WorldWideScience

Sample records for measurements preparatory phase

  1. Improving the training process of highly skilled bodybuilders in the preparatory period, general preparatory phase

    Directory of Open Access Journals (Sweden)

    Olexandr Tyhorskyy

    2015-08-01

    Full Text Available Purpose: to improve the method of training highly skilled bodybuilders during the general preparatory phase. Material and Methods: the study involved eight highly skilled athletes, members of the team of Ukraine on bodybuilding. Results: comparative characteristics of the most commonly used methods of training process in bodybuilding. Developed and substantiated the optimal method of training highly skilled bodybuilders during the general preparatory phase of the preparatory period, which can increase body weight through muscle athletes component. Conclusions: based on studies, recommended the optimum method of training highly skilled bodybuilders depending on mezotsykles and microcycles general preparatory phase

  2. Improving the training process of skilled bodybuilders in specially-preparatory phase of the preparatory period

    Directory of Open Access Journals (Sweden)

    Viktor Dzhym

    2014-12-01

    Full Text Available Purpose: to study methods of improving the training process of skilled bodybuilders in a specially-preparatory phase of the preparatory period. Materials and Methods: the study involved 18 skilled bodybuilders are included in the team of the Kharkiv region of bodybuilding. Results: a comparative characteristic of the most commonly used methods of training process in bodybuilding. Developed and justified the optimal technique for skilled bodybuilders, depending on the initial form of the athlete at the beginning of a specially-preparatory phase of training. Shows the dependence of changes in body weight bodybuilder from the training process. Conclusions: on the basis of the research the author proposes an optimal method of training depending on the training microcycle in the run specially-preparatory stage.

  3. LS1 Report: Preparatory phase complete

    CERN Multimedia

    Katy Foraz

    2013-01-01

    The preparatory phase in the LHC which includes electrical and leak test is now completed. The field is now free for consolidation, upgrade and maintenance activities.   Three magnets have been replaced in sector 7-8 and a special intervention team is now connecting new magnets that have been installed. Two magnets of sector 1-2 will be exchanged this week. The R2E project is progressing well: the power converters are being removed at points 1 and 7, while the protection works required prior to any civil engineering works commencing are almost finished at point 5. Moreover, many other activities are taking place in LHC, including the consolidation of the cryo line, and the maintenance of radio-frequency systems and cabling. The activities in the injector complex are also in full gear. Sixteen magnets at the SPS are being exchanged, and the pick-up tank of AD is now back in place. Meanwhile, the PS cranes are being exchanged and the old PS ventilation system is being replaced. The interconnecti...

  4. Improving the training process of highly skilled bodybuilders in the preparatory period, general preparatory phase

    Directory of Open Access Journals (Sweden)

    Olexandr Tyhorskyy

    2015-10-01

    Full Text Available Purpose: to improve the method of training highly skilled bodybuilders. Material and Methods: the study involved eight highly skilled athletes, members of the team of Ukraine on bodybuilding. Results: comparative characteristics of the most commonly used methods of training process in bodybuilding. Developed and substantiated the optimal method of training highly skilled bodybuilders during the general preparatory phase of the preparatory period, which can increase body weight through muscle athletes component. Conclusions: dynamic load factor to raise the intensity of training loads allows orientation help to increase volumes shoulder muscles

  5. Construction of a stable and homogeneous magnetic field at 10 milligauss for neutron electric dipole moment measurements: preparatory phase

    Energy Technology Data Exchange (ETDEWEB)

    Gravador, E.; Yoshiki, Hajime; Feizeng, H. [Ibaraki Univ., Mito (Japan)

    1996-08-01

    A superthermal UCN edm measuring machine is currently under construction at KEK. It utilizes a magnetically shielded superconducting solenoid at liquid helium temperature to generate a stable and homogeneous magnetic field at 10 milligauss. The design of the magnetic shield and solenoid and preliminary evaluation of shielding effectiveness is presented. (author)

  6. Preparatory studies for the WFIRST supernova cosmology measurements

    Science.gov (United States)

    Perlmutter, Saul

    In the context of the WFIRST-AFTA Science Definition Team we developed a first version of a supernova program, described in the WFIRST-AFTA SDT report. This program uses the imager to discover supernova candidates and an Integral Field Spectrograph (IFS) to obtain spectrophotometric light curves and higher signal to noise spectra of the supernovae near peak to better characterize the supernovae and thus minimize systematic errors. While this program was judged a robust one, and the estimates of the sensitivity to the cosmological parameters were felt to be reliable, due to limitation of time the analysis was clearly limited in depth on a number of issues. The goal of this proposal is to further develop this program and refine the estimates of the sensitivities to the cosmological parameters using more sophisticated systematic uncertainty models and covariance error matrices that fold in more realistic data concerning observed populations of SNe Ia as well as more realistic instrument models. We propose to develop analysis algorithms and approaches that are needed to build, optimize, and refine the WFIRST instrument and program requirements to accomplish the best supernova cosmology measurements possible. We plan to address the following: a) Use realistic Supernova populations, subclasses and population drift. One bothersome uncertainty with the supernova technique is the possibility of population drift with redshift. We are in a unique position to characterize and mitigate such effects using the spectrophotometric time series of real Type Ia supernovae from the Nearby Supernova Factory (SNfactory). Each supernova in this sample has global galaxy measurements as well as additional local environment information derived from the IFS spectroscopy. We plan to develop methods of coping with this issue, e.g., by selecting similar subsamples of supernovae and allowing additional model flexibility, in order to reduce systematic uncertainties. These studies will allow us to

  7. Placebo-induced decrease in fatigue: evidence for a central action on the preparatory phase of movement.

    Science.gov (United States)

    Piedimonte, Alessandro; Benedetti, Fabrizio; Carlino, Elisa

    2015-02-01

    Placebos have been found to affect a number of pathological processes and physiological functions through expectations of clinical improvement. Recently, the study of the placebo effect has moved from the clinical to the physical performance setting, wherein placebos can boost performance by increasing muscle work and by decreasing perceived exertion. However, nothing is known about the neurobiological underpinnings of this phenomenon. Here we show for the first time that a placebo, which subjects believed to be endurance-increasing caffeine, reduces fatigue by acting at the central level on the preparatory phase of movement. In fact, we recorded the readiness potential, which is the expression of the preparatory phase of movement at the level of the supplementary motor area, during repeated flexions of the index finger in a control group that did not receive any treatment and in a placebo group that received placebo caffeine. In the control group, as the number of flexions increased, both fatigue and readiness potential amplitude increased. By contrast, in the placebo group, as the number of flexions increased we found a decrease in perceived exertion along with no increase in readiness potential amplitude. This placebo-induced modulation of the readiness potential suggests that placebos reduce fatigue by acting centrally during the anticipatory phase of movement, thus emphasizing the important role of the central nervous system in the generation of fatigue.

  8. The cognitive roles of behavioral variability: idiosyncratic acts as the foundation of identity and as transitional, preparatory, and confirmatory phases.

    Science.gov (United States)

    Eilam, David

    2015-02-01

    Behavior in obsessive compulsive disorder (OCD), in habitual daily tasks, and in sport and cultural rituals is deconstructed into elemental acts and categorized into common acts, performed by all individuals completing a similar task, and idiosyncratic acts, not performed by all individuals. Never skipped, common acts establish the pragmatic part of motor tasks. Repetitive performance of a few common acts renders rituals a rigid form, whereby common acts may serve as memes for cultural transmission. While idiosyncratic acts are not pragmatically necessary for task completion, they fulfill important cognitive roles. They form a long preparatory phase in tasks that involve high stakes, and a long confirmatory phase in OCD rituals. Idiosyncratic acts also form transitional phases between motor tasks, and are involved in establishing identity and preserving the flexibility necessary for adapting to varying circumstances. Behavioral variability, as manifested in idiosyncrasy, thus does not seem to be a noise or by-product of motor activity, but an essential cognitive component that has been preserved in the evolution of behavioral patterns, similar to the genetic variability in biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Preparatory Commission for the Comprehensive Nuclear Test Ban Treaty Organization: Report of the On-Site Inspection Workshop-5-Planning Examination of Inspection Phases

    Energy Technology Data Exchange (ETDEWEB)

    Krioutchenkov, V.; Shchukin, V.; Davies, A.; Sweeney, J.J.

    2000-01-01

    On-Site Inspection (OSI) Workshop-5 met 8-12 November, 1999 in Farnborough, UK and was hosted by the Defence Evaluation and Research Agency (DERA). The purpose of the workshop was to provide guidance on OSI Operational Manual (OM) development for Working Group B (WGB) of the CTBT Preparatory Commission (PrepCom). The two main topics of the workshop involved logistics/preparatory activities for the pre-inspection phase and in-depth examination of technology application during the initial and continuation phases of an OSI. Reports from the PTS-sponsored Kazakhstan OSI experiment set the tone for the discussions of logistics and preparatory activities. The most important recommendation coming out of the experiment and workshop discussions is a need for Working Group A to develop specific administrative and financial rules regarding OSIs and define the status of inspectors and inspector assistants with respect to the CTBTO. There was also extensive discussion of a need for Working Group B to develop and/or adapt safety standards. With respect to OSI preparations, the group agreed that the time line and quick response required by an OSI necessitate development of special procedures; standing arrangements and/or advanced parties are suggested as one possible approach and a list of relevant issues has been initiated. A chart was developed that outlines the various elements of logistics required for an OSI that can serve as a basis for development of checklists, databases, and other preparation activities. Technology presentations and discussion focused on three major areas: phenomenology, synergy, and specifications.

  10. Rock stress measurements. Preparatory stage of the equipment development project; Kallioperaen jaennitystilan mittaaminen. Laitekehityshankkeen valmisteluvaihe

    Energy Technology Data Exchange (ETDEWEB)

    Mononen, S.; Hakala, M.; Mikkola, P

    2002-07-01

    In recent years the rock stress measurement methods used in Finland have been overcoring and hydraulic fracturing. There have been mainly two companies involved in these measurements, namely Suomen Malmi Oy (Smoy) and SwedPower AB. Smoy has done measurements for mines and for rock engineering projects, whereas SwedPower AB has mainly been involved in nuclear waste disposal investigations and conducted hydraulic fracturing measurements in deep boreholes. Smoy together with its partners started in February 2001 a project named JTM, which was a preliminary stage for a future project, which aims to develop a device most suitable for rock stress measurements in Finland. The partners in the project were HUT Rock Engineering, Posiva Oy, Saanio and Riekkola Oy, Gridpoint Finland Oy and Geopros Oy. Tekes, the National Technology Agency, provided almost half of the project funding. In the management group of the project were Pekka Mikkola (chairman) and Tero Laurila from Smoy, Pekka Saerkkae and Sakari Mononen (full-time researcher) from HUT, Aimo Hautojaervi (Posiva Oy), Erik Johansson (Saanio and Riekkola Oy), Matti Hakala (Gridpoint Finland Oy) and Heikki Haemaelaeinen (Geopros Oy). The aim of the JTM-project was to find out the needs for the development of a device most suitable for rock stress measurements in Finnish mines and rock engineering projects. During the project work was done to find out the range of rock stress measurement devices available, to find out the needs for measurements, and to get acquainted to the measurements done in Scandinavia. Also a report of the most suitable methods for Finnish rock conditions was done based on literature and on interviews of rock stress experts. Based on all the information collected during the project a clear picture of the needs for rock stress measurements in Finland could be formed and a preliminary plan of a future project was done. The aim of the suggested project is to build a device based on hydraulic fracturing

  11. The ESA Space Situational Awareness Preparatory Programme

    Science.gov (United States)

    Bobrinsky, Nicolas

    A new ESA Programme on Space Situational Awareness (SSA) has been approved during the ESA Council at Ministerial level in November 2008. A preparatory phase is in progress, covering the timeframe 2009 -2012. It concentrates on the architectural design of the SSA System, its governance and data policy, as well as on the provision of precursor services based on the federation of existing National and European assets. A continuation of the SSA programme will be proposed at the next Ministerial Council for the years 2012 and onwards. The SSA Preparatory Programme covers three distinct segments, namely: -Space Surveillance and Tracking of artificial objects orbiting the Earth -Space Weather -Near Earth Objects Each of the above segments has a strong relation with Science and is supported by specific RD Programmes at National, EC and ESA levels. In this paper, the scientific aspects of the three SSA Segments are outlined and the following main topics developed: • Space Surveillance: statistical models of the evolution of the space debris population in Earth-bound orbits, study of active mitigation measures, impact analysis, tracking and char-acterisation principles based on radar and optical techniques. • Space Weather: awareness of the natural space environment, detection and forecasting of space weather effects and interferences, analysis of appropriate ground and space-based sensors for the monitoring of the Sun, the solar wind, the radiation belts, the magnetosphere and the ionosphere. • Near Earth Objects (NEOs): methods for determination of physical characteristics of newly discovered objects, study of appropriate sensors based on radar and optical techniques, iden-tification and ranking of collision risks of NEOs with the Earth, study of possible mitigation measures (e.g. Don Quichotes project). The research topics undertaken during the preparatory programme, as well as those foreseen during the next phase, possibly with a strong international cooperation

  12. Preparatory attention in visual cortex.

    Science.gov (United States)

    Battistoni, Elisa; Stein, Timo; Peelen, Marius V

    2017-05-01

    Top-down attention is the mechanism that allows us to selectively process goal-relevant aspects of a scene while ignoring irrelevant aspects. A large body of research has characterized the effects of attention on neural activity evoked by a visual stimulus. However, attention also includes a preparatory phase before stimulus onset in which the attended dimension is internally represented. Here, we review neurophysiological, functional magnetic resonance imaging, magnetoencephalography, electroencephalography, and transcranial magnetic stimulation (TMS) studies investigating the neural basis of preparatory attention, both when attention is directed to a location in space and when it is directed to nonspatial stimulus attributes (content-based attention) ranging from low-level features to object categories. Results show that both spatial and content-based attention lead to increased baseline activity in neural populations that selectively code for the attended attribute. TMS studies provide evidence that this preparatory activity is causally related to subsequent attentional selection and behavioral performance. Attention thus acts by preactivating selective neurons in the visual cortex before stimulus onset. This appears to be a general mechanism that can operate on multiple levels of representation. We discuss the functional relevance of this mechanism, its limitations, and its relation to working memory, imagery, and expectation. We conclude by outlining open questions and future directions. © 2017 New York Academy of Sciences.

  13. ENSURING RADIATION SAFETY AT THE XXVII WORLD SUMMER UNIVERSIADE IN KAZAN BY ROSPOTREBNADZOR BODIES AND ORGANIZATIONS Communication 1. Ensuring radiation safety at the preparatory phase

    Directory of Open Access Journals (Sweden)

    G. G. Onischenko

    2013-01-01

    Full Text Available After the terrorist attack at theBostonMarathon, Federal and Republican executive bodies took increased security measures during the XXVII World Summer Universiade inKazan. Bodies and Organizations of the Federal Service for Surveillance on Consumer Rights Protection and Human Well-being (Rospotrebnadzor were participants of all preparatory activities and directly provided security of the Student Games inKazan. This report analyzes the experience of providing radiation safety by Rospotrebnadzor experts at the stage of preparation for the Universiade. So far, Rospotrebnadzor organizations had no experience of providing radiation safety of such large-scale events. Analysis of the performed work with account for both positive and negative experiences is especially important in the context of preparations for the safety providing of the Olympic Winter Games inSochiin 2014. 

  14. Differential hemispheric modulation of preparatory attention.

    Science.gov (United States)

    Fernández, Laura Gabriela; Siéroff, Eric

    2014-06-01

    Preparatory attention (PA) is the ability to allocate attention to a stimulus prior to its occurrence and is a crucial component of attentional control. We investigated the role of brain hemispheres in PA using an experimental test in which normal participants responded to a target that could appear in the right or the left visual fields, thus projecting to the left or the right hemispheres, while ignoring a central distractor that could appear in the preparatory phase preceding the target. This experimental test measures the ability of participants to modulate PA directed to a target location when the probability of a distractor occurrence varies across three blocks of trials (0%, 33%, 67%). The competition between distractors and target for PA should produce slower response times when the probability of distractors is high. Three experiments were conducted varying the temporal predictability of the target occurrence within a trial (high predictability in Experiments 1 and 3, and low predictability in Experiment 2), and the task used (location in Experiments 1 and 2, and detection in Experiment 3). We found that the modulation of PA by the expected probability of events was different in each visual field/hemisphere. Whereas the left hemisphere PA was influenced by the mere probability of events in each block of trials, the right hemisphere PA was mainly influenced by events with high temporal predictability. These results suggest that each hemisphere uses a different strategy to modulate PA when directed to a target location at the perceptual level of visual processing.

  15. Orofacial muscular activity and related skin movement during the preparatory and sustained phases of tone production on the French horn.

    Science.gov (United States)

    Hirano, Takeshi; Kudo, Kazutoshi; Ohtsuki, Tatsuyuki; Kinoshita, Hiroshi

    2013-07-01

    This study investigated activity of the embouchure-related orofacial muscles during pre- and postattack phases of sound production by 10 trained French-horn players. Surface electromyogram (EMG) from five selected facial muscles, and related facial skin kinematics were examined in relation to pitch and intensity of a tone produced. No difference in EMGs and facial kinematics between the two phases was found, indicating importance of appropriate formation of preattack embouchure. EMGs in all muscles during the postattack phase increased linearly with an increase in pitch, and they also increased with tone intensity without interacting with the pitch effect. Orofacial skin movement remained constant across all pitches and intensities except for lateral retraction of the lips during high-pitch tone production. Contraction of the orofacial muscles is fundamentally isometric by which tension on the lips and the cheeks is regulated for flexible sound parameter control.

  16. Xavier Preparatory Academy

    Science.gov (United States)

    2009-01-01

    Students of Xavier University Preparatory School in New Orleans watch clouds shift across the globe in near-real time on 'Science on a Sphere' during a recent visit to StenniSphere, the visitor center at NASA's John C. Stennis Space Center. Four projectors work in sync with the suspended sphere to create a revolving display of a planet's atmosphere, oceans and land; to show documentary movies; or to project models of climate change using satellite data. Pictured are students (l to r) Ashante Snowton, Robriane Larry, Zhane Farbe and Ebony Johnson.

  17. Xavier Preparatory Academy

    Science.gov (United States)

    2009-01-01

    Students of Xavier University Preparatory School in New Orleans watch clouds shift across the globe in near-real time on 'Science on a Sphere' during a recent visit to StenniSphere, the visitor center at NASA's John C. Stennis Space Center. Four projectors work in sync with the suspended sphere to create a revolving display of a planet's atmosphere, oceans and land; to show documentary movies; or to project models of climate change using satellite data. Pictured are students (l to r) Ashante Snowton, Robriane Larry, Zhane Farbe and Ebony Johnson.

  18. Entropy of phase measurement quantum phase via quadrature measurement

    CERN Document Server

    My, R; My, Robert; Uni, Palacky

    1995-01-01

    The content of phase information of an arbitrary phase--sensitive measurement is evaluated using the maximum likelihood estimation. The phase distribution is characterized by the relative entropy--a nonlinear functional of input quantum state. As an explicit example the multiple measurement of quadrature operator is interpreted as quantum phase detection achieving the ultimate resolution predicted by the Fisher information.

  19. A preparatory interview for the neophyte group therapist.

    Science.gov (United States)

    Bloch, S; Knox, J

    1982-12-01

    On the premiss that an important aim of the initial phase of supervision of the neophyte group psychotherapist is to convert a new and threatening situation into an old and familiar one, the function of a preparatory interview--whose focus was the therapist's set of expectations about his impending experience of leading a group--was examined. The findings of a series of 26 interviews point to the need for a systematic controlled study to test the effects of a preparatory interview of the trainee therapist on group process and leadership behaviour.

  20. Self-efficacy, planning, and preparatory behaviours as joint predictors of physical activity: A conditional process analysis.

    Science.gov (United States)

    Barz, Milena; Lange, Daniela; Parschau, Linda; Lonsdale, Chris; Knoll, Nina; Schwarzer, Ralf

    2016-01-01

    Planning can bridge the gap between intentions and action, but what bridges the gap between planning and action? This study helps to answer the question by disentangling the interrelationships between self-efficacy, planning and preparatory behaviours in predicting physical activity. Preparatory behaviours are tested as a working mechanism of planning. Moreover, it is tested whether the utility of preparatory behaviours depends on an individual's level of self-efficacy. A survey assessed planning, self-efficacy and preparatory behaviours for physical activity. Adults (N = 166) provided data at two measurement points. In a longitudinal model, preparatory behaviours were specified as a mediator between planning and physical activity. Self-efficacy was specified as a possible moderator at two points in the model. Preparatory behaviours mediated the relationship between planning and physical activity. An interaction between self-efficacy and preparatory behaviours on physical activity was found, indicating that individuals with low self-efficacy beliefs were more active if they engaged more frequently in preparatory behaviours. Planning seems to stimulate preparatory behaviours, which in turn make future physical activity more likely. Furthermore, as performing preparatory behaviours represent a step forward towards the enactment of behavioural goals, preparatory behaviours may be particular beneficial for individuals afflicted by self-doubts regarding physical activity.

  1. (De)Motivation in Preparatory EFL Classrooms

    Science.gov (United States)

    Vefali, Gülsen Musayeva; Ayan, Hatice Ç.

    2015-01-01

    This survey study aimed to explore EFL learners' (de)motivation in the preparatory classes at a tertiary institution in Northern Cyprus. It administered questionnaires to 105 preparatory learners and 30 language teachers. The statistical analysis revealed the Cronbach's alpha reliability coefficient of 0.88 for the Learners' version, and 0.89 for…

  2. Preparatory studies for a high-precision Penning-trap measurement of the {sup 163}Ho electron capture Q-value

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, F. [Johannes Gutenberg-Universitaet, Institut fuer Kernchemie, Mainz (Germany); Johannes Gutenberg-Universitaet, Institut fuer Physik, Mainz (Germany); Beyer, T.; Blaum, K.; Eibach, M.; Eliseev, S.; Nagy, Sz. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Block, M. [Johannes Gutenberg-Universitaet, Institut fuer Kernchemie, Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Helmholtz-Institut Mainz, Mainz (Germany); Chenmarev, S.; Novikov, Yu.N. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Saint Petersburg State University, Physical Faculty, Saint Petersburg (Russian Federation); Dorrer, H. [Johannes Gutenberg-Universitaet, Institut fuer Kernchemie, Mainz (Germany); Paul Scherrer Institute, Villigen (Switzerland); Universitaet Bern, Bern (Switzerland); Duellmann, C.E. [Johannes Gutenberg-Universitaet, Institut fuer Kernchemie, Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Helmholtz-Institut Mainz, Mainz (Germany); Johannes Gutenberg-Universitaet, PRISMA Cluster of Excellence, Mainz (Germany); Eberhardt, K. [Johannes Gutenberg-Universitaet, Institut fuer Kernchemie, Mainz (Germany); Helmholtz-Institut Mainz, Mainz (Germany); Grund, J. [Johannes Gutenberg-Universitaet, Institut fuer Kernchemie, Mainz (Germany); Johannes Gutenberg-Universitaet, PRISMA Cluster of Excellence, Mainz (Germany); Koester, U. [Institut Laue-Langevin, Grenoble (France); Renisch, D. [Johannes Gutenberg-Universitaet, Institut fuer Kernchemie, Mainz (Germany); Tuerler, A. [Paul Scherrer Institute, Villigen (Switzerland); Universitaet Bern, Bern (Switzerland); Wendt, K. [Johannes Gutenberg-Universitaet, Institut fuer Physik, Mainz (Germany); Johannes Gutenberg-Universitaet, PRISMA Cluster of Excellence, Mainz (Germany)

    2015-07-15

    The ECHo Collaboration (Electron Capture {sup 163}Ho) aims to investigate the calorimetric spectrum following the electron capture decay of {sup 163}Ho to determine the mass of the electron neutrino. The size of the neutrino mass is reflected in the endpoint region of the spectrum, i.e., the last few eV below the transition energy. To check for systematic uncertainties, an independent determination of this transition energy, the Q-value, is mandatory. Using the TRIGA-TRAP setup, we demonstrate the feasibility of performing this measurement by Penning-trap mass spectrometry. With the currently available, purified {sup 163}Ho sample and an improved laser ablation mini-RFQ ion source, we were able to perform direct mass measurements of {sup 163}Ho and {sup 163}Dy with a sample size of less than 10{sup 17} atoms. The measurements were carried out by determining the ratio of the cyclotron frequencies of the two isotopes to those of carbon cluster ions using the time-of-flight ion cyclotron resonance method. The obtained mass excess values are ME({sup 163}Ho)= -66379.3(9) keV and ME({sup 163}Dy)= -66381.7(8) keV. In addition, the Q-value was measured for the first time by Penning-trap mass spectrometry to be Q = 2.5(7) keV. (orig.)

  3. 42 CFR 136.320 - Preparatory scholarship grants.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Preparatory scholarship grants. 136.320 Section 136... J-3-Health Professions Preparatory Scholarship Program for Indians § 136.320 Preparatory scholarship grants. Scholarship grants may be awarded under this subdivision and section 103 of the act for...

  4. VFT PHASE VOLTAGE MEASUREMENT IN THREE-PHASE ENCLOSED GIS

    Institute of Scientific and Technical Information of China (English)

    邹建华; 岳子丁; 李洋

    2002-01-01

    The measuring of VFT phase voltage in three-phase enclosed GIS is more complex and difficult than in single-phase ones. There are 3 capacitive sensors in the measuring system, the outputs of which are with a linear relation to the three phase voltages. This linear relation is presented with a factorial matrix. Because each capacitive sensor is coupled with the electric field of three phases (A, B, and C), the electric coupling coefficients are introduced. In order to determine the matrix of electric coupling coefficients, the numerical calculation method can be used. From the discussion on two types of three-phase enclosed GIS bus, i.e. standard arrangement and biased arrangement, the dominant electric coupling coefficients are named, which can be simply and approximately calculated by an analytic expression. Finally, as an example, the waveforms of VFT phase voltage generated on a three-phase enclosed GIS bus model are displayed. When a capacitive sensor is located at the 'shortest point' of phase A (or B, or C), the VFT phase voltage VA (or VB, or VC) can almost be measured by that capacitive sensor alone.

