WorldWideScience

Sample records for measuring air infiltration

  1. Infiltration and air quality in well-insulated homes: 3. measurement and modeling of pollutant levels

    International Nuclear Information System (INIS)

    Koontz, M.D.; Nagda, N.L.

    1984-01-01

    Indoor pollutant levels in well-insulated houses are being investigated in a 2-year theoretical and experimental study involving the simultaneous measurement of meteorological variables, air exchange and circulation, and energy consumption. This paper describes concentrations of radon, radon progeny, formaldehyde, carbon monoxide, and nitrogen oxides observed in two houses over two seasons, summer and fall 1983. Two companion papers provide a perspective on the problem and the study design, and present results of energy use and infiltration measurements. (Author)

  2. Investigation of infiltration and indoor air quality

    International Nuclear Information System (INIS)

    1990-03-01

    A multitask study was performed in the State of New York to provide information for guiding home energy conservation programs while maintaining acceptable indoor air quality. During the study, the statistical distribution of radon concentrations inside 2,400 homes was determined. The relationships among radon levels, house characteristics, and sources were also investigated. The direct impact that two specific air infiltration reduction measures--caulking and weatherstripping of windows and doors, and installation of storm windows and storm doors--have on house air leakage was investigated in 60 homes. The effect of house age on the impact of weatherization was also evaluated. Indoor and outdoor measurements of NO 2 , CO, SO 2 , and respirable suspended particulates (RSP) were made for 400 homes to determine the effect of combustion sources on indoor air quality and to characterize the statistical distribution of the concentrations. Finally, the combustion source data were combined with the information on air infiltration reduction measures to estimate the potential impact of these measures on indoor air quality

  3. Infiltration Variability in Agricultural Soil Aggregates Caused by Air Slaking

    Science.gov (United States)

    Korenkova, L.; Urik, M.

    2018-04-01

    This article reports on variation in infiltration rates of soil aggregates as a result of phenomenon known as air slaking. Air slaking is caused by the compression and subsequent escape of air captured inside soil aggregates during water saturation. Although it has been generally assumed that it occurs mostly when dry aggregates are rapidly wetted, the measurements used for this paper have proved that it takes place even if the wetting is gradual, not just immediate. It is a phenomenon that contributes to an infiltration variability of soils. In measuring the course of water flow through the soil, several small aggregates of five agricultural soils were exposed to distilled water at zero tension in order to characterize their hydraulic properties. Infiltration curves obtained for these aggregates demonstrate the effect of entrapped air on the increase and decrease of infiltration rates. The measurements were performed under various moisture conditions of the A-horizon aggregates using a simple device.

  4. Acoustic building infiltration measurement system

    Science.gov (United States)

    Muehleisen, Ralph T.; Raman, Ganesh

    2018-04-10

    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  5. Effect of air infiltration in the reactor refrigerant on the radiation measurement systems of gaseous effluents treatment

    International Nuclear Information System (INIS)

    Zorrilla, S.; Padilla, I.

    1991-01-01

    The system of treatment of gassy effluents of the CLV, well-known as the off-gas this gifted one in turn of a mensuration system and registration (monitoring) that consists of diverse established radiation monitors in the discharge point to the atmosphere and in other intermediate points of the process. The purpose of the monitoring system is to maintain continually informed to the operators about the effectiveness of the treatment system, to take registrations of the total quantity of liberated radioactive materials and to give warning by means of an alarm system of any abnormal situation that could end in an approach to the limits marked by the technical specifications. In September 1989 an event happened in the one that the high alarms corresponding to the post-treatment of the off-gas were activated. For this situation the personnel proceeded to diminish the power of the reactor to be able to investigate the causes that gave place to the event. It was observed that the alarms of the monitor were activated by significant infiltrations of air in the primary circuit of the refrigerant, for what it was proceeded to enlarge the scales of the implied monitor or to reduce the sensibility of their readings

  6. Indoor air quality/air infiltration in selected low-energy houses

    International Nuclear Information System (INIS)

    Shohl Wagner, B.; Phillips, T.J.

    1984-01-01

    Indoor air quality and air infiltration were measured in 16 low-energy California houses. Eleven has gas stoves; all had average infiltration rates of 0.5 h -1 of less, recent construction dates, low natural ventilation, and no mechanical ventilation. HCHO levels in 12 houses and radon-222 and NO 2 levels in all houses were measured using passive monitors. Blower door measurements and local weather data were used to calculate average infiltration rates during the monitoring period. Correlation of pollutant concentrations with infiltration rates and building characteristics indicate that new houses with average heating season infiltration rates less than 0.5 h -1 do not necessarily experience poor indoor air quality, HCHO and radon-222 levels in new houses exceeded the lowest currently proposed standards or guidelines, and much higher levels probably exist elsewhere. Therefore, some strategy for identifying 'problem' houses is needed. We recommend an approach for future research in this area. (Author)

  7. Statistical methods towards more efficient infiltration measurements.

    Science.gov (United States)

    Franz, T; Krebs, P

    2006-01-01

    A comprehensive knowledge about the infiltration situation in a catchment is required for operation and maintenance. Due to the high expenditures, an optimisation of necessary measurement campaigns is essential. Methods based on multivariate statistics were developed to improve the information yield of measurements by identifying appropriate gauge locations. The methods have a high degree of freedom against data needs. They were successfully tested on real and artificial data. For suitable catchments, it is estimated that the optimisation potential amounts up to 30% accuracy improvement compared to nonoptimised gauge distributions. Beside this, a correlation between independent reach parameters and dependent infiltration rates could be identified, which is not dominated by the groundwater head.

  8. Indoor air quality and infiltration in multifamily naval housing

    International Nuclear Information System (INIS)

    Parker, G.B.; Wilfert, G.L.; Dennis, G.W.

    1984-11-01

    Measurements of indoor air quality and air infiltration were taken in three units of a multifamily housing complex at the Naval Submarine base in Bangor, Washington, over 5 consecutive days during the heating season of 1983. Three dwelling units of identical size constructed in 1978 were monitored, each in a separate two-story four-unit complex. One unit was a downstairs unit and the other two units were upstairs units. Two of the units were occupied by smokers (one downstairs and one upstairs). None of the units had combustion appliances. Pollutants monitored indoors included radon, formaldehyde, carbon monoxide, particulate matter, and nitrogen dioxide. Indoor and outdoor temperature and windspeed were also recorded. Outdoor formaldehyde and nitrogen dioxide were also measured. Air exchange was measured about three times during each 24-h period, using a perfluorocarbon tracer with automatic tracer sampling. The daily average air exchange rate ranged from 0.22 to 0.91 air changes per hour (ACH). Pollutant concentrations were generally low except for particulate matter in the units with smokers, which were two to four times higher than in the unit with nonsmokers. Levels of carbon monoxide were also slightly elevated in one of the units with a smoker compared to the unit with nonsmokers. 5 references, 4 figures, 4 tables

  9. Water vapor mass balance method for determining air infiltration rates in houses

    Science.gov (United States)

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  10. Energy use, air infiltration, and indoor air quality in well-insulated residences

    International Nuclear Information System (INIS)

    Koontz, M.D.; Nagda, N.L.

    1989-01-01

    This paper reports two unoccupied bilevel houses of identical design and construction studied to determine the relationships among air exchange, energy consumption, and indoor air quality. The experimental house was retrofitted to increase building tightness and was equipped with an air-to-air heat exchanger; the control house was kept in its initial state of construction. Infiltration, energy, indoor air quality, and environmental parameters were monitored in both houses before and after the retrofit. It was found that the retrofit decreased air infiltration rates by nearly 25 percent, heating energy savings of 12 to 20 percent were achieved through the retrofit, and among the pollutants monitored, only radon and radon progeny increased in proportion to the reduced infiltration. Similarly, when the heat exchanger was operated, radon and radon progeny were the only pollutants reduced in proportion to the added air exchange

  11. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

    OpenAIRE

    Loizeau Sébastien; Rossier Yvan; Gaudet Jean-Paul; Refloch Aurore; Besnard Katia; Angulo-Jaramillo Rafael; Lassabatere Laurent

    2017-01-01

    Artificial basins are used to recharge groundwater and protect water pumping fields. In these basins, infiltration rates are monitored to detect any decrease in water infiltration in relation with clogging. However, miss-estimations of infiltration rate may result from neglecting the effects of water temperature change and air-entrapment. This study aims to investigate the effect of temperature and air entrapment on water infiltration at the basin scale by conducting successive infiltration c...

  12. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

    Directory of Open Access Journals (Sweden)

    Loizeau Sébastien

    2017-09-01

    Full Text Available Artificial basins are used to recharge groundwater and protect water pumping fields. In these basins, infiltration rates are monitored to detect any decrease in water infiltration in relation with clogging. However, miss-estimations of infiltration rate may result from neglecting the effects of water temperature change and air-entrapment. This study aims to investigate the effect of temperature and air entrapment on water infiltration at the basin scale by conducting successive infiltration cycles in an experimental basin of 11869 m2 in a pumping field at Crepieux-Charmy (Lyon, France. A first experiment, conducted in summer 2011, showed a strong increase in infiltration rate; which was linked to a potential increase in ground water temperature or a potential dissolution of air entrapped at the beginning of the infiltration. A second experiment was conducted in summer, to inject cold water instead of warm water, and also revealed an increase in infiltration rate. This increase was linked to air dissolution in the soil. A final experiment was conducted in spring with no temperature contrast and no entrapped air (soil initially water-saturated, revealing a constant infiltration rate. Modeling and analysis of experiments revealed that air entrapment and cold water temperature in the soil could substantially reduce infiltration rate over the first infiltration cycles, with respective effects of similar magnitude. Clearly, both water temperature change and air entrapment must be considered for an accurate assessment of the infiltration rate in basins.

  13. Horizontal infiltration and trace element measurements for ...

    African Journals Online (AJOL)

    Laboratory investigations of horizontal infiltration were carried out on three Zaria soils (Samaru, Tudun Wada and the Kubanni river basin Fadama wet-land soils) in Nigeria, which are principally alfisols. Diffusivity was found to be -77.5 x 10 -2 cm 2 s-1, -8.4 x 10 -2 cm 2 s-1 and -117.0 x 10 -2 cm 2 s-1 respectively for the ...

  14. Atrazine distribution measured in soil and leachate following infiltration conditions.

    Science.gov (United States)

    Neurath, Susan K; Sadeghi, Ali M; Shirmohammadi, Adel; Isensee, Allan R; Torrents, Alba

    2004-01-01

    Atrazine transport through packed 10 cm soil columns representative of the 0-10 cm soil horizon was observed by measuring the atrazine recovery in the total leachate volume, and upper and lower soil layers following infiltration of 7.5 cm water using a mechanical vacuum extractor (MVE). Measured recoveries were analyzed to understand the influence of infiltration rate and delay time on atrazine transport and distribution in the column. Four time periods (0.28, 0.8, 1.8, and 5.5 h) representing very high to moderate infiltration rates (26.8, 9.4, 4.2, and 1.4 cm/h) were used. Replicate soil columns were tested immediately and following a 2-d delay after atrazine application. Results indicate atrazine recovery in leachate was independent of infiltration rate, but significantly lower for infiltration following a 2-d delay. Atrazine distribution in the 0-1 and 9-10 cm soil layers was affected by both infiltration rate and delay. These results are in contrast with previous field and laboratory studies that suggest that atrazine recovery in the leachate increases with increasing infiltration rate. It appears that the difference in atrazine recovery measured using the MVE and other leaching experiments using intact soil cores from this field site and the rain simulation equipment probably illustrates the effect of infiltrating water interacting with the atrazine present on the soil surface. This work suggests that atrazine mobilization from the soil surface is also dependent on interactions of the infiltrating water with the soil surface, in addition to the rate of infiltration through the surface soil.

  15. A Non-linear Stochastic Model for an Office Building with Air Infiltration

    DEFF Research Database (Denmark)

    Thavlov, Anders; Madsen, Henrik

    2015-01-01

    This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model...

  16. Effects of climate change on residential infiltration and air pollution exposure.

    Science.gov (United States)

    Ilacqua, Vito; Dawson, John; Breen, Michael; Singer, Sarany; Berg, Ashley

    2017-01-01

    Air exchange through infiltration is driven partly by indoor/outdoor temperature differences, and as climate change increases ambient temperatures, such differences could vary considerably even with small ambient temperature increments, altering patterns of exposures to both indoor and outdoor pollutants. We calculated changes in air fluxes through infiltration for prototypical detached homes in nine metropolitan areas in the United States (Atlanta, Boston, Chicago, Houston, Los Angeles, Minneapolis, New York, Phoenix, and Seattle) from 1970-2000 to 2040-2070. The Lawrence Berkeley National Laboratory model of infiltration was used in combination with climate data from eight regionally downscaled climate models from the North American Regional Climate Change Assessment Program. Averaged over all study locations, seasons, and climate models, air exchange through infiltration would decrease by ~5%. Localized increased infiltration is expected during the summer months, up to 20-30%. Seasonal and daily variability in infiltration are also expected to increase, particularly during the summer months. Diminished infiltration in future climate scenarios may be expected to increase exposure to indoor sources of air pollution, unless these ventilation reductions are otherwise compensated. Exposure to ambient air pollution, conversely, could be mitigated by lower infiltration, although peak exposure increases during summer months should be considered, as well as other mechanisms.

  17. Vadose Zone Infiltration Rates from Sr isotope Measurements

    Science.gov (United States)

    Maher, K.; Maher, K.; DePaolo, D. J.; DePaolo, D. J.; Conrad, M.

    2001-12-01

    Predicting infiltration rates and recharge through the vadose zone in arid regions is difficult and hence developing methods for the measurement of infiltration rates is important. We have been investigating the use of Sr isotope measurements for determining infiltration at the 200 Area plateau on the Hanford reservation in central Washington. In this context, infiltration affects the transport of contaminants to the water table as well as recharge of the groundwater system. Using Sr isotopes for this purpose requires drill core and water samples from the vadose zone, although leaches of the cores can substitute for water samples. Complementary information, including some constraints on regional recharge, can also be obtained using water samples from groundwater monitoring wells. The VZ method is based on the fact that the Sr isotope ratio of soil water just below the surface is often set by dissolution of aeolian material including carbonate, and this ratio is different from the average value in the deeper underlying vadose zone rock matrix. As water infiltrates, the Sr isotopic composition of the water changes toward the rock values as a result of Sr released from the rocks by weathering reactions. The rate of change with depth of the Sr isotope ratio of the vadose zone water is a function ultimately of q/R; the ratio of the infiltration flux (q) to the bulk rock weathering rate (R). Where it is possible to evaluate R, q can be estimated. As data accumulate it may be possible to improve the calibration of the method. At Hanford the vadose zone rock material is mostly unconsolidated sand, silt, and gravel of broadly granitic composition, which constitute the Hanford and Ringold formations. Annual precipitation is about 160 mm/yr. Drilling and coring of a ca. 70m hole to the water table in 1999 as part of the Hanford groundwater monitoring program, in a relatively undisturbed area of the site, allowed us to generate a unique Sr isotope data set. The Sr isotope

  18. Measurement of gas transport properties for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  19. Difficulties in the evaluation and measuring of soil water infiltration

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2013-04-01

    Soil water infiltration is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the evaluation and measurement of water infiltration rates has become indispensable for the evaluation and modeling of the previously mentioned processes. Infiltration is one of the most difficult hydrological parameters to evaluate or measure accurately. Although the theoretical aspects of the process of soil water infiltration are well known since the middle of the past century, when several methods and models were already proposed for the evaluation of infiltration, still nowadays such evaluation is not frequently enough accurate for the purposes being used. This is partially due to deficiencies in the methodology being used for measuring infiltration, including some newly proposed methods and equipments, and in the use of non appropriate empirical models and approaches. In this contribution we present an analysis and discussion about the main difficulties found in the evaluation and measurement of soil water infiltration rates, and the more commonly committed errors, based on the past experiences of the author in the evaluation of soil water infiltration in many different soils and land conditions, and in their use for deducing soil water balances under variable and changing climates. It is concluded that there are not models or methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil

  20. An automated microinfiltrometer to measure small-scale soil water infiltration properties

    Directory of Open Access Journals (Sweden)

    Gordon Dennis C.

    2014-09-01

    Full Text Available We developed an automated miniature constant-head tension infiltrometer that measures very small infiltration rates at millimetre resolution with minimal demands on the operator. The infiltrometer is made of 2.9 mm internal radius glass tube, with an integrated bubbling tower to maintain constant negative head and a porous mesh tip to avoid air-entry. In the bubbling tower, bubble formation and release changes the electrical resistance between two electrodes at the air-inlet. Tests were conducted on repacked sieved sands, sandy loam soil and clay loam soil, packed to a soil bulk density ρd of 1200 kg m-3 or 1400 kg m-3 and tested either air-dried or at a water potential ψ of -50 kPa. The change in water volume in the infiltrometer had a linear relationship with the number of bubbles, allowing bubble rate to be converted to infiltration rate. Sorptivity measured with the infiltrometer was similar between replicates and showed expected differences from soil texture and ρd, varying from 0.15 ± 0.01 (s.e. mm s-1/2 for 1400 kg m-3 clay loam at ψ = -50 kPa to 0.65 ± 0.06 mm s-1/2 for 1200 kg m-3 air dry sandy loam soil. An array of infiltrometers is currently being developed so many measurements can be taken simultaneously.

  1. Evaluation of different field methods for measuring soil water infiltration

    Science.gov (United States)

    Pla-Sentís, Ildefonso; Fonseca, Francisco

    2010-05-01

    Soil infiltrability, together with rainfall characteristics, is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the direct measurement of water infiltration rates or its indirect deduction from other soil characteristics or properties has become indispensable for the evaluation and modelling of the previously mentioned processes. Indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, have demonstrated to be of limited value in most of the cases. Direct "in situ" field evaluations have to be preferred in any case. In this contribution we present the results of past experiences in the measurement of soil water infiltration rates in many different soils and land conditions, and their use for deducing soil water balances under variable climates. There are also presented and discussed recent results obtained in comparing different methods, using double and single ring infiltrometers, rainfall simulators, and disc permeameters, of different sizes, in soils with very contrasting surface and profile characteristics and conditions, including stony soils and very sloping lands. It is concluded that there are not methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the surface

  2. Mass transport measurements and modeling for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  3. Preliminary Investigation on the Behavior of Pore Air Pressure During Rainfall Infiltration

    Science.gov (United States)

    Ashraf Mohamad Ismail, Mohd; Min, Ng Soon; Hasliza Hamzah, Nur; Hazreek Zainal Abidin, Mohd; Madun, Aziman; Tajudin, Saiful Azhar Ahmad

    2018-04-01

    This paper focused on the preliminary investigation of pore air pressure behaviour during rainfall infiltration in order to substantiate the mechanism of rainfall induced slope failure. The actual behaviour or pore air pressure during infiltration is yet to be clearly understood as it is regularly assumed as atmospheric. Numerical modelling of one dimensional (1D) soil column was utilized in this study to provide a preliminary insight of this highlighted uncertainty. Parametric study was performed by using rainfall intensities of 1.85 x 10-3m/s and 1.16 x 10-4m/s applied on glass beads to simulate intense and modest rainfall conditions. Analysis results show that the high rainfall intensity causes more development of pore air pressure compared to low rainfall intensity. This is because at high rainfall intensity, the rainwater cannot replace the pore air smoothly thus confining the pore air. Therefore, the effect of pore air pressure has to be taken into consideration particularly during heavy rainfall.

  4. Ecobuild measurement report of the infiltration measurements of the Ecobuild dwellings and the ICT dwelling; Ecobuild meetverslag infiltratiemetingen van de Ecobuild woningen en de ICT woning

    Energy Technology Data Exchange (ETDEWEB)

    Schuitema, R.; Bakker, E.J. [ECN Zonne-energie, Petten (Netherlands)

    2002-04-01

    By means of blower door measurements the airtightness of so-called Ecobuild dwellings (A, B and C) and the ICT-dwelling (D) has been determined. The airtightness is of importance with regard to calculations on heat losses and the heat balance. Data on air infiltration are important for other similar projects. [Dutch] Met blowerdeur metingen is door J.E. StorkAir de lekdichtheid van de Ecobuild woningen (woning A, B en C) en de ICT woning (woning D) bepaald.

  5. Ventilation- and infiltration measurements in a dwelling in view of the problems with radon

    International Nuclear Information System (INIS)

    Gids, W.F. de; Phaff, J.C.

    1986-06-01

    This report describes the results of continuous ventilation measurements, with N 2 O as tracer gas, of infiltration streams in seven spaces in a dwelling. The results are compared with ventilation model calculations; good agreement was obtained. (Auth.)

  6. Vadose Zone Infiltration Rate at Hanford, Washington, Inferred from Sr Isotope Measurements

    International Nuclear Information System (INIS)

    Maher, Katharine; DePaolo, Donald J.; Conrad, Mark E.; Serne, R. Jeffrey

    2003-01-01

    Sr isotope ratios were measured in the pore water, acid extracts, and sediments of a 70-m vadose zone core to obtain estimates of the long-term infiltration flux for a site in the Hanford/DOE complex in eastern Washington State. The 87Sr/86Sr values of the pore waters decrease systematically with depth, from a high value of 0.721 near the surface toward the bulk sediment average value of 0.711. Estimates of the bulk weathering rate combined with Sr isotopic data were used to constrain the long-term (century to millenial scale) natural diffuse infiltration flux for the site given both steady state and nonsteady state conditions. The models suggest that the infiltration fluc for the site is 7+- 3 mm/yr. The method shows potential for providing long-term in situ estimates of infiltration rates for deep heterogeneous vadose zones

  7. Self-adaptive Green-Ampt infiltration parameters obtained from measured moisture processes

    Directory of Open Access Journals (Sweden)

    Long Xiang

    2016-07-01

    Full Text Available The Green-Ampt (G-A infiltration model (i.e., the G-A model is often used to characterize the infiltration process in hydrology. The parameters of the G-A model are critical in applications for the prediction of infiltration and associated rainfall-runoff processes. Previous approaches to determining the G-A parameters have depended on pedotransfer functions (PTFs or estimates from experimental results, usually without providing optimum values. In this study, rainfall simulators with soil moisture measurements were used to generate rainfall in various experimental plots. Observed runoff data and soil moisture dynamic data were jointly used to yield the infiltration processes, and an improved self-adaptive method was used to optimize the G-A parameters for various types of soil under different rainfall conditions. The two G-A parameters, i.e., the effective hydraulic conductivity and the effective capillary drive at the wetting front, were determined simultaneously to describe the relationships between rainfall, runoff, and infiltration processes. Through a designed experiment, the method for determining the G-A parameters was proved to be reliable in reflecting the effects of pedologic background in G-A type infiltration cases and deriving the optimum G-A parameters. Unlike PTF methods, this approach estimates the G-A parameters directly from infiltration curves obtained from rainfall simulation experiments so that it can be used to determine site-specific parameters. This study provides a self-adaptive method of optimizing the G-A parameters through designed field experiments. The parameters derived from field-measured rainfall-infiltration processes are more reliable and applicable to hydrological models.

  8. Long Term Stability Investigation of Solid Oxide Electrolysis Cell with Infiltrated Porous YSZ Air Electrode Under High Current

    DEFF Research Database (Denmark)

    Veltzé, Sune; Ovtar, Simona; Simonsen, Søren Bredmose

    2015-01-01

    stabilised zirconia (YSZ) backbone air electrode and Ni/YSZ cermet fuel electrode. The SOC was tested at electrolysis conditions under high current (up to -1 A/cm2). The porous YSZ electrodes was infiltrated with gadolinium-doped ceria oxide (CGO), to act as a barrier layer between the catalyst...

  9. Measuring the relative extent of pulmonary infiltrates by hierarchical classification of patient-specific image features

    Science.gov (United States)

    Tsevas, S.; Iakovidis, D. K.

    2011-11-01

    Pulmonary infiltrates are common radiological findings indicating the filling of airspaces with fluid, inflammatory exudates, or cells. They are most common in cases of pneumonia, acute respiratory syndrome, atelectasis, pulmonary oedema and haemorrhage, whereas their extent is usually correlated with the extent or the severity of the underlying disease. In this paper we propose a novel pattern recognition framework for the measurement of the extent of pulmonary infiltrates in routine chest radiographs. The proposed framework follows a hierarchical approach to the assessment of image content. It includes the following: (a) sampling of the lung fields; (b) extraction of patient-specific grey-level histogram signatures from each sample; (c) classification of the extracted signatures into classes representing normal lung parenchyma and pulmonary infiltrates; (d) the samples for which the probability of belonging to one of the two classes does not reach an acceptable level are rejected and classified according to their textural content; (e) merging of the classification results of the two classification stages. The proposed framework has been evaluated on real radiographic images with pulmonary infiltrates caused by bacterial infections. The results show that accurate measurements of the infiltration areas can be obtained with respect to each lung field area. The average measurement error rate on the considered dataset reached 9.7% ± 1.0%.

  10. Specifics of Building Envelope Air Leakage Problems and Airtightness Measurements

    Directory of Open Access Journals (Sweden)

    Borodinecs Anatolijs

    2016-01-01

    Full Text Available In addition to transmission heat loses the infiltration of outdoor air can cause significant heat losses. The external building envelope should be airtight in order to prevent uncontrolled cold air infiltration. The article analysis modern building materials and structures influence on airtightness. The practical measurements of renovated buildings’ airtightness are presented and compared to non-renovated buildings. In addition paper presents data on airtightness measurements of whole multi apartment building and single apartment in analyzed building taking inco accout properties of building materials. The airtightness of single apartment was evaluated with support pressure in neighbor apartments. The results show that the airtightness measurements of multi apartment building can be evaluated by measuring single apartment on last floor with support pressure in neighbor apartments. The practical measurement of renovated buildings had shown the air leakage rate q50 of typical Latvian construction after renovation is between 2.5 and 2.9 m3/(m2·h. Since the building envelope has to minimize the heat loses (transmission and infiltration and ventilation system either mechanical or natural has to provide necessary air exchange, the building envelope airtightness shouldn’t be dependent on type of ventilation systems.

  11. Measurement of infiltration rates in urban sewer systems by use of oxygen isotopes.

    Science.gov (United States)

    De Bénédittis, J; Bertrand-Krajewski, J L

    2005-01-01

    The paper presents the principle of a method to measure infiltration rates in sewer systems based on the use of oxygen isotopes and its application in Lyon (France). In the urban area of Lyon, significant differences in delta 18O that can reach 3 per thousand are observed between the oxygen isotopic compositions of groundwater originating from Rhone, Saone and from their associated alluvial aquifers. Drinking water supplying Lyon results mainly from pumping in the Rhone alluvial aquifer. Therefore, in some areas, the difference of isotopic composition between wastewater resulting from the consumption of drinking water and local groundwater can be used to measure infiltration in sewer systems. The application in the catchment of Ecully shows that the infiltration flow rate presents strong fluctuations at an hourly scale: it varies between 15 and 40 m3/h. This variability could be explained by non-constant discharges of pumping and by variations of the water level in the sewer.

  12. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    International Nuclear Information System (INIS)

    HAASS, C.C.

    1999-01-01

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included

  13. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    HAASS, C.C.

    1999-10-14

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  14. Difference infiltrometer: a method to measure temporally variable infiltration rates during rainstorms

    Science.gov (United States)

    Moody, John A.; Ebel, Brian A.

    2012-01-01

    We developed a difference infiltrometer to measure time series of non-steady infiltration rates during rainstorms at the point scale. The infiltrometer uses two, tipping bucket rain gages. One gage measures rainfall onto, and the other measures runoff from, a small circular plot about 0.5-m in diameter. The small size allows the infiltration rate to be computed as the difference of the cumulative rainfall and cumulative runoff without having to route water through a large plot. Difference infiltrometers were deployed in an area burned by the 2010 Fourmile Canyon Fire near Boulder, Colorado, USA, and data were collected during the summer of 2011. The difference infiltrometer demonstrated the capability to capture different magnitudes of infiltration rates and temporal variability associated with convective (high intensity, short duration) and cyclonic (low intensity, long duration) rainstorms. Data from the difference infiltrometer were used to estimate saturated hydraulic conductivity of soil affected by the heat from a wildfire. The difference infiltrometer is portable and can be deployed in rugged, steep terrain and does not require the transport of water, as many rainfall simulators require, because it uses natural rainfall. It can be used to assess infiltration models, determine runoff coefficients, identify rainfall depth or rainfall intensity thresholds to initiate runoff, estimate parameters for infiltration models, and compare remediation treatments on disturbed landscapes. The difference infiltrometer can be linked with other types of soil monitoring equipment in long-term studies for detecting temporal and spatial variability at multiple time scales and in nested designs where it can be linked to hillslope and basin-scale runoff responses.

  15. Artificial Recharge – Measurement of Soil Infiltration in Rožnov Pod Radhoštěm

    Directory of Open Access Journals (Sweden)

    Chromíková Jitka

    2017-12-01

    Full Text Available The purpose of this study is to evaluate the potential for infiltration in a study area – Rožnov pod Radhoštěm, the Czech Republic. The results are important for the future design of an artificial recharge structure as a method to store water underground in times of water surplus. A total of six measurements of infiltration were made using a double ring infiltrometer on selected prospective sites for the future application of artificial recharge. The results of infiltration tests were analysed based on the Philip’s model. The steady soil infiltration rates ranged from 28 cm∙h−1 to 70.38 cm∙h−1and the cumulative soil infiltration ranged from 58 cm to 68 cm.

  16. Application of Modular Modeling System to Predict Evaporation, Infiltration, Air Temperature, and Soil Moisture

    Science.gov (United States)

    Boggs, Johnny; Birgan, Latricia J.; Tsegaye, Teferi; Coleman, Tommy; Soman, Vishwas

    1997-01-01

    Models are used for numerous application including hydrology. The Modular Modeling System (MMS) is one of the few that can simulate a hydrology process. MMS was tested and used to compare infiltration, soil moisture, daily temperature, and potential and actual evaporation for the Elinsboro sandy loam soil and the Mattapex silty loam soil in the Microwave Radiometer Experiment of Soil Moisture Sensing at Beltsville Agriculture Research Test Site in Maryland. An input file for each location was created to nut the model. Graphs were plotted, and it was observed that the model gave a good representation for evaporation for both plots. In comparing the two plots, it was noted that infiltration and soil moisture tend to peak around the same time, temperature peaks in July and August and the peak evaporation was observed on September 15 and July 4 for the Elinsboro Mattapex plot respectively. MMS can be used successfully to predict hydrological processes as long as the proper input parameters are available.

  17. The measurement of low air flow velocities

    NARCIS (Netherlands)

    Aghaei, A.; Mao, X.G.; Zanden, van der A.J.J.; Schaik, W.H.J.; Hendriks, N.A.

    2005-01-01

    Air flow velocity is measured with an acoustic sensor, which can be used especially for measuring low air flow velocities as well as the temperature of the air simultaneously. Two opposite transducers send a sound pulse towards each other. From the difference of the transit times, the air flow

  18. Further studies on tritium tracing of soil moisture for rainwater infiltration measurements in Gatton, Queensland, Australia

    International Nuclear Information System (INIS)

    Dharmasiri, J.K.

    1998-01-01

    Further to preliminary results presented at the last SPERA 96 conference in Darwin, final results based on two years of measurements are summarised here. The tritium tracer was injected in April 1995 at 10 sites scattered in Gatton experimental area (70 km 2 ) and first sampled in April 1996. The second soil sampling was carried out in May 1997, after a major flood event that took place in May 1996. The sites were named as G 1-10 and the site G-8 was located in Forest Hill to the south of the study area. The vertical tracer distribution was essentially Gaussian in shape indicating piston-type moisture movement. Within the study area the tracer peak movement during 1995-97 was 5-30 cm from the initial depth of injection at 70 cm. The total infiltration ranged from 21-177 mm within two years. The site G 8 located in Forest Hill showed 201 mm of infiltration, with a skewed tracer distribution. The errors of measurement are large due to limitation in depth resolution (10 cm and 5 cm in 1996 and 1997 respectively), rendering the lower infiltration value insignificant. Yet, very small tracer movement in two years clearly indicated the problem of poor recharge through top soil layers to the alluvial aquifer. There are however other sources of recharge from creeks and sandstone outcrops as identified using stable isotopes. The Crowley Vale irrigation area (7 km 2 ) has already exhausted its groundwater by the middle of 1997, having little or no impact after the major flood in May 1996

  19. Infiltration and Runoff Measurements on Steep Burned Hillslopes Using a Rainfall Simulator with Variable Rain Intensities

    Science.gov (United States)

    Kinner, David A.; Moody, John A.

    2008-01-01

    Multiple rainfall intensities were used in rainfall-simulation experiments designed to investigate the infiltration and runoff from 1-square-meter plots on burned hillslopes covered by an ash layer of varying thickness. The 1-square-meter plots were on north- and south-facing hillslopes in an area burned by the Overland fire northwest of Boulder near Jamestown on the Front Range of Colorado. A single-nozzle, wide-angle, multi-intensity rain simulator was developed to investigate the infiltration and runoff on steep (30- to 40-percent gradient) burned hillslopes covered with ash. The simulated rainfall was evaluated for spatial variability, drop size, and kinetic energy. Fourteen rainfall simulations, at three intensities (about 20 millimeters per hour [mm/h], 35 mm/h, and 50 mm/h), were conducted on four plots. Measurements during and after the simulations included runoff, rainfall, suspended-sediment concentrations, surface ash layer thickness, soil moisture, soil grain size, soil lost on ignition, and plot topography. Runoff discharge reached a steady state within 7 to 26 minutes. Steady infiltration rates with the 50-mm/h application rainfall intensity approached 20?35 mm/h. If these rates are projected to rainfall application intensities used in many studies of burned area runoff production (about 80 mm/h), the steady discharge rates are on the lower end of measurements from other studies. Experiments using multiple rainfall intensities (three) suggest that runoff begins at rainfall intensities around 20 mm/h at the 1-square-meter scale, an observation consistent with a 10-mm/h rainfall intensity threshold needed for runoff initiation that has been reported in the literature.

  20. Next Generation Air Measurement Technologies Fact Sheet

    Science.gov (United States)

    EPA is advancing lower cost and portable air measurement technology to enhance monitoring capabilities for complying with the National Ambient Air Quality Standards. The technology is providing mobile and stationary real-time measurement capabilities.

  1. Air brake-dynamometer accurately measures torque

    Science.gov (United States)

    1965-01-01

    Air brake-dynamometer assembly combines the principles of the air turbine and the air pump to apply braking torque. The assembly absorbs and measures power outputs of rotating machinery over a wide range of shaft speeds. It can also be used as an air turbine.

  2. Investigation the effect of outdoor air infiltration on the heat-shielding characteristics the outer walls of high-rise buildings

    Science.gov (United States)

    Vytchikov, Yu. S.; Kostuganov, A. B.; Saparev, M. E.; Belyakov, I. G.

    2018-03-01

    The presented article considers the influence of infiltrated outdoor air on the heat-shielding characteristics of the exterior walls of modern residential and public buildings. A review of the sources devoted to this problem confirmed its relevance at the present time, especially for high-rise buildings. The authors of the article analyzed the effect of longitudinal and transverse air infiltration on the heat-shielding characteristics of the outer wall of a 25-story building that was built in Samara. The results showed a significant reduction of the reduced resistance to the heat transfer of the outer wall when air is infiltrated through it. There are the results of full-scale examination of external walls to confirm the calculated data. Based on the results of the study carried out by the authors of the article, general recommendations on the internal finishing of the outer walls of high-rise buildings are given.

  3. Gap in air pollution reduction measures

    International Nuclear Information System (INIS)

    Kamphuis, E.; Spijker, E.

    2006-01-01

    The air quality dossier in the Netherlands requires drastic cleaning of the vehicles fleet. However, the present measures are too much focused on the installation and use of soot filters. Other options to improve the air quality are discussed [nl

  4. Disruptive Innovation in Air Measurement Technology: Reality ...

    Science.gov (United States)

    This presentation is a big picture overview on the changing state of air measurement technology in the world, with a focus on the introduction of low-cost sensors into the market place. The presentation discusses how these new technologies may be a case study in disruptive innovation for the air pollution measurement field. The intended audience is primarily those with experience in air pollution measurement methods, but much of the talk is accessible to the general public. This is a keynote presentation on emerging air monitoring technology, to be provided at the AWMA measurements conference in March, 2016.

  5. Air Monitoring, Measuring, and Emissions Research

    Science.gov (United States)

    Measurement research is advancing the ability to determine the composition of sources of air pollution, conduct exposure assessments, improve monitoring capabilities and support public health research.

  6. Counting systems characterization for air activity measurements

    International Nuclear Information System (INIS)

    Vijayakumar, B.; Balamurugan, M.; Ravi, P.M.

    2018-01-01

    Air activity measurements are carried out continuously at all the nuclear power plant (NPP) sites both during pre-operational phase and also during operation of nuclear facility. These measurements provide a trend line for the background air activity in the surrounding environments of an operating NPP. Any increase in air activity over the benchmark level becomes very handy to investigate the releases from the station and to give feedback to the operators of NPP about the prevailing air activity levels and their correlation to the plant releases. This paper compiles the results obtained for air filter samples using different counters operating in GM region and also plastic scintillators

  7. Measuring Air Force Contracting Customer Satisfaction

    Science.gov (United States)

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT MEASURING AIR FORCE CONTRACTING CUSTOMER SATISFACTION ...... satisfaction elements should be included in a standardized tool that measures the level of customer satisfaction for AF Contracting’s external and

  8. Air shower measurements with LOFAR

    NARCIS (Netherlands)

    Horneffer, A.; Bähren, L.; Buitink, S.; Falcke, H.; Hörandel, J.R.; Kuijpers, J.; Lafebre, S.; Nigl, A.; Scholten, O.; Singh, K.

    2009-01-01

    Air showers from cosmic rays emit short, intense radio pulses. The Low Frequency Array (LOFAR) is a new radio telescope, that is being built in the Netherlands and Europe. Designed primarily as a radio interferometer, the core of LOFAR will have a high density of radio antennas, which will be

  9. Some measurements of ambient air pollution

    International Nuclear Information System (INIS)

    Memon, H.R.; Memon, A.A.; Behan, M.Y.

    1999-01-01

    Ambient air pollution arising from different sources in Karachi and its surroundings has been studied. The urban centres like Karachi are mostly confronted with eye-irritation, reduce visibility, heart-diseases, nervous disorder, smog and other unpleasant experiences. In this paper quantitative estimations of some air-pollutants such as sulphur dioxide, carbon monoxide, oxides of nitrogen, chlorine and particular matters are presented with their hazardous effects. The remedial measures for the control of major air emissions are also discussed. (author)

  10. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Danny S. [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Cummings, Jamie E. [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Vieira, Robin K. [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Fairey, III, Phillip W. [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Sherwin, John S. [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Withers, Jr., Charles [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Hoak, David [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Beal, David [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States)

    2016-09-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  11. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

    2014-05-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  12. Measurement of Air Pollutants in the Troposphere

    Science.gov (United States)

    Clemitshaw, Kevin C.

    2011-01-01

    This article describes the principles, applications and performances of methods to measure gas-phase air pollutants that either utilise passive or active sampling with subsequent laboratory analysis or involve automated "in situ" sampling and analysis. It focuses on air pollutants that have adverse impacts on human health (nitrogen…

  13. 40 CFR 89.414 - Air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in understated...

  14. 40 CFR 92.108 - Intake and cooling air measurements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake and cooling air measurements....108 Intake and cooling air measurements. (a) Intake air flow measurement. Measurement of the flow rate..., the measurement technique shall conform to the following: (1) The air flow measurement method used...

  15. 40 CFR 89.326 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air... type of intake air supply, the humidity measurements must be made within the intake air supply system...

  16. 40 CFR 91.310 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply. Air...

  17. Measurement of the vertical infiltration parameters and water redistribution in LRd and LEa soils by gamma-ray transmission technique

    International Nuclear Information System (INIS)

    Souza, A.D.B. de; Saito, H.; Appoloni, C.R.; Coimbra, M.M.; Parreira, P.S.

    1991-01-01

    The properties of soil water diffusivity and soil hydraulic conductivity of two horizons (0-20 cm and 20-40 cm) from Latossolo Roxo distrofico (LRd) and Latossolo Vermelho escuro (LEa) soil samples, have been measured in laboratory through the vertical infiltration and redistribution of water in soil columns. The moisture profile as a function of time for each position in the soil column were obtained with the gamma-ray transmission technique, using a sup(241)Am gamma-ray source, a Na (I) T1 scintillation detector and gamma spectrometry standard electronic. (author)

  18. Measuring Air Density in the Introductory Lab

    Science.gov (United States)

    Calza, G.; Gratton, L. M.; Lopez-Arias, T.; Oss, S.

    2010-01-01

    The measurement of the mass, or the density, of air can easily be done with very simple materials and offers many interesting phenomena for discussion--buoyancy and its effects being the most obvious but not the only one. Many interesting considerations can be done regarding the behavior of gases, the effect of the external conditions in the…

  19. Measure Guideline: Guide to Attic Air Sealing

    Energy Technology Data Exchange (ETDEWEB)

    Lstiburek, J.

    2014-09-01

    The Guide to Attic Air Sealing was completed in 2010 and although not in the standard Measure Guideline format, is intended to be a Measure Guideline on Attic Air Sealing. The guide was reviewed during two industry stakeholders meetings held on December 18th, 2009 and January 15th, 2010, and modified based on the comments received. Please do not make comments on the Building America format of this document. The purpose of the Guide to Attic Air Sealing is to provide information and recommendations for the preparation work necessary prior to adding attic insulation. Even though the purpose of this guide is to save energy - health, safety and durability should not be compromised by energy efficiency. Accordingly, combustion safety and ventilation for indoor air quality are addressed first. Durability and attic ventilation then follow. Finally, to maximize energy savings, air sealing is completed prior to insulating. The guide is intended for home remodelers, builders, insulation contractors, mechanical contractors, general contractors who have previously done remodeling and homeowners as a guide to the work that needs to be done.

  20. Measure Guideline: Guide to Attic Air Sealing

    Energy Technology Data Exchange (ETDEWEB)

    Lstiburek, Joseph [Building Science Corporation, Westford, MA (United States)

    2014-09-01

    The purpose of this measure guideline is to provide information and recommendations for the preparation work necessary prior to adding attic insulation. Even though the purpose of this guide is to save energy, health, safety, and durability should not be compromised by energy efficiency. Accordingly, combustion safety and ventilation for indoor air quality are addressed first. Durability and attic ventilation then follow. Finally, to maximize energy savings, air sealing is completed prior to insulating. The guide is intended for home remodelers, builders, insulation contractors, mechanical contractors, general contractors who have previously done remodeling and homeowners as a guide to the work that needs to be done.

  1. 40 CFR 91.309 - Engine intake air temperature measurement.

    Science.gov (United States)

    2010-07-01

    ... measurement. 91.309 Section 91.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 100 cm of the air-intake of the engine. The measurement location must be either in...

  2. 40 CFR 91.416 - Intake air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  3. Influence of surficial soil and bedrock on indoor radon in New York State homes. Task 2, Subtask 2 of an investigation of infiltration and indoor air quality in New York State homes

    International Nuclear Information System (INIS)

    Kunz, C.

    1989-10-01

    Radon can enter a building from soil and bedrock through cracks or openings in the basement. Extrapolation from data obtained from studies of miners exposed to high concentrations of radon and other carcinogens over long periods indicates that radon gas in the home poses an increased risk of lung cancer. The project was initiated to determine the characteristics of soil and bedrock that contribute to the availability of radon for infiltration into the home, and the feasibility of using soil characteristics in mapping areas at higher risk for above-average indoor radon in New York State. After conducting soil surveys across the State, the researchers choose four areas for further study. Fifteen homes in each area were tested for indoor air concentrations of radon, air infiltration into the home, radon concentrations in the soil, and the permeability of the soil for gas flow. The researchers concluded that these parameters could be combined to obtain a Radon Index Number to predict mean indoor radon levels for a given area with similar soil geology. However, this measure has a limited ability to predict indoor radon levels for a particular home due to variations in construction as well as differences in soil and bedrock

  4. Amine Measurements in Boreal Forest Air

    Science.gov (United States)

    Hemmilä, Marja; Hellén, Heidi; Makkonen, Ulla; Hakola, Hannele

    2015-04-01

    Amines are reactive, volatile bases in the air with a general formula of RNH2, R2NH or R3N. Especially small amines can stabilize sulphuric acid clusters and hence affect nucleation. Amines react rapidly with hydroxyl radical (OH˙) thus affecting oxidative capacity of the atmosphere. The amine concentrations are higher in forest air than in urban air (Hellén et al., 2014), but the sources are not known. In order to get more information concerning amine sources, we conducted a measurement campaign in a boreal forest. At SMEAR II station at Hyytiälä, Southern Finland (61°510'N, 24°170'E, 180 m a.s.l.) The measurements cover seven months, from June to December 2014. For sampling and measuring we used MARGA (The instrument for Measuring AeRosols and Gases in Ambient air) which is an on-line ion chromatograph (IC) connected to a sampling system. The IC component of the MARGA system was coupled to an electrospray ionization quadrupole mass spectrometer (MS) to improve sensitivity of amine measurements. This new set-up enabled amine concentration measurements in ambient air both in aerosol and gas phases with a time resolution of only 1 hour. With MARGA-MS we analysed 7 different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA) and butylamine (BA). In preliminary data-analysis we found out, that in June and July most of the measured amines were in gas phase, and particle phase amine concentrations were mostly under detection limits (<1.7 pptv). In June the gaseous amine concentrations were higher than in July. The measured concentrations of gaseous amines followed temperature variation, which could indicate that amines are produced and emitted from the environment or re-emitted from the surfaces as temperature rises after deposition during night-time. All measured amines had similar diurnal variation with maxima during afternoon and minima during night. Results from other months will also

  5. Indoor air-quality measurements in energy-efficient residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Berk, J.V.; Hollowell, C.D.; Pepper, J.H.; Young, R.

    1980-05-01

    The potential impact on indoor air quality of energy-conserving measures that reduce ventilation is being assessed in a field-monitoring program conducted by the Lawrence Berkeley Laboratory. Using a mobile laboratory, on-site monitoring of infiltration rate, carbon dioxide, carbon monoxide, nitrogen dioxide, nitric oxide, ozone, sulfur dioxide, formaldehyde, total aldehydes, and particulates was conducted in three houses designed to be energy-efficient. Preliminary results show that energy-conserving design features that reduce air-exchange rates compromise indoor air quality; specifically, indoor levels of several pollutants were found to exceed levels detected outdoors. Although the indoor levels of most pollutants are within limits established by present outdoor air-quality standards, considerable work remains to be accomplished before health-risk effects can be accurately assessed and broad-scale regulatory guidelines revised to comply with energy-conservation goals.

  6. Air quality measurements for site characterization

    International Nuclear Information System (INIS)

    Carter, M.W.; Conklin, W.C.

    1982-01-01

    Effective and timely site characterization is an important part of selecting a site for low-level waste disposal. Parameters measured can be compared with pertinent regulatory requirements, used for a reference base, helpful in evaluating environmental impacts, utilized in documenting changes in control programs, of value in modeling studies and other data uses, and beneficial in providing relevant sampling and methodology training. This paper will focus on specific air quality measurements which should be an inherent part of the site characterization program. The program is designed to measure, quantify, and identify contributions from site uses (operational procedures), atmospheric fallout, natural radioactivity, and vicinity and regional applications of radionuclides. The recommended air quality measurements program will be described in association with a reference site developd by the US Nuclear Regulatory Commission. Particular attention will be devoted to the type and quality of information which is needed, the scope of sampling and measurements, the frequency of measurements, locations and numbers of sampling stations, the period of time needed for site characterization, and the proper uses of the information once it has been obtained. Adequate characterization of the site will be most important in final site selection and in the operation of the site as to periodically assessing environmental impacts and helping guide any remedial control efforts designed to meet regulatory requirements

  7. Measurement of air entrainment in plasma jets

    International Nuclear Information System (INIS)

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing. 9 refs., 5 figs., 1 tab

  8. Measurement of nitrogen dioxide in the air

    Energy Technology Data Exchange (ETDEWEB)

    Monteriolo, S C; Bertolaccini, M A

    1973-01-01

    A comparative study of automatic analytical methods for the monitoring of nitric oxide and nitrogen dioxide in the air indicates the need for a correct chemical conversion of the nonmeasurable species into the measurable species to obtain dependable results. The automatic colorimetric and chemiluminescent methods were compared to the manual colorimeter, and the electrochemical method was compared to chemiluminescence. Average, minimum, and maximum values are given for each comparison. All three methods are equally valid, in response linearity, sensitivity, and concentration limit, for the determination of nitric oxide, the measurable species. The determination of nitrogen dioxide, however, is strictly dependent on the efficiency of the conversion of the non-measurable species into the measurable form.

  9. 40 CFR 89.325 - Engine intake air temperature measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 89.325 Section 89.325 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air...

