. Environmental and personal factors that support early return-to-work: a qualitative study using the ICF as a framework.

    Science.gov (United States)

    Hoefsmit, Nicole; Houkes, Inge; Nijhuis, Frans

    2014-01-01

    Occupational health professionals such as occupational physicians (OPs) increasingly understand that in addition to health improvement, environmental factors (such as work adaptations) and personal factors (such as an employee's attitude towards return-to-work (RTW)) may stimulate employees on sick leave to return to work early. To target their professional interventions more specifically according to these factors, occupational health professionals need further insight into environmental and personal factors that stimulate RTW. The objectives of this study are (1) to identify which and how environmental and personal factors support RTW, and (2) to examine whether the International Classification of Functioning, Disability and Health (ICF) can be used to describe these factors. We performed interviews with 14 employees, 15 employers and 4 OPs from multiple organisations with varying organisational sizes and types of industry such as healthcare and education. We used a qualitative data analysis partially based on the Qualitative Analysis Guide of Leuven. The following environmental factors were found to support early RTW: 'social support from relatives', 'belief that work stimulates health', 'adequate cooperation between stakeholders in RTW' (e.g., employees, employers and OPs) and 'the employers' communicative skills'. One personal factor stimulated RTW: 'positive perception of the working situation' (e.g. enjoyment of work). Most factors stimulated RTW directly. In addition, adequate treatment and social support stimulated medical recovery. Environmental factors can either fully (social support, belief that RTW stimulates health), partially (effective cooperation), or not (employers' communicative skills) be described using ICF codes. The personal factor could not be classified because the ICF does not contain codes for personal factors. RTW interventions should aim at the environmental and personal factors mentioned above. Professionals can use the ICF to

  2. Cryogenic Hydrogen Fuel for Controlled Inertial Confinement Fusion (Cryogenic Target Factory Concept Based on FST-Layering Method)

    Science.gov (United States)

    Aleksandrova, I. V.; Koresheva, E. R.; Koshelev, I. E.; Krokhin, O. N.; Nikitenko, A. I.; Osipov, I. E.

    2017-12-01

    A central element of a power plant based on inertial confinement fusion (ICF) is a target with cryogenic hydrogen fuel that should be delivered to the center of a reactor chamber with a high accuracy and repetition rate. Therefore, a cryogenic target factory (CTF) is an integral part of any ICF reactor. A promising way to solve this problem consists in the FST layering method developed at the Lebedev Physical Institute (LPI). This method (rapid fuel layering inside moving free-standing targets) is unique, having no analogs in the world. The further development of FST-layering technologies is implemented in the scope of the LPI program for the creation of a modular CTF and commercialization of the obtained results. In this report, we discuss our concept of CTF (CTF-LPI) that exhibits the following distinctive features: using a FST-layering technology for the elaboration of an in-line production of cryogenic targets, using an effect of quantum levitation of high-temperature superconductors (HTSCs) in magnetic field for noncontacting manipulation, transport, and positioning of the free-standing cryogenic targets, as well as in using a Fourier holography technique for an on-line characterization and tracking of the targets flying into the reactor chamber. The results of original experimental and theoretical investigations performed at LPI indicate that the existing and developing target fabrication capabilities and technologies can be applied to ICF target production. The unique scientific, engineering, and technological base developed in Russia at LPI allows one to make a CTFLPI prototype for mass production of targets and delivery thereof at the required velocity into the ICF reactor chamber.

  3. An examination of concepts in vocational rehabilitation that could not be linked to the ICF based on an analysis of secondary data.

    Science.gov (United States)

    Finger, Monika; de Bie, Robert; Selb, Melissa; Escorpizo, Reuben

    2016-02-15

    In the last few years the International Classification of Functioning, Disability and Health (ICF) has become a widely known and useful reference classification in vocational rehabilitation. It would be equally important to know which aspects of work-related health information cannot be assigned to distinct ICF categories. The objective of this study is to examine the concepts derived from three studies conducted within the ICF Core Set for vocational rehabilitation project, which could not be linked to distinct ICF codes in order to complement the current understanding of functioning in vocational rehabilitation. Secondary data analysis of the concepts from the systematic literature review, expert survey and patient focus group study of the ICF Core Set for vocational rehabilitation project that were marked as nd = not definable, nc = not covered or pf = personal factor. Nd-concepts were assigned to the biopsychosocial model of the ICF; additional ICF categories were formulated where needed. Nc-concepts were grouped into common themes not covered by the ICF. Pf-categories were linked to a proposed personal factors classification. 1093 nd-concepts were matched to overarching terms in the ICF, and "other specified"-categories were detailed. 1924 pf-concepts were linked to 31 second level categories of a proposed personal factors classification. 441 nc-concepts were grouped into six themes including the concept of well-being and attributes related to processes and time. With concepts that emerged from the secondary analysis of data gathered during the vocational rehabilitation ICF Core Set project, we have enriched the ICF model with constructs specific to vocational rehabilitation. However, additional research is needed to further explore personal factors specific to vocational rehabilitation. The influence of themes complementary to the ICF such as well-being and quality of life on return-to-work should be further investigated.

  4. The ICF Core Sets for hearing loss--researcher perspective. Part I: Systematic review of outcome measures identified in audiological research.

    Science.gov (United States)

    Granberg, Sarah; Dahlström, Jennie; Möller, Claes; Kähäri, Kim; Danermark, Berth

    2014-02-01

    To review the literature in order to identify outcome measures used in research on adults with hearing loss (HL) as part of the ICF Core Sets development project, and to describe study and population characteristics of the reviewed studies. A systematic review methodology was applied using multiple databases. A comprehensive search was conducted and two search pools were created, pool I and pool II. The study population included adults (≥ 18 years of age) with HL and oral language as the primary mode of communication. 122 studies were included. Outcome measures were distinguished by 'instrument type', and 10 types were identified. In total, 246 (pool I) and 122 (pool II) different measures were identified, and only approximately 20% were extracted twice or more. Most measures were related to speech recognition. Fifty-one different questionnaires were identified. Many studies used small sample sizes, and the sex of participants was not revealed in several studies. The low prevalence of identified measures reflects a lack of consensus regarding the optimal outcome measures to use in audiology. Reflections and discussions are made in relation to small sample sizes and the lack of sex differentiation/descriptions within the included articles.

  5. BurnCase 3D software validation study: Burn size measurement accuracy and inter-rater reliability.

    Science.gov (United States)

    Parvizi, Daryousch; Giretzlehner, Michael; Wurzer, Paul; Klein, Limor Dinur; Shoham, Yaron; Bohanon, Fredrick J; Haller, Herbert L; Tuca, Alexandru; Branski, Ludwik K; Lumenta, David B; Herndon, David N; Kamolz, Lars-P

    2016-03-01

    The aim of this study was to compare the accuracy of burn size estimation using the computer-assisted software BurnCase 3D (RISC Software GmbH, Hagenberg, Austria) with that using a 2D scan, considered to be the actual burn size. Thirty artificial burn areas were pre planned and prepared on three mannequins (one child, one female, and one male). Five trained physicians (raters) were asked to assess the size of all wound areas using BurnCase 3D software. The results were then compared with the real wound areas, as determined by 2D planimetry imaging. To examine inter-rater reliability, we performed an intraclass correlation analysis with a 95% confidence interval. The mean wound area estimations of the five raters using BurnCase 3D were in total 20.7±0.9% for the child, 27.2±1.5% for the female and 16.5±0.1% for the male mannequin. Our analysis showed relative overestimations of 0.4%, 2.8% and 1.5% for the child, female and male mannequins respectively, compared to the 2D scan. The intraclass correlation between the single raters for mean percentage of the artificial burn areas was 98.6%. There was also a high intraclass correlation between the single raters and the 2D Scan visible. BurnCase 3D is a valid and reliable tool for the determination of total body surface area burned in standard models. Further clinical studies including different pediatric and overweight adult mannequins are warranted. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  6. Management a marketing sportovní akce: ICF Slalom World Ranking Race Prague 2009

    OpenAIRE

    Kubričan, Lukáš

    2009-01-01

    Title: Management and marketing of sport's event: ICF Slalom World Ranking Race Prague 2009 Objectives: Present strengths and weaknesses of ICF Slalom World Ranking Race Prague 2009 based on analyse of recent years and present ideas for its improvement. Methods: Descriptive analysis, SWOT analysis and interview with expert. Results: Conclusion and advices for organizers of sport's events. Key words: Management, marketing, SWOT analysis, descriptive analysis, sport's event, canoe slalom compet...

  7. Development of a Conceptual Framework to Measure the Social Impact of Burns.

    Science.gov (United States)

    Marino, Molly; Soley-Bori, Marina; Jette, Alan M; Slavin, Mary D; Ryan, Colleen M; Schneider, Jeffrey C; Resnik, Linda; Acton, Amy; Amaya, Flor; Rossi, Melinda; Soria-Saucedo, Rene; Kazis, Lewis E

    Measuring community reintegration following burn injury is important to assess the efficacy of therapies designed to optimize recovery. This project aims to develop and validate a conceptual framework for understanding the social impact of burn injuries in adults. The framework is critical for developing the item banks used for a computerized adaptive test. We performed a comprehensive literature review and consulted with clinical experts and burn survivors about social life areas impacted by burn injury. Focus groups with burn survivors and clinicians were conducted to inform and validate the framework. Transcripts were coded using grounded theory methodology. The World Health Organization's International Classification of Functioning, Disability and Health, was chosen to ground the content model. The primary construct identified was social participation, which contains two concepts: societal role and personal relationships. The subdomains chosen for item development were work, recreation and leisure, relating with strangers, and romantic, sexual, family, and informal relationships. Qualitative results strongly suggest that the conceptual model fits the constructs for societal role and personal relationships with the respective subdomains. This conceptual framework has guided the implementation of a large-scale calibration study currently underway which will lead to a computerized adaptive test for monitoring the social impacts of burn injuries during recovery.

  8. Outcomes important to burns patients during scar management and how they compare to the concepts captured in burn-specific patient reported outcome measures.

    Science.gov (United States)

    Jones, Laura L; Calvert, Melanie; Moiemen, Naiem; Deeks, Jonathan J; Bishop, Jonathan; Kinghorn, Philip; Mathers, Jonathan

    2017-12-01

    Pressure garment therapy (PGT) is an established treatment for the prevention and treatment of hypertrophic scarring; however, there is limited evidence for its effectiveness. Burn survivors often experience multiple issues many of which are not adequately captured in current PGT trial measures. To assess the effectiveness of PGT it is important to understand what outcomes matter to patients and to consider whether patient-reported outcome measures (PROMs) can be used to ascertain the effect of treatments on patients' health-related quality of life. This study aimed to (a) understand the priorities and perspectives of adult burns patients and the parents of burns patients who have experienced PGT via in-depth qualitative data, and (b) compare these with the concepts captured within burn-specific PROMs. We undertook 40 semi-structured interviews with adults and parents of paediatric and adolescent burns patients who had experienced PGT to explore their priorities and perspectives on scar management. Interviews were audio-recorded, transcribed and thematically analysed. The outcomes interpreted within the interview data were then mapped against the concepts captured within burn-specific PROMs currently in the literature. Eight core outcome domains were identified as important to adult patients and parents: (1) scar characteristics and appearance, (2) movement and function, (3) scar sensation, (4) psychological distress, adjustments and a sense of normality, (5) body image and confidence, (6) engagement in activities, (7) impact on relationships, and (8) treatment burden. The outcome domains presented reflect a complex holistic patient experience of scar management and treatments such as PGT. Some currently available PROMs do capture the concepts described here, although none assess psychological adjustments and attainment of a sense of normality following burn injury. The routine use of PROMs that represent patient experience and their relative contribution to trial

  9. High performance inertial fusion targets

    International Nuclear Information System (INIS)

    Nuckolls, J.H.; Bangerter, R.O.; Lindl, J.D.; Mead, W.C.; Pan, Y.L.

    1977-01-01

    Inertial confinement fusion (ICF) designs are considered which may have very high gains (approximately 1000) and low power requirements (<100 TW) for input energies of approximately one megajoule. These include targets having very low density shells, ultra thin shells, central ignitors, magnetic insulation, and non-ablative acceleration

  10. Which outcomes are most important to people with aphasia and their families? an international nominal group technique study framed within the ICF.

    Science.gov (United States)

    Wallace, Sarah J; Worrall, Linda; Rose, Tanya; Le Dorze, Guylaine; Cruice, Madeline; Isaksen, Jytte; Kong, Anthony Pak Hin; Simmons-Mackie, Nina; Scarinci, Nerina; Gauvreau, Christine Alary

    2017-07-01

    To identify important treatment outcomes from the perspective of people with aphasia and their families using the ICF as a frame of reference. The nominal group technique was used with people with aphasia and their family members in seven countries to identify and rank important treatment outcomes from aphasia rehabilitation. People with aphasia identified outcomes for themselves; and family members identified outcomes for themselves and for the person with aphasia. Outcomes were analysed using qualitative content analysis and ICF linking. A total of 39 people with aphasia and 29 family members participated in one of 16 nominal groups. Inductive qualitative content analysis revealed the following six themes: (1) Improved communication; (2) Increased life participation; (3) Changed attitudes through increased awareness and education about aphasia; (4) Recovered normality; (5) Improved physical and emotional well-being; and (6) Improved health (and support) services. Prioritized outcomes for both participant groups linked to all ICF components; primary activity/participation (39%) and body functions (36%) for people with aphasia, and activity/participation (49%) and environmental factors (28%) for family members. Outcomes prioritized by family members relating to the person with aphasia, primarily linked to body functions (60%). People with aphasia and their families identified treatment outcomes which span all components of the ICF. This has implications for research outcome measurement and clinical service provision which currently focuses on the measurement of body function outcomes. The wide range of desired outcomes generated by both people with aphasia and their family members, highlights the importance of collaborative goal setting within a family-centred approach to rehabilitation. These results will be combined with other stakeholder perspectives to establish a core outcome set for aphasia treatment research. Implications for Rehabilitation Important

  11. Recent progress in the Los Alamos KrF Program

    International Nuclear Information System (INIS)

    McDonald, T.E.; Cartwright, D.C.; Coggeshall, S.V.

    1988-01-01

    The goal of the Inertial Confinement Fusion Program (ICF) is to develop the ability to ignite and burn small masses of thermonuclear fuel. Although the present near-term objectives of the program are directed toward defense applications, ICF research continues to be carried out with a view to the longer term goal of commercial power production. The characteristics of a KrF laser make it an attractive candidate as an ICF driver. The KrF wavelength of 248 nm provides a target coupling that is very high at intensities of 10 14 w/cm 2 . In addition, the KrF laser can be repetitively operated at frequencies appropriate for a power reactor and has an intrinsically high efficiency, which allows projections to the long-term goal of energy production. The ICF program at Los Alamos consists of driver development, target design and fabrication, and target experimentation. The major effort at present is the investigation and development of KrF technology to determine its applicability for use in a laboratory driver at Los Alamos. Such a driver would be used in defense related technology studies and in areas of scientific study such as highly ionized materials and high-energy-density physics

  12. Epidemiology of Burns in Rural Bangladesh: An Update

    Science.gov (United States)

    He, Siran; Alonge, Olakunle; Agrawal, Priyanka; Sharmin, Shumona; Islam, Irteja; Mashreky, Saidur Rahman; Arifeen, Shams El

    2017-01-01

    Each year, approximately 265,000 deaths occur due to burns on a global scale. In Bangladesh, around 173,000 children under 18 sustain a burn injury. Since most epidemiological studies on burn injuries in low and middle-income countries are based on small-scale surveys or hospital records, this study aims to derive burn mortality and morbidity measures and risk factors at a population level in Bangladesh. A household survey was conducted in seven rural sub-districts of Bangladesh in 2013 to assess injury outcomes. Burn injuries were one of the external causes of injury. Epidemiological characteristics and risk factors were described using descriptive as well as univariate and multivariate logistic regression analyses. The overall mortality and morbidity rates were 2 deaths and 528 injuries per 100,000 populations. Females had a higher burn rate. More than 50% of injuries were seen in adults 25 to 64 years of age. Most injuries occurred in the kitchen while preparing food. 88% of all burns occurred due to flame. Children 1 to 4 years of age were four times more likely to sustain burn injuries as compared to infants. Age-targeted interventions, awareness of first aid protocols, and improvement of acute care management would be potential leads to curb death and disability due to burn injuries. PMID:28379160

  13. Recent progress on the Los Alamos Aurora ICF [inertial confinement fusion] laser system

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Blair, L.S.

    1987-01-01

    Aurora is the Los Alamos short-pulse, high-power, krypton-fluoride laser system. It serves as an end-to-end technology demonstration prototype for large-scale ultraviolet laser systems for short wavelength inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers to deliver stacked, 248-nm, 5-ns duration multikilojoule laser pulses to ICF-relevant targets. This paper presents a summary of the Aurora system and a discussion of the progress achieved in the construction and integration of the laser system. We concentrate on the main features of the following major system components: front-end lasers, amplifier train, multiplexer, optical relay train, demultiplexer, and the associated optical alignment system. During the past year, two major construction and integration tasks have been accomplished. The first task is the demonstration of 96-beam multiplexing and amplified energy extraction, as evidenced by the integrated operation of the front end, the multiplexer (12-fold and 8-fold encoders), the optical relay train, and three electron-beam-driven amplifiers. The second task is the assembly and installation of the demultiplexer optical hardware, which consists of over 300 optical components ranging in size from several centimeters square to over a meter square. 13 refs., 13 figs

  14. Pre-Harvest Sugarcane Burning: Determination of Emission Factors through Laboratory Measurements

    Directory of Open Access Journals (Sweden)

    João Andrade Carvalho

    2012-02-01

    Full Text Available Sugarcane is an important crop for the Brazilian economy and roughly 50% of its production is used to produce ethanol. However, the common practice of pre-harvest burning of sugarcane straw emits particulate material, greenhouse gases, and tropospheric ozone precursors to the atmosphere. Even with policies to eliminate the practice of pre-harvest sugarcane burning in the near future, there is still significant environmental damage. Thus, the generation of reliable inventories of emissions due to this activity is crucial in order to assess their environmental impact. Nevertheless, the official Brazilian emissions inventory does not presently include the contribution from pre-harvest sugarcane burning. In this context, this work aims to determine sugarcane straw burning emission factors for some trace gases and particulate material smaller than 2.5 μm in the laboratory. Excess mixing ratios for CO2, CO, NOX, UHC (unburned hydrocarbons, and PM2.5 were measured, allowing the estimation of their respective emission factors. Average estimated values for emission factors (g kg−1 of burned dry biomass were 1,303 ± 218 for CO2, 65 ± 14 for CO, 1.5 ± 0.4 for NOX, 16 ± 6 for UHC, and 2.6 ± 1.6 for PM2.5. These emission factors can be used to generate more realistic emission inventories and therefore improve the results of air quality models.

  15. [Can ICF core sets be helpful in preparing a social-medical expert report due to incapacity to work?--a first proposal].

    Science.gov (United States)

    Kirschneck, M; Legner, R; Armbrust, W; Nowak, D; Cieza, A

    2015-04-01

    Social-medical expert reports from the German statutory pension insurance are essential for the German statutory pension regulatory authority to decide whether to grant services regarding participation as well as retirement pensions due to incapacity to work.The objective of this investigation is to determine whether the ICF Core Sets and other international approaches, such as the EUMASS Core Sets or ICF Core Set for vocational rehabilitation cover the content of the social-medical expert reports as well as to propose an approach how the ICF can be economically used by the social medicine practitioner when writing a social-medical expert report. A retrospective quantitative study design was used to translate a total of 294 social-medical expert reports from patients with low back pain (LBP) or chronic widespread pain (CWP) into the language of the ICF (linking) by 2 independent health professionals and compare the results with the ICF Core Sets for specific health conditions and other international approaches. The content of social-medical expert reports was largely reflected by the condition specific brief ICF Core Sets, brief ICF Core Sets for vocational rehabilitation and EUMASS Core Sets. The weighted Kappa statistic for the agreement between the 2 health professionals who translated the expert reports were in CWP 0.69 with a bootstrapped confidence interval of 0.67-0.71 and in LBP 0.73 (0.71-0.74). The analyses show that the content of social-medical expert reports varies enormously. A combination of a condition specific brief ICF Core Set as well as vocational rehabilitation and EUMASS ICF Core Sets as well as all ICF-categories from the expert reports that were named at least in 50% of it can largely provide a basis for preparing expert reports. Within the scope of implementation the need for a specific ICF Core Set for expert reports of the German statutory pension insurance should be further analyzed and discussed. © Georg Thieme Verlag KG Stuttgart

  16. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    Science.gov (United States)

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  17. The Magnetic Recoil Spectrometer for time-resolved neutron measurements (MRSt) at the NIF

    Science.gov (United States)

    Parker, C. E.; Frenje, J. A.; Wink, C. W.; Gatu Johnson, M.; Lahmann, B.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Hilsabeck, T. J.; Kilkenny, J. D.; Bionta, R.; Casey, D. T.; Khater, H. Y.; Forrest, C. J.; Glebov, V. Yu.; Sorce, C.; Hares, J. D.; Siegmund, O. H. W.

    2017-10-01

    The next-generation Magnetic Recoil Spectrometer, called MRSt, will provide time-resolved measurements of the DT-neutron spectrum. These measurements will provide critical information about the time evolution of the fuel assembly, hot-spot formation, and nuclear burn in Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). The neutron spectrum in the energy range 12-16 MeV will be measured with high accuracy ( 5%), unprecedented energy resolution ( 100 keV) and, for the first time ever, time resolution ( 20 ps). An overview of the physics motivation, conceptual design for meeting these performance requirements, and the status of the offline tests for critical components will be presented. This work was supported in part by the U.S. DOE, LLNL, and LLE.

  18. An international qualitative study of ability and disability in ADHD using the WHO-ICF framework.

    Science.gov (United States)

    Mahdi, Soheil; Viljoen, Marisa; Massuti, Rafael; Selb, Melissa; Almodayfer, Omar; Karande, Sunil; de Vries, Petrus J; Rohde, Luis; Bölte, Sven

    2017-10-01

    This is the third in a series of four cross-cultural empirical studies designed to develop International Classification of Functioning, Disability and Health (ICF, and Children and Youth version, ICF(-CY) Core Sets for Attention-Deficit Hyperactivity Disorder (ADHD). To explore the perspectives of individuals diagnosed with ADHD, self-advocates, immediate family members and professional caregivers on relevant areas of impairment and functional abilities typical for ADHD across the lifespan as operationalized by the ICF(-CY). A qualitative study using focus group discussions or semi-structured interviews of 76 participants, divided into 16 stakeholder groups. Participants from five countries (Brazil, India, Saudi Arabia, South Africa and Sweden) were included. A deductive qualitative content analysis was conducted to extract meaningful functioning and disability concepts from verbatim material. Extracted concepts were then linked to ICF(-CY) categories by independent researchers using a standardized linking procedure. In total, 82 ICF(-CY) categories were identified, of which 32 were related to activities and participation, 25 to environmental factors, 23 to body functions and 2 to body structures. Participants also provided opinions on experienced positive sides to ADHD. A high level of energy and drive, creativity, hyper-focus, agreeableness, empathy, and willingness to assist others were the most consistently reported strengths associated with ADHD. Stakeholder perspectives highlighted the need to appraise ADHD in a broader context, extending beyond diagnostic criteria into many areas of ability and disability as well as environmental facilitators and barriers. This qualitative study, along with three other studies (comprehensive scoping review, expert survey and clinical study), will provide the scientific basis to define ICF(-CY) Core Sets for ADHD, from which assessment tools can be derived for use in clinical and research setting, as well as in health care

  19. Development of a nursing workload measurement instrument in burn care

    NARCIS (Netherlands)

    Jong, A.E.; Leeman, J.; Middelkoop, E.

    2009-01-01

    Existing workload measurement instruments fail to represent specific nursing activities in a setting where patients are characterized by a diversity of cause, location, extent and depth of burns, of age and of history. They also do not include educational levels and appropriate time standards. The

  20. Problems in functioning after a mild traumatic brain injury within the ICF framework: the patient perspective using focus groups.

    Science.gov (United States)

    Sveen, Unni; Ostensjo, Sigrid; Laxe, Sara; Soberg, Helene L

    2013-05-01

    To describe problems in body functions, activities, and participation and the influence of environmental factors as experienced after mild traumatic brain injury (TBI), using the ICF framework. To compare our findings with the Brief and Comprehensive ICF Core Sets for TBI. Six focus-group interviews were performed with 17 participants (nine women, eight men, age ranged from 22 to 55 years) within the context of an outpatient rehabilitation programme for patients with mild TBI. The interviews were transcribed verbatim and analysed using the ICF. One-hundred and eight second-level categories derived from the interview text, showing a large diversity of TBI-related problems in functioning. Problems in cognitive and emotional functions, energy and drive, and in carrying out daily routine and work, were frequently reported. All ICF categories reported with high-to-moderate frequencies were present in the Brief ICF Core Set and 84% in the Comprehensive ICF Core Set. The reported environmental factors mainly concerned aspects of health and social security systems, social network and attitudes towards the injured person. This study confirms the diversity of problems and the environmental factors that have an impact on post-injury functioning of patients with mild TBI.

  1. A pellet model of DT ignitor and DD fuel for an ICF reactor without tritium breeding blanket

    International Nuclear Information System (INIS)

    Ido, Shunji; Tazima, Teruhiko.

    1983-01-01

    A pellet concept of a DT ignitor and DD fuel for an ICF reactor without a tritium breeding blanket is analytically examined under the condition that T is bred through the DD reactions. There is the additional restriction that the tritium breeding ratio in a pellet is unity, including the in situ DT burn in the DD region. Model calculations show that sufficiently high pellet gain can be obtained in a DT-DD pellet, when fuel rhoR increases to --40 g/cm 2 and the fraction of energy released in the DD region becomes dominant. One-dimensional neutronics calculations carried out for a reference pellet model with rhoR --40 g/cm 2 show that the neutron heating in the compressed pellet model is evident and the total energy of the neutrons escaping from the pellet is reduced from --2000 MJ to 330 MJ for a microexplosion of --3000 MJ. (author)

  2. Technique for thick polymer coating of inertial-confinement-fusion targets

    International Nuclear Information System (INIS)

    Lee, M.C.; Feng, I.; Wang, T.G.; Kim, H.

    1983-01-01

    A novel technique has been developed to coat a thick layer (15--50 μm) of polymer materials on inertial-confinement-fusion (ICF) targets. In this technique, the target and the coating material are independently positioned and manipulated. The coating material is first dissolved in an appropriate solvent to form a polymer solution. The solution is then atomized, transported, and allowed to coalesce into a droplet in a stable acoustic levitating field. The ICF target mounted on a stalk is moved into the acoustic field by manipulating a three-dimensional (3-D) positioner to penetrate the surface membrane of the droplet and thus the target is immersed in the levitated coating solution. The 3-D coordinates of the target inside the droplet are obtained using two orthogonally placed television cameras. The target is positioned at the geometric center of the droplet and maintained at that location by continuously manipulating the 3-D device until the coating layer is dried. Tests of this technique using a polymer solution have been highly successful

  3. Psychometric analyses to improve the Dutch ICF Activity Inventory

    NARCIS (Netherlands)

    Bruijning, J.E.; van Rens, G.H.M.B.; Knol, D.L.; van Nispen, R.M.A.

    2013-01-01

    PURPOSE: In the past, rehabilitation centers for the visually impaired used unstructured or semistructured methods to assess rehabilitation needs of their patients. Recently, an extensive instrument, the Dutch ICF Activity Inventory (D-AI), was developed to systematically investigate rehabilitation

  4. Examining the similarities and differences of OMERACT core sets using the ICF: first step towards an improved domain specification and development of an item pool to measure functioning and health.

    Science.gov (United States)

    Escorpizo, Reuben; Boers, Maarten; Stucki, Gerold; Boonen, Annelies

    2011-08-01

    To contribute to the discussion on a common approach for domain selection in the Outcomes in Rheumatology Clinical Trials (OMERACT) process. First, this article reports on the consistency in the selection and names of the domains of the current OMERACT core set, and next on the comparability of the specifications of concepts that are relevant within the domains. For this purpose, a convenience sample of 4 OMERACT core sets was used: rheumatoid arthritis (RA), psoriatic arthritis (PsA), longitudinal observational studies (LOS) in rheumatology, and ankylosing spondylitis (AS). Domains from the different core sets were compared directly. To be able to compare the specific content of the domains, the concepts contained in the questionnaires that were considered or proposed to measure the domains were identified and linked to the category of the International Classification of Functioning, Disability, and Health (ICF) that best fit that construct. Large differences in the domains, and lack of domain definitions, were noted among the 4 OMERACT core sets. When comparing the concepts in the questionnaires that represent the domains, core sets differed also in the number and type of constructs that were addressed within each of the domains. Especially for the specification of the concepts within the domains Discomfort and Disability, the ICF proved to be useful as external reference to classify the different constructs. Our exercise suggests that the OMERACT process could benefit from a standardized approach to select, define, and specify domains, and demonstrated that the ICF is useful for further classification of the more specific concepts of "what to measure" within the domains. A clear definition and classification of domains and their specification can be useful as a starting point to build a pool of items that could then be used to develop new instruments to assess functioning and health for rheumatological conditions.

  5. Biomass Burning Observation Project (BBOP) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, LI [Brookhaven National Lab. (BNL), Upton, NY (United States); Sedlacek, A. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-01

    The Biomass Burning Observation Project (BBOP) was conducted to obtain a better understanding of how aerosols generated from biomass fires affect the atmosphere and climate. It is estimated that 40% of carbonaceous aerosol produced originates from biomass burning—enough to affect regional and global climate. Several biomass-burning studies have focused on tropical climates; however, few campaigns have been conducted within the United States, where millions of acres are burned each year, trending to higher values and greater climate impacts because of droughts in the West. Using the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the BBOP deployed the Gulfstream-1 (G-1) aircraft over smoke plumes from active wildfire and agricultural burns to help identify the impact of these events and how impacts evolve with time. BBOP was one of very few studies that targeted the near-field time evolution of aerosols and aimed to obtain a process-level understanding of the large changes that occur within a few hours of atmospheric processing.

  6. An approach to understand incomplete fusion dynamics from recoil range distribution measurements

    International Nuclear Information System (INIS)

    Tali, Suhail A.; Kumar, Harish; Afzal Ansari, M.

    2016-01-01

    Britt and Quinton initially pointed out the incomplete fusion (ICF) signatures in the break-up of projectiles like 12 C, 14 N, and 16 O into α-clusters at ≈10 MeV/nucleon energies. Additional information was provided by Inamura et al. by performing the particle gamma coincidence experiment which significantly contributed in the understanding of ICF study. The interest to understand the ICF reaction dynamics for low Z projectiles (Z≤10) at energies ≈ 4-7MeV/nucleon has recently become an active area of research because of lack of any appropriate theoretical aspect, which may reproduce the experimental ICF data. At projectile energies above the Coulomb barrier, CF and ICF are dominant and competing reaction modes. For the imparted angular momentum ℓ < ℓ crit , the attractive nuclear potential is dominant, which may lead to the complete amalgamation of projectile with the target nucleus. However, for angular momentum ℓ> L crit , the projectile breaks into two parts one of them may fuse with the target nucleus, while the remainder moves as a spectator in forward direction with nearly the same velocity as that of incident projectile. The less excited composite system thus formed carries lower Forward Linear Momentum Transfer (FLMT) due to partial mass transferring from projectiles to the target nucleus compared to the compound nucleus formed via CF process

  7. The relevance of the International Classification of Functioning, Disability and Health (ICF) in monitoring and evaluating Community-based Rehabilitation (CBR).