  5. FIELD STRENGTH MEASUREMENTS, PHASE II.

    Science.gov (United States)

    The measurement of the strength of radio frequency fields at high frequency and above has followed practices which are standard for the measurement...of field strength at medium and low frequencies. Variability of measurements made in practical situations and a lack of reproducibility of...measurements made under apparently identical conditions has prompted an investigation of equipment and methods used in the determinations. The field strength

  6. Olympus receiver evaluation and phase noise measurements

    Science.gov (United States)

    Campbell, Richard L.; Wang, Huailiang; Sweeney, Dennis

    1990-01-01

    A set of measurements performed by the Michigan Tech Sensing and Signal Processing Group on the analog receiver built by the Virginia Polytechnic Institute (VPI) and the Jet Propulsion Laboratory (JPL) for propagation measurements using the Olympus Satellite is described. Measurements of local oscillator (LO) phase noise were performed for all of the LOs supplied by JPL. In order to obtain the most useful set of measurements, LO phase noise measurements were made using the complete VPI receiver front end. This set of measurements demonstrates the performance of the receiver from the Radio Frequency (RF) input through the high Intermediate Frequency (IF) output. Three different measurements were made: LO phase noise with DC on the voltage controlled crystal oscillator (VCXO) port; LO phase noise with the 11.381 GHz LO locked to the reference signal generator; and a reference measurement with the JPL LOs out of the system.

  7. Gibbs measures and phase transitions

    CERN Document Server

    Georgii, Hans-Otto

    2011-01-01

    From a review of the first edition: ""This book […] covers in depth a broad range of topics in the mathematical theory of phase transition in statistical mechanics. […] It is in fact one of the author's stated aims that this comprehensive monograph should serve both as an introductory text and as a reference for the expert."" (F. Papangelou, Zentralblatt MATH) The second edition has been extended by a new section on large deviations and some comments on the more recent developments in the area.

  8. FIELD STRENGTH MEASUREMENTS, PHASE I.

    Science.gov (United States)

    The program included the testing and evaluation of commercial and military field- strength meters. It also included a study of the interpretation of...field- strength measurement data taken under multipath conditions. As part of the field- strength meter evaluation, five instruments, the AN/TRM-7, NF...interpretation of the measured data is the variability of field- strength values obtained over an area. Such variability is caused by the presence of multipath

  9. European Strategy Preparatory Group - CALL FOR SUBMISSIONS

    CERN Multimedia

    2012-01-01

    As part of the Update of the European Strategy for Particle Physics, the European Strategy Preparatory Group (ESPG) welcomes submissions on issues related to the strategy from individual physicists, from groups of scientists representing a community (an experiment, a topic of theoretical research, etc.) as well as from Institutions and Organizations (funding agencies, ministries, etc).   These contributions will be discussed at the meetings of the Preparatory Group and during the Open Symposium to be held on 10-12 September 2012 in Cracow, and will be made available to the Strategy Group for drafting the Update of the Strategy. How to submit a contribution? Send your contribution on the scientific issues below using the form under http://indico.cern.ch/event/espg_input (preferably as an attached PDF file): - Accelerator Physics - Astroparticle Physics, Gravitation and Cosmology - Flavour Physics and Symmetries - Physics at High Energy Frontier - Physics of Neutrinos - Strong Interaction Physics...

  10. Measurement of Phase Dependent Impedance for 3-phase Diode Rectifier

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2016-01-01

    This paper presents a new method to measure the phase dependent impedance from an experimental set up. Though most of power electronics based system is gradually migrating to IGBT based voltage source converter due to their controllability, the rectifier composed of diode or thyristor components...... are still widely used in AC-DC applications because of their cost effectiveness and reliability. However, these topologies generate harmonic problems in their network due to their switching instant variation caused by the frequency and phase of grid voltage. Hence, a lot of solutions have been proposed...... application. It is found that the phase dependent impedance shows different properties with the impedance profiles, which have been proposed in the research. This paper explains a method to measure the phase dependent impedance profile from an experimental set up. Furthermore, the results are compared...

  11. A Gaussian measure of quantum phase noise

    Science.gov (United States)

    Schleich, Wolfgang P.; Dowling, Jonathan P.

    1992-01-01

    We study the width of the semiclassical phase distribution of a quantum state in its dependence on the average number of photons (m) in this state. As a measure of phase noise, we choose the width, delta phi, of the best Gaussian approximation to the dominant peak of this probability curve. For a coherent state, this width decreases with the square root of (m), whereas for a truncated phase state it decreases linearly with increasing (m). For an optimal phase state, delta phi decreases exponentially but so does the area caught underneath the peak: all the probability is stored in the broad wings of the distribution.

  12. Preparatory effects of distractor suppression: evidence from visual cortex.

    Directory of Open Access Journals (Sweden)

    Jaap Munneke

    Full Text Available Spatial selective attention is the mechanism that facilitates the selection of relevant information over irrelevant information in the visual field. The current study investigated whether foreknowledge of the presence or absence of distractors surrounding an impending target stimulus results in preparatory changes in visual cortex. We cued the location of the target and the presence or absence of distractors surrounding the target while changes in blood oxygen level dependent (BOLD signals were measured. In line with prior work, we found that top-down spatial attention resulted in an increased contralateral BOLD response, evoked by the cue throughout early visual cortex (areas V1, V2 and V3. In addition, cues indicating distractor presence evoked a substantial increase in the magnitude of the BOLD signal in visual area V3, but not in V2 or V1. This study shows that prior knowledge concerning the presence of a distractor results in enhanced attentional modulation of visual cortex, in visual areas where neuronal receptive fields are large enough to encompass both targets and distractors. We interpret these findings as evidence that top-down attentional control processes include active preparatory suppression mechanisms for irrelevant, distracting information in the visual scene.

  13. Preparatory effects of distractor suppression: evidence from visual cortex.

    Science.gov (United States)

    Munneke, Jaap; Heslenfeld, Dirk J; Usrey, W Martin; Theeuwes, Jan; Mangun, George R

    2011-01-01

    Spatial selective attention is the mechanism that facilitates the selection of relevant information over irrelevant information in the visual field. The current study investigated whether foreknowledge of the presence or absence of distractors surrounding an impending target stimulus results in preparatory changes in visual cortex. We cued the location of the target and the presence or absence of distractors surrounding the target while changes in blood oxygen level dependent (BOLD) signals were measured. In line with prior work, we found that top-down spatial attention resulted in an increased contralateral BOLD response, evoked by the cue throughout early visual cortex (areas V1, V2 and V3). In addition, cues indicating distractor presence evoked a substantial increase in the magnitude of the BOLD signal in visual area V3, but not in V2 or V1. This study shows that prior knowledge concerning the presence of a distractor results in enhanced attentional modulation of visual cortex, in visual areas where neuronal receptive fields are large enough to encompass both targets and distractors. We interpret these findings as evidence that top-down attentional control processes include active preparatory suppression mechanisms for irrelevant, distracting information in the visual scene.

  14. The preparatory state of ground reaction forces in defending against a dribbler in a basketball 1-on-1 dribble subphase.

    Science.gov (United States)

    Fujii, Keisuke; Yoshioka, Shinsuke; Isaka, Tadao; Kouzaki, Motoki

    2015-03-01

    We previously demonstrated the relationship between sidestepping performance and the preparatory state of ground reaction forces (GRFs). The present study investigated the effect of the preparatory state of GRFs on defensive performance in 1-on-1 subphase of basketball. Ten basketball players participated in 1-on-1 dribble game of basketball. The outcomes (penetrating and guarding) and the preparatory state of GRFs (non-weighted and weighted states, i.e. vertical GRFs below and above 120% of body weight, respectively) were assessed by separating the phases. In the non-weighted state and the weighted state to determine the outcome, the probability of successful guarding was 78.8% and 29.6%, respectively. The non-weighted state prevented delay of the defensive step in the determination phase. Both the non-weighted and weighted states, immediately before the determination phase, were likely to change to the weighted state in the determination phase; during this time, the defender's preparatory state would be destabilised, presumably by the dribbler's movement. These results revealed that the preparatory GRFs before the defensive step help to explain the outcome of the 1-on-1 subphase, and suggest a better way to prevent delaying initiation of the defensive step and thereby to guard more effectively against a dribbler.

  15. Questioning the preparatory function of counterfactual thinking.

    Science.gov (United States)

    Mercier, Hugo; Rolison, Jonathan J; Stragà, Marta; Ferrante, Donatella; Walsh, Clare R; Girotto, Vittorio

    2017-02-01

    Why do individuals mentally modify reality (e.g., "If it hadn't rained, we would have won the game")? According to the dominant view, counterfactuals primarily serve to prepare future performance. In fact, individuals who have just failed a task tend to modify the uncontrollable features of their attempt (e.g., "If the rules of the game were different, I would have won it"), generating counterfactuals that are unlikely to play any preparatory role. By contrast, they generate prefactuals that focus on the controllable features of their ensuing behavior (e.g., "If I concentrate more, I will win the next game"). Here, we test whether this tendency is robust and general. Studies 1a and 1b replicate this tendency and show that it occurs regardless of whether individuals think about their failures or their successes. Study 2 shows that individuals generate relatively few controllable counterfactuals, unless explicitly prompted to do so. These results raise some questions regarding the generality of the dominant view according to which counterfactuals mainly serve a preparatory function.

  16. Effects of a Preparatory Singing Pattern on Melodic Dictation Success

    Science.gov (United States)

    Buonviri, Nathan O.

    2015-01-01

    The purpose of this study was to investigate effects of a preparatory contextual singing pattern on melodic dictation test scores. Forty-nine undergraduate music education majors took melodic dictations under three conditions. After hearing an orienting chord sequence, they (1) sang a preparatory solfége pattern in the key, meter, and tempo of the…

  17. Reflecting on Language from ‘Sideways-on’: Preparatory and Non-Preparatory Aspects-Seeing

    Directory of Open Access Journals (Sweden)

    Reshef Agam-Segal

    2012-09-01

    Full Text Available Aspect-seeing, I claim, involves reflection on concepts. It involves letting oneself feel how it would be like to conceptualize something with a certain concept, without committing oneself to this conceptualization. I distinguish between two kinds of aspect-perception: 1. Preparatory: allows us to develop, criticize, and shape concepts. It involves bringing a concept to an object for the purpose of examining what would be the best way to conceptualize it. 2. Non-Preparatory: allows us to express the ingraspability of certain experiences. It involves bringing a concept to an object for the purpose of showing—per impossible—what it would take to properly capture one’s experience. I demonstrate the usefulness of the two kinds of aspect perception in making conceptual judgments, and in making moral and aesthetic judgments.

  18. POF strain sensor using phase measurement techniques

    Science.gov (United States)

    Poisel, H.

    2008-03-01

    Polymer optical fiber (POF) elongation sensors have been proposed e.g. by Doering as a low-cost alternative to FBG (single mode Fiber Bragg Gratings) sensors targeting the lower sensitivity range. A recently recovered detection system known from laser distance meters turned out to be very sensitive while staying simple and thus offering low cost potential. The approach is based on measuring the phase shift of a (e.g. sinusoidally) modulated light signal guided in a POF under different tensions resulting in different transit times and thus different phase shifts.

  19. Optimal measurements in phase estimation: simple examples

    Science.gov (United States)

    Wasak, Tomasz; Smerzi, Augusto; Pezzé, Luca; Chwedeńczuk, Jan

    2016-05-01

    We identify optimal measurement strategies for phase estimation in different scenarios in which the interferometer acts on two-mode symmetric states. For pure states of a single qubit, we show that optimal measurements form a broad set parametrized with a continuous variable. When the state is mixed, this set reduces to merely two possible measurements. For two-qubit symmetric Werner state, we find the optimal measurement and show that estimation from the population imbalance is optimal only if the state is pure. We also determine the optimal measurements for a wide class of symmetric N-qubit Werner-like states. Finally, for a pure symmetric state of N qubits, we find under which conditions the estimation from the full N-body correlation and from the population imbalance is optimal.

  20. SNR Degradation in Undersampled Phase Measurement Systems

    Directory of Open Access Journals (Sweden)

    David Salido-Monzú

    2016-10-01

    Full Text Available A wide range of measuring applications rely on phase estimation on sinusoidal signals. These systems, where the estimation is mainly implemented in the digital domain, can generally benefit from the use of undersampling to reduce the digitizer and subsequent digital processing requirements. This may be crucial when the application characteristics necessarily imply a simple and inexpensive sensor. However, practical limitations related to the phase stability of the band-pass filter prior digitization establish restrictions to the reduction of noise bandwidth. Due to this, the undersampling intensity is practically defined by noise aliasing, taking into account the amount of signal-to-noise ratio (SNR reduction caused by it considering the application accuracy requirements. This work analyzes the relationship between undersampling frequency and SNR reduction, conditioned by the stability requirements of the filter that defines the noise bandwidth before digitization. The effect of undersampling is quantified in a practical situation where phase differences are measured by in-phase and quadrature (I/Q demodulation for an infrared ranging application.

  1. The relation between actual exposure to political violence and preparatory intervention for exposure to media coverage of terrorism.

    Science.gov (United States)

    Slone, Michelle; Shoshani, Anat; Baumgarten-Katz, Inbar

    2008-07-01

    This laboratory study examined differential effects of television broadcasts of terrorism on viewers' anxiety according to their actual exposure history, and differential efficacy of a preparatory intervention in moderating elevated anxiety for high or low actual exposure. Participants were 80 young Israeli adults, randomly allocated to a terrorism or non-terrorism media broadcast, and for each type of exposure, to a preparatory or control intervention. Actual political violence and terrorism exposure history was assessed, and anxiety measured explicitly and indirectly prior and subsequent to the intervention and media exposure manipulation. Results showed that in the terrorism media exposure, participants with high more than low actual political life events (PLE) exposure showed higher post-test levels of indirectly measured anxiety. Clinical intervention before the terrorism media exposure moderated indirectly measured anxiety among participants with high PLE exposure, but increased anxiety for low PLE. Findings outline preparatory measures that could maximize coping for the high PLE actual exposure at-risk sector.

  2. Measurement of Phase Coherence in Space Turbulence

    Science.gov (United States)

    Belmont, G.; Panis, J.; Rezeau, L.; Sahraoui, F.

    2008-12-01

    In many space plasmas such as Magnetosheath, intense magnetic fluctuations are permanently observed, with power law spectra. Assuming these fluctuations belong to some kind of turbulence, which can legitimately be suspected, spectra are clearly not sufficient to characterize it. Is this turbulence made of non linear "phase-coherent" structures, like in the classical Kolmogorov image, or is it made of incoherent waves as in weak turbulence? Is it homogeneous in space and scales or is it intermittent? " Many methods allow analyzing the statistical properties of turbulence, and the results obtained by tools such as structure functions or wavelets are of course influenced by all these properties, such providing indirect information about them. But few of them are specifically dedicated to the study of phase coherence so that the consequences that can be inferred from them are generally not univocal for this point of view. We will review those few tools existing in the literature that allow measuring more directly the phase coherence and present a new method, called "phase gradient analysis", which we are presently developing for this analysis. Preliminary results of this new tool will be presented.

  3. Constant-Frequency Pulsed Phase-Locked-Loop Measuring Device

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Kushnick, Peter W.

    1992-01-01

    Constant-frequency pulsed phase-locked-loop measuring device is sensitive to small changes in phase velocity and easily automated. Based on use of fixed-frequency oscillator in measuring small changes in ultrasonic phase velocity when sample exposed to such changes in environment as changes in pressure and temperature. Automatically balances electrical phase shifts against acoustical phase shifts to obtain accurate measurements of acoustical phase shifts.

  4. Constant frequency pulsed phase-locked loop measuring device

    Science.gov (United States)

    Yost, William T. (Inventor); Kushnick, Peter W. (Inventor); Cantrell, John H. (Inventor)

    1993-01-01

    A measuring apparatus is presented that uses a fixed frequency oscillator to measure small changes in the phase velocity ultrasonic sound when a sample is exposed to environmental changes such as changes in pressure, temperature, etc. The invention automatically balances electrical phase shifts against the acoustical phase shifts in order to obtain an accurate measurement of electrical phase shifts.

  5. Constant frequency pulsed phase-locked loop measuring device

    Science.gov (United States)

    Yost, William T.; Kushnick, Peter W.; Cantrell, John H.

    1993-06-01

    A measuring apparatus is presented that uses a fixed frequency oscillator to measure small changes in the phase velocity ultrasonic sound when a sample is exposed to environmental changes such as changes in pressure, temperature, etc. The invention automatically balances electrical phase shifts against the acoustical phase shifts in order to obtain an accurate measurement of electrical phase shifts.

  6. Constant frequency pulsed phase-locked loop measuring device

    Science.gov (United States)

    Yost, William T.; Kushnick, Peter W.; Cantrell, John H.

    1991-08-01

    A measuring apparatus is presented that uses a fixed frequency oscillator to measure small changes in the phase velocity ultrasonic sound when a sample is exposed to environmental changes such as changes in pressure, temperature, etc. The invention automatically balances electrical phase shifts against the acoustical phase shifts in order to obtain an accurate measurement of electrical phase shifts.

  7. Transportable setup for amplifier phase fidelity measurements

    OpenAIRE

    Troebs, Michael; Bogan, C.; Barke, S.; Kuehn, G.; Reiche, J.; Heinzel, Gerhard; Danzmann, Karsten

    2015-01-01

    One possible laser source for the Laser Interferometer Space Antenna (LISA) consists of an Ytterbium-doped fiber amplifier originally developed for inter-satellite communication, seeded by the laser used for the technology demonstrator mission LISA Pathfinder. LISA needs to transmit clock information between its three spacecraft to correct for phase noise between the clocks on the individual spacecraft. For this purpose phase modulation sidebands at GHz frequencies will be imprinted on the la...

  8. Comparative analysis of methods of training and dietary habits of skilled bodybuilders in the run-general preparatory stage

    Directory of Open Access Journals (Sweden)

    Dzhym V.Y.

    2015-02-01

    Full Text Available Purpose : comparative analysis of the characteristics of methods of training and nutrition bodybuilders in the run-general of the preparatory phase (duration 4 - 5 months or 20 microcycles. Analyzed the characteristics of different methods of training bodybuilders to increase muscle mass. Material : the study involved 8 skilled bodybuilders, are included in the team of the Kharkiv region. Results : a comparative characteristic of the most commonly used methods of exercise and nutrition in bodybuilding. Discovered and proved the optimal technique for athletes depending on the original form at the beginning of general-preparatory phase of training. Driven changes in body weight, depending on the amount used Athlete of carbohydrates, proteins and fats. Conclusions : throughout the training period was characterized by severe protein diet orientation. The proportion of the nutrient was 40% in the first quarter, 50% - in the second, 60% in the third. Only in the last two microcycle decreased to 50%.

  9. 29 CFR 776.28 - Covered preparatory activities.

    Science.gov (United States)

    2010-07-01

    ... company which was engaged in preliminary oil well drilling, even though the holes were drilled to a... drilling operations even though no oil was discovered. 27 Laborers employed in erecting drilling rigs would also be covered. 28 Other preparatory work before drilling begins in an oil field, such as staking...

  10. A Needs Analysis Study for Preparatory Class ELT Students

    Science.gov (United States)

    Ulum, Ömer Gökhan

    2015-01-01

    With this study, to have a general understanding of academic needs for the development of speaking skill, the needs of preparatory class university students at an English Language Teaching Department were assessed. Based upon a descriptive research design, an adapted questionnaire with open-ended questions was administered to the 2nd, 3rd and 4th…

  11. 9 CFR 77.13 - Accreditation preparatory States or zones.

    Science.gov (United States)

    2010-01-01

    ... TUBERCULOSIS Cattle and Bison § 77.13 Accreditation preparatory States or zones. (a) The following are... livestock other than cattle or bison are included in a newly assembled herd on a premises where a... the “Uniform Methods and Rules—Bovine Tuberculosis Eradication” (January 22, 1999 edition), which...

  12. Study of Educational Aspirations of Preparatory School Students in Yemen.

    Science.gov (United States)

    Edington, Everett D.

    To identify causes for low enrollment in secondary agricultural schools in Yemen, the United States Agency for International Development and the Yemen Ministry of Education surveyed 990 preparatory (junior high) students, examining their educational aspirations, differences between rural and urban youth, major influences on student aspirations,…

  13. GAUDI: A Preparatory Archive for the COROT Mission

    NARCIS (Netherlands)

    Aerts, C.C.

    2005-01-01

    The GAUDI database (Ground-based Asteroseismology Uniform Database Interface) is a preparatory archive for the COROT (Convection, Rotation, and Planetary Transits) mission developed at the Laboratorio de Astrofísica Espacial y Física Fundamental (Laboratory for Space Astrophysics and Theoretical

  14. Investigation of Burnout among Instructors Working at ESOGU Preparatory School

    Science.gov (United States)

    Özkanal, Ümit; Arikan, Nadire

    2010-01-01

    Burnout is an issue to be taken seriously in the workplaces where human interaction is salient and very important. The aim of the research is to investigate burnout among the instructors working at ESOGU preparatory school and find out what factors affect their levels of burnout. 28 instructors working in this institution participated in the…

  15. 5 CFR 551.412 - Preparatory or concluding activities.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Preparatory or concluding activities. 551.412 Section 551.412 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY ADMINISTRATION UNDER THE FAIR LABOR STANDARDS ACT Hours of Work Application of Principles...

  16. Relationships between stress, coping and depressive symptoms among overseas university preparatory Chinese students: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Yeh Gwo-Liang

    2011-05-01

    Full Text Available Abstract Background Mental health problems in young people are an important public health issue. Students leaving their hometown and family at a young age to pursue better educational opportunities overseas are confronted with life adjustment stress, which in turn affects their mental health and academic performance. This study aimed to examine the relationships among stress, coping strategies, and depressive symptoms using the stress coping framework in overseas Chinese university preparatory students in Taiwan. Methods A cross-sectional study was conducted at an overseas Chinese university preparatory institute in Taiwan. Of enrolled overseas Chinese university preparatory students at 2009, 756 completed a structured questionnaire measuring stress, strategies for coping with it, and the Center for Epidemiologic Studies Depression Scale. Results High levels of stress significantly predicted the adoption of active, problem-focused coping strategies (R2 = 0.13, p R2 = 0.24, p z = 8.06, p Conclusion Our study results suggested that stress is associated with coping strategies and depressive symptoms and passive strategies mediate the relation between stress and depressive symptoms in overseas Chinese university preparatory students.

  17. The holographic reconstructing algorithm and its error analysis about phase-shifting phase measurement

    Institute of Scientific and Technical Information of China (English)

    LU Xiaoxu; ZHONG Liyun; ZHANG Yimo

    2007-01-01

    Phase-shifting measurement and its error estimation method were studied according to the holographic principle.A function of synchronous superposition of object complex amplitude reconstructed from N-step phase-shifting through one integral period (N-step phase-shifting function for short) was proposed.In N-step phase-shifting measurement,the interferograms are seen as a series of in-line holograms and the reference beam is an ideal parallel-plane wave.So the N-step phase-shifting function can be obtained by multiplying the interferogram by the original referencc wave.In ideal conditions.the proposed method is a kind of synchronous superposition algorithm in which the complex amplitude is separated,measured and superposed.When error exists in measurement,the result of the N-step phase-shifting function is the optimal expected value of the least-squares fitting method.In the above method,the N+1-step phase-shifting function can be obtained from the N-step phase-shifting function.It shows that the N-step phase-shifting function can be separated into two parts:the ideal N-step phase-shifting function and its errors.The phase-shifting errors in N-steps phase-shifting phase measurement can be treated the same as the relative errors of amplitude and intensity under the understanding of the N+1-step phase-shifting function.The difficulties of the error estimation in phase-shifting phase measurement were restricted by this error estimation method.Meanwhile,the maximum error estimation method of phase-shifting phase measurement and its formula were proposed.

  18. Phase stress measurements in composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Akiniwa, Yoshiaki; Tanaka, Keisuke [Nagoya Univ. (Japan). School of Engineering

    1997-06-01

    Using an aluminum alloy composite containing 20 wt.% of SiC powder and an aluminum alloy itself, a phase stress under monoaxial tensile load was tested using x-ray and neutron methods, to compare both of them. For specimens, a 20 vol.% SiC powder reinforced aluminum alloy and an aluminum alloy itself were used. As a result, the following results could be obtained. Young`s modulus and Poisson ratio of the aluminum alloy itself using x-ray method were E=74.5 GPa and {nu}=0.312, respectively, and those using neutron method were E=75.3 GPa and {nu}=0.384, respectively. A relationship between loading stress and lattice strain of the aluminum alloy itself using neutron method was possible to approximate linearly by containing macroscopic plastic deformation region. The lattice strain of each phase in the composite increased proportionally with loading stress in its elastic region, but when remarkably increasing plastic deformation, the lattice strain decreased proportionally in aluminum phase and increased in SiC phase. (G.K.)

  19. Beam phase measurement in the AGOR-cyclotron

    NARCIS (Netherlands)

    Brandenburg, S; Roobol, LP; Schreuder, HW; de Vries, L; Laune, B; Baron, E.; Lieuvin, M.

    1999-01-01

    The AGOR cyclotron is equipped with thirteen phase probes for optimization of the isochronism The beam phase is measured at the 2(nd) harmonic of the RF frequency, in order to be able to suppress the large RF interference from the nearby resonators. At low RF frequencies a phase accuracy of 1 deg. i

  20. Atomic multiwave interferometer for Aharonov-Casher-phase measurements

    Science.gov (United States)

    Zhou, Min-Kang; Zhang, Ke; Duan, Xiao-Chun; Ke, Yi; Shao, Cheng-Gang; Hu, Zhong-Kun

    2016-02-01

    We present an atomic multiwave interferometer with magnetic sublevels to precisely determine the Aharonov-Casher (AC) geometric phase. Simulations show that this interferometer has sharper fringes than a normal two-wave interferometer, which means a higher phase resolution can be achieved. Moreover, atoms evolving in a single hyperfine structure state make the interferometer insensitive to the dc Stark phase shift. This dc Stark shift is one of the main noise sources in AC phase measurements. The constraint of the photon rest mass is also discussed when using this atomic interferometer to measure the Aharonov-Casher phase.