  10. 40 CFR 90.416 - Intake air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the...

  11. 40 CFR 90.309 - Engine intake air temperature measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 90.309 Section 90.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...

  12. 40 CFR 90.310 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a) Humidity...

  13. System for measuring of air concentration in air-steam mixture during the transients

    International Nuclear Information System (INIS)

    Gorbenko, Gennady A.; Gakal, Pavlo G.; Epifanov, Konstantin S.; Osokin, Gennady V.; Smirnov, Sergey V.

    2006-01-01

    Description of system for air concentration measuring in air-steam mixture during the transients is represented. Air concentration measuring is based on discrete sampling method. The measuring system consists of sampler, transport pipeline, distributor and six measuring vessels. From the sampler air-steam mixture comes to distributor through transport pipeline and fills consecutively the measuring vessels. The true air concentration in place of measurement was defined based on measured air concentration in samples taken from measuring vessels. For this purpose, the mathematical model of transients in measuring system was developed. Air concentration transient in air-steam mixture in place of measurement was described in mathematical model by air concentration time-dependent function. The function parameters were defined based on air concentration measured in samples taken from measuring vessels. Estimated error of air concentration identification was about 10%. Measuring system was used in experiments on EREC BKV-213 test facility intended for testing of VVER-440/V-213 reactor barbotage-vacuum system

  14. Development of measure methods of radon in indoor air

    International Nuclear Information System (INIS)

    Yaginuma, L.T.; Pela, C.A.; Navas, E.A.; Ghilardi, A.J.P.

    1992-01-01

    The development of some conventional measuring methods, aiming obtain an estimation of radon concentration in air, mainly in indoor air is described, including the charcoal absorption collector, Lucas cell and thermoluminescent dosemeters. (C.G.C)

  15. Air pollution assessment in the Slovak Republic in 2005. Measurement stations of air quality monitoring network

    International Nuclear Information System (INIS)

    Anon

    2006-05-01

    In this Appendix to the report 'Air pollution assessment in the Slovak Republic in 2005' the main characteristics of measurement stations of air quality monitoring network of the Slovak Republic are presented

  16. Air pollution assessment in the Slovak Republic in 2004. Measurement stations of air quality monitoring network

    International Nuclear Information System (INIS)

    Anon

    2005-07-01

    In this Appendix to the report 'Air pollution assessment in the Slovak Republic in 2004' the main characteristics of measurement stations of air quality monitoring network of the Slovak Republic are presented

  17. Multifunction Lidar for Air Data and Kinetic Air Hazard Measurement, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ophir proposes to develop a multifunction, low-cost lidar capable of accurately measuring kinetic air hazards, and air data, simultaneously. The innovation is...

  18. Effects of hyperbaric oxygen at 1.25 atmospheres absolute with normal air on macrophage number and infiltration during rat skeletal muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Naoto Fujita

    Full Text Available Use of mild hyperbaric oxygen less than 2 atmospheres absolute (2026.54 hPa with normal air is emerging as a common complementary treatment for severe muscle injury. Although hyperbaric oxygen at over 2 atmospheres absolute with 100% O2 promotes healing of skeletal muscle injury, it is not clear whether mild hyperbaric oxygen is equally effective. The purpose of the present study was to investigate the impact of hyperbaric oxygen at 1.25 atmospheres absolute (1266.59 hPa with normal air on muscle regeneration. The tibialis anterior muscle of male Wistar rats was injured by injection of bupivacaine hydrochloride, and rats were randomly assigned to a hyperbaric oxygen experimental group or to a non-hyperbaric oxygen control group. Immediately after the injection, rats were exposed to hyperbaric oxygen, and the treatment was continued for 28 days. The cross-sectional area of centrally nucleated muscle fibers was significantly larger in rats exposed to hyperbaric oxygen than in controls 5 and 7 days after injury. The number of CD68- or CD68- and CD206-positive cells was significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. Additionally, tumor necrosis factor-α and interleukin-10 mRNA expression levels were significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. The number of Pax7- and MyoD- or MyoD- and myogenin-positive nuclei per mm2 and the expression levels of these proteins were significantly higher in rats exposed to hyperbaric oxygen than in controls 5 days after injury. These results suggest that mild hyperbaric oxygen promotes skeletal muscle regeneration in the early phase after injury, possibly due to reduced hypoxic conditions leading to accelerated macrophage infiltration and phenotype transition. In conclusion, mild hyperbaric oxygen less than 2 atmospheres absolute with normal air is an appropriate support therapy for severe muscle injuries.

  19. Next-generation air measurement technologies | Science ...

    Science.gov (United States)

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology. This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology.

  20. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.

    2014-04-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  1. Applications of air ion measurement in environmental diagnostics

    International Nuclear Information System (INIS)

    Tammet, H.

    1996-01-01

    The present paper is dealing with the methods employing the measuring of naturally created air ions. The amount and mobility distribution of these ions offer hidden information about air pollution. On the other hand, the natural air ions are active in some environmental processes and they should be considered as an immediate environmental factor

  2. Measurements and prediction of inhaled air quality with personalized ventilation

    DEFF Research Database (Denmark)

    Cermak, Radim; Majer, M.; Melikov, Arsen Krikor

    2002-01-01

    the room air) at flow rates ranging from less than 5 L/s up to 23 L/s. The air quality assessment was based on temperature measurements of the inhaled air and on the portion of the personalized air inhaled. The percentage of dissatisfied with the air quality was predicted. The results suggest......This paper examines the performance of five different air terminal devices for personalized ventilation in relation to the quality of air inhaled by a breathing thermal manikin in a climate chamber. The personalized air was supplied either isothermally or non-isothermally (6 deg.C cooler than...... that regardless of the temperature combinations, personalized ventilation may decrease significantly the number of occupants dissatisfied with the air quality. Under non-isothermal conditions the percentage of dissatisfied may decrease up to 4 times....

  3. Measurement Methods to Determine Air Leakage Between Adjacent Zones

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dickerhoff, Darryl J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-09-01

    Air leakage between adjacent zones of a building can lead to indoor air quality and energy efficiency concerns, however there is no existing standard for measuring inter-zonal leakage. In this study, synthesized data and field measurements are analyzed in order to explore the uncertainty associated with different methods for collecting and analyzing fan pressurization measurements to calculate interzone leakage.

  4. Experiments of Accuracy Air Ion Field Measurement

    Czech Academy of Sciences Publication Activity Database

    Bartušek, Karel; Fiala, P.; Jirků, T.; Kadlecová, E.

    2007-01-01

    Roč. 3, č. 8 (2007), s. 1330-1333 ISSN 1931-7360 Institutional research plan: CEZ:AV0Z20650511 Keywords : air ion field * gerdien condenser * picoampermeter Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  5. Mobile source air toxics mitigation measures.

    Science.gov (United States)

    2013-10-01

    In accordance with the Federal Highway Administration (FHWA) Interim Guidance Update on Mobile Source Air Toxic Analysis in NEPA Documents (September 30, 2009), transportation projects subject to the National Environmental Policy Act (NEPA) mus...

  6. Uranium City radiation reduction program: further studies on remedial measures and radon infiltration routes for houses with block walls

    International Nuclear Information System (INIS)

    Leung, M.K.

    1980-01-01

    This report describes the results of tests of partial sealing of concrete block walls to prevent radon infiltration into houses in Uranium City, and gives the results of studies of radon migration through concrete block walls. Results of some laboratory tests on the effectiveness of concrete blocks as a radon barrier are included

  7. Hazardous air pollutant handbook: measurements, properties, and fate in ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, C.W. (ed.); Gordon, S.M.; Kelly, T.J.; Holdren, M.W.; Mukund, R. [Battelle, Columbus, OH (United States)

    2002-07-01

    Focussing on the 188 hazardous air pollutants (HAPs) identified in the Title III of the US Clean Air Act Amendments, this work reviews the methods used to identify, measure, and locate the presence of toxics in ambient air. After a classification and characterization of the HAPs, the current status of ambient measurement methods are surveyed and categorized according to applicable, likely, and potential methods. The results of studies of ambient air concentrations of the HAPs are presented. Methods used to study atmospheric transformations of toxic air pollutants are reviewed and the concept of atmospheric lifetimes of HAPs is discussed.

  8. Concentration of Radon Progeny in Air by Alpha Spectrometry Measurement

    International Nuclear Information System (INIS)

    Acena, M. L.; Crespo, M. T.

    1989-01-01

    The concentration of radon progeny in air has been determined by alpha spectrometry measurement of 214 Po and 318 Po. A known volume of air was passed through a filter, then the alpha activity was directly measured on this filter. (Author) 15 refs

  9. Lower cost air measurement technology – what is on the ...

    Science.gov (United States)

    This presentation is to the MARAMA 2014 annual monitoring meeting and is an invited talk to provide an overview on lower cost air measurement technology. This presentation is to the MARAMA 2014 annual monitoring meeting and is an invited talk to provide an overview on lower cost air measurement technology.

  10. Measurement of radon daughters in air samples by alpha spectroscopy

    International Nuclear Information System (INIS)

    Acena, M.L.; Crespo, M.T.

    1989-01-01

    The concentration of radon progeny in air has been determined by alpha spectrometry measurement of polonium 214 and polonium 218. A known volume of air was passed through a filter, then the alpha activity was directly measured on this filter (Author)

  11. Device for measuring mass of air. Einrichtung zur Luftmassenmessung

    Energy Technology Data Exchange (ETDEWEB)

    Sass, W

    1989-09-28

    In a device for measuring the mass of air, particularly for vehicles with internal combustion engines, with a measurement bridge, in one branch of which an air flow resistance, particularly a hot film sensor, which has air flowing round it, is connected in series with a measuring resistance and in another branch of which a compensation resistance measuring the air temperature is connected in series with a fixed resistor, where the bridge differential voltage is measured in the zero branch of the measuring bridge and the resulting signal is used to control a transistor valve situated in the bridge supply path of a bridge supply source with an emitter connected to the bridge via the transistor base for bridge compensation and where the voltage at the measurement resistance after bridge compensation is evaluated as a measure of the air flow, the invention proposes that the transistor valve should be made as an npn transistor blocking for negative voltage peaks in the bridge supply path. This ensures that for netgative voltage peaks in the supply line, the transistor valve closes temporarily and overheating of the measurement bridge is prevented. Such overheating would lead to measurement of too great air mass flow and therefore to a dangerously too rich fuel/air mixture, for example (instead the negative voltage peaks give a safe temporary lean mixture).

  12. A gridded air counter for measuring exoelectrons

    International Nuclear Information System (INIS)

    Nagase, Makoto; Chiba, Yoshiya; Kirihata, Humiaki.

    1980-01-01

    A gridded air counter with a quenching circuit is described, which serves to detect low-energy electrons such as thermionic electrons, photoelectrons and exoelectrons emitted into the atmospheric air. The air counter consists of a loop-shaped anode and two grids provided for quenching the gas discharge and for protecting the electron emitter from the positive ion bombardment. The quenching circuit with a high input sensitivity of 5 mV detects the initiation gas discharge caused by an incident electron and immediately supplies a rectangular wave pulse of 300 V in amplitude and of more than 3 msec in width to the quenching grid near the anode. Simultaneously, the voltage of the suppressor grid is brought down and kept at -30 V against the earthed sample for the same period of time. Performance of the gridded air counter was examined by use of photoelectrons emitted from an abraded aluminum plate. The quenching action was successfully accomplished in the anode voltage range from 3.65 to 3.95 kV. The photoelectrons emitted into the atmosphere could be counted stably by use of this counter. (author)

  13. Crowdsourcing urban air temperature measurements using smartphones

    Science.gov (United States)

    Balcerak, Ernie

    2013-10-01

    Crowdsourced data from cell phone battery temperature sensors could be used to contribute to improved real-time, high-resolution air temperature estimates in urban areas, a new study shows. Temperature observations in cities are in some cases currently limited to a few weather stations, but there are millions of smartphone users in many cities. The batteries in cell phones have temperature sensors to avoid damage to the phone.

  14. Measure Guideline. Air Sealing Attics in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Otis, Casey [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Maxwell, Sean [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  15. The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Wargocki, Pawel; Skorek-Osikowska, A.

    2010-01-01

    The effect on indoor air quality of an air purifier based on photocatalytic oxidation (PCO) was determined by different measuring techniques: sensory assessments of air quality made by human subjects, Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and chromatographic methods (Gas......, additional measurements were made with no pollution sources present in the office. All conditions were tested with the photocatalytic air purifier turned on and off. The results show that operation of the air purifier in the presence of pollutants emitted by building materials and furniture improves indoor...... Chromatography/Mass Spectrometry and High-Pressure Liquid Chromatography with UV detection). The experiment was conducted in a simulated office, ventilated with 0.6 h(-1), 2.5 h(-1) and 6 h(-1), in the presence of additional pollution sources (carpet, chipboard and linoleum). At the lowest air change rate...

  16. Confounding and exposure measurement error in air pollution epidemiology

    NARCIS (Netherlands)

    Sheppard, L.; Burnett, R.T.; Szpiro, A.A.; Kim, J.Y.; Jerrett, M.; Pope, C.; Brunekreef, B.|info:eu-repo/dai/nl/067548180

    2012-01-01

    Studies in air pollution epidemiology may suffer from some specific forms of confounding and exposure measurement error. This contribution discusses these, mostly in the framework of cohort studies. Evaluation of potential confounding is critical in studies of the health effects of air pollution.

  17. Measurement of the refraction Index of air using Interference refractometers

    NARCIS (Netherlands)

    Schellekens, P.H.J.; Wilkening, G.; Reinboth, F.; Downs, M.J.; Birch, K.P.; Spronck, J.

    1986-01-01

    Comparisons have been carried out between interference refractometers built in different countries. Individual measurements of the refractive index of air have been made using air from the same sample volume. Direct comparison of refractometers was realized by coupling the instruments to the same

  18. Measurement of oxygen transfer from air into organic solvents

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Mayr, Torsten; Hobisch, Mathias

    2016-01-01

    biological reactions require the supply of oxygen, most normally from air. However, reliable on-line measurements of oxygen concentration in organic solvents (and hence oxygen transfer rates from air to the solvent) has to date proven impossible due limitations in the current analytical methods. Results...... applications). Subsequently, we measured the oxygen transfer rates from air into these organic solvents. Conclusion The measurement of oxygen transfer rates from air into organic solvents using the dynamic method was established using the solvent resistant optical sensor. The feasibility of online oxygen...... For the first time, we demonstrate on-line oxygen measurements in non-aqueous media using a novel optical sensor. The sensor was used to measure oxygen concentration in various organic solvents including toluene, THF, isooctane, DMF, heptane and hexane (which have all been shown suitable for several biological...

  19. Measurement of radon concentration in air employing Lucas chamber

    International Nuclear Information System (INIS)

    Machaj, B.

    1997-01-01

    The results of investigations aimed to determine the main features of radon concentration gauge in air, employing 0.17 L Lucas chamber, and air sample forced by an air pump are presented. For two hour sampling and measuring cycle time the dynamic error in the worst case (first read out) equals 5 % relative to the step jump of radon concentration. This is due to the increase of activity of the decay products in the chamber. It was observed that the short lived radon decay products (Po-218, Pb-214, Bi-214) are depositing on the walls of the chamber and they are not removed by flushing the chamber with air. (author)

  20. Air Force Maintenance Technician Performance Measurement.

    Science.gov (United States)

    1979-12-28

    aMbr) ATTACHED DD , . - , .147-3 ",, EDITIoN o Fo NOV 66 IS O SOLETE 8,C) 9iCLAS S I r! ABSTRA CT Title: AIR FORCE MAINTENANCE T-,-NIIAN PERFCRMANCZ M...directions have 43 been edited to c’-nf:rm to Uhrbrock’s (1961) rules for a-zraisai forms, i.e., thoup-hts are expressed clearly and si-z!y, staze- ments...Yillarl, -Iheed 19 ,4., F. 1-ut .h ..s, ar .L . ’I’t-.man- -...." , e 3reakthrough for ?erfcrmance .- aisa !." 3usiness Horizons, 1076, 1, 66-73. Yiner, J

  1. Radiation measurement of civil air flight

    International Nuclear Information System (INIS)

    Winter, M.

    1999-01-01

    In order to aquire knowledge of the radiation exposure of civil aircrew members in common flight altitudes, it was necessary to develop a practicable measurement system. Radiation exposure was hereby estimated by using the ACREM-System, which is patented by the Austrian Research Centres Seibersdorf (OEFZS). Total Equivalent Dose could be estimated in a simple way by combining a measured component of the radiation field in flight altitudes and the results of simulation with LUIN 94 particle transport code (Keran O'Brian). To verify the results of the measurement system, a tissue equivalent proportional counter (TEPC) was used. Because of the difficult measurement conditions in cargo airplanes, special attention had to be taken to make the measurement equipment easy to use and transport. Special software has been developed to automate the measurement and the evaluation of the large amount of collected data. Measurements in standard calibration photon fields for the characterization of the equipment could be performed at the Primary Dosimetry Laboratory for Austria at the Austrian Research Centre (OEFZS) in Seibersdorf. Additional measurements were performed at Physikalisch Technische Bundesanstalt Braunschweig (PTB, Germany) and Paul Scherer Institute (PSI, Switzerland) to determine the reponse of the instruments to high energy photon and standard neutron fields. (author)

  2. Air Temperature Measurements Using Dantec Draught Probes

    DEFF Research Database (Denmark)

    Kristensen, Martin Heine; Jensen, Jakob Søland; Jensen, Rasmus Lund

    This technical report is written based on investigations of Dantec measurement equipment used in a master thesis project by the authors in the period September 2014 to June 2015 (Kristensen & Jensen, 2015).......This technical report is written based on investigations of Dantec measurement equipment used in a master thesis project by the authors in the period September 2014 to June 2015 (Kristensen & Jensen, 2015)....

  3. Measurement of temperature and concentration influence on the dispersion of fused silica glass photonic crystal fiber infiltrated with water-ethanol mixture

    Science.gov (United States)

    Van, Hieu Le; Buczynski, Ryszard; Long, Van Cao; Trippenbach, Marek; Borzycki, Krzysztof; Manh, An Nguyen; Kasztelanic, Rafal

    2018-01-01

    We present experimental and simulation results of the zero-dispersion shift in photonics crystal fibers infiltrated with water-ethanol mixture. The fiber based on the fused silica glass with a hexagonal lattice consists of seven rings of air-holes filled by liquid. We show that it is possible to shift the zero-dispersion wavelength by 35 ps/nm/km when changing the temperature by 60 °C, and by 42 ps/nm/km when changing the concentration of ethanol from 0 to 100%. The results also show that for the optical fiber filed with pure ethanol the flattened part of the dispersion shifts from anomalous to the normal regime at temperatures below -70 °C.

  4. Development of alpha radioactivity measurement using ionized air transportation technology

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Naito, Susumu; Sano, Akira; Sato, Mitsuyoshi; Fukumoto, Masahiko; Miyamoto, Yasuaki; Nanbu, Kenichi; Takahashi, Hiroyuki

    2005-01-01

    Alpha radioactivity Measurement using ionized Air Transportation technology (AMAT) is developed to measure alpha contaminated wastes with large and complex surfaces. An outline of this project was described in this text. A major problem of AMAT technology is that the theoretical relation between alpha radioactivity and observed ion current is unclear because of the complicated behavior of ionized air molecules. An ion current prediction model covering from ionization of air molecules to ion detection was developed based on atmospheric electrodynamics. This model was described in this text, too. (author)

  5. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2009-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6 - 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  6. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2008-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6- 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  7. Real time measurement of air radioactivity

    International Nuclear Information System (INIS)

    Galeriu, D.; Craciunescu, T.; Teles, S.

    1998-01-01

    A Local Meteorological and Radiological Monitoring System was developed in our institute for several purposes: local monitoring, extending our experience in other location such as Cernavoda NPP and research. This system has meteorological sensors for wind speed and direction, air temperature, solar radiation, relative humidity, rainfall, dose ratemeter (Geiger-Muller counter - TIEX), Alpha-Beta Activity-in-Air Monitor (AB96), Iodine Monitor and Eberline Intelligent Ionization Chamber (FHT 6010). All data are collected by a programmable interface Delta-T Logger that is controlled by a software (ODAS - 'On-line Data Acquisition Software'). ODAS was developed in IFIN-HH. It has the capability to acquire, calculate and transmit real meteorological and radiological data through local network. The developed software controls the interface, the flux of input data through the serial port RS232 and after some processing (system, configuration, input data, connection to the network checking, etc) it creates data files. These files are transmitted on-line to our workstation or in any other place connected to Internet. Data can be collected from the logger at any time during logging. There is no need to stop logging. Data output from the logger can be controlled either from the logger's keypad or from other user terminals. ODAS is operated as follows: - First, the last written file and the date-time of acquired readings are checked. For establishing communication with logger a RS232 level signal must be sent to it. The logger wakes if asleep and sends back RDY signal. Powering the logger may take up to 100 ms to establish a correct RS232 level. Noise on the output lines occurs during this period and communication software may need to take into account such spurious signals. A command must be sent to the logger within 2 s to confirm that the last signal received is real and not spurious. Otherwise, the logger interprets the signal as noise and sleeps. The software sends further

  8. Rural southeast Texas air quality measurements during the 2006 Texas Air Quality Study.

    Science.gov (United States)

    Schade, Gunnar W; Khan, Siraj; Park, Changhyoun; Boedeker, Ian

    2011-10-01

    The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.

  9. Femtosecond frequency comb based distance measurement in air.

    Science.gov (United States)

    Balling, Petr; Kren, Petr; Masika, Pavel; van den Berg, S A

    2009-05-25

    Interferometric measurement of distance using a femtosecond frequency comb is demonstrated and compared with a counting interferometer displacement measurement. A numerical model of pulse propagation in air is developed and the results are compared with experimental data for short distances. The relative agreement for distance measurement in known laboratory conditions is better than 10(-7). According to the model, similar precision seems feasible even for long-distance measurement in air if conditions are sufficiently known. It is demonstrated that the relative width of the interferogram envelope even decreases with the measured length, and a fringe contrast higher than 90% could be obtained for kilometer distances in air, if optimal spectral width for that length and wavelength is used. The possibility of comb radiation delivery to the interferometer by an optical fiber is shown by model and experiment, which is important from a practical point of view.

  10. Basement radon entry and stack driven moisture infiltration reduced by active soil depressurization

    Science.gov (United States)

    C.R. Boardman; Samuel V. Glass

    2015-01-01

    This case study presents measurements of radon and moisture infiltration from soil gases into the basement of an unoccupied research house in Madison, Wisconsin, over two full years. The basement floor and exterior walls were constructed with preservative-treated lumber and plywood. In addition to continuous radon monitoring, measurements included building air...

  11. Measurement of the concentration of radon in the air

    International Nuclear Information System (INIS)

    Aten, J.B.Th.; Bierhuizen, H.W.J.; Hoek, L.P. van; Ros, D.; Weber, J.

    1975-01-01

    A simple transportable air monitoring apparatus was developed for controlling the radon contamination of air in laboratory rooms. It is not highly accurate but is sufficient to register the order of magnitude of the radon concentration. Air is pumped through a filter for one or two hours and an alpha decay curve of the dust on the filter is determined. Scintillation counting forty minutes after sampling indicates the radon activity. The calibration method of measuring the equilibrium of daughter product concentrations is discussed extensively

  12. Measurement results obtained from air quality monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Turzanski, P.K.; Beres, R. [Provincial Inspection of Environmental Protection, Cracow (Poland)

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracow area could be more intelligible.

  13. A mixing method for traceable air velocity measurements

    International Nuclear Information System (INIS)

    Sillanpää, S; Heinonen, M

    2008-01-01

    A novel and quite simple method to establish a traceability link between air velocity and the national standards of mass and time is presented in this paper. The method is based on the humidification of flowing air before the blower of a wind tunnel with a known mass flow of water. Then air velocity can be calculated as a function of humidification water flow. The method is compared against a Pitot-tube-based velocity measurement in a wind tunnel at the MIKES. The results of these two different methods agreed well, with a maximum difference of 0.7%

  14. Air encapsulation. I. Measurement in a field soil

    International Nuclear Information System (INIS)

    Fayer, M.J.; Hillel, D.

    1986-01-01

    Encapsulated air is an important component of shallow water table fluctuations. Their objective was to measure the quantity and persistence of encapsulated air in a field setting. Using sprinkling rates of either 3.5 x 10 -6 or 3.8 x 10 -5 m s -1 , they brought the water table in a field soil from a depth of 1.5 m to the surface on several occasions. Moisture contents during and after sprinkling were monitored with a neutron probe. Twice following sprinkling, the water table was maintained at the surface for more than 20 d, during which time they continued to monitor moisture contents. With the water table at the surface, differences between the porosity and the measured moisture content were attributed to encapsulated air. Encapsulated air contents ranged from 1.1 to 6.3% of the bulk soil volume, depending on the rate of sprinkling, soil depth, and initial soil moisture content. During ponding, encapsulated air persisted at the 0.3-m depth for up to 28 d. The results indicate that encapsulated air is measurable in a field situation and that its quantity and persistence should be considered in analyzing the results of similar field experiments. 16 references

  15. Aspirated capacitor measurements of air conductivity and ion mobility spectra

    International Nuclear Information System (INIS)

    Aplin, K.L.

    2005-01-01

    Measurements of ions in atmospheric air are used to investigate atmospheric electricity and particulate pollution. Commonly studied ion parameters are (1) air conductivity, related to the total ion number concentration, and (2) the ion mobility spectrum, which varies with atmospheric composition. The physical principles of air ion instrumentation are long established. A recent development is the computerized aspirated capacitor, which measures ions from (a) the current of charged particles at a sensing electrode, and (b) the rate of charge exchange with an electrode at a known initial potential, relaxing to a lower potential. As the voltage decays, only ions of higher and higher mobility are collected by the central electrode and contribute to the further decay of the voltage. This enables extension of the classical theory to calculate ion mobility spectra by inverting voltage decay time series. In indoor air, ion mobility spectra determined from both the voltage decay inversion, and an established voltage switching technique, were compared and shown to be of similar shape. Air conductivities calculated by integration were: 5.3±2.5 and 2.7±1.1 fSm -1 , respectively, with conductivity determined to be 3 fSm -1 by direct measurement at a constant voltage. Applications of the relaxation potential inversion method include air ion mobility spectrum retrieval from historical data, and computation of ion mobility spectra in planetary atmospheres

  16. The Aeroflex: A Bicycle for Mobile Air Quality Measurements

    Science.gov (United States)

    Elen, Bart; Peters, Jan; Van Poppel, Martine; Bleux, Nico; Theunis, Jan; Reggente, Matteo; Standaert, Arnout

    2013-01-01

    Fixed air quality stations have limitations when used to assess people's real life exposure to air pollutants. Their spatial coverage is too limited to capture the spatial variability in, e.g., an urban or industrial environment. Complementary mobile air quality measurements can be used as an additional tool to fill this void. In this publication we present the Aeroflex, a bicycle for mobile air quality monitoring. The Aeroflex is equipped with compact air quality measurement devices to monitor ultrafine particle number counts, particulate mass and black carbon concentrations at a high resolution (up to 1 second). Each measurement is automatically linked to its geographical location and time of acquisition using GPS and Internet time. Furthermore, the Aeroflex is equipped with automated data transmission, data pre-processing and data visualization. The Aeroflex is designed with adaptability, reliability and user friendliness in mind. Over the past years, the Aeroflex has been successfully used for high resolution air quality mapping, exposure assessment and hot spot identification. PMID:23262484

  17. Femtosecond frequency comb based distance measurement in air

    NARCIS (Netherlands)

    Balling, P.; Kren, P.; Masika, P.; van den Berg, S.A.

    2009-01-01

    Interferometric measurement of distance using a femtosecond frequency comb is demonstrated and compared with a counting interferometer displacement measurement. A numerical model of pulse propagation in air is developed and the results are compared with experimental data for short distances. The

  18. Confounding and exposure measurement error in air pollution epidemiology.

    Science.gov (United States)

    Sheppard, Lianne; Burnett, Richard T; Szpiro, Adam A; Kim, Sun-Young; Jerrett, Michael; Pope, C Arden; Brunekreef, Bert

    2012-06-01

    Studies in air pollution epidemiology may suffer from some specific forms of confounding and exposure measurement error. This contribution discusses these, mostly in the framework of cohort studies. Evaluation of potential confounding is critical in studies of the health effects of air pollution. The association between long-term exposure to ambient air pollution and mortality has been investigated using cohort studies in which subjects are followed over time with respect to their vital status. In such studies, control for individual-level confounders such as smoking is important, as is control for area-level confounders such as neighborhood socio-economic status. In addition, there may be spatial dependencies in the survival data that need to be addressed. These issues are illustrated using the American Cancer Society Cancer Prevention II cohort. Exposure measurement error is a challenge in epidemiology because inference about health effects can be incorrect when the measured or predicted exposure used in the analysis is different from the underlying true exposure. Air pollution epidemiology rarely if ever uses personal measurements of exposure for reasons of cost and feasibility. Exposure measurement error in air pollution epidemiology comes in various dominant forms, which are different for time-series and cohort studies. The challenges are reviewed and a number of suggested solutions are discussed for both study domains.

  19. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  20. Durability and Performance of High Performance Infiltration Cathodes

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Hjalmarsson, Per

    2013-01-01

    The performance and durability of solid oxide fuel cell (SOFC) cathodes consisting of a porous Ce0.9Gd0.1O1.95 (CGO) infiltrated with nitrates corresponding to the nominal compositions La0.6Sr0.4Co1.05O3-δ (LSC), LaCoO3-δ (LC), and Co3O4 are discussed. At 600°C, the polarization resistance, Rp......, varied as: LSC (0.062Ωcm2)cathode was found to depend on the infiltrate firing temperature and is suggested to originate...... of the infiltrate but also from a better surface exchange property. A 450h test of an LSC-infiltrated CGO cathode showed an Rp with final degradation rate of only 11mΩcm2kh-1. An SOFC with an LSC-infiltrated CGO cathode tested for 1,500h at 700°C and 0.5Acm-2 (60% fuel, 20% air utilization) revealed no measurable...

  1. Traceable measurements of the activity concentration in air

    CERN Document Server

    Paul, A; Forkel-Wirth, Doris; Müller, A; Marcos, A

    2002-01-01

    The nuclear reactions induced by high energetic protons in heavy targets such as UC/sub 2/ and ThC cause a particular, complex radiation protection task at facilities like ISOLDE: the measurement of a mixture of different isotopes of the radioactive noble gas radon and the radon progenies in air. The knowledge of their respective activity concentration is fundamental for exposure assessments. Due to the complex mixture of activity concentrations in air, its precise determination is quite difficult. Therefore, a new procedure for taking reference samples was developed and implemented for the traceable measurement of the activity concentration of radioactive ions (e.g., radon progenies) in air. This technique is combined by measuring alpha -particles with a multi-wire ionization chamber for the parallel on-line determination of the activity concentration of different radon isotopes. (10 refs).

  2. Measurement of 222Rn in soil concentrations in interstitial air

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; Carretero, J.; Liger, E.

    1996-01-01

    Measurements of 222 Rn soil concentrations were made by inserting stainless-steel sampling tubes into the soil. The samples of the soil interstitial air were taken in to pre-evacuated 1 L glass flasks. The glass flasks are cylindrical and coated with a film of ZnS(Ag). 222 Rn was measured by counting the alpha particles emitted by 222 Rn and its daughter products, 218 Po and 214 Bi, when they reached radioactive equilibrium. Measurements of 222 Rn gas concentrations in the soil air interstices by the method at different depths were used to calculate the diffusion coefficient of the 222 Rn in the soil air. This study has been carried out for diverse soils. (Author)

  3. Traceable measurements of the activity concentration in air

    International Nuclear Information System (INIS)

    Paul, Annette; Honig, Anja; Forkel-Wirth, Doris; Mueller, Andre; Marcos, Alicia

    2002-01-01

    The nuclear reactions induced by high energetic protons in heavy targets such as UC 2 and ThC cause a particular, complex radiation protection task at facilities like ISOLDE: the measurement of a mixture of different isotopes of the radioactive noble gas radon and the radon progenies in air. The knowledge of their respective activity concentration is fundamental for exposure assessments. Due to the complex mixture of activity concentrations in air, its precise determination is quite difficult. Therefore, a new procedure for taking reference samples was developed and implemented for the traceable measurement of the activity concentration of radioactive ions (e.g., radon progenies) in air. This technique is combined by measuring α-particles with a multi-wire ionization chamber for the parallel on-line determination of the activity concentration of different radon isotopes

  4. Radon in indoor air. Health risk, measurement methods and remedial measures

    International Nuclear Information System (INIS)

    Strand, T.

    1996-02-01

    Radon in indoor air is the main source of ionizing radiation in Norway. The booklet contains a presentation of radon sources, measurement methods, indoor radon concentrations, action levels, health risk and remedial measures

  5. The air quality in Norwegian cities. Development - reasons - measures - future

    International Nuclear Information System (INIS)

    Larssen, Steinar; Hagen, Leif Otto

    1998-12-01

    There is an increasing focus on the air quality in Norwegian cities and townships. The air quality depends on several factors and the connections are complex. The aim of this report is to present a short and simple survey of this complex field. The report consists of three parts: Part 1 is a survey of the development until today. Measurements of SO 2 and soot were started in the 1950's. Systematic determinations of NO x and NO 2 , CO and particles, ozone and benzene was started during the last three decades. The population exposure to air pollutants and their main sources are described as well as the air quality in Norwegian cities compared to other cities in Europe. In part 2 developments within transport, a sector necessary for understanding the development, are described. Part 3 is a survey of forecasting the air quality in Norway, pollution warnings and surveillance. The forecasts are based on assumed developments in important sectors such as transport, energy consumption for heating and industrial purposes and the effects of demands for fuel and vehicles. Effect analyses of further measures which may be useful for reaching the national goals for the air quality are carried out. A survey of the most important limiting values and criteria as well as technical terms is presented in the report and in the appendix. The report is commissioned by the Norwegian Petroleum Institute (Norsk Petroleumsinstitutt) and the Norwegian Road Federation (Opplysningsraadet for Veitrafikken)

  6. Measurements of environmental policy for air pollution abatement

    International Nuclear Information System (INIS)

    Friedrich, R.

    1993-01-01

    The first part of the study goes into the determination of efficient strategies for the reduction of air pollutants. The developed method is not only derived theoretically but is tested with the concrete example of emissions sources of a German state. The second part goes into the question what the government can do in order to attain that air pollution abatement measures recognized as being efficient will be put into practice. As market economy mechanisms have advantages over central state planning in the allocation of economic resources the question arises if not also for environmental protection market economy tools may contribute to an improvement of the efficiency of air pollution abatement. Therefore the suitability of different tools of environmental policy for the realization of efficient air pollution abatement is investigated and evaluated. This is again not done abstractly but with existing emission sources. (orig./HSCH). 32 figs., 12 tabs [de

  7. Measuring Outdoor Air Intake Rates into Existing Building

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2009-04-16

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  8. In want of measurements of air pollution from wood smoke

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf; Czeskleba-Dupont, Solveig

    2007-01-01

    , handy measuring instruments at their disposal, so that the inconvenience from smoke could be analytically documented. The contribution details arguments on serious wood smoke pollution, health problems and  regulations  needed.  Local measurements should be promoted  regarding air pollution from...... of ventilation and fine cracks in the outer walls. In the night people can not air the bedrooms without getting the rooms filled with wood smoke. Until now the regulations of wood smoke have been ineffective. - It would be a great step forward, if local authorities and smoke affected people could have effective...

  9. Incorporation monitoring by measurements of activity concentrations in air

    International Nuclear Information System (INIS)

    Breukelmann, G.; Dalheimer, A.; Dilger, H.; Henrichs, K.

    1997-01-01

    The incorporation monitoring of workers handling actinides is in many cases not possible by individual methods: The sensitivity of bioassay of methods (in vivo, in vitro) is not sufficient to detect amounts as required by the low annual limits of intake. Similar difficulties may occur with the use of radionuclides with very short physical half-lives. In these cases, the measuring of activity concentrations in the air is the only way to monitor the workers and to meet legal requirements. The essential problem connected with this approach is to make sure, that the air sample analyzed represents the average air inhaled actually. Correspondingly, the new system regulating the incorporation monitoring in Germany requires additional measures to ensure this representatively. (author)

  10. Disruptive Innovation in Air Measurement Technology: Reality or Hype?

    Science.gov (United States)

    This presentation is a big picture overview on the changing state of air measurement technology in the world, with a focus on the introduction of low-cost sensors into the market place. The presentation discusses how these new technologies may be a case study in disruptive innov...

  11. Objective Measure of Nasal Air Emission Using Nasal Accelerometry

    Science.gov (United States)

    Cler, Meredith J.; Lien, Yu-An, S.; Braden, Maia N.; Mittleman, Talia; Downing, Kerri; Stepp, Cara, E.

    2016-01-01

    Purpose: This article describes the development and initial validation of an objective measure of nasal air emission (NAE) using nasal accelerometry. Method: Nasal acceleration and nasal airflow signals were simultaneously recorded while an expert speech language pathologist modeled NAEs at a variety of severity levels. In addition, microphone and…

  12. In-situ measurements in Vesivehmaa air field - STUK team

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, M.; Honkamaa, T.; Niskala, P. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1997-12-31

    Nineteen in-situ gamma-ray spectrometric measurements were performed in Vesivehmaa air field on 17th August 1995. The results for {sup 137}Cs and natural radionuclides are in good agreement with the results from soil sampling and laboratory analyses. (au).

  13. Three phase voltage measurements with simple open air sensors

    NARCIS (Netherlands)

    Heesch, van E.J.M.; Caspers, R.; Gulickx, P.F.M.; Jacobs, G.A.P.; Kersten, W.F.J.; Laan, van der P.C.T.

    1991-01-01

    A low cost, easy to install high-voltage measuring system is described for open air substations and overhead lines. Based on the Differentiating/Integrating (D/I) principle, three free-standing capacitive pickup electrodes are used to sense the three phase to ground voltages. Apart from the

  14. In-situ measurements in Vesivehmaa air field - STUK team

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, M; Honkamaa, T; Niskala, P [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1998-12-31

    Nineteen in-situ gamma-ray spectrometric measurements were performed in Vesivehmaa air field on 17th August 1995. The results for {sup 137}Cs and natural radionuclides are in good agreement with the results from soil sampling and laboratory analyses. (au).

  15. Localization of groundwater infiltration in the combined sewers of Brussels by stable isotopes measurements (δ18O, δD) by Cavity Ring Down Spectroscopy.

    Science.gov (United States)

    De Bondt, Kevin; Claeys, Philippe

    2014-05-01

    In the last 20 years research has been conducted to quantify the infiltration of groundwater into the sewers. This groundwater, called parasitic water, increases the volume of waste-water to be treated and consequently the cost of this treatment. Moreover, in the case of combined sewer systems, the parasitic water also limits the sewer capacity and indirectly increases the risks of combined sewer overflows and floods. The infiltration of groundwater occurs trough cracks, sewer collapses and from direct connections with old springs. Different methods quantify the intrusion of parasitic water. Among these, the use of the stable isotopes of water (δ18O & δD) shows good result in catchments or cities close to Mountainous regions (example from Lyon, Zurich), where isotopic signals vary significantly because of continental and altitude effects. However many cities, such as Brussels, are located in more oceanic settings and theoretically offer less potential for the application of the stable isotopes method. In the case of Brussels, river-water from the Meuse is used to produce domestic-water. The catchment of this river extends into the Ardennes, which are affected by slightly different climatic conditions. δ18O & δD analyzes of groundwater from the main aquifer (Ledo-Paniselian-Brusselian) and domestic-water from the Callois reservoir fed by the Meuse River show sufficient isotopic differences in the south of Brussels, but only during the summer. The discrimination potential is better with δD than with δ18O. The improvement of δD measurements (precision, costs,...) brought by Cavity Ring Down Spectroscopy largely contributes to the potential of using stable isotopes method to trace water in Brussels. The first campaigns in the sewers also show a little enrichment (in heavy isotopes) of the waste-water in comparison with the reservoir waters and tap waters. This increases the potential of the method but constrains the sampling to pure waste-water in sewer segments

  16. Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate--The effects of street sweeping, vacuum cleaning, high pressure washing, and milling.

    Science.gov (United States)

    Winston, Ryan J; Al-Rubaei, Ahmed M; Blecken, Godecke T; Viklander, Maria; Hunt, William F

    2016-03-15

    The surface infiltration rates (SIR) of permeable pavements decline with time as sediment and debris clog pore spaces. Effective maintenance techniques are needed to ensure the hydraulic functionality and water quality benefits of this stormwater control. Eight different small-scale and full-scale maintenance techniques aimed at recovering pavement permeability were evaluated at ten different permeable pavement sites in the USA and Sweden. Maintenance techniques included manual removal of the upper 2 cm of fill material, mechanical street sweeping, regenerative-air street sweeping, vacuum street sweeping, hand-held vacuuming, high pressure washing, and milling of porous asphalt. The removal of the upper 2 cm of clogging material did not significantly improve the SIR of concrete grid paves (CGP) and permeable interlocking concrete pavers (PICP) due to the inclusion of fines in the joint and bedding stone during construction, suggesting routine maintenance cannot overcome improper construction. For porous asphalt maintenance, industrial hand-held vacuum cleaning, pressure washing, and milling were increasingly successful at recovering the SIR. Milling to a depth of 2.5 cm nearly restored the SIR for a 21-year old porous asphalt pavement to like-new conditions. For PICP, street sweepers employing suction were shown to be preferable to mechanical sweepers; additionally, maintenance efforts may become more intensive over time to maintain a threshold SIR, as maintenance was not 100% effective at removing clogging material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Optimisation of key performance measures in air cargo demand management

    OpenAIRE

    Alexander May; Adrian Anslow; Udechukwu Ojiako; Yue Wu; Alasdair Marshall; Maxwell Chipulu

    2014-01-01

    This article sought to facilitate the optimisation of key performance measures utilised for demand management in air cargo operations. The focus was on the Revenue Management team at Virgin Atlantic Cargo and a fuzzy group decision-making method was used. Utilising intelligent fuzzy multi-criteria methods, the authors generated a ranking order of ten key outcome-based performance indicators for Virgin Atlantic air cargo Revenue Management. The result of this industry-driven study showed that ...

  18. 1991 measurement report. Air pollution monitoring in Schleswig-Holstein

    International Nuclear Information System (INIS)

    1992-01-01

    This article provides a report of the immission situation for 1991 in Schleswig-Holstein on the basis of the continuously processing measuring stations of the Air Hygienic Monitoring Schleswig-Holstein and the special measuring programs at selected sites. The measuring results of the Air Hygienic Monitoring determined for Schleswig-Holstein in 1991 can be summarized as follows: - The basic load of air by pollutants such as sulphur dioxide (SO 2 ), nitrogen monoxide (NO), nitrogen dioxide (NO 2 ) and airborne particles in relatively small in the entires region of the nation; Schleswig-Holstein is, therefore, continues to be ranked as one of the regions in the Federal Republic of Germany least burden to air contaminates. - A slight increase compared to the previous year could be determined for the components of sulphur dioxide and airborne particles. - The limit values defined by the European Community (EG) were adhered to at the time of the report; the admittance values for SO 2 and NO 2 were, however, exceeded. (orig./KW) [de

  19. Measurements of air entrainment by vertical plunging liquid jets

    Science.gov (United States)

    El Hammoumi, M.; Achard, J. L.; Davoust, L.

    2002-06-01

    This paper addresses the issue of the air-entrainment process by a vertical plunging liquid jet. A non-dimensional physical analysis, inspired by the literature on the stability of free jets submitted to an aerodynamic interaction, was developed and yielded two correlation equations for the laminar and the turbulent plunging jets. These correlation equations allow the volumetric flow rate of the air carryunder represented by the Weber number of entrainment We n to be predicted. The plunging jets under consideration issued from circular tubes long enough to achieve a fully developed flow at the outlet. A sensitive technique based on a rising soap meniscus was developed to measure directly the volumetric flow rate of the air carryunder. Our data are compared with other experimental data available in the literature; they also stand as a possible database for future theoretical modelling.

  20. Measurements of air entrainment by vertical plunging liquid jets

    Energy Technology Data Exchange (ETDEWEB)

    El Hammoumi, M. [Faculte des Sciences et Techniques, Departement de Physique, Laboratoire de Mecanique Appliquee, Fes (Morocco); Achard, J.L.; Davoust, L. [Laboratoire des Ecoulements Geophysiques et Industriels (LEGI), Grenoble (France)

    2002-06-01

    This paper addresses the issue of the air-entrainment process by a vertical plunging liquid jet. A non-dimensional physical analysis, inspired by the literature on the stability of free jets submitted to an aerodynamic interaction, was developed and yielded two correlation equations for the laminar and the turbulent plunging jets. These correlation equations allow the volumetric flow rate of the air carryunder represented by the Weber number of entrainment We{sub n} to be predicted. The plunging jets under consideration issued from circular tubes long enough to achieve a fully developed flow at the outlet. A sensitive technique based on a rising soap meniscus was developed to measure directly the volumetric flow rate of the air carryunder. Our data are compared with other experimental data available in the literature; they also stand as a possible database for future theoretical modelling. (orig.)

  1. Method and device for measuring the smoke concentration in air

    International Nuclear Information System (INIS)

    Rennemo, B.

    1994-01-01

    The patent deals with a method and a device for measuring the smoke concentration in air. In a smoke chamber are located two electrodes, connected to a voltage source for forming a circuit in which a DC current flows. A radioactive radiation source to ionize the air molecules is located in the vicinity of the smoke chamber, so that the number of ionized air molecules which are formed is dependent upon the radiation intensity of the ion source and the concentration of smoke particles in the smoke chamber. The charging voltage will further imply that a cloud of high ion concentration is built up close to the surface of the electrodes. The ion cloud will be discharged capacitively upon a plurality of short voltages pulses applied to the electrodes to thereby result in current pulses substantially greater than the DC current flowing through the chamber. 8 figs

  2. Intercomparison of different instruments for measuring radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, Michikuni; Iida, Takao

    1990-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap method, a flow-type ionization chamber (pulse-counting method), a two-filter method, an electrostatic collection method and a passive integration radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq·m -3 (in outdoor air) to 110 Bq·m -3 (in indoor air). The results obtained by these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling method was about 52% of radon concentration. (author)

  3. Intercomparison of different instruments that measure radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, M.; Iida, T.; Ikebe, Y.

    1987-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap technique, a flow-type ionization chamber (pulse-counting technique), a two-filter method, an electrostatic collection method and a passive integrating radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq/m/sup 3/ (in outdoor air) to 110 Bq/m/sup 3/ (in indoor air). The results obtained from these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling technique was about 52% of radon concentrations

  4. Measurement of air pollutant emissions from Lome, Cotonou and Accra

    Science.gov (United States)

    Lee, James; Vaughan, Adam; Nelson, Bethany; Young, Stuart; Evans, Mathew; Morris, Eleanor; Ladkin, Russel

    2017-04-01

    High concentrations of airborne pollutants (e.g. the oxides of nitrogen, sulphur dioxide and carbon monoxide) in existing and evolving cities along the Guinea Coast cause respiratory diseases with potentially large costs to human health and the economic capacity of the local workforce. It is important to understand the rate of emission of such pollutants in order to model current and future air quality and provide guidance to the potential outcomes of air pollution abatement strategies. Often dated technologies and poor emission control strategies lead to substantial uncertainties in emission estimates calculated from vehicle and population number density statistics. The unreliable electrical supply in cities in the area has led to an increased reliance on small-scale diesel powered generators and these potentially present a significant source of emissions. The uncontrolled open incineration of waste adds a further very poorly constrained emission source within the cities. The DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project involved a field campaign which used highly instrumented aircraft capable of in situ measurements of a range of air pollutants. Seven flights using the UK British Antarctic Survey's Twin Otter aircraft specifically targeted air pollution emissions from cities in West Africa (4 x Accra, Ghana; 2 x Lome, Togo and 1 x Cotonou, Benin). Measurements of NO, NO2, SO2, CO, CH4 and CO2 were made at multiple altitudes upwind and downwind of the cities, with the mass balance technique used to calculate emission rates. These are then compared to the Emissions Database for Global Atmospheric Research (EDGAR) estimates. Ultimately the data will be used to inform on and potentially improve the emission estimates, which in turn should lead to better forecasting of air pollution in West African cities and help guide future air pollution abatement strategy.