    Science.gov (United States)

    Madden, Rosamond H; Dune, Tinashe; Lukersmith, Sue; Hartley, Sally; Kuipers, Pim; Gargett, Alexandra; Llewellyn, Gwynnyth

    2014-01-01

    To examine the relevance of the International Classification of Functioning, Disability and Health (ICF) to CBR monitoring and evaluation by investigating the relationship between the ICF and information in published CBR monitoring and evaluation reports. A three-stage literature search and analysis method was employed. Studies were identified via online database searches for peer-reviewed journal articles, and hand-searching of CBR network resources, NGO websites and specific journals. From each study "information items" were extracted; extraction consistency among authors was established. Finally, the resulting information items were coded to ICF domains and categories, with consensus on coding being achieved. Thirty-six articles relating to monitoring and evaluating CBR were selected for analysis. Approximately one third of the 2495 information items identified in these articles (788 or 32%) related to concepts of functioning, disability and environment, and could be coded to the ICF. These information items were spread across the entire ICF classification with a concentration on Activities and Participation (49% of the 788 information items) and Environmental Factors (42%). The ICF is a relevant and potentially useful framework and classification, providing building blocks for the systematic recording of information pertaining to functioning and disability, for CBR monitoring and evaluation. Implications for Rehabilitation The application of the ICF, as one of the building blocks for CBR monitoring and evaluation, is a constructive step towards an evidence-base on the efficacy and outcomes of CBR programs. The ICF can be used to provide the infrastructure for functioning and disability information to inform service practitioners and enable national and international comparisons.

  8. An International Clinical Study of Ability and Disability in Autism Spectrum Disorder Using the WHO-ICF Framework

    DEFF Research Database (Denmark)

    Mahdi, Soheil; Albertowski, Katja; Almodayfer, Omar

    2018-01-01

    This is the fourth international preparatory study designed to develop International Classification of Functioning, Disability and Health (ICF, and Children and Youth version, ICF-CY) Core Sets for Autism Spectrum Disorder (ASD). Examine functioning of individuals diagnosed with ASD as documented...

  9. ICF and casemix models for healthcare funding: use of the WHO family of classifications to improve casemix.

    Science.gov (United States)

    Madden, Richard; Marshall, Ric; Race, Susan

    2013-06-01

    Casemix models for funding activity in health care and assessing performance depend on data based on uniformity of resource utilisation. It has long been an ideal to relate the measure of value more to patient outcome than output. A problem frequently expressed by clinicians is that measures of activity such as Functional Independence Measure (FIM) and Barthel Index scores may not sufficiently represent the aspirations of patients in many care programs. Firstly, the key features of the International Classification of Functioning, Disability and Health are outlined. Secondly, the use of ICF dimensions in Australia and other countries is reviewed. Thirdly, a broader set of domains with potential for casemix funding models and performance reporting is considered. In recent years, the ICF has provided a more developed set of domains against which outcome goals can be expressed. Additional dimensions could be used to supplement existing data. Instances of developments in this area are identified and their potential discussed. A well-selected set of data items representing the broader dimensions of outcome goals may provide the ability to more meaningfully and systematically measure the goals of both curative and rehabilitation care against which outcome should be measured. More information about patient goals may be needed.

  10. ICD-11: a comprehensive picture of health, an update on the ICD-ICF joint use initiative.

    Science.gov (United States)

    Selb, Melissa; Kohler, Friedbert; Robinson Nicol, Molly Meri; Riberto, Marcelo; Stucki, Gerold; Kennedy, Cille; Üstün, Bedirhan

    2015-01-01

    This is a follow-up of the special report Towards the joint use of ICD and ICF: A call for contribution, published by the Journal of Rehabilitation Medicine in 2012, which introduced an initiative of using the International Classification of Diseases (ICD) and the International Classification of Functioning, Disability and Health (ICF) in a complementary way in clinical practice. Recognizing the merits of using the ICD and ICF jointly, the World Health Organization (WHO) introduced so-called functioning properties in the ICD-11. The first step in this ICD-ICF joint use initiative revealed 103 rehabilitation-relevant health conditions for which functioning properties were to be identified. Afterwards experts were recruited to identify the functioning properties for the health conditions for which no ICF Core Sets were available and all the functioning properties were integrated in the beta-version of ICD-11. The objective of this special report is to present the outcome of the recruitment and training of the contributing experts, and to provide an update on the current status of identifying functioning properties and their integration in ICD-11. Having functioning properties in the ICD-11 achieves a milestone in depicting health information in an integrated and comprehensive manner. Explicitly identifying functioning properties for specific health conditions further reinforces the importance of acquiring a broader and more meaningful picture of a person's health, and can guide clinical decision-making.

  11. Challenges of assessing fire and burn severity using field measures, remote sensing and modelling

    Science.gov (United States)

    Penelope Morgan; Robert E. Keane; Gregory K. Dillon; Theresa B. Jain; Andrew T. Hudak; Eva C. Karau; Pamela G. Sikkink; Zachery A. Holden; Eva K. Strand

    2014-01-01

    Comprehensive assessment of ecological change after fires have burned forests and rangelands is important if we are to understand, predict and measure fire effects. We highlight the challenges in effective assessment of fire and burn severity in the field and using both remote sensing and simulation models. We draw on diverse recent research for guidance on assessing...

  12. Prescribed Grassland Burning Smoke Emission Measurements in the Northern Flint Hills Region

    Science.gov (United States)

    Wilkins, J. L.; Baker, K. R.; Landis, M.; Aurell, J.; Gullett, B.

    2017-12-01

    Historically, frequent wildfires were essential for the maintenance of native prairie fire adapted ecosystems. Today prescribed fires are used to control invasive woody species and potentially improve forage production in these same prairie ecosystems for the beef-cattle industry. The emission of primary particulate matter, secondary aerosol, ozone precursors, and air toxics from prescribed grassland burning operations has been implicated as drivers of downwind air quality problems across a multi-state area. A field study has been planned to quantify prescribed burn smoke emissions using both surface and aerial sampling platforms to better constrain emissions rates for organic and inorganic pollutants. Multiple prescribed burns on tallgrass prairie fields in the northern Flint Hills ecoregion are planned for March 2017 at the Konza Prairie Biological Station in Kansas. An array of measurement systems will be deployed to quantify a suite of continuous and integrated air pollution parameters, combustion conditions, meteorological parameters, and plume dynamics to calculate more accurate and condition-specific emission factors that will be used to better predict primary and secondary pollutants both locally and regionally. These emissions measurements will allow for evaluation and improvement of the U.S. Forest Service's Bluesky modeling framework which includes the Fire Emission Production Simulator (FEPS) and Fuel characterization classification system (FCCS). Elucidating grassland prescribed burning emission factors based on fuel type, loading, and environmental conditions is expected to provide an improved understanding of the impact of this land management practice on air quality in the greater Flint Hills region. It is also expected that measurements will be made to help constrain and develop better routines for fire plume rise, vertical allocation, and smoke optical properties.

  13. Biomass burning fuel consumption rates: a field measurement database

    NARCIS (Netherlands)

    van Leeuwen, T.T.; van der Werf, G.R.; Hoffmann, A.A.; Detmers, R.G.; Ruecker, G.; French, N.H.F.; Archibald, S.; Carvalho Jr., J.A.; Cook, G.D.; de Groot, J.W.; Hely, C.; Kasischke, E.S.; Kloster, S.; McCarty, J.L.; Pettinari, M.L.; Savadogo, P.

    2014-01-01

    Landscape fires show large variability in the amount of biomass or fuel consumed per unit area burned. Fuel consumption (FC) depends on the biomass available to burn and the fraction of the biomass that is actually combusted, and can be combined with estimates of area burned to assess emissions.

  14. Burn-up measurements of spent fuel using gamma spectrometry technique

    International Nuclear Information System (INIS)

    Pereda, C.; Henriquez, C.; Klein, J.; Medel, J.

    2005-01-01

    Burn-up results obtained for HEU (45% of 235 U) fuel assemblies of the RECH-1 Research Reactor using gamma spectrometry technique are presented. The spectra were got from an in-pool facility built in the reactor to be mainly used to measure the burnup of irradiated fuel assemblies with short cooling time, where 95 Zr is being evaluated as possible fission monitor. A program to measure all spent fuel assemblies of the RECH-1 reactor was initiated in the frame of the Regional Project RLA/4/018: 'Management of Spent Fuel from Research Reactors'. The results presented here were obtained from HEU spent fuel assemblies with cooling time greater than 100 days and 137 Cs was used as fission monitor. The efficiency of the in-pool system was determined using a slightly burnt experimental fuel assembly, which has one fuel plate (one of the outer plates) and the rest are dummy plates. An average burn-up of 2.8% of 235 U was previously measured for the experimental fuel assembly utilizing a facility installed in a hot cell and 137 Cs was used as monitor. (author)

  15. Output optics for Aurora: Beam separation, pulse stacking, and target focusing

    International Nuclear Information System (INIS)

    McLeod, J.

    1987-01-01

    An end-to-end technology demonstration prototype for large-scale ultraviolet laser systems of interest for short wavelength, inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers to deliver to ICF targets a stack of pulses with a duration of 5 ns containing several kilojoules at a wavelength of 248 nm. The optical system has been designed in two phases. The first phase carries only through the amplifier train and does not include a target chamber or any demultiplexing. During first-phase design, the system was conceived of as only an amplifier demonstration and not as an end-to-end system demonstration. The design concept for second-phase optics that provides demultiplexing and carries the laser light to target is presented

  16. Neutron penumbral imaging of laser-fusion targets

    International Nuclear Information System (INIS)

    Lerche, R.A.; Ress, D.B.

    1988-01-01

    Using a new technique, penumbral coded-aperture imaging, the first neutron images of laser-driven, inertial-confinement fusion targets were obtained. With these images the deuterium-tritium burn region within a compressed target can be measured directly. 4 references, 11 figures

  17. The role of Z-pinches and related configurations in magnetized target fusion

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1997-01-01

    The use of a magnetic field within a fusion target is now known as Magnetized Target Fusion in the US and as MAGO (Magnitnoye Obzhatiye, or magnetic compression) in Russia. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (e.g., ICF), MTF involves two steps: (a) formation of a warm, magnetized, wall-confined plasma of intermediate density within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression and heating of the plasma by imploding the confining wall, or pusher. In many ways, MTF can be considered a marriage between the more mature MFE and ICF approaches, and this marriage potentially eliminates some of the hurdles encountered in the other approaches. When compared to ICF, MTF requires lower implosion velocity, lower initial density, significantly lower radial convergence, and larger targets, all of which lead to substantially reduced driver intensity, power, and symmetry requirements. When compared to MFE, MTF does not require a vacuum separating the plasma from the wall, and, in fact, complete magnetic confinement, even if possible, may not be desirable. The higher density of MTF and much shorter confinement times should make magnetized plasma formation a much less difficult step than in MFE. The substantially lower driver requirements and implosion velocity of MTF make z-pinch magnetically driven liners, magnetically imploded by existing modern pulsed power electrical current sources, a leading candidate for the target pusher of an MTF system

  18. Recent advances in indirect drive ICF target physics

    International Nuclear Information System (INIS)

    Hammel, B.A.

    2002-01-01

    The National Ignition Facility (NIF), currently under construction, will be used for the study of ignition physics in inertially confined targets, as well as basic and applied research in the field of high energy density science. In preparing for ignition on the NIF, the Lawrence Livermore National Laboratory's Inertial Confinement Fusion Program, in collaboration with Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the Laboratory for Laser Energetics (LLE), General Atomics (GA), and the Commissariat a l'Energie Atomique (CEA), is working to refine ignition designs, develop improved experimental methods, and fabricate and test cryogenic targets required for ignition. This paper will briefly review NIF construction progress, and summarize advances in these areas. (author)

  19. Patient-reported outcome measures in burning mouth syndrome - a review of the literature.

    Science.gov (United States)

    Ni Riordain, R; McCreary, C

    2013-04-01

    Oral Diseases (2013) 19, 230-235 This review aims to investigate the patient-reported outcomes currently used in the burning mouth syndrome literature and to explore whether any standardisation of such measures has taken place. Electronic databases were searched for all types of burning mouth syndrome studies using patient-reported outcome measures. Studies were selected by predefined inclusion criteria. Copies of the papers obtained were thoroughly reviewed. A study-specific data extraction form was used, allowing papers to be reviewed in a standardised manner. The initial literature search yielded a total of 173 citations, 43 of which were deemed suitable for inclusion in this study. Symptom severity and symptomatic relief were reported as a patient-reported outcome measure in 40 of the studies and quantified most commonly using a visual analogue scale. Quality of life was reported in 13 studies included in this review. Depression and/or anxiety was reported in 14 of the studies. As is evident from the variety of questionnaires and instruments used in the evaluation of the impact of burning mouth syndrome on patients' lives, no standardisation of patient outcomes has yet been achieved. © 2012 John Wiley & Sons A/S.

  20. Identification of health problems in patients with acute inflammatory arthritis, using the International Classification of Functioning, Disability and Health (ICF).

    Science.gov (United States)

    Zochling, J; Grill, E; Scheuringer, M; Liman, W; Stucki, G; Braun, J

    2006-01-01

    To identify the most common health problems experienced by patients with acute inflammatory arthritis using the International Classification of Functioning, Disability and Health (ICF), and to provide empirical data for the development of an ICF Core Set for acute inflammatory arthritis. Cross-sectional survey of patients with acute inflammatory arthritis of two or more joints requiring admission to an acute hospital. The second level categories of the ICF were used to collect information on patients' health problems. Relative frequencies of impairments, limitations and restrictions in the study population were reported for the ICF components Body Functions, Body Structures, and Activities and Participations. For the component Environmental Factors absolute and relative frequencies of perceived barriers or facilitators were reported. In total, 130 patients were included in the survey. The mean age of the population was 59.9 years (median age 63.0 years), 75% of the patients were female. Most had rheumatoid arthritis (57%) or early inflammatory polyarthritis (22%). Fifty-four second-level ICF categories had a prevalence of 30% or more: 3 (8%) belonged to the component Body Structures and 10 (13%) to the component Body Functions. Most categories were identified in the components Activities and Participation (19; 23%) and Environmental Factors (22; 56%). Patients with acute inflammatory arthritis can be well described by ICF categories and components. This study is the first step towards the development of an ICF Core Set for patients with acute inflammatory arthritis.

  1. Measurement of volatiles, semi-volatiles and heavy metals in an oil burn test

    International Nuclear Information System (INIS)

    Li, K.; Caron, T.; Landriault, M.; Pare, J.R.J.; Fingas, M.

    1992-01-01

    Tests involving meso-scale burning of Louisiana crude oil were conducted, and during each burn, extensive samples were taken from the oil, residue, and the smoke plume. The detailed analytical work employed to obtain and analyze the burn samples is outlined and discussed. The analytical parameters included volatiles and semi-volatiles of environmental interests as well as heavy metals typically contained in the starting crude oil. Because the smoke plume did not always impinge on the samplers, the ground samplers did not collect sufficient samples for a definitive analysis. Crude/residue analyses showed the burn resulted in a significant reduction of polycyclic aromatic hydrocarbons (PAH) in the original oil. Most of the reduction was thought to be simply evaporation or destruction from combustion. The residue did not have the degree of enrichment of the higher molecular weight PAHs as was the case in bench-scale burn experiments. Volatile organic compound and dioxin/furan measurements likewise did not show high levels of contamination from the burn itself. Most of the elevated levels of contaminants could probably be due to evaporation of the oil itself. Insufficient sampling was conducted to investigate the background levels from the weathering process. A novel means of sampling using a small remote controlled helicopter was attempted and sufficiently interesting results were obtained to indicate the potential of this passive sampling device for future work. 5 refs., 4 figs

  2. Temporal behaviour of self generated magnetic field and its influence on inhibition of thermal flux in ICF plasma

    International Nuclear Information System (INIS)

    Jha, L.N.

    1989-06-01

    The self generated magnetic field of megagauss order is reported to play a crucial role in ICF target designs because of its strong influence on the transport of energy from the critical density region to the ablation layer. The inhibition of the thermal flux due to such a field, thus, affects the whole of the other phenomenon of ICF. The knowledge of the proper variation of the magnetic field may help in assigning the existing controversial value of flux limit, f. Many papers dealing with the spatial variation of such a field exist and are well documented but the study on the variation of self generated field with time is rare. Here, the spatial variation of the megagauss field generated in the corona of a wire target irradiated by a laser as well as a model to study the temporal nature of the B-field at the peak have been obtained by solving the self inhibited diffusion which is regarded as the most dominant mechanism by which the thermal transport is influenced. The field exists for about ten nanoseconds even after the laser is switched off. The ratio of the two components of the thermal conductivity is also plotted against time and shows the inhibition. So, a track on the B-field variation both in space and time is necessary to keep for at least a few nanoseconds for computation of f. (author). 19 refs, 4 figs

  3. Comparison of subjective and objective assessments of outcome after traumatic brain injury using the International Classification of Functioning, Disability and Health (ICF).

    Science.gov (United States)

    Koskinen, Sanna; Hokkinen, Eeva-Maija; Wilson, Lindsay; Sarajuuri, Jaana; Von Steinbüchel, Nicole; Truelle, Jean-Luc

    2011-01-01

    The aim is to examine two aspects of outcome after traumatic brain injury (TBI). Functional outcome was assessed by the Glasgow Outcome Scale - Extended (GOSE) and by clinician ratings, while health-related quality of life (HRQoL) was assessed by the Quality of Life after Brain Injury (QOLIBRI). The GOSE and the QOLIBRI were linked to the International Classification of Functioning, Disability and Health (ICF) to analyse their content. Functional outcome on ICF categories was assessed by rehabilitation clinicians in 55 participants with TBI and was compared to the participants' own judgements of their HRQoL. The QOLIBRI was linked to 42 and the GOSE to 57 two-level ICF categories covering 78% of the categories on the ICF brief core set for TBI. The closest agreement in the views of the professionals and the participants was found on the Physical Problems and Cognition scales of the QOLIBRI. The problems encountered after TBI are well covered by the QOLIBRI and the GOSE. They capture important domains that are not traditionally sufficiently documented, especially in the domains of interpersonal relationships, social and leisure activities, self and the environment. The findings indicate that they are useful and complementary outcome measures for TBI. In rehabilitation, they can serve as tools in assessment, setting meaningful goals and creating therapeutic alliance.

  4. Results from neutron imaging of ICF experiments at NIF

    Science.gov (United States)

    Merrill, F. E.; Danly, C. R.; Fittinghoff, D. N.; Grim, G. P.; Guler, N.; Volegov, P. L.; Wilde, C. H.

    2016-03-01

    In 2011 a neutron imaging diagnostic was commissioned at the National Ignition Facility (NIF). This new system has been used to collect neutron images to measure the size and shape of the burning DT plasma and the surrounding fuel assembly. The imaging technique uses a pinhole neutron aperture placed between the neutron source and a neutron detector. The detection system measures the two-dimensional distribution of neutrons passing through the pinhole. This diagnostic collects two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically one image measures the distribution of the 14 MeV neutrons, and the other image measures the distribution of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core. Images have been collected for the majority of the experiments performed as part of the ignition campaign. Results from this data have been used to estimate a burn-averaged fuel assembly as well as providing performance metrics to gauge progress towards ignition. This data set and our interpretation are presented.

  5. Operationalization and reliability testing of ICF categories relevant for physiotherapists' interventions in the acute hospital

    OpenAIRE

    Grill, E; Gloor-Juzi, T; Huber, E O; Stucki, G

    2011-01-01

    Objective: To operationalize items based on categories of the International Classification of Functioning, Disability and Health (ICF) relevant to patient problems that are addressed by physiotherapeutic interventions in the acute hospital, and to test the reliability of these items when applied by physiotherapists. Methods: A selection of 124 ICF categories was operationalized in a formal decision-making and consensus process. The reliability of the newly operationalized item list ...

  6. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    International Nuclear Information System (INIS)

    Caird, J.A.; Agrawal, V.; Bayramian, A.; Beach, R.; Britten, J.; Chen, D.; Cross, R.; Ebbers, C.; Erlandson, A.; Feit, M.; Freitas, B.; Ghosh, C.; Haefner, C.; Homoelle, D.; Ladran, T.; Latkowski, J.; Molander, W.; Murray, J.; Rubenchik, S.; Schaffers, K.; Siders, C.W.; Stappaerts, E.; Sutton, S.; Telford, S.; Trenholme, J.; Barty, C.J.

    2008-01-01

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive

  7. A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion

    International Nuclear Information System (INIS)

    Zhou, C. D.; Betti, R.

    2008-01-01

    It is shown that the ignition condition (Lawson criterion) for inertial confinement fusion (ICF) can be cast in a form dependent on the only two parameters of the compressed fuel assembly that can be measured with existing techniques: the hot spot ion temperature (T i h ) and the total areal density (ρR tot ), which includes the cold shell contribution. A marginal ignition curve is derived in the ρR tot , T i h plane and current implosion experiments are compared with the ignition curve. On this plane, hydrodynamic equivalent curves show how a given implosion would perform with respect to the ignition condition when scaled up in the laser-driver energy. For 3 i h > n i h > n 2.6 · tot > n >50 keV 2.6 · g/cm 2 , where tot > n and i h > n are the burn-averaged total areal density and hot spot ion temperature, respectively. Both quantities are calculated without accounting for the alpha-particle energy deposition. Such a criterion can be used to determine how surrogate D 2 and subignited DT target implosions perform with respect to the one-dimensional ignition threshold.

  8. Current Methods of Evaluating Speech-Language Outcomes for Preschoolers with Communication Disorders: A Scoping Review Using the ICF-CY

    Science.gov (United States)

    Cunningham, Barbara Jane; Washington, Karla N.; Binns, Amanda; Rolfe, Katelyn; Robertson, Bernadette; Rosenbaum, Peter

    2017-01-01

    Purpose: The purpose of this scoping review was to identify current measures used to evaluate speech-language outcomes for preschoolers with communication disorders within the framework of the International Classification of Functioning, Disability and Health-Children and Youth Version (ICF-CY; World Health Organization, 2007). Method: The review…

  9. Development of continuous energy Monte Carlo burn-up calculation code MVP-BURN

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Nakagawa, Masayuki; Sasaki, Makoto

    2001-01-01

    Burn-up calculations based on the continuous energy Monte Carlo method became possible by development of MVP-BURN. To confirm the reliably of MVP-BURN, it was applied to the two numerical benchmark problems; cell burn-up calculations for High Conversion LWR lattice and BWR lattice with burnable poison rods. Major burn-up parameters have shown good agreements with the results obtained by a deterministic code (SRAC95). Furthermore, spent fuel composition calculated by MVP-BURN was compared with measured one. Atomic number densities of major actinides at 34 GWd/t could be predicted within 10% accuracy. (author)

  10. Towards an ICF core set for ADHD: a worldwide expert survey on ability and disability

    OpenAIRE

    de Schipper, Elles; Mahdi, Soheil; Coghill, David; de Vries, Petrus J.; Gau, Susan Shur-Fen; Granlund, Mats; Holtmann, Martin; Karande, Sunil; Levy, Florence; Almodayfer, Omar; Rohde, Luis; Tannock, Rosemary; B?lte, Sven

    2015-01-01

    This is the second in a series of four empirical studies designed to develop International Classification of Functioning, Disability and Health (ICF and Children and Youth version, ICF-CY) core sets for attention deficit hyperactivity disorder (ADHD). The objective of this stage was to gather the opinions from international experts on which ability and disability concepts were considered relevant to functioning in ADHD. An email-based survey was carried out amongst international experts in AD...

  11. Non-LTE Equation of State for ICF simulations

    Science.gov (United States)

    Klapisch, Marcel; Bar-Shalom, Avraham; Colombant, Denis

    2002-11-01

    SCROLL is a collisional radiative model able to deal with complex spectra[1]. It is used to generate opacity/emissivity databases [2] compatible with the hydrocode FAST[3] for all elements of interest in the simulation of ICF targets, including high-Z. It is now modified to yield tables of EOS data for FAST, in the whole range of interest (T=1 to 25000eV, rho=10-6 to 100g/cc). SCROLL contributes the electronic -free and bound- part of the EOS, replacing Busquet's model of an ionization temperature. Ionization energies include contributions of all excited states. Energies and Z* go smoothly to the high density regime, where a "jellium" model is assumed. The free electrons are self consistent with the bound electrons. Examples of runs will be shown. Supported by USDOE through a contract with the Naval Research Laboratory. [1] A. Bar-Shalom, J. Oreg, and M. Klapisch, J. Quant. Spectrosc. Radiat. Transfer 65, 43 (2000). [2] A. Bar-shalom, M. Klapisch, J. Oreg, and D. Colombant, Bull. Am. Phys. Soc. 46, 295 (2001). [3] J. H. Gardner, A. J. Schmitt, J. P. Dahlburg, et al, Phys. Plasmas 5, 1935 (1998).

  12. Identification of relevant ICF categories by patients with neurological conditions in early post-acute rehabilitation facilities.

    Science.gov (United States)

    Grill, Eva; Lipp, Berthold; Boldt, Christine; Stucki, Gerold; Koenig, Eberhard

    To describe functioning and health of patients with neurological conditions in early post-acute rehabilitation facilities and to identify the most common problems using the International Classification of Functioning, Disability and Health (ICF). Cross-sectional survey in a convenience sample of patients with neurological conditions requiring rehabilitation in early post-acute facilities. The second-level categories of the ICF were used to collect information on patients' problems. For the ICF components Body Functions, Body Structures and Activities and Participation absolute and relative frequencies of impairments/limitations in the study population were reported. For the component Environmental Factors absolute and relative frequencies of perceived barriers or facilitators were reported. The mean age in the sample was 56.6 years with a median age of 60 years. Forty percent of the patients were female. In 292 neurological patients 125 categories (51%) had a prevalence of 30% and above: 39 categories (49%) of Body Functions, 11 categories (28%) of Body Structures, 64 categories (88%) of Activities and Participation and 10 (20%) categories of Environmental Factors. This study is a first step towards the development of ICF Core Sets for of patients with neurological conditions in early post-acute rehabilitation facilities.

  13. Improved performance of the Aurora KrF/ICF laser system

    International Nuclear Information System (INIS)

    Jones, J.E.; Czuchlewski, S.J.; Turner, T.P.; Watt, R.G.; Thomas, S.J.; Netz, D.A.; Tallman, C.R.; Figueira, J.F.

    1990-01-01

    This paper reports on Aurora the Los Alamos National Laboratory short pulse high power krypton-fluoride laser system. It serves as an end-to-end technology demonstration prototype for large scale UV laser systems for short wavelength inertial confinement fusion (ICF) research. The system employs optical angular multiplexing and serial amplification by electron-beam driven KrF laser amplifiers. The 1-5-ns pulse of the Aurora front end is split into ninety-six beams which are angularly and temporally multiplexed to produce a 480-ns pulse train for amplification by four KrF laser amplifiers. The largest amplifier, the large aperture module (LAM), has a 1-m square aperture and a gain length of 2 m. In the present system configuration half (forty-eight) of the amplified pulses are demultiplexed using different optical path lengths and delivered simultaneously to target. The system has not been optimized, and several near term improvements are expected to result in significant increases in both delivered energy and target irradiance. Removing the twelve calorimeters from the lens plate and allowing forty-eight beams to go to target will increase delivered energy by 33%. Relatively minor modifications to the front end should result in a 30% increase in system output energy. Replacement of damaged optics will increase transmission into the preamplifier by at least 25%. New optics and reduction of retro-pulses will allow the preamplifier stage gain to be increased by 50%

  14. Effects of hippotherapy on body functions, activities and participation in children with cerebral palsy based on ICF-CY assessments.

    Science.gov (United States)

    Hsieh, Yueh-Ling; Yang, Chen-Chia; Sun, Shih-Heng; Chan, Shu-Ya; Wang, Tze-Hsuan; Luo, Hong-Ji

    2017-08-01

    To evaluate the effects of hippotherapy on body functions, activities, and participation in children with CP of various functional levels by using the International Classification of Functioning, Disability and Health-Children and Youth (ICF-CY) checklist. Fourteen children with cerebral palsy (CP) (3-8 years of age) were recruited for a 36-week study composed of baseline, intervention, and withdrawal phases (12 weeks for each phase, ABA design). Hippotherapy was implemented for 30 min once weekly for 12 consecutive weeks during the intervention phase. Body Functions (b) and Activities and Participation (d) components of the ICF-CY checklist were used as outcome measures at the initial interview and at the end of each phase. Over the 12 weeks of hippotherapy, significant improvements in ICF-CY qualifiers were found in neuromusculoskeletal and movement-related functions (b7), mobility (d4) and major life areas (d8) and, in particular, mobility of joint functions (b710), muscle tone functions (b735), involuntary movement reaction functions (b755), involuntary movement functions (b765), and play (d811) (all p hippotherapy on body functions, activities, and participation in children with CP. Implications for Rehabilitation ICF-CY provides a comprehensive overview of functioning and disability and constitutes a universal language for identifying the benefits of hippotherapy in areas of functioning and disability in children with CP. In children with CP, hippotherapy encourages a more complementary approach that extends beyond their impairments and limitations in body functions, activities, and participation. The effect of hippotherapy was distinct from GMFCS levels and the majority of improvements were present in children with GMFCS levels I-III.

  15. Use of The International Classification of Functioning, Disability and Health (ICF as a conceptual framework and common language for disability statistics and health information systems

    Directory of Open Access Journals (Sweden)

    Kostanjsek Nenad

    2011-05-01

    Full Text Available Abstract A common framework for describing functional status information is needed in order to make this information comparable and of value. The World Health Organization’s International Classification of Functioning, Disability and Health (ICF, which has been approved by all its member states, provides this common language and framework. The article provides an overview of ICF taxonomy, introduces the conceptual model which underpins ICF and elaborates on how ICF is used at population and clinical level. Furthermore, the article presents key features of the ICF tooling environment and outlines current and future developments of the classification.

  16. Optical Properties of Biomass Burning Aerosols: Comparison of Experimental Measurements and T-Matrix Calculations

    Directory of Open Access Journals (Sweden)

    Samin Poudel

    2017-11-01

    Full Text Available The refractive index (RI is an important parameter in describing the radiative impacts of aerosols. It is important to constrain the RI of aerosol components, since there is still significant uncertainty regarding the RI of biomass burning aerosols. Experimentally measured extinction cross-sections, scattering cross-sections, and single scattering albedos for white pine biomass burning (BB aerosols under two different burning and sampling conditions were modeled using T-matrix theory. The refractive indices were extracted from these calculations. Experimental measurements were conducted using a cavity ring-down spectrometer to measure the extinction, and a nephelometer to measure the scattering of size-selected aerosols. BB aerosols were obtained by burning white pine using (1 an open fire in a burn drum, where the aerosols were collected in distilled water using an impinger, and then re-aerosolized after several days, and (2 a tube furnace to directly introduce the BB aerosols into an indoor smog chamber, where BB aerosols were then sampled directly. In both cases, filter samples were also collected, and electron microscopy images were used to obtain the morphology and size information used in the T-matrix calculations. The effective radius of the particles collected on filter media from the open fire was approximately 245 nm, whereas it was approximately 76 nm for particles from the tube furnace burns. For samples collected in distilled water, the real part of the RI increased with increasing particle size, and the imaginary part decreased. The imaginary part of the RI was also significantly larger than the reported values for fresh BB aerosol samples. For the particles generated in the tube furnace, the real part of the RI decreased with particle size, and the imaginary part was much smaller and nearly constant. The RI is sensitive to particle size and sampling method, but there was no wavelength dependence over the range considered (500

  17. Fast ignition upon the implosion of a thin shell onto a precompressed deuterium-tritium ball

    Science.gov (United States)

    Gus'kov, S. Yu.; Zmitrenko, N. V.

    2012-11-01

    Fast ignition of a precompressed inertial confinement fusion (ICF) target by a hydrodynamic material flux is investigated. A model system of hydrodynamic objects consisting of a central deuterium-tritium (DT) ball and a concentric two-layer shell separated by a vacuum gap is analyzed. The outer layer of the shell is an ablator, while the inner layer consists of DT ice. The igniting hydrodynamic flux forms as a result of laser-driven acceleration and compression of the shell toward the system center. A series of one-dimensional numerical simulations of the shell implosion, the collision of the shell with the DT ball, and the generation and propagation of thermonuclear burn waves in both parts of the system are performed. Analytic models are developed that describe the implosion of a thin shell onto a central homogeneous ball of arbitrary radius and density and the initiation and propagation of a thermonuclear burn wave induced by such an implosion. Application of the solution of a model problem to analyzing the implosion of a segment of a spherical shell in a conical channel indicates the possibility of fast ignition of a spherical ICF target from a conical target driven by a laser pulse with an energy of 500-700 kJ.