  1. Effects of long-term blindness on preparatory emg modulation in humans performing landing movements.

    Science.gov (United States)

    Magalhães, Fernando Henrique; Goroso, Daniel Gustavo

    2011-10-01

    To investigate the long-term effect of blindness on the task of leaping down to a lower landing surface, five blind individuals were compared with 10 sighted individuals who performed landing movements with and without sight. Participants performed six consecutive drop-landings from four different heights, during which the prelanding modulation of EMG timing and amplitude in four lower-limb muscles were recorded. Analysis showed that blind individuals showed specific prelanding EMG modulation, suggesting that long-term dependence on somesthetic and vestibular cues leads to different preparatory measures for vertical falls.

  2. Status of LISA phase measurement work in the US

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, S E [JILA, University of Colorado, Boulder, CO 80309-0440 (United States); Jennrich, O [ESTEC, Noordwijk, The (Netherlands); Stebbins, R T [NASA/GSFC Code 661, Greenbelt, MD 20771 (United States); Bender, P [JILA, University of Colorado, Boulder, CO 80309-0440 (United States)

    2003-05-21

    Currently there are two implementations for LISA phase measurement being investigated in the United States. In this paper, we present the current status of one of these implementations, the so-called zero-crossing approach or stopwatch method. This method uses a technique of counting and timing to make phase measurements. Herein we present a description of the status of an experiment which produces an optical LISA-like fringe which we use to test our phase meter.

  3. Weight Measurements and Standards for Soldiers, Phase 2

    Science.gov (United States)

    2016-10-01

    Award Number: W81XWH-09-1-0616 TITLE: Weight Measurements and Standards for Soldiers, Phase 2 PRINCIPAL INVESTIGATOR: Tiffany M. Stewart, Ph.D...SUBTITLE Weight Measurements and Standards for Soldiers, Phase 2 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-09-1-0616 5c. PROGRAM ELEMENT NUMBER 6

  4. Beam Phase Measurements in the AGOR Cyclotron

    CERN Document Server

    Brandenburg, S; Van Asselt, W K

    2003-01-01

    Beamphase measurement to optimize the isochronism is an essential part of the diagnostics in multi-particle, multi-energy cyclotrons. In the AGOR cyclotron an array of 13 nondestructive beamphase pick-ups is installed. To reduce the large disturbances from the RF-system the measurements are traditionally performed at the 2nd harmonic of the RF-frequency. To further improve the sensitivity intensity modulation of the beam has been introduced. This creates side-bands in the Fourier spectrum, that are completely free of interference from the RF-system. These side-bands contain information on both the beamphase with respect to the accelerating voltage and the number of revolutions up to the radius of the measurement. A specific case is intensity modulation at the orbital frequency, where the side-bands contain only information on the beamphase. Measurements with the different methods will be presented, demonstrating that the intensity modulation strongly improves the sensitivity of the measurement. Useful beampha...

  5. Linear approximation for measurement errors in phase shifting interferometry

    Science.gov (United States)

    van Wingerden, Johannes; Frankena, Hans J.; Smorenburg, Cornelis

    1991-07-01

    This paper shows how measurement errors in phase shifting interferometry (PSI) can be described to a high degree of accuracy in a linear approximation. System error sources considered here are light source instability, imperfect reference phase shifting, mechanical vibrations, nonlinearity of the detector, and quantization of the detector signal. The measurement inaccuracies resulting from these errors are calculated in linear approximation for several formulas commonly used for PSI. The results are presented in tables for easy calculation of the measurement error magnitudes for known system errors. In addition, this paper discusses the measurement error reduction which can be achieved by choosing an appropriate phase calculation formula.

  6. Using Moon Phases to Measure Time

    Science.gov (United States)

    Sharp, Janet; Lutz, Tracie; LaLonde, Donna E.

    2015-01-01

    Cultures need to accurately record dates and times for various societal purposes, ranging from knowing when to plant crops to planning travel. In ancient times, the sun and moon were used as measurement devices because of the scientific understanding of the physical world at that time. Ancient timekeepers monitored celestial events and either used…

  7. Temporally modulated phase retrieval method for weak temporal phase measurement of laser pulses

    CERN Document Server

    Qiao, Zhi; Wang, Xiaochao; Jing, Yuanyuan; Fan, Wei; Lin, Zunqi

    2016-01-01

    The measurement of weak temporal phase for picosecond and nanosecond laser pulses is important but quite difficult. We propose a simple iterative algorithm, which is based on a temporally movable phase modulation process, to retrieve the weak temporal phase of laser pulses. This unambiguous method can achieve a high accuracy and simultaneously measure the weak temporal phase and temporal profile of pulses, which are almost transform-limited. Detailed analysis shows that this iterative method has valuable potential applications in the characterization of pulses with weak temporal phase.

  8. Preparatory Effects of Distractor Suppression: Evidence from Visual Cortex

    OpenAIRE

    Jaap Munneke; Heslenfeld, Dirk J; W Martin Usrey; Jan Theeuwes; Mangun, George R.

    2011-01-01

    Spatial selective attention is the mechanism that facilitates the selection of relevant information over irrelevant information in the visual field. The current study investigated whether foreknowledge of the presence or absence of distractors surrounding an impending target stimulus results in preparatory changes in visual cortex. We cued the location of the target and the presence or absence of distractors surrounding the target while changes in blood oxygen level dependent (BOLD) signals w...

  9. Assessment of Nutritional Status among Preparatory School Girls in Talkha City

    Directory of Open Access Journals (Sweden)

    Abd El-Rahman, S. I. & Aly Hassan S. A. & EL-Bastawesy S.I

    2013-07-01

    Full Text Available Background: Adolescence is the period of transition from childhood to adulthood, and it occupies a crucial position in the human life. Nutrition for adolescents is important in which there was found changes in growth and hormones, activity, and food intake. The objective of the work: was to assess the nutritional status of preparatory school girls in Talkha city. Patients and methods: a descriptive cross- sectional study on a group of 500 students from the second and third year of the preparatory school girls at Talkha City in Dakahlia governorate , the tools used : 1- A self-administered questionnaire for assessing socio-demographic characteristics of students, anthropometric measurements included weight and height, nutritional health problems, assessing dietary knowledge, and eating habits.2 - An observational checklist to observe signs of malnutrition for the students. Results: majority of students, girls aged from 13- 14 years old and their mothers were house wife (69.6% &77.3% , Only less than half studied sample has correct knowledge about the balanced diet, the components of healthy diet, and the effect of healthy balanced diet on individual’s health (34.6 %&20%&78.4% respectively. Majority of students prefer eating food during watching TV., eating spices and salty food, and eating much candies (76.2% &74.6%& 73.6% respectively. The most common health problems were headache, GIT problems and dental decay respectively. Conclusion: only one quarter of the studied sample had correct and complete answers about balanced diet. The present study recommended that, health education for nutrition and healthy balanced diet should be integrated in the curriculum of preparatory school girls. Nurses and medical staff must play a significant role in screening, teaching, and guiding of adolescents about healthy balanced diet.

  10. The influence of underwater turbulence on optical phase measurements

    Science.gov (United States)

    Redding, Brandon; Davis, Allen; Kirkendall, Clay; Dandridge, Anthony

    2016-05-01

    Emerging underwater optical imaging and sensing applications rely on phase-sensitive detection to provide added functionality and improved sensitivity. However, underwater turbulence introduces spatio-temporal variations in the refractive index of water which can degrade the performance of these systems. Although the influence of turbulence on traditional, non-interferometric imaging has been investigated, its influence on the optical phase remains poorly understood. Nonetheless, a thorough understanding of the spatio-temporal dynamics of the optical phase of light passing through underwater turbulence are crucial to the design of phase-sensitive imaging and sensing systems. To address this concern, we combined underwater imaging with high speed holography to provide a calibrated characterization of the effects of turbulence on the optical phase. By measuring the modulation transfer function of an underwater imaging system, we were able to calibrate varying levels of optical turbulence intensity using the Simple Underwater Imaging Model (SUIM). We then used high speed holography to measure the temporal dynamics of the optical phase of light passing through varying levels of turbulence. Using this method, we measured the variance in the amplitude and phase of the beam, the temporal correlation of the optical phase, and recorded the turbulence induced phase noise as a function of frequency. By bench marking the effects of varying levels of turbulence on the optical phase, this work provides a basis to evaluate the real-world potential of emerging underwater interferometric sensing modalities.

  11. Differential phase measurements of D-region partial reflections

    Science.gov (United States)

    Wiersma, D. J.; Sechrist, C. F., Jr.

    1972-01-01

    Differential phase partial reflection measurements were used to deduce D region electron density profiles. The phase difference was measured by taking sums and differences of amplitudes received on an array of crossed dipoles. The reflection model used was derived from Fresnel reflection theory. Seven profiles obtained over the period from 13 October 1971 to 5 November 1971 are presented, along with the results from simultaneous measurements of differential absorption. Some possible sources of error and error propagation are discussed. A collision frequency profile was deduced from the electron concentration calculated from differential phase and differential absorption.

  12. Measuring the Aharonov-Anandan phase in multiport photonic systems.

    Science.gov (United States)

    Wang, Kai; Weimann, Steffen; Nolte, Stefan; Perez-Leija, Armando; Szameit, Alexander

    2016-04-15

    Beyond the adiabatic limit, the Aharonov-Anandan phase is a generalized description of Berry's phase. In this regime, systems with time-independent Hamiltonians may also acquire observable geometric phases. Here we report on a measurement of the Aharonov-Anandan phase in photonics. Different from previous optical experiments on geometric phases, the implementation is based on light modes confined in evanescently coupled waveguides rather than polarization-like systems, thereby physical models in more than two-dimensional Hilbert spaces are achievable. In a tailored photonic lattice, we realize time-independent quantum-driven harmonic oscillators initially prepared in the vacuum state and achieve a measurement of the Aharonov-Anandan phase via integrated interferometry.

  13. Design of geometric phase measurement in EAST Tokamak

    CERN Document Server

    Lan, T; Liu, J; Jie, Y X; Wang, Y L; Gao, X; Qin, H

    2016-01-01

    The optimum scheme for geometric phase measurement in EAST Tokamak is proposed in this paper. The theoretical values of geometric phase for the probe beams of EAST Polarimeter-Interferometer (POINT) system are calculated by path integration in parameter space. Meanwhile, the influences of some controllable parameters on geometric phase are evaluated. The feasibility and challenge of distinguishing geometric effect in the POINT signal are also assessed in detail.

  14. Accurate multipixel phase measurement with classical-light interferometry

    Science.gov (United States)

    Singh, Mandeep; Khare, Kedar; Jha, Anand Kumar; Prabhakar, Shashi; Singh, R. P.

    2015-02-01

    We demonstrate accurate phase measurement from experimental low photon level interferograms using a constrained optimization method that takes into account the expected redundancy in the unknown phase function. This approach is shown to have significant noise advantage over traditional methods, such as balanced homodyning or phase shifting, that treat individual pixels in the interference data as independent of each other. Our interference experiments comparing the optimization method with the traditional phase-shifting method show that when the same photon resources are used, the optimization method provides phase recoveries with tighter error bars. In particular, rms phase error performance of the optimization method for low photon number data (10 photons per pixel) shows a >5 × noise gain over the phase-shifting method. In our experiments where a laser light source is used for illumination, the results imply phase measurement with an accuracy better than the conventional single-pixel-based shot-noise limit that assumes independent phases at individual pixels. The constrained optimization approach presented here is independent of the nature of the light source and may further enhance the accuracy of phase detection when a nonclassical-light source is used.

  15. RF Phase Scan for Beam Energy Measurement of KOMAC DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hansung; Kwon, Hyeokjung; Kim, Seonggu; Lee, Seokgeun; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The energy gain through the drift tube linac is a function of the synchronous phase, therefore, the output beam energy from DTL can be affected by the RF phase setting in low-level RF (LLRF) system. The DTL at Korea Multi-purpose Accelerator Complex (KOMAC) consists of 11 tanks and the RF phase setting in each tank should be matched for synchronous acceleration in successive tanks. That means a proper setting of RF phase in each DTL tank is critical for efficient and loss-free operation. The matching RF phase can be determined based on the output energy measurement from the DTL tank. The beam energy can be measured by several methods. For example, we can use a bending magnet to determine the beam energy because the higher momentum of beam means the less deflection angle in the fixed magnetic field. By measuring the range of proton beam through a material with known stopping power also can be utilized to determine the beam energy. We used a well-known time-of-flight method to determine the output beam energy from the DTL tank by measuring beam phase with a beam position monitor (BPM). Based on the energy measurement results, proper RF operating point could be obtained. We performed a RF phase scan to determine the output beam energy from KOMAC DTL by using a time-of-flight method and to set RF operating point precisely. The measured beam energy was compared with a beam dynamics simulation and showed a good agreement. RF phase setting is critical issue for the efficient operation of the proton accelerator, we have a plan to implement and integrate the RF phase measurement system into an accelerator control system for future need.

  16. Sparse Support Recovery with Phase-Only Measurements

    CERN Document Server

    Liu, Yipeng

    2010-01-01

    Sparse support recovery (SSR) is an important part of the compressive sensing (CS). Most of the current SSR methods are with the full information measurements. But in practice the amplitude part of the measurements may be seriously destroyed. The corrupted measurements mismatch the current SSR algorithms, which leads to serious performance degeneration. This paper considers the problem of SSR with only phase information. In the proposed method, the minimization of the l1 norm of the estimated sparse signal enforces sparse distribution, while a nonzero constraint of the uncorrupted random measurements' amplitudes with respect to the reconstructed sparse signal is introduced. Because it only requires the phase components of the measurements in the constraint, it can avoid the performance deterioration by corrupted amplitude components. Simulations demonstrate that the proposed phase-only SSR is superior in the support reconstruction accuracy when the amplitude components of the measurements are contaminated.

  17. Phase measurements exhibiting super sensitivity and super resolution features

    DEFF Research Database (Denmark)

    Schäfermeier, Clemens; Jezek, Miroslav; Gehring, Tobias

    2016-01-01

    By using an optical squeezed state and a post-processed homodyne detection scheme we show that phase measurements can overcome Rayleigh's resolution criterion and beat the quantum shot noise limit simultaneously......By using an optical squeezed state and a post-processed homodyne detection scheme we show that phase measurements can overcome Rayleigh's resolution criterion and beat the quantum shot noise limit simultaneously...

  18. Analysis of Ionospheric Delay Estimates from GNSS Carrier Phase Measurements

    Science.gov (United States)

    Gao, Yang

    2016-07-01

    There is an increased demand for more precise ionospheric information such as ionospheric augmentation for fast ambiguity convergence and resolution in real-time kinematic (RTK) and precise point positioning (PPP). More precise ionospheric information is also highly desired to improve the understanding of the space weather dynamics and its impacts on various applications such as aviation and communication systems. Carrier phase measurements from GNSS offer the best precision for precise applications. Current ionospheric models, however, are mostly derived from code or carrier-smoothed code measurements. Ionopsheric models based on carrier phase measurements are expected to provide improved accuracy and should be investigated. In this contribution, various data analyses will be conducted on ionospheric estimates from carrier phase measurements. Since carrier phase measurements are ambiguous and they are also affected by fractional biases, proper observation model is necessary and will be developed. With proper observation model, the analysis results are used to investigate the differences and characteristics of the ionospheric estimates between the code and carrier phase derived estimates and subsequently to help develop methods for precise estimation of the biases in carrier phase measurements and the recovery of the ionospheric effects. Data acquired at different geographic locations and under different ionospheric conditions will be processed for numerical analysis.

  19. A review of iterative phase retrieval for measurement and encryption

    Science.gov (United States)

    Guo, Cheng; Wei, Ce; Tan, Jiubin; Chen, Kana; Liu, Shutian; Wu, Qun; Liu, Zhengjun

    2017-02-01

    Phase retrieval technique is regarded as one of the most significant tools to solve optical inverse problems. Several phase retrieval algorithms are discussed in this review. The occurrence of ill-posed conditions often makes the calculation difficult. As a synthesis, the multiple-image phase retrieval technology is invented to obtain more accurate convergence result in iterative computation. The multiple-input retrieval scheme can attach new constraints on convergence as a new limitation. As an indirect measuring method, it will make it possible to reconstruct the distribution of intensity and phase in an imaging or measurement system, where data processing is executed by computer. Moreover, the retrieval method has been applied for image encryption successfully. Finally, the development and application of the iterative phase retrieval are overviewed.

  20. Phase measurement of fast light pulse in electromagnetically induced absorption.

    Science.gov (United States)

    Lee, Yoon-Seok; Lee, Hee Jung; Moon, Han Seb

    2013-09-23

    We report the phase measurement of a fast light pulse in electromagnetically induced absorption (EIA) of the 5S₁/₂ (F = 2)-5P₃/₂ (F' = 3) transition of ⁸⁷Rb atoms. Using a beat-note interferometer method, a stable measurement without phase dithering of the phase of the probe pulse before and after it has passed through the EIA medium was achieved. Comparing the phases of the light pulse in air and that of the fast light pulse though the EIA medium, the phase of the fast light pulse at EIA resonance was not shifted and maintained to be the same as that of the free-space light pulse. The classical fidelity of the fast light pulse according to the advancement of the group velocity by adjusting the atomic density was estimated to be more than 97%.

  1. Frontoparietal traffic signals: a fast optical imaging study of preparatory dynamics in response mode switching.

    Science.gov (United States)

    Baniqued, Pauline L; Low, Kathy A; Fabiani, Monica; Gratton, Gabriele

    2013-06-01

    Coordination between networks of brain regions is important for optimal cognitive performance, especially in attention demanding tasks. With the event-related optical signal (a measure of changes in optical scattering because of neuronal activity) we can characterize rapidly evolving network processes by examining the millisecond-scale temporal correlation of activity in distinct regions during the preparatory period of a response mode switching task. Participants received a precue indicating whether to respond vocally or manually. They then saw or heard the letter "L" or "R," indicating a "left" or "right" response to be implemented with the appropriate response modality. We employed lagged cross-correlations to characterize the dynamic connectivity of preparatory processes. Our results confirmed coupling of frontal and parietal cortices and the trial-dependent relationship of the right frontal cortex with response preparation areas. The frontal-to-modality-specific cortex cross-correlations revealed a pattern in which first irrelevant regions were deactivated, and then relevant regions were activated. These results provide a window into the subsecond scale network interactions that flexibly tune to task demands.

  2. Increase the level of preparedness of qualified basketball players in the preparatory period

    Directory of Open Access Journals (Sweden)

    Volodymyr Gradusov

    2017-08-01

    Full Text Available Purpose: to study the adaptation of basketball players of student teams to training loads during the preparatory period of the annual cycle of training on the parameters of motor qualities and functional readiness. Material & Methods: conducted a survey of 12 basketball players on the team (Sumy, the highest league of the Ukrainian Basketball Championship. The following research methods were used: theoretical analysis of literary sources, methods of mathematical statistics, anthropometry and pedagogical control. Result: dynamics of changes at the stage of preparation for the season is shown. It is established and observed that under the influence of training sessions in the examined basketball players, not only the optimization of the functional systems of their organism, but also the level of the functional state of the organism as a whole. Conclusion: assessment of the functional condition of the athlete's body should play an important role in the overall system of medical and biological control in connection with significant additional information on the state of their body and the possibility of timely correction of physical activity and the provision of preventive measures. It is determined that during the preparatory period the level of motor qualities and functional readiness of the basketball players increased.

  3. Laser beam complex amplitude measurement by phase diversity.

    Science.gov (United States)

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  4. Phase measurement error in summation of electron holography series

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, Robert A., E-mail: robbmcleod@gmail.com [Department of Physics, University of Alberta, Edmonton, AB, Canada T6G 2E1 (Canada); National Institute for Nanotechnology, 11421 Saskatchewan Dr., Edmonton, AB, Canada T6G 2M9 (Canada); Bergen, Michael [National Institute for Nanotechnology, 11421 Saskatchewan Dr., Edmonton, AB, Canada T6G 2M9 (Canada); Malac, Marek [National Institute for Nanotechnology, 11421 Saskatchewan Dr., Edmonton, AB, Canada T6G 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, AB, Canada T6G 2E1 (Canada)

    2014-06-01

    Off-axis electron holography is a method for the transmission electron microscope (TEM) that measures the electric and magnetic properties of a specimen. The electrostatic and magnetic potentials modulate the electron wavefront phase. The error in measurement of the phase therefore determines the smallest observable changes in electric and magnetic properties. Here we explore the summation of a hologram series to reduce the phase error and thereby improve the sensitivity of electron holography. Summation of hologram series requires independent registration and correction of image drift and phase wavefront drift, the consequences of which are discussed. Optimization of the electro-optical configuration of the TEM for the double biprism configuration is examined. An analytical model of image and phase drift, composed of a combination of linear drift and Brownian random-walk, is derived and experimentally verified. The accuracy of image registration via cross-correlation and phase registration is characterized by simulated hologram series. The model of series summation errors allows the optimization of phase error as a function of exposure time and fringe carrier frequency for a target spatial resolution. An experimental example of hologram series summation is provided on WS{sub 2} fullerenes. A metric is provided to measure the object phase error from experimental results and compared to analytical predictions. The ultimate experimental object root-mean-square phase error is 0.006 rad (2π/1050) at a spatial resolution less than 0.615 nm and a total exposure time of 900 s. The ultimate phase error in vacuum adjacent to the specimen is 0.0037 rad (2π/1700). The analytical prediction of phase error differs with the experimental metrics by +7% inside the object and −5% in the vacuum, indicating that the model can provide reliable quantitative predictions. - Highlights: • Optimization of electro-optical configuration for double biprism holography. • Model of drift

  5. Preparatory behaviours and condom use during receptive and insertive anal sex among male-to-female transgenders (Waria in Jakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Ciptasari Prabawanti

    2014-12-01

    Full Text Available Introduction: The male-to-female transgender (waria is part of a key population at higher risk for HIV. This study aims to test whether psychosocial determinants as defined by the theory of planned behaviour (TPB can explain behaviours related to condom use among waria. Three preparatory behaviours (getting, carrying, and offering a condom and two condom use behaviours (during receptive and insertive anal sex were assessed. Methods: The study involved 209 waria, recruited from five districts in Jakarta and interviewed by using structured questionnaires. Specific measures were developed to study attitudes, subjective norms and perceived behavioural control (PBC in order to predict intentions and behaviours. Results: The explained variance between intentions with regard to three preparatory behaviours and two condom uses ranged between 30 and 57%, and the variance between the actual preparatory behaviours of three preparatory and two condom uses ranged between 21 and 42%. In our study, as with several previous studies of the TPB on HIV protection behaviours, the TPB variables differed in their predictive power. With regard to intention, attitude and PBC were consistently significant predictors; attitude was the strongest predictor of intention for all three preparatory behaviours, and PBC was the strongest predictor of intention for condom use, both during receptive and insertive anal sex. TPB variables were also significantly related to the second parameter of future behaviour: actual (past behaviour. TPB variables were differentially related to the five behaviours. Attitude was predictive in three behaviours, PBC in three behaviours and subjective norms in two behaviours. Conclusions: Our results have implications for the development of interventions to target preparatory behaviours and condom use behaviours. Five behaviours and three psychological factors as defined in the TPB are to be targeted.

  6. A NEEDS ANALYSIS STUDY FOR PREPARATORY CLASS ELT STUDENTS

    OpenAIRE

    Ömer Gökhan Ulum

    2016-01-01

    With this study, the needs of preparatory class university students at an English Language Teaching Department to have a general understanding of their academic needs for the development of their speaking skill were assessed. Based upon a descriptive research design, an adapted questionnaire with open-ended questions was administered to the 2nd, 3rd and 4th class ELT students as well as ELT graduates to define their academic needs in speaking courses. The data were analysed by using SPSS, a S...

  7. Phase error analysis and compensation considering ambient light for phase measuring profilometry

    Science.gov (United States)

    Zhou, Ping; Liu, Xinran; He, Yi; Zhu, Tongjing

    2014-04-01

    The accuracy of phase measuring profilometry (PMP) system based on phase-shifting method is susceptible to gamma non-linearity of the projector-camera pair and uncertain ambient light inevitably. Although many researches on gamma model and phase error compensation methods have been implemented, the effect of ambient light is not explicit all along. In this paper, we perform theoretical analysis and experiments of phase error compensation taking account of both gamma non-linearity and uncertain ambient light. First of all, a mathematical phase error model is proposed to illustrate the reason of phase error generation in detail. We propose that the phase error is related not only to the gamma non-linearity of the projector-camera pair, but also to the ratio of intensity modulation to average intensity in the fringe patterns captured by the camera which is affected by the ambient light. Subsequently, an accurate phase error compensation algorithm is proposed based on the mathematical model, where the relationship between phase error and ambient light is illustrated. Experimental results with four-step phase-shifting PMP system show that the proposed algorithm can alleviate the phase error effectively even though the ambient light is considered.

  8. Measurement and Calibration of PSD with Phase-shifting Interferometers

    Science.gov (United States)

    Lehan, J. P.

    2008-01-01

    We discuss the instrumental aspects affecting the measurement accuracy when determining PSD with phase shifting interferometers. These include the source coherence, optical train effects, and detector effects. The use of a carefully constructed calibration standard will also be discussed. We will end with a recommended measurement and data handling procedure.