  5. Air slab-correction for Γ-ray attenuation measurements

    Science.gov (United States)

    Mann, Kulwinder Singh

    2017-12-01

    Gamma (γ)-ray shielding behaviour (GSB) of a material can be ascertained from its linear attenuation coefficient (μ, cm-1). Narrow-beam transmission geometry is required for μ-measurement. In such measurements, a thin slab of the material has to insert between point-isotropic γ-ray source and detector assembly. The accuracy in measurements requires that sample's optical thickness (OT) remain below 0.5 mean free path (mfp). Sometimes it is very difficult to produce thin slab of sample (absorber), on the other hand for thick absorber, i.e. OT >0.5 mfp, the influence of the air displaced by it cannot be ignored during μ-measurements. Thus, for a thick sample, correction factor has been suggested which compensates the air present in the transmission geometry. The correction factor has been named as an air slab-correction (ASC). Six samples of low-Z engineering materials (cement-black, clay, red-mud, lime-stone, cement-white and plaster-of-paris) have been selected for investigating the effect of ASC on μ-measurements at three γ-ray energies (661.66, 1173.24, 1332.50 keV). The measurements have been made using point-isotropic γ-ray sources (Cs-137 and Co-60), NaI(Tl) detector and multi-channel-analyser coupled with a personal computer. Theoretical values of μ have been computed using a GRIC2-toolkit (standardized computer programme). Elemental compositions of the samples were measured with Wavelength Dispersive X-ray Fluorescence (WDXRF) analyser. Inter-comparison of measured and computed μ-values, suggested that the application of ASC helps in precise μ-measurement for thick samples of low-Z materials. Thus, this hitherto widely ignored ASC factor is recommended to use in similar γ-ray measurements.

  6. Intraoperative air leak measured after lobectomy is associated with postoperative duration of air leak.

    Science.gov (United States)

    Brunelli, Alessandro; Salati, Michele; Pompili, Cecilia; Gentili, Paolo; Sabbatini, Armando

    2017-11-01

    To verify the association between the air leak objectively measured intraoperatively (IAL) using the ventilator and the air leak duration after pulmonary lobectomy. Prospective analysis on 111 patients submitted to pulmonary lobectomy (33 by video-assisted thoracic surgery). After resection, objective assessment of air leak (in milliliter per minute) was performed before closure of the chest by measuring the difference between a fixed inspired and expired volume, using a tidal volume of 8 ml/kg, a respiratory rate of 10 and a positive-end expiratory pressure of 5 cmH2O. A multivariable analysis was performed for identifying factors associated with duration of postoperative air leak. Average IAL was 158 ml/min (range 0-1500 ml/min). The best cut-off (receiver-operating characteristics analysis) associated with air leak longer than 5 days was 500 ml/min. Nine patients had IAL >500 ml/min (8%). They had a longer duration of postoperative air leak compared with those with a lower IAL (mean values, 10.1 days, SD 8.8 vs 1.5 days, SD 4.9 P leak duration after multivariable regression: left side resection (P = 0.018), upper site resection (P = 0.031) and IAL >500 ml/min (P leak duration was generated: 1.7 + 2.4 × left side + 2.2 × upper site + 8.8 × IAL >500. The air leak measurement using the ventilator parameters after lung resection may assist in estimating the risk of postoperative prolonged air leak. An IAL > 500 ml/min may warrant the use of intraoperative preventative measures, particularly after video-assisted thoracic surgery lobectomy where a submersion test is often unreliable. © 2017 European Society of Cardiology and European Atherosclerosis Association. All rights reserved. For permissions please email: journals.permissions@oup.com.

  7. Measurements of acetylene in air extracted from polar ice cores

    Science.gov (United States)

    Nicewonger, M. R.; Aydin, M.; Montzka, S. A.; Saltzman, E. S.

    2016-12-01

    Acetylene (ethyne) is a non-methane hydrocarbon emitted during combustion of fossil fuels, biofuels, and biomass. The major atmospheric loss pathway of acetylene is oxidation by hydroxyl radical with a lifetime estimated at roughly two weeks. The mean annual acetylene levels over Greenland and Antarctica are 250 ppt and 20 ppt, respectively. Firn air measurements suggest atmospheric acetylene is preserved unaltered in polar snow and firn. Atmospheric reconstructions based on firn air measurements indicate acetylene levels rose significantly during the twentieth century, peaked near 1980, then declined to modern day levels. This historical trend is similar to that of other fossil fuel-derived non-methane hydrocarbons. In the preindustrial atmosphere, acetylene levels should primarily reflect emissions from biomass burning. In this study, we present the first measurements of acetylene in preindustrial air extracted from polar ice cores. Air from fluid and dry-drilled ice cores from Summit, Greenland and WAIS-Divide Antarctica is extracted using a wet-extraction technique. The ice core air is analyzed using gas chromatography and high-resolution mass spectrometry. Between 1400 to 1800 C.E., acetylene levels over Greenland and Antarctica varied between roughly 70-120 ppt and 10-30 ppt, respectively. The preindustrial Greenland acetylene levels are significantly lower than modern levels, reflecting the importance of northern hemisphere fossil fuel sources today. The preindustrial Antarctic acetylene levels are comparable to modern day levels, indicating similar emissions in the preindustrial atmosphere, likely from biomass burning. The implications of the preindustrial atmospheric acetylene records from both hemispheres will be discussed.

  8. Measurements of radon activity concentrations in air at Niska spa

    International Nuclear Information System (INIS)

    Adrovic, F.; Vuckovic, B.; Ninkovic, M.

    2004-01-01

    Radon activity concentrations in air were measured in the recreational-tourist center of Niska Banja. Alpha Guard PQ 2000/ MC50 instrumentation (Genitron instruments, Frankfurt) was used. The observed indoor radon concentrations in the air of the Radon Hotel pool lay within the range of 0.980-1.908 kBq/m 3 and were directly dependent on the exhalation of radon from thermomineral waters. Radon concentrations were also measured outdoors, at locations for capping thermomineral water, as well as at locations for draining used water from the Radon Hotel pool. Outdoor radon concentrations as high as over 500 Bq/m 3 were observed. Gamma dose rates were measured in parallel and found to lie within the range of 72-420 nSv/h. The gamma doses correlated well with the observed radon levels. The largest gamma dose rates in air were measured in the pool of Radon Hotel and at the site where this thermomineral water is being capped

  9. An Air Bearing Rotating Coil Magnetic Measurement System

    CERN Document Server

    Gottschalk, Stephen C; Taylor, David J; Thayer, William

    2005-01-01

    This paper describes a rotating coil magnetic measurement system supported on air bearings. The design is optimized for measurements of 0.1micron magnetic centerline changes on long, small aperture quadrupoles. Graphite impregnated epoxy resin is used for the coil holder and coil winding forms. Coil holder diameter is 11 mm with a length between supports of 750mm. A pair of coils is used to permit quadrupole bucking during centerline measurements. Coil length is 616mm, inner radius 1.82mm, outer radius 4.74mm. The key features of the mechanical system are simplicity; air bearings for accurate, repeatable measurements without needing warm up time and a vibration isolated stand that uses a steel-topped Newport optical table with air suspension. Coil rotation is achieved by a low noise servo motor controlled by a standalone Ethernet servo board running custom servo software. Coil calibration procedures that correct wire placement errors, tests for mechanical resonances, and other system checks will also be discu...

  10. Assessing soil hydrological variability at the cm- to dm-scale using air permeameter measurements

    Science.gov (United States)

    Beerten, K.; Vandersmissen, N.; Rogiers, B.; Mallants, D.

    2012-04-01

    Soils and surficial sediments are crucial elements in the hydrological cycle since they are the medium through which infiltrating precipitation percolates to the aquifer. At the same time, soil horizons and shallow stratigraphy may act as hydraulic barriers that can promote runoff or interflow and hamper deep infiltration. For most catchments little is known about the small-scale horizontal and vertical variability of soil hydrological properties. Such information is however required to calculate detailed soil water flow paths and estimate small scale spatial variability in recharge and run-off. We present the results from field air permeameter measurements to assess the small-scale variability of saturated hydraulic conductivity in heterogeneous 2-D soil profiles. To this end, several outcrops in the unsaturated zone (sandy soils with podzolisation) of an interfluve in the Kleine Nete river catchment (Campine area, Northern Belgium) were investigated using a hand-held permeameter. Measurements were done each 10 cm on ~ 2 x 1 m or ~ 2 x 0.5 m grids. The initial results of the measurements (air permeability Kair; millidarcy) are recalculated to saturated hydraulic conductivity (Ks; m/s) using specific transfer functions (Loll et al., 1999; Iversen et al., 2003). Validation of the results is done with independent lab-based constant head Ks measurements. The results show that field based Ks values generally range between 10-3 m/s and 10-7 m/s within one profile, but extremely high values (up to 10-1 m/s) have been measured as well. The lowest values are found in the organic- and silt-rich Bh horizon of podzol soils observed within the profiles (~ 10-6-10-7m/s), while the highest values are observed in overlying dune sands less than 40 cm deep (up to 10-3 m/s with outliers to 10-1 m/s). Comparison of field and laboratory based Ks data reveals there is fair agreement between both methods, apart from several outliers. Scatter plots indicate that almost all points

  11. Air quality measurements in urban green areas - a case study

    Science.gov (United States)

    Kuttler, W.; Strassburger, A.

    The influence of traffic-induced pollutants (e.g. CO, NO, NO 2 and O 3) on the air quality of urban areas was investigated in the city of Essen, North Rhine-Westphalia (NRW), Germany. Twelve air hygiene profile measuring trips were made to analyse the trace gas distribution in the urban area with high spatial resolution and to compare the air hygiene situation of urban green areas with the overall situation of urban pollution. Seventeen measurements were made to determine the diurnal concentration courses within urban parks (summer conditions: 13 measurements, 530 30 min mean values, winter conditions: 4 measurements, 128 30 min mean values). The measurements were carried out during mainly calm wind and cloudless conditions between February 1995 and March 1996. It was possible to establish highly differentiated spatial concentration patterns within the urban area. These patterns were correlated with five general types of land use (motorway, main road, secondary road, residential area, green area) which were influenced to varying degrees by traffic emissions. Urban parks downwind from the main emission sources show the following typical temporal concentration courses: In summer rush-hour-dependent CO, NO and NO 2 maxima only occurred in the morning. A high NO 2/NO ratio was established during weather conditions with high global radiation intensities ( K>800 W m -2), which may result in a high O 3 formation potential. Some of the values measured found in one of the parks investigated (Gruga Park, Essen, area: 0.7 km 2), which were as high as 275 μg m -3 O 3 (30-min mean value) were significantly higher than the German air quality standard of 120 μg m -3 (30-min mean value, VDI Guideline 2310, 1996) which currently applies in Germany and about 20% above the maximum values measured on the same day by the network of the North Rhine-Westphalian State Environment Agency. In winter high CO and NO concentrations occur in the morning and during the afternoon rush-hour. The

  12. Infiltration SuDS Map

    OpenAIRE

    Dearden, Rachel

    2012-01-01

    Infiltration SuDS are sustainable drainage systems (SuDS) that allow surface water to infiltrate to the ground. Examples include soakaways, infiltration basins, infiltration trenches and permeable pavements. Before planning to install Infiltration SuDS, the suitability of the ground should be assessed. The British Geological Survey has developed a bespoke Infiltration SuDS Map that enables a preliminary assessment of the suitability of the ground for infiltration SuDS. Th...

  13. Measurement of acetates in air using differential ion mobility spectrometer

    Science.gov (United States)

    Szczurek, Andrzej; Maciejewska, Monika; Zajiczek, Żaneta; Maziejuk, Mirosław

    2017-11-01

    Volatile organic compounds are one of the most important group of air pollutants. Potential health and environmental problems resulting from their emission prompted the requirement for monitoring these species. It motivates development of new measurement techniques which are fast, cost effective, reliable and field deployable. One of novel approaches is ion mobility spectrometry. It dwells on ion separation in electric field, based on differences in ion mobility. Many variants of this method are developed. In this wok, differential ion mobility spectrometry (DMS) was considered in respect of acetate measurements in air. It was demonstrated that DMS offers linear response to methyl, ethyl, propyl and butyl acetate in concentration range from 0.3 ppm to 7 ppm. Positive ions spectrum has to be utilised for this purpose. We showed that fragments of DMS spectrum which secure linearity are compound-specific. The obtained results are promising from the application point of view.

  14. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...

  15. Measures related to traffic planning for air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Baumueller, J; Reuter, U [Office of Environmental Protection, Stuttgart (Germany). Dept. for Climatology

    1996-12-31

    The immense increase of motor traffic, in the future reinforced by the European market and the opening of boarders to the east countries, requires new efforts in traffic policy. In the city agglomerations the motor traffic is nearly collapsing. The increase of motor traffic is the reason for a considerable degradation of environment, especially by noise and air pollution. For the region of Stuttgart the problems and possibilities of counter-measures are discussed. (author)

  16. Measures related to traffic planning for air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Baumueller, J.; Reuter, U. [Office of Environmental Protection, Stuttgart (Germany). Dept. for Climatology

    1995-12-31

    The immense increase of motor traffic, in the future reinforced by the European market and the opening of boarders to the east countries, requires new efforts in traffic policy. In the city agglomerations the motor traffic is nearly collapsing. The increase of motor traffic is the reason for a considerable degradation of environment, especially by noise and air pollution. For the region of Stuttgart the problems and possibilities of counter-measures are discussed. (author)

  17. Measuring the speed of sound in air using smartphone applications

    Science.gov (United States)

    Yavuz, A.

    2015-05-01

    This study presents a revised version of an old experiment available in many textbooks for measuring the speed of sound in air. A signal-generator application in a smartphone is used to produce the desired sound frequency. Nodes of sound waves in a glass pipe, of which one end is immersed in water, are more easily detected, so results can be obtained more quickly than from traditional acoustic experiments using tuning forks.

  18. Speciated arsenic in air: measurement methodology and risk assessment considerations.

    Science.gov (United States)

    Lewis, Ari S; Reid, Kim R; Pollock, Margaret C; Campleman, Sharan L

    2012-01-01

    Accurate measurement of arsenic (As) in air is critical to providing a more robust understanding of arsenic exposures and associated human health risks. Although there is extensive information available on total arsenic in air, less is known on the relative contribution of each arsenic species. To address this data gap, the authors conducted an in-depth review of available information on speciated arsenic in air. The evaluation included the type of species measured and the relative abundance, as well as an analysis of the limitations of current analytical methods. Despite inherent differences in the procedures, most techniques effectively separated arsenic species in the air samples. Common analytical techniques such as inductively coupled plasma mass spectrometry (ICP-MS) and/or hydride generation (HG)- or quartz furnace (GF)-atomic absorption spectrometry (AAS) were used for arsenic measurement in the extracts, and provided some of the most sensitive detection limits. The current analysis demonstrated that, despite limited comparability among studies due to differences in seasonal factors, study duration, sample collection methods, and analytical methods, research conducted to date is adequate to show that arsenic in air is mainly in the inorganic form. Reported average concentrations of As(III) and As(V) ranged up to 7.4 and 10.4 ng/m3, respectively, with As(V) being more prevalent than As(III) in most studies. Concentrations of the organic methylated arsenic compounds are negligible (in the pg/m3 range). However because of the variability in study methods and measurement methodology, the authors were unable to determine the variation in arsenic composition as a function of source or particulate matter (PM) fraction. In this work, the authors include the implications of arsenic speciation in air on potential exposure and risks. The authors conclude that it is important to synchronize sample collection, preparation, and analytical techniques in order to generate

  19. Optimisation of key performance measures in air cargo demand management

    Directory of Open Access Journals (Sweden)

    Alexander May

    2014-04-01

    Full Text Available This article sought to facilitate the optimisation of key performance measures utilised for demand management in air cargo operations. The focus was on the Revenue Management team at Virgin Atlantic Cargo and a fuzzy group decision-making method was used. Utilising intelligent fuzzy multi-criteria methods, the authors generated a ranking order of ten key outcome-based performance indicators for Virgin Atlantic air cargo Revenue Management. The result of this industry-driven study showed that for Air Cargo Revenue Management, ‘Network Optimisation’ represents a critical outcome-based performance indicator. This collaborative study contributes to existing logistics management literature, especially in the area of Revenue Management, and it seeks to enhance Revenue Management practice. It also provides a platform for Air Cargo operators seeking to improve reliability values for their key performance indicators as a means of enhancing operational monitoring power.

  20. Geomembranes as an interim measure to control water infiltration at a low-level radioactive waste disposal area

    International Nuclear Information System (INIS)

    Weishan, M.R.; Sonntag, T.L.; Shehane, W.D.

    1997-01-01

    Using an exposed geomembrane an interim measure to cover a closed, Low-Level Radioactive Waste Disposal Area requires unique design and construction considerations. In response to a Resource Conservation and Recovery Act Administrative Consent Order, the New York State Energy Research and Development Authority (NYSERDA) used very low-density polyethylene (VLDPE) geomembrane as an interim measure to cover two soil-capped, grass-covered waste trenches to address a rapid increase in water accumulation in the trenches. Two years later, NYSERDA covered the remaining grass-covered trench caps with a reinforced ethylene interpolymer alloy (EIA-R) geomembrane to reduce water accumulation in these trenches. This paper addresses the differences in geomembrane materials and discusses the lessons learned during design, construction, and operation since installation of the covers. Discussed are the successes and obstacles regarding the use of both geomembrane materials as an exposed cover, selecting the geomembrane materials, anchoring the geomembrane from wind uplift, and mitigating the increased surface water runoff from the geomembrane covered area

  1. Integration of the effects of air quality measures in the SOLVE mix of measures

    International Nuclear Information System (INIS)

    Hesselmans, T.; Heijnis, F.

    2008-01-01

    SOLVE is the Dutch abbreviation for fast solutions for air and traffic and is a website by means of which provinces and municipalities in the Netherlands can gain insight into the best measures for traffic to improve the quality of the ambient air. Since halfway June 2008, the effects on air quality of approximately 35 traffic measures were included in the SOLVE mix of measures. The effects of traffic measures on emissions of particulate matter and nitrogen dioxide have been calculated. The effects are expressed in a decrease of the contribution of traffic indicated in a scale from A (very large decrease) to E (no decrease). The outcome depends on the location where the measure is implemented. [mk] [nl

  2. Streamlining air import operations by trade facilitation measures

    Directory of Open Access Journals (Sweden)

    Yuri da Cunha Ferreira

    2017-12-01

    Full Text Available Global operations are subject to considerable uncertainties. Due to the Trade Facilitation Agreement that became effective in February 2017, the study of measures to streamline customs controls is urgent. This study aims to assess the impact of trade facilitation measures on import flows. An experimental study was performed in the largest cargo airport in South America through discrete-event simulation and design of experiments. Operation impacts of three trade facilitation measures are assessed on import flow by air. We shed light in the following trade facilitation measures: the use of X-ray equipment for physical inspection; increase of the number of qualified companies in the trade facilitation program; performance targets for customs officials. All trade facilitation measures used indicated potential to provide more predictability, cost savings, time reduction, and increase in security in international supply chain.

  3. Integrated Assessment of Air Pollution Control Measures for Megacities

    Science.gov (United States)

    Friedrich, R.; Theloke, J.; Denier-van-der-Gon, H.; Kugler, U.; Kampffmeyer, T.; Roos, J.; Torras, S.

    2012-04-01

    Air pollution in large cities is still a matter of concern. Especially the concentration of fine particles (PM10 and PM2.5) is largest in large cities leading to severe health impacts. Furthermore the PM10 thresholds of the EU Air Quality Directive are frequently exceeded. Thus the question arises, whether the initiated policies and measures for mitigating air pollution are sufficient to meet the air quality targets and - if not - which efficient further pollution mitigation measures exist. These questions have been addressed in the EU research project MEGAPOLI for the four European megacities respectively agglomerations London, Paris, Rhine-Ruhr area and Po valley. Firstly, a reference scenario of future activities and emissions has been compiled for the megacities for the years 2020, 2030 and 2050 for all relevant air pollutants (CO, NH3, NMVOC, NOx, PM10, PM2.5 and SO2) and greenhouse gases (CO2, CH4 and N2O). The reference scenario takes into account as well population changes as technical progress and economic growth. As pollution flowing in from outside the city is about as important as pollution caused by emissions in the city, the analysis covers the whole of Europe and not only the city area. Emissions are then transformed into concentrations using atmospheric models. The higher concentrations in cities were estimated with a newly developed 'urban increment' model. Results show, that in the megacities the limits of the Air Quality Directive (2008/50/EC) will be exceeded. Thus additional efforts are necessary to reduce emissions further. Thus, a number of further measures (not implemented in current legislation) were selected and assessed. These included mitigation options for road transport, other mobile sources, large combustion plants, small and medium combustion plants and industry. For each measure and in addition for various bundles of measures a cost-benefit analysis has been carried out. Benefits (avoided health risks and climate change risks) have

  4. Air Quality Science and Regulatory Efforts Require Geostationary Satellite Measurements

    Science.gov (United States)

    Pickering, Kenneth E.; Allen, D. J.; Stehr, J. W.

    2006-01-01

    Air quality scientists and regulatory agencies would benefit from the high spatial and temporal resolution trace gas and aerosol data that could be provided by instruments on a geostationary platform. More detailed time-resolved data from a geostationary platform could be used in tracking regional transport and in evaluating mesoscale air quality model performance in terms of photochemical evolution throughout the day. The diurnal cycle of photochemical pollutants is currently missing from the data provided by the current generation of atmospheric chemistry satellites which provide only one measurement per day. Often peak surface ozone mixing ratios are reached much earlier in the day during major regional pollution episodes than during local episodes due to downward mixing of ozone that had been transported above the boundary layer overnight. The regional air quality models often do not simulate this downward mixing well enough and underestimate surface ozone in regional episodes. Having high time-resolution geostationary data will make it possible to determine the magnitude of this lower-and mid-tropospheric transport that contributes to peak eight-hour average ozone and 24-hour average PM2.5 concentrations. We will show ozone and PM(sub 2.5) episodes from the CMAQ model and suggest ways in which geostationary satellite data would improve air quality forecasting. Current regulatory modeling is typically being performed at 12 km horizontal resolution. State and regional air quality regulators in regions with complex topography and/or land-sea breezes are anxious to move to 4-km or finer resolution simulations. Geostationary data at these or finer resolutions will be useful in evaluating such models.

  5. Calibration of NASA Turbulent Air Motion Measurement System

    Science.gov (United States)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  6. Canyon air flow measurement utilizing ASME standard pitot tube arrays

    International Nuclear Information System (INIS)

    Moncrief, B.R.

    1990-01-01

    The Savannah River Site produces nuclear materials for national defense. In addition to nuclear reactors, the site has separation facilities for reprocessing irradiated nuclear fuel. The chemical separation of highly radioactive materials takes place by remote control in large buildings called canyons. Personnel in these buildings are shielded from radiation by thick concrete walls. Contaminated air is exhausted from the canyons and contaminants are removed by sand filters prior to release to the atmosphere through a stack. When these facilities were built on a crash basis in the early 1950's, inadequate means were provided for pressure and air flow measurement. This presentation describes the challenge we faced in retrofitting a highly radioactive, heavily shielded facility with instrumentation to provide this capability

  7. First measurement of radon transfer. Water - skin - blood - air

    International Nuclear Information System (INIS)

    Philipsborn, H. von; Grunewald, W.A.

    2000-01-01

    While radon is disliked in uranium mines and homes, it is used medically in radon spas for the treatment of several ailments. The transfer of radon gas from water, through skin into blood and into expiratory air was studied completely for the first time for a person resting 20-30 min in radon water. For waterborne radon concentrations of 1500±100 Bq/L, 4±1 Bq/L were measured in the blood and 2.4±0.5 kBq/m 3 (Bq/L) in the expiratory air. The results can be understood according to the principles of physiology. The nature of the experiments excluded persons other than the authors. Hence the study has been radiometric (physical), not clinical (medical). (orig.)

  8. Measurement of Temporal Awareness in Air Traffic Control

    Science.gov (United States)

    Rantanen, E.M.

    2009-01-01

    Temporal awareness, or level 3 situation awareness, is critical to successful control of air traffic, yet the construct remains ill-defined and difficult to measure. This research sought evidence for air traffic controllers awareness of temporal characteristics of their tasks in data from a high-fidelity system evaluation simulation. Five teams of controllers worked on four scenarios with different traffic load. Several temporal parameters were defined for each task controllers performed during a simulation run and their actions on the tasks were timed relative to them. Controllers showed a strong tendency to prioritize tasks according to a first come, first served principle. This trend persisted as task load increased. Also evident was awareness of the urgency of tasks, as tasks with impending closing of a window of opportunity were performed before tasks that had longer time available before closing of the window.

  9. SCANNING VOLTA POTENTIALS MEASUREMENTS OF METALS IN IRRADIATED AIR.

    Energy Technology Data Exchange (ETDEWEB)

    ISAACS, H.S.; ADZIC, G.; AND ENERGY SCIENCES AND TECHNOLOGY DEPARTMENT; JEFFCOATE, C.S.

    2000-10-22

    A method for direct dc measurement of the Volta potential is presented. High intensity synchrotron x-ray beams were used to locally irradiate the atmosphere adjacent to the metal surface and produce a conducting path between a sample and a reference probe. The direct measurements of potential in the ionized air could be made at probe heights of around 1 mm compared to less than 0.1 mm for the Kelvin probe. The measurements were similar to traditional Kelvin probe measurements, but had a poorer spatial resolution. In contrast to the Kelvin probe methods, the approach described allows observation of the current as a function of impressed voltage. Methods to improve the special resolution of the technique and applications to corrosion under coating will be presented.

  10. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Wanyu R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  11. Human factors measurement for future air traffic control systems.

    Science.gov (United States)

    Langan-Fox, Janice; Sankey, Michael J; Canty, James M

    2009-10-01

    This article provides a critical review of research pertaining to the measurement of human factors (HF) issues in current and future air traffic control (ATC). Growing worldwide air traffic demands call for a radical departure from current ATC systems. Future systems will have a fundamental impact on the roles and responsibilities of ATC officers (ATCOs). Valid and reliable methods of assessing HF issues associated with these changes, such as a potential increase (or decrease) in workload, are of utmost importance for advancing theory and for designing systems, procedures, and training. We outline major aviation changes and how these relate to five key HF issues in ATC. Measures are outlined, compared, and evaluated and are followed by guidelines for assessing these issues in the ATC domain. Recommendations for future research are presented. A review of the literature suggests that situational awareness and workload have been widely researched and assessed using a variety of measures, but researchers have neglected the areas of trust, stress, and boredom. We make recommendations for use of particular measures and the construction of new measures. It is predicted that, given the changing role of ATCOs and profound future airspace requirements and configurations, issues of stress, trust, and boredom will become more significant. Researchers should develop and/or refine existing measures of all five key HF issues to assess their impact on ATCO performance. Furthermore, these issues should be considered in a holistic manner. The current article provides an evaluation of research and measures used in HF research on ATC that will aid research and ATC measurement.

  12. Methods for Sampling and Measurement of Compressed Air Contaminants

    International Nuclear Information System (INIS)

    Stroem, L.

    1976-10-01

    In order to improve the technique for measuring oil and water entrained in a compressed air stream, a laboratory study has been made of some methods for sampling and measurement. For this purpose water or oil as artificial contaminants were injected in thin streams into a test loop, carrying dry compressed air. Sampling was performed in a vertical run, down-stream of the injection point. Wall attached liquid, coarse droplet flow, and fine droplet flow were sampled separately. The results were compared with two-phase flow theory and direct observation of liquid behaviour. In a study of sample transport through narrow tubes, it was observed that, below a certain liquid loading, the sample did not move, the liquid remaining stationary on the tubing wall. The basic analysis of the collected samples was made by gravimetric methods. Adsorption tubes were used with success to measure water vapour. A humidity meter with a sensor of the aluminium oxide type was found to be unreliable. Oil could be measured selectively by a flame ionization detector, the sample being pretreated in an evaporation- condensation unit

  13. Methods for Sampling and Measurement of Compressed Air Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, L

    1976-10-15

    In order to improve the technique for measuring oil and water entrained in a compressed air stream, a laboratory study has been made of some methods for sampling and measurement. For this purpose water or oil as artificial contaminants were injected in thin streams into a test loop, carrying dry compressed air. Sampling was performed in a vertical run, down-stream of the injection point. Wall attached liquid, coarse droplet flow, and fine droplet flow were sampled separately. The results were compared with two-phase flow theory and direct observation of liquid behaviour. In a study of sample transport through narrow tubes, it was observed that, below a certain liquid loading, the sample did not move, the liquid remaining stationary on the tubing wall. The basic analysis of the collected samples was made by gravimetric methods. Adsorption tubes were used with success to measure water vapour. A humidity meter with a sensor of the aluminium oxide type was found to be unreliable. Oil could be measured selectively by a flame ionization detector, the sample being pretreated in an evaporation- condensation unit

  14. The MUMBA campaign: measurements of urban, marine and biogenic air

    Science.gov (United States)

    Paton-Walsh, Clare; Guérette, Élise-Andrée; Kubistin, Dagmar; Humphries, Ruhi; Wilson, Stephen R.; Dominick, Doreena; Galbally, Ian; Buchholz, Rebecca; Bhujel, Mahendra; Chambers, Scott; Cheng, Min; Cope, Martin; Davy, Perry; Emmerson, Kathryn; Griffith, David W. T.; Griffiths, Alan; Keywood, Melita; Lawson, Sarah; Molloy, Suzie; Rea, Géraldine; Selleck, Paul; Shi, Xue; Simmons, Jack; Velazco, Voltaire

    2017-06-01

    The Measurements of Urban, Marine and Biogenic Air (MUMBA) campaign took place in Wollongong, New South Wales (a small coastal city approximately 80 km south of Sydney, Australia) from 21 December 2012 to 15 February 2013. Like many Australian cities, Wollongong is surrounded by dense eucalyptus forest, so the urban airshed is heavily influenced by biogenic emissions. Instruments were deployed during MUMBA to measure the gaseous and aerosol composition of the atmosphere with the aim of providing a detailed characterisation of the complex environment of the ocean-forest-urban interface that could be used to test the skill of atmospheric models. The gases measured included ozone, oxides of nitrogen, carbon monoxide, carbon dioxide, methane and many of the most abundant volatile organic compounds. The aerosol characterisation included total particle counts above 3 nm, total cloud condensation nuclei counts, mass concentration, number concentration size distribution, aerosol chemical analyses and elemental analysis.The campaign captured varied meteorological conditions, including two extreme heat events, providing a potentially valuable test for models of future air quality in a warmer climate. There was also an episode when the site sampled clean marine air for many hours, providing a useful additional measure of the background concentrations of these trace gases within this poorly sampled region of the globe. In this paper we describe the campaign, the meteorology and the resulting observations of atmospheric composition in general terms in order to equip the reader with a sufficient understanding of the Wollongong regional influences to use the MUMBA datasets as a case study for testing a chemical transport model. The data are available from PANGAEA (pangaea.de/10.1594/PANGAEA.871982" target="_blank">http://doi.pangaea.de/10.1594/PANGAEA.871982).

  15. Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures.

    Science.gov (United States)

    Keller, Joshua P; Chang, Howard H; Strickland, Matthew J; Szpiro, Adam A

    2017-05-01

    Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data. We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap. Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35). This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight.

  16. Numerical modeling of NI-monitored 3D infiltration experiment

    Science.gov (United States)

    Dohnal, Michal; Dusek, Jaromir; Snehota, Michal; Sacha, Jan; Vogel, Tomas; Votrubova, Jana

    2014-05-01

    It is well known that the temporal changes of saturated hydraulic conductivity caused by the occurrence of air phase discontinuities often play an important role in water flow and solute transport experiments. In the present study, a series of infiltration-outflow experiments was conducted to test several working hypotheses about the mechanism of air phase trapping. The experiments were performed on a porous sample with artificial internal structure, using three sandy materials with contrasting hydraulic properties. The sample was axially symmetric with continuous preferential pathways and separate porous matrix blocks (the sample was 3.4 cm in diameter and 8.8 cm high). The infiltration experiments were monitored by neutron imaging (NI). The NI data were then used to quantify the water content of the selected sample regions. The flow regime in the sample was studied using a three-dimensional model based on Richards' equation. The equation was solved by the finite element method. The results of the numerical simulations of the infiltration experiments were compared with the measured outflow rates and with the spatial distribution of water content determined by NI. The research was supported by the Czech Science Foundation Project No. 14-03691S.

  17. Effectiveness of local air quality measures; Effectiviteit van likale luchtkwaliteitsmaatregelen

    Energy Technology Data Exchange (ETDEWEB)

    Van Bommel, R.; Van de Poll, T. [Royal Haskoning DHV, Amersfoort (Netherlands)

    2013-12-15

    This article examines the effects of local air quality measures which are calculated by order of the city of Utrecht. The conclusions are that environmental zones and other local measures contribute to meet the targets and improve public health. It is also explained why this is the case, and the question is raised whether or not national measures would be better [Dutch] Dit artikel gaat in op de effecten van lokale maatregelen die zijn berekend in opdracht van de gemeente Utrecht. De conclusie: milieuzones en andere lokale maatregelen dragen bij aan het halen van normen en leveren gezondheidswinst op. Er wordt uitgelegd waarom dat zo is en de vraag wordt gesteld of landelijke maatregelen niet beter zijn.

  18. Junge relationships in measurement data for cyclic siloxanes in air.

    Science.gov (United States)

    MacLeod, Matthew; Kierkegaard, Amelie; Genualdi, Susie; Harner, Tom; Scheringer, Martin

    2013-10-01

    In 1974, Junge postulated a relationship between variability of concentrations of gases in air at remote locations and their atmospheric residence time, and this Junge relationship has subsequently been observed empirically for a range of trace gases. Here, we analyze two previously-published datasets of concentrations of cyclic volatile methyl siloxanes (cVMS) in air and find Junge relationships in both. The first dataset is a time series of concentrations of decamethylcyclopentasiloxane (D5) measured between January and June, 2009 at a rural site in southern Sweden that shows a Junge relationship in the temporal variability of the measurements. The second dataset consists of measurements of hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4) and D5 made simultaneously at 12 sites in the Global Atmospheric Passive Sampling (GAPS) network that shows a Junge relationship in the spatial variability of the three cVMS congeners. We use the Junge relationship for the GAPS dataset to estimate atmospheric lifetimes of dodecamethylcyclohexasiloxane (D6), 8:2-fluorotelomer alcohol and trichlorinated biphenyls that are within a factor of 3 of estimates based on degradation rate constants for reaction with hydroxyl radical determined in laboratory studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Empowering smartphone users with sensor node for air quality measurement

    Science.gov (United States)

    Oletic, Dinko; Bilas, Vedran

    2013-06-01

    We present an architecture of a sensor node developed for use with smartphones for participatory sensing of air quality in urban environments. Our solution features inexpensive metal-oxide semiconductor gas sensors (MOX) for measurement of CO, O3, NO2 and VOC, along with sensors for ambient temperature and humidity. We focus on our design of sensor interface consisting of power-regulated heater temperature control, and the design of resistance sensing circuit. Accuracy of the sensor interface is characterized. Power consumption of the sensor node is analysed. Preliminary data obtained from the CO gas sensors in laboratory conditions and during the outdoor field-test is shown.

  20. Empowering smartphone users with sensor node for air quality measurement

    International Nuclear Information System (INIS)

    Oletic, Dinko; Bilas, Vedran

    2013-01-01

    We present an architecture of a sensor node developed for use with smartphones for participatory sensing of air quality in urban environments. Our solution features inexpensive metal-oxide semiconductor gas sensors (MOX) for measurement of CO, O 3 , NO 2 and VOC, along with sensors for ambient temperature and humidity. We focus on our design of sensor interface consisting of power-regulated heater temperature control, and the design of resistance sensing circuit. Accuracy of the sensor interface is characterized. Power consumption of the sensor node is analysed. Preliminary data obtained from the CO gas sensors in laboratory conditions and during the outdoor field-test is shown.

  1. Comparison of infiltration capacity of permanent grassland and arable land during the 2011 growing season

    OpenAIRE

    Tomáš Mašíček; F. Toman; M. Vičanová

    2012-01-01

    The aim of this paper was to compare the rate of infiltration and cumulative infiltration in permanent grassland (PG) and in arable land over the course of the 2011 growing season. The measurement of water infiltration into soil was conducted via ponded infiltration method based on the use of two concentric cylinders in field conditions. Kostiakov equations were applied to evaluate the ponded infiltration. Based on field measurements, the dependence of infiltration rate (v) on time (t) was de...

  2. Problems in air traffic management. VII., Job training performance of air traffic control specialists - measurement, structure, and prediction.

    Science.gov (United States)

    1965-07-01

    A statistical study of training- and job-performance measures of several hundred Air Traffic Control Specialists (ATCS) representing Enroute, Terminal, and Flight Service Station specialties revealed that training-performance measures reflected: : 1....

  3. Leaf wettability as a measure of air pollution effects

    International Nuclear Information System (INIS)

    Jagels, R.

    1994-01-01

    Droplet contact angle (DCA) is a technique that can be used to measure wettability and, in turn, provide an assessment of the physical and chemical characteristics of a surface. As adapted to plant bioligy, DCA measurements have been useful in characterizing changes in the type or condition of leaf epicuticular waxes. Environmental as well as temporal factors can modify the biophysical features of epicuticular wax surfaces and thereby affect DCA measurements. An understanding of the role of these non-pollutant factors is necessary before pollution damage can be accurately assessed. Controlled chamber experiments and field pollutant gradient studies have shown that DCA is generally reduced when plants are exposed to air pollutants such as ozone, So 2 , and acidic fog. In some cases, environmental influences, such as temperature, have been separated from the pollutant effect. However, mixtures of anthropogenic pollutants or anthropogenic and natural compounds (sea salts, dust particles) which are often present in field studies can confound the interpretation of DCA measurements. A few studies that attempt to separate these factors have been conducted, but more are needed before the potential for using DCA measurements in long-term bioindicator studies can be fully realized. Some studies have demonstrated that pollutants do not necessarily affect leaf surfaces in a uniform pattern, but rather are specific for certain structures such as stomates or trichomes; deposition levels can also be different on ad-and abaxial surfaces. The degree to which these inhomogeneities of action can affect DCA measurements needs further study. (orig.)

  4. Measurements of radioactive dust in high altitude air

    International Nuclear Information System (INIS)

    Kobayashi, Mika; Kohara, Eri; Muronoi, Naohiro; Masuda, Yousuke; Midou, Tomotaka; Ishida, Yukiko; Shimizu, Toshihiko; Saga, Minoru; Endo, Hiromu

    2012-01-01

    The radioactivity in samples of airborne dust was measured. The samples had been collected at high altitude by the Japan Air Self-Defense Force. The data were obtained for the gross beta activity, gamma nuclide determination and radiochemical analysis. It was shown that there was no appreciable difference between the activity levels obtained in this time and in the year before. Seasonal variations were not very pronounced. It was found that the radioactivity at high altitude had been stable at a low level. Radioactive gases (gaseous radioiodine and xenon gas) were not detected. This report does not include the result on radionuclide measurements that Technical Research and Development Institute executed for examining the nuclear emergency situation at Fukushima Daiichi and Daini nuclear power plants after Tohoku Region Pacific Ocean Earthquake on March 11, 2011. (author)

  5. Radon measurements technique in air using a track plastic detector

    International Nuclear Information System (INIS)

    Pereira, J.F.A.; Silva Estrada, J.J. da; Binns, D.A.C.; Urban, M.

    1983-01-01

    A difusion chamber is used to measure the radon concentration in air through alpha particles tracks in Makrofol E, 300μm thick. This system was developed by Karlsruhe Nuclear Research Centre, Germany, and is already used by the Occupational Radiological Protection Department of IRD/CNEN, for premilimar measurements in Pocos de Caldas and Rio de Janeiro. In the chamber, the plastic detector is set at the lower end and a filter is placed at the upper end. In this way, a known volume is defined in the detector system. To amplify the tracks produced by the alpha particles due to radon and short-lived dadon-daughter products, an electrochemical system is employed. Some theoretical questions about the treeing produced by the electrochemical etching, the detector characteristics, as well as the adapted statistics model are also discussed. (Author) [pt

  6. Air

    International Nuclear Information System (INIS)

    Gugele, B.; Scheider, J.; Spangl, W.

    2001-01-01

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  7. Evaluation of some infiltration models and hydraulic parameters

    International Nuclear Information System (INIS)

    Haghighi, F.; Gorji, M.; Shorafa, M.; Sarmadian, F.; Mohammadi, M. H.

    2010-01-01

    The evaluation of infiltration characteristics and some parameters of infiltration models such as sorptivity and final steady infiltration rate in soils are important in agriculture. The aim of this study was to evaluate some of the most common models used to estimate final soil infiltration rate. The equality of final infiltration rate with saturated hydraulic conductivity (Ks) was also tested. Moreover, values of the estimated sorptivity from the Philips model were compared to estimates by selected pedotransfer functions (PTFs). The infiltration experiments used the doublering method on soils with two different land uses in the Taleghan watershed of Tehran province, Iran, from September to October, 2007. The infiltration models of Kostiakov-Lewis, Philip two-term and Horton were fitted to observed infiltration data. Some parameters of the models and the coefficient of determination goodness of fit were estimated using MATLAB software. The results showed that, based on comparing measured and model-estimated infiltration rate using root mean squared error (RMSE), Hortons model gave the best prediction of final infiltration rate in the experimental area. Laboratory measured Ks values gave significant differences and higher values than estimated final infiltration rates from the selected models. The estimated final infiltration rate was not equal to laboratory measured Ks values in the study area. Moreover, the estimated sorptivity factor by Philips model was significantly different to those estimated by selected PTFs. It is suggested that the applicability of PTFs is limited to specific, similar conditions. (Author) 37 refs.

  8. Air temperature measurements based on the speed of sound to compensate long distance interferometric measurements

    Directory of Open Access Journals (Sweden)

    Astrua Milena

    2014-01-01

    Full Text Available A method to measure the real time temperature distribution along an interferometer path based on the propagation of acoustic waves is presented. It exploits the high sensitivity of the speed of sound in air to the air temperature. In particular, it takes advantage of a special set-up where the generation of the acoustic waves is synchronous with the amplitude modulation of a laser source. A photodetector converts the laser light to an electronic signal considered as reference, while the incoming acoustic waves are focused on a microphone and generate a second signal. In this condition, the phase difference between the two signals substantially depends on the temperature of the air volume interposed between the sources and the receivers. The comparison with the traditional temperature sensors highlighted the limit of the latter in case of fast temperature variations and the advantage of a measurement integrated along the optical path instead of a sampling measurement. The capability of the acoustic method to compensate the interferometric distance measurements due to air temperature variations has been demonstrated for distances up to 27 m.

  9. Mobile Air Monitoring: Measuring Change in Air Quality in the City of Hamilton, 2005-2010

    Science.gov (United States)

    Adams, Matthew D.; DeLuca, Patrick F.; Corr, Denis; Kanaroglou, Pavlos S.

    2012-01-01

    This paper examines the change in air pollutant concentrations between 2005 and 2010 occurring in the City of Hamilton, Ontario, Canada. After analysis of stationary air pollutant concentration data, we analyze mobile air pollutant concentration data. Air pollutants included in the analysis are CO, PM[subscript 2.5], SO[subscript 2], NO,…

  10. Prediction of snowmelt infiltration into frozen soils

    International Nuclear Information System (INIS)

    Tao, Y.X.; Gray, D.M.

    1994-01-01

    A numerical model is presented, based on the local volume averaging formulation of transport phenomena in porous media, for simulating meltwater infiltration into unsaturated, frozen soil. With the defined flow and freezing boundary conditions at the snow-soil interface, using the concept of a surface local averaging volume, the time variation in profiles of temperature, liquid/ice content, infiltration/percolation rates, and rate of phase change in upper soil layers are predicted. In addition to a parametric analysis, model estimates of infiltration are compared with quantities calculated from field measurements of soil moisture changes and temperature during snow cover ablation, showing a reasonable agreement

  11. Facial infiltrative lipomatosis

    International Nuclear Information System (INIS)

    Haloi, A.K.; Ditchfield, M.; Pennington, A.; Philips, R.

    2006-01-01

    Although there are multiple case reports and small series concerning facial infiltrative lipomatosis, there is no composite radiological description of the condition. Radiological evaluation of facial infiltrative lipomatosis using plain film, sonography, CT and MRI. We radiologically evaluated four patients with facial infiltrative lipomatosis. Initial plain radiographs of the face were acquired in all patients. Three children had an initial sonographic examination to evaluate the condition, followed by MRI. One child had a CT and then MRI. One child had abnormalities on plain radiographs. Sonographically, the lesions were seen as ill-defined heterogeneously hypoechoic areas with indistinct margins. On CT images, the lesions did not have a homogeneous fat density but showed some relatively more dense areas in deeper parts of the lesions. MRI provided better delineation of the exact extent of the process and characterization of facial infiltrative lipomatosis. Facial infiltrative lipomatosis should be considered as a differential diagnosis of vascular or lymphatic malformation when a child presents with unilateral facial swelling. MRI is the most useful single imaging modality to evaluate the condition, as it provides the best delineation of the exact extent of the process. (orig.)

  12. Measurement of Air Pollution Comes from Adra Cement Factory

    International Nuclear Information System (INIS)

    Odat, M.; Meslmani, Y.; Al-Kharfan, K.; Shamali, K.

    2013-06-01

    Measurements of air pollution were carried out in and around Adra cement factory during a single period (December). The Measurements included the following: 1- Dust fall. 2- Total suspended particulates (TSP) and inhalable particulates PM-1-0 & PM-3 inside the factor and in residential area surrounded the factory (Worker City of Adra, Adra city, Wafeden Mokheam, Baironi Hospital and Alkatiefa City). 3-Determination the levels of Cd, Pb, Cu and zinc associated with air born. 4- Determination of toxic gases (CO, SO-2 and NO-x) emitted from the chimneys. The results showed that the quantity of dust fall was varied obviously inside the factory and the regions affected by air pollutions. The monthly concentration of dust fall were 165, 27 and 10 tons/Km 2 /month inside the factory , affected villages and Baironi Hospital respectively, Wherein the permissible limit is (9tons/Km'2/month). The total suspended particulates (TSP) and inhalable particulates PM-1-0 & PM-3 in the studies area were higher than the permissible limit. The TSP concentrations inside the factory ranged between 497 and 2021 microgram/m'3 while the ranged between 328 and 561 microgram /m'3 in the surrounded villages and between 232 and 244 microgram/m'3 near Damascus, the were far higher than the world health organization (WHO) standards (120 Microgram/m'3). The PM-3 which is the most effecting on the human health reached 117.6, 124.6 and 62.6 microgram /m 3 inside the factory (main in trance), city worker of Adra and Baironi Hospital respectively, theses concentrations were higher than the Syrian standards (15 microgram/m'3) The measurements which were carried out through an exclusive day refered that the percentage of TSP/PM-3 is increasedwith moving away from the factory and reached 6.8, 18.6, 19.3% in the main intrance of the factory, worker city of Adra and Bironi Hospital respectively. The level of toxic gases inside the source (chimneys) was within the standards

  13. Water infiltration into homogeneous soils: a new concept

    International Nuclear Information System (INIS)

    Manfredni, S.

    1977-10-01

    A new concept for the analytical description of the process of water infiltration into homogeneous soils is presented. The concept uses a new definition of a 'gravitational diffusivity' which permits the generalization of both cases, horizontal and vertical infiltration. The efficiency of the new concept in describing the infiltration process, for short and intermediate times, is proved through experimental data obtained during water infiltration into air-dry soil columns. Its advantages are discussed comparing soil water contents predicted by the numerical solution proposed by PHILLIP (1955, 1957) [pt

  14. Urban Stormwater Infiltration Perspectives

    DEFF Research Database (Denmark)

    Geldof, Govert; Jacobsen, Per; Fujita, Shoichi

    1994-01-01

    In urban areas there are many problems with water management: combined sewer overflows, peak flows, man-induced droughts, consolidation of the soil, damage from frost penetration, etc. It is preferable to look at all these problems in relation to each other, according the concept of integrated...... water management. This paper focuses on the possibilities for urban stormwater infiltration. The results of three studies are presented. The first study concerns the flooding of the Shirako River in Tokyo. It is shown that with the help of stormwater infiltration the floods can be reduced remarkably....... The second study concerns combined sewer overflows and the discharge from treatment plants for catchments in Denmark and the Netherlands. When looking at the total yearly discharge from the combined sewer and the treatment plant, it is shown that infiltration is more effective than detention. The third study...

  15. Indoor air quality in cold climates: hazards and abatement measures

    National Research Council Canada - National Science Library

    Walkinshaw, D. S

    1986-01-01

    The first APCA Conference on Indoor Air Quality, held April 29, 30 and May 1, 1985 in Ottawa, featured some 67 presentations covering many aspects of indoor air quality, with the focus on cold climate...

  16. Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements

    Science.gov (United States)

    Cross, Eben S.; Williams, Leah R.; Lewis, David K.; Magoon, Gregory R.; Onasch, Timothy B.; Kaminsky, Michael L.; Worsnop, Douglas R.; Jayne, John T.