  18. Severe childhood burns in the Czech Republic: risk factors and prevention

    Science.gov (United States)

    Čelko, Alexander Martin; Dáňová, Jana; Barss, Peter

    2009-01-01

    Abstract Objective To assess risk factors for paediatric burn injuries in the Czech Republic and to suggest preventive measures. Methods This study included all children aged 0–16 years hospitalized during 1993–2000 at the Prague Burn Centre and data from the Czech Ministry of Health on national paediatric burn hospitalizations during 1996–2006. Personal, equipment and environmental risk factors were identified from hospital records. Findings The incidence of burn admissions among 0–14 year-olds increased from 85 to 96 per 100 000 between 1996 and 2006, mainly due to a 13% increase among 1–4 year-olds. Between 1993–2000 and 2006, the proportion of burn victims in the country hospitalized at the Prague Burn Centre increased from 9% to 21%. Detailed data were available on 1064 children (64% boys). Around 31% of all burn hospitalizations were in 1 year-olds. Some 79% of burns occurred at home: 70% in the kitchen, 14% in the living room or bedroom and 11% in the bathroom. Of the 18% occurring outdoors, 80% involved boys. Scalds from hot liquids accounted for 70% of all burns. The mean hospital stay was 22 days for boys and 18 days for girls. Conclusion Most burns involved scalds from hot liquids at home: beverages in kitchens and water in bathrooms. There is a need for passive preventive measures, such as redesigned domestic cooking and eating areas, safer electrical kettles and temperature control devices for bathrooms. Educational programmes should be developed for parents and caregivers. A national plan for child burn prevention with specific targets would be helpful. PMID:19551256

  19. Compiling standardized information from clinical practice: using content analysis and ICF Linking Rules in a goal-oriented youth rehabilitation program.

    Science.gov (United States)

    Lustenberger, Nadia A; Prodinger, Birgit; Dorjbal, Delgerjargal; Rubinelli, Sara; Schmitt, Klaus; Scheel-Sailer, Anke

    2017-09-23

    To illustrate how routinely written narrative admission and discharge reports of a rehabilitation program for eight youths with chronic neurological health conditions can be transformed to the International Classification of Functioning, Disability and Health. First, a qualitative content analysis was conducted by building meaningful units with text segments assigned of the reports to the five elements of the Rehab-Cycle ® : goal; assessment; assignment; intervention; evaluation. Second, the meaningful units were then linked to the ICF using the refined ICF Linking Rules. With the first step of transformation, the emphasis of the narrative reports changed to a process oriented interdisciplinary layout, revealing three thematic blocks of goals: mobility, self-care, mental, and social functions. The linked 95 unique ICF codes could be grouped in clinically meaningful goal-centered ICF codes. Between the two independent linkers, the agreement rate was improved after complementing the rules with additional agreements. The ICF Linking Rules can be used to compile standardized health information from narrative reports if prior structured. The process requires time and expertise. To implement the ICF into common practice, the findings provide the starting point for reporting rehabilitation that builds upon existing practice and adheres to international standards. Implications for Rehabilitation This study provides evidence that routinely collected health information from rehabilitation practice can be transformed to the International Classification of Functioning, Disability and Health by using the "ICF Linking Rules", however, this requires time and expertise. The Rehab-Cycle ® , including assessments, assignments, goal setting, interventions and goal evaluation, serves as feasible framework for structuring this rehabilitation program and ensures that the complexity of local practice is appropriately reflected. The refined "ICF Linking Rules" lead to a standardized

  20. Use of International Classification of Functioning, Disability and Health (ICF) to describe patient-reported disability in multiple sclerosis and identification of relevant environmental factors.

    Science.gov (United States)

    Khan, Fary; Pallant, Julie F

    2007-01-01

    To use the International Classification of Functioning, Disability and Health (ICF) to describe patient-reported disability in multiple sclerosis and identify relevant environmental factors. Cross-sectional survey of 101 participants in the community. Their multiple sclerosis-related problems were linked with ICF categories (second level) using a checklist, consensus between health professionals and the "linking rules". The impact of multiple sclerosis on health areas corresponding to 48 ICF categories was also assessed. A total of 170 ICF categories were identified (mean age 49 years, 72 were female). Average number of problems reported was 18. The categories include 48 (42%) for body function, 16 (34%) body structure, 68 (58%) activities and participation and 38 (51%) for environmental factors. Extreme impact in health areas corresponding to ICF categories for activities and participation were reported for mobility, work, everyday home activities, community and social activities. While those for the environmental factors (barriers) included products for mobility, attitudes of extended family, restriction accessing social security and health resources. This study is a first step in the use of the ICF in persons with multiple sclerosis and towards development of the ICF Core set for multiple sclerosis from a broader international perspective.

  1. Recent advances in indirect drive ICF target physics at LLNL

    International Nuclear Information System (INIS)

    Hammel, B.A.; Bernat, T.P.; Collins, G.W.; Haan, S.; Landen, O.L.; MacGowan, B.J.; Suter, L.J.

    1999-01-01

    In preparation for ignition on the National Ignition Facility, the Lawrence Livermore National Laboratory's Inertial Confinement Fusion Program, working in collaboration with Los Alamos National Laboratory, Commissariat a l'Energie Atomique (CEA), and Laboratory for Laser Energetics at the University of Rochester, has performed a broad range of experiments on the Nova and Omega lasers to test the fundamentals of the NIF target designs. These studies have refined our understanding of the important target physics, and have led to many of the specifications for the NIF laser and the cryogenic ignition targets. Our recent work has been focused in the areas of hohlraum energetics, symmetry, shock physics, and target design optimization and fabrication. (author)

  2. Evaluation of Isotopic Measurements and Burn-up Value of Sample GU3 of ARIANE Project

    Energy Technology Data Exchange (ETDEWEB)

    Tore, C.; Rodriguez Rivada, A.

    2014-07-01

    Estimation of the burn-up value of irradiated fuel and its isotopic composition are important for criticality analysis, spent fuel management and source term estimation. The practical way to estimate the irradiated fuel composition and burn.up value is calculation with validated code and nuclear data. Such validation of the neutronic codes and nuclear data requires the benchmarking with measured values. (Author)

  3. The responsiveness of the Lucerne ICF-based Multidisciplinary Observation Scale (LIMOS: a comparison with the Functional Independence Measure (FIM and the Barthel Index (BI

    Directory of Open Access Journals (Sweden)

    Tim Vanbellingen

    2016-09-01

    Full Text Available Background: Good responsive functional outcome measures are important to measure change in stroke patients. The aim of study was to compare the internal and external responsiveness, floor and ceiling effects of the motor, cognition & communication subscales of the Lucerne ICF-based Multidisciplinary Observation Scale (LIMOS with the motor and cognition subscales of the Functional Independence Measure (FIM, and the Barthel Index (BI, in a large cohort of stroke patients.Methods: One hundred and eighteen stroke patients participated in this study. Admission and discharge score distributions of the LIMOS motor, LIMOS cognition & communication, FIM motor and FIM cognition, and BI were analyzed based on skewness and kurtosis. Floor and ceiling effects of the scales were determined. Internal responsiveness was assessed with t-tests, effect sizes (ES and standardized response means (SRMs. External responsiveness was investigated with linear regression analyses.Results: The LIMOS motor and LIMOS cognition & communication subscales were more responsive, expressed by higher effect sizes (ES = 0.65, SRM = 1.17 and ES = 0.52, SRM = 1.17 respectively as compared with FIM motor (ES = 0.54, SRM = 0.96 and FIM cognition (ES = 0.41, SRM = 0.88, and the BI (ES = 0.41, SRM = 0.65. The LIMOS subscales showed neither floor nor ceiling effects at admission and discharge (all < 15%. In contrast, ceiling effects were found for the FIM motor (16%, FIM cognition (15% at discharge and the BI (at admission (22% and discharge (43%. LIMOS motor and LIMOS cognition & communication subscales significantly correlated (p < 0.0001 with a change in the FIM motor and FIM cognition subscales, suggesting good external responsiveness.Conclusions: We found that the LIMOS motor and LIMOS cognition & communication, which are ICF-based multidisciplinary standardized observation scales, might have the potential to better detect changes in functional outcome of stroke patients, compared to

  4. Feasibility of the Dutch ICF Activity Inventory: a pilot study

    NARCIS (Netherlands)

    Bruijning, J.E.; van Nispen, R.M.A.; van Rens, G.H.M.B.

    2010-01-01

    Background. Demographic ageing will lead to increasing pressure on visual rehabilitation services, which need to be efficiently organised in the near future. The Dutch ICF Activity Inventory (D-AI) was developed to assess the rehabilitation needs of visually impaired persons. This pilot study tests

  5. Physical functional outcome assessment of patients with major burns admitted to a UK Burn Intensive Care Unit.

    Science.gov (United States)

    Smailes, Sarah T; Engelsman, Kayleen; Dziewulski, Peter

    2013-02-01

    Determining the discharge outcome of burn patients can be challenging and therefore a validated objective measure of functional independence would assist with this process. We developed the Functional Assessment for Burns (FAB) score to measure burn patients' functional independence. FAB scores were taken on discharge from ICU (FAB 1) and on discharge from inpatient burn care (FAB 2) in 56 patients meeting the American Burn Association criteria for major burn. We retrospectively analysed prospectively collected data to measure the progress of patients' physical functional outcomes and to evaluate the predictive validity of the FAB score for discharge outcome. Mean age was 38.6 years and median burn size 35%. Significant improvements were made in the physical functional outcomes between FAB 1 and FAB 2 scores (pburn patients. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  6. Multiple scattering in electron fluid and energy loss in multi-ionic targets

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, C., E-mail: claude.deutsch@u-psud.fr [LPGP, UParis-Sud, 91405-Orsay (France); Tahir, N.A. [GSI, 1Planck Str., 64291-Darmstadt (Germany); Barriga-Carrasco, M. [ETSII, UCastilla-la-Mancha, 13071 Ciudad-Real (Spain); Ceban, V. [LPGP, UParis-Sud, 91405-Orsay (France); Fromy, P. [CRI, UParis-Sud, 91405-Orsay (France); Gilles, D. [CEA/Saclay/DSM/IRFU/SAP, 91191-Gif-s-Yvette (France); Leger, D. [Laboratoire Monthouy, UValenciennes-Hainaut Cambresis (France); Maynard, G. [LPGP, UParis-Sud, 91405-Orsay (France); Tashev, B. [Department of Physics, KazNu, Tole Bi82, Almaty (Kazakhstan); Volpe, L. [Department of Physics, UMilano-Bicocca, Milano 20126 (Italy)

    2014-01-01

    Extensions of the standard stopping model (SSM) for ion projectiles interacting with dense targets of timely concern for ICF and WDM are reviewed. They include multiple scattering on partially degenerate electrons, low velocity ion slowing down in demixing H–He mixtures within Jovian planets core or multiionic target such as Kapton.

  7. Multiple scattering in electron fluid and energy loss in multi-ionic targets

    International Nuclear Information System (INIS)

    Deutsch, C.; Tahir, N.A.; Barriga-Carrasco, M.; Ceban, V.; Fromy, P.; Gilles, D.; Leger, D.; Maynard, G.; Tashev, B.; Volpe, L.

    2014-01-01

    Extensions of the standard stopping model (SSM) for ion projectiles interacting with dense targets of timely concern for ICF and WDM are reviewed. They include multiple scattering on partially degenerate electrons, low velocity ion slowing down in demixing H–He mixtures within Jovian planets core or multiionic target such as Kapton

  8. Application of the International Classification of Functioning, Disability and Health (ICF) to people with dysphagia following non-surgical head and neck cancer management.

    Science.gov (United States)

    Nund, Rebecca L; Scarinci, Nerina A; Cartmill, Bena; Ward, Elizabeth C; Kuipers, Pim; Porceddu, Sandro V

    2014-12-01

    The International Classification of Functioning, Disability, and Health (ICF) is an internationally recognized framework which allows its user to describe the consequences of a health condition on an individual in the context of their environment. With growing recognition that dysphagia can have broad ranging physical and psychosocial impacts, the aim of this paper was to identify the ICF domains and categories that describe the full functional impact of dysphagia following non-surgical head and neck cancer (HNC) management, from the perspective of the person with dysphagia. A secondary analysis was conducted on previously published qualitative study data which explored the lived experiences of dysphagia of 24 individuals with self-reported swallowing difficulties following HNC management. Categories and sub-categories identified by the qualitative analysis were subsequently mapped to the ICF using the established linking rules to develop a set of ICF codes relevant to the impact of dysphagia following HNC management. The 69 categories and sub-categories that had emerged from the qualitative analysis were successfully linked to 52 ICF codes. The distribution of these codes across the ICF framework revealed that the components of Body Functions, Activities and Participation, and Environmental Factors were almost equally represented. The findings confirm that the ICF is a valuable framework for representing the complexity and multifaceted impact of dysphagia following HNC. This list of ICF codes, which reflect the diverse impact of dysphagia associated with HNC on the individual, can be used to guide more holistic assessment and management for this population.

  9. Thermal behavior of liquid-metal film exposed to ICF spectra. Annual technical progress report, 10 August 1981-9 August 1982

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Hassanein, A.M.; Croessmann, C.D.

    1982-08-01

    The A*THERMAL code is used to calculate the temperature rise and subsequent evaporation of a liquid Pb film bombarded with ICF target debris. The usefulness of the A*THERMAL code is demonstrated by the fact that it can handle an arbitrary x-ray spectrum as well as different ion species with Maxwellian or Gaussian distributions of energies. Temperature increases resulting from the various species were combined with vapor pressure data to yield evaporation rates and the subsequent total amount of Pb vaporized from a thermonuclear explosion

  10. Does thinking and doing the same thing amount to involved participation? Empirical explorations for finding a measure of intensity for a third ICF-CY qualifier.

    Science.gov (United States)

    Maxwell, Gregor; Augustine, Lilly; Granlund, Mats

    2012-01-01

    Participation as involvement in a situation includes two dimensions; doing the activity and the experience of involvement. The ICF-CY only measures doing using the capacity and performance qualifiers, a dimension measuring the experience is needed; a third qualifier. The experienced involvement of pupils in school activities is higher when thinking and doing coincided. By comparing self-reported experiences of involvement of children, data about what children were thinking and doing during activities were gathered from 21 children with and 19 without disabilities in inclusive classrooms. A relationship exists between an index of the subjective experience of involvement and whether children were thinking and doing the same things. This index can be constructed using measures of concentration, control, involvement, and motivation. Choice is influential, as knowledge about why an activity is undertaken affects involvement. Additionally, increased subjective experience of involvement gives better psychological health and well-being.

  11. Towards an outcome documentation in manual medicine: a first proposal of the International Classification of Functioning, Disability and Health (ICF) intervention categories for manual medicine based on a Delphi survey.

    Science.gov (United States)

    Kirchberger, I; Stucki, G; Böhni, U; Cieza, A; Kirschneck, M; Dvorak, J

    2009-09-01

    The International Classification of Functioning, Disability and Health (ICF) provides a useful framework for the comprehensive description of the patients' functional health. The aim of this study was to identify the ICF categories that represent the patients' problems treated by manual medicine practitioners in order to facilitate its application in manual medicine. This selection of ICF categories could be used for assessment, treatment documentation and quality management in manual medicine practice. Swiss manual medicine experts were asked about the patients' problems commonly treated by manual medicine practitioners in a three-round survey using the Delphi technique. Responses were linked to the ICF. Forty-eight manual medicine experts gave a total of 808 responses that were linked to 225 different ICF categories; 106 ICF categories which reached an agreement of at least 50% among the participants in the final Delphi-round were included in the set of ICF Intervention Categories for Manual Medicine; 42 (40%) of the categories are assigned to the ICF component body functions, 36 (34%) represent the ICF component body structures and 28 (26%) the ICF component activities and participation. A first proposal of ICF Intervention Categories for Manual Medicine was defined and needs to be validated in further studies.

  12. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements

  13. Stability design considerations for mirror support systems in ICF lasers

    International Nuclear Information System (INIS)

    Tietbohl, G.L.; Sommer, S.C.

    1996-10-01

    Some of the major components of laser systems used for Inertial Confinement Fusion (ICF) are the large aperture mirrors which direct the path of the laser. These mirrors are typically supported by systems which consist of mirror mounts, mirror enclosures, superstructures, and foundations. Stability design considerations for the support systems of large aperture mirrors have been developed based on the experience of designing and evaluating similar systems at the Lawrence Livermore National Laboratory (LLNL). Examples of the systems developed at LLNL include Nova, the Petawatt laser, Beamlet, and the National Ignition Facility (NIF). The structural design of support systems of large aperture mirrors has typically been controlled by stability considerations in order for the large laser system to meet its performance requirements for alignment and positioning. This paper will discuss the influence of stability considerations and will provide guidance on the structural design and evaluation of mirror support systems in ICF lasers so that this information can be used on similar systems

  14. HYPERFUSE: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n, 2n), (n, α), etc.) that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  15. Hyper fuse: a novel inertial confinement system utilizing hypervelocity projectiles for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1979-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with a target in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs or 90 Sr. The 14 MeV fusion neutrons released during the pellet burn cause transmutation reactions [e.g., (n, 2n), (n, α), etc.] that convert the long lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product

  16. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility

    Directory of Open Access Journals (Sweden)

    Wanguo Zheng

    2017-09-01

    Full Text Available The SG-Ⅲ laser facility (SG-Ⅲ is the largest laser driver for inertial confinement fusion (ICF researches in China, which has 48 beamlines and can deliver 180 kJ ultraviolet laser energy in 3 ns. In order to meet the requirements of precise physics experiments, some new functionalities need to be added to SG-Ⅲ and some intrinsic laser performances need upgrade. So at the end of SG-Ⅲ's engineering construction, the 2-year laser performance upgrade project started. This paper will introduce the newly added functionalities and the latest laser performance of SG-Ⅲ. With these function extensions and performance upgrade, SG-Ⅲ is now fully prepared for precise ICF experiments and solidly paves the way towards fusion ignition.

  17. Threshold bubble chamber for measurement of knock-on DT neutron tails from magnetic and inertial confinement experiments

    International Nuclear Information System (INIS)

    Fisher, R.K.; Zaveryaev, V.S.; Trusillo, S.V.

    1996-07-01

    We propose a new open-quotes thresholdclose quotes bubble chamber detector for measurement of knock-on neutron tails. These energetic neutrons result from fusion reactions involving energetic fuel ions created by alpha knock-on collisions in tokamak and other magnetic confinement experiments, and by both alpha and neutron knock-on collisions in inertial confinement fusion (ICF) experiments. The energy spectrum of these neutrons will yield information on the alpha population and energy distribution in tokamaks, and on alpha target physics and ρR measurements in ICF experiments. The bubble chamber should only detect neutrons with energies above a selectable threshold energy controlled by the bubble chamber pressure. The bubble chamber threshold mechanism, detection efficiency, and proposed applications to the International Thermonuclear Experimental Reactor (ITER) and National Ignition Facility (NIF) experiments will be discussed

  18. Toward the International Classification of Functioning, Disability and Health (ICF) Rehabilitation Set: A Minimal Generic Set of Domains for Rehabilitation as a Health Strategy.

    Science.gov (United States)

    Prodinger, Birgit; Cieza, Alarcos; Oberhauser, Cornelia; Bickenbach, Jerome; Üstün, Tevfik Bedirhan; Chatterji, Somnath; Stucki, Gerold

    2016-06-01

    To develop a comprehensive set of the International Classification of Functioning, Disability and Health (ICF) categories as a minimal standard for reporting and assessing functioning and disability in clinical populations along the continuum of care. The specific aims were to specify the domains of functioning recommended for an ICF Rehabilitation Set and to identify a minimal set of environmental factors (EFs) to be used alongside the ICF Rehabilitation Set when describing disability across individuals and populations with various health conditions. Secondary analysis of existing data sets using regression methods (Random Forests and Group Lasso regression) and expert consultations. Along the continuum of care, including acute, early postacute, and long-term and community rehabilitation settings. Persons (N=9863) with various health conditions participated in primary studies. The number of respondents for whom the dependent variable data were available and used in this analysis was 9264. Not applicable. For regression analyses, self-reported general health was used as a dependent variable. The ICF categories from the functioning component and the EF component were used as independent variables for the development of the ICF Rehabilitation Set and the minimal set of EFs, respectively. Thirty ICF categories to be complemented with 12 EFs were identified as relevant to the identified ICF sets. The ICF Rehabilitation Set constitutes of 9 ICF categories from the component body functions and 21 from the component activities and participation. The minimal set of EFs contains 12 categories spanning all chapters of the EF component of the ICF. The identified sets proposed serve as minimal generic sets of aspects of functioning in clinical populations for reporting data within and across heath conditions, time, clinical settings including rehabilitation, and countries. These sets present a reference framework for harmonizing existing information on disability across

  19. Establishing the fuel burn-up measuring system for 106 irradiated assemblies of Dalat reactor by using gamma spectrometer method

    International Nuclear Information System (INIS)

    Nguyen Minh Tuan; Pham Quang Huy; Tran Tri Vien; Trang Cao Su; Tran Quoc Duong; Dang Tran Thai Nguyen

    2013-01-01

    The fuel burn-up is an important parameter needed to be monitored and determined during a reactor operation and fuel management. The fuel burn-up can be calculated using computer codes and experimentally measured. This work presents the theory and experimental method applied to determine the burn-up of the irradiated and 36% enriched VVR-M2 fuel type assemblies of Dalat reactor. The method is based on measurement of Cs-137 absolute specific activity using gamma spectrometer. Designed measuring system consists of a collimator tube, high purity Germanium detector (HPGe) and associated electronics modules and online computer data acquisition system. The obtained results of measurement are comparable with theoretically calculated results. (author)

  20. In-situ burning of Orimulsion : small scale burns

    International Nuclear Information System (INIS)

    Fingas, M.F.

    2002-01-01

    This study examined the feasibility of burning Orimulsion. In-situ burning has always been a viable method for cleaning oil spills on water because it can effectively reduce the amount of spilled oil and eliminate the need to collect, store, transport and dispose of recovered oil. Orimulsion, however, behaves very differently from conventional oil when it is spilled because of its composition of 70 per cent bitumen in 30 per cent water. In-situ burning of this surfactant-stablized oil-in-water emulsion has never been seriously considered because of the perception that Orimulsion could not be ignited, and if it could, ignition would not be sustained. In this study, burn tests were conducted on 3 scales in a Cleveland Open Cup apparatus of 5 cm, 10 cm and 50 cm diameters. Larger scale burns were conducted in specially built pans. All tests were conducted on salt water which caused the bitumen to separate from the water. The objective was to determine if sufficient vapours could be generated to ignite the Orimulsion. The study also measured if a sustained flame would result in successful combustion. Both objectives were successfully accomplished. Diesel fuel was used to ignite the Orimulsion in the specially designed pan for large scale combustion. Quantitative removal of Orimulsion was achieved in all cases, but in some burns it was necessary to re-ignite the Orimulsion. It was noted that when Orimulsion burns, some trapped water droplets in the bitumen explode with enough force to extinguish a small flame. This did not occur on large-scale burns. It was concluded that the potential for successful in-situ burning increases with size. It was determined that approximately 1 mm in thickness of diesel fuel is needed to ignite a burn. 5 refs., 3 tabs., 4 figs

  1. Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome).

    NARCIS (Netherlands)

    Hagleitner, M.M.; Lankester, A.; Maraschio, P.; Hulten, M.; Fryns, J.P.; Schuetz, C.; Gimelli, G.; Davies, E.G.; Gennery, A.R.; Belohradsky, B.H.; Groot, R. de; Gerritsen, E.J.; Mattina, T.; Howard, P.J.; Fasth, A.; Reisli, I.; Furthner, D.; Slatter, M.A.; Cant, A.J.; Cazzola, G.; Dijken, P.J. van; Deuren, M. van; Greef, J.C. de; Maarel, S.M. van der; Weemaes, C.M.R.

    2008-01-01

    BACKGROUND: Immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome) is a rare autosomal recessive disease characterised by facial dysmorphism, immunoglobulin deficiency and branching of chromosomes 1, 9 and 16 after PHA stimulation of lymphocytes. Hypomethylation of DNA of a

  2. CLINICAL STUDY OF ELECTRICAL BURNS AMONG ALL BURNS CASES- 3 YEARS’ EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Nagabathula Durga Prasad

    2017-08-01

    Full Text Available BACKGROUND With the advances in technology, electrical injuries are becoming more common and are the leading cause of work-related traumatic death. One third of all electrical traumas and most high-voltage injuries are job related and more than 50% of these injuries result from power line contact. The management of the major burn injury represents a significant challenge to every member of the burns team. Most of electrical burns present with gangrene of toes and limbs with eschar over body parts. Their presentation is mostly due to contact with high-voltage electricity at their work places. MATERIALS AND METHODS A retrospective study was made to study the clinico-social profile of patients suffering electric burns admitted into Department of General Surgery. RESULTS 92 cases were evaluated and studied. Majority of patients developed gangrene of limbs and toes. Amputations and skin grafting was done. Most patients who suffered electric burns were males of age group 21 to 40 years. All cases are accidental and mostly occurred at work places. Most electric burns are high-voltage based and caused deep burns. Major complications like acute renal failure and septicaemia were encountered. Most of them suffered 16 to 30% burns. Most commonly isolated organism from wounds is pseudomonas. Most of them suffered a hospital stay of 1 to 2 months. CONCLUSION Electric burns are a burden to the society. Prevention is the best way to deal with them. Electricity-based employees have to be trained properly regarding safety measures to be taken. General education of public regarding safety measures can prevent electrical burn injuries.

  3. An alternative to the compact torus ICF driver

    International Nuclear Information System (INIS)

    Latter, A.L.; Martinelli, E.A.

    1992-11-01

    Plasma guns have been used in the Controlled Thermonuclear Reaction (CTR) Program to inject energetic deuterium-tritium plasma into a magnetic confinement machine, also for dense-plasma-focus devices to achieve fusion utilizing Z-pinches. In this report we propose another CTR application of a plasma gun: accelerating the plasma in a coaxial geometry to a speed in the neighborhood of a centimeter per shake with a total kinetic energy of about 20 MJ. The kinetic energy is efficiently converted to x-rays in a time of about a shake, and the x-ray pulse is used to implode an Inertial Confinement Fusion (ICF) capsule. As far as we know the plasma gun application we are proposing has not been explored before, but we observe that the LLNL Compact Torus Program hopes to accelerate a compact-torus-plasma to a comparable speed and energy and, in one of its applications, to generate x-rays for ICF purposes. In fact, the only difference between the LLNL Compact Torus Program and what we are proposing is that our plasma does not rely on imbedded magnetic fields and currents to minimize instabilities. We minimize instabilities by snowplowing the plasma to its required speed in a single shock. Which approach is better requires additional investigation

  4. [Clinical and biological monitoring of nutritional status in severe burns].

    Science.gov (United States)

    Bargues, L; Cottez-Gacia, S; Jault, P; Renard, C; Vest, P

    2009-01-01

    Burn patients are subject to hypermetabolism and catabolic states. Aim was to evaluate our current practice in nutrition. Twenty-one severely burned patients were prospectively included during three months period. Body weight was measured at least two times in a week during all stay in burn ICU. Biological markers of inflammation (C-reactive protein, CRP) and nutrition (prealbumin) were performed weekly. Protocol included early nasogastric feeding, tolerated gastric stasis less than 250 mL at four hours nasogastric aspirations, caloric target value of 40 Kcal/kg per day and measurement of total daily calorie intakes. Patient demographics showed a mean percent total body surface burn of 51.1+/-27 % (range 20-90), age of 38.7+/-13.1 years (range 18-67) and 57.3 % of smoke inhalation. All patients were ventilated and 19 patients survived. Length of stay was 75.7+/-47 days (range 22-184). Patients received only 58.9+/-10 % of calorie intakes recommended by French burn society. Loss of body mass was 15.2+/-9 kg (range 3-31) or 19.1+/-10 % of admission weight (range 5-37). Erosion of body mass was not correlated with burned surface (p=0.08), calorie intakes (p=0.26), smoke inhalation (p=0.46), lengths of stay (p=0.53), lengths of ventilation (p=0.08) or nutrition (p=0.12), days of antibiotic (p=0.72), number of dressing changes (p=0.6) or surgery (p=0.64). Biological parameters showed CRP decreasing and prealbumin improving values. New strategies of nutrition are necessary to improve outcome and reduce body mass loss in burns.

  5. Development of the life impact burn recovery evaluation (LIBRE) profile: assessing burn survivors' social participation.

    Science.gov (United States)

    Kazis, Lewis E; Marino, Molly; Ni, Pengsheng; Soley Bori, Marina; Amaya, Flor; Dore, Emily; Ryan, Colleen M; Schneider, Jeff C; Shie, Vivian; Acton, Amy; Jette, Alan M

    2017-10-01

    Measuring the impact burn injuries have on social participation is integral to understanding and improving survivors' quality of life, yet there are no existing instruments that comprehensively measure the social participation of burn survivors. This project aimed to develop the Life Impact Burn Recovery Evaluation Profile (LIBRE), a patient-reported multidimensional assessment for understanding the social participation after burn injuries. 192 questions representing multiple social participation areas were administered to a convenience sample of 601 burn survivors. Exploratory factor analysis and confirmatory factor analysis (CFA) were used to identify the underlying structure of the data. Using item response theory methods, a Graded Response Model was applied for each identified sub-domain. The resultant multidimensional LIBRE Profile can be administered via Computerized Adaptive Testing (CAT) or fixed short forms. The study sample included 54.7% women with a mean age of 44.6 (SD 15.9) years. The average time since burn injury was 15.4 years (0-74 years) and the average total body surface area burned was 40% (1-97%). The CFA indicated acceptable fit statistics (CFI range 0.913-0.977, TLI range 0.904-0.974, RMSEA range 0.06-0.096). The six unidimensional scales were named: relationships with family and friends, social interactions, social activities, work and employment, romantic relationships, and sexual relationships. The marginal reliability of the full item bank and CATs ranged from 0.84 to 0.93, with ceiling effects less than 15% for all scales. The LIBRE Profile is a promising new measure of social participation following a burn injury that enables burn survivors and their care providers to measure social participation.

  6. Identification of relevant ICF categories for indication, intervention planning and evaluation of health resort programs: a Delphi exercise

    Science.gov (United States)

    Morita, E.; Weigl, M.; Schuh, A.; Stucki, G.

    2006-01-01

    Health resort programs have a long tradition, mainly in European countries and Japan. They rely on local resources and the physical environment, physical medicine interventions and traditional medicine to optimise functioning and health. Arguably because of the long tradition, there is only a limited number of high-quality studies that examine the effectiveness of health resort programs. Specific challenges to the evaluation of health resort programs are to randomise the holistic approach with a varying number of specific interventions but also the reliance on the effect of the physical environment. Reference standards for the planning and reporting of health resort studies would be highly beneficial. With the International Classification of Functioning Disability and Health (ICF), we now have such a standard that allows us to describe body functions and structures, activities and participation and interaction with environmental factors. A major challenge when applying the ICF in practice is its length. Therefore, the objective of this project was to identify the ICF categories most relevant for health resort programs. We conducted a consensus-building, three-round, e-mail survey using the Delphi technique. Based on the consensus of the experts, it was possible to come up with an ICF Core Set that can serve as reference standards for the indication, intervention planning and evaluation of health resort programs. This preliminary ICF Core Set should be tested in different regions and in subsets of health resort visitors with varying conditions.

  7. Review Article: Mapping of children's health and development data on population level using the classification system ICF-CY.