  9. Observability of Airborne Passive Location System with Phase Difference Measurements

    Institute of Scientific and Technical Information of China (English)

    Deng Xinpu; Wang Qiang; Zhong Danxing

    2008-01-01

    With a pair of antennas spaced apart, an airborne passive location system measures phase differences of emitting signals. Regarded as cyclic ambiguities, the moduli of the measurements traditionally are resolved by adding more antenna elements. This paper models the cyclic ambiguity as a component of the system state, of which the observability is analyzed and compared to that of the bear- ings-only passive location system. It is shown that the necessary and sufficient observability condition for the bearings-only passive location system is only the necessary observability condition for the passive location system with phase difference measurements, and that when the system state is observable, the cyclic ambiguities can be estimated by accumulating the phase difference measurements, thereby making the observer able to locate the emitter with high-precision.

  10. Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography

    Science.gov (United States)

    Zaitsev, Vladimir Y.; Matveyev, Alexander L.; Matveev, Lev A.; Gelikonov, Grigory V.; Sovetsky, Aleksandr A.; Vitkin, Alex

    2016-11-01

    In compressional optical coherence elastography, phase-variation gradients are used for estimating quasistatic strains created in tissue. Using reference and deformed optical coherence tomography (OCT) scans, one typically compares phases from pixels with the same coordinates in both scans. Usually, this limits the allowable strains to fairly small values measurement noises. Here, we extend the OCT phase-resolved elastographic methodology by (1) showing that an order of magnitude greater strains can significantly increase the accuracy of derived phase-gradient differences, while also avoiding error-phone phase-unwrapping procedures and minimizing the influence of decorrelation noise caused by suprapixel displacements, (2) discussing the appearance of artifactual stiff inclusions in resultant OCT elastograms in the vicinity of bright scatterers due to the amplitude-phase interplay in phase-variation measurements, and (3) deriving/evaluating methods of phase-gradient estimation that can outperform conventionally used least-square gradient fitting. We present analytical arguments, numerical simulations, and experimental examples to demonstrate the advantages of the proposed optimized phase-variation methodology.

  11. Functional Roles of Neural Preparatory Processes in a Cued Stroop Task Revealed by Linking Electrophysiology with Behavioral Performance.

    Directory of Open Access Journals (Sweden)

    Chao Wang

    Full Text Available It is well established that cuing facilitates behavioral performance and that different aspects of instructional cues evoke specific neural preparatory processes in cued task-switching paradigms. To deduce the functional role of these neural preparatory processes the majority of studies vary aspects of the experimental paradigm and describe how these variations alter markers of neural preparatory processes. Although these studies provide important insights, they also have notable limitations, particularly in terms of understanding the causal or functional relationship of neural markers to cognitive and behavioral processes. In this study, we sought to address these limitations and uncover the functional roles of neural processes by examining how variability in the amplitude of neural preparatory processes predicts behavioral performance to subsequent stimuli. To achieve this objective 16 young adults were recruited to perform a cued Stroop task while their brain activity was measured using high-density electroencephalography. Four temporally overlapping but functionally and topographically distinct cue-triggered event related potentials (ERPs were identified: 1 A left-frontotemporal negativity (250-700 ms that was positively associated with word-reading performance; 2 a midline-frontal negativity (450-800 ms that was positively associated with color-naming and incongruent performance; 3 a left-frontal negativity (450-800 ms that was positively associated with switch trial performance; and 4 a centroparietal positivity (450-800 ms that was positively associated with performance for almost all trial types. These results suggest that at least four dissociable cognitive processes are evoked by instructional cues in the present task, including: 1 domain-specific task facilitation; 2 switch-specific task-set reconfiguration; 3 preparation for response conflict; and 4 proactive attentional control. Examining the relationship between ERPs and behavioral

  12. On-line phase space measurement with kicker excitation

    Science.gov (United States)

    Dietrich, J.; Maier, R.; Mohos, I.

    1998-12-01

    A new method for on-line phase space measurements with kicker excitation at COSY was developed. The position data were measured using the analog output of two beam position monitors (BPMs) and directly monitored on a digital storage oscilloscope with an external clock (bunch-synchronous sampling). Nonlinear behavior of the proton beam was visible as well as were resonance islands. Typical measurements are presented.

  13. Measurement of Phase Shift by Using a DSP

    Directory of Open Access Journals (Sweden)

    Petr KOČÍ

    2009-06-01

    Full Text Available The paper deals with design of the computer system for measurements of the phase shift between two harmonic signals using the Digital Signal Processor (DSP. The introducing part of the paper describes properties of the harmonic signals and the Hilbert transform. Concerning the Hilbert transform their two methods for computing, one is based on the Fourier transform while the second one benefits from the digital filters. The submitted paper deals with mentioned two methods for the phase evaluation as well. The phase shift between two harmonics signals is useful for rotors balancing. The algorithm of rotor balancing requires the amplitude of both the signals as well.

  14. Mechanical modulation method for ultrasensitive phase measurements in photonics biosensing.

    Science.gov (United States)

    Patskovsky, S; Maisonneuve, M; Meunier, M; Kabashin, A V

    2008-12-22

    A novel polarimetry methodology for phase-sensitive measurements in single reflection geometry is proposed for applications in optical transduction-based biological sensing. The methodology uses altering step-like chopper-based mechanical phase modulation for orthogonal s- and p- polarizations of light reflected from the sensing interface and the extraction of phase information at different harmonics of the modulation. We show that even under a relatively simple experimental arrangement, the methodology provides the resolution of phase measurements as low as 0.007 deg. We also examine the proposed approach using Total Internal Reflection (TIR) and Surface Plasmon Resonance (SPR) geometries. For TIR geometry, the response appears to be strongly dependent on the prism material with the best values for high refractive index Si. The detection limit for Si-based TIR is estimated as 10(-5) in terms Refractive Index Units (RIU) change. SPR geometry offers much stronger phase response due to a much sharper phase characteristics. With the detection limit of 3.2*10(-7) RIU, the proposed methodology provides one of best sensitivities for phase-sensitive SPR devices. Advantages of the proposed method include high sensitivity, simplicity of experimental setup and noise immunity as a result of a high stability modulation.

  15. Study on low-phase-noise optoelectronic oscillator and high-sensitivity phase noise measurement system.

    Science.gov (United States)

    Hong, Jun; Liu, An-min; Guo, Jian

    2013-08-01

    An analytic model for an injection-locked dual-loop optoelectronic oscillator (OEO) is proposed and verified by experiments in this paper. Based on this theoretical model, the effect of injection power on the single-sideband phase noise of the OEO is analyzed, and results suggest that moderate injection is one key factor for a balance between phase noise and spur for OEO. In order to measure superlow phase noise of OEOs, a cross-correlation measurement system based on the fiber delay line is built, in which high linear photodetector and low-phase-noise amplifier are used to improve systematic sensitivity. The cross-correlation measurement system is validated by experiments, and its noise floor for the X band is about -130 dBc/Hz at 1 kHz and -168 dBc/Hz at 10 kHz after a cross correlation of 200 times.

  16. The attrition condition: use of a preparatory course to reduce EMT course attrition and improve performance on North Carolina certification exams.

    Science.gov (United States)

    Renkiewicz, Ginny K; Hubble, Michael W

    2015-01-01

    A growing concern in emergency medical services (EMS) education is student attrition. Perchance, there is a population of nonmatriculate students lacking prerequisite academic skills or who are otherwise ill prepared for the unique requirements of the EMS profession. Consequently, addressing these issues could promote academic and occupational preparedness, thereby reducing emergency medical technician (EMT) course attrition. To measure the impact of a preparatory course designed to address academic and psychosocial skills affecting EMT course completion. We conducted a retrospective analysis of a 24-hour preparatory course using a before-and-after nonexperimental design. The course included the EMT preparatory curriculum, program orientation, work-force-preparedness skills, and an academic skills assessment. All students who were enrolled in an EMT course at a single study site between July 2008 and December 2011 were included. Chi-square analysis was performed on attrition categories defined by CoAEMSP (Academic, Disciplinary, Attendance, Health, Financial, Personal, Never Attended) and state exam categories (Airway, Medical, Trauma, Operations, Pediatrics, Preparatory, Assessment). A logistic regression model calculated the odds ratio (OR) of course completion as a function of preparatory course completion while controlling for demography. The historical control group consisted of 117 (58.5%) students enrolled prior to implementation of the preparatory course, while the remaining 83 (41.5%) students in the intervention group completed the course. Overall attrition was 115 (57.5%) students, with lower rates observed in the intervention group (32.5 vs. 75.2%, p Attended (1.2 vs. 14.5%, p Students who took the preparatory course were more likely to achieve course completion (OR = 5.17, p rate despite showing little difference in individual categories. Students who participated in an EMS preparatory course were 5 times more likely to achieve course completion and

  17. Preparatory power posing affects nonverbal presence and job interview performance.

    Science.gov (United States)

    Cuddy, Amy J C; Wilmuth, Caroline A; Yap, Andy J; Carney, Dana R

    2015-07-01

    The authors tested whether engaging in expansive (vs. contractive) "power poses" before a stressful job interview--preparatory power posing--would enhance performance during the interview. Participants adopted high-power (i.e., expansive, open) poses or low-power (i.e., contractive, closed) poses, and then prepared and delivered a speech to 2 evaluators as part of a mock job interview. All interview speeches were videotaped and coded for overall performance and hireability and for 2 potential mediators: verbal content (e.g., structure, content) and nonverbal presence (e.g., captivating, enthusiastic). As predicted, those who prepared for the job interview with high- (vs. low-) power poses performed better and were more likely to be chosen for hire; this relation was mediated by nonverbal presence, but not by verbal content. Although previous research has focused on how a nonverbal behavior that is enacted during interactions and observed by perceivers affects how those perceivers evaluate and respond to the actor, this experiment focused on how a nonverbal behavior that is enacted before the interaction and unobserved by perceivers affects the actor's performance, which, in turn, affects how perceivers evaluate and respond to the actor. This experiment reveals a theoretically novel and practically informative result that demonstrates the causal relation between preparatory nonverbal behavior and subsequent performance and outcomes.

  18. Phase measurement of soft x-ray multilayer mirrors.

    Science.gov (United States)

    de Rossi, Sébastien; Bourassin-Bouchet, Charles; Meltchakov, Evgueni; Giglia, Angelo; Nannarone, Stefano; Delmotte, Franck

    2015-10-01

    We propose a new model enabling the extraction of the phase of a multilayer mirror from photocurrent measurements in the soft x rays. In this range, the effects of the mean free path of the electrons inside the stack can no longer be neglected, which prevents the phase reconstruction by conventional photocurrent measurements. The new model takes into account this phenomenon and thus extends up to the x rays the applicability range of the technique. This approach has been validated through a numerical and experimental study of chromium/scandium multilayers used near 360 eV. To our knowledge, this work constitutes the first measurement of the phase of a multilayer mirror in the soft x-ray range.

  19. Measurement of infinitesimal phase response curves from noisy real neurons

    Science.gov (United States)

    Ota, Keisuke; Omori, Toshiaki; Watanabe, Shigeo; Miyakawa, Hiroyoshi; Okada, Masato; Aonishi, Toru

    2011-10-01

    We sought to measure infinitesimal phase response curves (iPRCs) from rat hippocampal CA1 pyramidal neurons. It is difficult to measure iPRCs from noisy neurons because of the dilemma that either the linearity or the signal-to-noise ratio of responses to external perturbations must be sacrificed. To overcome this difficulty, we used an iPRC measurement model formulated as the Langevin phase equation (LPE) to extract iPRCs in the Bayesian scheme. We then simultaneously verified the effectiveness of the measurement model and the reliability of the estimated iPRCs by demonstrating that LPEs with the estimated iPRCs could predict the stochastic behaviors of the same neurons, whose iPRCs had been measured, when they were perturbed by periodic stimulus currents. Our results suggest that the LPE is an effective model for real oscillating neurons and that many theoretical frameworks based on it may be applicable to real nerve systems.

  20. Measuring the phase of the scattering amplitude with vortex beams

    CERN Document Server

    Ivanov, I P

    2012-01-01

    We show that colliding vortex beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the scattering amplitude changes with the scattering angle. Since the overall phase is inaccessible in a plane wave collision, this measurement would be of great importance for a number of topics in hadronic physics, for example, for meson production in the resonance region and for the physics of nucleon resonances. Although the required parameters of the vortex beams have not yet been achieved experimentally, they deserves further dedicated experimental research due to the high expected physics pay-off.

  1. Performance of the beam phase measurement system for LEDA

    Science.gov (United States)

    Power, J. F.; Barr, D.; Gilpatrick, J. D.; Kasemir, K.; Shurter, R. B.; Stettler, M.

    2000-11-01

    The Low Energy Demonstration Accelerator (LEDA) facility diagnostics include beam phase measurements [1]. Beam signals at 350 MHz from capacitive probes are down-converted to 2 MHz for processing. The phase measurement process includes amplitude leveling, digital sampling of the I and Q vectors, DSP filtering and calibration, and serving of the data to the network. All hardware is fielded in the VXI format and controlled with a PC. Running under Windows NT, a LabVIEW® program controls the operation of the system and serves the data, via channel access, to the EPICS control system. The design and operational performance to date of the system is described.

  2. Flexible error-reduction method for shape measurement by temporal phase unwrapping: phase averaging method.

    Science.gov (United States)

    Yong, Liu; Dingfa, Huang; Yong, Jiang

    2012-07-20

    Temporal phase unwrapping is an important method for shape measurement in structured light projection. Its measurement errors mainly come from both the camera noise and nonlinearity. Analysis found that least-squares fitting cannot completely eliminate nonlinear errors, though it can significantly reduce the random errors. To further reduce the measurement errors of current temporal phase unwrapping algorithms, in this paper, we proposed a phase averaging method (PAM) in which an additional fringe sequence at the highest fringe density is employed in the process of data processing and the phase offset of each set of the four frames is carefully chosen according to the period of the phase nonlinear errors, based on fast classical temporal phase unwrapping algorithms. This method can decrease both the random errors and the systematic errors with statistical averaging. In addition, the length of the additional fringe sequence can be changed flexibly according to the precision of the measurement. Theoretical analysis and simulation experiment results showed the validity of the proposed method.

  3. Pupil phase discontinuity measurement: comparison of different wavefront sensing concepts

    Science.gov (United States)

    El Hadi, K.; Sauvage, J.-F.; Dohlen, K.; Fusco, T.; Neichel, B.; Marchis, F.; N'Diaye, M.

    2016-07-01

    The Laboratoire d'Astrophysique de Marseille is involved in the preparation of the E-ELT instrumentation framework: In particular, an ESO-EELT M1 mirror segment (1.5 m) has been demonstrated and different wavefront sensing (WFS) concepts among which Pyramid, Zernike phase mask sensor (ZELDA), Phase diversity or still NL Curvature) are also investigated. Segmented mirrors are widely used today in diverse domains: fiber coupling, laser beam shaping, microscopy or retina imaging. If, these mirrors offer a solution to realize important monolithic sizes for giant telescopes in astronomy, they also raise the problem of segments cophasing and measurement of phase discontinuities. In this work, we aim to investigate a suitable WFS approach for pupil phase discontinuity measurement. Coupling a segmented PTT mirror (Iris AO) with four different WFS (Shack-Hartmann, Quadriwave Lateral Shearing Interferometer, Pyramid and Zernike Phase Mask), we study their sensitivity to segmented pupil: in particular, segment phasing, stability, saturation, flat, or still the addressing mode are then performed and compared.

  4. Phase noise measurement of high-power fiber amplifiers

    Institute of Scientific and Technical Information of China (English)

    Hu Xiao; Xiaolin Wang; Yanxing Ma; Bing He; Pu Zhou; Jun Zhou; Xiaojun Xu

    2011-01-01

    We measure the phase fluctuation in a high-power fiber amplifier using a multi-dithering technique. Its fluctuation property is qualitatively analyzed by the power spectral density and integrated spectral density.Low frequency fluctuations caused by the environment are dominant in the phase fluctuations in an amplifier, whereas the high frequency components related to laser power affect the control bandwidth. The bandwidth requirement of the active phase-locking is calculated to be 300 Hz, 670 Hz, 1.6 kHz, and 3.9 kHz under the output power of 25,55, 125, and 180W, respectively. The approximately linear relationship between the control bandwidth and laser power needs to be further investigated.%@@ We measure the phase fluctuation in a high-power fiber amplifier using a multi-dithering technique.Its fluctuation property is qualitatively analyzed by the power spectral density and integrated spectral density.Low frequency fluctuations caused by the environment are dominant in the phase fluctuations in an am-plifier, whereas the high frequency components related to laser power affect the control bandwidth.The bandwidth requirement of the active phase-locking is calculated to be 300 Hz, 670 Hz, 1.6 kHz, and 3.9kHz under the output power of 25, 55, 125, and 180 W, respectively.The approximately linear relationship between the control bandwidth and laser power needs to be further investigated.

  5. Measurement of Quantum Phase-Slips in Josephson Junction Chains

    Science.gov (United States)

    Guichard, Wiebke

    2011-03-01

    Quantum phase-slip dynamics in Josephson junction chains could provide the basis for the realization of a new type of topologically protected qubit or for the implementation of a new current standard. I will present measurements of the effect of quantum phase-slips on the ground state of a Josephson junction chain. We can tune in situ the strength of the phase-slips. These phase-slips are the result of fluctuations induced by the finite charging energy of each junction in the chain. Our measurements demonstrate that a Josephson junction chain under phase bias constraint behaves in a collective way. I will also show evidence of coherent phase-slip interference, the so called Aharonov-Casher effect. This phenomenon is the dual of the well known Aharonov-Bohm interference. In collaboration with I.M. Pop, Institut Neel, C.N.R.S. and Universite Joseph Fourier, BP 166, 38042 Grenoble, France; I. Protopopov, L. D. Landau Institute for Theoretical Physics, Kosygin str. 2, Moscow 119334, Russia and Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie, 76021 Karlsruhe, Germany; and F. Lecocq, Z. Peng, B. Pannetier, O. Buisson, Institut Neel, C.N.R.S. and Universite Joseph Fourier. European STREP MIDAS, ANR QUANTJO.

  6. Deformation-phase measurement by digital speckle correlation method

    Science.gov (United States)

    Zhao, Ran; Sun, Ping

    2016-10-01

    A novel algorithm which extracts the out-of-plane component of deformation phase from two continuous fringe patterns is proposed. The velocity field between two consecutive frames is estimated by digital speckle correlation method (DSCM). After that, according to the optical flow constrained equation, the whole-field deformation-phase map is obtained by the estimations of the velocity field and the local frequency of the original image. The operation of the proposed method is simple compared with other phase demodulation methods. Moreover, the new method works perfectly at the areas with dense fringes. In this paper, the proposed algorithm is introduced. Meanwhile, in order to verify the effectiveness, the new algorithm is applied to simulated interferogram and real fringe pattern with a centrally loaded and edge-clamped plate. The results of simulation and experiment show that the new method can demodulate the out-of-plane component of deformation phase from the visible in-plane velocity field without unwrapping process. Further, dynamic deformation-phase extraction will be realized when we know the time interval of two continuous images. The proposed algorithm provides a new approach for whole-field deformation-phase measurement and dynamic deformation measurement.

  7. Regular college preparatory students' perceptions of the student teams achievement divisions approach in an academic college preparatory biology class

    Science.gov (United States)

    Brooks, Aarti P.

    Cooperative learning allows individuals with varying abilities to work alongside their peers. Students are placed into achievement levels based on placement test scores. The Regular College Preparatory (RCP) level is a score of 59% or lower and Academic College Preparatory (ACP) level is a score of 60-92% on the placement test. The purpose of this study was to obtain 9th grade RCP students' perceptions of the student teams achievement divisions (STAD) approach which allows each member of a team to have a defined role in group work. The research questions addressed 9 th grade RCP students' perceptions of integrated STAD teams. Qualitative data from 6 RCP participants were collected from interviews and observations. Data were analyzed using typological analysis by creating codes and categories. Findings indicated that RCP students retained more content and enhanced their skills in communication, critical thinking, and problem solving. Teachers need to serve as guides to monitor motivation and enhance peer interaction. School administrators are advised to provide professional development opportunities allowing educators to learn how to incorporate cooperation for optimal student learning communication, negotiation, and problem solving.

  8. Using Reading Circles Strategy for Developing Preparatory Students' Critical Reading Skills and Social Skills

    Science.gov (United States)

    Abdelrasoul, Mohamed Mahmoud Ibrahim

    2014-01-01

    The present study aimed at developing the necessary critical reading skills and social skills of the Egyptian EFL second year preparatory school students, through a proposed program based on using reading circles strategy. The study participants were 44 students from Sohag Experimental Preparatory School in Sohag Governorate. Instruments of the…

  9. 48 CFR 252.236-7003 - Payment for mobilization and preparatory work.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Payment for mobilization... CLAUSES Text of Provisions And Clauses 252.236-7003 Payment for mobilization and preparatory work. As prescribed in 236.570(b)(2), use the following clause: Payment for Mobilization and Preparatory Work...

  10. 3D shape measurement with phase correlation based fringe projection

    Science.gov (United States)

    Kühmstedt, Peter; Munckelt, Christoph; Heinze, Matthias; Bräuer-Burchardt, Christian; Notni, Gunther

    2007-06-01

    Here we propose a method for 3D shape measurement by means of phase correlation based fringe projection in a stereo arrangement. The novelty in the approach is characterized by following features. Correlation between phase values of the images of two cameras is used for the co-ordinate calculation. This work stands in contrast to the sole usage of phase values (phasogrammetry) or classical triangulation (phase values and image co-ordinates - camera raster values) for the determination of the co-ordinates. The method's main advantage is the insensitivity of the 3D-coordinates from the absolute phase values. Thus it prevents errors in the determination of the co-ordinates and improves robustness in areas with interreflections artefacts and inhomogeneous regions of intensity. A technical advantage is the fact that the accuracy of the 3D co-ordinates does not depend on the projection resolution. Thus the achievable quality of the 3D co-ordinates can be selectively improved by the use of high quality camera lenses and can participate in improvements in modern camera technologies. The presented new solution of the stereo based fringe projection with phase correlation makes a flexible, errortolerant realization of measuring systems within different applications like quality control, rapid prototyping, design and CAD/CAM possible. In the paper the phase correlation method will be described in detail. Furthermore, different realizations will be shown, i.e. a mobile system for the measurement of large objects and an endoscopic like system for CAD/CAM in dental industry.

  11. Exploiting phase measurements of EPC Gen2 RFID tags

    NARCIS (Netherlands)

    Huiting, J.; Flisijn, Hubert; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2013-01-01

    This paper presents a 2d localization system for UHF RFID tags. By measuring the phase between the transmitted continuous wave and received backscatter from the tag at different frequencies, it is possible to estimate the distance between the reader and tag. By determining distance estimates to thre

  12. Laser phase-detector and counter for fine displacement measurement

    Science.gov (United States)

    Row, R. T.; Wang, C. P.

    A simple technique for the measurement of fine displacement has been developed. With use of an HeNe laser, an optical phase-detector, and counter, a displacement accuracy of 300 nm has been demonstrated over a range of 2 cm.

  13. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    Science.gov (United States)

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  14. Exploiting phase measurements of EPC Gen2 RFID tags

    NARCIS (Netherlands)

    Huiting, J.; Flisijn, Hubert; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2013-01-01

    This paper presents a 2d localization system for UHF RFID tags. By measuring the phase between the transmitted continuous wave and received backscatter from the tag at different frequencies, it is possible to estimate the distance between the reader and tag. By determining distance estimates to

  15. Cirrus Microphysical Properties from Stellar Aureole Measurements, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, J. G.; Kristl, J. A.; Rappaport, S. A.

    2012-04-20

    While knowledge of the impact of aerosols on climate change has improved significantly due to the routine, ground-based, sun photometer measurements of aerosols made at AERONET sites world-wide, the impact of cirrus clouds remains much less certain because they occur high in the atmosphere and are more difficult to measure. This report documents work performed on a Phase I SBIR project to retrieve microphysical properties of cirrus ice crystals from stellar aureole imagery. The Phase I work demonstrates that (1) we have clearly measured stellar aureole profiles; (2) we can follow the aureole profiles out to ~1/4 degree from stars (~1/2 degree from Jupiter); (3) the stellar aureoles from cirrus have very distinctive profiles, being flat out to a critical angle, followed by a steep power-law decline with a slope of ~-3; (4) the profiles are well modeled using exponential size distributions; and (5) the critical angle in the profiles is ~0.12 degrees, (6) indicating that the corresponding critical size ranges from ~150 to ~200 microns. The stage has been set for a Phase II project (1) to proceed to validating the use of stellar aureole measurements for retrieving cirrus particle size distributions using comparisons with optical property retrievals from other, ground-based instruments and (2) to develop an instrument for the routine, automatic measurement of thin cirrus microphysical properties.

  16. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy

    Science.gov (United States)

    Thompson, David R.; McCubbin, Ian; Gao, Bo Cai; Green, Robert O.; Matthews, Alyssa A.; Mei, Fan; Meyer, Kerry G.; Platnick, Steven; Schmid, Beat; Tomlinson, Jason; Wilcox, Eric

    2016-08-01

    Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA's "Classic" Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARM Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. The coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.

  17. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David R. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California USA; McCubbin, Ian [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California USA; Desert Research Institute, Reno Nevada USA; Gao, Bo Cai [Naval Research Laboratory, Washington District of Columbia USA; Green, Robert O. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California USA; Matthews, Alyssa A. [Pacific Northwest National Laboratory, Richland Washington USA; Mei, Fan [Pacific Northwest National Laboratory, Richland Washington USA; Meyer, Kerry G. [Goddard Earth Science Technology and Research, Universities Space Research Association, Columbia Maryland USA; NASA Goddard Space Flight Center, Greenland Maryland USA; Platnick, Steven [NASA Goddard Space Flight Center, Greenland Maryland USA; Schmid, Beat [Pacific Northwest National Laboratory, Richland Washington USA; Tomlinson, Jason [Pacific Northwest National Laboratory, Richland Washington USA; Wilcox, Eric [Desert Research Institute, Reno Nevada USA

    2016-08-12

    Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA’s “Classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARM Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. Finally, the coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.