    2017-09-01

    The environments in which we live, work, and play are subject to enormous variability in air pollutant concentrations. To adequately characterize air quality (AQ), measurements must be fast (real time), scalable, and reliable (with known accuracy, precision, and stability over time). Lower-cost air-quality-sensor technologies offer new opportunities for fast and distributed measurements, but a persistent characterization gap remains when it comes to evaluating sensor performance under realistic environmental sampling conditions. This limits our ability to inform the public about pollution sources and inspire policy makers to address environmental justice issues related to air quality. In this paper, initial results obtained with a recently developed lower-cost air-quality-sensor system are reported. In this project, data were acquired with the ARISense integrated sensor package over a 4.5-month time interval during which the sensor system was co-located with a state-operated (Massachusetts, USA) air quality monitoring station equipped with reference instrumentation measuring the same pollutant species. This paper focuses on validating electrochemical (EC) sensor measurements of CO, NO, NO2, and O3 at an urban neighborhood site with pollutant concentration ranges (parts per billion by volume, ppb; 5 min averages, ±1σ): [CO] = 231 ± 116 ppb (spanning 84-1706 ppb), [NO] = 6.1 ± 11.5 ppb (spanning 0-209 ppb), [NO2] = 11.7 ± 8.3 ppb (spanning 0-71 ppb), and [O3] = 23.2 ± 12.5 ppb (spanning 0-99 ppb). Through the use of high-dimensional model representation (HDMR), we show that interference effects derived from the variable ambient gas concentration mix and changing environmental conditions over three seasons (sensor flow-cell temperature = 23.4 ± 8.5 °C, spanning 4.1 to 45.2 °C; and relative humidity = 50.1 ± 15.3 %, spanning 9.8-79.9 %) can be effectively modeled for the Alphasense CO-B4, NO-B4, NO2-B43F, and Ox-B421 sensors, yielding (5 min average) root

  17. Project 'European Research Center for Air Pollution Abatement Measures'

    International Nuclear Information System (INIS)

    1985-04-01

    During the 5-7th of March 1985 the first status report of the project 'European Research Center for Air Pollution Control Measures' took place in the Nuclear Research Center, Karlsruhe. Progress reports on the following topics assessment and analysis of the impacts of airborne pollutants on forest trees; distinction from other potential causes of recent forest dieback, research into atmospheric dispersion, conversion and deposition of airborne pollutants, development and optimization of industrial-technical processes to reduce or avoid emissions and providing instruments and making recommendations to the industrial and political sectors were presented. This volume is a collection of the work reported there. 42 papers were entered separately. (orig./MG) [de

  18. Field Measurements of Perceived Air Quality in the Test-Bed for Innovative Climate Conditioning Technologies

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Kabrhel, Michal

    the potential influence of aforementioned technologies on the perceived air quality. Additionally, the effect of Demand Controlled Ventilation (DCV) on the perceived air quality was tested. Measurements comprised of the assessments of perceived air quality and objective measurements of operative temperature...

  19. Air-Sea Interaction Measurements from the Controlled Towed Vehicle

    Science.gov (United States)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.

    2014-12-01

    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  20. Decline and infiltrated lung

    International Nuclear Information System (INIS)

    Giraldo Estrada, Horacio; Arboleda Casas, Felipe; Duarte, Monica; Triana Harker, Ricardo

    2001-01-01

    The paper describes the decline and infiltrated lung in a patient of 45 years, with diagnosis of arthritis rheumatoid from the 43 years, asymptomatic, without treatment, married, of the 15 to the 35 years of 3 to 10 cigarettes daily, she refers of 7 months of evolution episodes of moderate dyspnoea with exercises and dry cough with occasional mucous expectoration between others

  1. Diffuse infiltrative cardiac tuberculosis

    International Nuclear Information System (INIS)

    Gulati, Gurpreet S; Kothari, Shyam S

    2011-01-01

    We present the cardiac magnetic resonance images of an unusual form of cardiac tuberculosis. Nodular masses in a sheet-like distribution were seen to infiltrate the outer myocardium and pericardium along most of the cardiac chambers. The lesions showed significant resolution on antitubercular therapy

  2. New measurements and analysis of high-energy muons in cosmic ray extensive air showers

    International Nuclear Information System (INIS)

    Sarkar, S.K.; Ghose, B.; Murkherjee, N.; Sanyal, S.; Chaudhuri, N.; Chhetri, R.; Basak, D.K.

    1991-01-01

    Cosmic ray air shower structure measurements and measurement of density and energy of air shower muons of a wide energy range simultaneously in individual air showers by two magnet spectrographs are presented. The measured muon densities have been used to compare with some of the previous measurements on muon densities in air showers of nearly the same size. The measured muon densities have also been applied for distinguishing between various interaction models and between light and heavier air shower primaries. In the air shower size range 10 4 -10 6 particles the present measurements do not provide evidence for iron primaries and the different interaction models seem not to be distinguishable by air shower observations. (Author)

  3. EPA scientists develop Federal Reference & Equivalent Methods for measuring key air pollutants

    Science.gov (United States)

    EPA operates a nationwide air monitoring network to measure six primary air pollutants: carbon monoxide, lead, sulfur dioxide, ozone, nitrogen dioxide, and particulate matter as part of its mission to protect human health and the environment.

  4. Back-trajectory modeling of high time-resolution air measurement data to separate nearby sources

    Science.gov (United States)

    Strategies to isolate air pollution contributions from sources is of interest as voluntary or regulatory measures are undertaken to reduce air pollution. When different sources are located in close proximity to one another and have similar emissions, separating source emissions ...

  5. Rainier Mesa CAU Infiltration Model using INFILv3

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, Daniel G. [Los Alamos National Laboratory; Kwicklis, Edward M. [Los Alamos National Laboratory

    2012-07-13

    The outline of this presentation are: (1) Model Inputs - DEM, Precipitation, Air temp, Soil props, Surface geology, Vegetation; (2) Model Pre-processing - Runoff Routing and sinks, Slope and Azimuth, Soil Ksat reduction with slope (to mitigate bathtub ring), Soil-Bedrock Interface permeabilities; (3) Model Calibration - ET using PEST, Chloride mass balance data, Streamflow using PEST; (4) Model Validation - Streamflow data not used for calibration; (5) Uncertainty Analysis; and (6) Results. Conclusions are: (1) Average annual infiltration rates =11 to 18 mm/year for RM domain; (2) Average annual infiltration rates = 7 to 11 mm/year for SM domain; (3) ET = 70% of precipitation for both domains; (4) Runoff = 8-9% for RM; and 22-24% for SM - Apparently high average runoff is caused by the truncation of the lowerelevation portions of watersheds where much of the infiltration of runoff waters would otherwise occur; (5) Model results are calibrated to measured ET, CMB data, and streamflow observations; (6) Model results are validated using streamflow observations discovered after model calibration was complete; (7) Use of soil Ksat reduction with slope to mitigate bathtub ring was successful (based on calibration results); and (8) Soil-bedrock K{_}interface is innovative approach.

  6. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to indoor air pollution

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Lagercrantz, L.; Sundell, Jan

    2009-01-01

    The concentration of nitric oxide (NO) in exhaled and aspirated nasal air was used to objectively assess human response to indoor air pollutants in a climate chamber exposure experiment. The concentration of NO was measured before exposure, after 2, and 4.5 h of exposure, using a chemiluminescence...... by the exposures. The results may indicate an association between polluted indoor air and subclinical inflammation.Measurement of nitric oxide in exhaled air is a possible objective marker of subclinical inflammation in healthy adults....... NO analyzer. Sixteen healthy female subjects were exposed to two indoor air pollutants and to a clean reference condition for 4.5 h. Subjective assessments of the environment were obtained by questionnaires. After exposure (4.5 h) to the two polluted conditions a small increase in NO concentration in exhaled...

  7. Bromine measurements in ozone depleted air over the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. A. Neuman

    2010-07-01

    Full Text Available In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL. Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS study. Fast (1 s and sensitive (detection limits at the low pptv level measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere.

  8. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    Energy Technology Data Exchange (ETDEWEB)

    Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

    2010-05-10

    Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

  9. Unrestricted release measurements with ambient air ionization monitors

    International Nuclear Information System (INIS)

    MacArthur, D.; Gunn, R.; Dockray, T.; Luff, C.

    1999-01-01

    Radiation monitoring systems based on the long-range alpha detection (LRAD) technique, such as the BNFL Instruments IonSens trademark, provide a single contamination measurement for an entire object rather than the more familiar individual readings for smaller surface areas. The LRAD technique relies on the ionization of ambient air molecules by alpha particles, and the subsequent detection of these ions, rather than direct detection of the alpha particles themselves. A single monitor can detect all of the ions produced over a large object and report a total contamination level for the entire surface of that object. However, both the unrestricted release limits specified in USDOE Order 5400.5 (and similar documents in other countries), and the definitions of radioactive waste categories, are stated in terms of contamination per area. Thus, conversion is required between the total effective contamination as measured by the LRAD-based detector and the allowable release limits. In addition, since the release limits were not written assuming an averaging detector system, the method chosen to average the assumed contamination over the object can have a significant impact on the effective sensitivity of the detector

  10. Mobile system for on-road measurements of air pollutants

    Science.gov (United States)

    Katulski, Ryszard J.; Namieśnik, Jacek; Sadowski, Jarosław; Stefański, Jacek; Szymańska, Krystyna; Wardencki, Waldemar

    2010-04-01

    The paper presents a prototype of a mobile monitoring system for measuring the levels of the main traffic air pollutants (C6H6, NO2, NOx, CO, and CO2,) in cities. The novelty of the proposed system lies in the fact that it can be utilized to monitor emissions from urban traffic along roads and areas where traditional monitoring stations cannot be placed. In the proposed system, the monitoring device can be mounted on any moving vehicle (such as a car, bus, or truck) rather than be attached to a dedicated van, as most systems of this kind found in literature are. Analyzers used in this system are small portable structures that contain an electronic instrument to measure, record, and transmit relevant data on concentrations of the pollutants to a website. The model outcome for carbon monoxide obtained in functional tests in real conditions is also presented here. Data on temporal changes of carbon monoxide concentration are compared against meteorological parameters and speed of the vehicle. Spatial interpolation techniques are applied to obtain a nonplanar visualization of carbon monoxide and benzene concentrations in the main arteries of a city.

  11. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  12. Microwave assisted chemical vapor infiltration

    International Nuclear Information System (INIS)

    Devlin, D.J.; Currier, R.P.; Barbero, R.S.; Espinoza, B.F.; Elliott, N.

    1991-01-01

    A microwave assisted process for production of continuous fiber reinforced ceramic matrix composites is described. A simple apparatus combining a chemical vapor infiltration reactor with a conventional 700 W multimode oven is described. Microwave induced inverted thermal gradients are exploited with the ultimate goal of reducing processing times on complex shapes. Thermal gradients in stacks of SiC (Nicalon) cloths have been measured using optical thermometry. Initial results on the ''inside out'' deposition of SiC via decomposition of methyltrichlorosilane in hydrogen are presented. Several key processing issues are identified and discussed. 5 refs

  13. Comparison of infiltration models in NIT Kurukshetra campus

    Science.gov (United States)

    Singh, Balraj; Sihag, Parveen; Singh, Karan

    2018-05-01

    The aim of the present investigation is to evaluate the performance of infiltration models used to calculate the infiltration rate of the soils. Ten different locations were chosen to measure the infiltration rate in NIT Kurukshetra. The instrument used for the experimentation was double ring infiltrometer. Some of the popular infiltration models like Horton's, Philip's, Modified Philip's and Green-Ampt were fitted with infiltration test data and performance of the models was determined using Nash-Sutcliffe efficiency (NSE), coefficient of correlation (C.C) and Root mean square error (RMSE) criteria. The result suggests that Modified Philip's model is the most accurate model where values of C.C, NSE and RMSE vary from 0.9947-0.9999, 0.9877-0.9998 to 0.1402-0.6913 (mm/h), respectively. Thus, this model can be used to synthetically produce infiltration data in the absence of infiltration data under the same conditions.

  14. Air tightness measurements in older Danish single-family houses

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Bergsøe, Niels Christian

    2017-01-01

    of the building envelope of older buildings despite the fact that the air tightness has a major influence on the energy use. In connection with renovation of the Danish building stock, the coming years will see increased focus on the air tightness of the building envelope like in other countries. This paper...

  15. Demonstrations of Magnetic Phenomena: Measuring the Air Permeability Using Tablets

    Science.gov (United States)

    Lara, V. O. M.; Amaral, D. F.; Faria, D.; Vieira, L. P.

    2014-01-01

    We use a tablet to experimentally determine the dependencies of the magnetic field (B) on the electrical current and the axial distance from a coil (z). Our data shows good precision on the inverse cubic dependence of the magnetic field on the axial distance, B?z[superscript -3]. We obtain the value of air permeability µ[subscript air] with good…

  16. International conventions on air pollution abatement. Implementation measures

    International Nuclear Information System (INIS)

    Adler, S.; Groza, L.

    1996-01-01

    The environmental protection, the pollution reduction, their positive direct and indirect effects, the energy efficiency increase in using fossil fuels have an important role on the environmental and energy policies, as well as on the long-term planning. The report presents, under the new legislative context, the general frame from the implementation of concrete actions to fulfill the commitments contained in different environmental conventions, in which Romania is or intends to be a part. In this context it is presented the national approach for the implementation of two conventions: the United Nations Framework Convention on Climate Change and the Long-Range Transboundary Air Pollution, this under the United Nations Economic Commission for Europe. The report presents the necessary measures to reduce the emissions of carbon, sulfur and nitrogen oxides taking into account the process of the Romanian integration in the European structure as well as the dynamic of the economic reform. Romania is aware that the necessary environmental activities (research, design, environmental investments etc.) must be financed from internal resources, the own resources of the polluting economic units, the central and local budgets. (author). 7 refs

  17. Comparisons of Air Radiation Model with Shock Tube Measurements

    Science.gov (United States)

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  18. Radon concentration as an indicator of the indoor air quality: development of an efficient measurement method

    International Nuclear Information System (INIS)

    Roessler, F.A.

    2015-01-01

    Document available in abstract form only. Full text of publication follows: Energy conservation regulation could lead to a reduction of the air exchange rate and also a degradation of the indoor air quality. Present methods for the estimating the indoor air quality can only be implemented with limitations. This paper presents a method that allows the estimation of the indoor air quality under normal conditions by using natural radon as an indicator. With mathematical models, the progression of the air exchange rate is estimated by using the radon concentration. Furthermore, the progression of individual air pollutants is estimated. Through series of experiments in a measurement chamber, the modelling could be verified. (author)

  19. Effect of cigarette smoke on the measured equivalent volume activity of 222Rn in air

    International Nuclear Information System (INIS)

    Tuckova, S.; Tykva, R.

    1994-01-01

    The effect of cigarette smoke in air on the increase of the measured equivalent volume activity of 222 Rn is demonstrated. After introduction of the smoke from one cigarette into 1 m 3 of air, this value increased up to ten times as shown be the method of sucking air through a filter. (author) 5 refs.; 1 fig

  20. Measurement of Vehicle Air Conditioning Pull-Down Period

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John F [ORNL; Huff, Shean P [ORNL; Moore, Larry G [ORNL; West, Brian H [ORNL

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner system would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.

  1. Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements

    Directory of Open Access Journals (Sweden)

    E. S. Cross

    2017-09-01

    Full Text Available The environments in which we live, work, and play are subject to enormous variability in air pollutant concentrations. To adequately characterize air quality (AQ, measurements must be fast (real time, scalable, and reliable (with known accuracy, precision, and stability over time. Lower-cost air-quality-sensor technologies offer new opportunities for fast and distributed measurements, but a persistent characterization gap remains when it comes to evaluating sensor performance under realistic environmental sampling conditions. This limits our ability to inform the public about pollution sources and inspire policy makers to address environmental justice issues related to air quality. In this paper, initial results obtained with a recently developed lower-cost air-quality-sensor system are reported. In this project, data were acquired with the ARISense integrated sensor package over a 4.5-month time interval during which the sensor system was co-located with a state-operated (Massachusetts, USA air quality monitoring station equipped with reference instrumentation measuring the same pollutant species. This paper focuses on validating electrochemical (EC sensor measurements of CO, NO, NO2, and O3 at an urban neighborhood site with pollutant concentration ranges (parts per billion by volume, ppb; 5 min averages, ±1σ: [CO]  =  231 ± 116 ppb (spanning 84–1706 ppb, [NO]  =  6.1 ± 11.5 ppb (spanning 0–209 ppb, [NO2]  =  11.7 ± 8.3 ppb (spanning 0–71 ppb, and [O3]  =  23.2 ± 12.5 ppb (spanning 0–99 ppb. Through the use of high-dimensional model representation (HDMR, we show that interference effects derived from the variable ambient gas concentration mix and changing environmental conditions over three seasons (sensor flow-cell temperature  =  23.4 ± 8.5 °C, spanning 4.1 to 45.2 °C; and relative humidity  =  50.1 ± 15.3 %, spanning 9.8–79.9

  2. Ecoflex: Improving air quality with green dynamic traffic management based on real time air quality measurements

    NARCIS (Netherlands)

    Baalen, J. van; Koning, A. de; Voogt, M.; Stelwagen, U.; Turksma, S.

    2011-01-01

    Across the world, air quality regulations are breached due to localized high pollution episodes in specific locations, or "hotspots". Advances in air pollution monitoring techniques enable hotspots to be identified more effectively; however challenges remain as to how best to reduce the incidence

  3. Computation and measurement of air temperature distribution of an industrial melt blowing die

    Directory of Open Access Journals (Sweden)

    Wu Li-Li

    2014-01-01

    Full Text Available The air flow field of the dual slot die on an HDF-6D melt blowing non-woven equipment is computed numerically. A temperature measurement system is built to measure air temperatures. The computation results tally with the measured results proving the correctness of the computation. The results have great valuable significance in the actual melt blowing production.

  4. Alpha radioactivity measurement technology with ionized air type measurement. Applicability evaluation to verification of the clearance level

    International Nuclear Information System (INIS)

    Mita, Yutaka; Matsumura, Toshihiro; Yokoyama, Kaoru; Sugitsue, Noritake

    2008-10-01

    The purpose of this test is to evaluate the applicability of the clearance level measuring system by Ionized Air Type Measurement after decontaminated by sulfuric acid sample. In Ningyo-toge Environmental Engineering Center. The equipment and radioactive waste which were contaminated with uranium are generated so much in future dismantling stage. In our plan, some of equipments and radioactive waste are contaminated to a clearance level, and cut down on decommission and disposal expense. This plan needs the alpha-rays measurement technology of the very low level. We think that ionized Air transfer measurement technology is promising as of clearance verification technology. The ionized Air transfer measurement technology applied to the Ionized Air Type Measurement can measure plan radioactivity of a very low level. Moreover, as compared with a direct survey, there is the merit which can be measured in a short time. However ionized Air transfer measurement technology is new technology. Therefore, there is almost no measurement track record. Furthermore, the date about the influence of a background, a detection limit, measurement performance, and reliability is insufficient. So, this measurement test estimated applicability as clearance level verification of an Ionized Air Type Measurement. (author)

  5. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    Science.gov (United States)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  6. Estimation of uncertainty in tracer gas measurement of air change rates.

    Science.gov (United States)

    Iizuka, Atsushi; Okuizumi, Yumiko; Yanagisawa, Yukio

    2010-12-01

    Simple and economical measurement of air change rates can be achieved with a passive-type tracer gas doser and sampler. However, this is made more complex by the fact many buildings are not a single fully mixed zone. This means many measurements are required to obtain information on ventilation conditions. In this study, we evaluated the uncertainty of tracer gas measurement of air change rate in n completely mixed zones. A single measurement with one tracer gas could be used to simply estimate the air change rate when n = 2. Accurate air change rates could not be obtained for n ≥ 2 due to a lack of information. However, the proposed method can be used to estimate an air change rate with an accuracy of air change rate can be avoided. The proposed estimation method will be useful in practical ventilation measurements.

  7. Technical assessment of air quality measuring analyzers; Evaluation technique des analyseurs de mesure de la qualite de l`air

    Energy Technology Data Exchange (ETDEWEB)

    Tatry, V. [Laboratoire de mesures a l`air ambiant, Dept. Mesures et Analyses, INERIS, (France)

    1996-12-31

    Air quality measuring analyzers are assessed in order to verify their measuring performance and to examine their aptitude to field measurements. For ensuring such assessment, the INERIS institute (France) disposes of three climatic enclosures, gas mixture emission systems and data acquisition systems. The assessment methodology is presented together with the various possible results: response time, linearity and limits determination, calibration studies, thresholds, drifts, hysteresis, physical detrimental effects, etc. Applications such as analyzers for one or more pollutants in ambient air and at the emission source (portable multi-gas analyzers) are presented, together with their results

  8. Measuring the Air Quality and Transportation Impacts of Infill Development

    Science.gov (United States)

    This report summarizes three case studies. The analysis shows how standard forecasting tools can be modified to capture at least some of the transportation and air quality benefits of brownfield and infill development.

  9. Air Quality Measures on the National Environmental Health Tracking Network

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Environmental Protection Agency (EPA) provides air pollution data about ozone and particulate matter (PM2.5) to CDC for the Tracking Network. The EPA maintains a...

  10. Plans and Measures for Avoiding Casting-Air-Pollution

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jian

    2003-01-01

    This article presents plans of preventing casting-air-pollution in practice, and some avoiding methods in detail. In modern times, environment protection is looked high upon day by day; green-casting thus becomes more and more important.

  11. Air Traffic Complexity Measurement Environment (ACME): Software User's Guide

    Science.gov (United States)

    1996-01-01

    A user's guide for the Air Traffic Complexity Measurement Environment (ACME) software is presented. The ACME consists of two major components, a complexity analysis tool and user interface. The Complexity Analysis Tool (CAT) analyzes complexity off-line, producing data files which may be examined interactively via the Complexity Data Analysis Tool (CDAT). The Complexity Analysis Tool is composed of three independently executing processes that communicate via PVM (Parallel Virtual Machine) and Unix sockets. The Runtime Data Management and Control process (RUNDMC) extracts flight plan and track information from a SAR input file, and sends the information to GARP (Generate Aircraft Routes Process) and CAT (Complexity Analysis Task). GARP in turn generates aircraft trajectories, which are utilized by CAT to calculate sector complexity. CAT writes flight plan, track and complexity data to an output file, which can be examined interactively. The Complexity Data Analysis Tool (CDAT) provides an interactive graphic environment for examining the complexity data produced by the Complexity Analysis Tool (CAT). CDAT can also play back track data extracted from System Analysis Recording (SAR) tapes. The CDAT user interface consists of a primary window, a controls window, and miscellaneous pop-ups. Aircraft track and position data is displayed in the main viewing area of the primary window. The controls window contains miscellaneous control and display items. Complexity data is displayed in pop-up windows. CDAT plays back sector complexity and aircraft track and position data as a function of time. Controls are provided to start and stop playback, adjust the playback rate, and reposition the display to a specified time.

  12. Modified design in new construction prevents infiltration of soil gas that carries radon

    International Nuclear Information System (INIS)

    Ericson, S.O.; Schmied, H.

    1987-01-01

    Dwellings located on permeable soil with strong exhalation of radon often get a contribution to indoor radon from infiltrating soil gas carrying radon from the ground into the building. 100 dwellings have been built on radon dangerous land with different modifications in design and construction in order to prevent infiltration of radon. Tight construction, ventilated crawl space, ventilation/depressurization of the capillary breaking layer (crushed stone), and mechanical ventilation with heat recovery by air to air heat exchangers or heat pumps have been tested. Added building costs and measured concentration of radon after construction and 3-5 years later are reported. It is concluded that it is possible to build radon protective and radon safe dwellings on any land. The added costs have ranged from zero to 4% of total building costs

  13. Impenetrable infiltration: Air permeability of Dutch dwellings

    Directory of Open Access Journals (Sweden)

    Bram Entrop

    2014-11-01

    Full Text Available Het is wenselijk dat gebouwen beschikken over voldoende en de juiste mogelijkheden om te ventileren. Buiten de benodigde ventilatievoorzieningen is het echter de bedoeling een gebouw zo luchtdicht mogelijk te maken ten einde comfortklachten en onnodig energiegebruik te voorkomen. In het Bouwbesluit zijn eisen met betrekking tot de luchtdoorlatendheid – het tegenovergestelde van luchtdichtheid – opgenomen. Met betrekking tot een heel gebouw wordt in Art. 5.4 lid 1 het volgende geëist: De volgens NEN 2686 bepaalde luchtvolumestroom van het totaal aan verblijfsgebieden, toiletruimten en badruimten van een gebruiksfunctie is niet groter dan 0,2 m³/s. De Universiteit Twente en de Technische Universiteit Eindhoven hebben samen met het bouwbedrijf SelektHuis gewerkt aan de uitvoering van het onderzoek “Impenetrable Infiltration”. Dit onderzoek naar de luchtdoorlatendheid van woningen kent drie onderdelen, namelijk:  A. Een veldonderzoek waarbij luchtdichtheidsmetingen worden uitgevoerd op vrijstaande woningen om zo te bepalen tegen welke keuzemogelijkheden luchtdichtheidsmeters en uitvoerende bouwondernemingen aanlopen om de luchtvolumestroom te beïnvloeden; B. Een deskstudie waarbij rapportages van luchtdichtheidsmetingen worden bestudeerd om zo te bepalen wat de huidige stand van zaken is betreffende de luchtdichtheid van woningen; C. Een vergelijkend praktijkonderzoek naar het bepalen van de luchtdichtheid, waarbij drie partijen de luchtdichtheid van dezelfde duurzaam gebouwde vrijstaande woning zullen vaststellen. Om de veldstudie en het praktijkonderzoek uit te kunnen voeren, is de nodige apparatuur aangeschaft. Er is gebruik gemaakt van een blower door, een ventilator en een digitale manometer. Tevens is er tijdens de metingen gebruik gemaakt van twee dataloggers om de luchtdruk, binnen- en buitentemperatuur elke minuut vast te leggen. Er werd een anemometer gebruikt om de windsnelheid op locatie te bepalen. Om inzicht te krijgen waar eventuele lekken zich bevonden, werden een rookmachine en een infraroodcamera ingezet.

  14. Correlation and uncertainties evaluation in backscattering of entrance surface air kerma measurements

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, G.J.; Sousa, C.H.S.; Peixoto, J.G.P., E-mail: gt@ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The air kerma measurement is important to verify the applied doses in radiodiagnostic. The literature determines some methods to measure the entrance surface air kerma or entrance surface dose but some of this methods may increase the measurement with the backscattering. Were done setups of measurements to do correlations between them. The expanded uncertainty exceeded 5% for measurements with backscattering, reaching 8.36%, while in situations where the backscattering was avoided, the uncertainty was 3.43%. (author)

  15. Direct measurement of homogeneously distributed radioactive air contamination with germanium detectors

    International Nuclear Information System (INIS)

    Sowa, W.

    1990-01-01

    Air contamination by γ emitting radionuclides was measured with a vertically arranged germanium detector, laterally shielded by a lead ring, and calibration factors and detection limits of a number of fission products determined. The possibility of measuring simultaneously existing air and soil contamination by measurements with and without lead shield is described. The change of detection limit of air contamination is presented for different soil contamination levels by the same radionuclide. Calibration factors are given to determine the dose rate on the ground due to air contamination by different radionuclides. (author)

  16. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces

    Directory of Open Access Journals (Sweden)

    Matthias J. Mayser

    2014-06-01

    Full Text Available Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m2 depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes.

  17. Infiltrating giant cellular blue naevus.

    Science.gov (United States)

    Bittencourt, A L; Monteiro, D A; De Pretto, O J

    2007-01-01

    Cellular blue naevi (CBN) measure 1-2 cm in diameter and affect the dermis, occasionally extending into the subcutaneous fat. The case of a 14-year-old boy with a giant CBN (GCBN) involving the right half of the face, the jugal mucosa and the lower eyelid with a tumour that had infiltrated the bone and the maxillary and ethmoidal sinuses is reported. Biopsies were taken from the skin, jugal mucosa and maxillary sinus. The following markers were used in the immunohistochemical evaluation: CD34, CD56, HMB-45, anti-S100, A-103, Melan A and MIB-1. The biopsy specimens showed a biphasic pattern affecting the lower dermis, subcutaneous fat, skeletal muscle, bone, jugal mucosa and maxillary sinus, but there was no histological evidence of malignancy. The tumour cells were CD34-, CD56-, HMB45+, anti-S100+ and A-103+. Melan A was focally expressed. No positive MIB-1 cells were identified. The present case shows that GCBN may infiltrate deeply, with no evidence of malignancy.

  18. Spectrally resolved measurements of the terahertz beam profile generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Zalkovskij, Maksim; Strikwerda, Andrew

    2014-01-01

    Using a THz camera and THz bandpass filters, we measure the frequency - resolved beam profile emitted from a two - color air plasma. We observe a frequency - independent emission angle from the plasma .......Using a THz camera and THz bandpass filters, we measure the frequency - resolved beam profile emitted from a two - color air plasma. We observe a frequency - independent emission angle from the plasma ....

  19. Real-time monitoring of emissions with traffic data, simulation and air quality measurements

    NARCIS (Netherlands)

    Klunder, G.A.; Wilmink, I.R.

    2009-01-01

    This paper investigates the possibility to decide when to apply a (dynamic) traffic management measure to improve the air quality or reduce CO2 emissions, based on a limited set of (measured) data. It is expected that a combination of monitoring and modeling is needed for reliable air quality

  20. 30 CFR 75.320 - Air quality detectors and measurement devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air quality detectors and measurement devices... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.320 Air quality detectors and measurement devices. (a) Tests for methane shall be made by a qualified person with...

  1. A Simple Experiment To Measure the Content of Oxygen in the Air Using Heated Steel Wool

    Science.gov (United States)

    Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar

    2011-01-01

    The typical experiment to measure the oxygen content in the atmosphere uses the rusting of steel wool inside a closed volume of air. Two key aspects of this experiment that make possible a successful measurement of the content of oxygen in the air are the use of a closed atmosphere and the use of a chemical reaction that involves the oxidation of…

  2. Air refractometry in a length comparator and the response to changes in the measurement environment

    Energy Technology Data Exchange (ETDEWEB)

    Pieles, H

    1998-11-01

    Two different interference refractometers and one air parameter set-up are simultaneously operated in a temperature-stabilized casing of a length comparator. They allow absolute and relative measurements and calculations, respectively of the refractive index of air to be carried out for continuous interferometric length measurements. Measurement results are presented which were obtained under optimized environmental conditions. In addition, sources of disturbances are described which can significantly influence the measurements of the refractive index of air, and consequently may influence the accuracy of interferometric displacement measurements. (orig.)

  3. Three Mile Island ambient-air-temperature sensor measurements

    International Nuclear Information System (INIS)

    Fryer, M.O.

    1983-01-01

    Data from the ambient-air-temperature sensors in Three Mile Island-Unit 2 (TMI-2) reactor containment building are analyzed. The data were for the period of the hydrogen burn that was part of the TMI-2 accident. From the temperature data, limits are placed on the duration of the hydrogen burn

  4. Millimeter Wave Attenuation in Moist Air: Laboratory Measurements and Analysis.

    Science.gov (United States)

    1984-03-01

    generation of incoherent noise, Mnd wavelengths. (e) scintillitions due to random fluctuations of the medium in space and time. The array of mathematical ...calculations are for observations in the zenith direction free air is very empty. The molecular radius r -1.5 x ICI-4 Lem. groud lvel Coaic aditio of

  5. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    International Nuclear Information System (INIS)

    Uddi, M; Jiang, N; Adamovich, I V; Lempert, W R

    2009-01-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ∼8 x 10 12 cm -3 (∼4.14 ppm) occurring at ∼250 μs after the pulse, with decay time of ∼16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of ψ = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of ψ = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N 2 (C 3 Π) and NO(A 2 Σ) in air at P = 60 Torr decay within ∼20 ns and ∼1 μs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (∼100 μs) metastable states, such as N 2 (X 1 Σ,v) and O 2 (b 1 Σ), formed by quenching of the metastable N 2 (A 3 Σ) state by ground electronic state O 2 , may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O 2 , as well as by conversion into NO 2 in a reaction

  6. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    Science.gov (United States)

    Uddi, M.; Jiang, N.; Adamovich, I. V.; Lempert, W. R.

    2009-04-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ~8 × 1012 cm-3 (~4.14 ppm) occurring at ~250 µs after the pulse, with decay time of ~16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of phiv = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of phiv = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N2(C 3Π) and NO(A 2Σ) in air at P = 60 Torr decay within ~20 ns and ~1 µs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (~100 µs) metastable states, such as N2(X 1Σ,v) and O2(b 1Σ), formed by quenching of the metastable N2(A 3Σ) state by ground electronic state O2, may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O2, as well as by conversion into NO2 in a reaction of NO with ozone.

  7. Technology of Measuring equipment for Air Pollution. Development of Mobile Air Pollution monitoring system (LIDAR)

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Song, Ky Seok; Rhee, Young Joo; Kim, Duck Hyun; Yang, Ki Ho; Lee, Jong Min; Cha, Byung Heon; Lee, Kang Soo

    1999-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment process and provides pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR (Light detection and ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The goal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols

  8. Technology of Measuring equipment for Air Pollution. Development of Mobile Air Pollution monitoring system (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Ky Seok; Rhee, Young Joo; Kim, Duck Hyun; Yang, Ki Ho; Lee, Jong Min; Cha, Byung Heon; Lee, Kang Soo

    1999-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment process and provides pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR (Light detection and ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The goal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols.

  9. High-precision diode-laser-based temperature measurement for air refractive index compensation.

    Science.gov (United States)

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppä, Jeremias; Lassila, Antti

    2011-11-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement. © 2011 Optical Society of America

  10. High-precision diode-laser-based temperature measurement for air refractive index compensation

    International Nuclear Information System (INIS)

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppae, Jeremias; Lassila, Antti

    2011-01-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlen equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.

  11. water infiltration, conductivity and runoff under fallow

    African Journals Online (AJOL)

    Measurements of runoff was done during the long rains of. 2003 and short rains of 2004. Infiltration was invariably higher under agroforestry systems (P<0.001) than sole cropping, particularly under Alnus and Calliandra systems. A similar pattern was observed for saturated hydraulic conductivity (Ksat), which was greater in ...

  12. Measures against the adverse impact of natural wind on air-cooled condensers in power plant

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The natural wind plays disadvantageous roles in the operation of air-cooled steam condensers in power plant.It is of use to take various measures against the adverse effect of wind for the performance improvement of air-cooled condensers.Based on representative 2×600 MW direct air-cooled power plant,three ways that can arrange and optimize the flow field of cooling air thus enhance the heat transfer of air-cooled condensers were proposed.The physical and mathematical models of air-cooled condensers with various flow leading measures were presented and the flow and temperature fields of cooling air were obtained by CFD simulation.The back pressures of turbine were calculated for different measures on the basis of the heat transfer model of air-cooled condensers.The results show that the performance of air-cooled condensers is improved thus the back pressure of turbine is lowered to some extent by taking measures against the adverse impact of natural wind.

  13. Measurement and prediction of indoor air quality using a breathing thermal manikin.

    Science.gov (United States)

    Melikov, A; Kaczmarczyk, J

    2007-02-01

    The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip at a distance of measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method for predicting air acceptability based on inhaled air parameters and known exposure-response relationships established in experiments with human subjects is suggested. Recommendations for optimal simulation of human breathing by means of a breathing thermal manikin when studying pollution concentration, temperature and humidity of the inhaled air as well as the transport of exhaled air (which may carry infectious agents) between occupants are outlined. In order to compare results obtained with breathing thermal manikins, their nose and mouth geometry should be standardized.

  14. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  15. Measurement and prediction of indoor air quality using a breathing thermal manikin

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2007-01-01

    temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip...... at a distance of measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method......The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface...

  16. Measurement and Modelling of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Heiselberg, Per; Kalyanova, Olena; Jensen, Rasmus Lund

    2008-01-01

    Air flow rate in a naturally ventilated double skin façade (DSF) is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes the results of two different methods to measure the air flow in a full...... by the thermal simulation program, BSim, based on measured weather boundary conditions are compared to the measured air temperature, temperature gradient and mass flow rate in the DSF cavity. The results show that it is possible to predict the temperature distribution and airflow in the DSF although some......-scale outdoor test facility with a naturally ventilated double skin façade. Although both methods are difficult to use under such dynamic air flow conditions, they show reasonable agreement and can be used for experimental validation of numerical models of natural ventilation air flow in DSF. Simulations...

  17. Estimation of Uncertainty in Tracer Gas Measurement of Air Change Rates

    Directory of Open Access Journals (Sweden)

    Atsushi Iizuka

    2010-12-01

    Full Text Available Simple and economical measurement of air change rates can be achieved with a passive-type tracer gas doser and sampler. However, this is made more complex by the fact many buildings are not a single fully mixed zone. This means many measurements are required to obtain information on ventilation conditions. In this study, we evaluated the uncertainty of tracer gas measurement of air change rate in n completely mixed zones. A single measurement with one tracer gas could be used to simply estimate the air change rate when n = 2. Accurate air change rates could not be obtained for n ≥ 2 due to a lack of information. However, the proposed method can be used to estimate an air change rate with an accuracy of

  18. Measuring Light Air Ions in a Speleotherapeutic Cave

    Czech Academy of Sciences Publication Activity Database

    Roubal, Z.; Bartušek, Karel; Szabó, Z.; Drexler, P.; Überhuberová, J.

    2017-01-01

    Roč. 17, č. 1 (2017), s. 27-36 ISSN 1335-8871 R&D Projects: GA MŠk(CZ) LO1212; GA ČR GA13-09086S Institutional support: RVO:68081731 Keywords : speleotherapy * air ions * Gerdien tube * climatology Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.344, year: 2016

  19. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  20. Measure Guideline. Air Conditioner Diagnostics, Maintenance, and Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, Bill [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  1. Air Flow and Pressure Drop Measurements Across Porous Oxides

    Science.gov (United States)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  2. DEEP INFILTRATING ENDOMETRIOSIS

    Directory of Open Access Journals (Sweden)

    Martina Ribič-Pucelj

    2018-02-01

    Full Text Available Background: Endometriosis is not considered a unified disease, but a disease encompassing three differ- ent forms differentiated by aetiology and pathogenesis: peritoneal endometriosis, ovarian endometriosis and deep infiltrating endometriosis (DIE. The disease is classified as DIE when the lesions penetrate 5 mm or more into the retroperitoneal space. The estimated incidence of endometriosis in women of reproductive age ranges from 10–15 % and that of DIE from 3–10 %, the highest being in infertile women and in those with chronic pelvic pain. The leading symptoms of DIE are chronic pelvic pain which increases with age and correlates with the depth of infiltration and infertility. The most important diagnostic procedures are patient’s history and proper gynecological examination. The diagnosis is confirmed with laparoscopy. DIE can affect, beside reproductive organs, also bowel, bladder and ureters, therefore adi- tional diagnostic procedures must be performed preopertively to confirm or to exclude the involvement of the mentioned organs. Endometriosis is hormon dependent disease, there- fore several hormonal treatment regims are used to supress estrogen production but the symptoms recurr soon after caesation of the treatment. At the moment, surgical treatment with excision of all lesions, including those of bowel, bladder and ureters, is the method of choice but requires frequently interdisciplinary approach. Surgical treatment significantly reduces pain and improves fertility in inferile patients. Conclusions: DIE is not a rare form of endometriosis characterized by chronic pelvic pain and infertility. Medical treatment is not efficient. The method of choice is surgical treatment with excision of all lesions. It significantly reduces pelvic pain and enables high spontaneus and IVF preg- nacy rates.Therefore such patients should be treated at centres with experience in treatment of DIE and with possibility of interdisciplinary approach.

  3. Measurement of concentration and size distribution of radon decay products in homes using air cleaners

    International Nuclear Information System (INIS)

    Montassier, N.; Hopke, P.K.; Shi, Y.; McCallum, B.

    1992-01-01

    By removing particles, air cleaners can also eliminate radon decay products. However, by removing the particles, the open-quotes unattachedclose quotes fraction of the radon progeny is increased leading to a higher dose per unit exposure. Thus, both the concentration and size distributions of the radon decay products are needed to evaluate air cleaners. Three types of room air cleaners, NO-RAD Radon Removal System, Electronic Air Cleaner and PUREFLOW Air Treatment System were tested in a single family home in Arnprior, Ontario (Canada). Semi-continuous measurements of radon gas concentration and radon decay product activity weighted size distribution were performed in the kitchen/dining room under real living conditions. The effects of air cleaners on both the concentration and size distribution of the radon decay products were measured, and their impact on the dose of radiation given to the lung tissue were examined

  4. Measurement of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2007-01-01

    Air flow rate in a naturally ventilated space is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes three different methods to measure the air flow in a full-scale outdoor test facility...... with a naturally ventilated double skin façade. In the first method, the air flow in the cavity is estimated on the basis of six measured velocity profiles. The second method is represented by constant injection of tracer gas and in the third method a measured relation in the laboratory is used to estimate...... the flow rate on the basis of continues measurement of the pressure difference between the surface pressure at the opening and inside pressure of the double skin façade. Although all three measurement methods are difficult to use under such dynamic air flow conditions, two of them show reasonable agreement...

  5. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  6. Thermal separation of soil particles from thermal conductivity measurement under various air pressures.

    Science.gov (United States)

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-05

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  7. A UAV-based active AirCore system for measurements of greenhouse gases

    Science.gov (United States)

    Andersen, Truls; Scheeren, Bert; Peters, Wouter; Chen, Huilin

    2018-05-01

    We developed and field-tested an unmanned aerial vehicle (UAV)-based active AirCore for atmospheric mole fraction measurements of CO2, CH4, and CO. The system applies an alternative way of using the AirCore technique invented by NOAA. As opposed to the conventional concept of passively sampling air using the atmospheric pressure gradient during descent, the active AirCore collects atmospheric air samples using a pump to pull the air through the tube during flight, which opens up the possibility to spatially sample atmospheric air. The active AirCore system used for this study weighs ˜ 1.1 kg. It consists of a ˜ 50 m long stainless-steel tube, a small stainless-steel tube filled with magnesium perchlorate, a KNF micropump, and a 45 µm orifice working together to form a critical flow of dried atmospheric air through the active AirCore. A cavity ring-down spectrometer (CRDS) was used to analyze the air samples on site not more than 7 min after landing for mole fraction measurements of CO2, CH4, and CO. We flew the active AirCore system on a UAV near the atmospheric measurement station at Lutjewad, located in the northwest of the city of Groningen in the Netherlands. Five consecutive flights took place over a 5 h period on the same morning, from sunrise until noon. We validated the measurements of CO2 and CH4 from the active AirCore against those from the Lutjewad station at 60 m. The results show a good agreement between the measurements from the active AirCore and the atmospheric station (N = 146; R2CO2: 0.97 and R2CH4: 0.94; and mean differences: ΔCO2: 0.18 ppm and ΔCH4: 5.13 ppb). The vertical and horizontal resolution (for CH4) at typical UAV speeds of 1.5 and 2.5 m s-1 were determined to be ±24.7 to 29.3 and ±41.2 to 48.9 m, respectively, depending on the storage time. The collapse of the nocturnal boundary layer and the buildup of the mixed layer were clearly observed with three consecutive vertical profile measurements in the early morning hours. Besides

  8. Seasonal variation of infiltration capacities of soils in western Oregon.

    Science.gov (United States)

    Michael G. Johnson; Robert L. Beschta

    1981-01-01

    Infiltration capacities were 50 percent greater during fall than during summer for forest soils of western Oregon. These results contrast with those measured in other studies. In forested areas, investigators should be aware of potentially large seasonal changes in infiltration capacities. Such seasonal changes may exceed effects due to applied treatments (logging,...

  9. Analysis and integrated modelling of groundwater infiltration to sewer networks

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Balling, Jonas Dueholm; Larsen, Uffe Bay Bøgh

    2016-01-01

    Infiltration of groundwater to sewer systems is a problem for the capacity of the system as well as for treatment processes at waste water treatment plants. This paper quantifies the infiltration of groundwater to a sewer system in Frederikshavn Municipality, Denmark, by measurements of sewer flo...

  10. Twenty years of measurement of polycyclic aromatic hydrocarbons (PAHs) in UK ambient air by nationwide air quality networks.

    Science.gov (United States)

    Brown, Andrew S; Brown, Richard J C; Coleman, Peter J; Conolly, Christopher; Sweetman, Andrew J; Jones, Kevin C; Butterfield, David M; Sarantaridis, Dimitris; Donovan, Brian J; Roberts, Ian

    2013-06-01

    The impact of human activities on the health of the population and of the wider environment has prompted action to monitor the presence of toxic compounds in the atmosphere. Toxic organic micropollutants (TOMPs) are some of the most insidious and persistent of these pollutants. Since 1991 the United Kingdom has operated nationwide air quality networks to assess the presence of TOMPs, including polycyclic aromatic hydrocarbons (PAHs), in ambient air. The data produced in 2010 marked 20 years of nationwide PAH monitoring. This paper marks this milestone by providing a novel and critical review of the data produced since nationwide monitoring began up to the end of 2011 (the latest year for which published data is available), discussing how the networks performing this monitoring has evolved, and elucidating trends in the concentrations of the PAHs measured. The current challenges in the area and a forward look to the future of air quality monitoring for PAHs are also discussed briefly.

  11. Stormwater infiltration and the 'urban karst' - A review

    Science.gov (United States)

    Bonneau, Jeremie; Fletcher, Tim D.; Costelloe, Justin F.; Burns, Matthew J.

    2017-09-01

    The covering of native soils with impervious surfaces (e.g. roofs, roads, and pavement) prevents infiltration of rainfall into the ground, resulting in increased surface runoff and decreased groundwater recharge. When this excess water is managed using stormwater drainage systems, flow and water quality regimes of urban streams are severely altered, leading to the degradation of their ecosystems. Urban streams restoration requires alternative approaches towards stormwater management, which aim to restore the flow regime towards pre-development conditions. The practice of stormwater infiltration-achieved using a range of stormwater source-control measures (SCMs)-is central to restoring baseflow. Despite this, little is known about what happens to the infiltrated water. Current knowledge about the impact of stormwater infiltration on flow regimes was reviewed. Infiltration systems were found to be efficient at attenuating high-flow hydrology (reducing peak magnitudes and frequencies) at a range of scales (parcel, streetscape, catchment). Several modelling studies predict a positive impact of stormwater infiltration on baseflow, and empirical evidence is emerging, but the fate of infiltrated stormwater remains unclear. It is not known how infiltrated water travels along the subsurface pathways that characterise the urban environment, in particular the 'urban karst', which results from networks of human-made subsurface pathways, e.g. stormwater and sanitary sewer pipes and associated high permeability trenches. Seepage of groundwater into and around such pipes is possible, meaning some infiltrated stormwater could travel along artificial pathways. The catchment-scale ability of infiltration systems to restore groundwater recharge and baseflow is thus ambiguous. Further understanding of the fate of infiltrated stormwater is required to ensure infiltration systems deliver optimal outcomes for waterway flow regimes.

  12. New website SOLVE on traffic measures for a better air quality

    International Nuclear Information System (INIS)

    Hesselmans, T.

    2007-01-01

    SOLVE is the Dutch abbreviation for fast solutions for air and traffic and is a website by means of which provinces and municipalities in the Netherlands can gain insight into the best measures for traffic to improve the quality of the ambient air [nl

  13. Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry

    NARCIS (Netherlands)

    van der Veen, Roeland; Tran, Tuan; Lohse, Detlef; Sun, Chao

    2012-01-01

    A drop impacting on a solid surface deforms before the liquid makes contact with the surface. We directly measure the time evolution of the air layer profile under the droplet using high-speed color interferometry, obtaining the air layer thickness before and during the wetting process. Based on the

  14. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    Science.gov (United States)

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the…

  15. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  16. Laboratory measurements of the influence of air treatment devices on radon daughters

    International Nuclear Information System (INIS)

    Rajala, M.; Janka, K.; Graeffe, G.; Kulmala, V.; Lehtimaeki, M.