    Science.gov (United States)

    Ståhl, Ylva; Granlund, Mats; Gäre-Andersson, Boel; Enskär, Karin

    2011-02-01

    The aim of this study was to investigate if essential health and development data of all children in Sweden in the Child Health Service (CHS) and School Health Service (SHS) can be linked to the classification system International Classification of Functioning, Disability and Health--Children and Youth (ICF-CY). Lists of essential health terms, compiled by professionals from CHS and SHS, expected to be used in the national standardised records form the basis for the analysis in this study. The essential health terms have been linked to the codes of ICF-CY by using linking rules and a verification procedure. After exclusion of terms not directly describing children's health, a majority of the health terms could be linked into the ICF-CY with a high proportion of terms in body functions and a lower proportion in activity/participation and environment respectively. Some health terms had broad description and were linked to several ICF-CY codes. The precision of the health terms was at a medium level of detail. ICF-CY can be useful as a tool for documenting child health. It provides not only a code useful for statistical purposes but also a language useful for the CHS and SHS in their work on individual as well as population levels. It was noted that the health terms used by services mainly focused on health related to body function. This indicates that more focus is needed on health data related to child's functioning in everyday life situations.

  8. ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)

    Energy Technology Data Exchange (ETDEWEB)

    Caird, J A; Agrawal, V; Bayramian, A; Beach, R; Britten, J; Chen, D; Cross, R; Ebbers, C; Erlandson, A; Feit, M; Freitas, B; Ghosh, C; Haefner, C; Homoelle, D; Ladran, T; Latkowski, J; Molander, W; Murray, J; Rubenchik, S; Schaffers, K; Siders, C W; Stappaerts, E; Sutton, S; Telford, S; Trenholme, J; Barty, C J

    2008-10-28

    We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive.

  9. Impact of Work-Related Burn Injury on Social Reintegration Outcomes: A Life Impact Burn Recovery Evaluation (LIBRE) Study.

    Science.gov (United States)

    Schneider, Jeffrey C; Shie, Vivian L; Espinoza, Leda F; Shapiro, Gabriel D; Lee, Austin; Acton, Amy; Marino, Molly; Jette, Alan; Kazis, Lewis E; Ryan, Colleen M

    2017-11-26

    To examine differences in long-term social reintegration outcomes for burn survivors with and without work-related injuries. Cross-sectional survey. Community-dwelling burn survivors. Burn survivors (N=601) aged ≥18 years with injuries to ≥5% total body surface area or burns to critical areas (hands, feet, face, or genitals). Not applicable. The Life Impact Burn Recovery Evaluation Profile was used to examine the following previously validated 6 scale scores of social participation: Family and Friends, Social Interactions, Social Activities, Work and Employment, Romantic Relationships, and Sexual Relationships. Older participants, those who were married, and men were more likely to be burned at work (Preintegration outcomes than those without work-related injuries. Identification of those at higher risk for work reintegration challenges after burn injury may enable survivors, providers, employers, and insurers to better use appropriate resources to promote and target optimal employment outcomes. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Classical and ablative Richtmyer-Meshkov instability and other ICF-relevant plasma flows diagnosed with monochromatic x-ray imaging

    International Nuclear Information System (INIS)

    Aglitskiy, Y; Metzler, N; Karasik, M; Velikovich, A L; Zalesak, S T; Schmitt, A J; Serlin, V; Weaver, J; Obenschain, S P; Gardner, J H

    2008-01-01

    In inertial confinement fusion (ICF) and high-energy density physics (HEDP), the most important manifestations of the hydrodynamic instabilities and other mixing processes involve lateral motion of the accelerated plasmas. In order to understand the experimental observations and to advance the numerical simulation codes to the point of predictive capability, it is critically important to accurately diagnose the motion of the dense plasma mass. The most advanced diagnostic technique recently developed for this purpose is the monochromatic x-ray imaging that combines large field of view with high contrast, high spatial resolution and large throughput, ensuring high temporal resolution at large magnification. Its application made it possible for the experimentalists to observe for the first time important hydrodynamic effects that trigger compressible turbulent mixing in laser targets, such as ablative Richtmyer-Meshkov (RM) instability, feedout, interaction of an RM-unstable interface with shock and rarefaction waves. It also helped to substantially improve the accuracy of diagnosing many other important plasma flows, ranging from laser-produced jets to electromagnetically driven wires in a Z-pinch, and to test various methods suggested for mitigation of the Rayleigh-Taylor instability. We will review the results obtained with the aid of this technique in ICF-HEDP studies at the Naval Research Laboratory and the prospects of its future applications.

  11. Practice, science and governance in interaction: European effort for the system-wide implementation of the International Classification of Functioning, Disability and Health (ICF) in Physical and Rehabilitation Medicine.

    Science.gov (United States)

    Stucki, Gerold; Zampolini, Mauro; Juocevicius, Alvydas; Negrini, Stefano; Christodoulou, Nicolas

    2017-04-01

    Since its launch in 2001, relevant international, regional and national PRM bodies have aimed to implement the International Classification of Functioning, Disability and Health (ICF) in Physical and Rehabilitation Medicine (PRM), whereby contributing to the development of suitable practical tools. These tools are available for implementing the ICF in day-to-day clinical practice, standardized reporting of functioning outcomes in quality management and research, and guiding evidence-informed policy. Educational efforts have reinforced PRM physicians' and other rehabilitation professionals' ICF knowledge, and numerous implementation projects have explored how the ICF is applied in clinical practice, research and policy. Largely lacking though is the system-wide implementation of ICF in day-to-day practice across all rehabilitation services of national health systems. In Europe, system-wide implementation of ICF requires the interaction between practice, science and governance. Considering its mandate, the UEMS PRM Section and Board have decided to lead a European effort towards system-wide ICF implementation in PRM, rehabilitation and health care at large, in interaction with governments, non-governmental actors and the private sector, and aligned with ISPRM's collaboration plan with WHO. In this paper we present the current PRM internal and external policy agenda towards system-wide ICF implementation and the corresponding implementation action plan, while highlighting priority action steps - promotion of ICF-based standardized reporting in national quality management and assurance programs, development of unambiguous rehabilitation service descriptions using the International Classification System for Service Organization in Health-related Rehabilitation, development of Clinical Assessment Schedules, qualitative linkage and quantitative mapping of data to the ICF, and the cultural adaptation of the ICF Clinical Data Collection Tool in European languages.

  12. Non-Maxwellian Effects for ICF

    Science.gov (United States)

    Davidovits, Seth; Fisch, Nathaniel

    2013-10-01

    While in collisional plasma the bulk of the distribution function is driven toward Maxwellian in a few collision times, the high velocity tails can take much longer to form. The fast ions in these tails have much larger fusion cross sections than thermal ions, and contribute substantially to fusion production. We investigate the possibilities for enhancement or depletion of these tails in regimes applicable to ICF capsule implosions, and the corresponding effects on fusion reactivity. There are a number of possible scenarios that might yield such non-Maxwellian tails, including, for example, hydrodynamic flows or Knudsen layer effects. Work supported by DOE under DE-AC02-09CH11466, by DTRA under HDTRA1-11-10037 and by DOE CSGF under DE-FG02- 97ER25308.

  13. A systematic review of patient reported outcome measures (PROMs) used in child and adolescent burn research.

    Science.gov (United States)

    Griffiths, C; Armstrong-James, L; White, P; Rumsey, N; Pleat, J; Harcourt, D

    2015-03-01

    Patient reported outcome measures (PROMs) can identify important information about patient needs and therapeutic progress. The aim of this review was to identify the PROMs that are being used in child and adolescent burn care and to determine the quality of such scales. Computerised and manual bibliographic searches of Medline, Social Sciences Index, Cinahl, Psychinfo, Psycharticles, AMED, and HAPI, were used to identify English-language articles using English-language PROMs from January 2001 to March 2013. The psychometric quality of the PROMs was assessed. 23 studies met the entry criteria and identified 32 different PROMs (31 generic, 1 burns-specific). Overall, the psychometric quality of the PROMs was low; only two generic scales (the Perceived Stigmatisation Questionnaire and the Social Comfort Scale) and only one burns-specific scale (the Children Burn Outcomes Questionnaire for children aged 5-18) had psychometric evidence relevant to this population. The majority of PROMs did not have psychometric evidence for their use with child or adolescent burn patients. To appropriately identify the needs and treatment progress of child and adolescent burn patients, new burns-specific PROMs need to be developed and validated to reflect issues that are of importance to this population. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  14. Current concepts on burn wound conversion – a review of recent advances in understanding the secondary progressions of burns

    Science.gov (United States)

    Salibian, Ara A.; Del Rosario, Angelica Tan; De Almeida Moura Severo, Lucio; Nguyen, Long; Banyard, Derek A.; Toranto, Jason D.; Evans, Gregory R.D.; Widgerow, Alan D.

    2016-01-01

    Burn wound conversion describes the process by which superficial partial thickness burns convert into deeper burns necessitating surgical intervention. Fully understanding and thus controlling this phenomenon continues to defy burn surgeons. However, potentially guiding burn wound progression so as to obviate the need for surgery while still bringing about healing with limited scarring is the major unmet challenge. Comprehending the pathophysiologic background contributing to deeper progression of these burns is an essential prerequisite to planning any intervention. In this study, a review of articles examining burn wound progression over the last five years was conducted to analyze trends in recent burn progression research, determine changes in understanding of the pathogenesis of burn conversion, and subsequently examine the direction for future research in developing therapies. The majority of recent research focuses on applying therapies from other disease processes to common underlying pathogenic mechanisms in burn conversion. While ischemia, inflammation, and free oxygen radicals continue to demonstrate a critical role in secondary necrosis, novel mechanisms such as autophagy have also been shown to contribute affect significantly burn progression significantly. Further research will have to determine whether multiple mechanisms should be targeted when developing clinical therapies. PMID:26787127

  15. Towards an ICF core set for ADHD: a worldwide expert survey on ability and disability.

    Science.gov (United States)

    de Schipper, Elles; Mahdi, Soheil; Coghill, David; de Vries, Petrus J; Gau, Susan Shur-Fen; Granlund, Mats; Holtmann, Martin; Karande, Sunil; Levy, Florence; Almodayfer, Omar; Rohde, Luis; Tannock, Rosemary; Bölte, Sven

    2015-12-01

    This is the second in a series of four empirical studies designed to develop International Classification of Functioning, Disability and Health (ICF and Children and Youth version, ICF-CY) core sets for attention deficit hyperactivity disorder (ADHD). The objective of this stage was to gather the opinions from international experts on which ability and disability concepts were considered relevant to functioning in ADHD. An email-based survey was carried out amongst international experts in ADHD. Relevant functional ability and disability concepts were extracted from their responses and linked to the ICF/-CY categories by two independent researchers using a standardised linking procedure. 174 experts from 11 different disciplines and 45 different countries completed the survey. Meaningful concepts identified in their responses were linked to 185 ICF/-CY categories. Of these, 83 categories were identified by at least 5 % of the experts and considered the most relevant to ADHD: 30 of these were related to Body functions (most identified: attention functions, 85 %), 30 to Activities and Participation (most identified: school education, 52 %), 20 to Environmental factors (most identified: support from immediate family, 61 %), and 3 to Body structures (most identified: structure of brain, 83 %). Experts also provided their views on particular abilities related to ADHD, naming characteristics such as high-energy levels, flexibility and resiliency. Gender differences in the expression of ADHD identified by experts pertained mainly to females showing more internalising (e.g. anxiety, low self-esteem) and less externalising behaviours (e.g. hyperactivity), leading to a risk of late- and under-diagnosis in females. Results indicate that the impact of ADHD extends beyond the core symptom domains, into all areas of life and across the lifespan. The current study in combination with three additional preparatory studies (comprehensive scoping review, focus groups, clinical study

  16. The relationship of field burn severity measures to satellite-derived Burned Area Reflectance Classification (BARC) maps

    Science.gov (United States)

    Andrew Hudak; Penelope Morgan; Carter Stone; Pete Robichaud; Terrie Jain; Jess Clark

    2004-01-01

    Preliminary results are presented from ongoing research on spatial variability of fire effects on soils and vegetation from the Black Mountain Two and Cooney Ridge wildfires, which burned in western Montana during the 2003 fire season. Extensive field fractional cover data were sampled to assess the efficacy of quantitative satellite image-derived indicators of burn...

  17. Possibilities and Implications of Using the ICF and Other Vocabulary Standards in Electronic Health Records.

    Science.gov (United States)

    Vreeman, Daniel J; Richoz, Christophe

    2015-12-01

    There is now widespread recognition of the powerful potential of electronic health record (EHR) systems to improve the health-care delivery system. The benefits of EHRs grow even larger when the health data within their purview are seamlessly shared, aggregated and processed across different providers, settings and institutions. Yet, the plethora of idiosyncratic conventions for identifying the same clinical content in different information systems is a fundamental barrier to fully leveraging the potential of EHRs. Only by adopting vocabulary standards that provide the lingua franca across these local dialects can computers efficiently move, aggregate and use health data for decision support, outcomes management, quality reporting, research and many other purposes. In this regard, the International Classification of Functioning, Disability, and Health (ICF) is an important standard for physiotherapists because it provides a framework and standard language for describing health and health-related states. However, physiotherapists and other health-care professionals capture a wide range of data such as patient histories, clinical findings, tests and measurements, procedures, and so on, for which other vocabulary standards such as Logical Observation Identifiers Names and Codes and Systematized Nomenclature Of Medicine Clinical Terms are crucial for interoperable communication between different electronic systems. In this paper, we describe how the ICF and other internationally accepted vocabulary standards could advance physiotherapy practise and research by enabling data sharing and reuse by EHRs. We highlight how these different vocabulary standards fit together within a comprehensive record system, and how EHRs can make use of them, with a particular focus on enhancing decision-making. By incorporating the ICF and other internationally accepted vocabulary standards into our clinical information systems, physiotherapists will be able to leverage the potent

  18. Tritium and plutonium production as a step toward ICF commercialization

    International Nuclear Information System (INIS)

    Pendergrass, J.H.; Dudziak, D.J.

    1984-01-01

    The feasibility of a combined special nuclear materials (SNM) production plant/engineering test facility (ETF) with reduced pellet and driver performance requirements as a step toward commercialization of inertial confinement fusion (ICF) is examined. Blanket design and tritium production cost studies, the status of RandD programs, and the ETF role are emphasized

  19. U.S. DOE driver development for ICF

    International Nuclear Information System (INIS)

    Sluyter, M.M.

    1995-01-01

    The goal of the Department of Energy (DOE) supported Inertial Confinement Fusion (ICF) Program is to produce pure fusion ignition with fusion yields of 200 to 1000 millions of joules, which could find several applications in the defence and in the electric power generation. The National Ignition Facility will operate in both direct and indirect driver modes, with a glass laser driver. However two other options have been developed to increase the energy efficiency: the Light Ion Pulsed Power program and the NIKE KrF laser. Heavy ion drivers are also investigated -Abstract only-. (TEC)

  20. PIV Measurements of Gas Flow Fields from Burning End

    Science.gov (United States)

    Huang, Yifei; Wu, Junzhang; Zeng, Jingsong; Tang, Darong; Du, Liang

    2017-12-01

    To study the influence of cigarette gas on the environment, it is necessary to know the cigarette gas flow fields from burning end. By using PIV technique, in order to reveal velocity characteristics of gas flow fields, the velocities of cigarette gas flow fields was analyzed with different stepping motor frequencies corresponding to suction pressures, and the trend of velocity has been given with image fitting. The results shows that the velocities of the burning end increased with suction pressures; Between velocities of the burning end and suction pressures, the relations present polynomial rule; The cigarette gas diffusion in combustion process is faster than in the smoldering process.

  1. Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury

    Science.gov (United States)

    Chen, Chuanli; Wang, Pei; Su, Qin; Wang, Shiliang; Wang, Fengjun

    2012-01-01

    Background Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. Conclusions/Significance The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury. PMID:22529961

  2. A case study on the application of International Classification of Functioning, Disability and Health (ICF)-based tools for vocational rehabilitation in spinal cord injury.

    Science.gov (United States)

    Glässel, Andrea; Rauch, Alexandra; Selb, Melissa; Emmenegger, Karl; Lückenkemper, Miriam; Escorpizo, Reuben

    2012-01-01

    Vocational rehabilitation (VR) plays a key role in bringing persons with acquired disabilities back to work, while encouraging employment participation. The purpose of this case study is to illustrate the systematic application of International Classification of Functioning, Disability, and Health (ICF)-based documentation tools by using ICF Core Sets in VR shown with a case example of a client with traumatic spinal cord injury (SCI). The client was a 26-year-old male with paraplegia (7th thoracic level), working in the past as a mover. This case study describes the integration of the ICF Core Sets for VR into an interdisciplinary rehabilitation program by using ICF-based documentation tools. Improvements in the client's impairments, activity limitations, and participation restrictions were observed following rehabilitation. Goals in different areas of functioning were achieved. The use of the ICF Core Sets in VR allows a comprehensive assessment of the client's level of functioning and intervention planning. Specifically, the Brief ICF Core Set in VR can provide domains for intervention relevant to each member of an interdisciplinary team and hence, can facilitate the VR management process in a SCI center in Switzerland.

  3. Early detection and longitudinal monitoring of experimental primary and disseminated melanoma using [18F]ICF01006, a highly promising melanoma PET tracer

    International Nuclear Information System (INIS)

    Rbah-Vidal, Latifa; Vidal, Aurelien; Besse, Sophie; Audin, Laurent; Degoul, Francoise; Miot-Noirault, Elisabeth; Moins, Nicole; Auzeloux, Philippe; Chezal, Jean-Michel; Cachin, Florent; Bonnet, Mathilde; Askienazy, Serge; Dolle, Frederic

    2012-01-01

    Here, we report a new and rapid radiosynthesis of 18 F-N-[2-(diethylamino)ethyl]-6-fluoro-pyridine-3-carboxamide ([ 18 F]ICF01006), a molecule with a high specificity for melanotic tissue, and its evaluation in a murine model for early specific detection of pigmented primary and disseminated melanoma. [ 18 F]ICF01006 was synthesized using a new one-step bromine-for-fluorine nucleophilic heteroaromatic substitution. Melanoma models were induced by subcutaneous (primary tumour) or intravenous (lung colonies) injection of B16BL6 melanoma cells in C57BL/6J mice. The relevance and sensitivity of positron emission tomography (PET) imaging using [ 18 F]ICF01006 were evaluated at different stages of tumoural growth and compared to 18 F-fluorodeoxyglucose ([ 18 F]FDG). The fully automated radiosynthesis of [ 18 F]ICF01006 led to a radiochemical yield of 61 % and a radiochemical purity >99 % (specific activity 70-80 GBq/μmol; total synthesis time 42 min). Tumours were visualized before they were palpable as early as 1 h post-injection with [ 18 F]ICF01006 tumoural uptake of 1.64 ± 0.57, 3.40 ± 1.47 and 11.44 ± 2.67 percentage of injected dose per gram of tissue (%ID/g) at days 3, 5 and 14, respectively. [ 18 F]ICF01006 PET imaging also allowed detection of melanoma pulmonary colonies from day 9 after tumour cell inoculation, with a lung radiotracer accumulation correlated with melanoma invasion. At day 21, radioactivity uptake in lungs reached a value of 5.23 ± 2.08 %ID/g (versus 0.41 ± 0.90 %ID/g in control mice). In the two models, comparison with [ 18 F]FDG showed that both radiotracers were able to detect melanoma lesions, but [ 18 F]ICF01006 was superior in terms of contrast and specificity. Our promising results provide further preclinical data, reinforcing the excellent potential of [ 18 F]ICF01006 PET imaging for early specific diagnosis and follow-up of melanin-positive disseminated melanoma. (orig.)

  4. [Relevance of personal contextual factors of the ICF for use in practical social medicine and rehabilitation].

    Science.gov (United States)

    Grotkamp, S; Cibis, W; Bahemann, A; Baldus, A; Behrens, J; Nyffeler, I D; Echterhoff, W; Fialka-Moser, V; Fries, W; Fuchs, H; Gmünder, H P; Gutenbrunner, C; Keller, K; Nüchtern, E; Pöthig, D; Queri, S; Rentsch, H P; Rink, M; Schian, H-M; Schian, M; Schmitt, K; Schwarze, M; Ulrich, P; von Mittelstaedt, G; Seger, W

    2014-03-01

    Personal contextual factors play an essential part in the model of the International Classification of Functioning, Disability and Health (ICF). The WHO has not yet classified personal factors for global use although they impact on the functioning of persons positively or negatively. In 2010, the ICF working group of the German Society of Social Medicine and Prevention (DGSMP) presented a proposal for the classification of personal factors into 72 categories previously arranged in 6 chapters. Now a positioning paper has been added in order to stimulate a discussion about the fourth component of the ICF, to contribute towards a broader and common understanding about the nature of personal factors and to incite a dialogue among all those involved in health care as well as those people with or with-out health problems in order to gain a comprehensive perspective about a person's condition. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Assessing burn depth in tattooed burn lesions with LASCA Imaging

    Science.gov (United States)

    Krezdorn, N.; Limbourg, A.; Paprottka, F.J.; Könneker; Ipaktchi, R.; Vogt, P.M

    2016-01-01

    Summary Tattoos are on the rise, and so are patients with tattooed burn lesions. A proper assessment with regard to burn depth is often impeded by the tattoo dye. Laser speckle contrast analysis (LASCA) is a technique that evaluates burn lesions via relative perfusion analysis. We assessed the effect of tattoo skin pigmentation on LASCA perfusion imaging in a multicolour tattooed patient. Depth of burn lesions in multi-coloured tattooed and untattooed skin was assessed using LASCA. Relative perfusion was measured in perfusion units (PU) and compared to various pigment colours, then correlated with the clinical evaluation of the lesion. Superficial partial thickness burn (SPTB) lesions showed significantly elevated perfusion units (PU) compared to normal skin; deep partial thickness burns showed decreased PU levels. PU of various tattoo pigments to normal skin showed either significantly lower values (blue, red, pink) or significantly increased values (black) whereas orange and yellow pigment showed values comparable to normal skin. In SPTB, black and blue pigment showed reduced perfusion; yellow pigment was similar to normal SPTB burn. Deep partial thickness burn (DPTB) lesions in tattoos did not show significant differences to normal DPTB lesions for black, green and red. Tattoo pigments alter the results of perfusion patterns assessed with LASCA both in normal and burned skin. Yellow pigments do not seem to interfere with LASCA assessment. However proper determination of burn depth both in SPTB and DPTB by LASCA is limited by the heterogenic alterations of the various pigment colours. PMID:28149254

  6. Pulsed power drivers for ICF and high energy density physics

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

    1995-01-01

    Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates ∼500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed ∼15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed

  7. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

    Science.gov (United States)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

    2018-02-01

    The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

  8. Tritium and plutonium production as a step toward ICF commercialization

    International Nuclear Information System (INIS)

    Pendergrass, J.H.; Dudziak, D.J.

    1983-01-01

    The feasibility of a combined special nuclear materials (SNM) production plant/engineering test facility (ETF) with reduced pellet and driver performance requirements as a step toward commercialization of inertial confinement fusion (ICF) is examined. Blanket design and tritium production cost studies, the status of R and D programs, and the ETF role are emphasized

  9. Threshold bubble chamber for measurement of knock-on DT neutron tails from magnetic and inertial confinement experiments

    International Nuclear Information System (INIS)

    Fisher, R.K.; Zaveryaev, V.S.; Trusillo, S.V.

    1997-01-01

    We propose a new open-quotes thresholdclose quotes bubble chamber detector for measurement of knock-on neutron tails. These energetic neutrons result from fusion reactions involving energetic fuel ions created by alpha knock-on collisions in tokamak and other magnetic confinement experiments, and by both alpha and neutron knock-on collisions in inertial confinement fusion (ICF) experiments. The energy spectrum of these neutrons will yield information on the alpha population and energy distribution in tokamaks, and on alpha target physics and ρR measurements in ICF experiments. The bubble chamber should only detect neutrons with energies above a selectable threshold energy controlled by the bubble chamber pressure. The bubble chamber threshold mechanism, detection efficiency, and proposed applications to the International Thermonuclear Experimental Reactor and National Ignition Facility experiments will be discussed. copyright 1997 American Institute of Physics

  10. Applicability of the International Classification of Functioning, Disability and Health (ICF for evaluation of children with cerebral palsy: a systematic review

    Directory of Open Access Journals (Sweden)

    Lílian de Fátima Dornelas

    2014-12-01

    Full Text Available Objective: To examine and synthesize the knowledge available in the literature on the instruments used in the perspective of functionality in children with cerebral palsy (CP, and to review the literature evaluating the instruments used for the implementation of the International Classification of Functioning, Disability and Health (ICF in children with CP. Method: The search was conducted in the electronic databases Google Scholar, PubMed, Lilacs and Medline, for articles published between January 2006 and December 2012, using the following keywords: cerebral palsy, child and assessment, combined with ICF. Ten articles were selected for analysis according to pre-established criteria. Results: The authors proposed tools that could standardize the assessment for classification of the components “Structure and function of the body”, “Activities and Participation” and “Environmental Factors”, proposing instruments such as Gross Motor Function Measure (GMFM, Pediatric Evaluation of Disability Inventory (PEDI, Goal Attainment Scaling (GAS, Manual Ability Classification System (MACS, Gross Motor Function Classification System (GMFCS, Physicians Rating Scale (PRS, Vineland Adaptive Behavior Scale (VABS, Pediatric Functional Independence Measure (Wee FIM, Gillette Functional Assessment Questionnaire (FAQ, Pediatric Quality of Life Inventory (PedsQL, Pediatric Outcomes Data Collection Instrument (PODCI, Gillette Gait Index (GGI, Energy Expenditure Index (EEI, and Vécu et Santé Perçue de l’Adolescent (VSP-A. Conclusion: The domains “Structure and function of the body” and “Activities and Participation” are often classified according to ICF in children with CP, and they present a variety of instrumentation for applicability of classification.

  11. [Clinical effect of three dimensional human body scanning system BurnCalc in the evaluation of burn wound area].

    Science.gov (United States)

    Lu, J; Wang, L; Zhang, Y C; Tang, H T; Xia, Z F

    2017-10-20

    Objective: To validate the clinical effect of three dimensional human body scanning system BurnCalc developed by our research team in the evaluation of burn wound area. Methods: A total of 48 burn patients treated in the outpatient department of our unit from January to June 2015, conforming to the study criteria, were enrolled in. For the first 12 patients, one wound on the limbs or torso was selected from each patient. The stability of the system was tested by 3 attending physicians using three dimensional human body scanning system BurnCalc to measure the area of wounds individually. For the following 36 patients, one wound was selected from each patient, including 12 wounds on limbs, front torso, and side torso, respectively. The area of wounds was measured by the same attending physician using transparency tracing method, National Institutes of Health (NIH) Image J method, and three dimensional human body scanning system BurnCalc, respectively. The time for getting information of 36 wounds by three methods was recorded by stopwatch. The stability among the testers was evaluated by the intra-class correlation coefficient (ICC). Data were processed with randomized blocks analysis of variance and Bonferroni test. Results: (1) Wound area of patients measured by three physicians using three dimensional human body scanning system BurnCalc was (122±95), (121±95), and (123±96) cm(2,) respectively, and there was no statistically significant difference among them ( F =1.55, P >0.05). The ICC among 3 physicians was 0.999. (2) The wound area of limbs of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (84±50), (76±46), and (84±49) cm(2,) respectively. There was no statistically significant difference in the wound area of limbs of patients measured by transparency tracing method and three dimensional human body scanning system BurnCalc ( P >0.05). The wound area of limbs of patients

  12. Possible approaches to fast quality control of IFE targets

    International Nuclear Information System (INIS)

    Koresheva, E.R.; Nikitenko, A.I.; Aleksandrova, I.V.; Bazdenkov, S.V.; Belolipetskiy, A.A.; Chtcherbakov, V.I.; Osipov, I.E.

    2006-01-01

    In recent years, research into the development of reliable methods and techniques for characterization and quality control of ICF/IFE targets has been carried out very actively. This is motivated by the need to provide the means for precise and accurate knowledge of cryogenic target parameters. On the other hand, particular emphasis should be paid to the fact that fuelling of a commercial power plant requires ∼6 targets each second. This indicates that the development of fast quality control techniques is of critical importance as well. Therefore, in this report we discuss the issues underlying the construction of different algorithms for characterization and quality control of ICF/IFE targets. Among them are: (a) algorithm banks and their structure, (b) algorithm testing, (c) target reconstruction experiments. The algorithm bank incorporates the algorithms for two stages of target production: the stage of fuel layering technique development (motionless target) and the stage of cryogenic target delivery (injected target). In the first case an inverse algorithm for individual target characterization (3D target reconstruction) and two threshold algorithms for fast control of target quality are presented. They are based on tomographic information processing methods. Experimentally, tomographic data acquisition is carried out by a hundred projections microtomograph. The spatial resolution of the optical system of the microtomograph is 1 μm for 490 nm wavelength, the accuracy of target angular positioning is ±1.5-2.5 min. In the second case we describe the algorithm based on Fourier transform holography for ultra fast target characterization during its injection. The performed computer experiments have demonstrated much promise of this approach in the following directions: recognition of the target imperfections in both low- and high- harmonics; quality control of both a single target and a target batch; simultaneous control of both an injected target quality and

  13. A neuropsychological rehabilitation program for patients with Multiple Sclerosis based on the model of the ICF.

    Science.gov (United States)

    Pusswald, Gisela; Mildner, Christa; Zebenholzer, Karin; Auff, Eduard; Lehrner, Johann

    2014-01-01

    Forty to sixty percent of MS patients suffer from cognitive impairments. Cognitive deficits are a great burden for patients affected. In particular they may lead to a reduced quality of life, loss of work and problems with the social environment. The aim of this study was to evaluate a specific neuropsychological rehabilitation program for MS patients according to the ICF to be able to meet more properly individual requirements on the therapy level of function as well as of activities and participation. Forty patients with MS were randomised in an intervention (IG) - and a control group (CG). The outcome measure of the IG, who started an intensive computer based home training of attention and attended psychological counselling was compared to the untrained CG. In specific domains of attention (simple and cued alertness and divided attention) significant group differences between CG and IG could be found. The IG reported an improvement of mental fatigue and retardation. These findings support the idea that a neuropsychological rehabilitation program, which based on the model of ICF, could improve cognitive impairment and could also have a positive influence of activities and participation.

  14. Nova Upgrade: A proposed ICF facility to demonstrate ignition and gain, revision 1

    Science.gov (United States)

    1992-07-01

    The present objective of the national Inertial Confinement Fusion (ICF) Program is to determine the scientific feasibility of compressing and heating a small mass of mixed deuterium and tritium (DT) to conditions at which fusion occurs and significant energy is released. The potential applications of ICF will be determined by the resulting fusion energy yield (amount of energy produced) and gain (ratio of energy released to energy required to heat and compress the DT fuel). Important defense and civilian applications, including weapons physics, weapons effects simulation, and ultimately the generation of electric power will become possible if yields of 100 to 1,000 MJ and gains exceeding approximately 50 can be achieved. Once ignition and propagating bum producing modest gain (2 to 10) at moderate drive energy (1 to 2 MJ) has been achieved, the extension to high gain (greater than 50) is straightforward. Therefore, the demonstration of ignition and modest gain is the final step in establishing the scientific feasibility of ICF. Lawrence Livermore National Laboratory (LLNL) proposes the Nova Upgrade Facility to achieve this demonstration by the end of the decade. This facility would be constructed within the existing Nova building at LLNL for a total cost of approximately $400 M over the proposed FY 1995-1999 construction period. This report discusses this facility.