  18. GAUDI: a preparatory archive for the COROT mission

    CERN Document Server

    Solano, E; Garrido, R; Poretti, E; Janot-Pacheco, E; Gutíerrez, R; González, R; Mantegazza, L; Neiner, C; Frémat, Y; Charpinet, S; Weiss, W; Amado, P J; Rainer, M; Tsymbal, V V; Lyashko, D; Ballereau, D; Bouret, J C; Hua, T; Katz, D; Lignières, F; Lüftinger, T; Mittermayer, P; Nesvacil, N; Soubiran, C; Veer-Menneret, C V; Goupil, M J; Costa, V; Rolland, A; Antonello, E; Bossi, M; Buzzoni, A; Rodrigo, C; Aerts, C; Butler, C J; Günther, E; Hatzes, A

    2004-01-01

    The GAUDI database (Ground-based Asteroseismology Uniform Database Interface, http://sdc.laeff.esa.es/gaudi/) is a preparatory archive for the COROT (COnvection, ROtation and planetary Transits, http://www.astrsp-mrs.fr/projets/corot/) mission developed at LAEFF (Laboratory for Space Astrophysics and Theoretical Physics, http://www.laeff.esa.es). Its intention is to make the ground-based observations obtained in the preparation of the asteroseismology programme available in a simple and efficient way. It contains spectroscopic and photometric data together with inferred physical parameters for more than 1500 objects gathered since January 1998 in 6 years of observational campaigns. In this paper, the main functionalities and characteristics of the system are described. The observations have been collected at ESO-La Silla, Telescopio Nazionale Galileo, Observatoire de Haute-Provence, South African Astronomical Observatory, Tautenberg Observatory and Sierra Nevada Observatory.

  19. GAUDI: A Preparatory Archive for the COROT Mission

    Science.gov (United States)

    Solano, E.; Catala, C.; Garrido, R.; Poretti, E.; Janot-Pacheco, E.; Gutiérrez, R.; González, R.; Mantegazza, L.; Neiner, C.; Fremat, Y.; Charpinet, S.; Weiss, W.; Amado, P. J.; Rainer, M.; Tsymbal, V.; Lyashko, D.; Ballereau, D.; Bouret, J. C.; Hua, T.; Katz, D.; Lignières, F.; Lüftinger, T.; Mittermayer, P.; Nesvacil, N.; Soubiran, C.; van't Veer-Menneret, C.; Goupil, M. J.; Costa, V.; Rolland, A.; Antonello, E.; Bossi, M.; Buzzoni, A.; Rodrigo, C.; Aerts, C.; Butler, C. J.; Guenther, E.; Hatzes, A.

    2005-01-01

    The GAUDI database (Ground-based Asteroseismology Uniform Database Interface) is a preparatory archive for the COROT (Convection, Rotation, and Planetary Transits) mission developed at the Laboratorio de Astrofísica Espacial y Física Fundamental (Laboratory for Space Astrophysics and Theoretical Physics, Spain). Its intention is to make the ground-based observations obtained in preparation of the asteroseismology program available in a simple and efficient way. It contains spectroscopic and photometric data together with inferred physical parameters for more than 1500 objects gathered since 1998 January 1998 in 6 years of observational campaigns. In this paper, the main functions and characteristics of the system are described. Based on observations collected at La Silla (ESO proposals 67.D-0169, 69.D-0166, and 70.D-0110), Telescopio Nazionale Galileo (proposal 6-20-068), Observatoire de Haute-Provence, the South African Astronomical Observatory, Tautenburg Observatory, and Sierra Nevada Observatory.

  20. Measurement of phase synchrony of coupled segmentation clocks.

    Science.gov (United States)

    Alam, Md Jahoor; Bhayana, Latika; Devi, Gurumayum Reenaroy; Singh, Heisnam Dinachandra; Singh, R K Brojen; Sharma, B Indrajit

    2011-10-01

    The temporal behavior of segmentation clock oscillations shows phase synchrony via mean field like coupling of delta protein restricting to nearest neighbors only, in a configuration of cells arranged in a regular three dimensional array. We found the increase of amplitudes of oscillating dynamical variables of the cells as the activation rate of delta-notch signaling is increased, however, the frequencies of oscillations are decreased correspondingly. Our results show the phase transition from desynchronized to synchronized behavior by identifying three regimes, namely, desynchronized, transition and synchronized regimes supported by various qualitative and quantitative measurements.

  1. Magnitude and phase response measurement of headphones at the eardrum

    DEFF Research Database (Denmark)

    Christensen, Anders T.; Hess, Wolfgang; Silzle, Andreas

    2013-01-01

    Transfer functions of headphones are measured to verify that they meet certain requirements or to determine what equalization may make them meet an ideal target curve. The present study compares six headphones by physical measurements at the eardrums of six individuals and on a dummy head....... For headphone transfer functions we are interested in the variability in the produced sound pressure at the eardrum across individuals, the similarity between dummy head and real-ear measurements, the agreement with the diffuse-field design target and, finally, the prevalence of all-pass phase....

  2. Composition and property measurements for PHA Phase 4 glasses

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.B.

    2000-01-25

    The results presented in this report are for nine Precipitate Hydrolysis Aqueous (PHA) Phase 4 glasses. Three of the glasses contained HM sludge at 22, 26, and 30 wt% respectively, 10 wt% PHA and 1.25 wt% monosodium titanate (MST), all on an oxide basis. The remaining six glasses were selected from the Phase 1 and Phase 2 studies (Purex sludge) but with an increased amount of MST. The high-end target for MST of 2.5 wt% oxide was missed in Phases 1 and 2 due to {approximately}30 wt% water content of the MST. A goal of this Phase 4 study was to determine whether this increase in titanium concentration from the MST had any impact on glass quality or processibility. Two of the glasses, pha14c and pha15c, were rebatched and melted due to apparent batching errors with pha14 and pha15. The models currently in the Defense Waste Processing Facility's (DWPF) Product Composition Control System (PCCS) were used to predict durability, homogeneity, liquidus, and viscosity for these nine glasses. All of the HM glasses and half of the Purex glasses were predicted to be phase separated, and consequently prediction of glass durability is precluded with the cument models for those glasses that failed the homogeneity constraint. If one may ignore the homogeneity constraint, the measured durabilities were within the 95% prediction limits of the model. Further efforts will be required to resolve this issue on phase separation (inhomogeneity). The liquidus model predicted unacceptable liquidus temperatures for four of the nine glasses. The approximate, bounding liquidus temperatures measured for all had upper limits of 1,000 C or less. Given the fact that liquidus temperatures were only approximated, the 30 wt% loading of Purex may be near or at the edge of acceptability for liquidus. The measured viscosities were close to the predictions of the model. For the Purex glasses, pha12c and pha15c, the measured viscosities of 28 and 23 poise, respectively, indicate that DWPF processing

  3. Minimization of errors in narrowband laser phase noise measurements based on reference measurement channels

    CERN Document Server

    Pnev, A B; Dvoretskiy, D A; Zhirnov, A A; Nesterov, E T; Sazonkin, S G; Chernutsky, A O; Shelestov, D A; Fedorov, A K; Svelto, C; Karasik, V E

    2016-01-01

    We propose a novel scheme for laser phase noise measurements with minimized sensitivity to external fluctuations including interferometer vibration, temperature instability, other low-frequency noise, and relative intensity noise. In order to minimize the effect of these external fluctuations, we employ simultaneous measurement of two spectrally separated channels in the scheme. We present an algorithm for selection of the desired signal to extract the phase noise. Experimental results demonstrate potential of the suggested scheme for a wide range of technological applications.

  4. Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming

    CERN Document Server

    Ohlsson, Henrik; Dong, Roy; Sastry, S Shankar

    2011-01-01

    Given a linear system in a real or complex domain, linear regression aims to recover the model parameters from a set of observations. Recent studies in compressive sensing have successfully shown that under certain conditions, a linear program, namely, l1-minimization, guarantees recovery of sparse parameter signals even when the system is underdetermined. In this paper, we consider a more challenging problem: when the phase of the output measurements from a linear system is omitted. Using a lifting technique, we show that even though the phase information is missing, the sparse signal can be recovered exactly by solving a simple semidefinite program when the sampling rate is sufficiently high. This is an interesting finding since the exact solutions to both sparse signal recovery and phase retrieval are combinatorial. Besides, this also extends the type of applications that compressive sensing can be applied to those where only output magnitudes can be observed. We demonstrate the accuracy of the algorithms ...

  5. Grayscale imbalance correction in real-time phase measuring profilometry

    Science.gov (United States)

    Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng

    2016-10-01

    Grayscale imbalance correction in real-time phase measuring profilometry (RPMP) is proposed. In the RPMP, the sufficient information is obtained to reconstruct the 3D shape of the measured object in one over twenty-four of a second. Only one color fringe pattern whose R, G and B channels are coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is sent to a flash memory on a specialized digital light projector (SDLP). And then the SDLP projects the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile a monochrome CCD camera captures the corresponding deformed patterns synchronously with the SDLP. Because the deformed patterns from three color channels are captured at different time, the color crosstalk is avoided completely. But due to the monochrome CCD camera's different spectral sensitivity to R, G and B tricolor, there will be grayscale imbalance among these deformed patterns captured at R, G and B channels respectively which may result in increasing measuring errors or even failing to reconstruct the 3D shape. So a new grayscale imbalance correction method based on least square method is developed. The experimental results verify the feasibility of the proposed method.

  6. Novel extraction algorithm for amplitude and phase measurement of ultrashort optical pulses via spectral phase interferometry

    CERN Document Server

    Pasquazi, Alessia; Azana, Jose; Moss, David J; Morandotti, Roberto

    2014-01-01

    We present a novel extraction algorithm for spectral phase interferometry for direct field reconstruction (SPIDER) for the so-called X-SPIDER configuration. Our approach largely extends the measurable time windows of pulses without requiring any modification to the experimental X-SPIDER set-up.

  7. Picosecond phase shift measurements at 358 MHz using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sabersky, A.P.; Munro, I.H.

    1978-07-01

    Properties of synchrotron radiation from SPEAR are reviewed. The power--frequency spectrum of source and photomultiplier tube is measured with a spectrum analyzer. The decay time of a single fluorescent species can be deduced by measuring the phase delay between excitation and fluorescence radiation modulated at a single suitable frequency. It is possible to characterize completely the time (impulse) response or the complex frequency response of a linear system with only phase measurements. A number of test experiments were made by using apparatus designed for time-resolved fluorescence emission anisotropy studies of tryptophan in proteins. Phase shifts were produced by insertion of water-filled quartz cells into the beam and by the introduction of a thick glass slab. The total optical path length could also be altered by linear motion of the phototube. The results yielded 4.7 +- 0.5 degrees per cm of motion. It was concluded that this procedure can be used to study short atomic and molecular fluorescence lifetimes. 3 figures. (RWR)

  8. Improved phase-shifting diffraction interferometer for microsphere topography measurements

    Institute of Scientific and Technical Information of China (English)

    Guodong Liu; Binghui Lu; Heyi Sun; Bingguo Liu; Fengdong Chen; Zhitao Zhuang

    2016-01-01

    In this study,an improved phase-shifting diffraction interferometer for measuring the surface topography of a microsphere is developed.A common diode-pumped solid state laser is used as the light source to facilitate apparatus realization,and a new polarized optical arrangement is designed to filter the bias light for phase-shifting control.A pinhole diffraction self-calibration method is proposed to eliminate systematic errors introduced by optical elements.The system has an adjustable signal contrast and is suitable for testing the surface with low reflectivity.Finally,a spherical ruby probe of a coordinate measuring machine is used as an example tested by the new phase-shifting diffraction interferometer system and the WYKO scanning white light interferometer for experimental comparison.The measured region presents consistent overall topography features,and the resulting peak-to-valley value of 84.43 nm and RMS value of 18.41 nm are achieved.The average roughness coincides with the manufacturer's specification value.

  9. Measurement of the phase diffusion dynamics in the micromaser

    CERN Document Server

    Casagrande, Federico; Lulli, A; Bonifacio, R; Solano, E; Walther, H

    2003-01-01

    We propose a realistic scheme for measuring the micromaser linewidth by monitoring the phase diffusion dynamics of the cavity field. Our strategy consists in exciting an initial coherent state with the same photon number distribution as the micromaser steady-state field, singling out a purely diffusive process in the system dynamics. After the injection of a counter-field, measurements of the population statistics of a probe atom allow us to derive the micromaser linewidth. Our proposal aims at solving a classic and relevant decoherence problem in cavity quantum electrodynamics, allowing to establish experimentally the distinctive features appearing in the micromaser spectrum due to the discreteness of the electromagnetic field.

  10. Nondestructive Evaluation of Adhesive Bonds via Ultrasonic Phase Measurements

    Science.gov (United States)

    Haldren, Harold A.; Perey, Daniel F.; Yost, William T.; Cramer, K. Elliott; Gupta, Mool C.

    2016-01-01

    The use of advanced composites utilizing adhesively bonded structures offers advantages in weight and cost for both the aerospace and automotive industries. Conventional nondestructive evaluation (NDE) has proved unable to reliably detect weak bonds or bond deterioration during service life conditions. A new nondestructive technique for quantitatively measuring adhesive bond strength is demonstrated. In this paper, an ultrasonic technique employing constant frequency pulsed phased-locked loop (CFPPLL) circuitry to monitor the phase response of a bonded structure from change in thermal stress is discussed. Theoretical research suggests that the thermal response of a bonded interface relates well with the quality of the adhesive bond. In particular, the effective stiffness of the adhesive-adherent interface may be extracted from the thermal phase response of the structure. The sensitivity of the CFPPLL instrument allows detection of bond pathologies that have been previously difficult-to-detect. Theoretical results with this ultrasonic technique on single epoxy lap joint (SLJ) specimens are presented and discussed. This technique has the potential to advance the use of adhesive bonds - and by association, advanced composite structures - by providing a reliable method to measure adhesive bond strength, thus permitting more complex, lightweight, and safe designs.

  11. Determining low-frequency source location from acoustic phase measurements

    Science.gov (United States)

    Poole, Travis L.; Frisk, George V.

    2002-11-01

    For low-frequency cw sound sources in shallow water, the time rate-of-change of the measured acoustic phase is well approximated by the time rate-of-change of the source-receiver separation distance. An algorithm for determining a locus of possible source locations based on this idea has been developed. The locus has the general form of a hyperbola, which can be used to provide a bearing estimation at long ranges, and an estimate of source location at short ranges. The algorithm uses only acoustic phase data and receiver geometry as input, and can be used even when the source frequency is slightly unstable and/or imprecisely known. The algorithm has been applied to data from low-frequency experiments (20-300 Hz), both for stable and unstable source frequencies, and shown to perform well. [Work supported by ONR and WHOI Academic Programs Office.

  12. Measurement of the Bs mixing phase at LHCb

    CERN Document Server

    CERN. Geneva

    2014-01-01

    At scales that are not accessible by direct searches at the LHC, precision measurements of CP violating observables in the mixing and decay of B mesons  may reveal new physics through loop corrections. A good candidate for such indirect searches is the measurement of the CP violating phase phi_s which arises in the interference between the amplitudes of Bs meson decaying directly and after oscillation via b->ccs transitions. This talk will cover recent measurements of phi_s from Bs->J/psihh and DsDs decays at LHCb. Additionally, estimates of possible penguin contributions which are assumed to be zero in SM predictions will be discussed.  

  13. Phase measurement profilometry based on a virtual reference plane method

    Science.gov (United States)

    Ren, Hongbing; Lee, Jinlong; Gao, Xiaorong

    2016-09-01

    In Phase Measurement Profilometry(PMP), the setting of the reference plane plays an important role. It is a critical step to capture the grating fringe projected onto the reference plane in PMP. However, it is sometimes difficult to choose and place the reference plane in practical applications. In this paper, a virtual reference plane is introduced into PMP, with which 3D measurement can be realized without using the physical reference plane. The virtual reference plane is generated through extracting a partial area of the deformed fringe image that corresponds to a planar region and employing the interpolation algorithm. The method is proved theoretically through simulation experiments, providing a new suggestion for actual measurement by PMP.

  14. Accurate and fast fiber transfer delay measurement based on phase discrimination and frequency measurement

    CERN Document Server

    Dong, J W; Gao, C; Wang, L J

    2016-01-01

    An accurate and fast fiber transfer delay measurement method is demonstrated. As a key technique, a simple ambiguity resolving process based on phase discrimination and frequency measurement is used to overcome the contradiction between measurement accuracy and system complexity. The optimized system achieves a high accuracy of 0.3 ps with a 0.1 ps resolution, and a large dynamic range up to 50 km as well as no dead zone.

  15. [Measurement of cerebral blood flow using phase-contrast MRI].

    Science.gov (United States)

    Obata, T; Shishido, F; Koga, M; Ikehira, H; Kimura, F; Yoshida, K

    1997-07-01

    The development of phase-contrast magnetic resonance imaging(P-C MRI) provides a noninvasive method for measurement of volumetric blood flow(VFR). The VFR of the left and right internal carotid arteries and basilar artery were measured using P-C MRI, and total cerebral blood flow(tCBF) was calculated by summing up the VFR values in three vessels. We investigated the changes in these blood flows as influenced from age, head size, height, weight, body surface area and handedness. Moreover, regional CBF(rCBF) was measured by combining with the single photon emission computed tomography(SPECT) of 123I. The blood flows were 142 +/- 58 mL/ min(mean +/- SD) in the basilar artery, 229 +/- 86 mL/min in the left, 223 +/- 58 mL/min in the right internal carotid artery, and tCBF was 617 +/- 128 mL/min(Ref. Magn Resn Imaging 14:P. 1143, 1996). Significant increases were observed in head-size-related change of VFR in the basilar artery and height-related change of tCBF. The value of rCBF was easily acquired in combination with SPECT. Phase-contrast MRI is useful for a noninvasive and rapid analysis of cerebral VFR and has potential for clinical use.

  16. [Surgical crown lengthening procedures. Preparatory step for fixed prosthesis].

    Science.gov (United States)

    Parashis, A O; Tripodakis, A P

    1990-04-01

    Necessary restorative requirements for full coverage are adequate axial wall height of the preparation for retention as well as sufficient vertical width of sound tooth structure cervically for the crown margins. In cases where adequate healthy tooth structure does not exist coronally to the epithelial attachment due to various crown damages, the margins of the crown might traumatize the periodontal attachment and the periodontium will be jeopardized iatrogenically. Teeth with inadequate axial Reight of the clinical crown, subgingival caries, vertical or horizontal fractures will require surgical crown lengthening procedures before prosthetic treatment is performed. These procedures may either involve only the soft tissues or bone remodeling as well. Irrespective of the procedure, crown lengthening must be performed with the objective of at least 3 mm. of healthy tooth structure coronally to the bone. This width will permit the formation of a new dentinogingival junction and the existence of 1-2 m.m. of sound tooth structure coronally to the new attachment line for the construction of a biologically acceptable crown margin. The purpose of this article is to discuss the clinical problem and underline the importance of crown lengthening procedures as a preparatory step for prosthetic treatment in fixed partial dentures.

  17. Quantization analysis of speckle intensity measurements for phase retrieval

    DEFF Research Database (Denmark)

    Maallo, Anne Margarette S.; Almoro, Percival F.; Hanson, Steen Grüner

    2010-01-01

    Speckle intensity measurements utilized for phase retrieval (PR) are sequentially taken with a digital camera, which introduces quantization error that diminishes the signal quality. Influences of quantization on the speckle intensity distribution and PR are investigated numerically...... and experimentally in the static wavefront sensing setup. Resultsshowthat 3 to 4 bits are adequate to represent the speckle intensities and yield acceptable reconstructions at relatively fast convergence rates. Computer memory requirements may be eased down by 2.4 times if a 4 bit instead of an 8 bit camera is used...

  18. Quantum key distribution based on phase encoding and polarization measurement

    CERN Document Server

    Ma, H Q; Zhao, J L; Ma, Hai-Qiang; Wu, Ling-An; Zhao, Jian-Ling

    2007-01-01

    A one-way quantum key distribution scheme based on intrinsically stable Faraday-mirror type Michelson interferometers with four-port polarizing beampslitters has been demonstrated which can compensate for birefringence effects automatically. The encoding is performed with phase modulators, but decoding is accomplished through measurement of the polarization state of Bob's photons. An extinction ratio of about 30dB was maintained for several hours over 50km of fiber at 1310nm without any adjustment to the setup, which shows its good potential for practical systems

  19. GMTI Direction of Arrival Measurements from Multiple Phase Centers.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bickel, Douglas L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Ground Moving Target Indicator (GMTI) radar attempts to detect and locate targets with unknown motion. Very slow-moving targets are difficult to locate in the presence of surrounding clutter. This necessitates multiple antenna phase centers (or equivalent) to offer independent Direction of Arrival (DOA) measurements. DOA accuracy and precision generally remains dependent on target Signal-to-Noise Ratio (SNR), Clutter-toNoise Ratio (CNR), scene topography, interfering signals, and a number of antenna parameters. This is true even for adaptive techniques like Space-Time-AdaptiveProcessing (STAP) algorithms.

  20. ACCURACY ANALYSIS OF PASSIVE LOCATION SYSTEMWITH PHASE DIFFERENCE RATE MEASUREMENT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The conventional mono-station passive location techniques of direction finding are low in speed and accuracy. It may not meet the requirements of modern targeting or accuracy attacking actions. For a moving observer, by employing some passive measurements such as Doppler or Phase Difference Rate (PDR), the location error can be reduced to nearly one-fifth of the conventional error[1~4].  In this paper, the location method using PDR is introduced in section one. Location accuracy analysis is given in section two. Simulation results of error's lower bound of 3D location are produced in section four. Finally, the conclusion is presented in section five.

  1. Effects of preparatory period on anticipatory postural control and contingent negative variation associated with rapid arm movement in standing posture.

    Science.gov (United States)

    Maeda, Kaoru; Fujiwara, Katsuo

    2007-01-01

    We investigated CNS motor preparation state and anticipatory postural muscle activation while subjects performed bilateral rapid arm movement at various intervals between warning and response stimulus (preparatory period) during standing. Motor preparation state was evaluated by integrated values of the late components of the contingent negative variation (late CNV), obtained by averaging electroencephalograms during the last 100ms of the preparatory period. For quantifying anticipatory postural muscle activation, we measured the onset of burst activity in postural muscles (lumbar paraspinal, biceps femoris, and gastrocnemius) with respect to anterior deltoid activity and integrated values of preceding activation. Subjects performed the arm movement with minimal delay in the warning stimulus-response stimulus-motor response paradigm under preparatory periods of 2.0, 3.0 and 3.5s. Late CNV did not differ between the 2.0-s and 3.0-s period, but was significantly smaller in the 3.5-s period than in the 2.0-s period, suggesting difficulty in predicting response timing in the 3.5-s period. No change was found on integrated values of preceding activations of postural muscles. Burst onset of all postural muscles significantly preceded anterior deltoid activation in all periods. Burst activity for gastrocnemius only occurred earlier in the 3.5-s period than in the 2.0-s and 3.0-s periods. Weak correlations were observed between late CNV and onset time of gastrocnemius activity. It is suggested that earlier activation of gastrocnemius is a strategy adopted when response stimulus timing is relatively difficult to predict.

  2. Internet resources as means of forming auditory skills of Ukrainian in foreign participants in preparatory department

    Directory of Open Access Journals (Sweden)

    Надія Іванівна Луцан

    2015-06-01

    Full Text Available The article covers and analyzes the possible use of specific Internet resources of Ukrainian content for the formation and development of auditory skills. Special auditory skills that are important and should be formed at the preparatory department of the university during the teaching of Ukrainian are selected. The structure of language training at the preparatory department for foreign citizen are briefly described

  3. Dissecting patterns of preparatory activity in the frontal eye fields during pursuit target selection.

    Science.gov (United States)

    Raghavan, Ramanujan T; Joshua, Mati

    2017-07-19

    We investigated the composition of preparatory activity of frontal eye field (FEF) neurons in monkeys performing a pursuit target selection task. In response to the orthogonal motion of a large and a small reward target, monkeys initiated pursuit biased towards the direction of large reward target motion. FEF neurons exhibited robust preparatory activity preceding movement initiation in this task. Preparatory activity consisted of two components, ramping activity that was constant across target selection conditions and a flat offset in firing rates that signaled the target selection condition. Ramping activity accounted for 50% of the variance in the preparatory activity and was linked most strongly, on a trial-by-trial basis, to pursuit eye movement latency rather than to its direction or gain. The offset in firing rates that discriminated target selection conditions accounted for 25% of the variance in the preparatory activity, and was commensurate with a winner-take-all representation signaling the direction of large reward target motion rather than a representation that matched the parameters of the upcoming movement. These offer new insights into the role the frontal eye fields play in target selection and pursuit control. They show that preparatory activity in the FEF signals more strongly when to move rather than where or how to move, and suggest that structures outside the FEF augment its contributions to the target selection process. Copyright © 2017, Journal of Neurophysiology.

  4. Picometer Precision Measurements of Fringe Phase and Wavelengths in MAM

    Science.gov (United States)

    Pan, X.; Shao, M.; Goullioud, R.

    2004-12-01

    The Space Interferometry Mission (SIM), a micro-arcsecond astrometry mission, is the only mission, either operational or in planning, that will be capable of measuring the mass of extra-solar planets, mass being the fundamental property that determines whether the planet is capable of holding an Earth-like atmosphere. One of the SIM testbeds at JPL, the Micro-Arcsecond Metrology (MAM) testbed, addresses how to measure interferometer fringe phase and wavelengths accurately at the level of picometers (10-12 m). The MAM testbed uses a pathlength modulation scheme for fringe detection, using ten samples per stroke, with stroke-length close to the wavelength of a spectral channel. The MAM testbed has demonstrated the measurement of optical pathlength delays to picometer precision. Longer strokes (tens of microns) enable both fringe and modulation envelope to be detected, yielding accurate wavelength measurements at the picometer level for the first time. This paper describes the fundamental principles of a new technique for calibration and measurement of fringes for targets that have various spectra, in which effective wavelength varies significantly for different spectral channels. Test results and variations with time are analyzed. Conformation of measurenet accuracy and stability are described in this paper.