    1984-01-01

    This paper presents laboratory measurements in which the effect of air cleaners on radon decay products has been studied. Experiments show that both a high-efficiency particulate air filter and an electrostatic precipitator substantially decrease the total airborne radon daughter concentration leading to a situation where most of the decay products are unattached. However, in some situations the concentration of fine particles generated by the corona discharge in the electronic air cleaner becomes high enough to increase the total radon daughter concentration and decrease the free decay product concentration. Impurities in the air may have a notable role in the formation of these condensation nuclei. (Author)

  17. Measurements and predictions of the air distribution systems in high compute density (Internet) data centers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jinkyun [HIMEC (Hanil Mechanical Electrical Consultants) Ltd., Seoul 150-103 (Korea); Department of Architectural Engineering, Yonsei University, Seoul 120-749 (Korea); Lim, Taesub; Kim, Byungseon Sean [Department of Architectural Engineering, Yonsei University, Seoul 120-749 (Korea)

    2009-10-15

    When equipment power density increases, a critical goal of a data center cooling system is to separate the equipment exhaust air from the equipment intake air in order to prevent the IT server from overheating. Cooling systems for data centers are primarily differentiated according to the way they distribute air. The six combinations of flooded and locally ducted air distribution make up the vast majority of all installations, except fully ducted air distribution methods. Once the air distribution system (ADS) is selected, there are other elements that must be integrated into the system design. In this research, the design parameters and IT environmental aspects of the cooling system were studied with a high heat density data center. CFD simulation analysis was carried out in order to compare the heat removal efficiencies of various air distribution systems. The IT environment of an actual operating data center is measured to validate a model for predicting the effect of different air distribution systems. A method for planning and design of the appropriate air distribution system is described. IT professionals versed in precision air distribution mechanisms, components, and configurations can work more effectively with mechanical engineers to ensure the specification and design of optimized cooling solutions. (author)

  18. Diffuse infiltrative lung disease

    International Nuclear Information System (INIS)

    Niden, A.H.; Mishkin, F.S.

    1984-01-01

    The authors discuss their approach to the diagnosis and management of patients with DILD. Gallium scans play a central role in this process. Not only do they help them decide whom to biopsy, but also where to biopsy. The scans can be used for the early detection of disease in a high-risk population, for following the progression and regression of disease, for the regulation of medication, and for the evaluation of therapy. Bronchoalveolar lung lavage appears to be equally sensitive. However, patients are less willing to undergo repeated fiberoptic bronchoscopies than lung scans. Both tests may prove useful, one complementing the other. Gallium imaging has also been utilized by the authors in select patients with questionable diffuse lung infiltrates roentgenographically or with a normal chest roentgenogram, chronic respiratory symptoms, and abnormal pulmonary function studies. An abnormal gallium lung scan in these clinical situations helps them select which patients have a diffuse active pulmonary process meriting transbronchial biopsies. This has proven to be of particular value in the management of older patients

  19. An induced current method for measuring zeta potential of electrolyte solution-air interface.

    Science.gov (United States)

    Song, Yongxin; Zhao, Kai; Wang, Junsheng; Wu, Xudong; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2014-02-15

    This paper reports a novel and very simple method for measuring the zeta potential of electrolyte solution-air interface. When a measuring electrode contacts the electrolyte solution-air interface, an electrical current will be generated due to the potential difference between the electrode-air surface and the electrolyte solution-air interface. The amplitude of the measured electric signal is linearly proportional to this potential difference; and depends only on the zeta potential at the electrolyte solution-air interface, regardless of the types and concentrations of the electrolyte. A correlation between the zeta potential and the measured voltage signal is obtained based on the experimental data. Using this equation, the zeta potential of any electrolyte solution-air interface can be evaluated quickly and easily by inserting an electrode through the electrolyte solution-air interface and measuring the electrical signal amplitude. This method was verified by comparing the obtained results of NaCl, MgCl2 and CaCl2 solutions of different pH values and concentrations with the zeta potential data reported in the published journal papers. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Cosmic Ray-Air Shower Measurement from Space

    Science.gov (United States)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  1. AirSWOT Measurements of Water Surface Elevations and Hydraulic Gradients over the Yukon Flats, Alaska

    Science.gov (United States)

    Pitcher, L. H.; Pavelsky, T.; Smith, L. C.; Moller, D.; Altenau, E. H.; Lion, C.; Bertram, M.; Cooley, S. W.

    2017-12-01

    AirSWOT is an airborne, Ka-band synthetic aperture radar interferometer (InSAR) intended to quantify surface water fluxes by mapping water surface elevations (WSE). AirSWOT will also serve as a calibration/validation tool for the Surface Water and Ocean Topography (SWOT) satellite mission (scheduled for launch in 2021). The hydrology objectives for AirSWOT and SWOT are to measure WSE with accuracies sufficient to estimate hydrologic fluxes in lakes, wetlands and rivers. However, current understanding of the performance of these related though not identical instruments when applied to complex river-lake-wetland fluvial environments remains predominantly theoretical. We present AirSWOT data acquired 15-June-2015 over the Yukon Flats, Alaska, USA, together with in situ field surveys, to assess the accuracy of AirSWOT WSE measurements in lakes and rivers. We use these data to demonstrate that AirSWOT can be used to estimate large-scale hydraulic gradients across wetland complexes. Finally, we present key lessons learned from this AirSWOT analysis for consideration in future campaigns, including: maximizing swath overlap for spatial averaging to minimize uncertainty as well as orienting flight paths parallel to river flow directions to reduce along track aircraft drift for neighboring flight paths. We conclude that spatially dense AirSWOT measurements of river and lake WSEs can improve geospatial understanding of surface water hydrology and fluvial processes.

  2. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    Science.gov (United States)

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  3. Measuring Relationships: A Model for Evaluating U.S. Air Force Public Affairs Programs

    National Research Council Canada - National Science Library

    Della Vedova, Joseph P

    2005-01-01

    The thesis advanced here is that Air Force Public Affairs should be responsible for managing the organization-public relationship and that the effectiveness of that management can be measured in terms...

  4. Reuter Centrifugal Air Sampler: Measurement of Effective Airflow Rate and Collection Efficiency

    OpenAIRE

    Macher, J. M.; First, M. W.

    1983-01-01

    Incorrect calculation of effective air sampling rate and disregard of differences in collection efficiency among samplers can lead to false conclusions about the usefulness of samplers for measuring concentrations of airborne microorganisms.

  5. ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements

    Science.gov (United States)

    Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.; hide

    2009-01-01

    ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.

  6. On the measurement of stationary electric fields in air

    Science.gov (United States)

    Kirkham, H.

    2002-01-01

    Applications and measurement methods for field measurements are reviewed. Recent developments using optical technology are examined. The various methods are compared. It is concluded that the best general purpose instrument is the isolated cylindrical field mill, but MEMS technology could furnish better instruments in the future.

  7. Measurement of radioactive soil contamination from the air

    International Nuclear Information System (INIS)

    Loman, A.C.; Kuile, C.R. ter; Slaper, H.

    1990-09-01

    In-situ gamma spectrometry can be used to determine the qualitative and quantitative deposition of radioactive materials on the ground surface. By applying the in-situ spectrometry method using either a helicopter or an airplane, large areas can be scanned in a short period of time. In this report the results of in-situ gamma spectroscopic measurements taken from a helicopter are described. Measurements were carried out using a single point source, a field of 36 point sources, and using the present ground contamination due to fall-out from the Chernobyl accident and atom bombs. The results of these measurements were used to determine calibration factors, which were in agreement with a calibration obtained using more simple (and less expensive) laboratory measurements in combination with flux calculations. Detection limits for the measurement of surface contamination were determined. At a height of 50 meters above the surface and using a measurement time of 2 minutes, the minimally detectable surface contamination was 1.1 kBqm -2 for a Cs-137 contamination and 2.1 kBqm -2 for I-131 contamination. Fall-out determinations based on measurements taken at a height of 50 meters were in agreement with determinations taken at a height of 1 meter, and with the results obtained measuring soil samples. The in-situ gamma spectroscopy, using helicopter or airplane, is a fast and powerful method for mapping surface contamination. (author). 13 refs.; 18 figs.; 13 tabs

  8. Monte Carlo simulation of air sampling methods for the measurement of radon decay products.

    Science.gov (United States)

    Sima, Octavian; Luca, Aurelian; Sahagia, Maria

    2017-08-01

    A stochastic model of the processes involved in the measurement of the activity of the 222 Rn decay products was developed. The distributions of the relevant factors, including air sampling and radionuclide collection, are propagated using Monte Carlo simulation to the final distribution of the measurement results. The uncertainties of the 222 Rn decay products concentrations in the air are realistically evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The soil apparent infiltrability observed with ponded infiltration experiment in a permanent grid of infiltration rings

    Czech Academy of Sciences Publication Activity Database

    Votrubová, J.; Jelínková, V.; Němcová, R.; Tesař, Miroslav; Vogel, T.; Císlerová, M.

    2010-01-01

    Roč. 12, - (2010), s. 11898 ISSN 1607-7962. [European Geosciences Union General Assembly 2010. 02.05.2010-07.05.2010, Wienna] R&D Projects: GA ČR GA205/08/1174 Institutional research plan: CEZ:AV0Z20600510 Keywords : soil hydraulic conductivity * infiltration * infiltration ring Subject RIV: DA - Hydrology ; Limnology

  10. Modeling a ponded infiltration experiment at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Hudson, D.B.; Guertal, W.R.; Flint, A.L.

    1994-01-01

    Yucca Mountain, Nevada is being evaluated as a potential site for a geologic repository for high level radioactive waste. As part of the site characterization activities at Yucca Mountain, a field-scale ponded infiltration experiment was done to help characterize the hydraulic and infiltration properties of a layered dessert alluvium deposit. Calcium carbonate accumulation and cementation, heterogeneous layered profiles, high evapotranspiration, low precipitation, and rocky soil make the surface difficult to characterize.The effects of the strong morphological horizonation on the infiltration processes, the suitability of measured hydraulic properties, and the usefulness of ponded infiltration experiments in site characterization work were of interest. One-dimensional and two-dimensional radial flow numerical models were used to help interpret the results of the ponding experiment. The objective of this study was to evaluate the results of a ponded infiltration experiment done around borehole UE25 UZN number-sign 85 (N85) at Yucca Mountain, NV. The effects of morphological horizons on the infiltration processes, lateral flow, and measured soil hydaulic properties were studied. The evaluation was done by numerically modeling the results of a field ponded infiltration experiment. A comparison the experimental results and the modeled results was used to qualitatively indicate the degree to which infiltration processes and the hydaulic properties are understood. Results of the field characterization, soil characterization, borehole geophysics, and the ponding experiment are presented in a companion paper

  11. Corrections to air kerma rate measurements of 125I brachytherapy sources to free space conditions

    International Nuclear Information System (INIS)

    Shipley, D.R.; Duane, S.

    1994-05-01

    Air kerma rate measurements have been made between 40 cm and 100 cm from one of a set of 125 I reference sources within the facilities of Amersham International plc. Monte Carlo techniques have been used to calculate the air kerma rate components over the same range of distances from this source. After comparing the calculated data with measurements, the compliance of the data with the inverse square law was investigated, and corrections were derived to obtain the air kerma rate at 1 m in free space from each source. Simulations of the experimental setup with an isotropic monoenergetic point source close to the effective energy of 125 I were found to reproduce the air kerma rate measurements reasonably accurately, and indicated that the contribution due to scattered photons was significant. The overall correction (which is defined as the product of individual corrections for chamber size effect, air attenuation and radiation scatter) required to the inverse square law to obtain the air kerma rate at 1 m in free space was found to be 0.981, 0.984 and 0.980, respectively, for air kerma rate measurements at 40 cm, 60 cm and 100 cm from the 125 I reference source. The total uncertainty in these corrections was estimated to be 0.88% at the 1σ level. (author)

  12. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate

    International Nuclear Information System (INIS)

    Turnock, S T; Butt, E W; Richardson, T B; Mann, G W; Reddington, C L; Forster, P M; Carslaw, K S; Spracklen, D V; Haywood, J; Johnson, C E; Crippa, M; Janssens-Maenhout, G; Bellouin, N

    2016-01-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM 2.5 ) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM 2.5 concentrations is calculated to have prevented 80 000 (37 000–116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US$232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr −1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality

  13. Measurement of the resistivity of porous materials with an alternating air-flow method.

    Science.gov (United States)

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  14. Time-of-Flight Measurement of Sound Speed in Air

    Science.gov (United States)

    Ganci, Salvatore

    2011-01-01

    This paper describes a set of simple experiments with a very low cost using a notebook as a measuring instrument without external hardware. The major purpose is to provide demonstration experiments for schools with very low budgets. (Contains 6 figures.)

  15. Measurement of radon activity concentrations in air of Tuzla city

    International Nuclear Information System (INIS)

    Adrovic, F.; Fazlic, R.; Tresnjo, Z.

    2004-01-01

    The survey was conducted over one year in the area of Tuzla city and its surrounding. At the measuring locations there were registered Daily and seasonal variations in outdoor radon concentration were observed, with average values lying within the region of 9 - 30 Bq/m 3 . The results of the measurements will be included in the concentration map of radon activity in Bosnia and Herzegovina, which is under preparation. (P.A.)

  16. Fine PM measurements: personal and indoor air monitoring.

    Science.gov (United States)

    Jantunen, M; Hänninen, O; Koistinen, K; Hashim, J H

    2002-12-01

    This review compiles personal and indoor microenvironment particulate matter (PM) monitoring needs from recently set research objectives, most importantly the NRC published "Research Priorities for Airborne Particulate Matter (1998)". Techniques and equipment used to monitor PM personal exposures and microenvironment concentrations and the constituents of the sampled PM during the last 20 years are then reviewed. Development objectives are set and discussed for personal and microenvironment PM samplers and monitors, for filter materials, and analytical laboratory techniques for equipment calibration, filter weighing and laboratory climate control. The progress is leading towards smaller sample flows, lighter, silent, independent (battery powered) monitors with data logging capacity to store microenvironment or activity relevant sensor data, advanced flow controls and continuous recording of the concentration. The best filters are non-hygroscopic, chemically pure and inert, and physically robust against mechanical wear. Semiautomatic and primary standard equivalent positive displacement flow meters are replacing the less accurate methods in flow calibration, and also personal sampling flow rates should become mass flow controlled (with or without volumetric compensation for pressure and temperature changes). In the weighing laboratory the alternatives are climatic control (set temperature and relative humidity), and mechanically simpler thermostatic heating, air conditioning and dehumidification systems combined with numerical control of temperature, humidity and pressure effects on flow calibration and filter weighing.

  17. Transient Point Infiltration In The Unsaturated Zone

    Science.gov (United States)

    Buecker-Gittel, M.; Mohrlok, U.

    The risk assessment of leaking sewer pipes gets more and more important due to urban groundwater management and environmental as well as health safety. This requires the quantification and balancing of transport and transformation processes based on the water flow in the unsaturated zone. The water flow from a single sewer leakage could be described as a point infiltration with time varying hydraulic conditions externally and internally. External variations are caused by the discharge in the sewer pipe as well as the state of the leakage itself. Internal variations are the results of microbiological clogging effects associated with the transformation processes. Technical as well as small scale laboratory experiments were conducted in order to investigate the water transport from an transient point infiltration. From the technical scale experiment there was evidence that the water flow takes place under transient conditions when sewage infiltrates into an unsaturated soil. Whereas the small scale experiments investigated the hydraulics of the water transport and the associated so- lute and particle transport in unsaturated soils in detail. The small scale experiment was a two-dimensional representation of such a point infiltration source where the distributed water transport could be measured by several tensiometers in the soil as well as by a selective measurement of the discharge at the bottom of the experimental setup. Several series of experiments were conducted varying the boundary and initial con- ditions in order to derive the important parameters controlling the infiltration of pure water from the point source. The results showed that there is a significant difference between the infiltration rate in the point source and the discharge rate at the bottom, that could be explained by storage processes due to an outflow resistance at the bottom. This effect is overlayn by a decreasing water content decreases over time correlated with a decreasing infiltration

  18. Measurement of the Air Chance Rate and Ventilation Characteristics During Short Term Transient Phenomena

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Perino, M.

    2004-01-01

    Different measurement procedures are available for the experimental assessment of air change rates inside ventilated enclosures. These mainly consist of tracer gas techniques and can usually be applied to steady-state or moderately transient conditions and when a continous mixing of the indoor air...... ventilation. The results are critically compared with the air flow rates assessed through anemometric measurements. The measurement features, limitations, shortcomings and uncertainties are also discussed....... is assured throughout the test. However, due to the relatively slow response of the gas analysers, none of these procedures can usually be applied to fast transient phenomena that last 15 minutes or less. Moreover in many cases of natural ventilation strategies, the continuous mixing of the indoor air would...

  19. Estimating air emissions from a remediation of a petroleum sump using direct measurement and modeling

    International Nuclear Information System (INIS)

    Schmidt, C.E.

    1991-01-01

    A technical approach was developed for the remediation of a petroleum sump near a residential neighborhood. The approach evolved around sludge handling/in-situ solidification and on-site disposal. As part of the development of the engineering approach, a field investigation and modeling program was conducted to predict air emissions from the proposed remediation. Field measurements using the EPA recommended surface isolation flux chamber were conducted to represent each major activity or air exposure involving waste at the site. Air emissions from freshly disturbed petroleum waste, along with engineering estimates were used to predict emissions from each phase of the engineering approach. This paper presents the remedial approach and the measurement/modeling technologies used to predict air toxic emissions from the remediation. Emphasis will be placed on the measurement approaches used in obtaining the emission rate data and the assumptions used in the modeling to estimate emissions from engineering scenarios

  20. Pollution from Urban Stormwater Infiltration

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Weyer, G.; Berry, C.

    1994-01-01

    Stormwater infiltration in urban areas gives cause for concern with regard to the risk of soil and groundwater pollution. Compared with conventional storm drainage, infiltration introduces different and widely unknown conditions governing the impacts and the fate of the pollutants......, and it is therefore difficult to assess the overall environmental impact. This paper gives a state of the art assessment of the water quality aspects of stormwater infiltration and proposes ways of managing the inherent problems. The major stormwater pollution sources are highlighted and the different processes...

  1. Spatial and temporal infiltration dynamics during managed aquifer recharge.

    Science.gov (United States)

    Racz, Andrew J; Fisher, Andrew T; Schmidt, Calla M; Lockwood, Brian S; Los Huertos, Marc

    2012-01-01

    Natural groundwater recharge is inherently difficult to quantify and predict, largely because it comprises a series of processes that are spatially distributed and temporally variable. Infiltration ponds used for managed aquifer recharge (MAR) provide an opportunity to quantify recharge processes across multiple scales under semi-controlled conditions. We instrumented a 3-ha MAR infiltration pond to measure and compare infiltration patterns determined using whole-pond and point-specific methods. Whole-pond infiltration was determined by closing a transient water budget (accounting for inputs, outputs, and changes in storage), whereas point-specific infiltration rates were determined using heat as a tracer and time series analysis at eight locations in the base of the pond. Whole-pond infiltration, normalized for wetted area, rose rapidly to more than 1.0 m/d at the start of MAR operations (increasing as pond stage rose), was sustained at high rates for the next 40 d, and then decreased to less than 0.1 m/d by the end of the recharge season. Point-specific infiltration rates indicated high spatial and temporal variability, with the mean of measured values generally being lower than rates indicated by whole-pond calculations. Colocated measurements of head gradients within saturated soils below the pond were combined with infiltration rates to calculate soil hydraulic conductivity. Observations indicate a brief period of increasing saturated hydraulic conductivity, followed by a decrease of one to two orders of magnitude during the next 50 to 75 d. Locations indicating the most rapid infiltration shifted laterally during MAR operation, and we suggest that infiltration may function as a "variable source area" processes, conceptually similar to catchment runoff. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  2. Suppressions of Serotonin-Induced Increased Vascular Permeability and Leukocyte Infiltration by Bixa orellana Leaf Extract

    Directory of Open Access Journals (Sweden)

    Yoke Keong Yong

    2013-01-01

    Full Text Available The aim of the present study was to evaluate the anti-inflammatory activities of aqueous extract of Bixa orellana (AEBO leaves and its possible mechanisms in animal models. The anti-inflammatory activity of the extract was evaluated using serotonin-induced rat paw edema, increased peritoneal vascular permeability, and leukocyte infiltrations in an air-pouch model. Nitric oxide (NO, indicated by the sum of nitrites and nitrates, and vascular growth endothelial growth factor (VEGF were measured in paw tissues of rats to determine their involvement in the regulation of increased permeability. Pretreatments with AEBO (50 and 150 mg kg−1 prior to serotonin inductions resulted in maximum inhibitions of 56.2% of paw volume, 45.7% of Evans blue dye leakage in the peritoneal vascular permeability model, and 83.9% of leukocyte infiltration in the air-pouch model. 57.2% maximum inhibition of NO and 27% of VEGF formations in rats’ paws were observed with AEBO at the dose of 150 mg kg−1. Pharmacological screening of the extract showed significant (P<0.05 anti-inflammatory activity, indicated by the suppressions of increased vascular permeability and leukocyte infiltration. The inhibitions of these inflammatory events are probably mediated via inhibition of NO and VEGF formation and release.

  3. On the feasibility of measuring urban air pollution by wireless distributed sensor networks.

    Science.gov (United States)

    Moltchanov, Sharon; Levy, Ilan; Etzion, Yael; Lerner, Uri; Broday, David M; Fishbain, Barak

    2015-01-01

    Accurate evaluation of air pollution on human-wellbeing requires high-resolution measurements. Standard air quality monitoring stations provide accurate pollution levels but due to their sparse distribution they cannot capture the highly resolved spatial variations within cities. Similarly, dedicated field campaigns can use tens of measurement devices and obtain highly dense spatial coverage but normally deployment has been limited to short periods of no more than few weeks. Nowadays, advances in communication and sensory technologies enable the deployment of dense grids of wireless distributed air monitoring nodes, yet their sensor ability to capture the spatiotemporal pollutant variability at the sub-neighborhood scale has never been thoroughly tested. This study reports ambient measurements of gaseous air pollutants by a network of six wireless multi-sensor miniature nodes that have been deployed in three urban sites, about 150 m apart. We demonstrate the network's capability to capture spatiotemporal concentration variations at an exceptional fine resolution but highlight the need for a frequent in-situ calibration to maintain the consistency of some sensors. Accordingly, a procedure for a field calibration is proposed and shown to improve the system's performance. Overall, our results support the compatibility of wireless distributed sensor networks for measuring urban air pollution at a sub-neighborhood spatial resolution, which suits the requirement for highly spatiotemporal resolved measurements at the breathing-height when assessing exposure to urban air pollution. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Spectrally resolved pressure dependence measurements of air fluorescence emission with AIRFLY

    International Nuclear Information System (INIS)

    Ave, M.; Bohacova, M.; Buonomo, B.; Busca, N.; Cazon, L.; Chemerisov, S.D.; Conde, M.E.; Crowell, R.A.; Di Carlo, P.; Di Giulio, C.; Doubrava, M.; Esposito, A.; Facal, P.; Franchini, F.J.; Hoerandel, J.; Hrabovsky, M.; Iarlori, M.; Kasprzyk, T.E.; Keilhauer, B.; Klages, H.

    2008-01-01

    The knowledge of the fluorescence emission as a function of atmospheric parameters is essential for the detection of extensive air showers with the fluorescence technique. In this paper, we summarize AIRFLY published measurements of the pressure dependence of the fluorescence yield. The spectral distribution of the fluorescent light between 280 and 429 nm has been measured with high resolution. Relative intensities of 34 spectral lines have been determined. The pressure dependence of 25 lines was measured in terms of quenching reference pressures p λ ' in air. This set of AIRFLY measurements yields the most comprehensive parametrization of the pressure dependence of the fluorescent spectrum.

  5. new model for solar radiation estimation from measured air

    African Journals Online (AJOL)

    HOD

    RMSE) and correlation ... countries due to the unavailability of measured data in place [3-5]. ... models were used to predict solar radiation in Nigeria by. [12-15]. However ..... "Comparison of Gene Expression Programming with neuro-fuzzy and ...

  6. Laser scattering methodology for measuring particulates in the air

    Directory of Open Access Journals (Sweden)

    Carlo Giglioni

    2009-03-01

    Full Text Available A description is given of the laser scattering method to measure PM10, PM2.5 and PM1 dusts in confirmed environments (museums, libraries, archives, art galleries, etc.. Such equipment presents many advantages, in comparison with those which are actually in use, not only from an analytic but also from a functional point of view.

  7. Techniques for the measurement of the contamination of air

    International Nuclear Information System (INIS)

    Labeyrie, J.

    1960-01-01

    This lecture has been given at the International Symposium of Riso 1959. Methods for measuring radioactive content of the atmosphere are described, and main results found at Saclay are given, for the following contaminants: Rn, Tn and their daughter, H-3, C-14, A-41, Kr-85, I-131, and fission products as a whole. (author) [fr

  8. Calibration of nozzle for air mass flow measurement

    Science.gov (United States)

    Uher, Jan; Kanta, Lukáš

    2017-09-01

    The effort to make calibration measurement of mass flow through a nozzle was not satisfying. Traversing across the pipe radius with Pitot probe was done. The presence of overshoot behind the bend in the pipe was found. The overshoot led to an asymmetric velocity profile.

  9. Feasible Indoor Air-related measures against Avian Influenza

    NARCIS (Netherlands)

    Franchimon, F.; Pernot, C.E.E.; Bronswijk, van J.E.M.H.; Olesen, BW; Wargocki, P; Strøm-Tejsen, P; Zukowska, D; Toftum, J

    2008-01-01

    The threat of a new pandemic has forced the WHO to publish preparedness plans. Although WHO recognized the effect of airborne transmission of the causative agent, they did not attempt to include feasible measures for indoor environmental control as yet. The efficacy of indoor humidity control

  10. Meteorological utilization of measurements of the artificial radioactivity on the air and precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Neuwirth, R

    1955-01-01

    German, French, and American measurements of the rainfall and air activity are being evaluated. For that purpose, trajectories from the experimental grounds for bomb tests in Nevada to Western Germany are drawn. By means of intermediate values, the test possibilities of air paths first only scheduled are given. The so-called deposit spaces and meridional circulations, which are significant particularly in divergence regions, prove to be of especial importance. The mechanism of activation of precipitation is discussed. A connexion between the activity of precipitation and air masses could only be found in individual cases. But it seems that semitropical air masses dispose of a higher specific activity in comparison with the polar air masses.

  11. Measurement of Ambient Air Motion of D. I. Gasoline Spray by LIF-PIV

    Science.gov (United States)

    Yamakawa, Masahisa; Isshiki, Seiji; Yoshizaki, Takuo; Nishida, Keiya

    Ambient air velocity distributions in and around a D. I. gasoline spray were measured using a combination of LIF and PIV techniques. A rhodamine and water solution was injected into ambient air to disperse the fine fluorescent liquid particles used as tracers. A fuel spray was injected into the fluorescent tracer cloud and was illuminated by an Nd: YAG laser light sheet (532nm). The scattered light from the spray droplets and tracers was cut off by a high-pass filter (>560nm). As the fluorescence (>600nm) was transmitted through the high-pass filter, the tracer images were captured using a CCD camera and the ambient air velocity distribution could be obtained by PIV based on the images. This technique was applied to a D. I. gasoline spray. The ambient air flowed up around the spray and entered into the tail of the spray. Furthermore, the relative velocity between the spray and ambient air was investigated.

  12. Comparison of dose measurements in water versus in air for therapy

    International Nuclear Information System (INIS)

    Nasukha

    1987-01-01

    Comparison of dose measurements in water versus in air for therapy. Dose measurements in water and in the air had been done by teletherapy unit Co-60 Picker Model V 4m/60 with Farmer dosimeter. The result of inverse square law, TAR, PDD, and PSF compared to BJR No. 17 produced a difference of more than 4,65% with SSD 80 cm. Doses in water calculated from the result of dose measurement in air using BJR tables given, was compared with direct dose measurement in water. Values of 0,9850 to 1,0302 were obtained if using inverse square law, PDD and PSF formula. Using inverse square law and TAR, values of 0,9474 to 1,0197 were obtained for 4 depths and 5 field sizes. Measurements done in 5 cm depth and 10 cm x 10 cm field size using both methods, were still good. (author). 7 figs, 8 refs

  13. Interpretation of ponded infiltration data using numerical experiments

    Directory of Open Access Journals (Sweden)

    Dohnal Michal

    2016-09-01

    Full Text Available Ponded infiltration experiment is a simple test used for in-situ determination of soil hydraulic properties, particularly saturated hydraulic conductivity and sorptivity. It is known that infiltration process in natural soils is strongly affected by presence of macropores, soil layering, initial and experimental conditions etc. As a result, infiltration record encompasses a complex of mutually compensating effects that are difficult to separate from each other. Determination of sorptivity and saturated hydraulic conductivity from such infiltration data is complicated. In the present study we use numerical simulation to examine the impact of selected experimental conditions and soil profile properties on the ponded infiltration experiment results, specifically in terms of the hydraulic conductivity and sorptivity evaluation. The effect of following factors was considered: depth of ponding, ring insertion depth, initial soil water content, presence of preferential pathways, hydraulic conductivity anisotropy, soil layering, surface layer retention capacity and hydraulic conductivity, and presence of soil pipes or stones under the infiltration ring. Results were compared with a large database of infiltration curves measured at the experimental site Liz (Bohemian Forest, Czech Republic. Reasonably good agreement between simulated and observed infiltration curves was achieved by combining several of factors tested. Moreover, the ring insertion effect was recognized as one of the major causes of uncertainty in the determination of soil hydraulic parameters.

  14. Air-borne shape measurement of parabolic trough collector fields

    Science.gov (United States)

    Prahl, Christoph; Röger, Marc; Hilgert, Christoph

    2017-06-01

    The optical and thermal efficiency of parabolic trough collector solar fields is dependent on the performance and assembly accuracy of its components such as the concentrator and absorber. For the purpose of optical inspection/approval, yield analysis, localization of low performing areas, and optimization of the solar field, it is essential to create a complete view of the optical properties of the field. Existing optical measurement tools are based on ground based cameras, facing restriction concerning speed, volume and automation. QFly is an airborne qualification system which provides holistic and accurate information on geometrical, optical, and thermal properties of the entire solar field. It consists of an unmanned aerial vehicle, cameras and related software for flight path planning, data acquisition and evaluation. This article presents recent advances of the QFly measurement system and proposes a methodology on holistic qualification of the complete solar field with minimum impact on plant operation.

  15. Measurements of air pollution from a Danish highway

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Solvang Jensen, S.; Ketzel, M.; Loefstroem, P. Massling, A.

    2009-07-15

    This report presents the results from a measurement campaign carried out at the Holbaek Highway during 2008. The objective of the campaign was to determine the emission factors for PM{sub 2.5} and PM{sub 10} due to highway traffic. The campaign included measurements of NO{sub x}, NO, NO{sub 2}, TEOM PM{sub 2.5}, TEOM PM{sub 10}, O{sub 3}, particle size distribution and local meteorology. The emission factors for PM{sub 2.5} and PM{sub 10} were determined to 45 and 155 mg/(vehicle km), respectively. This is comparable to the emission factors previously determined for H. C. Andersens Boulevard in Copenhagen and somewhat higher than found at Jagtvej, Copenhagen. (author)

  16. Air-coupled ultrasound for plate thickness measurements

    OpenAIRE

    Waag, Grunde

    2017-01-01

    Non-destructive testing using ultrasound is well established as a technique of inspecting miscellaneous structures and components. Ultrasonic waves propagating in an elastic solid are sensitive to both the material and geometrical properties of the solid. Decades of experience have shown that it is possible to extract these properties from the waves in an efficient and reliable way in a variety of practical measurement settings. Different techniques have been developed over many decades, and ...

  17. Mini MAX-DOAS Measurements of Air Pollutants over China

    Science.gov (United States)

    Staadt, Steffen; Hao, Nan; Trautmann, Thomas

    2016-08-01

    This study continues the work of Clémer et al., (2010) and is aimed to improve trace gas retrievals with mini MAX-DOAS measurements in Nanjing. Based on that work, aerosol extinction vertical profiles are retrieved using the bePRO inversion algorithm developed by the Royal Belgian Institute for Space Aeronomy (BIRA- IASB). Afterwards, the tropospheric trace gas vertical profiles and vertical column densities (VCDs) are retrieved by applying the optimal estimation method to the O4 MAX-DOAS measurements. The Profiles for N O2 , S O2 , glyoxal, formaldehyde and nitrous acid are obtained with different results and different settings for the DOAS measurement. The AODs show small positive correlation against the AERONET values. For NO2, the retrieval shows reasonable concentrations in winter as opposed to summer and has small positive correlations with GOME-2 data. The SO2 VCDs are not correlated with the GOME-2 data, due to high uncertainties from MAX-DOAS and satellite retrievals, while the vertical mixing ratios (VMR) show good agreement with in-situ data (SORPES) at Nanjing. Nitrous acid shows a maximum in winter and a minimum in summer, while glyoxal has its maximum in August and September.

  18. Eosinophilic infiltration in Korea: idiopathic?

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae Hoon; Lee, Kyung Soo [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2006-03-15

    Eosinophilia is defined as the presence of more than 500 eosinophils/{mu}L in the peripheral blood, and may be accompanied by eosinophil infiltration in tissues. Focal eosinophilic infiltration in the lungs and liver is relatively common and is often associated with a parasitic infection, drug hypersensitivity, allergic diseases, collagen vascular diseased, and internal malignancies such as Hodgkin's disease, as well as cancer of the lung, stomach, pancreas or ovary. An eosinophilic abscess refers to a lesion of massive eosinophil infiltration and associated destroyed tissue, and an eosinophilic granuloma refers to a lesion consisting of central necrosis and mixed inflammatory cell infiltrates with numerous eosinophils, a number of neutrophils and lymphocytes, and a palisade of epithelioid histiocytes and/or giant cells.

  19. Eosinophilic infiltration in Korea: idiopathic?

    International Nuclear Information System (INIS)

    Lim, Jae Hoon; Lee, Kyung Soo

    2006-01-01

    Eosinophilia is defined as the presence of more than 500 eosinophils/μL in the peripheral blood, and may be accompanied by eosinophil infiltration in tissues. Focal eosinophilic infiltration in the lungs and liver is relatively common and is often associated with a parasitic infection, drug hypersensitivity, allergic diseases, collagen vascular diseased, and internal malignancies such as Hodgkin's disease, as well as cancer of the lung, stomach, pancreas or ovary. An eosinophilic abscess refers to a lesion of massive eosinophil infiltration and associated destroyed tissue, and an eosinophilic granuloma refers to a lesion consisting of central necrosis and mixed inflammatory cell infiltrates with numerous eosinophils, a number of neutrophils and lymphocytes, and a palisade of epithelioid histiocytes and/or giant cells

  20. New sensor for measurement of low air flow velocity. Phase I final report

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II

  1. Characterizing Heterogeneity in Infiltration Rates During Managed Aquifer Recharge.

    Science.gov (United States)

    Mawer, Chloe; Parsekian, Andrew; Pidlisecky, Adam; Knight, Rosemary

    2016-11-01

    Infiltration rate is the key parameter that describes how water moves from the surface into a groundwater aquifer during managed aquifer recharge (MAR). Characterization of infiltration rate heterogeneity in space and time is valuable information for MAR system operation. In this study, we utilized fiber optic distributed temperature sensing (FO-DTS) observations and the phase shift of the diurnal temperature signal between two vertically co-located fiber optic cables to characterize infiltration rate spatially and temporally in a MAR basin. The FO-DTS measurements revealed spatial heterogeneity of infiltration rate: approximately 78% of the recharge water infiltrated through 50% of the pond bottom on average. We also introduced a metric for quantifying how the infiltration rate in a recharge pond changes over time, which enables FO-DTS to be used as a method for monitoring MAR and informing maintenance decisions. By monitoring this metric, we found high-spatial variability in how rapidly infiltration rate changed during the test period. We attributed this variability to biological pore clogging and found a relationship between high initial infiltration rate and the most rapid pore clogging. We found a strong relationship (R 2  = 0.8) between observed maximum infiltration rates and electrical resistivity measurements from electrical resistivity tomography data taken in the same basin when dry. This result shows that the combined acquisition of DTS and ERT data can improve the design and operation of a MAR pond significantly by providing the critical information needed about spatial variability in parameters controlling infiltration rates. © 2016, National Ground Water Association.

  2. Air radon equilibrium factor measurement in a Waste Water Pre-Treatment Plant

    International Nuclear Information System (INIS)

    Martinez, J.E.; Juste, B.; Ortiz, J.; Martorell, S.; Verdu, G.

    2017-01-01

    We analyze in this paper a Waste Water Pre-Treatment Plant (WWTP) located at the Mediterranean coast with air radon concentration above Spanish action level (600 Bq per cubic meter). This paper presents a method for radon equilibrium determination by gamma spectrometry measuring of the radon progeny concentrations in the air, in order to estimate WWTP workers effective dose more exactly. The method is based on simultaneous sampling of air through a filter paper and alpha spectrometry measurement of radon activity concentration in the air. According to the measured radon activity concentration in the air of 368±45 Bq/m 3 the equilibrium factor between radon and progenies is estimated to be F=0.27, which is in good agreement with expected values. - Highlights: • High levels of Radon in a workplace can increase health risks in the employees. • Using the typical equilibrium factor 0.4 could lead to an error in the estimation of radon doses. • We present a method for radon equilibrium determination. • Equilibrium factor is calculated by gamma spectrometry measuring of radon progeny concentrations in the air.

  3. Measuring Device for Air Speed in Macroporous Media and Its Application Inside Apple Storage Bins

    Directory of Open Access Journals (Sweden)

    Martin Geyer

    2018-02-01

    Full Text Available In cold storage facilities of fruit and vegetables, airflow is necessary for heat removal. The design of storage facilities influences the air speed in the surrounding of the product. Therefore, knowledge about airflow next to the product is important to plan the layout of cold stores adapted to the requirements of the products. A new sensing device (ASL, Air speed logger is developed for omnidirectional measurement of air speed between fruit or vegetables inside storage bins or in bulk. It consists of four interconnected plastic spheres with 80 mm diameter each, adapted to the size of apple fruit. In the free space between the spheres, silicon diodes are fixed for the airflow measurement based on a calorimetric principle. Battery and data logger are mounted inside the spheres. The device is calibrated in a wind tunnel in a measuring range of 0–1.3 m/s. Air speed measurements in fruit bulks on laboratory scale and in an industrial fruit store show air speeds in gaps between fruit with high stability at different airflow levels. Several devices can be placed between stored products for determination of the air speed distribution inside bulks or bin stacks in a storage room.

  4. Relative contributions of transient and steady state infiltration during ephemeral streamflow

    Science.gov (United States)

    Blasch, Kyle W.; Ferré, Ty P.A.; Hoffmann, John P.; Fleming, John B.

    2006-01-01

    Simulations of infiltration during three ephemeral streamflow events in a coarse‐grained alluvial channel overlying a less permeable basin‐fill layer were conducted to determine the relative contribution of transient infiltration at the onset of streamflow to cumulative infiltration for the event. Water content, temperature, and piezometric measurements from 2.5‐m vertical profiles within the alluvial sediments were used to constrain a variably saturated water flow and heat transport model. Simulated and measured transient infiltration rates at the onset of streamflow were about two to three orders of magnitude greater than steady state infiltration rates. The duration of simulated transient infiltration ranged from 1.8 to 20 hours, compared with steady state flow periods of 231 to 307 hours. Cumulative infiltration during the transient period represented 10 to 26% of the total cumulative infiltration, with an average contribution of approximately 18%. Cumulative infiltration error for the simulated streamflow events ranged from 9 to 25%. Cumulative infiltration error for typical streamflow events of about 8 hours in duration in is about 90%. This analysis indicates that when estimating total cumulative infiltration in coarse‐grained ephemeral stream channels, consideration of the transient infiltration at the onset of streamflow will improve predictions of the total volume of infiltration that may become groundwater recharge.

  5. Effects of air pollution on human health and practical measures for prevention in Iran.

    Science.gov (United States)

    Ghorani-Azam, Adel; Riahi-Zanjani, Bamdad; Balali-Mood, Mahdi

    2016-01-01

    Air pollution is a major concern of new civilized world, which has a serious toxicological impact on human health and the environment. It has a number of different emission sources, but motor vehicles and industrial processes contribute the major part of air pollution. According to the World Health Organization, six major air pollutants include particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Long and short term exposure to air suspended toxicants has a different toxicological impact on human including respiratory and cardiovascular diseases, neuropsychiatric complications, the eyes irritation, skin diseases, and long-term chronic diseases such as cancer. Several reports have revealed the direct association between exposure to the poor air quality and increasing rate of morbidity and mortality mostly due to cardiovascular and respiratory diseases. Air pollution is considered as the major environmental risk factor in the incidence and progression of some diseases such as asthma, lung cancer, ventricular hypertrophy, Alzheimer's and Parkinson's diseases, psychological complications, autism, retinopathy, fetal growth, and low birth weight. In this review article, we aimed to discuss toxicology of major air pollutants, sources of emission, and their impact on human health. We have also proposed practical measures to reduce air pollution in Iran.

  6. Effects of air pollution on human health and practical measures for prevention in Iran

    Science.gov (United States)

    Ghorani-Azam, Adel; Riahi-Zanjani, Bamdad; Balali-Mood, Mahdi

    2016-01-01

    Air pollution is a major concern of new civilized world, which has a serious toxicological impact on human health and the environment. It has a number of different emission sources, but motor vehicles and industrial processes contribute the major part of air pollution. According to the World Health Organization, six major air pollutants include particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Long and short term exposure to air suspended toxicants has a different toxicological impact on human including respiratory and cardiovascular diseases, neuropsychiatric complications, the eyes irritation, skin diseases, and long-term chronic diseases such as cancer. Several reports have revealed the direct association between exposure to the poor air quality and increasing rate of morbidity and mortality mostly due to cardiovascular and respiratory diseases. Air pollution is considered as the major environmental risk factor in the incidence and progression of some diseases such as asthma, lung cancer, ventricular hypertrophy, Alzheimer's and Parkinson's diseases, psychological complications, autism, retinopathy, fetal growth, and low birth weight. In this review article, we aimed to discuss toxicology of major air pollutants, sources of emission, and their impact on human health. We have also proposed practical measures to reduce air pollution in Iran. PMID:27904610

  7. Effects of air pollution on human health and practical measures for prevention in Iran

    Directory of Open Access Journals (Sweden)

    Adel Ghorani-Azam

    2016-01-01

    Full Text Available Air pollution is a major concern of new civilized world, which has a serious toxicological impact on human health and the environment. It has a number of different emission sources, but motor vehicles and industrial processes contribute the major part of air pollution. According to the World Health Organization, six major air pollutants include particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Long and short term exposure to air suspended toxicants has a different toxicological impact on human including respiratory and cardiovascular diseases, neuropsychiatric complications, the eyes irritation, skin diseases, and long-term chronic diseases such as cancer. Several reports have revealed the direct association between exposure to the poor air quality and increasing rate of morbidity and mortality mostly due to cardiovascular and respiratory diseases. Air pollution is considered as the major environmental risk factor in the incidence and progression of some diseases such as asthma, lung cancer, ventricular hypertrophy, Alzheimer′s and Parkinson′s diseases, psychological complications, autism, retinopathy, fetal growth, and low birth weight. In this review article, we aimed to discuss toxicology of major air pollutants, sources of emission, and their impact on human health. We have also proposed practical measures to reduce air pollution in Iran.

  8. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry.

    Science.gov (United States)

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Li, Jianshuang; Qu, Xinghua

    2016-10-17

    Two-color interferometry is powerful for the correction of the air refractive index especially in the turbulent air over long distance, since the empirical equations could introduce considerable measurement uncertainty if the environmental parameters cannot be measured with sufficient precision. In this paper, we demonstrate a method for absolute distance measurement with high-accuracy correction of air refractive index using two-color dispersive interferometry. The distances corresponding to the two wavelengths can be measured via the spectrograms captured by a CCD camera pair in real time. In the long-term experiment of the correction of air refractive index, the experimental results show a standard deviation of 3.3 × 10-8 for 12-h continuous measurement without the precise knowledge of the environmental conditions, while the variation of the air refractive index is about 2 × 10-6. In the case of absolute distance measurement, the comparison with the fringe counting interferometer shows an agreement within 2.5 μm in 12 m range.

  9. Air pulse deformation measurement: a preliminary method for noninvasive vocal fold pliability analysis.

    Science.gov (United States)

    Larsson, Hans; Lindestad, P Å; Hertegård, S

    2011-01-01

    A new method, air pulse pliability measurement, is presented, with which the pliability and elasticity of the vocal folds was measured in vitro and in vivo using air pulses. The size of the mucosal movements induced by air pulse stimulation was measured with a laser-based technique. The air pulses fed via a 2-mm tubing, introduced through the working channel of a flexible endoscope. Both in vitro and in vivo tests were performed. Nine normal, vocally healthy subjects were examined by air pulse stimulations of the vocal folds, of the skin (cheek and dorsum of the hand) and of the inside of the lips. The in vitro tests showed a coefficient of variation of 5% within a range of 1-5 mm from the probe to the surface. The elasticity data showed no differences between vocal folds, lips or cheek. The hand data showed a significantly higher stiffness as compared to the other 3 measuring points (p measuring points, but in ideal conditions on skin it was 9%. The results show that the technique allows automatic, quantitative, noninvasive vocal fold pliability measurements on awake subjects. Copyright © 2010 S. Karger AG, Basel.

  10. Roadside air quality and implications for control measures: A case study of Hong Kong

    Science.gov (United States)

    Ai, Z. T.; Mak, C. M.; Lee, H. C.

    2016-07-01

    Traffic related air pollution is one of major environmental issues in densely populated urban areas including Hong Kong. A series of control measures has been implemented by Hong Kong government to cut traffic related air pollutants, including retrofitting the Euro II and Euro III buses with selective catalytic reduction (SCR) devices to lower nitrogen dioxide (NO2) emissions. In order to reveal the real-life roadside air quality and evaluate the effectiveness of the control measures, this study first analyzed the recent six-year data regarding concentrations of pollutants typically associated with traffic recorded in two governmental roadside monitoring stations and second conducted on-site measurements of concentration of pollutants at pedestrian level near five selected roads. Given that there is a possibility of ammonia leakage as a secondary pollutant from SCR devices, a special attention was paid to the measurements of ammonia level in bus stations and along roadsides. Important influencing factors, such as traffic intensity, street configuration and season, were analyzed. Control measures implemented by the government are effective to decrease the traffic emissions. In 2014, only NO2 cannot achieve the annual air quality objective of Hong Kong. However, it is important to find that particulate matters, rather than NO2, post potentially a short-term exposure risk to passengers and pedestrians. Based on the findings of this study, specific control measures are suggested, which are intended to further improve the roadside air quality.

  11. A MODFLOW Infiltration Device Package for Simulating Storm Water Infiltration.

    Science.gov (United States)

    Jeppesen, Jan; Christensen, Steen

    2015-01-01

    This article describes a MODFLOW Infiltration Device (INFD) Package that can simulate infiltration devices and their two-way interaction with groundwater. The INFD Package relies on a water balance including inflow of storm water, leakage-like seepage through the device faces, overflow, and change in storage. The water balance for the device can be simulated in multiple INFD time steps within a single MODFLOW time step, and infiltration from the device can be routed through the unsaturated zone to the groundwater table. A benchmark test shows that the INFD Package's analytical solution for stage computes exact results for transient behavior. To achieve similar accuracy by the numerical solution of the MODFLOW Surface-Water Routing (SWR1) Process requires many small time steps. Furthermore, the INFD Package includes an improved representation of flow through the INFD sides that results in lower infiltration rates than simulated by SWR1. The INFD Package is also demonstrated in a transient simulation of a hypothetical catchment where two devices interact differently with groundwater. This simulation demonstrates that device and groundwater interaction depends on the thickness of the unsaturated zone because a shallow groundwater table (a likely result from storm water infiltration itself) may occupy retention volume, whereas a thick unsaturated zone may cause a phase shift and a change of amplitude in groundwater table response to a change of infiltration. We thus find that the INFD Package accommodates the simulation of infiltration devices and groundwater in an integrated manner on small as well as large spatial and temporal scales. © 2014, National Ground Water Association.

  12. Climate change and air quality - measures with co-benefits in China

    Energy Technology Data Exchange (ETDEWEB)

    Kristin Aunan; Jinghua Fang; Tao Hu; Hans Martin Seip; Haakon Vennemo [Center for International Climate and Environmental Research-Oslo (CICERO) (Norway)

    2006-08-15

    Several studies carried out in China over the past 5-10 years, including the authors own work, have found that many measures aimed primarily at reducing local air pollution decrease GHG emissions as a co-benefit. Conversely, a range of CO{sub 2} mitigation policies entail reductions in air pollution as a co-benefit. This implies that the real costs of climate policies in China may be lower than anticipated by the government. This article describes the links between climate change and air quality issues as well as the health and environmental benefits accruing from alterative measures and policies for CO{sub 2} mitigation in China where coal is expected to remain a main energy source for many years to come. The tremendous potential to cut GHG emissions while simultaneously reducing air pollution should make cooperation on climate control strategies more attractive to China and other countries in a similar position. 43 refs., 3 figs., 1 tab.

  13. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. K. [Johnson Research LLC, Pueblo West, CO (United States)

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  14. Comparison of TLD air kerma measurements in mammography

    International Nuclear Information System (INIS)

    Pernicka, F.