  15. Mapping SAGE questionnaire to the International Classification of Functioning, Disability and Health (ICF).

    Science.gov (United States)

    Raggi, Alberto; Quintas, Rui; Russo, Emanuela; Martinuzzi, Andrea; Costardi, Daniela; Frisoni, Giovanni Battista; Franco, Maria Grazia; Andreotti, Alessandra; Ojala, Matti; Peña, Sebastián; Perales, Jaime; Chatterji, Somnath; Miret, Marta; Tobiasz-Adamczyk, Beata; Koskinen, Seppo; Frattura, Lucilla; Leonardi, Matilde

    2014-01-01

    The collaborative research on ageing in Europe protocol was based on that of the World Health Organization Study on global AGEing and adult health (SAGE) project that investigated the relationship between health and well-being and provided a set of instruments that can be used across countries to monitor health and health-related outcomes of older populations as well as the strategies for addressing issues concerning the ageing process. To evaluate the degree to which SAGE protocol covered the spectrum of disability given the scope of the World Health Organization International Classification of Functioning, Disability and Health (ICF), a mapping exercise was performed with SAGE protocol. Results show that the SAGE protocol covers ICF domains in a non-uniform way, with environmental factors categories being underrepresented, whereas mental, cardiovascular, sensory functions and mobility were overrepresented. To overcome this partial coverage of ICF functioning categories, new assessment instruments have been developed. PRACTITIONER MESSAGE: Mapping exercises are valid procedures to understand the extent to which a survey protocol covers the spectrum of functioning. The mapping exercise with SAGE protocol shows that it provides only a partial representation of body functions and activities and participation domains, and the coverage of environmental factors is poor. New instruments are therefore needed for researchers to properly understand the health and disability of ageing populations. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Biomass burning aerosols characterization from ground based and profiling measurements

    Science.gov (United States)

    Marin, Cristina; Vasilescu, Jeni; Marmureanu, Luminita; Ene, Dragos; Preda, Liliana; Mihailescu, Mona

    2018-04-01

    The study goal is to assess the chemical and optical properties of aerosols present in the lofted layers and at the ground. The biomass burning aerosols were evaluated in low level layers from multi-wavelength lidar measurements, while chemical composition at ground was assessed using an Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer. Classification of aerosol type and specific organic markers were used to explore the potential to sense the particles from the same origin at ground base and on profiles.

  17. Physical measurements of inertial-fusion targets

    International Nuclear Information System (INIS)

    Weinstein, B.W.

    1981-01-01

    Measurement of inertial-fusion targets has stimulated the development of many new techniques and instruments. This paper reviews the basis for selected target measurement requirements and the development of optical interferometry, optical scattering, microradiography and scanning electron microscopy as applied to target measurement. We summarize the resolution and speed which have been achieved to date, and describe several systems in which these are traded off to fill specific measurement applications. We point out the extent to which present capabilities meet the requirements for target measurement and the key problems which remain to be solved

  18. Disentangling effects of breakup coupling and incomplete fusion in 6Li + 232Th reaction

    International Nuclear Information System (INIS)

    Jha, V.; Parkar, V.V.; Mohanty, A.K.; Kailas, S.

    2014-01-01

    A component of fusion that is very important but quite difficult to evaluate is the incomplete fusion (ICF), in which only a part of the nucleus fuses with the target. ICF occurs together with the usual complete fusion (CF), in which the whole projectile fuses or all the projectile fragments after breakup fuse with the target nucleus. The ICF leads to the flux removal from the fusion channel and its calculation is essential for a comprehensive description of the fusion process. In the present work, a recently developed method of calculating the ICF cross-section (σ ICF ) is used in a novel way to disentangle the ICF effect on the fusion process from those due to breakup couplings. The total fusion cross-section σ TF and σ ICF for the 6 Li + 232 Th system are calculated at energies above and below the Coulomb barrier, where the measured fusion-fission data is available

  19. Recent Progress and Emerging Issues in Measuring and Modeling Biomass Burning Emissions

    Science.gov (United States)

    Yokelson, R. J.; Stockwell, C.; Veres, P. R.; Hatch, L. E.; Barsanti, K. C.; Simpson, I. J.; Blake, D. R.; Alvarado, M.; Kreidenweis, S. M.; Robinson, A. L.; Akagi, S. K.; McMeeking, G. R.; Stone, E.; Gilman, J.; Warneke, C.; Sedlacek, A. J.; Kleinman, L. I.

    2013-12-01

    Nine recent multi-PI campaigns (6 airborne, 3 laboratory) have quantified biomass burning emissions and the subsequent smoke evolution in unprecedented detail. Among these projects were the Fourth Fire Lab at Missoula Experiment (FLAME-4) and the DOE airborne campaign BBOP (Biomass Burning Observation Project). Between 2009 and 2013 a large selection of fuels and ecosystems were probed including: (1) 21 US prescribed fires in pine forests, chaparral, and shrublands; (2) numerous wildfires in the Pacific Northwest of the US; (3) 77 lab fires burning fuels collected from the sites of the prescribed fires; and (4) 158 lab fires burning authentic fuels in traditional cooking fires and advanced stoves; peat from Indonesia, Canada, and North Carolina; savanna grasses from Africa; temperate grasses from the US; crop waste from the US; rice straw from Taiwan, China, Malaysia, and California; temperate and boreal forest fuels collected in Montana and Alaska; chaparral fuels from California; trash; and tires. Instrumentation for gases included: FTIR, PTR-TOF-MS, 2D-GC and whole air sampling. Particle measurements included filter sampling (with IC, elemental carbon (EC), organic carbon (OC), and GC-MS) and numerous real-time measurements such as: HR-AMS (high-resolution aerosol MS), SP-AMS (soot particle AMS), SP2 (single particle soot photometer), SP-MS (single particle MS), ice nuclei, CCN (cloud condensation nuclei), water soluble OC, size distribution, and optical properties in the UV-VIS. New data include: emission factors for over 400 gases, black carbon (BC), brown carbon (BrC), organic aerosol (OA), ions, metals, EC, and OC; and details of particle morphology, mixing state, optical properties, size distributions, and cloud nucleating activity. Large concentrations (several ppm) of monoterpenes were present in fresh smoke. About 30-70% of the initially emitted gas-phase non-methane organic compounds were semivolatile and could not be identified with current technology

  20. Myosin light chain kinase mediates intestinal barrier disruption following burn injury.

    Directory of Open Access Journals (Sweden)

    Chuanli Chen

    Full Text Available BACKGROUND: Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC phosphorylation mediated by MLC kinase (MLCK is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. METHODOLOGY/PRINCIPAL FINDINGS: Male balb/c mice were assigned randomly to either sham burn (control or 30% total body surface area (TBSA full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg, an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. CONCLUSIONS/SIGNIFICANCE: The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.

  1. Characterizing ICF Neutron Scintillation Diagnostics on the nTOF line at SUNY Geneseo

    Science.gov (United States)

    Lawson-Keister, Pat; Padawar-Curry, Jonah; Visca, Hannah; Fletcher, Kurt; Padalino, Stephen; Sangster, T. Craig; Regan, Sean

    2015-11-01

    Neutron scintillator diagnostics for ICF and HEDP can be characterized using the neutron time-of-flight (nTOF) line on Geneseo's 1.7 MV tandem Pelletron accelerator. Neutron signals can be differentiated from gamma signals by employing coincidence methods. A 1.8-MeV beam of deuterons incident on a deuterated polyethylene target produces neutrons via the 2H(d,n)3He reaction. Neutrons emerging at a lab angle of 88° have an energy of 2.96 MeV; the 3He ions associated with these neutrons are detected at a scattering angle of 43° using a surface barrier detector. The time of flight of the neutron can be measured by using the 3He detection as a ``start'' signal and the scintillation detection as a ``stop'' signal. This time of flight requirement is used to identify the 2.96-MeV neutron signals in the scintillator. To measure the light curve produced by these monoenergetic neutrons, two photomultiplier (PMT) tubes are attached to the scintillator. The full aperture PMT establishes the nTOF coincidence. The other PMT is fitted with a pinhole to collect single events. The time between the full aperture PMT signal and the arrival of the signal in the pinhole PMT is used to determine the light curve for the scintillator. This system will enable the neutron response of various scintillators to be compared. Supported in part by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Two-dimensional nucleonics calculations for a ''FIRST STEP'' conceptual ICF reactor

    International Nuclear Information System (INIS)

    Davidson, J.W.; Battat, M.E.; Saylor, W.W.; Pendergrass, J.H.; Dudziak, D.J.

    1985-01-01

    A detailed two-dimensional nucleonic analysis has been performed for the FIRST STEP conceptual ICF reactor blanket design. The reactor concept incorporated in this design is a modified wetted-wall cavity with target illumination geometry left as a design variable. The 2-m radius spherical cavity is surrounded by a blanket containing lithium and 238 U as fertile species and also as energy multipliers. The blanket is configured as 0.6-m-thick cylindrical annuli containing modified LMFBR-type fuel elements with 0.5-m-thick fuel-bearing axial end plugs. Liquid lithium surrounds the inner blanket regions and serves as the coolant for both the blanket and the first wall. The two-dimensional analysis of the blanket performance was made using the 2-D discrete-ordinates code TRISM, and benchmarked with the 3-D Monte Carlo code MCNP. Integral responses including the tritium breeding ratio (TBR), plutonium breeding ratio (PUBR), and blanket energy multiplication were calculated for axial and radial blanket regions. Spatial distributions were calculated for steady-state rates of fission, neutron heating, prompt gamma-ray heating, and fuel breeding

  3. Time-dependent inversion estimates of global biomass-burning CO emissions using Measurement of Pollution in the Troposphere (MOPITT) measurements

    Science.gov (United States)

    Arellano, Avelino F.; Kasibhatla, Prasad S.; Giglio, Louis; van der Werf, Guido R.; Randerson, James T.; Collatz, G. James

    2006-05-01

    We present an inverse-modeling analysis of CO emissions using column CO retrievals from the Measurement of Pollution in the Troposphere (MOPITT) instrument and a global chemical transport model (GEOS-CHEM). We first focus on the information content of MOPITT CO column retrievals in terms of constraining CO emissions associated with biomass burning and fossil fuel/biofuel use. Our analysis shows that seasonal variation of biomass-burning CO emissions in Africa, South America, and Southeast Asia can be characterized using monthly mean MOPITT CO columns. For the fossil fuel/biofuel source category the derived monthly mean emission estimates are noisy even when the error statistics are accurately known, precluding a characterization of seasonal variations of regional CO emissions for this source category. The derived estimate of CO emissions from biomass burning in southern Africa during the June-July 2000 period is significantly higher than the prior estimate (prior, 34 Tg; posterior, 13 Tg). We also estimate that emissions are higher relative to the prior estimate in northern Africa during December 2000 to January 2001 and lower relative to the prior estimate in Central America and Oceania/Indonesia during April-May and September-October 2000, respectively. While these adjustments provide better agreement of the model with MOPITT CO column fields and with independent measurements of surface CO from National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory at background sites in the Northern Hemisphere, some systematic differences between modeled and measured CO fields persist, including model overestimation of background surface CO in the Southern Hemisphere. Characterizing and accounting for underlying biases in the measurement model system are needed to improve the robustness of the top-down estimates.

  4. Application of Integral Ex-Core and Differential In-Core Neutron Measurements for Adjustment of Fuel Burn-Up Distributions in VVER-1000

    Science.gov (United States)

    Borodkin, Pavel G.; Borodkin, Gennady I.; Khrennikov, Nikolay N.

    2010-10-01

    The paper deals with calculational and semi-analytical evaluations of VVER-1000 reactor core neutron source distributions and their influence on measurements and calculations of the integral through-vessel neutron leakage. Time-integrated neutron source distributions used for DORT calculations were prepared by two different approaches based on a) calculated fuel burn-up (standard routine procedure) and b) in-core measurements by means of SPD & TC (new approach). Taking into account that fuel burn-up distributions in operating VVER may be evaluated now by analytical methods (calculations) only it is needed to develop new approaches for testing and correction of calculational evaluations. Results presented in this paper allow to consider a reverse task of alternative estimation of fuel burn-up distributions. The approach proposed is based on adjustment (fitting) of time-integrated neutron source distributions, and hence fuel burn-up patterns in some part of reactor core, on the base of ex-core neutron leakage measurement, neutron-physical calculation and in-core SPD & TC measurement data.

  5. Families' perception of children / adolescents with language impairment through the International Classification of Functioning, Disability, and Health (ICF-CY).

    Science.gov (United States)

    Ostroschi, Daniele Theodoro; Zanolli, Maria de Lurdes; Chun, Regina Yu Shon

    2017-05-22

    To investigate the perception of family members regarding linguistic conditions and social participation of children and adolescents with speech and language impairments using the International Classification of Functioning, Disability and Health - Children and Youth Version (ICF-CY). Quali-quantitative approach research, in which a survey of medical records of 24 children/adolescents undergoing speech-language therapy and interviews with their family members was conducted. A descriptive analysis of the participants' profiles was performed, followed by a categorization of responses using the ICF-CY. All family members mentioned various aspects of speech/language categorized by the ICF-CY. Initially, they approached it as an organic issue, categorized under the component of Body Functions and Structures. Most reported different repercussions of the speech-language impairments on the domains, such as dealing with stress and speaking, qualified from mild to severe. Participants reported Environmental Factors categorized as facilitators in the immediate family's attitudes and as barriers in the social attitudes. These findings, according to the use of the ICF-CY, demonstrate that the children/adolescents' speech-language impairments, from the families' perception, are primarily understood in the body dimension. However, guided by a broader approach to health, the findings in the Activities and Participation and Environmental Factors demonstrate a broader understanding of the participants of the speech-language impairments. The results corroborate the importance of using the ICF-CY as a health care analysis tool, by incorporating functionality and participation aspects and providing subsidies for the construction of unique therapeutic projects in a broader approach to the health of the group studied.

  6. Multi-dimensional cubic interpolation for ICF hydrodynamics simulation

    International Nuclear Information System (INIS)

    Aoki, Takayuki; Yabe, Takashi.

    1991-04-01

    A new interpolation method is proposed to solve the multi-dimensional hyperbolic equations which appear in describing the hydrodynamics of inertial confinement fusion (ICF) implosion. The advection phase of the cubic-interpolated pseudo-particle (CIP) is greatly improved, by assuming the continuities of the second and the third spatial derivatives in addition to the physical value and the first derivative. These derivatives are derived from the given physical equation. In order to evaluate the new method, Zalesak's example is tested, and we obtain successfully good results. (author)

  7. Field Measurements of Trace Gases and Aerosols Emitted by Undersampled Combustion Sources Including Wood and Dung Cooking Fires, Garbage and Crop Residue Burning, and Indonesian Peat Fires

    Science.gov (United States)

    Stockwell, C.; Jayarathne, T. S.; Goetz, D.; Simpson, I. J.; Selimovic, V.; Bhave, P.; Blake, D. R.; Cochrane, M. A.; Ryan, K. C.; Putra, E. I.; Saharjo, B.; Stone, E. A.; DeCarlo, P. F.; Yokelson, R. J.

    2017-12-01

    Field measurements were conducted in Nepal and in the Indonesian province of Central Kalimantan to improve characterization of trace gases and aerosols emitted by undersampled combustion sources. The sources targeted included cooking with a variety of stoves, garbage burning, crop residue burning, and authentic peat fires. Trace gas and aerosol emissions were studied using a land-based Fourier transform infrared spectrometer, whole air sampling, photoacoustic extinctiometers (405 and 870nm), and filter samples that were analyzed off-line. These measurements were used to calculate fuel-based emission factors (EFs) for up to 90 gases, PM2.5, and PM2.5 constituents. The aerosol optical data measured included EFs for the scattering and absorption coefficients, the single scattering albedo (at 870 and 405 nm), as well as the absorption Ångström exponent. The emissions varied significantly by source, although light absorption by both brown and black carbon (BrC and BC, respectively) was important for all non-peat sources. For authentic peat combustion, the emissions of BC were negligible and absorption was dominated by organic aerosol. The field results from peat burning were in reasonable agreement with recent lab measurements of smoldering Kalimantan peat and compare well to the limited data available from other field studies. The EFs can be used with estimates of fuel consumption to improve regional emissions inventories and assessments of the climate and health impacts of these undersampled sources.

  8. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vold, E. L.; Molvig, K. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Joglekar, A. S. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Ortega, M. I. [University of New Mexico, Albuquerque, New Mexico 87131 (United States); Moll, R. [University of California, Santa Cruz, California 95064 (United States); Fenn, D. [Florida State University, Tallahassee, Florida 32306 (United States)

    2015-11-15

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.

  9. Summary abstract: microspot target development with seeded and patterned plasma polymers

    International Nuclear Information System (INIS)

    Letts, S.A.; Miller, D.E.; Corley, R.A.; Tillotson, T.M.; Witt, L.A.

    1985-01-01

    In inertial confinement fusion (ICF) energy is transferred from the laser to the target through the interaction of extremely high intensity laser light with the target plasma. To better understand laser-plasma interactions, a new class of targets was designed to study long scale-length plasmas (many hundred times the laser wavelength) by measurement of the temperature and density of the plasma as a function of time. The specifications for the target called for a freestanding hydrocarbon polymer (CH) film with a sharply defined spot (microspot) in the center seeded with either silicon or sulfur. The target film was fabricated using a three-step procedure which consisted of deposition of the hydrocarbon film, definition of the microspot, and then deposition of a seeded spot through a mask. In the final assembly step, the film containing the microspot was mounted over a 1.5 mm diam hole in a support. The support was either a plastic ring or a copper foil electroplated with 3 μm of gold. The fabrication of this type of target is described

  10. Fast-ion diffusion measurements from radial triton burn up studies

    International Nuclear Information System (INIS)

    McCauley, J.S.; Budny, R.; McCune, D.; Strachan, J.D.

    1993-08-01

    A fast-ion diffusion coefficient of 0.1 ± 0.1 m 2 s -1 has been deduced from the triton burnup neutron emission profile measured by a collimated array of helium-4 spectrometers. The experiment was performed with high-power deuterium discharges produced by Princeton University's Tokamak Fusion Test Reactor (TFTR). The fast ions monitored were the 1.0 MeV tritons produced from the d(d,t)p. These tritons ''burn up'' with deuterons and emit a 14 MeV neutron by the d(t,α)n reaction. The ratio of the measured to calculated DT yield is typically 70%. The measured DT profile width is comparable to that predicted by the TRANSP transport code during neutral beam heating and narrower after the beam heating ended

  11. Determinants of school activity performance in children with cerebral palsy: a multidimensional approach using the ICF-CY as a framework.

    Science.gov (United States)

    Huang, Chien-Yu; Tseng, Mei-Hui; Chen, Kuan-Lin; Shieh, Jeng-Yi; Lu, Lu

    2013-11-01

    This study aimed to identify the determinants of activity performance in children with cerebral palsy (CP) in school by considering factors from the entire scope of the International Classification of Functioning, Disability, and Health for Child and Youth (ICF-CY). A sample of 167 school-aged children with CP and their caregivers were recruited in the study. Activity performance in school settings was assessed with part 3 of the School Functional Assessment - Chinese version, which divides activity performance into performance of physical activities and cognitive/behavioral activities. Possible determinants were collected according to all dimensions of the ICF-CY. Multiple regression analyses showed that the determinants of performance of physical activities were receiving speech therapy in school, diplegia, having a domestic helper, and severity of gross and fine motor impairments, explaining 83% of the total variance; the determinants of performance of cognitive/behavioral activities were intellectual impairment, prosocial behavior, having an assistant in school, educational placement, severity of fine motor impairment, accounting for 73% of the total variance. Results of the study provide clinicians a holistic understanding of factors influencing school activity performance, and enable clinicians to make appropriate evaluations and interventions targeted at the determinants to enhance children's activity performance in school. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Towards a standardized nutrition and dietetics terminology for clinical practice: An Austrian multicenter clinical documentation analysis based on the International Classification of Functioning, Disability and Health (ICF)-Dietetics.

    Science.gov (United States)

    Gäbler, Gabriele; Coenen, Michaela; Lycett, Deborah; Stamm, Tanja

    2018-03-03

    High quality, continuity and safe interdisciplinary healthcare is essential. Nutrition and dietetics plays an important part within the interdisciplinary team in many health conditions. In order to work more effectively as an interdisciplinary team, a common terminology is needed. This study investigates which categories of the ICF-Dietetics are used in clinical dietetic care records in Austria and which are most relevant to shared language in different medical areas. A national multicenter retrospective study was conducted to collect clinical dietetic care documentation reports. The analysis included the "best fit" framework synthesis, and a mapping exercise using the ICF Linking Rules. Medical diagnosis and intervention concepts were excluded from the mapping, since they are not supposed to be classified by the ICF. From 100 dietetic records, 307 concepts from 1807 quotations were extracted. Of these, 241 assessment, dietetics diagnosis, goal setting and evaluation concepts were linked to 153 ICF-Dietetics categories. The majority (91.3%) could be mapped to a precise ICF-Dietetics category. The highest number of ICF-Dietetics categories was found in the medical area of diabetes and metabolism and belonged to the ICF component Body Function, while very few categories were used from the component Participation and Environmental Factors. The integration of the ICF-Dietetics in nutrition and dietetic care process is possible. Moreover, it could be considered as a conceptual framework for interdisciplinary nutrition and dietetics care. However, a successful implementation of the ICF-Dietetics in clinical practice requires a paradigm shift from medical diagnosis-focused health care to a holistic perspective of functioning with more attention on Participation and Environmental Factors. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1995--September 30, 1996

    International Nuclear Information System (INIS)

    Hoppe, M.

    1997-02-01

    On December 30, 1990, the U.S. Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. In September 1995 this contract ended and a second contract was issued for us to continue this ICF target support work. This report documents the technical activities of the period October 1, 1995 through September 30, 1996. During this period, GA and our partners WJ Schafer Associates (WJSA) and Soane Technologies, Inc. (STI) were assigned 14 formal tasks in support of the Inertial Confinement Fusion program and its five laboratories. A portion of the effort on these tasks included providing direct open-quotes Onsite Supportclose quotes at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). We fabricated and delivered over 800 gold-plated hohlraum mandrels to LLNL, LANL and SNLA. We produced nearly 1,200 glass and plastic target capsules for LLNL, LANL, SNLA and University of Rochester/Laboratory for Laser Energetics (UR/LLE). We also delivered over 100 flat foil targets for Naval Research Lab (NRL) and SNLA in FY96. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require capsules containing cryogenic layered D 2 or deuterium-tritium (DT) fuel. We are part of the National Cryogenic Target Program to create and demonstrate viable ways to generate and characterize cryogenic layers. Substantial progress has been made on ways to both create and characterize viable layers. During FY96, significant progress was made in the design of the OMEGA Cryogenic Target System that will field cryogenic targets on OMEGA

  14. The Geriatric ICF Core Set reflecting health-related problems in community-living older adults aged 75 years and older without dementia: development and validation.

    Science.gov (United States)

    Spoorenberg, Sophie L W; Reijneveld, Sijmen A; Middel, Berrie; Uittenbroek, Ronald J; Kremer, Hubertus P H; Wynia, Klaske

    2015-01-01

    The aim of the present study was to develop a valid Geriatric ICF Core Set reflecting relevant health-related problems of community-living older adults without dementia. A Delphi study was performed in order to reach consensus (≥70% agreement) on second-level categories from the International Classification of Functioning, Disability and Health (ICF). The Delphi panel comprised 41 older adults, medical and non-medical experts. Content validity of the set was tested in a cross-sectional study including 267 older adults identified as frail or having complex care needs. Consensus was reached for 30 ICF categories in the Delphi study (fourteen Body functions, ten Activities and Participation and six Environmental Factors categories). Content validity of the set was high: the prevalence of all the problems was >10%, except for d530 Toileting. The most frequently reported problems were b710 Mobility of joint functions (70%), b152 Emotional functions (65%) and b455 Exercise tolerance functions (62%). No categories had missing values. The final Geriatric ICF Core Set is a comprehensive and valid set of 29 ICF categories, reflecting the most relevant health-related problems among community-living older adults without dementia. This Core Set may contribute to optimal care provision and support of the older population. Implications for Rehabilitation The Geriatric ICF Core Set may provide a practical tool for gaining an understanding of the relevant health-related problems of community-living older adults without dementia. The Geriatric ICF Core Set may be used in primary care practice as an assessment tool in order to tailor care and support to the needs of older adults. The Geriatric ICF Core Set may be suitable for use in multidisciplinary teams in integrated care settings, since it is based on a broad range of problems in functioning. Professionals should pay special attention to health problems related to mobility and emotional functioning since these are the most

  15. Quantifying the influence of boreal biomass burning emissions on tropospheric oxidant chemistry over the North Atlantic using BORTAS measurements

    Science.gov (United States)

    Parrington, Mark; Palmer, Paul I.; Rickard, Andrew; Young, Jennifer; Lewis, Ally; Lee, James; Henze, Daven; Tarasick, David; Hyer, Edward; Yantosca, Robert; Bowman, Kevin; Worden, John; Griffin, Debora; Franklin, Jonathan; Helmig, Detlev

    2013-04-01

    We use the GEOS-Chem chemistry transport model to quantify the impact of boreal biomass burning on tropospheric oxidant chemistry over the North Atlantic region during summer of 2011. The GEOS-Chem model is used at a spatial resolution of 1/2 degree latitude by 2/3 degree longitude for a domain covering eastern North America, the North Atlantic Ocean and western Europe. We initialise the model with biomass burning emissions from the Fire Locating and Monitoring of Burning Emissions (FLAMBE) inventory and use a modified chemical mechanism providing a detailed description of ozone photochemistry in boreal biomass burning outflow derived from the Master Chemical Mechanism (MCM). We evaluate the 3-D model distribution of ozone and tracers associated with biomass burning against measurements made by the UK FAAM BAe-146 research aircraft, ozonesondes, ground-based and satellite instruments as part of the BORTAS experiment between 12 July and 3 August 2011. We also use the GEOS-Chem model adjoint to fit the model to BORTAS measurements to analyse the sensitivity of the model chemical mechanism and ozone distribution to wildfire emissions in central Canada.

  16. Satisfaction with life after burn: A Burn Model System National Database Study.

    Science.gov (United States)

    Goverman, J; Mathews, K; Nadler, D; Henderson, E; McMullen, K; Herndon, D; Meyer, W; Fauerbach, J A; Wiechman, S; Carrougher, G; Ryan, C M; Schneider, J C

    2016-08-01

    While mortality rates after burn are low, physical and psychosocial impairments are common. Clinical research is focusing on reducing morbidity and optimizing quality of life. This study examines self-reported Satisfaction With Life Scale scores in a longitudinal, multicenter cohort of survivors of major burns. Risk factors associated with Satisfaction With Life Scale scores are identified. Data from the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR) Burn Model System (BMS) database for burn survivors greater than 9 years of age, from 1994 to 2014, were analyzed. Demographic and medical data were collected on each subject. The primary outcome measures were the individual items and total Satisfaction With Life Scale (SWLS) scores at time of hospital discharge (pre-burn recall period) and 6, 12, and 24 months after burn. The SWLS is a validated 5-item instrument with items rated on a 1-7 Likert scale. The differences in scores over time were determined and scores for burn survivors were also compared to a non-burn, healthy population. Step-wise regression analysis was performed to determine predictors of SWLS scores at different time intervals. The SWLS was completed at time of discharge (1129 patients), 6 months after burn (1231 patients), 12 months after burn (1123 patients), and 24 months after burn (959 patients). There were no statistically significant differences between these groups in terms of medical or injury demographics. The majority of the population was Caucasian (62.9%) and male (72.6%), with a mean TBSA burned of 22.3%. Mean total SWLS scores for burn survivors were unchanged and significantly below that of a non-burn population at all examined time points after burn. Although the mean SWLS score was unchanged over time, a large number of subjects demonstrated improvement or decrement of at least one SWLS category. Gender, TBSA burned, LOS, and school status were associated with SWLS scores at 6 months

  17. Improving burn care and preventing burns by establishing a burn database in Ukraine.

    Science.gov (United States)

    Fuzaylov, Gennadiy; Murthy, Sushila; Dunaev, Alexander; Savchyn, Vasyl; Knittel, Justin; Zabolotina, Olga; Dylewski, Maggie L; Driscoll, Daniel N

    2014-08-01

    Burns are a challenge for trauma care and a contribution to the surgical burden. The former Soviet republic of Ukraine has a foundation for burn care; however data concerning burns in Ukraine has historically been scant. The objective of this paper was to compare a new burn database to identify problems and implement improvements in burn care and prevention in this country. Retrospective analyses of demographic and clinical data of burn patients including Tukey's post hoc test, analysis of variance, and chi square analyses, and Fisher's exact test were used. Data were compared to the American Burn Association (ABA) burn repository. This study included 1752 thermally injured patients treated in 20 hospitals including Specialized Burn Unit in Municipal Hospital #8 Lviv, Lviv province in Ukraine. Scald burns were the primary etiology of burns injuries (70%) and burns were more common among children less than five years of age (34%). Length of stay, mechanical ventilation use, infection rates, and morbidity increased with greater burn size. Mortality was significantly related to burn size, inhalation injury, age, and length of stay. Wound infections were associated with burn size and older age. Compared to ABA data, Ukrainian patients had double the length of stay and a higher rate of wound infections (16% vs. 2.4%). We created one of the first burn databases from a region of the former Soviet Union in an effort to bring attention to burn injury and improve burn care. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  18. Advances in HYDRA and its application to simulations of Inertial Confinement Fusion targets

    Science.gov (United States)

    Marinak, M. M.; Kerbel, G. D.; Koning, J. M.; Patel, M. V.; Sepke, S. M.; Brown, P. N.; Chang, B.; Procassini, R.; Veitzer, S. A.

    2008-11-01

    We will outline new capabilities added to the HYDRA 2D/3D multiphysics ICF simulation code. These include a new SN multigroup radiation transport package (1D), constitutive models for elastic-plastic (strength) effects, and a mix model. A Monte Carlo burn package is being incorporated to model diagnostic signatures of neutrons, gamma rays and charged particles. A 3D MHD package that treats resistive MHD is available. Improvements to HYDRA's implicit Monte Carlo photonics package, including the addition of angular biasing, now enable integrated hohlraum simulations to complete in substantially shorter time. The heavy ion beam deposition package now includes a new model for ion stopping power developed by the Tech-X Corporation, with improved accuracy below the Bragg peak. Examples will illustrate HYDRA's enhanced capabilities to simulate various aspects of inertial confinement fusion targets.This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. The work of Tech-X personnel was funded by the Department of Energy under Small Business Innovation Research Contract No. DE-FG02-03ER83797.

  19. Helium burning: a further measurement of the beta-delayed alpha-particle emission of 16 Na

    International Nuclear Information System (INIS)

    Gai, Moshe

    1997-01-01

    The 12 C (α,γ) 16 O is a key (but still unknown) reaction in helium burning. Several attempts to constrain the p-wave S-factor at Helium burning temperatures (200 M K) using the beta-delayed alpha-particle emission of 16 N have been made. However, some discrepancy exists between the spectra measured at Settle and that of TRIUMF. We have improved our previous study of the beta-delayed alpha-particle emission of 16 N by improving our statistical sample (by more than a factor of 5), improving the energy resolution of the experiment (by 20%), and in understanding our line shape, deduced from measured quantities. Our newly measured spectrum of the beta-delayed alpha-particle emission of 16 N is consistent with the Seattle ('95) data, as well as an earlier experiment performed at Mains ('71) and is not consistent with the TRIUMF ('94) data. (author)

  20. Implementing the ICF in Occupational Health; building a curriculum as an exemplary case.

    Science.gov (United States)

    de Brouwer, Carin P M; van Amelsvoort, Ludovic G P M; Heerkens, Yvonne F; Widdershoven, Guy A M; Kant, IJmert

    2017-01-01

    This paper addresses the need for a paradigm shift from post-diagnosis tertiary care towards maintenance and promotion of health across the lifespan, for healthcare in general and in occupational healthcare specifically. It is based on the assumption that the realization of this paradigm shift may be facilitated by teaching (future) occupational health professionals to use the International Classification of Functioning, Disability and Health (ICF). Describing the development of a an ICF based occupational health curriculum. Grafting a training trajectory in the ICF for educating the biopsychosocial health paradigm, onto a training trajectory in the Critical Appraisal of a Topic (CAT), a method for teaching evidence based practice skills. The development process of the training trajectories in the master program Work, Health, and Career at Maastricht University is described as an example of an intervention for shifting the paradigm in healthcare curricula. The expected results are a shift from the biomedical towards the biopsychosocial paradigm, a reductionist approach towards a more holistic view on cases, a reactive way of working towards a more proactive work style, and from using a merely quantifiable evidence base towards using a broad evidence base. Incorporating the biopsychosocial paradigm into the assessment and scientific reasoning skills of students is not only valuable in occupational healthcare but might be a valuable approach for all disciplines in healthcare for which contextual factors are important e.g. rehabilitation, psychiatry and nutritional science.

  1. A megajoule class krypton fluoride amplifier for single shot, high gain ICF application

    International Nuclear Information System (INIS)

    Rose, E.; Hanson, D.; Krohn, B.; McLeod, J.; Kang, M.