  5. Measuring perceptual centers using the phase correction response.

    Science.gov (United States)

    Villing, Rudi C; Repp, Bruno H; Ward, Tomas E; Timoney, Joseph M

    2011-07-01

    The perceptual center (P-center) is fundamental to the timing of heterogeneous event sequences, including music and speech. Unfortunately, there is currently no comprehensive and reliable model of P-centers in acoustic events, so P-centers must instead be measured empirically. This study reviews existing measurement methods and evaluates two methods in detail-the rhythm adjustment method and a new method based on the phase correction response (PCR) in a synchronous tapping task. The two methods yielded consistent P-center estimates and showed no evidence of P-center context dependence. The PCR method appears promising because it is accurate and efficient and does not require explicit perceptual judgments. As a secondary result, the magnitude of the PCR is shown to vary systematically with the onset complexity of speech sounds, which presumably reflects the perceived clarity of a sound's P-center.

  6. Measurement of the phase $\\phi_s$ at LHCb

    CERN Document Server

    Batozskaya, Varvara

    2017-01-01

    One of the key goals of the LHCb experiment is the determination of the CP-violating phase $\\phi_{s}$ in $\\bar{b}\\rightarrow \\bar{c}c\\bar{s}$ decays. Its value is predicted to be very small in the Standard Model. The measurements in the $B^{0}_{s}\\rightarrow J/\\psi \\phi$, $B^{0}_{s}\\rightarrow J/\\psi\\pi^{+}\\pi^{-}$ and $B^{0}_{s}\\rightarrow \\psi(2S) \\phi$ channels are reviewed. The first observation of the $B^{0}_{s}\\rightarrow \\eta_{c} \\phi$ and $B^{0}_{s}\\rightarrow \\eta_{c} \\pi^{+}\\pi^{-}$ decay modes is presented. These channels can be used to measure $\\phi_{s}$ with larger data statistics that will be collected during Run~II by the LHCb experiment.

  7. Phase equilibrium measurements and modelling for separation process design

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Era, C.

    2012-07-01

    the thermodynamic representation of the equilibrium between phases. For this purpose an extensive experimental work was performed, comprising of vapour-liquid, gas-liquid and solid-liquid equilibrium measurements. Vapour liquid equilibrium of binary mixtures of butane + alcohols was measured with a static total pressure apparatus due to the importance of hydrocarbon and alcohol mixtures in the production of biofuels. The same equipment was used to measure binary systems of diethyl sulphide + C4 - hydrocarbons of importance in refinery applications. The activity coefficients of these systems were modelled with activity coefficients models. The absorption of carbon dioxide in alkanolamine solutions is the leading technology for the removal of carbon dioxide during refining of gas and oil. In recent years, this technology has gained importance also for carbon capture from large point sources. The scarcity of experimental data for some alkanolamine systems affected the accuracy of thermodynamic models. Several experimental techniques were developed to supply new experimental data for aqueous solutions of diisopropanolamine (DIPA) and methyldiethanolamine (MDEA). The solubility of carbon dioxide in solutions of these amines was measured with a static total pressure apparatus for gas solubility, and with a bubbling apparatus. The density of carbonated aqueous DIPA was also measured and modelled. The vapour-liquid equilibrium of water + DIPA and water + MDEA was measured with a static total pressure apparatus. The solid-liquid equilibrium of the same systems was measured with a visual method and a Differential Scanning Calorimeter. The activity coefficients of aqueous DIPA and MDEA solutions were modelled using NRTL, thus providing the first model of this sort for DIPA. A new model of the Henry's law constant of carbon dioxide in binary and ternary aqueous solutions of alkanolamines was developed at temperatures up to 393 K. (orig.)

  8. Measurement of Gas-phase Acids in Diesel Exhaust

    Science.gov (United States)

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.

    2012-12-01

    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  9. Damage preventing measures for wind turbines. Phase 1- Reliability data

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Fredrik; Eriksson, Emil; Dahlberg, Magnus

    2010-08-15

    The state of existing reliability and failure data in the public sources has been investigated. The prime goal has been to evaluate the data's usefulness for developing damage preventing measures. Some publicly available databases exist, and the data has been presented in several papers in the literature. The results from the investigation can seem quite negative. Detailed data are lacking and the level of detailed reporting has even been decreasing in recent years. Information on the impact of load condition on failures, which is an important question, are lacking throughout in the statistics. Some components dominate the failure statistics. These are for example the gearboxes, where failures lead to long down times. Failures of the electrical system lead to considerably shorter down times but the failure rate is much higher. Severe rotor failures seem to be rare, but they occur and the consequences can be dramatic. Operators and insurance companies are demanding improved insight in damage collection, maintenance and overall damage preventing measures. Closer cooperation with these parties could be a fruitful way of gathering more useful data. Improvements for future databases are suggested. A structure for damage collection is proposed. Comparing experience of damage preventing measures from other industries, knowledge about the nature of the damage mechanism and current practice in the wind industry will be an important tool in the evaluation of different damage preventing measures. This will be done in the following phases of this project

  10. Damage preventing measures for wind turbines. Phase 1- Reliability data

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Fredrik; Eriksson, Emil; Dahlberg, Magnus

    2010-08-15

    The state of existing reliability and failure data in the public sources has been investigated. The prime goal has been to evaluate the data's usefulness for developing damage preventing measures. Some publicly available databases exist, and the data has been presented in several papers in the literature. The results from the investigation can seem quite negative. Detailed data are lacking and the level of detailed reporting has even been decreasing in recent years. Information on the impact of load condition on failures, which is an important question, are lacking throughout in the statistics. Some components dominate the failure statistics. These are for example the gearboxes, where failures lead to long down times. Failures of the electrical system lead to considerably shorter down times but the failure rate is much higher. Severe rotor failures seem to be rare, but they occur and the consequences can be dramatic. Operators and insurance companies are demanding improved insight in damage collection, maintenance and overall damage preventing measures. Closer cooperation with these parties could be a fruitful way of gathering more useful data. Improvements for future databases are suggested. A structure for damage collection is proposed. Comparing experience of damage preventing measures from other industries, knowledge about the nature of the damage mechanism and current practice in the wind industry will be an important tool in the evaluation of different damage preventing measures. This will be done in the following phases of this project

  11. Measuring Security of Web Services in Requirement Engineering Phase

    Directory of Open Access Journals (Sweden)

    Davoud Mougouei

    2015-05-01

    Full Text Available Addressing security in early stages of web service development has always been a major engineering trend. However, to assure security of web services it is required to perform security evaluation in a rigorous and tangible manner. The results of such an evaluation if performed in early stages of the development process can be used to improve the quality of the target web service. On the other hand, it is impossible to remove all of the security faults during the security analysis of web services. As a result, absolute security is never possible to achieve and a security failure may occur during the execution of web service. To avoid security failures, a measurable level of fault tolerance is required to be achieved through partial satisfaction of security goals. Thus any proposed measurement technique must care for this partiality. Even though there are some approaches toward assessing the security of web services but still there is no precise model for evaluation of security goal satisfaction specifically during the requirement engineering phase. This paper introduces a Security Measurement Model (SMM for evaluating the Degree of Security (DS in security requirements of web services by taking into consideration partial satisfaction of security goals. The proposed model evaluates overall security of the target service through measuring the security in Security Requirement Model (SRM of the service. The proposed SMM also takes into account cost, technical ability, impact and flexibility as the key features of security evaluation.

  12. Mechanism modeling for phase fraction measurement with ultrasound attenuation in oil–water two-phase flow

    Science.gov (United States)

    Su, Qian; Tan, Chao; Dong, Feng

    2017-03-01

    When measuring the phase fraction of oil–water two-phase flow with the ultrasound attenuation, the phase distribution and fraction have direct influence on the attenuation coefficient. Therefore, the ultrasound propagation at various phase fractions and distributions were investigated. Mechanism models describing phase fraction with the ultrasound attenuation coefficient were established by analyzing the interaction between ultrasound and two-phase flow by considering the scattering, absorption and diffusion effect. Experiments were performed to verify the theoretical analysis, and the test results gave good agreement with the theoretical analysis. When the dispersed phase fraction is low, the relationship between ultrasound attenuation coefficient and phase fraction is of monotonic linearity; at higher dispersed phase fraction, ultrasound attenuation coefficient presents an irregular response to the dispersed phase fraction. The presented mechanism models give reasonable explanations about the trend of ultrasound attenuation.

  13. The effects of preparatory sensory information on ICU patients.

    Science.gov (United States)

    Shi, Shu-Feng; Munjas, Barbara A; Wan, Thomas T H; Cowling, W Richard; Grap, Mary Jo; Wang, Bill B L

    2003-04-01

    Preparatory sensory information (PSI) has been found to have significant effects in reducing distress, tension, restlessness, negative moods, and anxiety, and also in reducing length of postoperative hospitalization during various threatening medical events, but no evidence has demonstrated the effect of PSI on a patient during ICU hospitalization. On the basis of Lazarus' theory, a structural equation model was developed to examine the role of the nursing intervention, PSI, as a significant factor influencing patients' processes of cognitive appraisals and coping, adaptational responses, and patient care outcomes during ICU hospitalization. The analytical model examined the net effect of PSI on outcomes, controlling for the effects of mastery, interpersonal trust, social support, socioeconomic status, severity of illness, age, and gender. A quasi-experiment was executed in four large acute care hospitals. Data were collected from 41 subjects in the control group and from 42 in the treatment group receiving PSI before ICU admission. Structural equation modeling was employed to test the proposed analytic model. The initial tests of model fit indicate that the original model did not fit the data well with GFI = 0.85, AGFI = 0.76, RMSEA = 0.059, p_close = 0.28, and critical N = 78. A revised model was developed, and the fit indices suggested an adequate fit with GFI = 0.90, AGFI = 0.84, RMSEA = 0.00, p_close = 0.89, and critical N = 109. These findings provide empirical support for Lazarus' theory on stress, appraisal, and coping. The findings also verify the beneficial effects of the nursing intervention of PSI on ICU patients.

  14. Measurement of B_s mixing phase at CDF

    CERN Document Server

    Kreps, Michal

    2010-01-01

    We present improved bounds on the CP-violating phase \\beta_s^{\\Jpsi\\phi} and on the decay-width difference \\Delta\\Gamma of the neutral B_s^0 meson system obtained by the CDF experiment at the Tevatron collider . We use 6500 B_s^0 --> J/psi phi decays collected by the dimuon trigger and reconstructed in a sample corresponding to integrated luminosity of 5.2 fb-1. Besides exploiting a two-fold increase in statistics with respect to the previous measurement, several improvements have been introduced in the analysis including a fully data-driven flavour-tagging calibration and proper treatment of possible S-wave contributions.

  15. Simple procedure for phase-space measurement and entanglement validation

    Science.gov (United States)

    Rundle, R. P.; Mills, P. W.; Tilma, Todd; Samson, J. H.; Everitt, M. J.

    2017-08-01

    It has recently been shown that it is possible to represent the complete quantum state of any system as a phase-space quasiprobability distribution (Wigner function) [Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401]. Such functions take the form of expectation values of an observable that has a direct analogy to displaced parity operators. In this work we give a procedure for the measurement of the Wigner function that should be applicable to any quantum system. We have applied our procedure to IBM's Quantum Experience five-qubit quantum processor to demonstrate that we can measure and generate the Wigner functions of two different Bell states as well as the five-qubit Greenberger-Horne-Zeilinger state. Because Wigner functions for spin systems are not unique, we define, compare, and contrast two distinct examples. We show how the use of these Wigner functions leads to an optimal method for quantum state analysis especially in the situation where specific characteristic features are of particular interest (such as for spin Schrödinger cat states). Furthermore we show that this analysis leads to straightforward, and potentially very efficient, entanglement test and state characterization methods.

  16. Phase Space Dissimilarity Measures for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bubacz, Jacob A [ORNL; Chmielewski, Hana T [ORNL; Pape, Alexander E [ORNL; Depersio, Andrew J [ORNL; Hively, Lee M [ORNL; Abercrombie, Robert K [ORNL; Boone, Shane [ORNL

    2011-11-01

    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.

  17. Phase-space dissimilarity measures for industrial and biomedical applications

    Science.gov (United States)

    Protopopescu, V. A.; Hively, L. M.

    2005-12-01

    One of the most important problems in time-series analysis is the suitable characterization of the dynamics for timely, accurate, and robust condition assessment of the underlying system. Machine and physiological processes display complex, non-stationary behaviors that are affected by noise and may range from (quasi-)periodic to completely irregular (chaotic) regimes. Nevertheless, extensive experimental evidence indicates that even when the systems behave very irregularly (e.g., severe tool chatter or cardiac fibrillation), one may assume that - for all practical purposes - the dynamics are confined to low dimensional manifolds. As a result, the behavior of these systems can be described via traditional nonlinear measures (TNM), such as Lyapunov exponents, Kolmogorov entropy, and correlation dimension. While these measures are adequate for discriminating between clear-cut regular and chaotic dynamics, they are not sufficiently sensitive to distinguish between slightly different irregular (chaotic) regimes, especially when data are noisy and/or limited. Both machine and physiological dynamics usually fall into this latter category, creating a massive stumbling block to prognostication of abnormal regimes. We present here a recently developed approach that captures more efficiently changes in the underlying dynamics. We start with process-indicative, time-serial data that are checked for quality and discarded if inadequate. Acceptable data are filtered to remove confounding artifacts (e.g., sinusoidal variation in three-phase electrical signals or eye-blinks and muscular activity in EEG). The artifact-filtered data are then used to recover the essential features of the underlying dynamics via standard time-delay, phase-space reconstruction. One of the main results of this reconstruction is a discrete approximation of the distribution function (DF) on the attractor. Unaltered dynamics yield an unchanging geometry of the attractor and the visitation frequencies of

  18. Phase Measurement of Cognitive Impairment Specific to Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Carol L., E-mail: armstrongc@email.chop.edu [Children' s Hospital of Philadelphia, Philadelphia, Pennsylvania (United States); Department of Pediatrics, Division of Neuro-Oncology, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania (United States); Shera, David M. [Children' s Hospital of Philadelphia, Philadelphia, Pennsylvania (United States); Department of Pediatrics, Division of Biostatistics and Epidemiology, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania (United States); Lustig, Robert A. [Department of Radiation Oncology, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania (United States); Phillips, Peter C. [Children' s Hospital of Philadelphia, Philadelphia, Pennsylvania (United States); Department of Pediatrics, Division of Neurology and Oncology, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania (United States)

    2012-07-01

    Purpose: Memory impairment is an early-delayed effect of radiotherapy (RT). The prospective longitudinal measurement of the cognitive phase effects from RT was conducted on treated and untreated brain tumor patients. The study design investigated semantic vs. perceptual and visual vs. verbal memory to determine the most disease-specific measure of RT-related changes and understanding of the neurotoxicity from RT to the brain. Methods and Materials: Tests of memory that had previously shown RT-related phasic changes were compared with experimental tests of memory to test hypotheses about cognition targeted to the neural toxicity of RT. The results from 41 irradiated and 29 nonirradiated patients with low-grade, supratentorial tumors were analyzed. The methods controlled for comorbid white matter risk, recurrence, interval after treatment, and age (18-69 years). The effects were examined before RT and at three points after RT to 1 year using a mixed effects model that included interval, group, surgical status, medication use, practice, and individual random effects. Four new tests of memory and other candidate cognitive tests were investigated, and a post hoc analysis of a comprehensive battery of tests was performed to identify the cognitive processes most specific to RT. Results: The RT effects on memory were identified in the treated group only; among the new tests of memory and the complete neurocognitive battery, the RT effects were significant only for delayed recall (p < 0.009) and interval to recognize (p < 0.002). Tumor location was not related to the treatment effect. Memory decline was specific to retrieval of semantic memories; a double dissociation of semantic from perceptual visual memory was demonstrated in the RT group. Conclusions: These results implicate memory dependent on the semantic cortex and the hippocampal memory system. A cognitive measurement that is brief but specific to neural mechanisms is effective and feasible for studies of RT damage.

  19. Anticipatory anxiety in children visiting the dentist: lack of effect of preparatory information.

    Science.gov (United States)

    Olumide, Funmi; Newton, J Tim; Dunne, Stephen; Gilbert, David B

    2009-09-01

    This study sought to explore whether viewing a leaflet explaining the benefits of dental treatment would have a significant impact on children's anticipatory anxiety. Fifty children aged 8-12, attending the paediatric dental clinic of King's College Hospital, London, took part in this triple-masked, randomized control study. The participants were randomly allocated to one of two groups and either shown an intervention leaflet containing child-friendly dental information (the experimental group) or a leaflet with child-friendly information on the benefits of healthy eating (the control group). Using the Facial Image Scale, anxiety was measured when the children arrived for their dental appointment, once before reading the leaflet and again after reading the leaflet. There was no statistically significant effect of the experimental leaflet on self-reported anxiety levels in this study, although anxiety levels did drop slightly in both groups after reading a leaflet. Providing paediatric patients with preparatory information about what to expect from a visit to the dentist had no effect on anticipatory anxiety in comparison to reading a leaflet about healthy eating. We speculate that reading, or cognitive processing, may have some beneficial effect. Future work should investigate this possibility.

  20. Into the pressure cooker: Student stress in college preparatory high schools.

    Science.gov (United States)

    Feld, Lauren D; Shusterman, Anna

    2015-06-01

    The goals of this study were to (1) measure psychological, physiological, and behavioral indicators of stress, (2) assess the relationship between stress and student attitudes, and (3) explore coping behaviors in response to stress, among a sample of students in two academically high-achieving environments. Three hundred thirty-three students in grades 9 through 12 from two college-preparatory high schools completed a cross-sectional online survey that included the Students' Life Satisfaction Scale, School Attitude Assessment Questionnaire-Revised, and assessments for stress-related indicators, including eating, sleeping and exercise, and strategies they utilized for coping with stress. Students reported a high prevalence of physical and psychological correlates of stress, and related unhealthy behaviors such as widespread and chronic sleep deprivation and rushed meals. The results suggest areas to focus attention for identifying and addressing maladaptive responses to stress among high-achieving student populations. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  1. Residual stress measurements of 2-phase sprayed coating layer

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Masayuki [Kagawa Polytechnic College, Kagawa (Japan); Hanabusa, Takao

    1997-06-01

    In a series of the already reported single phase metal and ceramic melt sprayed films, on two phase melt sprayed films, their stress and thermal stress changes due to their bending load are tried to test. In order to prepare two phase state, austenitic stainless steel wire is used by a laser melt spraying method. In this method, CO{sub 2} laser is used for a thermal source, and proceeding direction of its laser is selected to cross melt spraying direction. As a result, the following facts can be elucidated. The stress values at {alpha}- and {gamma}-phase in the stainless steel film are linearly responsive to the bending load, and the stress change in {alpha}-phase is smaller than that in {gamma}-phase. In a heat and cool cycle, {alpha}-phase shows a trend of extension with increasing temperature but {gamma}-phase shows a trend of compression inversely. And, stress behavior at {alpha}- and {gamma}-phases in the stainless steel film does not agree with a mixing rule in common two-phase materials. (G.K.)

  2. Surface topographical changes measured by phase-locked interferometry

    Science.gov (United States)

    Lauer, J. L.; Fung, S. S.

    1984-01-01

    An electronic optical laser interferometer capable of resolving depth differences of as low as 30 A and planar displacements of 6000 A was constructed to examine surface profiles of bearing surfaces without physical contact. Topological chemical reactivity was determined by applying a drop of dilute alcoholic hydrochloric acid and measuring the profile of the solid surface before and after application of this probe. Scuffed bearing surfaces reacted much faster than virgin ones but that bearing surfaces exposed to lubricants containing an organic chloride reacted much more slowly. The reactivity of stainless steel plates, heated in a nitrogen atmosphere to different temperatures, were examined later at ambient temperature. The change of surface contour as a result of the probe reaction followed Arrhenius-type relation with respect to heat treatment temperature. The contact area of the plate of a ball/plate sliding elastohydrodynamic contact run on trimethylopropane triheptanoate with or without additives was optically profiled periodically. As scuffing was approached, the change of profile within the contact region changed much more rapidly by the acid probe and assumed a constant high value after scuffing. A nonetching metallurgical phase was found in the scuff mark, which was apparently responsible for the high reactivity.

  3. Preparatory activity in visual cortex indexes distractor suppression during covert spatial orienting.

    Science.gov (United States)

    Serences, John T; Yantis, Steven; Culberson, Andrew; Awh, Edward

    2004-12-01

    The deployment of spatial attention induces retinotopically specific increases in neural activity that occur even before a target stimulus is presented. Although this preparatory activity is thought to prime the attended regions, thereby improving perception and recognition, it is not yet clear whether this activity is a manifestation of signal enhancement at the attended locations or suppression of interference from distracting stimuli (or both). We investigated the functional role of these preparatory shifts by isolating a distractor suppression component of selection. Behavioral data have shown that manipulating the probability that visual distractors will appear modulates distractor suppression without concurrent changes in signal enhancement. In 2 experiments, functional magnetic resonance imaging revealed increased cue-evoked activity in retinotopically specific regions of visual cortex when increased distractor suppression was elicited by a high probability of distractors. This finding directly links cue-evoked preparatory activity in visual cortex with a distractor suppression component of visual selective attention.

  4. Health status of male preparatory school students lodging at a dormitory in Japan.

    Science.gov (United States)

    Sakurada, I; Kido, T; Suwazono, Y; Kobayashi, E; Kinouchi, N; Nogawa, K

    1999-04-01

    An investigation on the health status of 79 male preparatory school students lodging at a dormitory in Japan was carried out by questionnaire on lifestyles, subjective symptoms and mental status, as compared with two control groups: 73 medical students and 36 new employees. About 83 % of them slept less than 6 hours and 70 % of them did not exercise. Many students are troubled with back pain or lumbago(47%), sensation of incomplete bladder emptying(l6%), loss of visual acuity(55%) and eye fatigue(65%). Self-rating depression scale score of preparatory school students was not significantly higher than those of the control groups. The lifestyles of preparatory school students found to be very restricted and strained. However, no significant differences on mental adverse health effects was found among three groups.

  5. A Super High Resolution Distance Measurement Method Based on Phase Comparison

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Qi; ZHOU Wei; MIAO Miao; ZHOU Hui; ZHENG Sheng-Feng

    2008-01-01

    @@ Phase comparison method can enhance the measurement resolution to 10-13/τ in time domain. This method can also be used in distance measurement in the navigation and positioning. We propose a super high-resolution distance measurement based on linear phase comparison method. A high resolution scheme is put forward on the basis of the research of major factors concerning the phase comparison in the distance measurement. Conversion of a high-linearity phase difference to voltage and high-resolution voltage meter make it possible to obtain a very high phase measurement resolution. When the purpose is to measure distance, the phase noise of frequency source used in the measurement can be reduced partly. Thus this method is favourable for high resolution distance measurement. The precision of the distance measurement can reach 0.1c ps with c being the velocity of light in vacuum.

  6. DEFORMATION MEASUREMENT USING DUAL-FREQUENCY PROJECTION GRATING PHASE-SHIFT PROFILOMETRY

    Institute of Scientific and Technical Information of China (English)

    Yanming Chen; Yuming He; Eryi Hu; Hongmao Zhu

    2008-01-01

    phase ambiguity problem is very important in phase measurement when a deformed object has a large out of plane displacement. The dual-frequency projection grating phaseshifting profilometry (PSP) can be used to solve such an issue. In the measurement, two properchosen frequency gratings are utilized to synthesize an equivalent wavelength grating which ensures the computed phase in a principal phase range. Thus, the error caused by the phase unwrapping process with the conventional phase reconstruct algorithm can be eliminated. Finally, experimental result of a specimen with large plastic deformation is given to prove that the proposed method is effective to handle the phase discontinuity.

  7. Using Mean Absolute Relative Phase, Deviation Phase and Point-Estimation Relative Phase to Measure Postural Coordination in a Serial Reaching Task

    Directory of Open Access Journals (Sweden)

    Anne K. Galgon, Patricia A. Shewokis

    2016-03-01

    Full Text Available The objectives of this communication are to present the methods used to calculate mean absolute relative phase (MARP, deviation phase (DP and point estimate relative phase (PRP and compare their utility in measuring postural coordination during the performance of a serial reaching task. MARP and DP are derived from continuous relative phase time series representing the relationship between two body segments or joints during movements. MARP is a single measure used to quantify the coordination pattern and DP measures the stability of the coordination pattern. PRP also quantifies coordination patterns by measuring the relationship between the timing of maximal or minimal angular displacements of two segments within cycles of movement. Seven young adults practiced a bilateral serial reaching task 300 times over 3 days. Relative phase measures were used to evaluate inter-joint relationships for shoulder-hip (proximal and hip-ankle (distal postural coordination at early and late learning. MARP, PRP and DP distinguished between proximal and distal postural coordination. There was no effect of practice on any of the relative phase measures for the group, but individual differences were seen over practice. Combined, MARP and DP estimated stability of in-phase and anti-phase postural coordination patterns, however additional qualitative movement analyses may be needed to interpret findings in a serial task. We discuss the strengths and limitations of using MARP and DP and compare MARP and DP to PRP measures in assessing coordination patterns in the context of various types of skillful tasks.

  8. A simple technique for high resolution time domain phase noise measurement

    Science.gov (United States)

    Reinhardt, V. S.; Donahoe, T.

    1977-01-01

    A new time domain phase comparator is described. The device uses a novel technique to allow time domain phase measurements to be made with period and time interval counters without the use of offset reference oscillators. The device uses a single reference oscillator and allows measurements with a phase resolution greater than the noise floor of the reference. Data is presented showing a phase resolution of 0.02ps at 5 MHz with a crystal reference. The device has application in measuring the phase stability of systems where approximate phase quadrature can be maintained.