    2002-01-01

    The mammography examination is usually targeted at asymptomatic women so the narrow balance between benefit and undesirable effects is important. During the past few decades there have been significant advances in the equipment used for mammography. Even when the latest equipment and imaging systems are used, there is considerable variation from centre-to-centre in the choice of imaging parameters and techniques. There may be quite large differences in image quality and breast dose among the centres. A Co-ordinated Research Programme on 'Image quality and patient dose optimization in mammography in Eastern European Countries' was conducted by the IAEA, aiming at defining a methodology for the implementation of a quality assurance (QA) programme in mammography and at exercising the assessment of image quality and patient doses in a sample of hospitals in East European countries. Selected mammography clinics from Czech Republic, Hungary, Poland, Romania and Slovakia participate in the project. The teams consisted of experienced clinicians and physicists. They were supported by a group of experts (clinicians and medical physicists) from France, Italy and Spain. As an outcome of the project, improvements in these indicators (image quality and patient dose) after the implementation of the QA programme are expected. A comparison of dosimetry systems has been organized to assure that dosimetry measurements done in the frame of the project are comparable and traceable to the international measurement system. All five East European countries plus Spain took part in the exercise. The thermoluminescent (TL) method was selected for the comparison

  15. Measurement of a thermal neutron flux using air activation; Mesure de flux de neutrons thermiques par activation d'air

    Energy Technology Data Exchange (ETDEWEB)

    Guyonvarh, M; Lecomte, P; Le Meur, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    It is necessary to know, in irradiation loops, the thermal neutron flux after the irradiation device has been introduced and without being obliged to wait for the discharge of this device. In order to measure the flux and to control it continuously, one possible method is to place in the flux a coiled steel tube through which air passes. By measuring the activity of argon 41, and with a knowledge of the flow rate and the temperature of the air, it is possible to calculate the flux. An air-circulation flux controller is described and the relationship between the flux and the count rate is established The accuracy of an absolute measurement is about 14 per cent; that of a relative measurement is about 3 per cent. The measurement can be carried out equally well whether the reactor is operating at maximum or at low power. The measurement range goes from 10{sup 9} to lO{sup 15} n.cm{sup -2}.sec{sup -1}, and it would be possible after a few modifications to measure fluxes between 10{sup 5} and 10{sup 15} n.cm{sup -2}.sec{sup -1}. Finally, the method is very safe to operate: there is little risk of irradiation because of the low specific activity of the argon-41 formed, and no risk of contamination because the decay product of argon-41 is stable. This method, which is now being used in loops, is thus very practical. (authors) [French] Sur des boucles d'irradiation il est necessaire de connaitre le flux de neutrons thermiques apres mise en place du dispositif d'irradiation et sans etre oblige d'attendre le detournement de ce dispositif. Pour mesurer le flux et le controler en permanence, une methode consiste a placer sous flux un serpentin en acier dans lequel on fait circuler de l'air. La mesure d'activite d'argon 41 permet de calculer le flux, connaissant le debit et la temperature de l'air. Un controleur de flux par circulation d'air est decrit et la relation entre le flux et le taux de comptage est etablie. La precision d'une mesure absolue est de l'ordre de 14 pour

  16. Measurement of Indoor Air Quality by Means of a Breathing Thermal Manikin

    DEFF Research Database (Denmark)

    Brohus, Henrik

    When a person is located in a contaminant field with significant gradients the contaminant distribution is modified locally due to the entrainment and transport of room air in the human convective boundary layer as well as due to the effect of the person acting as an obstacle to the flow field, etc....... The local modification of the concentration distribution may affect the personal exposure significantly and, thus, the indoor air quality actually experienced. In this paper measurements of indoor air quality by means of a Breathing Thermal Manikin (BTM) are presented....

  17. Chapter 22: Compressed Air Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Benton, Nathanael [Nexant, Inc., San Francisco, CA (United States); Burns, Patrick [Nexant, Inc., San Francisco, CA (United States)

    2017-10-18

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: High-efficiency/variable speed drive (VSD) compressor replacing modulating, load/unload, or constant-speed compressor; and Compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.

  18. Mesure de la vitesse d'infiltration des eaux dans le sol : Cas des sols ...

    African Journals Online (AJOL)

    C'est donc une infiltration superficielle qui ne peut pas modifier la composition des eaux de l'aquifère. Ces sols sont alors favorables à une telle agriculture. Mots clés: mesure, vitesse, infiltration, sols, pollutions, eau, Niari, Congo. English Title: Measuring the speed of the water infiltration into the soil: case of the soil of the ...

  19. Method of air-particles determination, by remote capacity measurement

    International Nuclear Information System (INIS)

    Sadigzadeh, A.; Moniri, F.

    2001-01-01

    In this paper, experimental results along with the calibration method used in opacimetry for determining atmospheric aerosol are presented. For our investigation, liquid, spherical mono dispersed particles of diocty le pha late (Dop) with particle sizes ranging for 0.07 to 1 μm is used. The light source is a He/Ne laser with the wavelength of 6328 A d eg. The range of particle concentrations is practically between 0 and 4 x 10 6 particles per cm 3 . The measured laser output transmitted through the aerosol cloud varies from 0 to 2.45 MW and is a function of particle concentration, particle sizes and the depth of aerosol cloud. It is observed that the light transmission decreases exponent rally as the particle concentration increases. The effect of particle sizes for the light transmitted through the aerosol was also studied

  20. ACREM: A new air crew radiation exposure measuring system

    International Nuclear Information System (INIS)

    Beck, P.; Duftschmid, K.; Kerschbaumer, S.; Schmitzer, C.; Strachotinsky, C.; Grosskopf, A.; Winkler, N.

    1996-01-01

    Cosmic radiation has already been discovered in 1912 by the Austrian Nobel Laureate Victor F. Hess. After Hess up to now numerous measurements of the radiation exposure by cosmic rays in different altitudes have been performed, however, this has not been taken serious in view of radiation protection.Today, with the fast development of modern airplanes, an ever increasing number of civil aircraft is flying in increasing altitudes for considerable time. Members of civil aircrew spending up to 1000 hours per year in cruising altitudes and therefore are subject to significant levels of radiation exposure. In 1990 ICRP published its report ICRP 60 with updated excess cancer risk estimates, which led to significantly higher risk coefficients for some radiation qualities. An increase of the radiation weighting factors for mean energy neutron radiation increases the contribution for the neutron component to the equivalent dose by about 60%, as compared to the earlier values of ICRP26. This higher risk coefficients lead to the recommendation of the ICRP, that cosmic radiation exposure in civil aviation should be taken into account as occupational exposure. Numerous recent exposure measurements at civil airliners in Germany, Sweden, USA, and Russia show exposure levels in the range of 3-10 mSv/year. This is significantly more than the average annual dose of radiation workers (in Austria about 1.5 mSv/year). Up to now no practicable and economic radiation monitoring system for routine application on board exits. A fairly simple and economic approach to a practical, active in-flight dosimeter for the assessment of individual crew exposure is discussed in this paper

  1. Measurements of electron avalanche formation time in W-band microwave air breakdown

    International Nuclear Information System (INIS)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-01-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ∼0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  2. Measurements of electron avalanche formation time in W-band microwave air breakdown

    Science.gov (United States)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ˜0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  3. Concentration of Radon Progeny in Air by Alpha Spectrometry Measurement; Medida de los descendientes del radon en aire por Espectrometria Alfa

    Energy Technology Data Exchange (ETDEWEB)

    Acena, M L; Crespo, M T

    1989-07-01

    The concentration of radon progeny in air has been determined by alpha spectrometry measurement of 214 Po and 318 Po. A known volume of air was passed through a filter, then the alpha activity was directly measured on this filter. (Author) 15 refs.

  4. An index to measure depreciation in air quality in some coal mining areas of Korba industrial belt of Chhattisgarh, India.

    Science.gov (United States)

    Singh, Gurdeep

    2006-11-01

    The comparison with National Ambient Air Quality Standards does not always depict a true picture of the Air Quality Status of a study area. As an alternative an index that measures depreciation in Air Quality on more realistic terms has been proposed and applied to the ambient air monitoring data collected from some areas of Korba Coalfields in India. Results have been discussed in detail to illustrate the application of the proposed index and utility in bringing out more realistic air quality assessment.

  5. Laser induced fluorescence measurements of the mixing of fuel oil with air

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A; Bombach, R; Hubschmid, W; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    We report on measurements of the mixing of fuel oil with air at atmospheric pressure in an industrial premixed gas turbine burner. The concentration of the vaporized fuel oil was measured with laser induced fluorescence. We reason that the fuel oil concentration can be considered with good accuracy as proportional to the fluorescence intensity. (author) 6 fig., 3 refs.

  6. Measuring neutron noise induced by travelling air bubbles in a research reactor

    International Nuclear Information System (INIS)

    Por, G.; Horanyi, S.

    1983-05-01

    Travelling air bubble experiments carried out in a research reactor confirm an earlier proposed model. The sink structure could be found experimentally in APSD of neutron signals and was used to determine the bubble velocity. The measurements show that neutron detectors measure the velocity of the travelling bubbles, the thermocouples that of the water flow. (author)

  7. High accuracy acoustic relative humidity measurement in duct flow with air

    NARCIS (Netherlands)

    Schaik, van W.; Grooten, M.H.M.; Wernaart, T.; Geld, van der C.W.M.

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and

  8. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    Science.gov (United States)

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  9. Air method measurements of apple vessel length distributions with improved apparatus and theory

    Science.gov (United States)

    Shabtal Cohen; John Bennink; Mel Tyree

    2003-01-01

    Studies showing that rootstock dwarfing potential is related to plant hydraulic conductance led to the hypothesis that xylem properties are also related. Vessel length distribution and other properties of apple wood from a series of varieties were measured using the 'air method' in order to test this hypothesis. Apparatus was built to measure and monitor...

  10. A study of pipe flow rate measurement using air-coupled ultrasound

    International Nuclear Information System (INIS)

    Tsukada, Keisuke; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2013-01-01

    A non-contact flow meter employing air-coupled ultrasound is developed in this research. Ultrasonic flow meter is applied to the higher accuracy flow rate measurement, compared with pressure difference flow meter. However, ultrasonic flow meter has difficulty to measure in severe conditions such as in the condition of high temperature, high pressure condition, and radioactive materials in fluid. Especially, in high temperature condition, piezoelectric device in ultrasonic sensors lose the piezoelectricity, and it becomes difficult to transmit or detect ultrasound. Thus, in this research, ultrasonic sensors are fixed in the air. Ultrasonic sensors transmit and detect ultrasound through air, and measure the flow rate in the pipe. However, most of ultrasound is refracted and reflected at the boundaries between air and the pipe. And detected signals are weak. To increase the signal level, we developed focusing ultrasonic sensors that was optimized for the pipe flow measurement. And employing these focusing sensors the flow rate measurement has been done in order to evaluate the air-coupled ultrasonic flow meter by the ultrasonic beam focusing technique. (author)

  11. Continuous measurements of ammonia, nitrous oxide and methane from air scrubbers at pig housing facilities.

    Science.gov (United States)

    Van der Heyden, C; Brusselman, E; Volcke, E I P; Demeyer, P

    2016-10-01

    Ammonia, largely emitted by agriculture, involves a great risk for eutrophication and acidification leading to biodiversity loss. Air scrubbers are widely applied to reduce ammonia emission from pig and poultry housing facilities, but it is not always clear whether their performance meets the requirements. Besides, there is a growing international concern for the livestock related greenhouse gases methane and nitrous oxide but hardly any data concerning their fate in air scrubbers are available. This contribution presents the results from measurement campaigns conducted at a chemical, a biological and a two-stage biological air scrubber installed at pig housing facilities in Flanders. Ammonia, nitrous oxide and methane at the inlet and outlet of the air scrubbers were monitored on-line during one week using a photoacoustic gas monitor, which allowed to investigate diurnal fluctuations in the removal performance of air scrubbers. Additionally, the homogeneity of the air scrubbers, normally checked by gas detection tubes, was investigated in more detail using the continuous data. The biological air scrubber with extra nitrification tank performed well in terms of ammonia removal (86 ± 6%), while the two-stage air scrubber suffered from nitrifying bacteria inhibition. In the chemical air scrubber the pH was not kept constant, lowering the ammonia removal efficiency. A lower ammonia removal efficiency was found during the day, when the ventilation rate was the highest. Nitrous oxide was produced inside the biological and two-stage scrubber, resulting in an increased outlet concentration of more than 200%. Methane could not be removed in the different air scrubbers because of its low water solubility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A UAV-based active AirCore system for measurements of greenhouse gases

    Directory of Open Access Journals (Sweden)

    T. Andersen

    2018-05-01

    Full Text Available We developed and field-tested an unmanned aerial vehicle (UAV-based active AirCore for atmospheric mole fraction measurements of CO2, CH4, and CO. The system applies an alternative way of using the AirCore technique invented by NOAA. As opposed to the conventional concept of passively sampling air using the atmospheric pressure gradient during descent, the active AirCore collects atmospheric air samples using a pump to pull the air through the tube during flight, which opens up the possibility to spatially sample atmospheric air. The active AirCore system used for this study weighs ∼ 1.1 kg. It consists of a ∼ 50 m long stainless-steel tube, a small stainless-steel tube filled with magnesium perchlorate, a KNF micropump, and a 45 µm orifice working together to form a critical flow of dried atmospheric air through the active AirCore. A cavity ring-down spectrometer (CRDS was used to analyze the air samples on site not more than 7 min after landing for mole fraction measurements of CO2, CH4, and CO. We flew the active AirCore system on a UAV near the atmospheric measurement station at Lutjewad, located in the northwest of the city of Groningen in the Netherlands. Five consecutive flights took place over a 5 h period on the same morning, from sunrise until noon. We validated the measurements of CO2 and CH4 from the active AirCore against those from the Lutjewad station at 60 m. The results show a good agreement between the measurements from the active AirCore and the atmospheric station (N  =  146; R2CO2: 0.97 and R2CH4: 0.94; and mean differences: ΔCO2: 0.18 ppm and ΔCH4: 5.13 ppb. The vertical and horizontal resolution (for CH4 at typical UAV speeds of 1.5 and 2.5 m s−1 were determined to be ±24.7 to 29.3 and ±41.2 to 48.9 m, respectively, depending on the storage time. The collapse of the nocturnal boundary layer and the buildup of the mixed layer were clearly observed with three consecutive vertical

  13. A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity

    International Nuclear Information System (INIS)

    Wang, Shang; Larin, K V; Li, Jiasong; Vantipalli, S; Twa, M D; Manapuram, R K; Aglyamov, S; Emelianov, S

    2013-01-01

    Accurate non-invasive assessment of tissue elasticity in vivo is required for early diagnostics of many tissue abnormalities. We have developed a focused air-pulse system that produces a low-pressure and short-duration air stream, which can be used to excite transient surface waves (SWs) in soft tissues. System characteristics were studied using a high-resolution analog pressure transducer to describe the excitation pressure. Results indicate that the excitation pressure provided by the air-pulse system can be easily controlled by the air source pressure, the angle of delivery, and the distance between the tissue surface and the port of the air-pulse system. Furthermore, we integrated this focused air-pulse system with phase-sensitive optical coherence tomography (PhS-OCT) to make non-contact measurements of tissue elasticity. The PhS-OCT system is used to assess the group velocity of SW propagation, which can be used to determine Young’s modulus. Pilot experiments were performed on gelatin phantoms with different concentrations (10%, 12% and 14% w/w). The results demonstrate the feasibility of using this focused air-pulse system combined with PhS-OCT to estimate tissue elasticity. This easily controlled non-contact technique is potentially useful to study the biomechanical properties of ocular and other tissues in vivo. (letter)

  14. Air pollution measurements in a semi-arid zine, using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shani, G; Cohen, D

    1977-01-01

    Neutron activation analysis was used for measurement of air pollution in a semi arid zone. After a careful selection of the air filter, air samples were filtered in the city of Beer-Sheva in the south of Israel. The sampling took place over a period of 2 months with each sampling period lasting 2 days. The samples were irradiated in a thermal neutron flux of the order of 10/sup 13/ n/cm/sup 2/ sec for 1 h and the gamma spectrum was measured several times. The concentration of elements was concluded from the measured gamma spectrum. Several conclusions were obtained by combining the weather conditions with the measurement results. The air pollution can be divided into several sources: dust of a certain origin containing Fe, Co, Cr, Sc, Th and Na (probably from the Dead Sea area), other dust sources containing Sb, Eu, and Hf, and urban pollution due to industry and transportation--Br, Hg. The air pollution has its maxima and minima according to weather or industrial conditions. The pollution requires 4 days to clear out. Other relations to weather conditions were also found.

  15. Air pollution measurements in a semi-arid zone, using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shani, G; Cohen, D [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Nuclear Engineering

    1977-12-01

    Neutron activation analysis was used for measurement of air pollution in a semi-arid zone. After a careful selection of the air filter, air samples were filtered in the city of Beer-Sheva in the south of Israel. The sampling took place over a period of 2 months with each sampling period lasting 2 days. The samples were irradiated in a thermal neutron flux of the order of 10/sup 13/ n/cm/sup 2/ sec for 1 h and the gamma spectrum was measured several times. The concentration of elements was concluded from the measured gamma spectrum. Several conclusions were obtained by combining the weather conditions with the measurement results. The air pollution can be divided into several sources: dust of a certain origin containing Fe, Co, Cr, Sc, Th and Na (probably from the Dead Sea area), other dust sources containing Sb, Eu, and Hf, and urban pollution due to industry and transportation-Br, Hg. The air pollution has its maxima and minima according to weather or industrial conditions. The pollution requires 4 days to clear out. Other relations to weather conditions were also found.

  16. Air pollution measurements in a semi-arid zone, using neutron activation analysis

    International Nuclear Information System (INIS)

    Shani, G.; Cohen, D.

    1977-01-01

    Neutron activation analysis was used for measurement of air pollution in a semi-arid zone. After a careful selection of the air filter, air samples were filtered in the city of Beer-Sheva in the south of Israel. The sampling took place over a period of 2 months with each sampling period lasting 2 days. The samples were irradiated in a thermal neutron flux of the order of 10 13 n/cm 2 sec for 1 h and the gamma spectrum was measured several times. The concentration of elements was concluded from the measured gamma spectrum. Several conclusions were obtained by combining the weather conditions with the measurement results. The air pollution can be divided into several sources: dust of a certain origin containing Fe, Co, Cr, Sc, Th and Na (probably from the Dead Sea area), other dust sources containing Sb, Eu, and Hf, and urban pollution due to industry and transportation-Br, Hg. The air pollution has its maxima and minima according to weather or industrial conditions. The pollution requires 4 days to clear out. Other relations to weather conditions were also found. (Auth.)

  17. Frequency comb calibrated frequency-sweeping interferometry for absolute group refractive index measurement of air.

    Science.gov (United States)

    Yang, Lijun; Wu, Xuejian; Wei, Haoyun; Li, Yan

    2017-04-10

    The absolute group refractive index of air at 194061.02 GHz is measured in real time using frequency-sweeping interferometry calibrated by an optical frequency comb. The group refractive index of air is calculated from the calibration peaks of the laser frequency variation and the interference signal of the two beams passing through the inner and outer regions of a vacuum cell when the frequency of a tunable external cavity diode laser is scanned. We continuously measure the refractive index of air for 2 h, which shows that the difference between measured results and Ciddor's equation is less than 9.6×10-8, and the standard deviation of that difference is 5.9×10-8. The relative uncertainty of the measured refractive index of air is estimated to be 8.6×10-8. The data update rate is 0.2 Hz, making it applicable under conditions in which air refractive index fluctuates fast.

  18. Simple and rapid measurement of α-rays on smear samples using air luminescence

    International Nuclear Information System (INIS)

    Takiue, M.

    1980-01-01

    The α-activity collected on smear samples has been measured indirectly using an air luminescence counting method and a liquid scintillation spectrometer. In this method, air luminescence, attributed to the fluorescence emitted by nitrogen molecules excited by α-rays in air, serves to detect α-rays. Thus, sample preparation and α-ray measurement are simple and rapid, and moreover, no radioactive waste solution is produced. Taking into account a low background and a counting efficiency between 10 and 20%, it is estimated that the detectable limit for α-ray measurement is about 1 x 10 -7 μCi/cm 2 for loose contamination. This method is convenient to use in the routine analysis of α-ray-emitting nuclides on smear paper. (author)

  19. Measuring Air Temperature in Glazed Ventilated Facades in the Presence of Direct Solar Radiation

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Zanghirella, Fabio; Heiselberg, Per

    2007-01-01

    A distinctive element of buildings with a double glazed façade is naturally or mechanically driven flow in a ventilated cavity. Accurate air temperature measurements in the cavity are crucial to evaluate the dynamic performance of the façade, to predict and control its behavior as a significant...... part of the complete ventilation system. Assessment of necessary cooling/heating loads and of the whole building energy performance will then depend on the accuracy of measured air temperature. The presence of direct solar radiation is an essential element for the façade operation, but it can heavily...... affect measurements of air temperature and may lead to errors of high magnitude using bare thermocouples and even adopting shielding devices. Two different research groups, from Aalborg University and Politecnico di Torino, tested separately various techniques to shield thermocouples from direct...

  20. A double Gerdien instrument for simultaneous bipolar air conductivity measurements on balloon platforms.

    Science.gov (United States)

    Nicoll, K A; Harrison, R G

    2008-08-01

    A bipolar air conductivity instrument is described for use with a standard disposable meteorological radiosonde package. It is intended to provide electrical measurements at cloud boundaries, where the ratio of the bipolar air conductivities is affected by the presence of charged particles. The sensors are two identical Gerdien-type electrodes, which, through a voltage decay method, measure positive and negative air conductivities simultaneously. Voltage decay provides a thermally stable approach and a novel low current leakage electrometer switch is described which initiates the decay sequence. The radiosonde supplies power and telemetry, as well as measuring simultaneous meteorological data. A test flight using a tethered balloon determined positive (sigma(+)) and negative (sigma(-)) conductivities of sigma(+)=2.77+/-0.2 fS m(-1) and sigma(-)=2.82+/-0.2 fS m(-1), respectively, at 400 m aloft, with sigma(+)sigma(-)=0.98+/-0.04.

  1. Measurement of radon progeny concentrations in air by alpha-particle spectrometey

    International Nuclear Information System (INIS)

    Kerr, G.D.

    1975-07-01

    A technique is presented for measuring air concentrations of the short-lived progeny of radon-222 by the use of alpha spectrometry. In this technique, the concentration of RaA, RaB, and RaC are calculated from one integral count of the RaA and two integral counts of the RaC' alpha-particle activity collected on a filter with an air sampling device. The influence of air sampling and counting intervals of time on the accuracy of the calculated concentrations is discussed in the report. A computer program is presented for use with this technique. It is written in the BASIC language. The program will calculate the air concentrations of RaA, RaB, and RaC, and will estimate the accuracy in these calculated concentrations. (U.S.)

  2. Influence of in-plant air pollution control measures on power plant and system operation

    International Nuclear Information System (INIS)

    Kurten, H.

    1990-01-01

    The burning of fossil fuels causes the emission of air pollutants which have harmful environmental impact. Consequently many nations have in the last few years established regulations for air pollution control and have initiated the development and deployment of air pollution control systems in power plants. The paper describes the methods used for reducing particulate, SO 2 and NO x emissions, their application as backfit systems and in new plants, the power plant capacity equipped with such systems in the Federal Republic of Germany and abroad and the additional investment and operating costs incurred. It is to be anticipated that advanced power plant designs will produce lower pollutant emissions and less waste at enhanced efficiency levels. A comparison with power generation in nuclear power plants completes the first part of the paper. This paper covers the impact of the above-mentioned air pollution control measures on unit commitment in daily operation

  3. Measurement of radon concentration in air employing Lucas chamber; Pomiar koncentracji radonu za pomoca komory Lucasa

    Energy Technology Data Exchange (ETDEWEB)

    Machaj, B.

    1997-12-31

    The results of investigations aimed to determine the main features of radon concentration gauge in air, employing 0.17 L Lucas chamber, and air sample forced by an air pump are presented. For two hour sampling and measuring cycle time the dynamic error in the worst case (first read out) equals 5 % relative to the step jump of radon concentration. This is due to the increase of activity of the decay products in the chamber. It was observed that the short lived radon decay products (Po-218, Pb-214, Bi-214) are depositing on the walls of the chamber and they are not removed by flushing the chamber with air. (author). 4 refs, 19 figs, 2 tabs.

  4. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    Science.gov (United States)

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.

  5. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample

    International Nuclear Information System (INIS)

    Kil Yong Lee; Burnett, W.C.

    2013-01-01

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 deg C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods. (author)

  6. Pressure Measurement and Flowfield Characterization of a Two-Dimensional Ideally Expanded, Constant Area, Air/air Ejector.

    Science.gov (United States)

    Benjamin, Michael Anthony

    A detailed experimental investigation of a two -dimensional, Mach 1.8 air-primary, Mach 0.3 air-secondary ejector at high Reynolds number has been performed, from which a nonintrusive method for whole-field visualization using turbulent wall-pressure has been developed. The experiments were conducted using mean and time-accurate wall pressure measurements, impact-pressure measurements using a traversing probe, and Schlieren and shadowgraph visualization techniques. The time-accurate pressure measurements were recorded using a sealed Kulite miniature pressure transducer with a 0.7 mm diameter sensing diaphragm. For all except the optical methods, measurements were taken from the initial flow interface to about 13 hydraulic tube-diameters downstream in the constant-area mixing section. From the mean measurements, values of stagnation pressure, density, velocity, static pressure, Mach number, and dynamic pressure were developed and are presented. Using the time-accurate pressure measurements, a color contour plot of the rms pressure was developed that definitively shows the regions of the flow in agreement with the other measurements. Additionally, probability density functions, skewness, and kurtosis were calculated. Peak values of skewness (S) and kurtosis (K) on the centerline at about 2.5 hydraulic diameters are S = 1.85 and K = 11.5. The inlet rms pressure values, normalized by freestream dynamic pressure for the primary (~0.001), were found to be in fair agreement with previous experimental values; however, those in the secondary were much higher (~0.2), apparently due to the acoustic radiation from the primary. Fourier analysis of the time-accurate pressure measurements show that the autospectra contain k ^{-1}, k^{-7/3}, and k^{-11/3} pressure spectrum functions as predicted by prevailing theory for the overlap layer, turbulence-turbulence interaction, and turbulence-mean-shear interaction, respectively. It is believed that this is the first experiment in

  7. The uncertainty of measurements. Research on air pollution; Meten is ook onzeker. Lucht in onderzoek

    Energy Technology Data Exchange (ETDEWEB)

    Van den Elshout, S. [DCMR Milieudienst Rijnmond, Rotterdam (Netherlands); Woudenberg, F. [Cluster Leefomgeving, Afdeling Milieu en Gezondheid, GGD Amsterdam, Amsterdam (Netherlands)

    2011-08-15

    Measurements are sometimes suggested as alternative to uncertain forecasts in Legal decision making. However, measurements also have entail uncertainties. This article offers several considerations on how to deal with uncertainties in the Legal establishment of air quality. But next to the theoretical considerations, what applies in reality is always: less air pollution is better. [Dutch] Metingen worden soms voorgesteld als alternatief voor onzekere voorspellingen bij juridische besluitvorming. Metingen kennen echter ook onzekerheden. In dit artikel enkele overwegingen over hoe om te gaan met onzekerheden bij de juridische bepaling van de luchtkwaliteit. Naast de theoretische overwegingen geldt in de praktijk echter altijd: minder luchtvervuiling is beter.

  8. Quarterly report on measurements of radionuclides in ground level air in Sweden. Third quarter 2004

    International Nuclear Information System (INIS)

    Soederstroem, C.; Arntsing, R.; Lindh, K.

    2005-04-01

    Filtering of ground level air is performed weekly at six different locations in Sweden: Kiruna, Umeaa, Gaevle, Ursvik, Visby and Ljungbyhed. The filters are pressed and the contents of different radionuclides are measured by gamma spectroscopy. Precipitation is also collected at four of the stations: Kiruna, Gaevle, Ursvik and Ljungbyhed, the samples are ashed and the contents of radionuclides measured. The levels of 7 Be and 137 Cs in air and deposition are presented for the different stations. Other anthropogenic radionuclides detected, if any, are also presented

  9. Quarterly report on measurements of radionuclides in ground level air in Sweden. Third quarter 2001

    International Nuclear Information System (INIS)

    Soederstroem, C.; Arntsing, R.; Vintersved, I.

    2002-01-01

    Filtering of ground level air is performed weekly at seven different locations in Sweden: Kiruna, Umeaa, Gaevle, Ursvik, Grindsjoen, Visby and Ljungbyhed. The filters are compressed and the contents of different radionuclides are measured by gamma spectroscopy. Precipitation is also collected at four of the stations: Kiruna, Gaevle, Ursvik and Ljungbyhed, the samples are ashed and the contents of radionuclides measured. The levels of 7 Be and 137 Cs in air and deposition are presented for the different stations. Other anthropogenic radionuclides detected, if any, are also presented

  10. Microprocessor isotope gauges for measurement of coating thickness and of air dust pollution

    International Nuclear Information System (INIS)

    Machaj, B.; Zrudelny, F.; Sikora, A.; Jaszczuk, J.

    1986-01-01

    The article describes a coating thickness gauge based on measurement of backscattered beta particles, and an air dust pollution gauge based on measurement of dust deposited from known volume of ambient air passed through a filter, by attenuation of beta radiation. In both cases to control the gauges and to process head signals microcomputer system based on Intel 8080 microprocessor is employed. Algorithms for processing and control of the gauges and corresponding flow charts are presented. Block diagram of microcomputer system used is presented, as well as the manner of operation of the gauges. (author)

  11. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.

    1994-01-01

    The present research reports on the effect of initial mixture temperature on the experimentally measured detonation cell size for hydrogen-air-steam mixtures. Experimental and theoretical research related to combustion phenomena in hydrogen-air-steam mixtures has been ongoing for many years. However, detonation cell size data currently exists or hydrogen-air-steam mixtures up to a temperature of only 400K. Sever accident scenarios have been identified for light water reactors (LWRs) where hydrogen-air mixture temperatures in excess of 400K could be generated within containment. The experiments in this report focus on extending the cell size data base for initial mixture temperatures in excess of 400K. The experiments were carried out in a 10-cm inner-diameter, 6.1-m long heated detonation tube with a maximum operating temperature of 700K and spatial temperature uniformity of ±14K. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air initial gas mixture temperature, in the range 300K--650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside-diameter test vessel, based upon the onset of single-head spin, decreased from 15 percent by hydrogen at 300K down to about 9 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments

  12. Utilization of coincidence criteria in absolute length measurements by optical interferometry in vacuum and air

    International Nuclear Information System (INIS)

    Schödel, R

    2015-01-01

    Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion. (paper)

  13. Measurement of the heat transfer parameters in infiltrated binary beryllium beds. Comparison between the results with PEHTRA and SUPER-PEHTRA

    International Nuclear Information System (INIS)

    Donne, M. dalle; Piazza, G.; Scaffidi-Argentina, F.

    2000-01-01

    For the next generation fusion reactors with a ceramic breeder blanket the use, as a neutron multiplier, of either a binary bed of large (∼ 2 mm) and small (∼ 0.1-0.2 mm) beryllium pebbles or a single size bed made of 1 mm or 2 mm pebbles is foreseen. The heat transfer parameters of such a binary pebble bed, namely the thermal conductivity and the heat transfer coefficient to the containing wall, have been investigated previously in the experimental device PEHTRA available at FZK. The experiments allowed to measure the effect of the bed temperature and of constraint exerted by the containing walls. The constraint is defined by the bed interference, i.e. the difference in the radial expansion between bed and the constraining walls related to the bed thickness (Δl/l). However, with the PEHTRA experiments, it was only possible to achieve a Δl/l value of 0.1%. A new experimental rig (SUPER-PEHTRA) has been constructed at FZK, which allows to achieve Δl/l values of 0.3% and to measure the pressure of the expanding bed on the containing walls. First experiments with a binary bed have been performed. The present paper reports on further experiments with binary beds and the establishing of equations correlating the data obtained for the present binary beds and for the binary bed experiments described. (orig.)

  14. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    Science.gov (United States)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  15. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    Science.gov (United States)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  16. Measurement of horizontal air showers with the Auger Engineering Radio Array

    Science.gov (United States)

    Kambeitz, Olga

    2017-03-01

    The Auger Engineering Radio Array (AERA), at the Pierre Auger Observatory in Argentina, measures the radio emission of extensive air showers in the 30-80 MHz frequency range. AERA consists of more than 150 antenna stations distributed over 17 km2. Together with the Auger surface detector, the fluorescence detector and the underground muon detector (AMIGA), AERA is able to measure cosmic rays with energies above 1017 eV in a hybrid detection mode. AERA is optimized for the detection of air showers up to 60° zenith angle, however, using the reconstruction of horizontal air showers with the Auger surface array, very inclined showers can also be measured. In this contribution an analysis of the AERA data in the zenith angle range from 62° to 80° will be presented. CoREAS simulations predict radio emission footprints of several km2 for horizontal air showers, which are now confirmed by AERA measurements. This can lead to radio-based composition measurements and energy determination of horizontal showers in the future and the radio detection of neutrino induced showers is possible.

  17. Ion current prediction model considering columnar recombination in alpha radioactivity measurement using ionized air transportation

    International Nuclear Information System (INIS)

    Naito, Susumu; Hirata, Yosuke; Izumi, Mikio; Sano, Akira; Miyamoto, Yasuaki; Aoyama, Yoshio; Yamaguchi, Hiromi

    2007-01-01

    We present a reinforced ion current prediction model in alpha radioactivity measurement using ionized air transportation. Although our previous model explained the qualitative trend of the measured ion current values, the absolute values of the theoretical curves were about two times as large as the measured values. In order to accurately predict the measured values, we reinforced our model by considering columnar recombination and turbulent diffusion, which affects columnar recombination. Our new model explained the considerable ion loss in the early stage of ion diffusion and narrowed the gap between the theoretical and measured values. The model also predicted suppression of ion loss due to columnar recombination by spraying a high-speed air flow near a contaminated surface. This suppression was experimentally investigated and confirmed. In conclusion, we quantitatively clarified the theoretical relation between alpha radioactivity and ion current in laminar flow and turbulent pipe flow. (author)

  18. Measurement of the Tracer Gradient and Sampling System Bias of the Hot Fuel Examination Facility Stack Air Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A.; Flaherty, Julia E.

    2011-07-20

    This report describes tracer gas uniformity and bias measurements made in the exhaust air discharge of the Hot Fuel Examination Facility at Idaho National Laboratory. The measurements were a follow-up on earlier measurements which indicated a lack of mixing of the two ventilation streams being discharged via a common stack. The lack of mixing is detrimental to the accuracy of air emission measurements. The lack of mixing was confirmed in these new measurements. The air sampling probe was found to be out of alignment and that was corrected. The suspected sampling bias in the air sample stream was disproved.

  19. Overview of chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-06-01

    Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

  20. Decontamination evaluation based on radioactivity measurement instead of air dose rate

    International Nuclear Information System (INIS)

    Shozugawa, Katsumi

    2013-01-01

    Air dose rate at 1 m above the ground comes from gamma radiations emitted from vast area ranging over several ten meters of the contaminated field from the counter. After showing the actual example of the difference between air dose rate data and Cs 137 distribution map made by using a shielded NaI-scintillation counter within and around a contaminated sinkhole (a ditch or trench) near Fukushima Daiichi Nuclear Power Plants, the author proposes to make a decontamination program according to the radioactivity distribution measurement instead of air dose rate measurement. Furthermore, he explains some problems arising from a point and plane radiation source, and also difficulties accompanied by movement of Cs 137 atoms in the soils according to the absorption characteristics of the existing minerals but these are also important to consider for performing an effective decontamination. (S. Ohno)

  1. Two-phase air-water stratified flow measurement using ultrasonic techniques

    International Nuclear Information System (INIS)

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-01-01

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable

  2. Air quality in low-ventilated museum storage buildings

    DEFF Research Database (Denmark)

    Ryhl-Svendsen, Morten; Aasbjerg Jensen, Lars; Klenz Larsen, Poul

    2014-01-01

    Modern low-energy museum storage buildings are often designed for a low air exchange rate, on the order of less than 1 exchange per day. We investigated how this affected the indoor air quality in six Danish museum storage buildings. The infiltration of ambient pollutants, and the level to which...... internally-generated pollutants accumulate, were measured by passive sampling of ozone, nitrogen dioxide, and organic acids. The air exchange rates and the interchange of air between storage rooms were measured by the per-fluorocarbon tracer gas method. Ambient pollutants were reduced in concentration...

  3. Air Quality Measurements And Characterization - A Resource For Sustainable Development In Nigeria

    International Nuclear Information System (INIS)

    Ugwuanyi, J. U

    2002-01-01

    My assignment in this paper is to present an overview of a proposed research work on air quality measurements and characterization in Nigeria, using Niger Delta region and Benue State as a case study. A preliminary study indicates that ambient air quality in the country far exceeds the international Ambient Air Quality Standards (AAQS). And, there is a strong indication that concentration levels of particle mass, elements, and organic compounds, et alia. are being elevated and that daily respiratory-related emergency visits could be correlated with the ambient and aerosol concentrations. Indeed, the environmental impact matrices of tile patients versus airborne diseases in Benue State indicate that the inferno is already affecting the quality of life and productivity of the people. Observations also show that the Niger Delta's main environmental challenges result from gas flaring, oil spills and deforestation. Although the monetary losses due to air pollution in Nigeria is yet to be quantified, Nigeria loses about $ 2.5 billion per annum due to gas flaring alone. The paper presents background to the problem, program of work/methodology, Physics of air pollutants, energy conservation (material balances), air pollutants and associated diseases, anticipated benefits of the proposed research and its relevance to the nation building

  4. Torricelli and the ocean of air: the first measurement of barometric pressure.

    Science.gov (United States)

    West, John B

    2013-03-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, "We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight." This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology.

  5. On-site infiltration of road runoff using pervious pavements with subjacent infiltration trenches as source control strategy.

    Science.gov (United States)

    Fach, S; Dierkes, C

    2011-01-01

    The focus in this work was on subsoil infiltration of stormwater from parking lots. With regard to operation, reduced infiltration performance due to clogging and pollutants in seepage, which may contribute to contaminate groundwater, are of interest. The experimental investigation covered a pervious pavement with a subjacent infiltration trench draining an impervious area of 2 ha. In order to consider seasonal effects on the infiltration performance, the hydraulic conductivity was measured tri-monthly during monitoring with a mobile sprinkling unit. To assess natural deposits jointing, road bed, gravel of infiltration trenches and subsoil were analysed prior to commencement of monitoring for heavy metals, polycyclic aromatic and mineral oil type hydrocarbons. Furthermore, from 22 storm events, water samples of rainfall, surface runoff, seepage and ground water were analysed with regard to the above mentioned pollutants. The study showed that the material used for the joints had a major impact on the initial as well as the final infiltration rates. Due to its poor hydraulic conductivity, limestone gravel should not be used as jointing. Furthermore, it is recommended that materials for the infiltration facilities are ensured free of any contaminants prior to construction. Polycyclic aromatic and mineral oil type hydrocarbons were, with the exception of surface runoff, below detection limits. Heavy metal concentrations of groundwater were with the exception of lead (because of high background concentrations), below the permissible limits.

  6. [Measurement of Chemical Compounds in Indoor and Outdoor Air in Chiba City Using Diffusive Sampling Devices].

    Science.gov (United States)

    Sakamoto, Hironari; Uchiyama, Shigehisa; Kihara, Akiko; Tsutake, Toyoshige; Bekki, Kanae; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2015-01-01

    Indoor air quality (IAQ) is a major concern, because people on average spend the vast majority of their time indoors and they are repeatedly exposed to indoor air pollutants. In this study, to assess indoor air quality in Chiba City, gaseous chemical compounds were surveyed using four types of diffusive sampler. Gaseous chemical compounds such as carbonyls, volatile organic compounds (VOC), acid gases, basic gases, and ozone were measured in indoor and outdoor air of 50 houses throughout Chiba City in winter and summer. Four types of diffusive sampler were used in this study: DSD-BPE/DNPH packed with 2,4-dinitrophenyl hydrazine and trans-1,2-bis(2-pyridyl)ethylene-coated silica for ozone and carbonyls; VOC-SD packed with Carboxen 564 particles for volatile organic compounds; DSD-TEA packed with triethanolamine-impregnated silica for acid gases; and DSD-NH3 packed with phosphoric acid-impregnated silica for basic gases. Almost all compounds in indoor air were detected at higher concentrations in summer than in winter. However, the nitrogen dioxide concentration in indoor air particularly increased only in winter, which well correlated with the formic acid concentration (correlation coefficient=0.974). The compound with the highest concentrations in indoor air was p-dichlorobenzene, with recorded levels of 13,000 μg m(-3) in summer and 1,100 μg m(-3) in winter in indoor air. p-Dichlorobenzene in summer and nitrogen dioxide in winter are detected at markedly high concentrations. Pollution control and continuous monitoring of IAQ are indispensable for human health.

  7. The Reproducibility of Indoor Air Pollution (IAP Measurement: A Test Case for the Measurement of Key Air Pollutants from the Pan Frying of Fish Samples

    Directory of Open Access Journals (Sweden)

    Ki-Hyun Kim

    2014-01-01

    Full Text Available To assess the robustness of various indoor air quality (IAQ indices, we explored the possible role of reproducibility-induced variability in the measurements of different pollutants under similar sampling and emissions conditions. Polluted indoor conditions were generated by pan frying fish samples in a closed room. A total of 11 experiments were carried out to measure a list of key variables commonly used to represent indoor air pollution (IAP indicators such as particulate matter (PM: PM1, PM2.5, PM10, and TSP and a set of individual volatile organic compounds (VOCs with some odor markers. The cooking activity conducted as part of our experiments was successful to consistently generate significant pollution levels (mean PM10: 7110 μg m−3 and mean total VOC (TVOC: 1400 μg m−3, resp.. Then, relative standard error (RSE was computed to assess the reproducibility between different IAP paramters measured across the repeated experiments. If the results were evaluated by an arbitrary criterion of 10%, the patterns were divided into two data groups (e.g., 10% for the remainders. Most noticeably, TVOC had the most repeatable results with a reproducibility (RSE value of 3.2% (n=11.

  8. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    Directory of Open Access Journals (Sweden)

    W. A. Cooper

    2014-09-01

    Full Text Available A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s−1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  9. Measurement of the temperature Gradient in air using Talbot effect and Moire technique

    International Nuclear Information System (INIS)

    Tavassoly, M.T.; Rasouli, S.

    2000-01-01

    In this paper we have exploited the self-imaging or Talbot effect and Moire technique to measure the temperature distribution in the air enclosed between two paral led plates of different temperatures. This study shows that for the plates width of 60 cm a change of 1 d egC in 1 cm can be easily detected

  10. Calibrating the absolute amplitude scale for air showers measured at LOFAR

    International Nuclear Information System (INIS)

    Nelles, A.; Hörandel, J. R.; Karskens, T.; Krause, M.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Buitink, S.; Erdmann, M.; Krause, R.; Haungs, A.; Hiller, R.; Huege, T.; Link, K.; Schröder, F. G.; Norden, M. J.; Scholten, O.

    2015-01-01

    Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR

  11. Measurement of radon 222 in drinking water and air by liquid scintillation

    International Nuclear Information System (INIS)

    Schoenhofer, F.

    1991-01-01

    This is a brief description of the liquid scintillation measuring method for determining radon 222 in drinking water and air. Discussed are the advantages of this method and its reliability or accuracy, as well as some conclusions from the results. (orig.) [de

  12. Probe sampling measurements and modeling of nitric oxide formation in ethane + air flames

    NARCIS (Netherlands)

    Dyakov, I.V.; Ruyck, de J.; Konnov, A.A.

    2007-01-01

    Burning velocity and probe sampling measurements of the concentrations of O2, CO2, CO and NO in the post-flame zone of ethane + air flames are reported. The heat flux method was used for stabilization of laminar, premixed, non-stretched flames on a perforated plate burner at 1 atm. Axial profiles of

  13. Measurement error in epidemiologic studies of air pollution based on land-use regression models.

    Science.gov (United States)

    Basagaña, Xavier; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Foraster, Maria; Marrugat, Jaume; Elosua, Roberto; Künzli, Nino

    2013-10-15

    Land-use regression (LUR) models are increasingly used to estimate air pollution exposure in epidemiologic studies. These models use air pollution measurements taken at a small set of locations and modeling based on geographical covariates for which data are available at all study participant locations. The process of LUR model development commonly includes a variable selection procedure. When LUR model predictions are used as explanatory variables in a model for a health outcome, measurement error can lead to bias of the regression coefficients and to inflation of their variance. In previous studies dealing with spatial predictions of air pollution, bias was shown to be small while most of the effect of measurement error was on the variance. In this study, we show that in realistic cases where LUR models are applied to health data, bias in health-effect estimates can be substantial. This bias depends on the number of air pollution measurement sites, the number of available predictors for model selection, and the amount of explainable variability in the true exposure. These results should be taken into account when interpreting health effects from studies that used LUR models.

  14. Effect of scintillometer height on structure parameter of the refractive index of air measurements

    Science.gov (United States)

    Scintillometers measure amount of scintillations by emitting a beam of light over a horizontal path and expresses as the atmospheric turbulence structure parameter as the refractive index of air (Cn**2). Cn**2 represents the turbulent strength of the atmosphere and describes the ability of the atmos...

  15. An Undergraduate Experiment for the Measurement of the Speed of Sound in Air: Phenomena and Discussion

    Science.gov (United States)

    Yang, Hujiang; Zhao, Xiaohong; Wang, Xin; Xiao, Jinghua

    2012-01-01

    In this paper, we present and discuss some phenomena in an undergraduate experiment for the measurement of the speed of sound in air. A square wave distorts when connected to a piezoelectric transducer. Moreover, the amplitude of the receiving signal varies with the driving frequency. Comparing with the Gibbs phenomenon, these phenomena can be…

  16. Exposition by inhalation to the formaldehyde in the air. Source, measures and concentrations

    International Nuclear Information System (INIS)

    Del Gratta, F.; Durif, M.; Fagault, Y.; Zdanevitch, I.

    2004-12-01

    This document presents the main techniques today available to characterize the formaldehyde concentrations in the air for different contexts: urban and rural areas or around industrial installations but also indoor and occupational area. It provides information to guide laboratories and research departments. A synthesis gives also the main emissions sources of these compounds as reference concentrations measured in different environments. (A.L.B.)

  17. Leak-Based Method for the Measurement of Air Permeability of Papers

    Directory of Open Access Journals (Sweden)

    Colard Stéphane

    2016-01-01

    Full Text Available The air permeability of cigarette paper is currently assessed according to the international standard ISO 2965 by applying a constant pressure difference of 1 kPa between the two faces of a sample and by measuring the corresponding airflow.

  18. Effect measure modification of blood lead-air lead slope factors.

    Science.gov (United States)

    Richmond-Bryant, Jennifer; Meng, Qingyu; Cohen, Jonathan; Davis, J Allen; Svendsgaard, David; Brown, James S; Tuttle, Lauren; Hubbard, Heidi; Rice, Joann; Kirrane, Ellen; Vinikoor-Imler, Lisa; Kotchmar, Dennis; Hines, Erin; Ross, Mary

    2015-01-01

    There is abundant literature finding that susceptibility factors, including race and ethnicity, age, and housing, directly influence blood lead levels. No study has explored how susceptibility factors influence the blood lead-air lead relationship nationally. The objective is to evaluate whether susceptibility factors act as effect measure modifiers on the blood lead-air lead relationship. Participant level blood lead data from the 1999 to 2008 National Health and Nutrition Examination Survey were merged with air lead data from the US Environmental Protection Agency. Linear mixed effects models were run with and without an air lead interaction term for age group, sex, housing age, or race/ethnicity to determine whether these factors are effect measure modifiers for all ages combined and for five age brackets. Age group and race/ethnicity were determined to be effect measure modifiers in the all-age model and for some age groups. Being a child (1-5, 6-11, and 12-19 years) or of Mexican-American ethnicity increased the effect estimate. Living in older housing (built before 1950) decreased the effect estimate for all models except for the 1-5-year group, where older housing was an effect measure modifier. These results are consistent with the peer-reviewed literature of time-activity patterns, ventilation, and toxicokinetics.

  19. Air Density Measurements in a Mach 10 Wake Using Iodine Cordes Bands

    Science.gov (United States)

    Balla, Robert J.; Everhart, Joel L.

    2012-01-01

    An exploratory study designed to examine the viability of making air density measurements in a Mach 10 flow using laser-induced fluorescence of the iodine Cordes bands is presented. Experiments are performed in the NASA Langley Research Center 31 in. Mach 10 air wind tunnel in the hypersonic near wake of a multipurpose crew vehicle model. To introduce iodine into the wake, a 0.5% iodine/nitrogen mixture is seeded using a pressure tap at the rear of the model. Air density was measured at 56 points along a 7 mm line and three stagnation pressures of 6.21, 8.62, and 10.0 MPa (900, 1250, and 1450 psi). Average results over time and space show rho(sub wake)/rho(sub freestream) of 0.145 plus or minus 0.010, independent of freestream air density. Average off-body results over time and space agree to better than 7.5% with computed densities from onbody pressure measurements. Densities measured during a single 60 s run at 10.0 MPa are time-dependent and steadily decrease by 15%. This decrease is attributed to model forebody heating by the flow.