    1988-01-01

    A design study is underway to define the optimal architecture for a KrF laser system which will deliver 10 MJ of 248-nm light to an ICF target. We present one approach which incorporates final power amplifiers in the megajoule class, achieving 10 MJ with four final amplifiers. Each double-pass laser amplifier employs two-sided electron-beam pumping of the laser gas medium. Details of the design are based on a Monte-Carlo electron-beam deposition code, a one-dimensional, time-dependent kinetics code, and pulsed power circuit modeling. Linear dimensions of the amplifier's extracted gain volume are 6.25 m in height and length and 5.12 m in width. Each amplifier handles 160 angularly multiplexed laser channels. The one-amagat, krypton-rich laser medium is e-beam pumped at 60-kW cm/sup /minus/3/ (4-MA at3.3-MV) over the 2-microsecond duration of the laser beam pulse train. 5 refs., 4 figs

  2. Smoke emissions in small-scale burning of wood

    International Nuclear Information System (INIS)

    Tuomi, S.

    1993-01-01

    The article is based on research carried out in Finland and Sweden on the subject of emissions of smoke in the small-scale burning of wood and the factors affecting it. Due to incomplete combustion, small-scale burning of wood is particularly typified by its emissions of solid particles, carbon monoxide, hydrocarbons and PAH compounds. Included among factors influencing the volume of emissions are the load imposed on the heating device, the manner in which the fuel is fed into the firebox, fuel quality, and heating device structure. Emissions have been found to be at their minimum in connection with heating systems based on accumulators. Emissions can be significantly reduced by employing state-of-the-art technology, appropriate ways of heating and by dry fuel. A six-year bioenergy research programme was launched early in 1993 in Finland. All leading research institutions and enterprises participate in this programme. Reduction of emissions has been set as the central goal in the part dealing with small-scale burning of wood. Application of catalytic combustion in Finnish-made heating devices is one of the programmes development targets. Up to this date, the emissions produced in the small-scale burning of wood are not mentioned in official regulations pertaining to approved heating devices. In Sweden tar emissions are applied as a measure of the environmental impact imposed by heating devices

  3. Search for Rayleigh-Taylor instability in laser irradiated layered thin foil targets

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Hares, J.D.; Rumsby, P.T.

    1980-01-01

    An experiment to measure the Rayleigh-Taylor instability at the vacuum-ablation surface of laser irradiated layered targets by time resolved x-ray spectroscopy is described. The time taken to burn through a layer of material is measured to be the same for massive targets as for thin foil accelerating targets. It is inferred that the thin foil targets might be Rayleigh-Taylor stable despite the values of γtauapproximately equal to15 calculated from classical theory. (author)

  4. The ICF as a common language for rehabilitation goal-setting: comparing client and professional priorities

    Directory of Open Access Journals (Sweden)

    van der Merwe Aletia

    2011-10-01

    Full Text Available Abstract Background Joint rehabilitation goals are an important component for effective teamwork in the rehabilitation field. The activities and participation domain of the ICF provides a common language for professionals when setting these goals. Involving clients in the formulation of rehabilitation goals is gaining momentum as part of a person-centred approach to rehabilitation. However, this is particularly difficult when clients have an acquired communication disability. The expressive communication difficulties negatively affect the consensus building process. As a result, obtaining information regarding rehabilitation goals from professionals and their clients warrants further investigation for this particular population. Methods This comparative study investigated clients and their assigned rehabilitation professionals' perception of the importance of ICF activities and participation domains for inclusion in their rehabilitation program. Twelve clients in an acute rehabilitation centre and twenty of their corresponding rehabilitation professionals participated in an activity using the Talking Mats™ visual framework for goal setting. Each participant rated the importance of the nine activities and participation domains of the ICF for inclusion in their current rehabilitation program. Results The ICF domains which consistently appear as very important across these groups are mobility, self-care and communication. Domains which consistently appear in the lower third of the rankings include spare time, learning and thinking and domestic life. Results indicate however that no statistical significant differences exist in terms of the individual domains across each of the participant groups. Within group differences however indicated that amongst the speech-language therapists and physiotherapists there was a statistical significant difference between spare time activities and communication and mobility. Conclusions Findings indicate that

  5. Comparison of heat transfer and soil impacts of air curtain burner burning and slash pile burning

    Science.gov (United States)

    Woongsoon Jang; Deborah S. Page-Dumroese; Han-Sup Han

    2017-01-01

    We measured soil heating and subsequent changes in soil properties between two forest residue disposal methods: slash pile burning (SPB) and air curtain burner (ACB). The ACB consumes fuels more efficiently and safely via blowing air into a burning container. Five burning trials with different fuel sizes were implemented in northern California, USA. Soil temperature...

  6. Burn-up measurements of LEU fuel for short cooling times

    International Nuclear Information System (INIS)

    Pereda B, C.; Henriquez A, C.; Klein D, J.; Medel R, J.

    2005-01-01

    The measurements presented in this work were made essentially at in-pool gamma-spectrometric facility, installed inside of the secondary pool of the RECH-1 research reactor, where the measured fuel elements are under 2 meters of water. The main reason for using the in-pool facility was because of its capability to measure the burning of fuel elements without having to wait so long, that is with only 5 cooling days, which are the usual times between reactor operations. Regarding these short cooling times, this work confirms again the possibility of using the 95 Zr as a promising burnup monitor, in spite of the rough approximations used to do it. These results are statistically reasonable within the range calculated using codes. The work corroborates previous results, presented in Santiago de Chile, and it suggests future improvements in that way. (author)

  7. Knowledge of childhood burn risks and burn first aid: Cool Runnings.

    Science.gov (United States)

    Burgess, Jacqueline D; Watt, Kerrianne A; Kimble, Roy M; Cameron, Cate M

    2018-01-31

    The high incidence of hot beverage scalds among young children has not changed in the past 15 years, but preventive campaigns have been scarce. A novel approach was used to engage mothers of young children in an app-based hot beverage scald prevention campaign 'Cool Runnings'. This paper provides baseline data for this randomised controlled trial (RCT). Queensland-based mothers aged 18+ years with at least one child aged 5-12 months were recruited via social media to Cool Runnings, which is a two-group, parallel, single-blinded RCT. In total, 498 participants from across Queensland completed the baseline questionnaire. The most common source of burn first aid information was the internet (79%). One-third (33%) correctly identified hot beverage scalds as the leading cause of childhood burns, 43% knew the age group most at risk. While 94% reported they would cool a burn with water, only 10% reported the recommended 20min duration. After adjusting for all relevant variables, there were two independent predictors of adequate burn first aid knowledge: first aid training in the past year (OR=3.32; 95% CI 1.8 to 6.1) and smoking status (OR=0.17; 95% CI 0.04 to 0.7). In this study, mothers of young children were largely unaware how frequently hot beverage scalds occur and the age group most susceptible to them. Inadequate burn first aid knowledge is prevalent across mothers of young children; there is an urgent and compelling need to improve burn first aid knowledge in this group. Given the high incidence of hot beverages scalds in children aged 6-24 months, it is important to target future burn prevention/first aid campaigns at parents of young children. ACTRN12616000019404; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. The International Classification of Functioning, Disability and Health (ICF): a unifying model for the conceptual description of the rehabilitation strategy.

    Science.gov (United States)

    Stucki, Gerold; Cieza, Alarcos; Melvin, John

    2007-05-01

    An important basis for the successful development of rehabilitation practice and research is a conceptually sound description of rehabilitation understood as a health strategy based on a universally accepted conceptual model and taxonomy of human functioning. With the approval of the International Classification of Functioning, Disability and Health (ICF) by the World Health Assembly in 2001 and the reference to the ICF in the World Health Assembly's resolution on "Disability, including prevention, management and rehabilitation" in 2005, we can now rely on a universally accepted conceptual model. It is thus time to initiate the process of evolving an ICF-based conceptual description that can serve as a basis for similar conceptual descriptions and according definitions of the professions applying the rehabilitation strategy and of distinct scientific fields of human functioning and rehabilitation research. In co-operation with the Physical and Rehabilitation Medicine (PRM) section of the European Union of Medical Specialists (UEMS) and its professional practice committee, we present a first tentative version of an ICF-based conceptual description in this paper. A brief definition describes rehabilitation as the health strategy applied by PRM and professionals in the health sector and across other sectors that aims to enable people with health conditions experiencing or likely to experience disability to achieve and maintain optimal functioning in interaction with the environment. Readers of the Journal of Rehabilitation Medicine are invited to contribute towards achieving an internationally accepted ICF-based conceptual description of rehabilitation by submitting commentaries to the Editor of this journal.

  9. Understanding Air Quality in East Africa: Estimating Biomass Burning and Anthropogenic Influence with Long-Term Measurements

    Science.gov (United States)

    DeWitt, L.; Gasore, J.; Rupakheti, M.; Potter, K. E.; Prinn, R. G.

    2017-12-01

    Air pollution is largely unstudied in sub-Saharan Africa, resulting in a large gap in scientific understanding of emissions, atmospheric processes and impacts of air pollutants in this region. The Rwanda Climate Observatory, a joint partnership between MIT and the government of Rwanda, has been measuring ambient concentrations of key long-lived greenhouse gases and short-lived climate-forcing pollutants (CO2, CO, CH4, BC, O3) on the summit of Mt. Mugogo (1.586°S, 29.566°E, 2500 m above sea level) since May 2015. Rwanda is a small, mountainous, and densely populated country in equatorial East Africa currently undergoing rapid development. The location and meteorology of Rwanda is such that emissions transported from both the northern and southern African biomass burning seasons affect BC, CO, and O3 concentrations in Rwanda. Black carbon concentrations during Rwanda's two dry seasons are higher at Mt. Mugogo, a rural site, than in major European cities. Higher BC baseline concentrations at Mugogo are correlated with fire radiative power data for the region acquired with MODIS satellite instrument. Spectral absorption of aerosol measured with a dual-spot aethalometer also varies seasonally, likely due to change in fuel burned and direction of pollution transport to the site. Ozone concentration was found to be higher in air masses from southern Africa than from northern Africa during their respective biomass burning seasons. The higher ozone concentration in air masses from the south could be indicative of more anthropogenic influence as Rwanda is downwind of major East African capitals in this season. During the rainy seasons, local emitting activities (e.g., cooking, driving, trash burning) remain steady, regional biomass burning is low, and transport distances are shorter as rainout of pollution occurs regularly, which allows estimation of local pollution during this time period. Urban PM2.5 measurements in the capital city of Kigali and from the neighboring

  10. Conceptual design of ICF reactor SENRI, Part II. Advances in design and pellet gain scaling

    International Nuclear Information System (INIS)

    Ido, S.; Mima, K.; Nakai, S.; Tsuji, R.; Yamanaka, C.

    1984-01-01

    This chapter reviews the recent design studies on reactor concepts with magnetically guided lithium flow, SENRI-I, SENRI-IA and SENRI-II. The routes from the present status to power reactors and an advanced fuel pellet concept is also discussed. Topics covered include pellet design, magnetohydrodynamic design of liquid lithium flow; reactor cavity concepts with magnetically guided lithium flow, a thermo-hydraulic analysis, a tritium recovery system; and an advanced fuel pellet concept for an inertial confinement fusion (ICF) reactor without a tritium breeding blanket. An advanced fuel pellet for an ICF reactor without a T breeder was studied in the model calculations, which showed sufficiently high values of pellet gain. Includes a table and 8 diagrams

  11. Assessment of functioning in patients with schizophrenia and schizoaffective disorder with the Mini-ICF-APP: a validation study in Italy

    OpenAIRE

    Pinna, Federica; Fiorillo, Andrea; Tusconi, Massimo; Guiso, Beatrice; Carpiniello, Bernardo

    2015-01-01

    Background The aim of the study was to evaluate validity of the Italian Mini-ICF-APP (Mini-ICF Rating for Limitations of Activities and Participation in Psychological Disorders) in schizophrenia and related disorders. Methods 74 outpatients affected by schizophrenia or schizoaffective disorders attending a University-based community mental health centre were recruited to the study. All participants underwent comprehensive evaluation using standardized instruments to assess clinical, neurocogn...

  12. Lawn mower-related burns.

    Science.gov (United States)

    Still, J; Orlet, H; Law, E; Gertler, C

    2000-01-01

    Lawn mower-related injuries are fairly common and are usually caused by the mower blades. Burns may also be associated with the use of power lawn mowers. We describe 27 lawn mower-related burn injuries of 24 male patients and 3 female patients. Three of the patients with burn injuries were children. Burn sizes ranged from 1% to 99% of the total body surface area (mean, 18.1%). Two of the patients died. The hospital stay ranged from 1 day to 45 days. Twenty-six injuries involved gasoline, which is frequently associated with refueling accidents. Safety measures should involve keeping children away from lawn mowers that are being used. The proper use and storage of gasoline is stressed.

  13. Primary design of Si cooling arm structure in ICF cryogenic target

    International Nuclear Information System (INIS)

    Zhang Yong; Yi Yong; Tang Changhuan; Zhang Jicheng

    2013-01-01

    According to the requirement of the cryogenic target system to the Si cooling arm structure, the Si cooling arm was primarily designed based on the USA National Ignition Facility (NIF) target. A new three-dimensional model of Si cooling arm was developed by SolidWorks software, and the simulation and analysis of Si cooling arm in aspect of mechanical property, thermal response and assembly were made based on the model. A law about the effect of the arm length of Si cooling arm and the width and the length of bifurcation on Si cooling arm was achieved. The research may provide the theoretical foundation and reference for the further improvement of cryogenic target. (authors)

  14. An ICF-Based Model for Implementing and Standardizing Multidisciplinary Obesity Rehabilitation Programs within the Healthcare System

    Directory of Open Access Journals (Sweden)

    Amelia Brunani

    2015-05-01

    Full Text Available Introduction/Objective: In this study, we aimed to design an ICF-based individual rehabilitation project for obese patients with comorbidities (IRPOb integrated into the Rehab-CYCLE to standardize rehabilitative programs. This might facilitate the different health professionals involved in the continuum of care of obese patients to standardize rehabilitation interventions. Methods: After training on the ICF and based on the relevant studies, ICF categories were identified in a formal consensus process by our multidisciplinary team. Thereafter, we defined an individual rehabilitation project based on a structured multi-disciplinary approach to obesity. Results: the proposed IRPOb model identified the specific intervention areas (nutritional, physiotherapy, psychology, nursing, the short-term goals, the intervention modalities, the professionals involved and the assessment of the outcomes. Information was shared with the patient who signed informed consent. Conclusions: The model proposed provides the following advantages: (1 standardizes rehabilitative procedures; (2 facilitates the flow of congruent and updated information from the hospital to outpatient facilities, relatives, and care givers; (3 addresses organizational issues; (4 might serve as a benchmark for professionals who have limited specific expertise in rehabilitation of comorbid obese patients.

  15. Exploring the relationships between International Classification of Functioning, Disability and Health (ICF) constructs of Impairment, Activity Limitation and Participation Restriction in people with osteoarthritis prior to joint replacement.

    Science.gov (United States)

    Pollard, Beth; Johnston, Marie; Dieppe, Paul

    2011-05-16

    The International Classification of Functioning, Disability and Health (ICF) proposes three main constructs, impairment (I), activity limitation (A) and participation restriction (P). The ICF model allows for all paths between the constructs to be explored, with significant paths likely to vary for different conditions. The relationships between I, A and P have been explored in some conditions but not previously in people with osteoarthritis prior to joint replacement. The aim of this paper is to examine these relationships using separate measures of each construct and structural equation modelling. A geographical cohort of 413 patients with osteoarthritis about to undergo hip and knee joint replacement completed the Aberdeen measures of Impairment, Activity Limitation and Participation Restriction (Ab-IAP). Confirmatory factor analysis was used to test the three factor (I, A, P) measurement model. Structural equation modelling was used to explore the I, A and P pathways in the ICF model. There was support from confirmatory factor analysis for the three factor I, A, P measurement model. The structural equation model had good fit [S-B Chi-square = 439.45, df = 149, CFI robust = 0.91, RMSEA robust = 0.07] and indicated significant pathways between I and A (standardised coefficient = 0.76 p < 0.0001) and between A and P (standardised coefficient = 0.75 p < 0.0001). However, the path between I and P was not significant (standardised coefficient = 0.01). The significant pathways suggest that treatments and interventions aimed at reducing impairment, such as joint replacement, may only affect P indirectly, through A, however, longitudinal data would be needed to establish this.

  16. Adapting an x-ray/debris shield to the cascade ICF power plant: Neutronics issues

    International Nuclear Information System (INIS)

    Tobin, M.T.

    1990-01-01

    A neutronics analysis has been carried out to determine the effects on the Cascade ICF reactor concept of adding a solid-lithium x-ray and debris shield to each ICF capsule. Results indicate that tritium breeding in LiAlO 2 is possible with a modest isotopic enhancement in 6 Li (to 15%). The shallow-burial index is greater than 1 (indicating that deep burial may be required) if the blanket is kept in the reactor for more than 2.5 yr. Nine percent of the total thermal power is unrecoverable. Parts of the chamber wall may require replacement once during the reactor life due to radiation damage. Part of the SiC chamber end cap must be replaced annually. The reactor may not require any nuclear-grade construction. 20 refs., 4 figs., 3 tabs

  17. Analysis on two technologic errors of color separation grating used for ICF

    International Nuclear Information System (INIS)

    Chen Dewei; Li Yongping

    2003-01-01

    In this paper, the depth of color separation grating applied in ICF system is optimized firstly for good separating effect. After this, duty cycle error and the trapezoid structure are analyzed. A probable scope of technologic error that make the color separation grating have good effect is given in the end

  18. Polyvinyl alcohol coating of polystyrene inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Annamalai, P.; Lee, M.C.; Crawley, R.L.; Downs, R.L.

    1985-01-01

    An inertial confinement fusion (ICF) target made of polystyrene is first levitated in an acoustic field. The surface of the target is then etched using an appropriate solution (e.g., cyclohexane) to enhance the wetting characteristics. A specially prepared polyvinyl alcohol solution is atomized using an acoustic atomizer and deposited on the surface of the target. The solution is air dried to form a thin coating (2 μm) on the target (outside diameter approx.350--850 μm). Thicker coatings are obtained by repeated applications of the coating solution. Preliminary results indicate that uniform coatings may be achievable on the targets with a background surface smoothness in the order of 1000 A

  19. Safety and efficacy of an intensive insulin protocol in a burn-trauma intensive care unit.

    Science.gov (United States)

    Cochran, Amalia; Davis, Lynn; Morris, Stephen E; Saffle, Jeffrey R

    2008-01-01

    Aggressive glycemic management in critically ill patients with acute burn injury or life-threatening soft-tissue infections has not been thoroughly evaluated. An intensive insulin protocol with target glucose values of less than 120 mg/dl was implemented in October 2005 in our regional Burn-Trauma intensive care unit. We reviewed our initial experience with this protocol to evaluate the safety and efficacy of aggressive glycemic control in these patient groups. Patients were placed on the intensive insulin protocol based upon the need for glycemic management during their hospitalization for burn or soft-tissue disease. Patient information prospectively collected while on protocol included all measured blood glucose values, total daily insulin use, and incidence of hypoglycemic episodes, defined as serum glucose patients (17 burns, 13 soft-tissue infections) were placed on the intensive insulin protocol during the first 16 months of use. The mean daily blood glucose level for burn patients was 115.9 mg/dl and for soft-tissue disease patients was 119.5 mg/dl. There was a 5% incidence of hypoglycemic episodes per protocol day. All hypoglycemic episodes were treated by holding the insulin infusion, and no episode had known adverse effects. Hyperglycemia in critically ill patients with burns and extensive soft-tissue disease can be effectively managed with an insulin protocol that targets blood glucose values of less than 120 mg/dl with minimal incidence of hypoglycemia. A multicenter prospective randomized trial would provide the ideal forum for evaluating clinical outcome benefits of using an intensive insulin protocol.

  20. Gram negative wound infection in hospitalised adult burn patients--systematic review and metanalysis-.

    Science.gov (United States)

    Azzopardi, Ernest A; Azzopardi, Elayne; Camilleri, Liberato; Villapalos, Jorge; Boyce, Dean E; Dziewulski, Peter; Dickson, William A; Whitaker, Iain S

    2014-01-01

    Gram negative infection is a major determinant of morbidity and survival. Traditional teaching suggests that burn wound infections in different centres are caused by differing sets of causative organisms. This study established whether Gram-negative burn wound isolates associated to clinical wound infection differ between burn centres. Studies investigating adult hospitalised patients (2000-2010) were critically appraised and qualified to a levels of evidence hierarchy. The contribution of bacterial pathogen type, and burn centre to the variance in standardised incidence of Gram-negative burn wound infection was analysed using two-way analysis of variance. Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanni, Enterobacter spp., Proteus spp. and Escherichia coli emerged as the commonest Gram-negative burn wound pathogens. Individual pathogens' incidence did not differ significantly between burn centres (F (4, 20) = 1.1, p = 0.3797; r2 = 9.84). Gram-negative infections predominate in burn surgery. This study is the first to establish that burn wound infections do not differ significantly between burn centres. It is the first study to report the pathogens responsible for the majority of Gram-negative infections in these patients. Whilst burn wound infection is not exclusive to these bacteria, it is hoped that reporting the presence of this group of common Gram-negative "target organisms" facilitate clinical practice and target research towards a defined clinical demand.

  1. Burn-up determinations and dimensional measurements of TRIGA-HEU fuel elements from the 14 MW steady-state core

    International Nuclear Information System (INIS)

    Toma, C.; Alexa, Al.; Craciunescu, T.; Pirvan, M.; Dobrin, R.

    2008-01-01

    In this paper there are presented the results of nondestructive examination in Post Irradiation Examination Laboratory for twenty five fuel rods selected from 14 MW steady state core. Gamma scanning and dimensional measurements were carried out in order to determine burn-up and diametric deflection of the fuel rods. Also, some comparisons with SSR Safety Report estimations for the maximum burn-up pin were made. (authors)

  2. Site support program plan for ICF Kaiser Hanford Company, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This document is the general administrative plan implemented by the Hanford Site contractor, ICF Kaiser Hanford Company. It describes the mission, administrative structure, projected staffing, to be provided by the contractor. The report breaks out the work responsibilities within the different units of the company, a baseline schedule for the different groups, and a cost summary for the different operating units.

  3. Site support program plan for ICF Kaiser Hanford Company, Revision 1

    International Nuclear Information System (INIS)

    1995-10-01

    This document is the general administrative plan implemented by the Hanford Site contractor, ICF Kaiser Hanford Company. It describes the mission, administrative structure, projected staffing, to be provided by the contractor. The report breaks out the work responsibilities within the different units of the company, a baseline schedule for the different groups, and a cost summary for the different operating units

  4. Magneized target fusion: An overview of the concept

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.

    1994-01-01

    Magnetized target fusion (MTF) seeks to take advantage of the reduction of thermal conductivity through the application of a strong magneticfield and thereby ease the requirements for reaching fusion conditions in a thermonuclear (TN) fusion fuel. A potentially important benefit of the strong field in the partial trapping of energetic charged particles to enhance energy deposition by the TN fusion reaction products. The essential physics is described. MTF appears to lead to fusion targets that require orders of magnitude less power and intensity for fusion ignition than currently proposed (unmagnetized) inertial confinement fusion (ICF) targets do, making some very energetic pulsed power drivers attractive for realizing controlled fusion

  5. Crude oil burning mechanisms

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, L.M.V.; Jomaas, Grunde

    2015-01-01

    In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... height, mass loss rate and residues of three hydrocarbon liquids (n-octane, dodecane and hexadecane), two crude oils (DUC and REBCO) and one hydrocarbon liquid mixture of the aforementioned hydrocarbon liquids were studied using the Crude Oil Flammability Apparatus. The experimental results were compared...... on the highest achievable oil slick temperature. Based on this mechanism, predictions can then be made depending on the hydrocarbon composition of the fuel and the measured surface temperature....

  6. Wetted Foam Liquid DT Layer ICF Experiments at the NIF

    Science.gov (United States)

    Olson, R. E.; Leeper, R. J.; Peterson, R. R.; Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Bradley, P. A.; Yin, L.; Wilson, D. C.; Haines, B. M.; Batha, S. H.

    2016-10-01

    A key physics issue in indirect-drive ICF relates to the understanding of the limitations on hot spot convergence ratio (CR), principally set by the hohlraum drive symmetry, the capsule mounting hardware (the ``tent''), and the capsule fill tube. An additional key physics issue relates to the complex process by which a hot spot must be dynamically formed from the inner ice surface in a DT ice-layer implosion. These physics issues have helped to motivate the development of a new liquid DT layer wetted foam platform at the NIF that provides an ability to form the hot spot from DT vapor and experimentally study and understand hot spot formation at a variety of CR's in the range of 12hot spot and the low adiabat cold fuel during the stagnation process and can allow for a fundamentally different (and potentially more robust) process of hot spot formation. This new experimental platform is currently being used in a series of experiments to discover a range of CR's at which DT layered implosions will have understandable performance - providing a sound basis from which to determine the requirements for ICF ignition. This work was performed under the auspices of the U. S. DOE by LANL under contract DE-AC52-06NA25396.

  7. Airborne hydrogen cyanide measurements using a chemical ionisation mass spectrometer for the plume identification of biomass burning forest fires

    Directory of Open Access Journals (Sweden)

    M. Le Breton

    2013-09-01

    Full Text Available A chemical ionisation mass spectrometer (CIMS was developed for measuring hydrogen cyanide (HCN from biomass burning events in Canada using I− reagent ions on board the FAAM BAe-146 research aircraft during the BORTAS campaign in 2011. The ionisation scheme enabled highly sensitive measurements at 1 Hz frequency through biomass burning plumes in the troposphere. A strong correlation between the HCN, carbon monoxide (CO and acetonitrile (CH3CN was observed, indicating the potential of HCN as a biomass burning (BB marker. A plume was defined as being 6 standard deviations above background for the flights. This method was compared with a number of alternative plume-defining techniques employing CO and CH3CN measurements. The 6-sigma technique produced the highest R2 values for correlations with CO. A normalised excess mixing ratio (NEMR of 3.68 ± 0.149 pptv ppbv−1 was calculated, which is within the range quoted in previous research (Hornbrook et al., 2011. The global tropospheric model STOCHEM-CRI incorporated both the observed ratio and extreme ratios derived from other studies to generate global emission totals of HCN via biomass burning. Using the ratio derived from this work, the emission total for HCN from BB was 0.92 Tg (N yr−1.

  8. Tritium inventory of a target factor in an ICF power plant

    International Nuclear Information System (INIS)

    Sherohman, J.W.

    1981-01-01

    A preliminary parametric study has been performed to estimate the tritium inventory of a conjectured Target Factory. The inventory of a proposed tritiated fuel processing system was determined as a function of production efficiency, storage factor, and time interval for the slowest processing step. Results indicated that a study of this type will be beneficial in evaluating possible processing schemes for the production of tritiated laser fusion targets

  9. Parametric systems analysis for ICF hybrid reactors

    International Nuclear Information System (INIS)

    Berwald, D.H.; Maniscalco, J.A.; Chapin, D.L.

    1981-01-01

    Parametric design and systems analysis for inertial confinement fusion-fission hybrids are presented. These results were generated as part of the Electric Power Research Institute (EPRI) sponsored Feasibility Assessment of Fusion-Fission Hybrids, using an Inertial Confinement Fusion (ICF) hybrid power plant design code developed in conjunction with the feasibility assessment. The SYMECON systems analysis code, developed by Westinghouse, was used to generate economic results for symbiotic electricity generation systems consisting of the hybrid and its client Light Water Reactors (LWRs). These results explore the entire fusion parameter space for uranium fast fission blanket hybrids, thorium fast fission blanket hybrids, and thorium suppressed fission blanket types are discussed, and system sensitivities to design uncertainties are explored

  10. Simulation of instability growth on ICF capsule ablators

    Science.gov (United States)

    Niasse, Nicolas; Chittenden, Jeremy

    2014-10-01

    It is believed that the ablation-front instabilities are mainly responsible for the hot-spot mix that impacts the performance of ICF capsules. Understanding the formation of these instabilities is therefore a first step towards a better control of the implosion dynamics and the optimization of the fusion yield. Using the Chimera code currently in development at Imperial College, we have performed several spherical wedge simulations of the low and high adiabat ablation phase pre-imposing different single-mode 2D and 3D perturbations on the capsule surface. Synthetic Sc, Fe and V X-ray backlighter images are generated by the Spk code and used to measure the growth of modes 30-160 with initial amplitude <= 3.4 μm PTV. The growth of imposed 2D perturbations is assessed for both low-foot and high-foot radiation pulse shapes on the National Ignition Facility. Results showing the merger of spike and bubble structures in multi-mode perturbations in both 2D and 3D simulations are explored and preliminary assessments of the difference between 2D and 3D non-linear behaviour is discussed. The sensitivity of shock timing to NLTE changes in opacity is also assessed.

  11. Infections in critically ill burn patients.

    Science.gov (United States)

    Hidalgo, F; Mas, D; Rubio, M; Garcia-Hierro, P

    2016-04-01

    Severe burn patients are one subset of critically patients in which the burn injury increases the risk of infection, systemic inflammatory response and sepsis. The infections are usually related to devices and to the burn wound. Most infections, as in other critically ill patients, are preceded by colonization of the digestive tract and the preventative measures include selective digestive decontamination and hygienic measures. Early excision of deep burn wound and appropriate use of topical antimicrobials and dressings are considered of paramount importance in the treatment of burns. Severe burn patients usually have some level of systemic inflammation. The difficulty to differentiate inflammation from sepsis is relevant since therapy differs between patients with and those without sepsis. The delay in prescribing antimicrobials increases morbidity and mortality. Moreover, the widespread use of antibiotics for all such patients is likely to increase antibiotic resistance, and costs. Unfortunately the clinical usefulness of biomarkers for differential diagnosis between inflammation and sepsis has not been yet properly evaluated. Severe burn injury induces physiological response that significantly alters drug pharmacokinetics and pharmacodynamics. These alterations impact antimicrobials distribution and excretion. Nevertheless the current available literature shows that there is a paucity of information to support routine dose recommendations. Copyright © 2016. Publicado por Elsevier España, S.L.U.

  12. Using the International Classification of Functioning, Disability and Health (ICF to describe children referred to special care or paediatric dental services.

    Directory of Open Access Journals (Sweden)

    Denise Faulks

    Full Text Available Children in dentistry are traditionally described in terms of medical diagnosis and prevalence of oral disease. This approach gives little information regarding a child's capacity to maintain oral health or regarding the social determinants of oral health. The biopsychosocial approach, embodied in the International Classification of Functioning, Disability and Health - Child and Youth version (ICF-CY (WHO, provides a wider picture of a child's real-life experience, but practical tools for the application of this model are lacking. This article describes the preliminary empirical study necessary for development of such a tool - an ICF-CY Core Set for Oral Health. An ICF-CY questionnaire was used to identify the medical, functional, social and environmental context of 218 children and adolescents referred to special care or paediatric dental services in France, Sweden, Argentina and Ireland (mean age 8 years ± 3.6 yrs. International Classification of Disease (ICD-10 diagnoses included disorders of the nervous system (26.1%, Down syndrome (22.0%, mental retardation (17.0%, autistic disorders (16.1%, and dental anxiety alone (11.0%. The most frequently impaired items in the ICF Body functions domain were 'Intellectual functions', 'High-level cognitive functions', and 'Attention functions'. In the Activities and Participation domain, participation restriction was frequently reported for 25 items including 'Handling stress', 'Caring for body parts', 'Looking after one's health' and 'Speaking'. In the Environment domain, facilitating items included 'Support of friends', 'Attitude of friends' and 'Support of immediate family'. One item was reported as an environmental barrier - 'Societal attitudes'. The ICF-CY can be used to highlight common profiles of functioning, activities, participation and environment shared by children in relation to oral health, despite widely differing medical, social and geographical contexts. The results of this empirical

  13. Long-term ophthalmic health care in Usher syndrome type I from an ICF perspective.

    Science.gov (United States)

    Möller, Kerstin; Eriksson, Kristina; Sadeghi, André M; Möller, Claes; Danermark, Berth

    2009-01-01

    The aim was to explore ophthalmic health care in female patients with Usher Syndrome type I (USH I) over 20 years and to evaluate the relationship between the ophthalmic health care and the health state of the patients from a health perspective. A retrospective study of records from ophthalmology departments (OD) and low vision clinics (LVC) from 1985 to 2004. Assessment of the reports was performed based on the International Classification of Functioning, Disability and Health (ICF). Findings were analysed by manifest content analysis with ICF as a framework and using four themes: health care system, procedure examinations, patient's functioning and disability and procedure actions. The records of nine female patients (aged 25-39 years, 1985) with USH I were selected from the national database of USH. A great number of notes were collected (OD 344 and LVC 566). Procedure examinations were exclusively oriented towards body structure and function. All patients showed aggravated visual impairment over and above the hearing and vestibular impairment. Procedure actions were oriented towards environmental factors. No correlation was found between procedures performed and patient's experience of disability. The high degree of resource allocation was not correlated to the patients' impairment. The study indicates that the ophthalmic health care was characterised by inefficiency. This conclusion is very serious because patients very likely face severe disability and emotional difficulties. ICF is ought to be incorporated in ophthalmic health care strategy to improve the health care.