  9. The Development of New Measures of Cognitive Variables in Elementary School Children (Phase II). Final Report.

    Science.gov (United States)

    Asher, J. William; And Others

    This report covers Phase II of a two-phase project concerned with the development of new measures of cognitive variables in elementary school children. The four tasks undertaken in Phase II were: (1) prepare, revise and describe instruments designed to measure the cognitive variables categorized as concept formation, language development, logical…

  10. Phame: a novel phase metrology tool of Carl Zeiss for in-die phase measurements under scanner relevant optical settings

    Science.gov (United States)

    Perlitz, Sascha; Buttgereit, Ute; Scherübl, Thomas

    2007-03-01

    Meeting the demands of the lithography mask manufacturing industry moving toward 45nm and 32nm node for in-die phase metrology on phase shifting masks, Zeiss is currently developing an optical phase measurement tool (Phame TM), providing the capability of extending process control from large CD test features to in-die phase shifting features with high spatial resolution. In collaboration with Intel, the necessity of designing this optical metrology tool according to the optical setup of a lithographic exposure tool (scanner) has been researched to be fundamental for the acquisition of phase information generated from features the size of the used wavelength. Main cause is the dependence of the image phase of a scanner on polarization and the angle of incidence of the illumination light due to rigorous effects, and on the imaging NA of the scanner due to the loss of phase information in the imaging pupil. The resulting scanner phase in the image plane only coincides with the etch-depth equivalent phase for large test features, exceeding the size of the in-die feature by an order of magnitude. In this paper we introduce the Phame TM phase metrology tool, using a 193nm light source with the optical capability of phase measurement at scanner NA up to the equivalent of a NA1.6 immersion scanner, under varying, scanner relevant angle of incidence for EAPSMs and CPLs, and with the possibility of polarizing the illuminating light. New options for phase shifting mask process control on in-die features will be outlined with first measurement results.

  11. Phase-Locked Loop For Measurement Of Small And Large Delays

    Science.gov (United States)

    Froggatt, Mark

    1995-01-01

    Electronic signal-generating and processing subsystem of ultrasonic inspection or measurement system consists mainly of variable-and-fixed-frequency, pulsed phase-locked loop (VFFPPLL) measuring phase shifts from 0 degrees to more than 360 degrees with accurancy of 0.112 degrees. VFFPPLL measures phase shifts between transmitted ultrasonic toneburst and its echo, thereby measuring ultrasonic-propagation delay. Used to determine strain in bolt or to track irregular surface of specimen being inspected ultrasonically.

  12. A method for phase reconstruction in optical three-dimensional shape measurement

    Institute of Scientific and Technical Information of China (English)

    Qiao Nao-Sheng; He Zhi

    2012-01-01

    In optical three-dimensional shape measurement,a method of improving the measurement precision for phase reconstruction without phase unwrapping is analyzed in detail.Intensities of any five consecutive pixels that lie in the x-axis direction of the phase domain are given.Partial derivatives of the phase function in the x- and y-axis directions are obtained with a phase-shifting mechanism,the origin of which is analysed.Furthermore,to avoid phase unwrapping in the phase reconstruction,we derive the gradient of the phase function and perform a two-dimensional integral along the x- and y-axis directions.The reconstructed phase can be obtained directly by performing numerical integration,and thus it is of great convenience for phase reconstruction.Finally,the results of numerical simulations and practical experiments verify the correctness of the proposed method.

  13. Dark-field electron holography for the measurement of geometric phase

    Energy Technology Data Exchange (ETDEWEB)

    Hytch, M.J., E-mail: hytch@cemes.fr [CEMES-CNRS and Universite de Toulouse, 29 rue Jeanne Marvig, F-31055 Toulouse (France); Houdellier, F.; Huee, F.; Snoeck, E. [CEMES-CNRS and Universite de Toulouse, 29 rue Jeanne Marvig, F-31055 Toulouse (France)

    2011-07-15

    The genesis, theoretical basis and practical application of the new electron holographic dark-field technique for mapping strain in nanostructures are presented. The development places geometric phase within a unified theoretical framework for phase measurements by electron holography. The total phase of the transmitted and diffracted beams is described as a sum of four contributions: crystalline, electrostatic, magnetic and geometric. Each contribution is outlined briefly and leads to the proposal to measure geometric phase by dark-field electron holography (DFEH). The experimental conditions, phase reconstruction and analysis are detailed for off-axis electron holography using examples from the field of semiconductors. A method for correcting for thickness variations will be proposed and demonstrated using the phase from the corresponding bright-field electron hologram. -- Highlights: {yields} Unified description of phase measurements in electron holography. {yields} Detailed description of dark-field electron holography for geometric phase measurements. {yields} Correction procedure for systematic errors due to thickness variations.

  14. Using Mean Absolute Relative Phase, Deviation Phase and Point-Estimation Relative Phase to Measure Postural Coordination in a Serial Reaching Task.

    Science.gov (United States)

    Galgon, Anne K; Shewokis, Patricia A

    2016-03-01

    The objectives of this communication are to present the methods used to calculate mean absolute relative phase (MARP), deviation phase (DP) and point estimate relative phase (PRP) and compare their utility in measuring postural coordination during the performance of a serial reaching task. MARP and DP are derived from continuous relative phase time series representing the relationship between two body segments or joints during movements. MARP is a single measure used to quantify the coordination pattern and DP measures the stability of the coordination pattern. PRP also quantifies coordination patterns by measuring the relationship between the timing of maximal or minimal angular displacements of two segments within cycles of movement. Seven young adults practiced a bilateral serial reaching task 300 times over 3 days. Relative phase measures were used to evaluate inter-joint relationships for shoulder-hip (proximal) and hip-ankle (distal) postural coordination at early and late learning. MARP, PRP and DP distinguished between proximal and distal postural coordination. There was no effect of practice on any of the relative phase measures for the group, but individual differences were seen over practice. Combined, MARP and DP estimated stability of in-phase and anti-phase postural coordination patterns, however additional qualitative movement analyses may be needed to interpret findings in a serial task. We discuss the strengths and limitations of using MARP and DP and compare MARP and DP to PRP measures in assessing coordination patterns in the context of various types of skillful tasks. Key pointsMARP, DP and PRP measures coordination between segments or joint anglesAdvantages and disadvantages of each measure should be considered in relationship to the performance taskMARP and DP may capture coordination patterns and stability of the patterns during discrete tasks or phases of movements within a taskPRP and SD or PRP may capture coordination patterns and

  15. Sinusoidal phase-modulating laser diode interferometer for real-time surface profile measurement

    Institute of Scientific and Technical Information of China (English)

    Guotian He; Xiangzhao Wang; Aijun Zeng; Feng Tang

    2007-01-01

    A sinusoidal phase-modulating (SPM) laser diode (LD) interferometer for real-time surface profile measurement is proposed and its principle is analyzed. The phase signal of the surface profile is detected from the sinusoidal phase-modulating interference signal using a real-time phase detection circuit. For 60 × 60 measurement points of the surface profile, the measuring time is 10 ms. A root mean square (RMS) measurement repeatability of 3.93 nm is realized, and the measurement resolution reaches 0.19 nm.

  16. Article Errors in the English Writing of Saudi EFL Preparatory Year Students

    Science.gov (United States)

    Alhaisoni, Eid; Gaudel, Daya Ram; Al-Zuoud, Khalid M.

    2017-01-01

    This study aims at providing a comprehensive account of the types of errors produced by Saudi EFL students enrolled in the preparatory year programe in their use of articles, based on the Surface Structure Taxonomies (SST) of errors. The study describes the types, frequency and sources of the definite and indefinite article errors in writing…

  17. The Value and Attributes of an Effective Preparatory English Program: Perceptions of Saudi University Students

    Science.gov (United States)

    McMullen, Maram George

    2014-01-01

    This study investigates the effects of gender and geographical location on the perceptions of Saudi university students regarding the value of preparatory English programs and their attributes. Data was collected during the fall of 2013 from three sample universities in the Kingdom of Saudi Arabia (KSA) using an online survey as the instrument.…

  18. Assessment Practices of Preparatory Year English Program (PYEP): Investigating Student Advancement through Third and Fourth Levels

    Science.gov (United States)

    Obaid, Rana

    2016-01-01

    This small-scale mixed method research focuses on investigating the way Preparatory Year English Program (PYEP) female students in a Saudi tertiary level institution context are assessed and how they are advanced from level three (Pre-intermediate) and level four (Intermediate). A four-point agreement scale survey was conducted with fifteen…

  19. Motivators for Demotivators Affecting English Language Acquisition of Saudi Preparatory Year Program Students

    Science.gov (United States)

    Daif-Allah, Ayman Sabry; Alsamani, Abdulaziz Saleh

    2014-01-01

    This study aims at investigating the demotivating factors that discourage Preparatory Year Program (PYP) students from learning the English language. It also proposes and tests the effectiveness of a set of academic and administrative approaches on enhancing English language acquisition of 102 Saudi PYP Students taking an EFL summer course in the…

  20. 77 FR 21568 - Indian Health Professions Preparatory, Indian Health Professions Pregraduate and Indian Health...

    Science.gov (United States)

    2012-04-10

    ... Preparatory Scholarships A. Pre-Clinical Psychology (Jr. and Sr. undergraduate years). B. Pre-Nursing. C. Pre... Counseling--Master's Degrees. D. Clinical Psychology--Ph.D. or Psy.D. E. Dentistry: DDS or DMD degrees F... (Direct Practice and Clinical concentrations). U. Ultrasonography (Prerequisite: Diagnostic...

  1. Errors Analysis of Solving Linear Inequalities among the Preparatory Year Students at King Saud University

    Science.gov (United States)

    El-khateeb, Mahmoud M. A.

    2016-01-01

    The purpose of this study aims to investigate the errors classes occurred by the Preparatory year students at King Saud University, through analysis student responses to the items of the study test, and to identify the varieties of the common errors and ratios of common errors that occurred in solving inequalities. In the collection of the data,…

  2. Studies on National Preparatory Students’English Oral Errors and Corrections

    Institute of Scientific and Technical Information of China (English)

    李媛媛

    2014-01-01

    This paper, based on the theory and teaching practice, presents a tentative analysis about English oral errors commonly made by university’s national preparatory students. At first, I analyze the causes of oral errors, then review teachers ’different atti-tude towards oral errors and finally propose some main principles and factors and possible strategies of oral error corrections.

  3. Development of Preparatory Activity Indexed by the Contingent Negative Variation in Children

    Science.gov (United States)

    Flores, Angelica B.; Digiacomo, Marcia R.; Meneres, Susana; Trigo, Eva; Gomez, Carlos M.

    2009-01-01

    Objectives: The present study investigated the effect of age on task-specific preparatory activation induced by a spatial cue using the central cue Posner's paradigm. The behavioral responses and the contingent negative variation (CNV) generated between S1 (the warning stimulus) and S2 (the imperative stimulus) were compared between 16 healthy…

  4. Analysis the Competences and Contents of "Mathematics and Environmental Exploration" Subject Syllabus for Preparatory Grade

    Science.gov (United States)

    Dulama, Maria Eliza; Magda?, Ioana

    2014-01-01

    In this paper, we analyze some aspects related to "Mathematics and Environmental Exploration" subject syllabus for preparatory grade approved by Minister of National Education of Romania. The analysis aim the place of the subject syllabus into the Framework Plan; the syllabus structure and the argumentation of studying this subject; the…

  5. The Preparatory Year in a Queensland Non-Government School: Exploring Parents' Views

    Science.gov (United States)

    O'Gorman, Lyndal

    2008-01-01

    This paper reports the findings of a research project investigating parents' conceptions of an early childhood program in Queensland. During 2007, early childhood education and care (ECEC) in Queensland underwent significant reform associated with the introduction of a full-time Preparatory Year program in all schools throughout the state. The…

  6. Development of Preparatory Activity Indexed by the Contingent Negative Variation in Children

    Science.gov (United States)

    Flores, Angelica B.; Digiacomo, Marcia R.; Meneres, Susana; Trigo, Eva; Gomez, Carlos M.

    2009-01-01

    Objectives: The present study investigated the effect of age on task-specific preparatory activation induced by a spatial cue using the central cue Posner's paradigm. The behavioral responses and the contingent negative variation (CNV) generated between S1 (the warning stimulus) and S2 (the imperative stimulus) were compared between 16 healthy…

  7. THE PROBLEM OF HOT-SPOTS IN MICROWAVE EQUIPMENT USED FOR PREPARATORY TECHNIQUES - THEORY AND PRACTICE

    NARCIS (Netherlands)

    KOK, LP; BOON, ME; SMID, HM

    1993-01-01

    Electron microscopists who wants to use a microwave (MW) oven to stimulate preparatory processes are sooner or later confronted with the problem of hot spots. It soon becomes clear to the user of any MW oven that the energy distribution-thus the speed of absorbing energy, and hence warming up-varies

  8. Towards a knowledge-rich learning environment in preparatory secondary education

    NARCIS (Netherlands)

    Schaik, van M.; Oers, van B.; Terwel, J.

    2011-01-01

    In this case study a novel educational programme for students in preparatory vocational education was studied. The research questions were: (1) Which teaching/learning processes occur in a simulated workplace using the concept of a knowledge-rich workplace? (2) What is the role of models and modelli

  9. Gender Disparity Analysis in Academic Achievement at Higher Education Preparatory Schools: Case of South Wollo, Ethiopia

    Science.gov (United States)

    Eshetu, Amogne Asfaw

    2015-01-01

    Gender is among the determinant factors affecting students' academic achievement. This paper tried to investigate the impact of gender on academic performance of preparatory secondary school students based on 2014 EHEECE result. Ex post facto research design was used. To that end, data were collected from 3243 students from eight purposively…

  10. THE PROBLEM OF HOT-SPOTS IN MICROWAVE EQUIPMENT USED FOR PREPARATORY TECHNIQUES - THEORY AND PRACTICE

    NARCIS (Netherlands)

    KOK, LP; BOON, ME; SMID, HM

    1993-01-01

    Electron microscopists who wants to use a microwave (MW) oven to stimulate preparatory processes are sooner or later confronted with the problem of hot spots. It soon becomes clear to the user of any MW oven that the energy distribution-thus the speed of absorbing energy, and hence warming up-varies

  11. Graphic Communications--Preparatory Area. Book I--Typography and Modern Typesetting. Student Manual.

    Science.gov (United States)

    Hertz, Andrew

    Designed to develop in the student skills in all of the preparatory functions of the graphic communications industry, this student guide covers copy preparation, art preparation, typography, camera, stripping, production management, and forms design, preparation, and analysis. In addition to the skills areas, material is included on the history of…

  12. Graphic Communications--Preparatory Area. Book I--Typography and Modern Typesetting. Teacher's Manual.

    Science.gov (United States)

    Hertz, Andrew

    Intended for use with a companion student manual, this teacher's guide lists procedures and teaching tips for each unit of a secondary or postsecondary course of study in typography and modern typesetting. Course objectives are listed for developing student skills in the following preparatory functions of the graphic communications industry: copy…

  13. Graphic Communications--Preparatory Area. Book I--Typography and Modern Typesetting. Teacher's Manual.

    Science.gov (United States)

    Hertz, Andrew

    Intended for use with a companion student manual, this teacher's guide lists procedures and teaching tips for each unit of a secondary or postsecondary course of study in typography and modern typesetting. Course objectives are listed for developing student skills in the following preparatory functions of the graphic communications industry: copy…

  14. Graphic Communications--Preparatory Area. Book I--Typography and Modern Typesetting. Student Manual.

    Science.gov (United States)

    Hertz, Andrew

    Designed to develop in the student skills in all of the preparatory functions of the graphic communications industry, this student guide covers copy preparation, art preparation, typography, camera, stripping, production management, and forms design, preparation, and analysis. In addition to the skills areas, material is included on the history of…

  15. Saudi EFL Preparatory Year Students' Perception about Corrective Feedback in Oral Communication

    Science.gov (United States)

    Alhaysony, Maha

    2016-01-01

    This study sought to investigate the attitudes of Saudi EFL students towards corrective feedback (henceforth CF) on classroom oral errors. The subjects were 3200 (1223 male and 1977 female) students enrolled in an intensive English language programme in the preparatory year at the University of Ha'il. A questionnaire was the main instrument. This…

  16. Consistency of measured phase boundaries of the FFLO superconducting phase for different materials and types of probes

    Science.gov (United States)

    Agosta, Charles; Fortune, Nathanael; Hannahs, Scott; Park, Ju-Hyun; Schleuter, John; Liang, Lucy; Gao, Shuyao; Bishop-van Horn, Logan; Newman, Max; Gu, Shuyao; Liang, Lucy

    New magnetocaloric and specific heat measurements of the high field superconducting state in the organic superconductor κ-­ (BEDT­-TTF)2Cu(NCS)2 are compared to rf penetration depth, magnetic torque, and NMR measurements. The position of the phase lines separating the uniform superconducting state with the FFLO state and the normal state are mostly in good agreement with each other. The order of the phase transitions can only be determined from the calorimetric measurements and will be compared to theory. Results from other organic superconductors show that there is universal behavior. As an example, the distance between the lower and upper magnetic field phase line containing the FFLO state is proportional to the upper critical field. The position of the lower phase line, the Clogston ­Chandrasakar paramagnetic limit, will be compared to semi empirical calculations based on the specific heat for five different superconductors.

  17. Characterization of cardiac quiescence from retrospective cardiac computed tomography using a correlation-based phase-to-phase deviation measure

    Energy Technology Data Exchange (ETDEWEB)

    Wick, Carson A.; McClellan, James H. [School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive Northwest, Atlanta, Georgia 30332 (United States); Arepalli, Chesnal D. [Department of Radiology, University of British Columbia, 3350-950 West 10th Avenue, Vancouver, British Columbia V5Z 4E3 (Canada); Auffermann, William F.; Henry, Travis S. [Department of Radiology and Imaging Sciences, Emory University, Division of Cardiothoracic Imaging, 1364 Clifton Road Northeast, Suite 309, Atlanta, Georgia 30322 (United States); Khosa, Faisal [Department of Radiology and Imaging Sciences, Emory University, Division of Emergency Radiology, 550 Peachtree Street Northeast, Atlanta, Georgia 30308 (United States); Coy, Adam M. [School of Medicine, Emory University, 100 Woodruff Circle, Atlanta, Georgia 30322 (United States); Tridandapani, Srini, E-mail: stridan@emory.edu [Department of Radiology and Imaging Sciences, Emory University, Winship Cancer Institute, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 and School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive Northwest, Atlanta, Georgia 30332 (United States)

    2015-02-15

    Purpose: Accurate knowledge of cardiac quiescence is crucial to the performance of many cardiac imaging modalities, including computed tomography coronary angiography (CTCA). To accurately quantify quiescence, a method for detecting the quiescent periods of the heart from retrospective cardiac computed tomography (CT) using a correlation-based, phase-to-phase deviation measure was developed. Methods: Retrospective cardiac CT data were obtained from 20 patients (11 male, 9 female, 33–74 yr) and the left main, left anterior descending, left circumflex, right coronary artery (RCA), and interventricular septum (IVS) were segmented for each phase using a semiautomated technique. Cardiac motion of individual coronary vessels as well as the IVS was calculated using phase-to-phase deviation. As an easily identifiable feature, the IVS was analyzed to assess how well it predicts vessel quiescence. Finally, the diagnostic quality of the reconstructed volumes from the quiescent phases determined using the deviation measure from the vessels in aggregate and the IVS was compared to that from quiescent phases calculated by the CT scanner. Three board-certified radiologists, fellowship-trained in cardiothoracic imaging, graded the diagnostic quality of the reconstructions using a Likert response format: 1 = excellent, 2 = good, 3 = adequate, 4 = nondiagnostic. Results: Systolic and diastolic quiescent periods were identified for each subject from the vessel motion calculated using the phase-to-phase deviation measure. The motion of the IVS was found to be similar to the aggregate vessel (AGG) motion. The diagnostic quality of the coronary vessels for the quiescent phases calculated from the aggregate vessel (P{sub AGG}) and IVS (P{sub IV} {sub S}) deviation signal using the proposed methods was comparable to the quiescent phases calculated by the CT scanner (P{sub CT}). The one exception was the RCA, which improved for P{sub AGG} for 18 of the 20 subjects when compared to P

  18. Application of acute phase protein measurements in veterinary clinical chemistry

    DEFF Research Database (Denmark)

    Petersen, Henning; Nielsen, J. P.; Heegaard, Peter M. H.

    2004-01-01

    The body's early defence in response to trauma, inflammation or infection, the acute phase response, is a complex set of systemic reactions seen shortly after exposure to a triggering event. One of the many components is an acute phase protein response in which increased hepatic synthesis leads t...... A and their possible use as non-specific indicators of health in large animal veterinary medicine such as in the health status surveillance of pigs at the herd level, for the detection of mastitis in dairy cattle and for the prognosis of respiratory diseases in horses....

  19. Phase reconstruction from intensity measurements in linear systems.

    Science.gov (United States)

    Bastiaans, Martin J; Wolf, Kurt Bernardo

    2003-06-01

    The phase of a signal at a plane is reconstructed from the intensity profiles at two close parallel screens connected by a small abcd canonical transform; this applies to propagation along harmonic and repulsive fibers and in free media. We analyze the relationship between the local spatial frequency (the signal phase derivative) and the derivative of the squared modulus of the signal under a one-parameter canonical transform with respect to the parameter. We thus generalize to all linear systems the results that have been obtained separately for Fresnel and fractional Fourier transforms.

  20. Application of acute phase protein measurements in veterinary clinical chemistry

    DEFF Research Database (Denmark)

    Petersen, Henning; Nielsen, J. P.; Heegaard, Peter M. H.

    2004-01-01

    The body's early defence in response to trauma, inflammation or infection, the acute phase response, is a complex set of systemic reactions seen shortly after exposure to a triggering event. One of the many components is an acute phase protein response in which increased hepatic synthesis leads t...... A and their possible use as non-specific indicators of health in large animal veterinary medicine such as in the health status surveillance of pigs at the herd level, for the detection of mastitis in dairy cattle and for the prognosis of respiratory diseases in horses....

  1. Measurement of the transmission phase of an electron in a quantum two-path interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Takada, S., E-mail: shintaro.takada@neel.cnrs.fr; Watanabe, K. [Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yamamoto, M. [Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); PRESTO, JST, Kawaguchi-shi, Saitama 331-0012 (Japan); Bäuerle, C. [Université Grenoble Alpes, Institut NEEL, F-38042 Grenoble (France); CNRS, Institut NEEL, F-38042 Grenoble (France); Ludwig, A.; Wieck, A. D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum (Germany); Tarucha, S. [Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-08-10

    A quantum two-path interferometer allows for direct measurement of the transmission phase shift of an electron, providing useful information on coherent scattering problems. In mesoscopic systems, however, the two-path interference is easily smeared by contributions from other paths, and this makes it difficult to observe the true transmission phase shift. To eliminate this problem, multi-terminal Aharonov-Bohm (AB) interferometers have been used to derive the phase shift by assuming that the relative phase shift of the electrons between the two paths is simply obtained when a smooth shift of the AB oscillations is observed. Nevertheless, the phase shifts using such a criterion have sometimes been inconsistent with theory. On the other hand, we have used an AB ring contacted to tunnel-coupled wires and acquired the phase shift consistent with theory when the two output currents through the coupled wires oscillate with well-defined anti-phase. Here, we investigate thoroughly these two criteria used to ensure a reliable phase measurement, the anti-phase relation of the two output currents, and the smooth phase shift in the AB oscillation. We confirm that the well-defined anti-phase relation ensures a correct phase measurement with a quantum two-path interference. In contrast, we find that even in a situation where the anti-phase relation is less well-defined, the smooth phase shift in the AB oscillation can still occur but does not give the correct transmission phase due to contributions from multiple paths. This indicates that the phase relation of the two output currents in our interferometer gives a good criterion for the measurement of the true transmission phase, while the smooth phase shift in the AB oscillation itself does not.

  2. Measurement of precision oscillator phase noise using the two-oscillator coherent down-conversion technique

    Science.gov (United States)

    Pagnanelli, Christopher J.; Cashin, William F.

    1992-01-01

    The characterization of precision frequency standard phase noise and spurious outputs is addressed, using the two-oscillator coherent downconversion technique. Focus is on techniques for making accurate measurements of phase noise and spurious outputs within 100 KHz of a carrier. Significant sources of measurement error related to hardware design problems and inadequate measurement procedures are discussed: measurement errors resulting from system noise sources, phase-locked loop effects, and system bandwidth limitations. In addition, methods and design considerations for minimizing the effects of such errors are presented. Analytic discussions and results are supplemented with actual test data and measurements made using measurement hardware developed at the Ball Corporation, Efratom Division.

  3. A new interferometer architecture combining nulling with phase closure measurements

    CERN Document Server

    Lacour, S; Monnier, J D; Kotani, T; Gauchet, L; Labeye, P

    2013-01-01

    Imaging the direct light signal from a faint exoplanet against the overwhelming glare of its host star presents one of the fundamental challenges to modern astronomical instrumentation. Achieving sufficient signal-to-noise for detection by direct imaging is limited by three basic physical processes: aberration of the wavefronts (both instrumental and atmospheric), photon noise, and detector noise. In this paper, we advance a novel optical setup which synthesizes the advantages of two different techniques: nulling interferometry to mitigate photon noise, and closure phase to combat optical aberrations. Our design, which employs technology from integrated optics and photonics, is intended to combine the advantageous aspects of both a coronagraph and a non-redundant interferometer. We show that such an instrument would allow readout noise limited detection of exoplanets, even in the presence of residual co-phasing errors. As a result, this concept would be ideal for space interferometry and for ground based obse...

  4. Measurement of characteristics and phase modulation accuracy increase of LC SLM "HoloEye PLUTO VIS"

    Science.gov (United States)

    Bondareva, A. P.; Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Starikov, R. S.; Starikov, S. N.

    2014-09-01

    Phase liquid crystal spatial light modulators (LC SLM) are actively integrated in various optical systems for dynamic diffractive optical elements imaging. To achieve the best performance, high stability and linearity of phase modulation is required. This article presents results of measurement of characteristics and phase modulation accuracy increase of state of the art LC SLM with HD resolution "HoloEye PLUTO VIS".