  20. Air Quality in Megacities: Lessons Learned from Mexico City Field Measurements

    Science.gov (United States)

    Molina, L. T.

    2014-12-01

    More than half of the world's population now lives in urban areas because of the opportunities for better jobs, access to city services, cultural and educational activities, and a desire for more stimulating human interaction. At the same time, many of these urban centers are expanding rapidly, giving rise to the phenomenon of megacities. In recent decades air pollution has become not only one of the most important environmental problems of megacities, but also presents serious consequences to human health and ecosystems and economic costs to society. Although the progress to date in combating air pollution problems in developed and some developing world megacities has been impressive, many challenges remain including the need to improve air quality while simultaneously mitigating climate change. This talk will present the results and the lessons learned from field measurements conducted in Mexico City Metropolitan Area - one of the world's largest megacities - over the past decade. While each city has its own unique circumstances, the need for an integrated assessment approach in addressing complex environmental problems is the same. There is no single strategy in solving air pollution problems in megacities; a mix of policy measures based on sound scientific findings will be necessary to improve air quality, protect public health, and mitigate climate change.

  1. Measurements of air contaminants during the Cerro Grande fire at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Eberhart, Craig

    2010-08-01

    Ambient air sampling for radioactive air contaminants was continued throughout the Cerro Grande fire that burned part of Los Alamos National Laboratory. During the fire, samples were collected more frequently than normal because buildup of smoke particles on the filters was decreasing the air flow. Overall, actual sampling time was 96% of the total possible sampling time for the May 2000 samples. To evaluate potential human exposure to air contaminants, the samples were analyzed as soon as possible and for additional specific radionuclides. Analyses showed that the smoke from the fire included resuspended radon decay products that had been accumulating for many years on the vegetation and the forest floor that burned. Concentrations of plutonium, americium, and depleted uranium were also measurable, but at locations and concentrations comparable to non-fire periods. A continuous particulate matter sampler measured concentrations that exceeded the National Ambient Air Quality Standard for PM-10 (particles less than 10 micrometers in diameter). These high concentrations were caused by smoke from the fire when it was close to the sampler.

  2. Stratospheric measurements of ozone-depleting substances and greenhouse gases using AirCores

    Science.gov (United States)

    Laube, Johannes; Leedham Elvidge, Emma; Kaiser, Jan; Sturges, Bill; Heikkinen, Pauli; Laurila, Tuomas; Hatakka, Juha; Kivi, Rigel; Chen, Huilin; Fraser, Paul; van der Veen, Carina; Röckmann, Thomas

    2017-04-01

    Retrieving air samples from the stratosphere has previously required aircraft or large balloons, both of which are expensive to operate. The novel "AirCore" technique (Karion et al., 2010) enables stratospheric sampling using weather balloons, which is much more cost effective. AirCores are long (up to 200 m) stainless steel tubes which are placed as a payload on a small balloon, can ascend to over 30 km and fill upon descent, collecting a vertical profile of the atmosphere. Retrieved volumes are much smaller though, which presents a challenge for trace gas analysis. To date, only the more abundant trace gases such as carnon dioxide (CO2) and methane (CH4) have been quantified in AirCores. Halogenated trace gases are also important greenhouse gases and many also deplete stratospheric ozone. Their concentrations are however much lower i.e. typically in the part per trillion (ppt) molar range. We here present the first stratospheric measurements of halocarbons in AirCores obtained using UEA's highly sensitive (detection limits of 0.01-0.1 ppt in 10 ml of air) gas chromatography mass spectrometry system. The analysed air originates from a Stratospheric Air Sub-sampler (Mrozek et al., 2016) which collects AirCore segments after the non-destructive CO2 and CH4 analysis. Successfully measured species include CFC-11, CFC-12, CFC-113, CFC-115, H-1211, H-1301, HCFC-22, HCFC-141b, HCFC-142b, HCFC-133a, and sulphur hexafluoride (SF6). We compare the observed mixing ratios and precisions with data obtained from samples collected during various high-altitude aircraft campaigns between 2009 and 2016 as well as with southern hemisphere tropospheric long-term trends. As part of the ERC-funded EXC3ITE (EXploring stratospheric Composition, Chemistry and Circulation with Innovative Techniques) project more than 40 AirCore flights are planned in the next 3 years with an expanded range of up to 30 gases in order to explore seasonal and interannual variability in the stratosphere

  3. Air quality along motorways. Measuring and modelling calculations; Luftkvalitet langs motorveje. Maelekampagne og modelberegninger

    Energy Technology Data Exchange (ETDEWEB)

    Solvang Jensen, S.; Loefstroem, P.; Berkowich, R.; Roerdam Olsen, H.; Frydendall, J. [DMU, Afd. for Atmosfaerisk Miljoe, Roskilde (DK); Fuglsang, K. [FORCE Technology, Broendby (Denmark); Hummelshoej, P. [MetSupport, Roskilde (Denmark)

    2004-12-01

    This report describes the air quality along Koege Bugt motorway, one of the most trafficked sections in Denmark. A number of measurements have been carried out along Koege Bugt motorway at Greve for a three-month period in the autumn of 2003. For the first time in Denmark, NO{sub x} were measured with high time dissolution from different distances of the motorway. Furthermore, a number of meteorological parameters were measured in order to map local meteorological conditions. An air quality model describing dispersal and conversion has been made on the basis of the OML model. The OML model is modified in order to take traffic-made turbulence into consideration. The model has been evaluated through comparisons between measurements and simulated calculations. Furthermore, simulated calculations for the year 2003 has been made for comparison with extreme values. (BA)

  4. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    Science.gov (United States)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  5. Error Analysis on the Estimation of Cumulative Infiltration in Soil Using Green and AMPT Model

    Directory of Open Access Journals (Sweden)

    Muhamad Askari

    2006-08-01

    Full Text Available Green and Ampt infiltration model is still useful for the infiltration process because of a clear physical basis of the model and of the existence of the model parameter values for a wide range of soil. The objective of thise study was to analyze error on the esimation of cumulative infiltration in sooil using Green and Ampt model and to design laboratory experiment in measuring cumulative infiltration. Parameter of the model was determined based on soil physical properties from laboratory experiment. Newton –Raphson method was esed to estimate wetting front during calculation using visual Basic for Application (VBA in MS Word. The result showed that  contributed the highest error in estimation of cumulative infiltration and was followed by K, H0, H1, and t respectively. It also showed that the calculated cumulative infiltration is always lower than both measured cumulative infiltration and volumetric soil water content.

  6. Challenges and Opportunities for Using Crowd-Sourced Air Pollution Measurements for Education and Outreach

    Science.gov (United States)

    Stanier, C. O.; Dong, C.; Janechek, N. J.; Bryngelson, N.; Schultz, P.; Heimbinder, M.

    2017-12-01

    As part of the CLE4R air quality education project, the University of Iowa has been working with AirBeam low-cost consumer-grade fine particulate matter (PM2.5) sensors in educational and outreach settings, both in K-12 environments and in informal settings such as science days and technology fairs. Users are attracted to the AirBeam device, in part, because of the easy creation of crowd-sourced maps of air pollution. With over 1000 AirBeam devices in use, extensive measurements are now available at aircasting.org. The AirBeam sensor is a portable, low-cost sensor which measures light scattering due to aerosols as a single bin converting the detected signal to a particle count and uses a calibration fit to estimate particle mass. The AirBeam is able to detect particle sizes of 0.5 - 2.5 µm, concentrations up to 400 µg m-3, and with a time resolution of 1 s. A corresponding Android device is used to visualize, record, and upload measured data to a community website (aircasting.org) that maps the spatial and temporal resolved data. The non-profit vendor's website constructs crowdsourced maps of air quality, environmental, and meteorological variables. As of April 1st, 2017, through the CLE4R project, 109 people had used the AirBeam sensors for educational purposes, for a total of 271 person hours. In the poster, we will explain the outreach that was done, and share best practices for education and outreach using consumer-grade PM sensors. Strengths and needed improvements to the technology for these outreach, education, and classroom uses will also be detailed. Sources of particles that can be artificially generated for educational use, including authentic smoke, spray smoke, and various dust sources will be enumerated. For use in K-12 classrooms, requirements for robust startup, operation, and ease-of-use are high. Mapping of concentrations is a desirable attribute but adds additional sources of failure to the hardware-software system used for education/outreach.

  7. 10 CFR 431.76 - Uniform test method for the measurement of energy efficiency of commercial warm air furnaces.

    Science.gov (United States)

    2010-01-01

    ...) Measurement of flue CO 2 (carbon dioxide) for oil-fired commercial warm air furnaces. In addition to the flue... commercial warm air furnace. The test procedure for the measurement of the condensate from the flue gas under... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy...

  8. Chemical composition of aerosol measurements in the air pollution plume during KORUS-AQ

    Science.gov (United States)

    Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Kim, J.; Park, S.; Lee, Y.; Desyaterik, Y.; Collett, J. L., Jr.; Lee, T.

    2017-12-01

    The Korean peninsula is a great place to study different sources of the aerosols: urban, rural and marine. In addition, Seoul is one of the large metropolitan areas in the world and has a variety of sources because half of the Korean population lives in Seoul, which comprises only 12% of the country's area. To understand the chemical composition of aerosol form long-range transport and local sources better, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on an airborne platform (NASA DC-8 aircraft). The HR-ToF-AMS is capable of measuring non-refractory size resolved chemical composition of submicron particle(NR-PM1) in the air pollution plume, including mass concentration of organic carbon, nitrate, sulfate, and ammonium with 10 seconds time resolution. The measurements were performed twenty times research flight for understanding characteristic of the air pollution from May to June, 2016 on the South Korean peninsula during KORUS-AQ 2016 campaign. The scientific goal of this study is to characterize aerosol chemical properties and mass concentration in order to understand the role of the long-range transport from northeast Asia to South Korea, and influence of the local sources. To brief, organics dominated during all of flights. Also, organics and nitrate were dominant around energy industrial complex near by Taean, South Korea. The presentation will provide an overview of the composition of NR-PM1 measured in air pollution plumes, and deliver detail information about width, depth and spatial distribution of the pollutant in the air pollution plumes. The results of this study will provide high temporal and spatial resolved details on the air pollution plumes, which are valuable input parameters of aerosol properties for the current air quality models.

  9. Comparison of air space measurement imaged by CT, small-animal CT, and hyperpolarized Xe MRI

    Science.gov (United States)

    Madani, Aniseh; White, Steven; Santyr, Giles; Cunningham, Ian

    2005-04-01

    Lung disease is the third leading cause of death in the western world. Lung air volume measurements are thought to be early indicators of lung disease and markers in pharmaceutical research. The purpose of this work is to develop a lung phantom for assessing and comparing the quantitative accuracy of hyperpolarized xenon 129 magnetic resonance imaging (HP 129Xe MRI), conventional computed tomography (HRCT), and highresolution small-animal CT (μCT) in measuring lung gas volumes. We developed a lung phantom consisting of solid cellulose acetate spheres (1, 2, 3, 4 and 5 mm diameter) uniformly packed in circulated air or HP 129Xe gas. Air volume is estimated based on simple thresholding algorithm. Truth is calculated from the sphere diameters and validated using μCT. While this phantom is not anthropomorphic, it enables us to directly measure air space volume and compare these imaging methods as a function of sphere diameter for the first time. HP 129Xe MRI requires partial volume analysis to distinguish regions with and without 129Xe gas and results are within %5 of truth but settling of the heavy 129Xe gas complicates this analysis. Conventional CT demonstrated partial-volume artifacts for the 1mm spheres. μCT gives the most accurate air-volume results. Conventional CT and HP 129Xe MRI give similar results although non-uniform densities of 129Xe require more sophisticated algorithms than simple thresholding. The threshold required to give the true air volume in both HRCT and μCT, varies with sphere diameters calling into question the validity of thresholding method.

  10. Measurement of polyurethane foam - air partition coefficients for semivolatile organic compounds as a function of temperature: Application to passive air sampler monitoring.

    Science.gov (United States)

    Francisco, Ana Paula; Harner, Tom; Eng, Anita

    2017-05-01

    Polyurethane foam - air partition coefficients (K PUF-air ) for 9 polycyclic aromatic hydrocarbons (PAHs), 10 alkyl-substituted PAHs, 4 organochlorine pesticides (OCPs) and dibenzothiophene were measured as a function of temperature over the range 5 °C-35 °C, using a generator column approach. Enthalpies of PUF-to-air transfer (ΔH PUF-air , kJ/mol) were determined from the slopes of log K PUF-air versus 1000/T (K), and have an average value of 81.2 ± 7.03 kJ/mol. The log K PUF-air values at 22 °C ranged from 4.99 to 7.25. A relationship for log K PUF-air versus log K OA was shown to agree with a previous relationship based on only polychlorinated biphenyls (PCBs) and derived from long-term indoor uptake study experiments. The results also confirm that the existing K OA -based model for predicting log K PUF-air values is accurate. This new information is important in the derivation of uptake profiles and effective air sampling volumes for PUF disk samplers so that results can be reported in units of concentration in air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  11. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    Science.gov (United States)

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  12. Wireless Distributed Environmental Sensor Networks for Air Pollution Measurement-The Promise and the Current Reality.

    Science.gov (United States)

    Broday, David M

    2017-10-02

    The evaluation of the effects of air pollution on public health and human-wellbeing requires reliable data. Standard air quality monitoring stations provide accurate measurements of airborne pollutant levels, but, due to their sparse distribution, they cannot capture accurately the spatial variability of air pollutant concentrations within cities. Dedicated in-depth field campaigns have dense spatial coverage of the measurements but are held for relatively short time periods. Hence, their representativeness is limited. Moreover, the oftentimes integrated measurements represent time-averaged records. Recent advances in communication and sensor technologies enable the deployment of dense grids of Wireless Distributed Environmental Sensor Networks for air quality monitoring, yet their capability to capture urban-scale spatiotemporal pollutant patterns has not been thoroughly examined to date. Here, we summarize our studies on the practicalities of using data streams from sensor nodes for air quality measurement and the required methods to tune the results to different stakeholders and applications. We summarize the results from eight cities across Europe, five sensor technologies-three stationary (with one tested also while moving) and two personal sensor platforms, and eight ambient pollutants. Overall, few sensors showed an exceptional and consistent performance, which can shed light on the fine spatiotemporal urban variability of pollutant concentrations. Stationary sensor nodes were more reliable than personal nodes. In general, the sensor measurements tend to suffer from the interference of various environmental factors and require frequent calibrations. This calls for the development of suitable field calibration procedures, and several such in situ field calibrations are presented.

  13. Historical occupational trichloroethylene air concentrations based on inspection measurements from Shanghai, China.

    Science.gov (United States)

    Friesen, Melissa C; Locke, Sarah J; Chen, Yu-Cheng; Coble, Joseph B; Stewart, Patricia A; Ji, Bu-Tian; Bassig, Bryan; Lu, Wei; Xue, Shouzheng; Chow, Wong-Ho; Lan, Qing; Purdue, Mark P; Rothman, Nathaniel; Vermeulen, Roel

    2015-01-01

    Trichloroethylene (TCE) is a carcinogen that has been linked to kidney cancer and possibly other cancer sites including non-Hodgkin lymphoma. Its use in China has increased since the early 1990s with China's growing metal, electronic, and telecommunications industries. We examined historical occupational TCE air concentration patterns in a database of TCE inspection measurements collected in Shanghai, China to identify temporal trends and broad contrasts among occupations and industries. Using a database of 932 short-term, area TCE air inspection measurements collected in Shanghai worksites from 1968 through 2000 (median year 1986), we developed mixed-effects models to evaluate job-, industry-, and time-specific TCE air concentrations. Models of TCE air concentrations from Shanghai work sites predicted that exposures decreased 5-10% per year between 1968 and 2000. Measurements collected near launderers and dry cleaners had the highest predicted geometric means (GM for 1986 = 150-190 mg m(-3)). The majority (53%) of the measurements were collected in metal treatment jobs. In a model restricted to measurements in metal treatment jobs, predicted GMs for 1986 varied 35-fold across industries, from 11 mg m(-3) in 'other metal products/repair' industries to 390 mg m(-3) in 'ships/aircrafts' industries. TCE workplace air concentrations appeared to have dropped over time in Shanghai, China between 1968 and 2000. Understanding differences in TCE concentrations across time, occupations, and industries may assist future epidemiologic studies in China. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  14. Determining the ventilation and aerosol deposition rates from routine indoor-air measurements.

    Science.gov (United States)

    Halios, Christos H; Helmis, Costas G; Deligianni, Katerina; Vratolis, Sterios; Eleftheriadis, Konstantinos

    2014-01-01

    Measurement of air exchange rate provides critical information in energy and indoor-air quality studies. Continuous measurement of ventilation rates is a rather costly exercise and requires specific instrumentation. In this work, an alternative methodology is proposed and tested, where the air exchange rate is calculated by utilizing indoor and outdoor routine measurements of a common pollutant such as SO2, whereas the uncertainties induced in the calculations are analytically determined. The application of this methodology is demonstrated, for three residential microenvironments in Athens, Greece, and the results are also compared against ventilation rates calculated from differential pressure measurements. The calculated time resolved ventilation rates were applied to the mass balance equation to estimate the particle loss rate which was found to agree with literature values at an average of 0.50 h(-1). The proposed method was further evaluated by applying a mass balance numerical model for the calculation of the indoor aerosol number concentrations, using the previously calculated ventilation rate, the outdoor measured number concentrations and the particle loss rates as input values. The model results for the indoors' concentrations were found to be compared well with the experimentally measured values.

  15. Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.

    Science.gov (United States)

    Samoli, Evangelia; Butland, Barbara K

    2017-12-01

    Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data. We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.

  16. Estimation of release of tritium from measurements of air concentrations in reactor building of PHWR

    International Nuclear Information System (INIS)

    Purohit, R.G.; Sarkar, P.K.

    2010-01-01

    In this paper an attempt has been made to estimate the releases from measured air concentrations of tritium at various locations in Reactor Building (RB). Design data of Kaiga Generating Station and sample measurements of tritium concentrations at various locations in RB and discharges for a period of fortnight were used. A comparison has also been made with actual measurements. It has been observed that there is good matching in estimated and actual measurements of tritium release on some days while on some days there is high difference

  17. Measured anisotropic air flow resistivity and sound attenuation of glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    2002-01-01

    Department of Mechanical Engineering, Technical University of Denmark, Bygning 358, DK 2800 Lyngby, Denmark The air flow resistivity of glass wool has been measured in different directions. The glass wool was delivered from the manufacturer as slabs measuring 100×600×900 mm3, where the surface 600...... 7.75 kPa s m**2. A formula for prediction of resistivity for other densities is given. By comparing measured values of sound attenuation with results calculated from resistivity data, it is demonstrated that the measured attenuation can be predicted in a simple manner. ©2002 Acoustical Society...

  18. Mexico City air quality research initiative. Volume IV. Characterization and measurement

    Energy Technology Data Exchange (ETDEWEB)

    Mauzy, A. [ed.

    1994-04-01

    This volume describes the methods and the data gathered in an attempt to measure and characterize the meteorological factors and the concentration of different pollutants in the Mexico City Metropolitan Area. The main objective of this document was to provide input for the simulation models and to obtain information that could be used to test and improve the models` performance. Four field campaigns were conducted, as well as routine monitoring, in order to obtain a database of atmospheric dynamics and air pollution characteristics. Sections include Airborne measurements, Remote sensing measurements, and Traditional (in situ) measurements.

  19. Methods for measuring the emission of dust in the air from the industrial objects

    International Nuclear Information System (INIS)

    Petsovska-Gjorgjevich, M.

    2006-01-01

    Two methods are used for measuring the emission of dust in the air from the industrial objects. The first is gravimetrical method, measuring of particular matter in flowing gases, using GRAVIMAT SHC 502 sampler, and the second is optoelectronic method working with the transmission light principle with extinction output, using OMD 41 in-situ dust monitor. Both methods are explained theoretically and the probe measurement is fulfilled for one of our industrial objects. The two methods are connected, because of the necessity of the implementation of the results from the first measurements in the second ones which are continual for long time. (Author)

  20. Preparation and analysis of zero gases for the measurement of trace VOCs in air monitoring

    Science.gov (United States)

    Englert, Jennifer; Claude, Anja; Demichelis, Alessia; Persijn, Stefan; Baldan, Annarita; Li, Jianrong; Plass-Duelmer, Christian; Michl, Katja; Tensing, Erasmus; Wortman, Rina; Ghorafi, Yousra; Lecuna, Maricarmen; Sassi, Guido; Sassi, Maria Paola; Kubistin, Dagmar

    2018-06-01

    Air quality observations are performed globally to monitor the status of the atmosphere and its level of pollution and to assess mitigation strategies. Regulations of air quality monitoring programmes in various countries demand high-precision measurements for harmful substances often at low trace concentrations. These requirements can only be achieved by using high-quality calibration gases including high-purity zero gas. For volatile organic compound (VOC) observations, zero gas is defined as being hydrocarbon-free and can be, for example, purified air, nitrogen or helium. It is essential for the characterisation of the measurement devices and procedures, for instrument operation as well as for calibrations. Two commercial and one self-built gas purifiers were tested for their VOC removal efficiency following a standardised procedure. The tested gas purifiers included one adsorption cartridge with an inorganic media and two types of metal catalysts. A large range of VOCs were investigated, including the most abundant species typically measured at air monitoring stations. Both catalysts were able to remove a large range of VOCs whilst the tested adsorption cartridge was not suitable to remove light compounds up to C4. Memory effects occurred for the adsorption cartridge when exposed to higher concentration. This study emphasises the importance of explicitly examining a gas purifier for its intended application before applying it in the field.

  1. Air contamination measurements for the evaluation of internal dose to workers in nuclear medicine departments

    Science.gov (United States)

    De Massimi, B.; Bianchini, D.; Sarnelli, A.; D'Errico, V.; Marcocci, F.; Mezzenga, E.; Mostacci, D.

    2017-11-01

    Radionuclides handled in nuclear medicine departments are often characterized by high volatility and short half-life. It is generally difficult to monitor directly the intake of these short-lived radionuclides in hospital staff: this makes measuring air contamination of utmost interest. The aim of the present work is to provide a method for the evaluation of internal doses to workers in nuclear medicine, by means of an air activity sampling detector, to ensure that the limits prescribed by the relevant legislation are respected. A continuous air sampling system measures isotope concentration with a Nal(TI) detector. Energy efficiency of the system was assessed with GEANT4 and with known activities of 18F. Air is sampled in a number of areas of the nuclear medicine department of the IRST-IRCCS hospital (Meldola- Italy). To evaluate committed doses to hospital staff involved (doctors, technicians, nurses) different exposure situations (rooms, times, radionuclides etc) were considered. After estimating the intake, the committed effective dose has been evaluated, for the different radionuclides, using the dose coefficients mandated by the Italian legislation. Error propagation for the estimated intake and personal dose has been evaluated, starting from measurement statistics.

  2. The role of transportation control measures in California's air pollution control strategy

    International Nuclear Information System (INIS)

    Guensler, R.; Burmich, P.; Geraghty, A.

    1992-01-01

    In California, significant progress has been made to control emissions from industrial sources as well as from motor vehicles. Nonetheless, policy analysts still debate over whether it makes sense to control motor vehicle emissions through legislated reductions in vehicle use, especially when new vehicle emission standards are becoming even more stringent in California. In this paper, the emission reduction benefits of California's new low-emission vehicles and clean fuels program are reviewed. The air quality management plans of three major metropolitan areas in California are examined, to identify emission reductions needed to meet federal and state air quality standards. For each of these three areas, emission reductions expected from transportation control measure implementation are presented. Then, the extent to which the reductions are open-quotes significantclose quotes and relied upon in each of the local attainment efforts is analyzed. The emission reductions expected from the stringent exhaust emission standards of California's new low-emission vehicles and clean fuels program will not be sufficient to meet mandated clean air standards in the study areas. Based upon our review, transportation control measures appear to be necessary components of the air quality management plans in California's major metropolitan areas. The paper concludes that cost-effective transportation control measures (TCMs) will be needed as a complementary strategy to California's stringent tail-pipe standards in moderate to extreme nonattainment areas

  3. Trench infiltration for managed aquifer recharge to permeable bedrock

    Science.gov (United States)

    Heilweil, V.M.; Watt, D.E.

    2011-01-01

    Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading-basin and bank-filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth-related water demands. This paper reports on a new cost-effective surface-infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48-day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface-spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0.5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface-spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. ?? 2010.

  4. Effect of the settlement of sediments on water infiltration in two urban infiltration basins

    OpenAIRE

    LASSABATERE, Laurent; ANGULO JARAMILLO, R; GOUTALAND, David; LETELLIER, Laetitia; GAUDET, JP; WINIARSKI, Thierry; DELOLME, C

    2010-01-01

    The sealing of surfaces in urban areas makes storm water management compulsory. The suspended solids from surface runoff water accumulate in infiltration basins and may impact on water infiltration. This paper describes a study of the effect of the settlement of sedimentary layers on the water infiltration capacity of two urban infiltrations basins. In situ water infiltration experiments were performed (1) to quantify the effect of sediment on water infiltration at local scale and (2) to deri...

  5. Portable monitors for measuring radon and its progenies air by intergrated sampling method

    International Nuclear Information System (INIS)

    Zhang Huaiqin; Su Jingling; Yao Wanyuan; Liu Jinhua

    1989-01-01

    Two kinds of portable monitors have been developed, which can be used to measure the concentration of radon or potential energy concentration of radon or potential energy concentration of radon progenies in air. The thermoluminescent material CaSO 4 (Tm) is used as a detecting element for both of them. The lowest detectable limit of the passive radon monitor is about 1.5 Bq/m 3 for radon in air, as the exposure time being one week. Its main advantages are high reliability and convenient manipulation. The working level monitor for radon progenies in air consists of a mini membrane pump and an integrating probe. The lowest detectable limit is about 6.2 x 10 -9 J/m 3 , as the sampling time being 6 hours. It weights only about 0.35 kg

  6. Volatile organic compounds in indoor air: A review ofconcentrations measured in North America since 1990

    Energy Technology Data Exchange (ETDEWEB)

    ATHodgson@lbl.gov

    2003-04-01

    Central tendency and upper limit concentrations of volatile organic compounds (VOCs) measured in indoor air are summarized and reviewed. Data were obtained from published cross-sectional studies of residential and office buildings conducted in North America from 1990through the present. VOC concentrations in existing residences reported in 12 studies comprise the majority of the data set. Central tendency and maximum concentrations are compared between new and existing residences and between existing residences and office buildings. Historical changes in indoor VOC concentrations since the Clean Air Act Amendments of 1990 are explored by comparing the current data set with two published reviews of previous data obtained primarily in the 1980s. These historical comparisons suggest average indoor concentrations of some toxic air contaminants, such as 1,1,1-trichloroethane have decreased.

  7. Experimental study on occurrence-time ratio measurements of air entrainment in a suction sump

    International Nuclear Information System (INIS)

    Inagaki, K; Funaki, J; Hirata, K

    2009-01-01

    In order to get accurate measurements of air entrainment in a suction sump, we design some new simple bubble sensors, which can detect the existence of air bubbles inside a suction pipe with no disturbances by the sensors and with a fine spatial resolution. We force on an intermittency factor γ, that is, an occurrence-time ratio of the air entrainment, and compare the result by the present sensor with those by conventional two methods; namely, visual and auditory ones. As a result, we show the criteria which specify lower-accuracy conditions in the conventional methods. By the visual method, the accuracy of the γ becomes low, when γ is less than 0.05. By the auditory method, the accuracy of γ becomes low, when the submergence depth S of the suction pipe is close to the critical one S c .

  8. Participatory measurements of individual exposure to air pollution in urban areas

    Science.gov (United States)

    Madelin, Malika; Duché, Sarah; Dupuis, Vincent

    2016-04-01

    Air pollution is a major environmental issue in urban areas. Chronic and high concentration exposure presents a health risk with cardiovascular and respiratory problems and longer term nervous, carcinogenic and endocrine problems. In addition to the estimations based on simulations of both background and regional pollution and of the pollution induced by the traffic, knowing exposure of each individual is a key issue. This exposure reflects the high variability of pollution at fine spatial and time scales, according to the proximity of emission sources and the urban morphology outside. The emergence of citizen science and the progress of miniaturized electronics, low-cost and accessible to (almost) everyone, offers new opportunities for the monitoring of air pollution, but also for the citizens' awareness of their individual exposure to air pollution. In this communication, we propose to present a participatory research project 'What is your air?' (project funded by the Île-de-France region), which aims at raising awareness on the theme of air quality, its monitoring with sensors assembled in a FabLab workshop and an online participatory mapping. Beyond the discussion on technical choices, the stages of manufacture or the sensor calibration procedures, we discuss the measurements made, in this case the fine particle concentration measurements, which are dated and georeferenced (communication via a mobile phone). They show high variability between the measurements (in part linked to the substrates, land use, traffic) and low daily contrasts. In addition to the analysis of the measurements and their comparison with the official data, we also discuss the choice of representation of information, including mapping, and therefore the message about pollution to communicate.

  9. Measurements of air kerma index in computed tomography: a comparison among methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, T. C.; Mourao, A. P.; Da Silva, T. A., E-mail: alonso@cdtn.br [Universidade Federal de Minas Gerais, Programa de Ciencia y Tecnicas Nucleares, Av. Pres. Antonio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    Computed tomography (CT) has become the most important and widely used technique for diagnosis purpose. As CT exams impart high doses to patients in comparison to other radiologist techniques, reliable dosimetry is required. Dosimetry in CT is done in terms of air kerma index in air or in a phantom measured by a pencil ionization chamber under a single X-ray tube rotation. In this work, a comparison among CT dosimetric quantities measured by an UNFORS pencil ionization chamber, MTS-N RADOS thermoluminescent dosimeters and GAFCHROMIC XR-CT radiochromic film was done. The three dosimetric systems were properly calibrated in X-ray reference radiations in a calibration laboratory. CT dosimetric quantities were measured in CT Bright Speed GE Medical Systems Inc., scanner in a PMMA trunk phantom and a comparison among the three dosimetric techniques was done. (Author)

  10. Measurements of air kerma index in computed tomography: a comparison among methodologies

    International Nuclear Information System (INIS)

    Alonso, T. C.; Mourao, A. P.; Da Silva, T. A.

    2016-10-01

    Computed tomography (CT) has become the most important and widely used technique for diagnosis purpose. As CT exams impart high doses to patients in comparison to other radiologist techniques, reliable dosimetry is required. Dosimetry in CT is done in terms of air kerma index in air or in a phantom measured by a pencil ionization chamber under a single X-ray tube rotation. In this work, a comparison among CT dosimetric quantities measured by an UNFORS pencil ionization chamber, MTS-N RADOS thermoluminescent dosimeters and GAFCHROMIC XR-CT radiochromic film was done. The three dosimetric systems were properly calibrated in X-ray reference radiations in a calibration laboratory. CT dosimetric quantities were measured in CT Bright Speed GE Medical Systems Inc., scanner in a PMMA trunk phantom and a comparison among the three dosimetric techniques was done. (Author)

  11. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    Science.gov (United States)

    Gong, J. C.; Zhu, T.; Hu, M.; Zhang, L. W.; Cheng, H.; Zhang, L.; Tong, J.; Zhang, J.

    2010-08-01

    Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein) in a central Beijing site in the summer and early fall of 2008 (from June to October). Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's air quality during the Olympics had any impact on concentrations of the three aldehydes. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.34 ± 15.12 μg/m3, 27.09 ± 15.74 μg/m3 and 2.32 ± 0.95 μg/m3, respectively, for the entire period of measurements, all being the highest among the levels measured in cities around the world in photochemical smog seasons. Among the three measured aldehydes, only acetaldehyde had a substantially reduced mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Formaldehyde and acrolein followed the changing pattern of temperature and were each significantly correlated with ozone (a secondary product of photochemical reactions). In contrast, acetaldehyde was significantly correlated with several pollutants emitted mainly from local emission sources (e.g., NO2, CO, and PM2.5). These findings suggest that local direct emissions had a larger impact on acetaldehyde than formaldehyde and acrolein.

  12. Measurement and evaluation of alpha radioactivity using ionized air transport technology

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki; Yamaguchi, Hiromi

    2009-01-01

    A novel alpha radioactivity monitor using ionized air transport technology has been developed for future constitution of 'clearance level' for uranium and TRU radioactive waste. This technology will bring paradigm shift on alpha-ray measurement, such as converting 'closely contacting and scanning measurement' to 'remotely contacting measurement in the block', and drastically improve the efficiency of measurement operation. In this article, the origin and chronicle of this technology were simply explained and our newest accomplishment was described. Furthermore, using measurement data obtained in our development process, measurement and evaluation examples of alpha radioactivity were shown for practical operations as informative guides. We hope that this technology will be widely endorsed as a practical method for alpha clearance measurement in the near future. (author)

  13. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    Science.gov (United States)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; hide

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  14. Measurement and Numerical Simulation of Air Velocity in a Tunnel-Ventilated Broiler House

    Directory of Open Access Journals (Sweden)

    Eliseo Bustamante

    2015-02-01

    Full Text Available A building needs to be designed for the whole period of its useful life according to its requirements. However, future climate predictions involve some uncertainty. Thus, several sustainable strategies of adaptation need to be incorporated after the initial design. In this sense, tunnel ventilation in broiler houses provides high air velocity values (2–3 m·s−1 at animal level to diminish their thermal stress and associated mortality. This ventilation system was experimentally incorporated into a Mediterranean climate. The aim was to resolve these thermal problems in hot seasons, as (traditional cross-mechanical ventilation does not provide enough air velocity values. Surprisingly, very little information on tunnel ventilation systems is available, especially in terms of air velocity. Using Computational Fluid Dynamics (CFD and a multi-sensor system, the average results are similar (at animal level: 1.59 ± 0.68 m·s−1 for CFD and 1.55 ± 0.66 m·s−1 for measurements. The ANOVA for validation concluded that the use of CFD or measurements is not significant (p-value = 0.1155. Nevertheless, some problems with air velocity distribution were found and need to be solved. To this end, CFD techniques can help by means of virtual designs and scenarios providing information for the whole indoor space.

  15. Actual car fleet emissions estimated from urban air quality measurements and street pollution models

    International Nuclear Information System (INIS)

    Palmgren, F.; Berkowicz, R.; Hertel, O.; Ziv, A.

    1999-01-01

    A method to determine emissions from the actual car fleet under realistic driving conditions has been developed. The method is based on air quality measurements, traffic counts and inverse application of street air quality models. Many pollutants are of importance for assessing the adverse impact of the air pollution, e.g. NO 2 , CO, lead, VOCs and particulate matter. Aromatic VOCs are of special great concern due to their adverse health effects. Measurements of benzene, toluene and xylenes were carried out in central Copenhagen since 1994. Significant correlation was observed between VOCs and CO concentrations, indicating that the petrol engine vehicles are the major sources of VOC air pollution in central Copenhagen. Hourly mean concentrations of benzene were observed to reach values of up to 20 ppb, what is critically high according to the WHOs recommendations. Based on inverse model calculation of dispersion of pollutants in street canyons, an average emission factor of benzene for the fleet of petrol fuelled vehicles was estimated to be 0.38 g/km in 1994 and 0.11 in 1997. This decrease was caused by the reduction of benzene content in Danish petrol since summer 1995 and increasing percentage of cars equipped with three-way catalysts. The emission factors for benzene for diesel-fuelled vehicles were low

  16. Feasibility of Measuring Tobacco Smoke Air Pollution in Homes: Report from a Pilot Study

    Directory of Open Access Journals (Sweden)

    Laura Rosen

    2015-11-01

    Full Text Available Tobacco smoke air pollution (TSAP measurement may persuade parents to adopt smoke-free homes and thereby reduce harm to children from tobacco smoke in the home. In a pilot study involving 29 smoking families, a Sidepak was used to continuously monitor home PM2.5 during an 8-h period, Sidepak and/or Dylos monitors provided real-time feedback, and passive nicotine monitors were used to measure home air nicotine for one week. Feedback was provided to participants in the context of motivational interviews. Home PM2.5 levels recorded by continuous monitoring were not well-accepted by participants because of the noise level. Also, graphs from continuous monitoring showed unexplained peaks, often associated with sources unrelated to indoor smoking, such as cooking, construction, or outdoor sources. This hampered delivery of a persuasive message about the relationship between home smoking and TSAP. By contrast, immediate real-time PM2.5 feedback (with Sidepak or Dylos monitor was feasible and provided unambiguous information; the Dylos had the additional advantages of being more economical and quieter. Air nicotine sampling was complicated by the time-lag for feedback and questions regarding shelf-life. Improvement in the science of TSAP measurement in the home environment is needed to encourage and help maintain smoke-free homes and protect vulnerable children. Recent advances in the use of mobile devices for real-time feedback are promising and warrant further development, as do accurate methods for real-time air nicotine air monitoring.

  17. A comparison of measured and calculated values of air kerma rates from 137Cs in soil

    Directory of Open Access Journals (Sweden)

    V. P. Ramzaev

    2015-01-01

    Full Text Available In 2010, a study was conducted to determine the air gamma dose rate from 137Cs deposited in soil. The gamma dose rate measurements and soil sampling were performed at 30 reference plots from the south-west districts of the Bryansk region (Russia that had been heavily contaminated as a result of the Chernobyl accident. The 137Cs inventory in the top 20 cm of soil ranged from 260 kBq m–2 to 2800 kBq m–2. Vertical distributions of 137Cs in soil cores (6 samples per a plot were determined after their sectioning into ten horizontal layers of 2 cm thickness. The vertical distributions of 137Cs in soil were employed to calculate air kerma rates, K, using two independent methods proposed by Saito and Jacob [Radiat. Prot. Dosimetry, 1995, Vol. 58, P. 29–45] and Golikov et al. [Contaminated Forests– Recent Developments in Risk Identification and Future Perspective. Kluwer Academic Publishers, 1999. – P. 333–341]. A very good coincidence between the methods was observed (Spearman’s rank coefficient of correlation = 0.952; P<0.01; on average, a difference between the kerma rates calculated with two methods did not exceed 3%. The calculated air kerma rates agreed with the measured dose rates in air very well (Spearman’s coefficient of correlation = 0.952; P<0.01. For large grassland plots (n=19, the measured dose rates were on average 6% less than the calculated kerma rates. The tested methods for calculating the air dose rate from 137Cs in soil can be recommended for practical studies in radiology and radioecology. 

  18. On the melt infiltration of copper coated silicon carbide with an aluminium alloy

    Science.gov (United States)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    Pressure-assisted infiltration of porous compacts of Cu coated and uncoated single crystals of platelet shaped alpha (hexagonal) SiC was used to study infiltration dynamics and particulate wettability with a 2014 Al alloy. The infiltration lengths were measured for a range of experimental variables which included infiltration pressure, infiltration time, and SiC size. A threshold pressure (P(th)) for flow initiation through compacts was identified from an analysis of infiltration data; P(th) decreased while penetration lengths increased with increasing SiC size (more fundamentally, due to changes in interparticle pore size) and with increasing infiltration times. Cu coated SiC led to lower P(th) and 60-80 percent larger penetration lengths compared to uncoated SiC under identical processing conditions.

  19. Measuring the muon content of air showers with IceTop

    Science.gov (United States)

    Gonzalez, Javier G.

    2015-08-01

    IceTop, the surface component of the IceCube detector, has been used to measure the energy spectrum of cosmic ray primaries in the range between 1.58 PeV and 1.26 EeV. It can also be used to study the low energy muons in air showers by looking at large distances (> 300 m) from the shower axis. We will show the muon lateral distribution function at large lateral distances as measured with IceTop and discuss the implications of this measurement. We will also discuss the prospects for low energy muon studies with IceTop.

  20. Measuring the muon content of air showers with IceTop

    Directory of Open Access Journals (Sweden)

    Gonzalez Javier G.

    2015-01-01

    Full Text Available IceTop, the surface component of the IceCube detector, has been used to measure the energy spectrum of cosmic ray primaries in the range between 1.58 PeV and 1.26 EeV. It can also be used to study the low energy muons in air showers by looking at large distances (> 300 m from the shower axis. We will show the muon lateral distribution function at large lateral distances as measured with IceTop and discuss the implications of this measurement. We will also discuss the prospects for low energy muon studies with IceTop.

  1. Assessment of Human Ambulatory Speed by Measuring Near-Body Air Flow

    Directory of Open Access Journals (Sweden)

    Stefano Salati

    2010-09-01

    Full Text Available Accurate measurements of physical activity are important for the diagnosis of the exacerbation of chronic diseases. Accelerometers have been widely employed in clinical research for measuring activity intensity and investigating the association between physical activity and adverse health conditions. However, the ability of accelerometers in assessing physical activity intensity such as walking speed has been constrained by the inter-individual variability in sensor output and by the necessity of developing unobtrusive low-power monitoring systems. This paper will present a study aimed at investigating the accuracy of a wearable measuring system of near-body air flow to determine ambulatory speed in the field.

  2. Simultaneous measurements of temperature and density in air flows using UV laser spectroscopy

    Science.gov (United States)

    Fletcher, D. G.; Mckenzie, R. L.

    1991-01-01

    The simultaneous measurement of temperature and density using laser-induced fluorescence of oxygen in combination with Q-branch Raman scattering of nitrogen and oxygen is demonstrated in a low-speed air flow. The lowest density and temperature measured in the experiment correspond to the freestream values at Mach 5 in the Ames 3.5-Foot Hypersonic Wind Tunnel for stagnation conditions of 100 atm and 1000 K. The experimental results demonstrate the viability of the optical technique for measurements that support the study of compressible turbulence and the validation of numerical codes in supersonic and hypersonic wind tunnel flows.

  3. Air radioactivity levels following the Fukushima reactor accident measured at the Laboratoire Souterrain de Modane, France.

    Science.gov (United States)

    Loaiza, P; Brudanin, V; Piquemal, F; Reyss, J-L; Stekl, I; Warot, G; Zampaolo, M

    2012-12-01

    The radioactivity levels in the air of the radionuclides released by the Fukushima accident were measured at the Laboratoire Souterrain de Modane, in the South-East of France, during the period 25 March-18 April 2011. Air-filters from the ventilation system exposed for one or two days were measured using low-background gamma-ray spectrometry. In this paper we present the activity concentrations obtained for the radionuclides (131)I, (132)Te, (134)Cs, (137)Cs, (95)Nb, (95)Zr, (106)Ru, (140)Ba/La and (103)Ru. The activity concentration of (131)I was of the order of 100 μBq/m(3), more than 100 times higher than the activities of other fission products. The highest activities of (131)I were measured as a first peak on 30 March and a second peak on 3-4 April. The activity concentrations of (134)Cs and (137)Cs varied from 5 to 30 μBq/m(3). The highest activity concentration recorded for Cs corresponded to the same period as for (131)I, with a peak on 2-3 April. The results of the radioactivity concentration levels in grass and mushrooms exposed to the air in the Modane region were also measured. Activity concentrations of (131)I of about 100 mBq/m(2) were found in grass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Symmetrical parahiliar infiltrated, cough and dyspnoea

    International Nuclear Information System (INIS)

    Giraldo Estrada, Horacio; Escalante, Hector

    2004-01-01

    It is the case a patient to who is diagnosed symmetrical parahiliar infiltrated; initially she is diagnosed lymphoma Hodgkin, treaty with radiotherapy and chemotherapy, but the X rays of the thorax demonstrated parahiliars and paramediastinals infiltrated

  5. Precision measurement of refractive index of air based on laser synthetic wavelength interferometry with Edlén equation estimation.

    Science.gov (United States)

    Yan, Liping; Chen, Benyong; Zhang, Enzheng; Zhang, Shihua; Yang, Ye

    2015-08-01

    A novel method for the precision measurement of refractive index of air (n(air)) based on the combining of the laser synthetic wavelength interferometry with the Edlén equation estimation is proposed. First, a n(air_e) is calculated from the modified Edlén equation according to environmental parameters measured by low precision sensors with an uncertainty of 10(-6). Second, a unique integral fringe number N corresponding to n(air) is determined based on the calculated n(air_e). Then, a fractional fringe ε corresponding to n(air) with high accuracy can be obtained according to the principle of fringe subdivision of laser synthetic wavelength interferometry. Finally, high accurate measurement of n(air) is achieved according to the determined fringes N and ε. The merit of the proposed method is that it not only solves the problem of the measurement accuracy of n(air) being limited by the accuracies of environmental sensors, but also avoids adopting complicated vacuum pumping to measure the integral fringe N in the method of conventional laser interferometry. To verify the feasibility of the proposed method, comparison experiments with Edlén equations in short time and in long time were performed. Experimental results show that the measurement accuracy of n(air) is better than 2.5 × 10(-8) in short time tests and 6.2 × 10(-8) in long time tests.

  6. Linking denitrification and infiltration rates during managed groundwater recharge.

    Science.gov (United States)

    Schmidt, Calla M; Fisher, Andrew T; Racz, Andrew J; Lockwood, Brian S; Huertos, Marc Los

    2011-11-15

    We quantify relations between rates of in situ denitrification and saturated infiltration through shallow, sandy soils during managed groundwater recharge. We used thermal methods to determine time series of point-specific flow rates, and chemical and isotopic methods to assess denitrification progress. Zero order denitrification rates between 3 and 300 μmol L(-1) d(-1) were measured during infiltration. Denitrification was not detected at times and locations where the infiltration rate exceeded a threshold of 0.7 ± 0.2 m d(-1). Pore water profiles of oxygen and nitrate concentration indicated a deepening of the redoxocline at high flow rates, which reduced the thickness of the zone favorable for denitrification. Denitrification rates were positively correlated with infiltration rates below the infiltration threshold, suggesting that for a given set of sediment characteristics, there is an optimal infiltration rate for achieving maximum nitrate load reduction and improvements to water supply during managed groundwater recharge. The extent to which results from this study may be extended to other managed and natural hydrologic settings remains to be determined, but the approach taken in this study should be broadly applicable, and provides a quantitative link between shallow hydrologic and biogeochemical processes.

  7. Xanthomatous infiltration of ankle tendons

    International Nuclear Information System (INIS)

    Kelman, C.G.; Disler, D.G.; Kremer, J.M.; Jennings, T.A.

    1997-01-01

    We present a case of type II hyperbetalipoproteinemia in a patient whose diagnosis had been previously unrecognized, and who had previously been misdiagnosed with rheumatoid arthritis and later gout. Radiographic and MR imaging features of the patient's ankles were pronounced but otherwise typical of xanthomatous infiltration. Radiologic assessment can be useful in permitting a specific diagnosis to be made in patients with periarticular and tendinous swelling. (orig.). With 4 figs

  8. Application of spreadsheet to estimate infiltration parameters

    OpenAIRE

    Zakwan, Mohammad; Muzzammil, Mohammad; Alam, Javed

    2016-01-01

    Infiltration is the process of flow of water into the ground through the soil surface. Soil water although contributes a negligible fraction of total water present on earth surface, but is of utmost importance for plant life. Estimation of infiltration rates is of paramount importance for estimation of effective rainfall, groundwater recharge, and designing of irrigation systems. Numerous infiltration models are in use for estimation of infiltration rates. The conventional graphical approach ...

  9. Measurement and modeling of diel variability of polybrominated diphenyl ethers and chlordanes in air.

    Science.gov (United States)

    Moeckel, Claudia; Macleod, Matthew; Hungerbühler, Konrad; Jones, Kevin C

    2008-05-01

    Short-term variability of concentrations of polybrominated diphenyl ethers (PBDEs) and chlordanes in air at a semirural site in England over a 5 day period is reported. Four-hour air samples were collected during a period dominated by a high pressure system that produced stable diel (24-h) patterns of meteorological conditions such as temperature and atmospheric boundary layer height. PBDE and chlordane concentrations showed clear diel variability with concentrations in the afternoon and evening being 1.9 - 2.7 times higher than in the early morning. The measurements are interpreted using a multimedia mass balance model parametrized with forcing functions representing local temperature, atmospheric boundary layer height, wind speed and hydroxyl radical concentrations. Model results indicate that reversible, temperature-controlled air-surface exchange is the primary driver of the diel concentration pattern observed for chlordanes and PBDE 28. For higher brominated PBDE congeners (47, 99 and 100), the effect of variable atmospheric mixing height in combination with irreversible deposition on aerosol particles is dominant and explains the diel patterns almost entirely. Higher concentrations of chlordanes and PBDEs in air observed at the end of the study period could be related to likely source areas using back trajectory analysis. This is the first study to clearly document diel variability in concentrations of PBDEs in air over a period of several days. Our model analysis indicates that high daytime and low nighttime concentrations of semivolatile organic chemicals can arise from different underlying driving processes, and are not necessarily evidence of reversible air-surface exchange on a 24-h time scale.