  14. Reasons for Distress Among Burn Survivors at 6, 12, and 24 Months Postdischarge: A Burn Injury Model System Investigation.

    Science.gov (United States)

    Wiechman, Shelley A; McMullen, Kara; Carrougher, Gretchen J; Fauerbach, Jame A; Ryan, Colleen M; Herndon, David N; Holavanahalli, Radha; Gibran, Nicole S; Roaten, Kimberly

    2017-12-16

    To identify important sources of distress among burn survivors at discharge and 6, 12, and 24 months postinjury, and to examine if the distress related to these sources changed over time. Exploratory. Outpatient burn clinics in 4 sites across the country. Participants who met preestablished criteria for having a major burn injury (N=1009) were enrolled in this multisite study. Participants were given a previously developed list of 12 sources of distress among burn survivors and asked to rate on a 10-point Likert-type scale (0=no distress to 10=high distress) how much distress each of the 12 issues was causing them at the time of each follow-up. The Medical Outcomes Study 12-Item Short-Form Health Survey was administered at each time point as a measure of health-related quality of life. The Satisfaction With Appearance Scale was used to understand the relation between sources of distress and body image. Finally, whether a person returned to work was used to determine the effect of sources of distress on returning to employment. It was encouraging that no symptoms were worsening at 2 years. However, financial concerns and long recovery time are 2 of the highest means at all time points. Pain and sleep disturbance had the biggest effect on ability to return to work. These findings can be used to inform burn-specific interventions and to give survivors an understanding of the temporal trajectory for various causes of distress. In particular, it appears that interventions targeted at sleep disturbance and high pain levels can potentially effect distress over financial concerns by allowing a person to return to work more quickly. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Using a profile of a modified Brief ICF Core Set for chronic widespread musculoskeletal pain with qualifiers for baseline assessment in interdisciplinary pain rehabilitation

    Directory of Open Access Journals (Sweden)

    Löfgren M

    2013-08-01

    Full Text Available Monika Löfgren,1,2 Jan Ekholm,2 Lisbet Broman,3 Philipe Njoo,1 Marie-Louise Schult1–3 1Department of Rehabilitation Medicine Stockholm, Danderyd University Hospital, Sweden; 2Karolinska Institutet, Division of Rehabilitation Medicine, Department of Clinical Sciences, Danderyd University Hospital, Stockholm, Sweden; 3Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Stockholm, Sweden Aim: To describe the use of a “workable” visual profile of function and disability, based on a modified Brief International Classification of Functioning, Disability and Health (ICF Core Set for chronic widespread pain, for initial assessments in a clinical setting of interdisciplinary pain rehabilitation teams. Method: The Brief ICF Core Set was slightly adapted to meet the needs of an interdisciplinary rehabilitation medicine team working in a university outpatient clinic and admitting patients referred from primary care. The Core Set categories were made measurable by means of eg, assessment instruments and clinical investigations. The resulting profile was given a workable shape to facilitate rapid understanding of the initial assessment outcome. Results: Individual patients showed different profiles of problems and resources, which facilitated individual rehabilitation planning. At the level of the study group, the profiles for the Core Set component Body Functions showed that most patients had severe impairment in the sensation of pain and exercise tolerance categories of function, but most had resources in the motivation and memory categories of function. Likewise, for the component Activities, most patients had limitations in lifting and carrying objects and remunerative employment, but most had resources in intimate relationships and family relationships. At first, the use of the modified Brief ICF Core Set in the team conference was rather time consuming, but after a couple of months of experience, the team assessment took

  16. Measurements of ultrafine particles from a gas-turbine burning biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Allouis, C.; Beretta, F.; Minutolo, P.; Pagliara, R. [Istituto di Ricerche sulla Combustione, CNR, Piazzale V. Tecchio, 80, 80125 Napoli (Italy); Sirignano, M.; Sgro, L.A.; D' Anna, A. [Dipartimento di Ingegneria Chimica, Universita di Napoli Federico II, Piazzale V. Tecchio, 80, 80125 Napoli (Italy)

    2010-04-15

    Measurements of ultrafine particles have been performed at the exhaust of a low emission microturbine for power generation. This device has been fuelled with liquid fuels, including a commercial diesel oil, a mixture of the diesel oil with a biodiesel and kerosene, and tested under different loads. Primarily attention has been focused on the measurements of the size distribution functions of the particles emitted from the system by using particle differential mobility analysis. A bimodal size distribution function of the particle emitted has been found in all the examined conditions. Burning diesel oil, the first mode of the size distribution function of the combustion-formed particles is centered at around 2-3 nm, whereas the second mode is centered at about 20-30 nm. The increase of the turbine load and the addition of 50% of biodiesel has not caused changes in the shape of size distribution of the particles. A slightly decrease of the amount of particle formed has been found. By using kerosene the amount of emitted particles increases of more than one order of magnitude. Also the shape of the size distribution function changes with the first mode shifted towards larger particles of the order of 8-10 nm but with a lower emission of larger 20-30 nm particles. Overall, in this conditions, the mass concentration of particles is increased respect to the diesel oil operation. Particle sizes measured with the diesel oil have been compared with the results on a diesel engine operated in the same power conditions and with the same fuel. Measurements have showed that the mean sizes of the formed particles do not change in the two combustion systems. However, diesel engine emits a number concentration of particles more than two orders of magnitude higher in the same conditions of power and with the same fuel. By running the engine in more premixed-like conditions, the size distribution function of the particles approaches that measured by burning kerosene in the

  17. Car radiator burns: a prevention issue.

    Science.gov (United States)

    Rabbitts, Angela; Alden, Nicole E; Conlin, Tara; Yurt, Roger W

    2004-01-01

    Scald burns continue to be the major cause of injury to patients admitted to the burn center. Scald burns occurring from car radiator fluid comprise a significant subgroup. Although manufacturer warning labels have been placed on car radiators, these burns continue to occur. This retrospective review looks at all patients admitted to our burn center who suffered scald burns from car radiator fluid to assess the extent of this problem. During the study period, 86 patients were identified as having suffered scald burns as a result of contact with car radiator fluid. Seventy-one percent of the burn injuries occurred in the summer months. The areas most commonly burned were the head and upper extremities. Burn prevention efforts have improved greatly over the years; however, this study demonstrates that scald burns from car radiator fluid continue to cause physical, emotional, and financial devastation. The current radiator warning labels alone are not effective. The National Highway Traffic Safety Administration has proposed a new federal motor vehicle safety standard to aid in decreasing the number of scald burns from car radiators. The results of this study were submitted to the United States Department of Transportation for inclusion in a docket for federal legislation supporting these safety measures.

  18. Conceptual design of an angular multiplexed 50 kJ KrF amplifier for ICF

    International Nuclear Information System (INIS)

    Lowenthal, D.D.; Ewing, J.J.; Center, R.E.; Mumola, P.; Olson, T.

    1981-01-01

    The results of a conceptual design for an angular multiplexed 50 kJ KrF amplifier for ICF are presented. Optical designs, amplifier scaling with a KrF kinetics code and limitations imposed by pulsed power technology are described

  19. Inference of ICF Implosion Core Mix using Experimental Data and Theoretical Mix Modeling

    International Nuclear Information System (INIS)

    Welser-Sherrill, L.; Haynes, D.A.; Mancini, R.C.; Cooley, J.H.; Tommasini, R.; Golovkin, I.E.; Sherrill, M.E.; Haan, S.W.

    2009-01-01

    The mixing between fuel and shell materials in Inertial Confinement Fusion (ICF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model performed well in predicting trends in the width of the mix layer. With these results, we have contributed to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increased our confidence in the methods used to extract mixing information from experimental data.

  20. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    International Nuclear Information System (INIS)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., 137 Cs, 90 Sr, 129 I, 99 Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,α), (n,γ), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm 3 are required for a practical fusion-based fission product transmutation system

  1. Gram negative wound infection in hospitalised adult burn patients--systematic review and metanalysis-.

    Directory of Open Access Journals (Sweden)

    Ernest A Azzopardi

    Full Text Available BACKGROUND: Gram negative infection is a major determinant of morbidity and survival. Traditional teaching suggests that burn wound infections in different centres are caused by differing sets of causative organisms. This study established whether Gram-negative burn wound isolates associated to clinical wound infection differ between burn centres. METHODS: Studies investigating adult hospitalised patients (2000-2010 were critically appraised and qualified to a levels of evidence hierarchy. The contribution of bacterial pathogen type, and burn centre to the variance in standardised incidence of Gram-negative burn wound infection was analysed using two-way analysis of variance. PRIMARY FINDINGS: Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanni, Enterobacter spp., Proteus spp. and Escherichia coli emerged as the commonest Gram-negative burn wound pathogens. Individual pathogens' incidence did not differ significantly between burn centres (F (4, 20 = 1.1, p = 0.3797; r2 = 9.84. INTERPRETATION: Gram-negative infections predominate in burn surgery. This study is the first to establish that burn wound infections do not differ significantly between burn centres. It is the first study to report the pathogens responsible for the majority of Gram-negative infections in these patients. Whilst burn wound infection is not exclusive to these bacteria, it is hoped that reporting the presence of this group of common Gram-negative "target organisms" facilitate clinical practice and target research towards a defined clinical demand.

  2. Direct measurement of burn up monitor by Pulsed Laser Deposition (PLD) followed by Isotopic Dilution Mass Spectrometry

    International Nuclear Information System (INIS)

    Sajimol, R.; Manoravi, P.; NaIini, S.; Balasubramanian, R.; Joseph, M.

    2012-01-01

    Burn-up measurement is an important aspect in the assessment of fuel performance especially for experimental nuclear fuels. Conventional mass spectrometric technique offer the best accuracy for determination of burn-up but they suffer from the labour intensive and time consuming chemical separation procedures followed by mass spectrometric analysis. Our laboratory has reported a potential laser mass spectrometric technique with advantages of (i) direct and fast measurement of ion intensities of selected rare earth element and residual heavy element atoms to deduce burn up and (ii) adaptability to remote handling of radioactive samples. Direct quantification of burn up monitor element in fuel in the form of pellet as well as liquid was probed by pulsed laser deposition followed by Isotopic Dilution Mass Spectrometric technique (IDMS). The procedure involving laser ablation of heavy element (namely U and Pu) and fission product (Nd, La etc) from a simulated spent fuel matrix followed by isotopic dilution mass spectrometry using thermal ionization mass spectrometry (TIMS) has been presently attempted to arrive at the rare earth element to heavy element ratio to deduce burn up using the methodology described in our earlier work. The details of IDMS technique has been reviewed by Heumann et al. Accurately weighed amounts of major rare earth fission products such as Nd, La, Ce and Sm in solution form were mixed with known quantity of uranium solution (all the weights are corresponding to their fission yields and the residual heavy element atoms after a given burn up) and mixed together to attain uniformity. The solution is then dried and resulting powder was pelletized and sintered. Subsequently, the pellet was ablated with pulsed laser (8 ns, 532 nm, Nd-YAG) and the plume was deposited on a glass plate. This deposit was dissolved in minimum amount of nitric acid. A known volume of the solution was mixed with spike (for e.g., 150 Nd/ 142 Nd, 233 U/ 238 U in this study

  3. A tool to enhance occupational therapy reasoning from ICF perspective: The Hasselt Occupational Performance Profile (H-OPP).

    Science.gov (United States)

    Ghysels, R; Vanroye, E; Westhovens, M; Spooren, A

    2017-03-01

    In order to enhance occupational therapy reasoning in clinical practice, different elements such as client-centred approach, evidence-based care and interdisciplinary work should be taken into account, but is a challenge. To describe the development of the digital Hasselt Occupational Performance Profile (H-OPP © ) that enhances occupational therapy reasoning from ICF perspective. A participative qualitative design was used to create the H-OPP © in an iterative way in which occupational therapy lectures, ICF experts, students and occupational therapists in the field were involved. After linking occupational therapy terminology to the ICF, different stages of the H-OPP were identified and elaborated with main features: generating an occupational performance profile based on inventarization of problems and possibilities, formulating an occupational performance diagnosis and enabling to create an intervention plan. In all stages, both the perspectives of the client and the occupational therapist were taken into account. To increase practical use, the tool was further elaborated and digitalized. The H-OPP © is a digital coach that guides and facilitates professional reasoning in (novice) occupational therapists. It augments involvement of the client system. Furthermore, it enhances interdisciplinary communication and evidence-based care.

  4. Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires

    Science.gov (United States)

    McCluskey, Christina S.

    Insufficient knowledge regarding the sources and number concentrations of atmospheric ice nucleating particles (INP) leads to large uncertainties in understanding the interaction of aerosols with cloud processes, such as cloud life time and precipitation rates. This study utilizes measurements of INP from a diverse set of biomass burning events to better understand INP associated with biomass burning in the U.S. Prescribed burns in Georgia and Colorado, two Colorado wildfires and two laboratory burns were monitored for INP number concentrations. The relationship between nINP and total particle number concentrations, evident within prescribed burning plumes, was degraded within aged smoke plumes from the wildfires, limiting the utility of this relationship for comparing laboratory and field data. Larger particles, represented by n500nm, are less vulnerable to plume processing and have previously been evaluated for their relation to nINP. Our measurements indicated that for a given n500nm, nINP associated with the wildfires were nearly an order of magnitude higher than nINP found in prescribed fire emissions. Reasons for the differences between INP characteristics in these emissions were explored, including variations in combustion efficiency, fuel type, transport time and environmental conditions. Combustion efficiency and fuel type were eliminated as controlling factors by comparing samples with contrasting combustion efficiencies and fuel types. Transport time was eliminated because the expected impact would be to reduce n500nm, thus resulting in the opposite effect from the observed change. Bulk aerosol chemical composition analyses support the potential role of elevated soil dust particle concentrations during the fires, contributing to the population of INP, but the bulk analyses do not target INP composition directly. It is hypothesized that both hardwood burning and soil lofting are responsible for the elevated production of INP in the Colorado wildfires in

  5. On the Utility of Antiprotons as Drivers for Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, L J; Orth, C D; Tabak, M

    2003-10-20

    By contrast to the large mass, complexity and recirculating power of conventional drivers for inertial confinement fusion (ICF), antiproton annihilation offers a specific energy of 90MJ/{micro}g and thus a unique form of energy packaging and delivery. In principle, antiproton drivers could provide a profound reduction in system mass for advanced space propulsion by ICF. We examine the physics underlying the use of antiprotons ({bar p}) to drive various classes of high-yield ICF targets by the methods of volumetric ignition, hotspot ignition and fast ignition. The useable fraction of annihilation deposition energy is determined for both {bar p}-driven ablative compression and {bar p}-driven fast ignition, in association with 0-D and 1-D target burn models. Thereby, we deduce scaling laws for the number of injected antiprotons required per capsule, together with timing and focal spot requirements. The kinetic energy of the injected antiproton beam required to penetrate to the desired annihilation point is always small relative to the deposited annihilation energy. We show that heavy metal seeding of the fuel and/or ablator is required to optimize local deposition of annihilation energy and determine that a minimum of {approx}3x10{sup 15} injected antiprotons will be required to achieve high yield (several hundred megajoules) in any target configuration. Target gains - i.e., fusion yields divided by the available p - {bar p} annihilation energy from the injected antiprotons (1.88GeV/{bar p}) - range from {approx}3 for volumetric ignition targets to {approx}600 for fast ignition targets. Antiproton-driven ICF is a speculative concept, and the handling of antiprotons and their required injection precision - temporally and spatially - will present significant technical challenges. The storage and manipulation of low-energy antiprotons, particularly in the form of antihydrogen, is a science in its infancy and a large scale-up of antiproton production over present supply

  6. On the Utility of Antiprotons as Drivers for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Perkins, L J; Orth, C D; Tabak, M

    2003-01-01

    By contrast to the large mass, complexity and recirculating power of conventional drivers for inertial confinement fusion (ICF), antiproton annihilation offers a specific energy of 90MJ/(micro)g and thus a unique form of energy packaging and delivery. In principle, antiproton drivers could provide a profound reduction in system mass for advanced space propulsion by ICF. We examine the physics underlying the use of antiprotons ((bar p)) to drive various classes of high-yield ICF targets by the methods of volumetric ignition, hotspot ignition and fast ignition. The useable fraction of annihilation deposition energy is determined for both (bar p)-driven ablative compression and (bar p)-driven fast ignition, in association with 0-D and 1-D target burn models. Thereby, we deduce scaling laws for the number of injected antiprotons required per capsule, together with timing and focal spot requirements. The kinetic energy of the injected antiproton beam required to penetrate to the desired annihilation point is always small relative to the deposited annihilation energy. We show that heavy metal seeding of the fuel and/or ablator is required to optimize local deposition of annihilation energy and determine that a minimum of ∼3x10 15 injected antiprotons will be required to achieve high yield (several hundred megajoules) in any target configuration. Target gains - i.e., fusion yields divided by the available p - (bar p) annihilation energy from the injected antiprotons (1.88GeV/(bar p)) - range from ∼3 for volumetric ignition targets to ∼600 for fast ignition targets. Antiproton-driven ICF is a speculative concept, and the handling of antiprotons and their required injection precision - temporally and spatially - will present significant technical challenges. The storage and manipulation of low-energy antiprotons, particularly in the form of antihydrogen, is a science in its infancy and a large scale-up of antiproton production over present supply methods would be

  7. On the utility of antiprotons as drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Perkins, L. John; Orth, Charles D.; Tabak, Max

    2004-01-01

    In contrast to the large mass, complexity and recirculating power of conventional drivers for inertial confinement fusion (ICF), antiproton annihilation offers a specific energy of 90 MJ μg -1 and thus a unique form of energy packaging and delivery. In principle, antiproton drivers could provide a profound reduction in system mass for advanced space propulsion by ICF. We examine the physics underlying the use of antiprotons (p-bar) to drive various classes of high-yield ICF targets by the methods of volumetric ignition, hotspot ignition and fast ignition. The useable fraction of annihilation deposition energy is determined for both p-bar-driven ablative compression and p-bar-driven fast ignition, in association with zero- and one-dimensional target burn models. Thereby, we deduce scaling laws for the number of injected antiprotons required per capsule, together with timing and focal spot requirements. The kinetic energy of the injected antiproton beam required to penetrate to the desired annihilation point is always small relative to the deposited annihilation energy. We show that heavy metal seeding of the fuel and/or ablator is required to optimize local deposition of annihilation energy and determine that a minimum of ∼3 x 10 15 injected antiprotons will be required to achieve high yield (several hundred megajoules) in any target configuration. Target gains-i.e. fusion yields divided by the available p-p-bar annihilation energy from the injected antiprotons (1.88 GeV/p-bar)-range from ∼3 for volumetric ignition targets to ∼600 for fast ignition targets. Antiproton-driven ICF is a speculative concept, and the handling of antiprotons and their required injection precision - temporally and spatially - will present significant technical challenges. The storage and manipulation of low-energy antiprotons, particularly in the form of antihydrogen, is a science in its infancy and a large scale-up of antiproton production over present supply methods would be

  8. TRIGA criticality experiment for testing burn-up calculations

    International Nuclear Information System (INIS)

    Persic, Andreja; Ravnik, Matjaz; Zagar, Tomaz

    1999-01-01

    A criticality experiment with partly burned TRIGA fuel is described. 20 wt % enriched standard TRIGA fuel elements initially containing 12 wt % U are used. Their average burn-up is 1.4 MWd. Fuel element burn-up is calculated in 2-D four group diffusion approximation using TRIGLAV code. The burn-up of several fuel elements is also measured by reactivity method. The excess reactivity of several critical and subcritical core configurations is measured. Two core configurations contain the same fuel elements in the same arrangement as were used in the fresh TRIGA fuel criticality experiment performed in 1991. The results of the experiment may be applied for testing the computer codes used for fuel burn-up calculations. (author)

  9. Minimum data set to measure rehabilitation needs and health outcome after major trauma: application of an international framework.

    Science.gov (United States)

    Hoffman, Karen P; Playford, Diane E; Grill, Eva; Soberg, Helene L; Brohi, Karim

    2016-06-01

    Measurement of long term health outcome after trauma remains non-standardized and ambiguous which limits national and international comparison of burden of injuries. The World Health Organization (WHO) has recommended the application of the International Classification of Function, Disability and Health (ICF) to measure rehabilitation and health outcome worldwide. No previous poly-trauma studies have applied the ICF comprehensively to evaluate outcome after injury. To apply the ICF categorization in patients with traumatic injuries to identify a minimum data set of important rehabilitation and health outcomes to enable national and international comparison of outcome data. A mixed methods design of patient interviews and an on-line survey. An ethnically diverse urban major trauma center in London. Adult patients with major traumatic injuries (poly-trauma) and international health care professionals (HCPs) working in acute and post-acute major trauma settings. Mixed methods investigated patients and health care professionals (HCPs) perspectives of important rehabilitation and health outcomes. Qualitative patient data and quantitative HCP data were linked to ICF categories. Combined data were refined to identify a minimum data set of important rehabilitation and health outcome categories. Transcribed patient interview data (N.=32) were linked to 234 (64%) second level ICF categories. Two hundred and fourteen HCPs identified 121 from a possible 140 second level ICF categories (86%) as relevant and important. Patients and HCPs strongly agreed on ICF body structures and body functions categories which include temperament, energy and drive, memory, emotions, pain and repair function of the skin. Conversely, patients prioritised domestic tasks, recreation and work compared to HCP priorities of self-care and mobility. Twenty six environmental factors were identified. Patient and HCP data were refined to recommend a 109 possible ICF categories for a minimum data set. The

  10. X-ray flux and X-ray burn through experiments on reduced-scale targets at the Nif and OMEGA lasers

    International Nuclear Information System (INIS)

    Schneider, M.B.; Hinkel, D.E.; Young, B.K.; Holder, J.P.; Langdon, A.B.; Bower, D.E.; Bruns, H.C.; Campbell, K.M.; Celeste, J.R.; Compton, S.; Costa, R.L.; Dewald, E.L.; Dixit, S.N.; Eckart, M.J.; Eder, D.C.; Edwards, M.J.; Ellis, A.D.; Emig, J.A.; Froula, D.H.; Glebov, V.; Glenzer, S.H.; Hargrove, D.; Haynam, C.A.; Heeter, R.F.; Henesian, M.A.; Holtmeier, G.; James, D.L.; Jancaitis, K.S.; Kalantar, D.H.; Kamperschroer, J.H.; Kauffman, R.L.; Kimbrough, J.; Kirkwood, R.; Koniges, A.E.; Landen, O.L.; Landon, M.; Lee, F.D.; MacGowan, B.J.; Mackinnon, A.J.; Manes, K.R.; Marshall, C.; May, M.J.; McDonald, J.W.; Menapace, J.; Moon, S.J.; Moses, E.I.; Munro, D.H.; Murray, J.R.; Niemann, C.; Piston, K.; Power, G.D.; Rekow, V.; Ruppe, J.A.; Schein, J.; Shepherd, R.; Singh, M.S.; Sorce, C.; Springer, P.T.; Still, C.H.; Suter, L.J.; Tietbohl, G.L.; Turner, R.E.; Van Wonterghem, B.M.; Wallace, R.J.; Warrick, A.; Weber, F.; Wegner, P.J.; Williams, E.A.; Young, P.E.; Baldis, H.A.; Constantin, C.G.; Bahr, R.; Roberts, S.; Seka, W.; Stoeckl, C.; Pellinen, D.; Watts, P.

    2006-01-01

    An experimental campaign to maximize radiation drive in small-scale hohlraums has been carried out at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (Livermore, USA) and at the OMEGA laser at the Laboratory for Laser Energetics (Rochester, USA). The small-scale hohlraums, laser energy, laser pulse, and diagnostics were similar at both facilities but the geometries were very different. The NIF experiments used on-axis laser beams whereas the OMEGA experiments used 19 beams in three beam cones. In the cases when the lasers coupled well and produced similar radiation drive, images of X-ray burn-through and laser deposition indicate the pattern of plasma filling is very different. The OMEGA targets fill faster than the NIF targets, which helps explain the time behavior of the X-ray fluences. (authors)

  11. X-ray flux and X-ray burn through experiments on reduced-scale targets at the Nif and OMEGA lasers

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.B.; Hinkel, D.E.; Young, B.K.; Holder, J.P.; Langdon, A.B.; Bower, D.E.; Bruns, H.C.; Campbell, K.M.; Celeste, J.R.; Compton, S.; Costa, R.L.; Dewald, E.L.; Dixit, S.N.; Eckart, M.J.; Eder, D.C.; Edwards, M.J.; Ellis, A.D.; Emig, J.A.; Froula, D.H.; Glebov, V.; Glenzer, S.H.; Hargrove, D.; Haynam, C.A.; Heeter, R.F.; Henesian, M.A.; Holtmeier, G.; James, D.L.; Jancaitis, K.S.; Kalantar, D.H.; Kamperschroer, J.H.; Kauffman, R.L.; Kimbrough, J.; Kirkwood, R.; Koniges, A.E.; Landen, O.L.; Landon, M.; Lee, F.D.; MacGowan, B.J.; Mackinnon, A.J.; Manes, K.R.; Marshall, C.; May, M.J.; McDonald, J.W.; Menapace, J.; Moon, S.J.; Moses, E.I.; Munro, D.H.; Murray, J.R.; Niemann, C.; Piston, K.; Power, G.D.; Rekow, V.; Ruppe, J.A.; Schein, J.; Shepherd, R.; Singh, M.S.; Sorce, C.; Springer, P.T.; Still, C.H.; Suter, L.J.; Tietbohl, G.L.; Turner, R.E.; Van Wonterghem, B.M.; Wallace, R.J.; Warrick, A.; Weber, F.; Wegner, P.J.; Williams, E.A.; Young, P.E. [Lawrence Livermore National Lab., Livermore, CA (United States); Baldis, H.A.; Constantin, C.G. [California at Davis Univ., CA (United States); Bahr, R.; Roberts, S.; Seka, W.; Stoeckl, C. [Laboratory for Laser Energetics, Rochester, NY (United States); Pellinen, D.; Watts, P. [Bechtel Nevada Corporation, Livermore, CA (United States)

    2006-06-15

    An experimental campaign to maximize radiation drive in small-scale hohlraums has been carried out at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (Livermore, USA) and at the OMEGA laser at the Laboratory for Laser Energetics (Rochester, USA). The small-scale hohlraums, laser energy, laser pulse, and diagnostics were similar at both facilities but the geometries were very different. The NIF experiments used on-axis laser beams whereas the OMEGA experiments used 19 beams in three beam cones. In the cases when the lasers coupled well and produced similar radiation drive, images of X-ray burn-through and laser deposition indicate the pattern of plasma filling is very different. The OMEGA targets fill faster than the NIF targets, which helps explain the time behavior of the X-ray fluences. (authors)

  12. Temperature-dependent tensile strength, surface roughness diagnostics, and magnetic support and positioning of polymer ICF shells. Final report, April 17, 1995--July 31, 1996

    International Nuclear Information System (INIS)

    Honig, A.

    1997-01-01

    The research carried out under this grant is a continuation of some of the authors previous experimental work on ICF target shells which focused on emissivity properties over a large temperature range, and on magnetic properties which could lead to successful levitation of target shells. Former methods in which contact-less shell temperature determination was achieved by accurate measurements of shell permeation rate are not workable at temperatures below about 230K, since the permeation rate becomes too slow. A new method explored here for emissivity determination at lower temperatures than in the preceding studies utilizes visual observation of phase changes between the liquid and gaseous phases as the shell warms up under the influence of black-body radiation absorption. The apparatus for this method was modified from its previously form by using cold flowing gas as coolant rather than a liquid N 2 bath. Two gases, argon and methane, were principally employed. While the actual emissivities were not accurately measured here, proof of the method was established. CH 4 (methane) gives the best results, thus extending the temperature range of emissivity determination down to about 140K. For emissivity determinations at still lower temperatures, another method discussed in previous work provides contact-less temperature measurement via the Curie law through measurements of the magnetic susceptibility using electron spin resonance (ESR). Current work showed some interesting distinctions among variously doped shells, but otherwise the results of the preliminary work carried out at the end of the previous grant were confirmed

  13. First Year Report: Nuclear Reaction Measurements with Radioactive Beams and Targets- Progress in Measurements of the 89Zr (n,xnyp) Reaction Cross Sections

    International Nuclear Information System (INIS)

    Joseph Cerny; Dennis Moltz; Sylvia La; Ed Morse; Larry Ahle; Lee Bernstein; Ken Moody; Kevin Roberts; Margaret Moody; James Powell; Jim O'Neil; Anthony Belian

    2004-01-01

    OAK-B135 During the underground nuclear tests in Nevada, some of the most important information was obtained by radiochemical analysis of post-test excavations. By adding small samples of refractory and rare earth elements not commonly present in the surrounding soil to the device, a detailed look could be had of the actual event. In order to properly analyze these data, several hundred cross sections are needed at a neutron energy of 14 MeV (a d-t-burn product). Although it has always been assumed that these calculations are correct, insufficient experimental data exist to corroborate this assumption. The purpose of this experiment is to measure two reaction cross sections, namely the 89 Zr (n, 2n) 88 Zr and 89 Zr (n, np) 88 Y reactions. Although the former reaction has been measured in an unpublished report ( A. A. Delucchi and W. Goishi, LANL Report LA-7841-C (1977) pp. 33-36), we intend to reduce the experimental error in this cross section. The latter cross section has not been measured. This case is much simplified because these reaction products have half-lives ∼100 days compared with ∼3 days for the target nuclide. Therefore the assay can be accomplished long after the target nuclei have decayed away

  14. Making of a burn unit: SOA burn center

    Directory of Open Access Journals (Sweden)

    Jayant Kumar Dash

    2016-01-01

    Full Text Available Each year in India, burn injuries account for more than 6 million hospital emergency department visits; of which many require hospitalization and are referred to specialized burn centers. There are few burn surgeons and very few burn centers in India. In our state, Odisha, there are only two burn centers to cater to more than 5000 burn victims per year. This article is an attempt to share the knowledge that I acquired while setting up a new burn unit in a private medical college of Odisha.

  15. Laser ``M'egajoule'' cryogenic target program: from target fabrication to conformation of the deuterium-tritium ice layer

    Science.gov (United States)

    Collier, Rémy; Durut, Frédéric; Reneaume, Benoît; Chicane, Cédric; Théobald, Marc; Breton, Olivier; Martin, Michel; Fleury, Emmanuel; Vincent-Viry, Olivier; Bachelet, Franck; Jeannot, Laurent; Geoffray, Isabelle; Botrel, Ronan; Dauteuil, Christophe; Hermerel, Cyril; Choux, Alexandre; Bednarczyk, Sophie; Legaie, Olivier

    2008-11-01

    For the French inertial confinement fusion (ICF) experiments, cryogenic target assemblies (CTAs) for the LMJ program are manufactured and filled at CEA Valduc (Dijon) in the cryogenic targets filling station (IRCC). They will be moved at about 20 K into a transport cryostat for cryogenic targets and will be driven from CEA/Valduc to CEA/CESTA (Bordeaux). Cryogenic targets will then be transferred by several cryogenic grippers on the cryogenic target positioner before shots. The CTA has to meet severe specifications and involves a lot of challenging tasks for its manufacture. To fill CTAs by permeation with deuterium-tritium (DT), the IRCC need to meet strict thermal, mechanical and dimensional specifications. To obtain a good combustion yield, a very homogenous DT ice layer and very smooth roughness at 1.5 K below the DT triple point are also required. This paper deals with the up to date main issues in the different fields of the LMJ cryogenic target program.

  16. An Experimental Measurement on Laminar Burning Velocities and Markstein Length of Iso-Butane-Air Mixtures at Ambient Conditions

    Directory of Open Access Journals (Sweden)

    Yousif Alaeldeen Altag

    2016-01-01

    Full Text Available In the present work, experimental investigation on laminar combustion of iso-butane-air mixtures was conducted in constant volume explosion vessel. The experiments were conducted at wide range of equivalence ratios ranging between Ф = 0.6 and 1.4 and atmospheric pressure of 0.1 MPa and ambient temperature of 303K. Using spherically expanding flame method, flame parameters including stretched, unstretched flame propagation speeds, laminar burning velocities and Markstein length were calculated. For laminar burning velocities the method of error bars of 95% confidence level was applied. In addition, values of Markstein lengths were measured in wide range of equivalence ratios to study the influence of stretch rate on flame instability and burning velocity. It was found that the stretched flame speed and laminar burning velocities increased with equivalence ratios and the peak value was obtained at equivalence ratio of Ф = 1.1. The Markstein length decreased with the increases in equivalence ratios, which indicates that the diffusion thermal flame instability increased at high equivalence ratios in richer mixture side. However, the total deviations in the laminar burning velocities have discrepancies of 1.2-2.9% for all investigated mixtures.

  17. [Surgical treatment of burns : Special aspects of pediatric burns].

    Science.gov (United States)

    Bührer, G; Beier, J P; Horch, R E; Arkudas, A

    2017-05-01

    Treatment of pediatric burn patients is very important because of the sheer frequency of burn wounds and the possible long-term ramifications. Extensive burns need special care and are treated in specialized burn centers. The goal of this work is to present current standards in burn therapy and important innovations in the treatment of burns in children so that the common and small area burn wounds and scalds in pediatric patients in day-to-day dermatological practice can be adequately treated. Analysis of current literature, discussion of reviews, incorporation of current guidelines. Burns in pediatric patients are common. Improvement of survival can be achieved by treatment in burn centers. The assessment of burn depth and area is an important factor for proper treatment. We give an overview for outpatient treatment of partial thickness burns. New methods may result in better long-term outcome. Adequate treatment of burn injuries considering current literature and guidelines improves patient outcome. Rational implementation of new methods is recommended.

  18. Avaliação da funcionalidade de idosos institucionalizados: relação entre a MIF e a ICF

    Directory of Open Access Journals (Sweden)

    Tania Cristina Malezan Fleig

    2017-06-01

    Full Text Available Objetivo: demonstrar através da Medida de Independência Funcional (MIF, as características funcionais de idosos em instituições de longa permanência para idosos (ILPI’s, identificando a possível relação deste instrumento com a Classificação Internacional de Funcionalidade, Incapacidade e Saúde (ICF. Método: trata-se de um estudo transversal, com 55 idosos institucionalizados com idade média de 79,7±10,2 anos. A capacidade funcional foi avaliada através da MIF, sendo os domínios deste instrumento relacionados com as categorias da ICF. Cada idoso foi qualificado, quanto às limitações funcionais conforme a ICF. A análise de dados foi descrita em média, desvio padrão e frequência. Resultados: 72,7% dos idosos eram do sexo feminino, sendo a doença de Alzheimer o diagnóstico mais observado (45,4%. No que diz respeito à capacidade funcional, houve um predomínio de idosos com independência completa (47,3%. Na relação das categorias da ICF, com os domínios do instrumento de avaliação funcional, mostrou-se positiva em todos os itens. Considerações finais: os resultados indicam que os idosos em questão apresentavam independência completa para realizar suas atividades de vida diária. Além disso, a relação do instrumento de avaliação funcional com a ICF possibilitou-nos uma visão ampliada sobre o processo de envelhecimento de uma população de idosos institucionalizados, principalmente no componente Atividade e Participação, podendo ser utilizada como indicadora para o desenvolvimento de estratégias e propostas de intervenções que favoreçam a demanda clínica e pessoal destes idosos.

  19. Infiltration and Runoff Measurements on Steep Burned Hillslopes Using a Rainfall Simulator with Variable Rain Intensities

    Science.gov (United States)

    Kinner, David A.; Moody, John A.

    2008-01-01

    Multiple rainfall intensities were used in rainfall-simulation experiments designed to investigate the infiltration and runoff from 1-square-meter plots on burned hillslopes covered by an ash layer of varying thickness. The 1-square-meter plots were on north- and south-facing hillslopes in an area burned by the Overland fire northwest of Boulder near Jamestown on the Front Range of Colorado. A single-nozzle, wide-angle, multi-intensity rain simulator was developed to investigate the infiltration and runoff on steep (30- to 40-percent gradient) burned hillslopes covered with ash. The simulated rainfall was evaluated for spatial variability, drop size, and kinetic energy. Fourteen rainfall simulations, at three intensities (about 20 millimeters per hour [mm/h], 35 mm/h, and 50 mm/h), were conducted on four plots. Measurements during and after the simulations included runoff, rainfall, suspended-sediment concentrations, surface ash layer thickness, soil moisture, soil grain size, soil lost on ignition, and plot topography. Runoff discharge reached a steady state within 7 to 26 minutes. Steady infiltration rates with the 50-mm/h application rainfall intensity approached 20?35 mm/h. If these rates are projected to rainfall application intensities used in many studies of burned area runoff production (about 80 mm/h), the steady discharge rates are on the lower end of measurements from other studies. Experiments using multiple rainfall intensities (three) suggest that runoff begins at rainfall intensities around 20 mm/h at the 1-square-meter scale, an observation consistent with a 10-mm/h rainfall intensity threshold needed for runoff initiation that has been reported in the literature.

  20. Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: evidence of long-range transport of biomass burning

    Directory of Open Access Journals (Sweden)

    J. Sciare

    2008-09-01

    Full Text Available Long-term (5-year measurements of Elemental Carbon (EC and Organic Carbon (OC in bulk aerosols are presented here for the first time in the Mediterranean Basin (Crete Island. A multi-analytical approach (including thermal, optical, and thermo-optical techniques was applied for these EC and OC measurements. Light absorbing dust aerosols were shown to poorly contribute (+12% on a yearly average to light absorption coefficient (babs measurements performed by an optical method (aethalometer. Long-range transport of agricultural waste burning from European countries surrounding the Black Sea was shown for each year during two periods (March–April and July–September. The contribution of biomass burning to the concentrations of EC and OC was shown to be rather small (20 and 14%, respectively, on a yearly basis, although this contribution could be much higher on a monthly basis and showed important seasonal and interannual variability. By removing the biomass burning influence, our data revealed an important seasonal variation of OC, with an increase by almost a factor of two for the spring months of May and June, whereas BC was found to be quite stable throughout the year. Preliminary measurements of Water Soluble Organic Carbon (WSOC have shown that the monthly mean WSOC/OC ratio remains stable throughout the year (0.45±0.12, suggesting that the partitioning between water soluble and water insoluble organic matter is not significantly affected by biomass burning and secondary organic aerosol (SOA formation. A chemical mass closure performed in the fine mode (Aerodynamic Diameter, A.D.<1.5μm showed that the mass contribution of organic matter (POM was found to be essentially invariable during the year (monthly average of 26±5%.

  1. Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: evidence of long-range transport of biomass burning

    International Nuclear Information System (INIS)

    Sciare, J.; Oikonomou, K.; Favez, O.; Cachier, H.; Liakakou, E.; Markaki, Z.; Mihalopoulos, N.

    2008-01-01

    Long-term (5-year) measurements of Elemental Carbon (EC) and Organic Carbon (OC) in bulk aerosols are presented here for the first time in the Mediterranean Basin (Crete Island). A multi-analytical approach (including thermal, optical, and thermo-optical techniques) was applied for these EC and OC measurements. Light absorbing dust aerosols were shown to poorly contribute (+12% on a yearly average) to light absorption coefficient (b(abs)) measurements performed by an optical method (aethalometer). Long-range transport of agricultural waste burning from European countries surrounding the Black Sea was shown for each year during two periods (March-April and July-September). The contribution of biomass burning to the concentrations of EC and OC was shown to be rather small (20 and 14%, respectively, on a yearly basis), although this contribution could be much higher on a monthly basis and showed important seasonal and inter annual variability. By removing the biomass burning influence, our data revealed an important seasonal variation of OC, with an increase by almost a factor of two for the spring months of May and June, whereas BC was found to be quite stable throughout the year. Preliminary measurements of Water Soluble Organic Carbon (WSOC) have shown that the monthly mean WSOC/ OC ratio remains stable throughout the year (0.45 ± 0.12), suggesting that the partitioning between water soluble and water insoluble organic matter is not significantly affected by biomass burning and secondary organic aerosol (SOA) formation. A chemical mass closure performed in the fine mode (Aerodynamic Diameter, A. D.≤ 1.5 μm) showed that the mass contribution of organic matter (POM) was found to be essentially invariable during the year (monthly average of 26 ± 5%). (authors)

  2. A review of campfire burns in children: The QLD experience.

    Science.gov (United States)

    Okon, O; Zhu, L; Kimble, R M; Stockton, K A

    2018-03-27

    Campfire burns in children are a significant health issue. It is imperative that the extent of the problem is examined and strategies discussed to inform future prevention campaigns. A retrospective review of data from the Queensland Paediatric Burns Registry for all children presenting with campfire burns between January 2013 and December 2014 (inclusive). Information collected included patient demographics, detail regarding mechanism of injury, first aid, Total Body Surface Area (TBSA), burn depth, and treatment. Seventy-five children with campfire burns were seen in our paediatric burns centre during this 2-year period. The median age of patients was 3 years (range 10 days-14 years). The hands and feet were the areas most commonly affected. Eleven percent of patients suffered flame burns, whilst 89% suffered contact burns from the hot coals or ashes. Of the latter group, approximately half experienced burns from campfires that had been extinguished for at least one night. Thirteen percent of patients underwent split thickness skin grafting. The incidence of burns was increased during school holiday months. We have previously demonstrated the effectiveness of targeted campaigns in reducing the incidence of campfire burns. A significant portion of patients sustained burns from incorrectly extinguished campfires. These injuries are likely to be preventable with ongoing public awareness campaigns. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  3. Towards comprehensive and transparent reporting: context-specific additions to the ICF taxonomy for medical evaluations of work capacity involving claimants with chronic widespread pain and low back pain.

    Science.gov (United States)

    Schwegler, Urban; Anner, Jessica; Glässel, Andrea; Brach, Mirjam; De Boer, Wout; Cieza, Alarcos; Trezzini, Bruno

    2014-08-29

    Medical evaluations of work capacity provide key information for decisions on a claimant's eligibility for disability benefits. In recent years, the evaluations have been increasingly criticized for low transparency and poor standardization. The International Classification of Functioning, Disability and Health (ICF) provides a comprehensive spectrum of categories for reporting functioning and its determinants in terms of impairments and contextual factors and could facilitate transparent and standardized documentation of medical evaluations of work capacity. However, the comprehensiveness of the ICF taxonomy in this particular context has not been empirically examined. In this study, we wanted to identify potential context-specific additions to the ICF for its application in medical evaluations of work capacity involving chronic widespread pain (CWP) and low back pain (LBP). A retrospective content analysis of Swiss medical reports was conducted by using the ICF for data coding. Concepts not appropriately classifiable with ICF categories were labeled as specification categories (i.e. context-specific additions) and were assigned to predefined specification areas (i.e. precision, coverage, personal factors, and broad concepts). Relevant specification categories for medical evaluations of work capacity involving CWP and LBP were determined by calculating their relative frequency across reports and setting a relevance threshold. Forty-three specification categories for CWP and fifty-two for LBP reports passed the threshold. In both groups of reports, precision was the most frequent specification area, followed by personal factors. The ICF taxonomy represents a universally applicable standard for reporting health and functioning information. However, when applying the ICF for comprehensive and transparent reporting in medical evaluations of work capacity involving CWP and LBP context-specific additions are needed. This is particularly true for the documentation of

  4. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  5. Direct drive acceleration of planar targets with the Nike KrF laser

    International Nuclear Information System (INIS)

    Pawley, C.J.; Sethian, J.D.; Bodner, S.E.

    1999-01-01

    Nike is a multi-kilojoule KrF laser with very high beam uniformity (ΔI/I<0.2% with all 36 overlapped beams), and the capability to accelerate relatively thick targets on a low adiabat under conditions scalable to direct drive ICF. In a first set of experiments we determined the effect of the imprinting by varying the uniformity of the foot of the laser pulse and measuring the growth of the subsequent Rayleigh-Taylor instability. We found that the lower the imprint, the longer the mass modulations take to reach a given level. This is in quantitative agreement with our 2-D hydrodynamics simulations. The results are promising for direct drive with a very uniform laser. (orig.)

  6. Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications

    Science.gov (United States)

    Liu, Xiaoxi; Huey, L. Gregory; Yokelson, Robert J.; Selimovic, Vanessa; Simpson, Isobel J.; Müller, Markus; Jimenez, Jose L.; Campuzano-Jost, Pedro; Beyersdorf, Andreas J.; Blake, Donald R.; Butterfield, Zachary; Choi, Yonghoon; Crounse, John D.; Day, Douglas A.; Diskin, Glenn S.; Dubey, Manvendra K.; Fortner, Edward; Hanisco, Thomas F.; Hu, Weiwei; King, Laura E.; Kleinman, Lawrence; Meinardi, Simone; Mikoviny, Tomas; Onasch, Timothy B.; Palm, Brett B.; Peischl, Jeff; Pollack, Ilana B.; Ryerson, Thomas B.; Sachse, Glen W.; Sedlacek, Arthur J.; Shilling, John E.; Springston, Stephen; St. Clair, Jason M.; Tanner, David J.; Teng, Alexander P.; Wennberg, Paul O.; Wisthaler, Armin; Wolfe, Glenn M.

    2017-06-01

    Wildfires emit significant amounts of pollutants that degrade air quality. Plumes from three wildfires in the western U.S. were measured from aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning Observation Project (BBOP), both in summer 2013. This study reports an extensive set of emission factors (EFs) for over 80 gases and 5 components of submicron particulate matter (PM1) from these temperate wildfires. These include rarely, or never before, measured oxygenated volatile organic compounds and multifunctional organic nitrates. The observed EFs are compared with previous measurements of temperate wildfires, boreal forest fires, and temperate prescribed fires. The wildfires emitted high amounts of PM1 (with organic aerosol (OA) dominating the mass) with an average EF that is more than 2 times the EFs for prescribed fires. The measured EFs were used to estimate the annual wildfire emissions of carbon monoxide, nitrogen oxides, total nonmethane organic compounds, and PM1 from 11 western U.S. states. The estimated gas emissions are generally comparable with the 2011 National Emissions Inventory (NEI). However, our PM1 emission estimate (1530 ± 570 Gg yr-1) is over 3 times that of the NEI PM2.5 estimate and is also higher than the PM2.5 emitted from all other sources in these states in the NEI. This study indicates that the source of OA from biomass burning in the western states is significantly underestimated. In addition, our results indicate that prescribed burning may be an effective method to reduce fine particle emissions.

  7. Burns first aid treatment in remote Northern Australia.

    Science.gov (United States)

    Read, David J; Tan, Swee Chin; Ward, Linda; McDermott, Kathleen

    2018-03-01

    It is well demonstrated that adequate burns first aid treatment (BFAT) improves clinical outcomes for the injured but adequacy remains low in many studies. This study presents a twelve month assessment of the adequacy of burns first aid treatment for patients managed by the Burns Service, Royal Darwin Hospital (RDH). Prospective study design of all patients managed by the Burns Service, Royal Darwin Hospital. Data were collated from two sources; RDH Burns Registry, and the Burns Registry of Australia and New Zealand (BRANZ). Inclusion criterion was all patients managed by the Burns Service, Royal Darwin Hospital for the period 1 January 2014-31 December 2014. Variables collected and analysed include: demographics, burn mechanism, burn wound depth and adequacy of and circumstances around first aid. Overall 310 cases were analysed. Most injuries involved adults (68%), 19% Indigenous persons and 70% of all patients had their burn injury occur in the urban region. Adequate BFAT occurred in 41% of cases. Adults, contact burns and those where the burn injury occurred in the remote regions were less likely to receive adequate BFAT. Indigenous persons were less likely to attempt any BFAT at all and when they did receive BFAT it was more likely applied by an emergency responder or health professional. Overall adequacy of BFAT is low in the Top End of the Northern Territory. Remote dwellers and Indigenous persons are at increased risk of not applying or receiving adequate BFAT. The poor level of adequate BFAT demonstrated in this study suggests that the Top End community particularly remote and Indigenous persons would benefit from targeted BFAT education programs that are delivered in a culturally and linguistically appropriate fashion. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  8. Burn Pit Emissions Exposure and Respiratory and Cardiovascular Conditions Among Airborne Hazards and Open Burn Pit Registry Participants.

    Science.gov (United States)

    Liu, Jason; Lezama, Nicholas; Gasper, Joseph; Kawata, Jennifer; Morley, Sybil; Helmer, Drew; Ciminera, Paul

    2016-07-01

    The aim of this study was to determine how burn pit emissions exposure is associated with the incidence of respiratory and cardiovascular conditions. We examined the associations between assumed geographic and self-reported burn pit emissions exposure and respiratory and cardiovascular outcomes in participants of the Airborne Hazards and Open Burn Pit Registry. We found significant dose-response associations for higher risk of self-reported emphysema, chronic bronchitis, or chronic obstructive pulmonary disease with increased days of deployment within 2 miles of selected burn pits (P-trend = 0.01) and self-reported burn pit smoke exposure (P-trend = 0.0005). We found associations between burn pit emissions exposure and higher incidence of post-deployment self-reported respiratory and cardiovascular conditions, but these findings should be interpreted with caution because the surrogate measurements of burn pit emissions exposure in this analysis may not reflect individual exposure levels.

  9. Myocardial Autophagy after Severe Burn in Rats

    Science.gov (United States)

    Zhang, Qiong; Shi, Xiao-hua; Huang, Yue-sheng

    2012-01-01

    Background Autophagy plays a major role in myocardial ischemia and hypoxia injury. The present study investigated the effects of autophagy on cardiac dysfunction in rats after severe burn. Methods Protein expression of the autophagy markers LC3 and Beclin 1 were determined at 0, 1, 3, 6, and 12 h post-burn in Sprague Dawley rats subjected to 30% total body surface area 3rd degree burns. Autophagic, apoptotic, and oncotic cell death were evaluated in the myocardium at each time point by immunofluorescence. Changes of cardiac function were measured in a Langendorff model of isolated heart at 6 h post-burn, and the autophagic response was measured following activation by Rapamycin and inhibition by 3-methyladenine (3-MA). The angiotensin converting enzyme inhibitor enalaprilat, the angiotensin receptor I blocker losartan, and the reactive oxygen species inhibitor diphenylene iodonium (DPI) were also applied to the ex vivo heart model to examine the roles of these factors in post-burn cardiac function. Results Autophagic cell death was first observed in the myocardium at 3 h post-burn, occurring in 0.008 ± 0.001% of total cardiomyocytes, and continued to increase to a level of 0.022 ± 0.005% by 12 h post-burn. No autophagic cell death was observed in control hearts. Compared with apoptosis, autophagic cell death occurred earlier and in larger quantities. Rapamycin enhanced autophagy and decreased cardiac function in isolated hearts 6 h post-burn, while 3-MA exerted the opposite response. Enalaprilat, losartan, and DPI all inhibited autophagy and enhanced heart function. Conclusion Myocardial autophagy is enhanced in severe burns and autophagic cell death occurred early at 3 h post-burn, which may contribute to post-burn cardiac dysfunction. Angiotensin II and reactive oxygen species may play important roles in this process by regulating cell signaling transduction. PMID:22768082

  10. Ultrasonic measurement of high burn-up fuel elastic properties

    International Nuclear Information System (INIS)

    Laux, D.; Despaux, G.; Augereau, F.; Attal, J.; Gatt, J.; Basini, V.

    2006-01-01

    The ultrasonic method developed for the evaluation of high burn-up fuel elastic properties is presented hereafter. The objective of the method is to provide data for fuel thermo-mechanical calculation codes in order to improve industrial nuclear fuel and materials or to design new reactor components. The need for data is especially crucial for high burn-up fuel modelling for which the fuel mechanical properties are essential and for which a wide range of experiments in MTR reactors and high burn-up commercial reactor fuel examinations have been included in programmes worldwide. To contribute to the acquisition of this knowledge the LAIN activity is developing in two directions. First one is development of an ultrasonic focused technique adapted to active materials study. This technique was used few years ago in the EdF laboratory in Chinon to assess the ageing of materials under irradiation. It is now used in a hot cell at ITU Karlsruhe to determine the elastic moduli of high burnup fuels from 0 to 110 GWd/tU. Some of this work is presented here. The second on going programme is related to the qualification of acoustic sensors in nuclear environments, which is of a great interest for all the methods, which work, in a hostile nuclear environment

  11. The effect of pre-existing malnutrition on pediatric burn mortality in a sub-Saharan African burn unit.

    Science.gov (United States)

    Grudziak, Joanna; Snock, Carolyn; Mjuweni, Stephen; Gallaher, Jared; Cairns, Bruce; Charles, Anthony

    2017-11-01

    Nutritional status predicts burn outcomes in the developed world, but its effect on burn mortality in the developing world has not been widely studied. In sub Saharan Africa, burn is primarily a disease of children, and the majority of children in sub-Saharan Africa are malnourished. We therefore sought to determine the prevalence and effect of malnutrition on burn mortality at our institution. This is a retrospective review of children aged 0-5, with anthropomorphic measurements available, who were admitted to our burn unit from July 2011 to May 2016. Age-adjusted Z scores were calculated for height, weight, weight for height, and mid-upper arm circumference (MUAC). Following bivariate analysis, we used logistic regression to construct a fully adjusted model of predictors of mortality. Of the 1357 admitted patients, 839 (61.2%) were aged 0-5. Of those, 512 (62.9%) had one or more anthropomorphic measurements available, and were included in the analysis. 54% were male, and the median age was 28 months. The median TBSA was 15%, with a majority of burns caused by scalds (77%). Mortality was 16%. Average Z-score for any of the indicators of malnutrition was -1.45±1.66. TBSA (OR: 1.08, 95% CI: 1.06, 1.11), decreasing Z-score (OR: 1.19, 95% CI: 1.00, 1.41), and flame burn (OR: 2.51, 95% CI: 1.40, 4.49) were associated with an increase in mortality. Preexisting malnutrition in burn patients in sub-Saharan Africa increases odds of mortality after controlling for significant covariates. Survival of burn patients in this region will not reach that of the developed world until a strategy of aggressive nutritional support is implemented in this population. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  12. A Conceptual Definition of Vocational Rehabilitation Based on the ICF : building a shared global model

    NARCIS (Netherlands)

    Escorpizo, Reuben; Reneman, Michiel F.; Ekholm, Jan; Fritz, Julie; Krupa, Terry; Marnetoft, Sven-Uno; Maroun, Claude E.; Guzman, Julietta Rodriguez; Suzuki, Yoshiko; Stucki, Gerold; Chan, Chetwyn C. H.

    Background The International Classification of Functioning, Disability and Health (ICF) is a conceptual framework and classification system by the World Health Organization (WHO) to understand functioning. The objective of this discussion paper is to offer a conceptual definition for vocational

  13. Decoding using back-project algorithm from coded image in ICF

    International Nuclear Information System (INIS)

    Jiang shaoen; Liu Zhongli; Zheng Zhijian; Tang Daoyuan

    1999-01-01

    The principle of the coded imaging and its decoding in inertial confinement fusion is described simply. The authors take ring aperture microscope for example and use back-project (BP) algorithm to decode the coded image. The decoding program has been performed for numerical simulation. Simulations of two models are made, and the results show that the accuracy of BP algorithm is high and effect of reconstruction is good. Thus, it indicates that BP algorithm is applicable to decoding for coded image in ICF experiments

  14. Solid state laser driver for an ICF reactor

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1988-01-01

    A conceptual design is presented of the main power amplifier of a multi-beamline, multi-megawatt solid state ICF reactor driver. Simultaneous achievement of useful beam quality and high average power is achieved by a proper choice of amplifier geometry. An amplifier beamline consists of a sequence of face-pumped rectangular slab gain elements, oriented at the Brewster angle relative to the beamline axis, and cooled on their large faces by helium gas that is flowing subsonically. The infrared amplifier output radiation is shifted to an appropriately short wavelength ( 10% (including all flow cooling input power) when the amplifiers are pumped by efficient high-power AlGaAs semiconductor laser diode arrays. 11 refs., 3 figs., 7 tabs

  15. The Danish version of Lymphoedema Functioning, Disability and Health Questionnaire (Lymph-ICF) for breast cancer survivors

    DEFF Research Database (Denmark)

    Grarup, Karin R; Devoogdt, Nele; Strand, Liv Inger

    2018-01-01

    PURPOSE: To translate and culturally adapt the Lymphoedema Functioning, Disability and Health Questionnaire (Lymph-ICF) for breast cancer survivors with arm lymphedema into Danish and examine its content validity and reliability. METHODS: (1) Translation and cultural adaptation was performed in 10...... steps following international guidelines (International Society for Pharmacoeconomics and Outcome Research); (2) cognitive interviewing (step 7) was conducted in 15 women with breast cancer related arm lymphedema to explore understandability, interpretation, and cultural relevance; (3) after adjustments...... for the domains ranged from 0.84 to 0.94. SEM values differed for the domains, 6.4 (physical function), 5.7 (mobility activities), 7.09 (life and social activities), 9.1 (mental functions), and 10.2 (household activities). CONCLUSION: The translated and adjusted Lymph-ICF DK (Denmark) is reliable and valid...

  16. Inertial confinement fusion target component fabrication and technology development support. Annual report 10/1/98 through 9/30/99

    International Nuclear Information System (INIS)

    Gibson, Jane

    1999-01-01

    General Atomics (GA) has served as the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor for the U.S. Department of Energy since December 30, 1990. This report documents the technical activities of the period October 1, 1998 through September 30, 1999. During this period, GA and our partner Schafer Corporation were assigned 17 formal tasks in support of the ICF program and its five laboratories. A portion of the effort on these tasks included providing direct ''Onsite Support'' at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory (SNL). We fabricated and delivered over 1790 hohlraum mandrels and numerous other micromachined components to LLNL, LANL, and SNL. We produced more than 1380 glass and plastic target capsules over a wide range of sizes and designs (plus over 300 near target-quality capsules) for LLNL, LANL, SNL, and University of Rochester/Laboratory for Laser Energetic (UR/LLE). We also delivered various target foils and films for Naval Research Lab (NRL) and UWLLE in FY99. We fabricated a device to polish NIF-sized beryllium shells and prepared a laboratory for the safe operation of beryllium polishing activities. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. During FY99, the GA/Schafer portion of the GA/Schafer-UR/LLE-LANL team effort for design, procurement, installation, and testing of the OMEGA Cryogenic Target System (OCTS) that will field cryogenic targets on OMEGA was completed. All components of the OCTS were procured, fabricated, assembled, tested, and shipped to UR/LLE. Only minor documentation tasks remain to be done in FY00. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D2 or deuterium

  17. Complete and incomplete fusion dynamics in 19F + 154Sm system

    International Nuclear Information System (INIS)

    Singh, D.; Giri, Pankaj K.; Linda, Sneha B.

    2016-01-01

    Several experimental and theoretical studies based on spin distribution measurement have been carried out by using α-cluster structured projectile with different target nuclei but spin distribution measurement studies to localize the ℓ-window of CF and ICF by using non alpha cluster structured projectile scarcely exist in the literature. Therefore, to reach on some definite conclusion regarding the projectile structure and projectile energy effect on ICF dynamics especially by using non alpha cluster structured projectile, the spin distribution measurement of the evaporation residues produced through CF and ICF dynamics in the 19 F + 154 Sm system at projectile energies 110 and 100 MeV has been done

  18. In-situ burning: NIST studies

    International Nuclear Information System (INIS)

    Evans, D.D.

    1992-01-01

    In-situ burning of spilled oil has distinct advantages over other countermeasures. It offers the potential to convert rapidly large quantities of oil into its primary combustion products, carbon dioxide and water, with a small percentage of other unburned and residue byproducts. Because the oil is converted to gaseous products of combustion by burning, the need for physical collection, storage, and transport of recovered fluids is reduced to the few percent of the original spill volume that remains as residue after burning. Burning oil spills produces a visible smoke plume containing smoke particulate and other products of combustion which may persist for many kilometers from the burn. This fact gives rise to public health concerns, related to the chemical content of the smoke plume and the downwind deposition of particulate, which need to be answered. In 1985, a joint Minerals Management Service (MMS) and Environment Canada (EC) in-situ burning research program was begun at the National Institute of Standards and Technology (NIST). This research program was designed to study the burning of large crude oil spills on water and how this burning would affect air quality by quantifying the products of combustion and developing methods to predict the downwind smoke particulate deposition. To understand the important features of in-situ burning, it is necessary to perform both laboratory and mesoscale experiments. Finally, actual burns of spilled oil at sea will be necessary to evaluate the method at the anticipated scale of actual response operations. In this research program there is a continuing interaction between findings from measurements on small fire experiments performed in the controlled laboratory environments of NIST and the Fire Research Institute (FRI) in Japan, and large fire experiments at facilities like the USCG Fire Safety and Test Detachment in Mobile, Alabama where outdoor liquid fuel burns in large pans are possible

  19. Fabrication and Characterization of Targets for Shock Propagation and Radiation Burnthrough Measurements on Be-0.9 AT. % Cu Alloy

    International Nuclear Information System (INIS)

    Nobile, A.; Dropinski, S.C.; Edwards, J.M.; Rivera, G.; Margevicius, R.W.; Sebring, R.J.; Olson, R. E.; Tanner, D.L.

    2004-01-01

    Beryllium-copper alloy (Be0.9%Cu) ICF capsules are being developed for the pursuit of thermonuclear ignition at the National Ignition Facility (NIF). Success of this capsule material requires that its shock propagation and radiation burnthrough characteristics be accurately understood. To this end, experiments are being conducted to measure the shock propagation and radiation burnthrough properties of Be0.9%Cu alloy. These experiments involve measurements on small Be0.9%Cu wedge, step and flat samples. Samples are mounted on 1.6-mm-diameter x 1.2-mm-length hohlraums that are illuminated by the OMEGA laser at the University of Rochester. X-rays produced by the hohlraum drive the sample. A streaked optical pyrometer detects breakout of the shock produced by the X-ray pulse. In this paper we describe synthesis of the alloy material, fabrication and characterization of samples, and assembly of the targets. Samples were produced from Be0.9%Cu alloy that was synthesized by hot isostatic pressing of Be powder and copper flake. Samples were 850 μm diameter disks with varying thickness in the case of wedge and step samples, and uniform thickness in the case of flat samples. Sample thickness varied in the range 10-90 μm. Samples were prepared by precision lathe machining and electric discharge machining. The samples were characterized by a Veeco white light interferometer and an optical thickness measurement device that simultaneously measured the upper and lower surface contours of samples using two confocal laser probes. Several campaigns with these samples have been conducted over the past two years

  20. The burning behaviour of sodium and consequences to be drawn for fire protection measures, by the example of the Kalkar nuclear power plant

    International Nuclear Information System (INIS)

    Hoppe, E.

    1977-01-01

    The burning behaviour of sodium leakages is described. The specific protective measures to be derived from the burning behaviour is discussed using the example of the Kalkar nuclear power station, where sodium is used as a coolant. A basic boundary condition to be considered in the system of protective measures against Na fires is the activity confinement in case of a release of radioactive sodium. (orig.) [de