  10. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to isopropanol oxidation products and pthtalate esters in indoor air

    DEFF Research Database (Denmark)

    Lagercrantz, Love Per; Famula, Basia; Sundell, Jan

    2005-01-01

    The use of Nitric Oxide (NO) concentration in exhaled and aspirated nasal air to assess human response to indoor air pollution was tested in a climate chamber exposure experiment. The concentration of NO was measured using a chemiluminescence NO analyser. Sixteen healthy female subjects were...... exposed to 2 commonly occurring indoor air pollutants and to a clean reference condition for 4.5 hours. Assessments of the environment were obtained using questionnaires. The polluted conditions were perceived as worse than the reference condition. After exposure to the two polluted conditions a small...... increase in NO concentration (+2.7% and +7.2%) in exhaled air was observed. After exposure to the reference condition the mean NO concentration was significantly reduced (-14.3%) compared to before exposure. NO in nasal air was unaffected by the exposures. The results indicate an association between...

  11. On the Properties and Long-Term Stability of Infiltrated Lanthanum Cobalt Nickelates (LCN) in Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Zielke, Philipp; Veltzé, Sune

    2017-01-01

    Infiltration as a fabrication method for solid oxide fuel cells (SOFC) electrodes is offering significant improvements in cell performance at reduced materials and fabrication costs, especially when combined with co-sintering. However, important questions regarding the long-term performance...... and microstructural stability remain unanswered. Here, we present the results of a three-year project, where large footprint anode-supported SOFCs with a co-sintered cathode backbone and infiltrated La0.95Co0.4Ni0.6O3 (LCN) cathodes were developed and thoroughly characterized. The initial long-term performance...... in the electrode properties using SEM, BET area, and in-plane conductivity measurements. Finally, the mechanical properties of co-sintered cathode backbone cells were determined in four-point bending tests carried out both at room temperature and at 800°C in air. Based on these results, degradation mechanisms were...

  12. Simulation of Groundwater Mounding Beneath Hypothetical Stormwater Infiltration Basins

    Science.gov (United States)

    Carleton, Glen B.

    2010-01-01

    shape or height of the groundwater mound resulting from the infiltration. An aquifer with a greater soil permeability or aquifer thickness has an increased ability to transmit water away from the source of infiltration than aquifers with lower soil permeability; therefore, the maximum height of the groundwater mound will be lower, and the areal extent of mounding will be larger. The maximum height of groundwater mounding is higher when values of design storm magnitude or percentage of impervious cover (from which runoff is captured) are increased (and other variables are held constant) because the total volume of water to be infiltrated is larger. The larger the volume of infiltrated water the higher the head required to move that water away from the source of recharge if the physical characteristics of the aquifer are unchanged. The areal extent of groundwater mounding increases when soil permeability, aquifer thickness, design-storm magnitude, or percentage of impervious cover are increased (and values of other variables are held constant). For 10-acre sites, the maximum heights of the simulated groundwater mound range from 0.1 to 18.5 feet (ft). The median of the maximum-height distribution from 576 simulations is 1.8 ft. The maximum areal extent (measured from the edge of the infiltration basins) of groundwater mounding of 0.25-ft ranges from 0 to 300 ft with a median of 51 ft for 576 simulations. Stormwater infiltration at a 1-acre development was simulated, incorporating the assumption that the hypothetical infiltration structure would be a pre-cast concrete dry well having side openings and an open bottom. The maximum heights of the simulated groundwater-mounds range from 0.01 to 14.0 ft. The median of the maximum-height distribution from 432 simulations is 1.0 ft. The maximum areal extent of groundwater mounding of 0.25-ft ranges from 0 to 100 ft with a median of 10 ft for 432 simulations. Simulated height and extent of groundwater mounding associ

  13. Field measurements of perceived air quality and concentration of volatile organic compounds in four offices of the university building

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Kabrhel, M.

    2015-01-01

    Field measurements of perceived air quality were conducted in four refurbished offices at the Czech Technical University in Prague. The offices were refurbished as part of the research project Clear-up to serve as a field test facility. The present paper describes measurements conducted...... according to CEN Report CR 1752. The acceptability of the air quality was worst in unoccupied offices ventilated with minimum air change rate (0.4 h-1). Application of DCV decreased the CO2 concentration, but did not result in statistically significant improvement of perceived air quality....... to investigate the perceived air quality, sensory pollution load and concentration of Volatile Organic Compounds (VOCs) in the offices. As the refurbishment comprised also installation of demand controlled ventilation (DCV), its influence on the perceived air quality was also tested. Measurements comprised...

  14. Measurement of Ambient Air Particle (TSP, PM10, PM2,5) Around Candidate Location of PLTN Semenanjung Lemahabang

    International Nuclear Information System (INIS)

    AgusGindo S; Budi Hari H

    2008-01-01

    Measurement analysis of ambient air particle (TSP, PM 10 , PM 2,5 ) around location candidate of PLTN (Power Station of Nuclear Energy) Semenanjung Lemahabang has been carried out. The measurement was conducted in May 2007 with a purpose to providing information about concentration of ambient air particle (TSP, PM 10 , PM 2,5 ) and diameter distribution of its air particle. The measurement was conducted in three locations i.e. 1). Balong village 2). Bayuran 3). Bondo. Concentration of TSP, PM 10 , and PM 2,5 per 24 hours in all measured locations in area candidate of PLTN exceed quality standard of national ambient air is specified by government. All measurement locations for the TSP, PM 10 , and PM 2,5 was include category of ISPU (Standard Index of Air Pollution) moderate. (author)

  15. Measurement of radioactive fallout in rainwater and air at remote areas (1995-96)

    International Nuclear Information System (INIS)

    U Wai Zin Oo; Daw War War Myo Aung; U Khin Maung Latt; U Maung Maung Tin

    2001-01-01

    Radioactive fallout in rainwater and air collected from Yangon Division (Ahlone, Yangon), Pago Division (Pago and Thanut Pin), Mandalay Division (Pyinoolwin, Mandalay and Meikhtilar), Mon State (Mawlamyine, Kyaikame, Beelin, Taungzun, Kyaikhto, Kinpunsakan and Thayetkone village), and Shan State (Larsoh) were measured by using low level Beta Counting System. It was found that the radioactivities were less than the maximum permissible level recommended by the International Commission on Radiological Production. (author)

  16. Time correlation measurements from extensive air showers detected by the EEE telescopes

    CERN Document Server

    Abbrescia, M; Fabbri, F L; Gnesi, I; Bressan, E; Tosello, F; Librizzi, F; Coccia, E; Paoletti, R; Yanez, G; Li, S; Votano, L; Scribano, A; Avanzini, C; Piragino, G; Perasso, L; Regano, A; Ferroli, R Baldini; De Gruttola, D; Sartorelli, G; Siddi, E; Cifarelli, L; Di Giovanni, A; Frolov, V; Serci, S; Selvi, M; Zouyevski, R; Dreucci, M; Squarcia, S; Righini, G C; Agocs, A; Zichichi, A; La Rocca, P; Pilo, F; Miozzi, S; Massai, M; Cicalo, C; D'Incecco, M; Panareo, M; Gemme, G; Garbini, M; Aiola, S; Riggi, F; Hatzifotiadou, D; Scapparone, E; Chiavassa, A; Maggiora, A; Bencivenni, G; Gustavino, C; Spandre, G; Taiuti, M; Williams, M C S; Bossini, E; De Pasquale, S

    2013-01-01

    Time correlated events due to cosmic muons from extensive air showers have been detected by means of telescope pairs of the EEE (Extreme Energy Events) Project array. The coincidence rate, properly normalized for detector acceptance, efficiency and altitude location, has been extracted as a function of the relative distance between the telescopes. The results have been also compared with additional measurements carried out by small scintillator detectors at various distances.

  17. An Analysis of Measures Used to Evaluate the Air Force Critical Item Program

    Science.gov (United States)

    1991-09-01

    example of a histogram. Cause & Effect Diagram. The cause and effect diagram was introduced in 1953 by Dr. Kaoru Ishikawa in summarizing the opinions of...Personal Interview. Air Force Institute of Technology, School of Engineering, Wright-Patterson AFB OH, 24 April 1991. 31. Ishikawa , Dr. Kaoru . Guide to...collected. How the data are collected will determine which measurement techniques are appropriate. Ishikawa classifies data collection into five categories

  18. Measurement of HOx· production rate due to radon decay in air

    International Nuclear Information System (INIS)

    Ding, Huiling.

    1993-08-01

    Radon in indoor air may cause the exposure of the public to excessive radioactivity. Radiolysis of water vapor in indoor air due to radon decay could produce (·OH and HO 2 ·) that may convert atmospheric constituents to compounds of lower vapor pressure. These lower vapor pressure compounds might then nucleate to form new particles in the indoor atmosphere. Chemical amplification was used to determine HO x · production rate in indoor air caused by radon decay. Average HO x · production rate was found to be (4.31±0.07) x 10 5 HO x · per Rn decay per second (Bq) 3.4 to 55.0% at 22C. This work provided G (HO x ·) -value, 7.86±0.13 No./100 eV in air by directly measuring [HO x ·] formed from the radiolysis procedure. This G value implies that HO x · produced by radon decay in air might be formed by multiple processes and may be result of positive ion-molecule reactions, primary radiolysis, and radical reactions. There is no obvious relation between HO x · production rate and relative humidity. A laser-induced fluorescence (LIF) system has been used for ·OH production rate measurement; it consists of an excimer laser, a dye laser, a frequency doubler, a gaseous fluorescence chamber, and other optical and electronic parts. This system needs to be improved to eliminate the interferences of light scattering and artificial ·OH produced from the photolysis of O 3 /H 2 O

  19. Radon measurements in air in waterworks and indoor swimming pools - a primary mapping project

    International Nuclear Information System (INIS)

    Marinko, J.; Mjoenes, L.; Soederman, A.-L.

    2004-01-01

    In 2001 the Swedish Work Environment Authority asked five regional offices around the country; Falun, Malmoe, Vaexjoe, Umeaa and Oerebro, to measure radon in air in workplaces where water was likely to enhance radon levels indoors. Track etch detectors were used and placed in workplaces according to the SSI measurement protocol for determining the annual average radon concentration in homes. Rooms that are frequently used by employees were measured. The detectors were exposed between 1 to 3 months. 225 detectors were used in the project and analysed at the same laboratory. The results showed that the radon concentration in waterworks often is high. Measurements were made in 60 waterworks. Levels exceeding 1000 Bq/m 3 were found in 49 of them and levels exceeding 4000 Bq/m 3 were found in 21 waterworks. The variation between waterworks may be a result of the radon concentration in the raw water, the amount of radon gas escaping to the air when water is treated, the air exchange rate in the building and where the detectors were deployed. Measurements were made in 28 indoor swimming baths. The maximum level was 290 Bq/m 3 , but most concentrations were between 30 to 70 Bq/m 3 . The conclusion is that high radon levels do not seem to be a problem in indoor swimming baths. Maybe this is due to good ventilation or the fact that water often has been treated for radon before it is used in swimming pools. The results from measurement in food industries such as breweries showed no extreme radon levels except for a fish farm where levels over 1000 Bq/m 3 were measured in the farming room and 790 Bq/m 3 in the office. The radon concentrations in laundries were relatively low, between 30 and 170 Bq/m 3

  20. Two-step infiltration of aluminum melts into Al-Ti-B4C-CuO powder mixture pellets

    Science.gov (United States)

    Zhang, Jingjing; Lee, Jung-Moo; Cho, Young-Hee; Kim, Su-Hyeon; Yu, Huashun

    2016-03-01

    Aluminum matrix composites with a high volume fraction of B4C and TiB2 were fabricated by a novel processing technique - a quick spontaneous infiltration process. The process combines a pressureless infiltration with the combustion reaction of Al-Ti-B4C-CuO in molten aluminum. The process is realized in a simple and economical way in which the whole process is performed in air in a few minutes. To verify the rapidity of the process, the infiltration kinetics was calculated based on the Washburn equation in which melt flows into a porous skeleton. However, there was a noticeable deviation from the calculated results with the experimental results. Considering the cross-sections of the samples at different processing times, a new infiltration model (two step infiltration) consisting of macro-infiltration and micro-infiltration is suggested. The calculated kinetics results in light of the proposed model agree well with the experimental results.

  1. Representativeness of shorter measurement sessions in long-term indoor air monitoring.

    Science.gov (United States)

    Maciejewska, M; Szczurek, A

    2015-02-01

    Indoor air quality (IAQ) considerably influences health, comfort and the overall performance of people who spend most of their lives in confined spaces. For this reason, there is a strong need to develop methods for IAQ assessment. The fundamental issue in the quantitative determination of IAQ is the duration of measurements. Its inadequate choice may result in providing incorrect information and this potentially leads to wrong conclusions. The most complete information may be acquired through long-term monitoring. However it is typically perceived as impractical due to time and cost load. The aim of this study was to determine whether long-term monitoring can be adequately represented by a shorter measurement session. There were considered three measurable quantities: temperature, relative humidity and carbon dioxide concentration. They are commonly recognized as indicatives for IAQ and may be readily monitored. Scaled Kullback-Leibler divergence, also called relative entropy, was applied as a measure of data representativeness. We considered long-term monitoring in a range from 1 to 9 months. Based on our work, the representative data on CO2 concentration may be acquired while performing measurements during 20% of time dedicated to long-term monitoring. In the case of temperature and relative humidity the respective time demand was 50% of long-term monitoring. From our results, in indoor air monitoring strategies, there could be considered shorter measurement sessions, while still collecting data which are representative for long-term monitoring.

  2. Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island

    Science.gov (United States)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-09-01

    We report on one year of high-precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late-summer to 44 mBq m-3 in late winter and early spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  3. Measurement of the carbon 14 activity at natural level in air samples

    International Nuclear Information System (INIS)

    Olivier, A.; Tenailleau, L.; Baron, Y.; Maro, D.

    2004-01-01

    The aim of the study was to measure the carbon 14 activity at natural level in air samples using classical methods of radiochemistry and beta counting. Three different methods have been tested in order to minimise the detection limit. In the three methods, the first step consists in trapping the atmospheric carbon 14 into NaOH (1N) using a bubbling chamber. The atmospheric carbon dioxide reacts with NaOH to form Na 2 CO 3 . In the first method the Na 2 CO 3 solution is mixed with a liquid scintillate and is directly analysed by liquid scintillation counting (LSC). The detection limit is approximately 1 Bq/m 3 of air samples. The second method consists in evaporating the carbonate solution and then counting the solid residue with a proportional gas circulation counter. The detection limit obtained is lower than the first method (0.4 Bq/m 3 of air samples). In the third method, Na 2 CO 3 is precipitated into CaCO 3 in presence of CaCl 2 . CaCO 3 is then analysed by LSC. This method appear to be the most appropriate, the detection limit is 0.05 Bq/m 3 of air samples. (author)

  4. Airflow measurements at a wavy air-water interface using PIV and LIF

    Science.gov (United States)

    Buckley, Marc P.; Veron, Fabrice

    2017-11-01

    Physical phenomena at an air-water interface are of interest in a variety of flows with both industrial and natural/environmental applications. In this paper, we present novel experimental techniques incorporating a multi-camera multi-laser instrumentation in a combined particle image velocimetry and laser-induced fluorescence system. The system yields accurate surface detection thus enabling velocity measurements to be performed very close to the interface. In the application presented here, we show results from a laboratory study of the turbulent airflow over wind driven surface waves. Accurate detection of the wavy air-water interface further yields a curvilinear coordinate system that grants practical and easy implementation of ensemble and phase averaging routines. In turn, these averaging techniques allow for the separation of mean, surface wave coherent, and turbulent velocity fields. In this paper, we describe the instrumentation and techniques and show several data products obtained on the air-side of a wavy air-water interface.

  5. Preliminary results of radiometric measurements of clear air and cloud brightness (antenna) temperatures at 37GHz

    Science.gov (United States)

    Arakelyan, A. K.; Hambaryan, A. K.; Arakelyan, A. A.

    2012-05-01

    In this paper the results of polarization measurements of clear air and clouds brightness temperatures at 37GHz are presented. The results were obtained during the measurements carried out in Armenia from the measuring complex built under the framework of ISTC Projects A-872 and A-1524. The measurements were carried out at vertical and horizontal polarizations, under various angles of sensing by Ka-band combined scatterometric-radiometric system (ArtAr-37) developed and built by ECOSERV Remote Observation Centre Co.Ltd. under the framework of the above Projects. In the paper structural and operational features of the utilized system and the whole measuring complex will be considered and discussed as well.

  6. Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor.

    Science.gov (United States)

    Schwarz, Jens; Rambo, Patrick; Kimmel, Mark; Atherton, Briggs

    2012-04-09

    A wavefront sensor has been used to measure the Kerr nonlinear focal shift of a high intensity ultrashort pulse beam in a focusing beam geometry while accounting for the effects of plasma-defocusing. It is shown that plasma-defocusing plays a major role in the nonlinear focusing dynamics and that measurements of Kerr nonlinearity and ionization are coupled. Furthermore, this coupled effect leads to a novel way that measures the laser ionization rates in air under atmospheric conditions as well as Kerr nonlinearity. The measured nonlinear index n₂ compares well with values found in the literature and the measured ionization rates could be successfully benchmarked to the model developed by Perelomov, Popov, and Terentev (PPT model) [Sov. Phys. JETP 50, 1393 (1966)].

  7. Eye retraction and rotation during Corvis ST 'air puff' intraocular pressure measurement and its quantitative analysis.

    Science.gov (United States)

    Boszczyk, Agnieszka; Kasprzak, Henryk; Jóźwik, Agnieszka

    2017-05-01

    The aim of this study was to analyse the indentation and deformation of the corneal surface, as well as eye retraction, which occur during air puff intraocular pressure (IOP) measurement. A group of 10 subjects was examined using a non-contact Corvis ST tonometer, which records image sequences of corneas deformed by an air puff. Obtained images were processed numerically in order to extract information about corneal deformation, indentation and eyeball retraction. The time dependency of the apex deformation/eye retraction ratio and the curve of dependency between apex indentation and eye retraction take characteristic shapes for individual subjects. It was noticed that the eye globes tend to rotate towards the nose in response to the air blast during measurement. This means that the eye globe not only displaces but also rotates during retraction. Some new parameters describing the shape of this curve are introduced. Our data show that intraocular pressure and amplitude of corneal indentation are inversely related (r 8  = -0.83, P = 0.0029), but the correlation between intraocular pressure and amplitude of eye retraction is low and not significant (r 8  = -0.24, P = 0.51). The curves describing corneal behaviour during air puff tonometry were determined and show that the eye globe rotates towards the nose during measurement. In addition, eye retraction amplitudes may be related to elastic or viscoelastic properties of deeper structures in the eye or behind the eye and this should be further investigated. Many of the proposed new parameters present comparable or even higher repeatability than the standard parameters provided by the Corvis ST. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  8. Does air gas aesthesiometry generate a true mechanical stimulus for corneal sensitivity measurement?

    Science.gov (United States)

    Nosch, Daniela S; Pult, Heiko; Albon, Julie; Purslow, Christine; Murphy, Paul J

    2018-03-01

    Belmonte Ocular Pain Meter (OPM) air jet aesthesiometry overcomes some of the limitations of the Cochet-Bonnet aesthesiometer. However, for true mechanical corneal sensitivity measurement, the airflow stimulus temperature of the aesthesiometer must equal ocular surface temperature (OST), to avoid additional response from temperature-sensitive nerves. The aim of this study was to determine: (A) the stimulus temperature inducing no or least change in OST; and (B) to evaluate if OST remains unchanged with different stimulus durations and airflow rates. A total of 14 subjects (mean age 25.14 ± 2.18 years; seven women) participated in this clinical cohort study: (A) OST was recorded using an infrared camera (FLIR A310) during the presentation of airflow stimuli, at five temperatures, ambient temperature (AT) +5°C, +10°C, +15°C, +20°C and +30°C, using the OPM aesthesiometer (duration three seconds; over a four millimetre distance; airflow rate 60 ml/min); and (B) OST measurements were repeated with two stimulus temperatures (AT +10°C and +15°C) while varying stimulus durations (three seconds and five seconds) and airflow rates (30, 60, 80 and 100 ml/min). Inclusion criteria were age measures (analysis of variance) and appropriate post-hoc t-tests were applied. (A) Stimulus temperatures of AT +10°C and +15°C induced the least changes in OST (-0.20 ± 0.13°C and 0.08 ± 0.05°C). (B) OST changes were statistically significant with both stimulus temperatures and increased with increasing airflow rates (p air stimulus of the Belmonte OPM because its air jet stimulus with mechanical setting is likely to have a thermal component. Appropriate stimulus selection for an air jet aesthesiometer must incorporate stimulus temperature control that can vary with stimulus duration and airflow rate. © 2017 Optometry Australia.

  9. Prototype apparatus for the measurement of tritium in expired air using plastic scintillator pellets.

    Science.gov (United States)

    Furuta, Etsuko; Ito, Takeshi

    2018-02-01

    A new apparatus for measuring tritiated water in expired air was developed using plastic scintillator (PS) pellets and a low-background liquid scintillation counter. The sensitivity of the apparatus was sufficient when a large adapted Teflon vial was used. The measurement method generated low amounts of organic waste because the PS pellets were reusable by rinsing, and had adequate detection limits. The apparatus is useful for the safety management of workers that are exposed to radioactive materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. High resolution kilometric range optical telemetry in air by radio frequency phase measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, Joffray; García-Márquez, Jorge; Truong, Daniel; Wallerand, Jean-Pierre [Laboratoire Commun de Métrologie LNE-Cnam (LCM), LNE, 1 rue Gaston Boissier, 75015 Paris (France); Šmíd, Radek [Laboratoire Commun de Métrologie LNE-Cnam (LCM), LNE, 1 rue Gaston Boissier, 75015 Paris (France); Institute of Scientific Instruments of the CAS, Kralovopolska 147, 612 64 Brno (Czech Republic); Alexandre, Christophe [Centre d’Études et de Recherche en Informatique et Communications (CEDRIC), Cnam, 292 rue St-Martin, 75003 Paris (France)

    2016-07-15

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  11. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers

    International Nuclear Information System (INIS)

    Barellini, A.; Bogi, L.; Licitra, G.; Silvi, A. M.; Zari, A.

    2009-01-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar. (authors)

  12. Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.

    Science.gov (United States)

    Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D

    2012-09-04

    In this laboratory study, an experimental method was developed for the quantitative analyses of gas fluxes in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air flux measurement, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air flux was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The measured air fluxes are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air flux at the soil surface was measured. The distribution of the air flux was found to be affected by the depth of the saturated zone. The flux and flux distribution of a volatile contaminant (perchloroethene) was also measured by using the two-dimensional model. Quantitative information of both air and contaminant flux may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.

  13. Continuous measurement of air-water gas exchange by underwater eddy covariance

    Science.gov (United States)

    Berg, Peter; Pace, Michael L.

    2017-12-01

    Exchange of gases, such as O2, CO2, and CH4, over the air-water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique - originally developed for benthic O2 flux measurements - right below the air-water interface (˜ 4 cm) to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2-temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz). By combining these data, concurrent vertical fluxes of O2 and heat across the air-water interface were derived, and gas exchange coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas exchange coefficients (k600) in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air-water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air-water heat fluxes) and not by biological activity (primary production and respiration). This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds - two main drivers of lotic gas exchange - but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature-density gradients in the surface water driven by the heat flux into or out of the river that affected the turbulent

  14. Preliminary results of measurements of air pollution caused by sulfur compounds near the Polaniec power plant

    Energy Technology Data Exchange (ETDEWEB)

    Dziewanski, J; Kasina, S; Lewinska, J; Piorek, S

    1976-01-01

    In the past investigations of the negative impact of power stations on the natural environment have been restricted to measuring sulfur dioxide content in the air. A method of determining complex influence of sulfur compounds on the natural environment is proposed. The following indexes are used: content of sulfur dioxide in the air, dust content (determined by means of the West-Gaeke method), content of sulphate ions in precipitation and pH value of precipitation. Methods used to determine each of the indexes are described. Location of measuring stations in the area where the power station is being constructed is evaluated, taking into account prevailing wind direction and atmospheric conditions (15 measuring points out of which 10 stations measure sulfur content in precipitation and pH value of precipitation, and 5 stations measure the mean daily concentration of sulfur dioxide and dust content). Results are presented in 3 maps, 1 table and 2 pictures. Variations in sulfur dioxide content, dust content, and pH value of precipitation depending on direction of wind, atmospheric conditions and season are analyzed. The results of the investigation will be compared with results of investigations carried out when the power station is in operation. (15 refs.)

  15. Clear air boundary layer spaced antenna wind measurement with the Multiple Antenna Profiler (MAPR

    Directory of Open Access Journals (Sweden)

    S. A. Cohn

    Full Text Available Spaced antenna (SA wind measurement techniques are applied to Multiple Antenna Profiler (MAPR data to evaluate its performance in clear air conditions. MAPR is a multiple antenna 915 MHz wind profiler developed at the National Center for Atmospheric Research (NCAR and described in Cohn et al. (1997, designed to make high resolution wind measurements. Previous reported measurements with MAPR were restricted to precipitation because of low signal to noise (SNR and signal to ground-clutter (SCR ratios. By using a standard pulse-coding technique and upgrading the profiler control software, increases in average power and SNR were achieved, making routine measurements in clear air possible. Comparison of winds measured by MAPR and by a sonic anemometer on a nearby 300 m tower show correlation coefficients in the range of R2 = 0.75 – 0.80, and an average absolute error of ~ 1.4 m s - 1 . This compares favorably with the agreement typically found in wind profiler comparisons. We also consider the use of the parameter ah , which is related to the value of the cross-correlation function at its zero crossing. This parameter is a data quality indicator and possibly a key component in a ground clutter removal technique.

    Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; instruments and techniques – Radio science (remote sensing

  16. Mortality reduction following the air pollution control measures during the 2010 Asian Games

    Science.gov (United States)

    Lin, Hualiang; Zhang, Yonghui; Liu, Tao; Xiao, Jianpeng; Xu, Yanjun; Xu, Xiaojun; Qian, Zhenmin; Tong, Shilu; Luo, Yuan; Zeng, Weilin; Ma, Wenjun

    2014-07-01

    Though increased particulate air pollution has been consistently associated with elevated mortality, evidence regarding whether diminished particulate air pollution would lead to mortality reduction is limited. Citywide air pollution mitigation program during the 2010 Asian Games in Guangzhou, China, provided such an opportunity. Daily mortality from non-accidental, cardiovascular and respiratory diseases was compared for 51 intervention days (November 1-December 21) in 2010 with the same calendar date of baseline years (2006-2009 and 2011). Relative risk (RR) and 95% confidence interval (95% CI) were estimated using a time series Poisson model, adjusting for day of week, public holidays, daily mean temperature and relative humidity. Daily PM10 (particle with aerodynamic diameter less than 10 μm) decreased from 88.64 μg/m3 during the baseline period to 80.61 μg/m3 during the Asian Games period. Other measured air pollutants and weather variables did not differ substantially. Daily mortality from non-accidental, cardiovascular and respiratory diseases decreased from 32, 11 and 6 during the baseline period to 25, 8 and 5 during the Games period, the corresponding RR for the Games period compared with the baseline period was 0.79 (95% CI: 0.73-0.86), 0.77 (95% CI: 0.66-0.89) and 0.68 (95% CI: 0.57-0.80), respectively. No significant decreases were observed in other months of 2010 in Guangzhou and intervention period in two control cities. This finding supports the efforts to reduce air pollution and improve public health through transportation restriction and industrial emission control.

  17. Air-water flow measurement for ERVC conditions by LIF/PIV

    International Nuclear Information System (INIS)

    Yoon, Jong Woong; Jeong, Yong Hoon

    2016-01-01

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  18. Air-water flow measurement for ERVC conditions by LIF/PIV

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Woong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  19. A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air

    Science.gov (United States)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2014-05-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in ambient air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C9-C15 BVOC composition of single plant emissions may be characterised within a 14.5 min analysis time. Moreover, in-situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an 11.7 min chromatographic separation time (increasing to 19.7 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). These analysis times potentially allow for a twofold to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in-situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC (OBVOC) linalool in ambient air. During this field deployment within a suburban forest

  20. Development, enhancement, and evaluation of aircraft measurement techniques for national ambient air quality standard criteria pollutants

    Science.gov (United States)

    Brent, Lacey Cluff

    The atmospheric contaminants most harmful to human health are designated Criteria Pollutants. To help Maryland attain the national ambient air quality standards (NAAQS) for Criteria Pollutants, and to improve our fundamental understanding of atmospheric chemistry, I conducted aircraft measurements in the Regional Atmospheric Measurement Modeling Prediction Program (RAMMPP). These data are used to evaluate model simulations and satellite observations. I developed techniques for improving airborne observation of two NAAQS pollutants, particulate matter (PM) and nitrogen dioxide (NO2). While structure and composition of organic aerosol are important for understanding PM formation, the molecular speciation of organic ambient aerosol remains largely unknown. The spatial distribution of reactive nitrogen is likewise poorly constrained. To examine water-soluble organic aerosol (WSOA) during an air pollution episode, I designed and implemented a shrouded aerosol inlet system to collect PM onto quartz fiber filters from a Cessna 402 research aircraft. Inlet evaluation conducted during a side-by-side flight with the NASA P3 demonstrated agreement to within 30%. An ion chromatographic mass spectrometric method developed using the NIST Standard Reference Material (SRM) 1649b Urban Dust, as a surrogate material resulted in acidic class separation and resolution of at least 34 organic acids; detection limits approach pg/g concentrations. Analysis of aircraft filter samples resulted in detection of 8 inorganic species and 16 organic acids of which 12 were quantified. Aged, re-circulated metropolitan air showed a greater number of dicarboxylic acids compared to air recently transported from the west. While the NAAQS for NO2 is rarely exceeded, it is a precursor molecule for ozone, America's most recalcitrant pollutant. Using cavity ringdown spectroscopy employing a light emitting diode (LED), I measured vertical profiles of NO2 (surface to 2.5 km) west (upwind) of the Baltimore

  1. Pressureless infiltration of porous Al2O3 preform in molten 6061 commercial aluminium alloy

    International Nuclear Information System (INIS)

    Marin, J.; Olivares, L.; Moreno, C.; Ordonez, S.; Martinez, V.

    2001-01-01

    This paper presents an infiltration study of Al 2 O 3 samples containing, approximately, 40% of pores with 1μ average radios. These samples were totally infiltrated with Al-6061 at 1100 deg C for 24 hs in air. Microstructural analysis showed the presence of an alumina matrix infiltrated through mechanisms that combine reactive processes and capillarity, and thus being coherent with the presence of open and closed porosity. The metallographic analysis showed open porosity infiltrated with Al-6061 by capillarity, while SEM micrographs corresponding to this system also showed closed pores filled with metal, that was transported into the ceramic matrix through a reactivate infiltration mechanism. The EDAX analysis for the Al 2 O 3 /Al 6061 system showed areas rich in silicon and copper at the metal-ceramic interface, while the ceramic phase showed the presence of Mg. XRD identified the presence of the MgAl 2 O 4 spinel in the ceramic phase

  2. Measure Guideline: Wall Air Sealing and Insulation Methods in Existing Homes; An Overview of Opportunity and Process

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, S.; Stephenson, R.

    2012-09-01

    This guide provides renovators and retrofit contractors an overview of considerations when including wall air sealing and insulation in an energy retrofit project. It also outlines the potential project risks, various materials for insulating, possible field inspections needed, installation procedures, as well as the benefits and drawbacks. The purpose of this document is to provide the outline of the overview and process of insulating and air sealing walls so that home retrofit professionals can identify approaches to air sealing and insulation measures.

  3. A Comprehensive Probabilistic Framework to Learn Air Data from Surface Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Ankur Srivastava

    2015-01-01

    Full Text Available Use of probabilistic techniques has been demonstrated to learn air data parameters from surface pressure measurements. Integration of numerical models with wind tunnel data and sequential experiment design of wind tunnel runs has been demonstrated in the calibration of a flush air data sensing anemometer system. Development and implementation of a metamodeling method, Sequential Function Approximation (SFA, are presented which lies at the core of the discussed probabilistic framework. SFA is presented as a tool capable of nonlinear statistical inference, uncertainty reduction by fusion of data with physical models of variable fidelity, and sequential experiment design. This work presents the development and application of these tools in the calibration of FADS for a Runway Assisted Landing Site (RALS control tower. However, the multidisciplinary nature of this work is general in nature and is potentially applicable to a variety of mechanical and aerospace engineering problems.

  4. Gas exchange at the air-sea interface: a technique for radon measurements in seawater

    International Nuclear Information System (INIS)

    Queirazza, G.; Roveri, M.

    1991-01-01

    The rate of exchange of various gas species, such as O 2 , CO 2 etc. across the air-water interface can be evaluated from the 222 Rn vertical profiles in the water column. Radon profiles were measured in 4 stations in the NW Adriatic Sea, in September 1990, using solvent extraction and liquid scintillation counting techniques, directly on board the ship. The radiochemical procedure is described in detail. The lower limit of detection is approximately 0.4 mBq 1 -1 . The radon deficiency in the profiles gives estimates of the gas transfer rate across the air-sea interface ranging from 0.9 to 7.0 m d -1 . The suitability of the radon deficiency method in shallow water, enclosed seas is briefly discussed. (Author)

  5. Suitability of Torrent Permeability Tester to measure air-permeability of covercrete

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, C.; Gonzales-Gasca, C. [Institute of Construction Sciences ' Eduardo Torroja' , Madrid (Spain); Torrent, R. [Portland Cement Institute, (Argentina)

    2000-07-01

    Suitability of the Torrent Permeability Tester (TPT) to measure the permeability of covercrete to air, both in the laboratory and the field, is investigated, and test results obtained in laboratory studies are discussed. The tests performed included the determination of air permeability (TPT method), oxygen permeability (Cembureau method) and capillary suction, rapid chloride permeability test (ASTM C 1202), as well as a one-year carbonation depth test. Concrete specimens of various compositions and curing regimes were used in the tests; the gas-permeability tests were repeated on the same specimens after 28 days, than again at 6 months and 12 months. Test results confirmed the suitability of the TPT as a useful tool in the characterization of the quality the of concrete cover. It was found to be sensitive to changes in concrete quality; repeatable for sensitive properties such as gas permeability ; also, it was found to correlate well with other durability-related properties. 10 refs., 8 tabs., 8 figs.

  6. Air pollution from residential wood combustion in a Danish village. Measuring campaign and analysis of results

    Energy Technology Data Exchange (ETDEWEB)

    Waahlin, P.; Roerdam Olesen, H.; Bossi, R.; Stubkjaer, J.

    2010-05-15

    A campaign took place in the winter 2006/2007 comprising measurements of many air pollution components at two sites: a wood smoke exposed site within the village Slagslunde, and a background site 500 m outside of the village. The report describes the campaign and its results. A central result is a so-called 'wood smoke source profile', which relates several measures of wood smoke pollution to each other. This is based on a 'cleaned' data set, for which the effect of other sources than wood smoke was small. The wood smoke profile links the measures PM2.5, particle volume, soot, monosaccharide anhydrides (levoglucosan and mannosan) and different PAHs to each other. Particle number N does not have a close link to the other measures. (author)

  7. Air pollution from residential wood combustion in a Danish village. Measuring campaign and analysis of results

    Energy Technology Data Exchange (ETDEWEB)

    Waahlin, P; Roerdam Olesen, H; Bossi, R; Stubkjaer, J

    2010-05-15

    A campaign took place in the winter 2006/2007 comprising measurements of many air pollution components at two sites: a wood smoke exposed site within the village Slagslunde, and a background site 500 m outside of the village. The report describes the campaign and its results. A central result is a so-called 'wood smoke source profile', which relates several measures of wood smoke pollution to each other. This is based on a 'cleaned' data set, for which the effect of other sources than wood smoke was small. The wood smoke profile links the measures PM2.5, particle volume, soot, monosaccharide anhydrides (levoglucosan and mannosan) and different PAHs to each other. Particle number N does not have a close link to the other measures. (author)

  8. Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air

    Science.gov (United States)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2009-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  9. Using Indirect Turbulence Measurements for Real-Time Parameter Estimation in Turbulent Air

    Science.gov (United States)

    Martos, Borja; Morelli, Eugene A.

    2012-01-01

    The use of indirect turbulence measurements for real-time estimation of parameters in a linear longitudinal dynamics model in atmospheric turbulence was studied. It is shown that measuring the atmospheric turbulence makes it possible to treat the turbulence as a measured explanatory variable in the parameter estimation problem. Commercial off-the-shelf sensors were researched and evaluated, then compared to air data booms. Sources of colored noise in the explanatory variables resulting from typical turbulence measurement techniques were identified and studied. A major source of colored noise in the explanatory variables was identified as frequency dependent upwash and time delay. The resulting upwash and time delay corrections were analyzed and compared to previous time shift dynamic modeling research. Simulation data as well as flight test data in atmospheric turbulence were used to verify the time delay behavior. Recommendations are given for follow on flight research and instrumentation.

  10. Utilizing Operational and Improved Remote Sensing Measurements to Assess Air Quality Monitoring Model Forecasts

    Science.gov (United States)

    Gan, Chuen-Meei

    Air quality model forecasts from Weather Research and Forecast (WRF) and Community Multiscale Air Quality (CMAQ) are often used to support air quality applications such as regulatory issues and scientific inquiries on atmospheric science processes. In urban environments, these models become more complex due to the inherent complexity of the land surface coupling and the enhanced pollutants emissions. This makes it very difficult to diagnose the model, if the surface parameter forecasts such as PM2.5 (particulate matter with aerodynamic diameter less than 2.5 microm) are not accurate. For this reason, getting accurate boundary layer dynamic forecasts is as essential as quantifying realistic pollutants emissions. In this thesis, we explore the usefulness of vertical sounding measurements on assessing meteorological and air quality forecast models. In particular, we focus on assessing the WRF model (12km x 12km) coupled with the CMAQ model for the urban New York City (NYC) area using multiple vertical profiling and column integrated remote sensing measurements. This assessment is helpful in probing the root causes for WRF-CMAQ overestimates of surface PM2.5 occurring both predawn and post-sunset in the NYC area during the summer. In particular, we find that the significant underestimates in the WRF PBL height forecast is a key factor in explaining this anomaly. On the other hand, the model predictions of the PBL height during daytime when convective heating dominates were found to be highly correlated to lidar derived PBL height with minimal bias. Additional topics covered in this thesis include mathematical method using direct Mie scattering approach to convert aerosol microphysical properties from CMAQ into optical parameters making direct comparisons with lidar and multispectral radiometers feasible. Finally, we explore some tentative ideas on combining visible (VIS) and mid-infrared (MIR) sensors to better separate aerosols into fine and coarse modes.

  11. Aerosol concentration measurements and correlations with air mass trajectories at the Pierre Auger Observatory

    Science.gov (United States)

    Micheletti, M. I.; Louedec, K.; Freire, M.; Vitale, P.; Piacentini, R. D.

    2017-06-01

    Aerosols play an important role in radiative transfer processes involved in different fields of study. In particular, their influence is crucial in the attenuation of light at astronomical and astrophysical observatories, and has to be taken into account in light transfer models employed to reconstruct the signals. The Andean Argentinean region is increasingly being considered as a good candidate to host such facilities, as well as the ones for solar-energy resources, and an adequate knowledge of aerosols characteristics there is needed, but it is not always possible due to the vast area involved and the scarce atmospheric data at ground. The aim of this work is to find correlations between aerosol data and particle trajectories that can give an insight into the origin and behaviour of aerosols in this zone and can be employed in situations in which one does not have local aerosol measurements. For this purpose, an aerosol spectrometer and dust monitor (Grimm 1.109) was installed at the Pierre Auger Observatory of ultra-high-energy cosmic rays, to record aerosol concentrations in different size intervals, at surface level. These measurements are analysed and correlated with air mass trajectories obtained from HYSPLIT (NOAA) model calculations. High aerosol concentrations are registered predominantly when air masses have travelled mostly over continental areas, mainly from the NE direction, while low aerosol concentrations are found in correspondence with air masses coming from the Pacific Ocean, from the NW direction. Different size distribution patterns were found for the aerosols depending on their origin: marine or continental. This work shows for the first time the size distribution of aerosols registered at the Pierre Auger Observatory. The correlations found between mass and particle concentrations (total and for different size ranges) and HYSPLIT air mass trajectories, confirm that the latter can be employed as a useful tool to infer the sources, evolution

  12. Estimating Infiltration Rates for a Loessal Silt Loam Using Soil Properties

    Science.gov (United States)

    M. Dean Knighton

    1978-01-01

    Soil properties were related to infiltration rates as measured by single-ringsteady-head infiltometers. The properties showing strong simple correlations were identified. Regression models were developed to estimate infiltration rate from several soil properties. The best model gave fair agreement to measured rates at another location.

  13. Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers

    Science.gov (United States)

    Mang, Stephen A.; Walser, Maggie L.; Nizkorodov, Sergey A.; Laux, John M.

    2009-01-01

    Portable air purifiers are popular consumer items, especially in areas with poor air quality. Unfortunately, most users of these air purifiers have minimal understanding of the factors affecting their efficiency in typical indoor settings. Emission of the air pollutant ozone (O[subscript 3]) by certain air purifiers is of particular concern. In an…

  14. Measurement of the burning velocity of propane-air mixtures using soap bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yukio

    1988-12-20

    By filling a soap bubble with propane-air mixture of spacified equivalence ratio and by igniting it at the center, the flame propagation velocity was measured applying multiplex exposure Schlieren method. And the flow velocity of the unburnt propane-air mixture was also measured by a hot-wire anemometer. From the differences of the above two velocities, the burning velocity was obtained. The values of the burning velocity agreed well with the highly accurate results of usual measurements. The maximum value of the burning velocity, which exists at an equivalence ratio of 1.1, was 50cm/s. This value agreed well with the theoretical calculation result on the on-dimensional flame by Warnatz. The burning velocity in the range of from 0.7 to 1.5 equivalence ratios decreases symmetrically with the maximum value at the center. The velocity decrease in the excessive concentration range of fuel is only a little and converges between 7 and 10 cm/s. To evade the influence of the flame-front instability, measurements were done from 2 to 5cm from the ignition center. Thus accurate values were obtained. 23 refs., 5 figs.

  15. Measurements of Background and Polluted Air in Rural Regions of Rwanda

    Science.gov (United States)

    DeWitt, L.; Gasore, J.; Prinn, R. G.; Potter, K. E.

    2015-12-01

    Rwanda, a mountainous nation in Equatorial East Africa, is one of the least-urbanized nations in Africa. The majority of the population are subsistence farmers, and major sources of air pollution (e.g., particulates, greenhouse gases) in Rwanda include agricultural burning and cookstoves in rural areas, and older diesel vehicles and mototaxis in cities. Currently, initiatives to supply efficient cookstoves, development of cleaner-burning fuel from recycled agricultural waste, and new regulations on vehicle emissions and importation are underway. These initiatives seek to help Rwanda grow in the greenest way possible, to mitigate negative health and climate effects of development; however, little ambient data on air quality is available in different regions of Rwanda for a baseline study before and benefits study after these initiatives. The Rwanda Climate Observatory, located on the summit of Mt. Mugogo (-1.5833°, 29.5667°), a 2.5 km peak, has recently begun measurements of black carbon (BC) aerosol concentration and O3 and CO gas concentrations. BC measurements were performed with a 7-wavelength Magee Scientific aethalometer and the aethalometer model was used to calculate the influence of fossil fuel and biomass burning sources on BC concentrations. CO and O3 measurements were used in conjunction with BC aerosol data, and HYSPLIT back trajectories were also used to help discriminate between periods of heavy burning and periods of regional influence from traffic and general cookfire emissions. Since Mt. Mugogo is in a rural area, this station captures a snapshot of regional background pollution away from high anthropogenic influence. The nearby households and fields also allow case studies of household and crop burning during localized events and help quanitfy potential daily exposure to particulates and climate-forcing emissions in remote areas of this developing country. We will present time series of the BC, O3, CO and insolation measurements at Mt. Mugogo

  16. Quantifying the value of redundant measurements at GCOS Reference Upper-Air Network sites

    Directory of Open Access Journals (Sweden)

    F. Madonna

    2014-11-01

    Full Text Available The potential for measurement redundancy to reduce uncertainty in atmospheric variables has not been investigated comprehensively for climate observations. We evaluated the usefulness of entropy and mutual correlation concepts, as defined in information theory, for quantifying random uncertainty and redundancy in time series of the integrated water vapour (IWV and water vapour mixing ratio profiles provided by five highly instrumented GRUAN (GCOS, Global Climate Observing System, Reference Upper-Air Network stations in 2010–2012. Results show that the random uncertainties on the IWV measured with radiosondes, global positioning system, microwave and infrared radiometers, and Raman lidar measurements differed by less than 8%. Comparisons of time series of IWV content from ground-based remote sensing instruments with in situ soundings showed that microwave radiometers have the highest redundancy with the IWV time series measured by radiosondes and therefore the highest potential to reduce the random uncertainty of the radiosondes time series. Moreover, the random uncertainty of a time series from one instrument can be reduced by ~ 60% by constraining the measurements with those from another instrument. The best reduction of random uncertainty is achieved by conditioning Raman lidar measurements with microwave radiometer measurements. Specific instruments are recommended for atmospheric water vapour measurements at GRUAN sites. This approach can be applied to the study of redundant measurements for other climate variables.

  17. Axysimetrical water infiltration in soil imaged by non-invasive electrical resistivimetry

    OpenAIRE

    Batlle-Aguilar, Jordi; Coquet, Yves; Tucholka, Piotr; Vachier, P.

    2004-01-01

    Axisymetrical infiltration of water in soil has been largely studied since the development of tension disc infiltrometers. Procedures have been developed to derive the hydraulic properties of soils from axisymetrical infiltration measurements but rely on some simplifying and/or a priori assumptions on the homogeneity of the soil from the point of view of its hydraulic properties and its initial water status prior to infiltration. Such assumptions are difficult to ascertain. We present here an...

  18. Monitoring and modeling infiltration-recharge dynamics of managed aquifer recharge with desalinated seawater

    OpenAIRE

    Ganot, Yonatan; Holtzman, Ran; Weisbrod, Noam; Nitzan, Ido; Katz, Yoram; Kurtzman, Daniel

    2016-01-01

    We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors and observation...

  19. Assessment of infiltration heat recovery and its impact on energy consumption for residential buildings

    International Nuclear Information System (INIS)

    Solupe, Mikel; Krarti, Moncef

    2014-01-01

    Highlights: • Five steady-state air infiltration heat recovery or IHR models are described and compared. • IHR models are incorporated within whole-building simulation analysis tool. • IHR can reduce the thermal loads of residential buildings by 5–30%. - Abstract: Infiltration is a major contributor to the energy consumption of buildings, particularly in homes where it accounts for one-third of the heating and cooling loads. Traditionally, infiltration is calculated independent of the building envelope performance, however, it has been established that a thermal coupling exists between the infiltration and conduction heat transfer of the building envelope. This effect is known as infiltration heat recovery (IHR). Experiments have shown that infiltration heat recovery can typically reduce the infiltration thermal load by 10–20%. Currently, whole-building energy simulation tools do not account for the effect of infiltration heat recovery on heating and cooling loads. In this paper, five steady-state IHR models are described to account for the thermal interaction between infiltration air and building envelope components. In particular, inter-model and experimental comparisons are carried out to assess the prediction accuracy of five IHR models. In addition, the results from a series of sensitivity analyses are presented, including an evaluation of the predictions for heating energy use associated with four audited homes obtained from whole-building energy simulation analysis with implemented infiltration heat recovery models. Experimental comparison of the IHR models reveal that the predictions from all the five models are consistent and are within 2% when 1-D flow and heat transfer conditions are considered. When implementing IHR models to a whole-building simulation environment, a reduction of 5–30% in heating consumption is found for four audited residential homes

  20. Pollutant infiltration and ground water management

    International Nuclear Information System (INIS)

    1993-01-01

    Following a short overview of hazard potentials for ground water in Germany, this book, which was compiled by the technical committee of DVWK on ground water use, discusses the natural scientific bases of pollutant movement to and in ground water. It points out whether and to what extent soil/ground water systems can be protected from harmful influences, and indicates relative strategies. Two zones are distinguished: the unsaturated zone, where local defence and remedial measures are frequently possible, and the saturated zone. From the protective function of geological systems, which is always pollutant-specific, criteria are derived for judging the systems generally, or at least regarding entire classes of pollutants. Finally, the impact of the infiltration of pollutants into ground water on its use as drinking water is pointed out and an estimate of the cost of remedial measures is given. (orig.) [de