  5. Study of Phase Reconstruction Techniques applied to Smith-Purcell Radiation Measurements

    CERN Document Server

    Delerue, Nicolas; Bezshyyko, Oleg; Khodnevych, Vitalii

    2015-01-01

    Measurements of coherent radiation at accelerators typically give the absolute value of the beam profile Fourier transform but not its phase. Phase reconstruction techniques such as Hilbert transform or Kramers Kronig reconstruction are used to recover such phase. We report a study of the performances of these methods and how to optimize the reconstructed profiles.

  6. Study of Phase Reconstruction Techniques applied to Smith-Purcell Radiation Measurements

    CERN Document Server

    Delerue, Nicolas; Vieille-Grosjean, Mélissa; Bezshyyko, Oleg; Khodnevych, Vitalii

    2014-01-01

    Measurements of coherent radiation at accelerators typically give the absolute value of the beam profile Fourier transform but not its phase. Phase reconstruction techniques such as Hilbert transform or Kramers Kronig reconstruction are used to recover such phase. We report a study of the performances of these methods and how to optimize the reconstructed profiles.

  7. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  8. Dynamic phase measurements based on a polarization Michelson interferometer employing a pixelated polarization camera

    Science.gov (United States)

    Serrano-Garcia, David I.; Otani, Yukitoshi

    2017-02-01

    We implemented an interferometric configuration capable of following a phase variation in time. By using a pixelated polarization camera, the system is able to retrieve the phase information instantaneously avoiding the usage of moving components and the necessity of an extra replication method attached at the output of the interferometer. Taking into account the temporal stability obtained from the system, a spatial-temporal phase demodulation algorithm can be implemented on frequency domain for the dynamic phase measurement. Spatial resolution is analyzed experimentally using a USAF pattern, and dynamic phase measurements were done on air and water medium variations due to a jet flame and a living fish as a biological sample, respectively.

  9. High-Resolution Group Quantization Phase Processing Method in Radio Frequency Measurement Range.

    Science.gov (United States)

    Du, Baoqing; Feng, Dazheng; Tang, Yaohua; Geng, Xin; Zhang, Duo; Cai, Chaofeng; Wan, Maoquan; Yang, Zhigang

    2016-07-08

    Aiming at the more complex frequency translation, the longer response time and the limited measurement precision in the traditional phase processing, a high-resolution phase processing method by group quantization higher than 100 fs level is proposed in radio frequency measurement range. First, the phase quantization is used as a step value to quantize every phase difference in a group by using the fixed phase relationships between different frequencies signals. The group quantization is formed by the results of the quantized phase difference. In the light of frequency drift mainly caused by phase noise of measurement device, a regular phase shift of the group quantization is produced, which results in the phase coincidence of two comparing signals which obtain high-resolution measurement. Second, in order to achieve the best coincidences pulse, a subtle delay is initiatively used to reduce the width of the coincidences fuzzy area according to the transmission characteristics of the coincidences in the specific medium. Third, a series of feature coincidences pulses of fuzzy area can be captured by logic gate to achieve the best phase coincidences information for the improvement of the measurement precision. The method provides a novel way to precise time and frequency measurement.

  10. Magnitude and phase response measurement of headphones at the eardrum

    DEFF Research Database (Denmark)

    Christensen, Anders T.; Hess, Wolfgang; Silzle, Andreas

    2013-01-01

    Transfer functions of headphones are measured to verify that they meet certain requirements or to determine what equalization may make them meet an ideal target curve. The present study compares six headphones by physical measurements at the eardrums of six individuals and on a dummy head. For he...

  11. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  12. Phase modulation parallel optical delay detector for microwave angle-of-arrival measurement with accuracy monitored

    CERN Document Server

    Cao, Z; Lu, R; Boom, H P A van den; Tangdiongga, E; Koonen, A M J

    2014-01-01

    A novel phase modulation parallel optical delay detector is proposed for microwave angle-of-arrival (AOA) measurement with accuracy monitored by using only one dual-electrode Mach-Zenhder modulator. A theoretical model is built up to analyze the proposed system including measurement accuracy monitoring. The spatial delay measurement is translated into the phase shift between two replicas of a microwave signal. Thanks to the accuracy monitoring, the phase shifts from 5{\\deg} to 165{\\deg} are measured with less than 3.1{\\deg} measurement error.

  13. Strong Phase Measurements - Towards gamma at CLEO-c

    CERN Document Server

    Powell, Andrew

    2010-01-01

    Strategies that utilise the interference effects within B -> DK decays hold great potential for improving our sensitivity to the CKM angle gamma. However, in order to exploit fully this potential, knowledge of parameters associated with the D decay, such as strong-phase differences, are required. This essential information can be obtained from the unique quantum-correlated psi(3770) datasets at CLEO-c. Results of such analyses involving the decay modes D -> Kpi, Kpipi^0, Kpipipi and K^0_Spipi will be presented.

  14. [IM/FM phase delay time measurement method of laser for TDLAS].

    Science.gov (United States)

    Zhang, Chao; Ma, Wei-Guang

    2014-11-01

    The present paper presents an method of using fiber Michelson interferometer to measure the Intensity-frequency (IM/FM) phase delay change of the laser, it could realize the phase delay time measurement, while modulating the laser. Experimental results show that the laser output signal intensity-frequency (IM/FM) phase delay of the laser has some differences from the theoretical value. The proposed method can be used to compensate for real-time signal strength-frequency (IM/FM) phase delay effect on the gas concentration measurement results.

  15. Tissue scattering parameter estimation through scattering phase function measurements by goniometer

    Institute of Scientific and Technical Information of China (English)

    Ying Zhu; Zhihua Ding; Martial Geiser

    2007-01-01

    @@ An automated optical system is built up to perform goniometric measurement of scattering phase function.Measurements of typical samples including monodisperse polystyrene micro-spheres solution, and mutlidisperse polystyrene micro-spheres solution are carried out in a dark room. The possibility of estimating the average particle size of phantom through analyzing its scattering phase function is demonstrated.

  16. Gibbs measures and phase transitions in one-dimensional models

    OpenAIRE

    Mallak, Saed

    2000-01-01

    Ankara : Department of Mathematics and the Institute of Engineering and Sciences of Bilkent University, 2000. Thesis (Ph.D.) -- Bilkent University, 2000. Includes bibliographical references leaves 63-64 In this thesis we study the problem of limit Gibbs measures in one-dimensional models. VVe investigate uniqueness conditions for the limit Gibbs measures for one-dimensional models. VVe construct a one-dimensional model disproving a uniqueness conjecture formulated before for...

  17. Ultrasonic measurement models for imaging with phased arrays

    Science.gov (United States)

    Schmerr, Lester W., Jr.; Engle, Brady J.; Sedov, Alexander; Li, Xiongbing

    2014-02-01

    Ultrasonic imaging measurement models (IMMs) are developed that generate images of flaws by inversion of ultrasonic measurement models. These IMMs are generalizations of the synthetic aperture focusing technique (SAFT) and the total focusing method (TFM). A special case when the flaw is small is shown to generalize physical optics far field inverse scattering (POFFIS) images. The ultrasonic IMMs provide a rational basis for generating and understanding the ultrasonic images produced by delay-and-sum imaging methods.

  18. Lnear Phase FIR Filter on Measuring 3—D Surface

    Institute of Scientific and Technical Information of China (English)

    WANGYunshan; YANGFujun; 等

    1997-01-01

    An optical technology for 3-D surface measurement is se up.The technology,based on a deformed projected grating pattern which carries the 3-D information of the measured object,can automatically and accurately obtain the phase map of a measured object by using a linear-phase FIR filter.In contrast to the 2-D fast Fourier transform technique,it's more than fast.Only one image pattern is sufficient for measuring .The phase map can be processed without assigning fringe orders and making distinction between a depression and an elevation.Theoretical analysis and experimental result are presented.

  19. [Efficiency assessment of preoperative preparatory programs in pediatric patients in dentistry].

    Science.gov (United States)

    Milenin, V V; Tolasov, K R; Ostreikov, I F

    2013-01-01

    Research objective was to compare the efficiency of different preoperative preparatory programs which had been used for anxiety decrease in Pediatric patients before oral cavity sanation with general anaesthesia. Two preparatory programs were used. In the first program patients were informed about the treatment they were undergoing. Patients visited the operating unit and watched the videos about forthcoming procedure (group of Information Technologies (IT), n = 82). The second program included the tutorials (face mask use, acquaintance with equipment alarms etc.) in addition to Information Technologies (group of lnformation Technologies and tutorials (ITT) n = 83). Information Technologies and tutorials were not used in the control group (n = 86). Both used programs were effective. ITT program was the most effective.

  20. Identifying and managing preparatory grief and depression at the end of life.

    Science.gov (United States)

    Periyakoil, Vyjeyanthi S; Hallenbeck, James

    2002-03-01

    Grief and depression present similarly in patients who are dying. Conventional symptoms (e.g., frequent crying, weight loss, thoughts of death) used to assess for depression in these patients may be imprecise because these symptoms are also present in preparatory grief and as a part of the normal dying process. Preparatory grief is experienced by virtually all patients who are dying and can be facilitated with psychosocial support and counseling. Ongoing pharmacotherapy is generally not beneficial and may even be harmful to patients who are grieving. Evidence of disturbed self-esteem, hopelessness, an active desire to die and ruminative thoughts about death and suicide are indicative of depression in patients who are dying. Physicians should have a low threshold for treating depression in patients nearing the end of life because depression is associated with tremendous suffering and poor quality of life.

  1. The measurement of echodirection in a phased-array radar

    NARCIS (Netherlands)

    Rijsdijk, F.B.; Spek, G.A. van der

    1978-01-01

    For a planar-array antenna with a monopulse feed horn, this study describes a simple algorithm for the determination of the direction of target echoes. Antenna pattern measurements of the array indicate that the direction sines of a received wavefront can be independently obtained with one simple

  2. Phase transition traced by conductivity measurements: quantitative analysis

    DEFF Research Database (Denmark)

    Keding, Ralf; Ruessel, Christian; Tauch, Diana

    2008-01-01

    to the electrodes, all in a cylindrical geometry. The electrical resistivity of a sample in the system BaAl2B2O7 was measured during cooling between liquidus temperature (T-l) and transformation temperature (T-g) using a fixed frequency of 3.7 Hz. The melt crystallised in this temperature range during cooling...

  3. Enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm

    Science.gov (United States)

    Wang, Minmin; Du, Guangliang; Zhou, Canlin; Zhang, Chaorui; Si, Shuchun; Li, Hui; Lei, Zhenkun; Li, YanJie

    2017-02-01

    Measuring objects with large reflectivity variations across their surface is one of the open challenges in phase measurement profilometry (PMP). Saturated or dark pixels in the deformed fringe patterns captured by the camera will lead to phase fluctuations and errors. Jiang et al. proposed a high dynamic range real-time three-dimensional (3D) shape measurement method (Jiang et al., 2016) [17] that does not require changing camera exposures. Three inverted phase-shifted fringe patterns are used to complement three regular phase-shifted fringe patterns for phase retrieval whenever any of the regular fringe patterns are saturated. Nonetheless, Jiang's method has some drawbacks: (1) the phases of saturated pixels are estimated by different formulas on a case by case basis; in other words, the method lacks a universal formula; (2) it cannot be extended to the four-step phase-shifting algorithm, because inverted fringe patterns are the repetition of regular fringe patterns; (3) for every pixel in the fringe patterns, only three unsaturated intensity values can be chosen for phase demodulation, leaving the other unsaturated ones idle. We propose a method to enhance high dynamic range 3D shape measurement based on a generalized phase-shifting algorithm, which combines the complementary techniques of inverted and regular fringe patterns with a generalized phase-shifting algorithm. Firstly, two sets of complementary phase-shifted fringe patterns, namely the regular and the inverted fringe patterns, are projected and collected. Then, all unsaturated intensity values at the same camera pixel from two sets of fringe patterns are selected and employed to retrieve the phase using a generalized phase-shifting algorithm. Finally, simulations and experiments are conducted to prove the validity of the proposed method. The results are analyzed and compared with those of Jiang's method, demonstrating that our method not only expands the scope of Jiang's method, but also improves

  4. United States Army Command and General Staff Officers Course Preparatory Curriculum Evaluation

    Science.gov (United States)

    2015-06-12

    retained because of tradition or “institutional lore .”7 7 This is quote from a conversation with Dr...to think that the preparatory course presented to the student body is something created long ago and maintained purely out of institutional lore . Lore ...course, however, are elusive and the course seems to continue based more on lore than necessity. This does not mean that the courses were not or are not

  5. Measurement of reflection phase using thick-gap Fabry-Perot etalon.

    Science.gov (United States)

    Yung, Tsz Kit; Gao, Wensheng; Leung, Ho Ming; Zhao, Qiuling; Wang, Xia; Tam, Wing Yim

    2016-09-10

    We report measurement of the reflection phase of a dielectric (glass)/titanium (Ti) surface in the visible wavelength using a thick-gap Fabry-Perot (FP) interferometry technique. Using a two-beam interference model for the reflection peaks and troughs of the FP etalon, we obtain the air-gap spacing of the etalon and, more importantly, the reflection phase of the etalon substrate. We find systematic dependence of the as-measured reflection phase on the air-gap spacing due to the numerical aperture effect of the measuring objective. However, the relative reflection phase of Ti with respect to glass is independent of the air-gap spacing. As a demonstration of our approach in the optical characterization of small metamaterial samples, we also measure the reflection phase of a micron-sized 2D Au sawtooth nanoarray. The experiment is in good agreement with the model simulation.

  6. Measurement of the Aharonov-Casher geometric phase with a separated-arm atom interferometer

    CERN Document Server

    Gillot, Jonathan; Gauguet, Alexandre; Vigué, Jacques; Büchner, Matthias

    2013-01-01

    In this letter, we report a measurement of the Aharonov-Casher (AC) geometric phase with our lithium atom interferometer. The AC phase appears when a particle carrying a magnetic dipole propagates in a transverse electric field. The first measurement of the AC phase was done with a neutron interferometer in 1989 by A. Cimmino \\textit{et al.} (Phys. Rev. Lett. \\textbf{63}, 380, 1989) and all the following experiments were done with Ramsey or Ramsey-Bord\\'e interferometers with molecules or atoms. In our experiment, we use lithium atoms pumped in a single hyperfine-Zeeman sublevel and we measure the AC-phase by applying opposite electric fields on the two interferometer arms. Our measurements are in good agreement with the expected theoretical values and they prove that this phase is independent of the atom velocity.

  7. Measurement of the Aharonov-Casher geometric phase with a separated-arm atom interferometer

    Science.gov (United States)

    Gillot, Jonathan; Lepoutre, Steven; Gauguet, Alexandre; Vigué, Jacques; Büchner, Matthias

    2014-06-01

    In this letter, we report a measurement of the Aharonov-Casher (AC) geometric phase with our lithium atom interferometer. The AC phase appears when a particle carrying a magnetic dipole propagates in a transverse electric field. The first measurement of the AC phase was done with a neutron interferometer in 1989 by Cimmino et al. [Phys. Rev. Lett. 63, 380 (1989)] and all the following experiments were done with Ramsey or Ramsey-Bordé interferometers with molecules or atoms. In our experiment, we use lithium atoms pumped in a single hyperfine-Zeeman sublevel and we measure the AC-phase by applying opposite electric fields on the two interferometer arms. Our measurements are in good agreement with the expected theoretical values and they also provide a further test of the independence of the AC phase with the atom velocity.

  8. Evaluation of absolute phase for 3D profile measurement using fringe projection

    Institute of Scientific and Technical Information of China (English)

    Mengtao Huang; Zhuangde Jiang; Bing Li; Suping Fang

    2006-01-01

    A new method of absolute phase evaluation for three-dimensional (3D) profile measurement using fringe projection is presented, which combines the gray code and the phase shift technique. Two kinds of fringe patterns are projected onto the object surface respectively, one is sinusoidal intensity distribution used for phase demodulation and the other is gray code fringe pattern for unwrapping. These images are acquired by camera and stored into computer. The absolute phase is obtained by analyzing these images. The validity of this method is verified experimentally. The method is superior to other phase unwrapping methods.

  9. [The preparatory education of electronic patient record for nursing students before practical nursing training].

    Science.gov (United States)

    Nagamatsu, Yuki; Kanayama, Masako; Yoshioka, Makoto; Anan, Ayumi; Takeyama, Yumiko; Kubo, Yoko; Shibata, Hiroko; Kawamoto, Rieko

    2006-12-01

    Preparatory education has been provided for both nursing students and teachers to understand the electronic patient record (EPR) since 2004 when EPR was introduced to the hospitals where students are allocated to undertake their work experience. First, the training and management board contacted our medical information department for an appointment and sent us a working group. They taught the nursing training staff how to use EPR and how to assign students to the proper patient record in the EPR system. Second, as preparatory education for the students, they explained the procedure for the use of EPR and the protection of personal information. Students practiced with training in the EPR system, focusing on the functions which are used frequently in practical tasks. As a result of this preparatory education, students understood the protection of personal information very well, although their understanding of the operation and management of the equipment was relatively poor and adversely affected their practice. We need to review our education contents more often. We also need to examine the present state of understanding of EPR and the problems of teaching in practical nursing training.

  10. Vibration-displacement measurement employing phase tracking technique with an optical fiber Michelson interferometer

    Science.gov (United States)

    Ma, Sen; Li, Zhaoying; Xie, Fang

    2011-11-01

    A vibration-displacement measurement system by tracking the phase variation of an optical fiber Michelson interferometer with an electronic feedback loop is presented. The measurement system includes an electronic feedback loop which is used to track the phase variation induced by the measured vibration-displacement and provides a sense of direction of the displacement simultaneously. The measurement system is designed to be capable of measuring vibration-displacement with frequencies up to 200Hz and the measurement resolution can reach 13nm.

  11. Phase effects in guided mode resonances II: measuring the angular phase of a surface plasmon polariton

    Science.gov (United States)

    Theisen, M. J.; Brown, T. G.

    2015-02-01

    We show how the phase of a resonant interaction between a focused beam and a guided mode can be directly observed in a pupil imaging experiment, in which the irradiance leaving the pupil of a standard microscope is relayed to an image sensor through a combination Wollaston prism, calcite beam splitter and polarizer. We apply the method to the observation of a surface plasmon polariton resonance excited in a corrugated silver film fabricated using electron beam lithography. We discuss how this particular imaging configuration could be adapted for applications in plasmonic optical sensing.

  12. Measurement of Allan variance and phase noise at fractions of a millihertz

    Science.gov (United States)

    Conroy, Bruce L.; Le, Duc

    1990-01-01

    Although the measurement of Allan variance of oscillators is well documented, there is a need for a simplified system for finding the degradation of phase noise and Allan variance step-by-step through a system. This article describes an instrumentation system for simultaneous measurement of additive phase noise and degradation in Allan variance through a transmitter system. Also included are measurements of a 20-kW X-band transmitter showing the effect of adding a pass tube regulator.

  13. Measurement-enhanced determination of BEC phase diagrams

    DEFF Research Database (Denmark)

    Bason, Mark G.; Heck, Robert; Napolitano, Mario

    2017-01-01

    We demonstrate how dispersive atom number measurements during evaporative cooling can be used for enhanced determination of the non-linear parameter dependence of the transition to a Bose-Einstein condensate (BEC). Our analysis demonstrates that conventional averaging of shot-to-shot fluctuations...... introduces systematic errors and reduces precision in comparison with our method. We furthermore compare in-situ images from dispersive probing of a BEC with corresponding absorption images in time-of-flight. This allows for the determination of the transition point in a single experimental realization...

  14. Photonic Delay-line Phase Noise Measurement System

    Science.gov (United States)

    2011-09-01

    combined 500-m and 6-km delay-line measurement system. Noise floor data are shown for the system with and without an EDFA . The laser power was 10 dBm...The optical power into the photodiode was 0 dBm without the EDFA and 11 dBm with it...data are shown for the system with and without an EDFA as well as with a high-power laser. The output optical powers of the low and high-power

  15. Measurement of in-plane strain with dual beam spatial phase-shift digital shearography

    Science.gov (United States)

    Xie, Xin; Chen, Xu; Li, Junrui; Wang, Yonghong; Yang, Lianxiang

    2015-11-01

    Full-field in-plane strain measurement under dynamic loading by digital shearography remains a big challenge in practice. A phase measurement for in-plane strain information within one time frame has to be achieved to solve this problem. This paper presents a dual beam spatial phase-shift digital shearography system with the capacity to measure phase distribution corresponding to in-plane strain information within a single time frame. Two laser beams with different wavelengths are symmetrically arranged to illuminate the object under test, and two cameras with corresponding filters, which enable simultaneous recording of two shearograms, are utilized for data acquisition. The phase information from the recorded shearograms, which corresponds to the in-plane strain, is evaluated by the spatial phase-shift method. The spatial phase-shift shearography system realizes a measurement of the in-plane strain through the introduction of the spatial phase-shift technique, using one frame after the loading and one frame before loading. This paper presents the theory of the spatial phase-shift digital shearography for in-plane strain measurement and its derivation, experimental results, and the technique’s potential.

  16. On the measurements of the moon's infrared temperature and its relation to the phase angle

    Science.gov (United States)

    Maghrabi, A. H.

    2014-01-01

    Radiometric measurements of the thermal radiation originating from the moon's surface were obtained using an infrared detector operating at wavelengths between 8 and 14 μm. The measurements cover a full moon cycle. The variation of the moon's temperature with the lunar phase angle was established. The lunar temperatures were 391 ± 2.0 K for the full moon, 240 ± 3.5 K for the first quarter, and 236 ± 3 K for the last quarter. For the rest of the phase angles, the lunar temperature varied between 170 and 380 K. Our results are comparable with those obtained previously at these phase angles. For the new moon phase, the obtained temperature was between 120 and 133 K. With the exception of the new moon phase, our measurements at all the phase angles were consistent with those obtained using Earth-based data and those obtained by the Diviner experiment and the Clementine spacecraft. At the new phase, our measurements were comparable with those obtained from the ground but were significantly higher than those obtained by the Diviner and Clementine data. We attribute this inconsistency to either the calibration curve of our detector, which does not perform well at very low temperatures, or to infrared emission from the atmosphere. A simple linear model to predict the lunar temperature as a function of the phase angle was proposed. The experimental errors that affect the measured temperatures are discussed.

  17. Measurement of the amplitude and phase transfer functions of an optical modulator using a heterodyne technique

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper

    2001-01-01

    We present a new technique that measures the full amplitude and phase transfer curves of the modulator as a function of the applied bias, from which the small signal α-parameter can be calculated. The technique measures the amplitude and phase transfer functions simultaneously and directly......, compared to techniques where a time-consuming data analysis is necessary to calculate the a-parameter and an additional measurement is necessary to estimate the phase. Additionally, the chirp profile for all operation points can be calculated....

  18. On entropy change measurements around first order phase transitions in caloric materials

    Science.gov (United States)

    Caron, Luana; Doan, Nguyen Ba; Ranno, Laurent

    2017-02-01

    In this work we discuss the measurement protocols for indirect determination of the isothermal entropy change associated with first order phase transitions in caloric materials. The magneto-structural phase transitions giving rise to giant magnetocaloric effects in Cu-doped MnAs and FeRh are used as case studies to exemplify how badly designed protocols may affect isothermal measurements and lead to incorrect entropy change estimations. Isothermal measurement protocols which allow correct assessment of the entropy change around first order phase transitions in both direct and inverse cases are presented.

  19. Increasing Functional Variability in the Preparatory Phase of the Takeoff Improves Elite Springboard Diving Performance

    Science.gov (United States)

    Barris, Sian; Farrow, Damian; Davids, Keith

    2014-01-01

    Purpose: Previous research demonstrating that specific performance outcome goals can be achieved in different ways is functionally significant for springboard divers whose performance environment can vary extensively. This body of work raises questions about the traditional approach of balking (terminating the takeoff) by elite divers aiming to…

  20. Vibration-displacement measurements based on the phase tracking of an optical fiber Michelson interferometer

    Science.gov (United States)

    Xie, Fang; Chen, Zhimin; Ren, Junyu; Feng, Qibo

    2009-04-01

    A vibration-displacement measurement system based on tracking the phase variation of an optical fiber Michelson interferometer with electronic feedback loops is presented. The measurement system includes two sets of electronic feedback loops. One electronic feedback loop is used to compensate for the low frequency drifts in the phase of the interferometric signal that results from environmental disturbances, while the other one is used to track the phase variation induced by the measured vibration displacement, and thus realize the measurement of the vibration displacement and provide a sense of direction of the displacement simultaneously. The measurement system is designed to be capable of measuring vibration displacement with frequencies ranging from 1.5 to 200 Hz, with measurement resolution reaching 13 nm.

  1. A method of measurement of the phase noise of stable oscillators by use of FFT technique

    Science.gov (United States)

    Hahn, Stefan; Hussain, Sabah

    A method of measurement of the power density spectrum of phase noise of stable oscillators is presented. The oscillator under test and the reference are beating with a very low beat frequency. So the use of the phase locking loop is avoided. The time gated phase noise is converted into a digital signal and an FFT algoritm is used to compute the power spectrum. The experimental verification of the method is presented.

  2. Direct loop gain and bandwidth measurement of phase-locked loop

    Science.gov (United States)

    Ye, P.; Ren, R.; Kou, Y.; Sun, F.; Hu, J.; Chen, S.; Hou, D.

    2017-08-01

    A simple and robust technique for directly measuring the loop gain and bandwidth of a phase-locked loop (PLL) is proposed. This technique can be used for the real-time measurement of the real loop gain in a closed PLL without breaking its locking state. The agreement of the measured loop gain and theoretical calculations proves the validity of the proposed measurement technique. This technique with a simple configuration can be easily expanded to other phase-locking systems whose loop gain and bandwidth should be measured precisely.

  3. Boot cAMP: educational outcomes after 4 successive years of preparatory simulation-based training at onset of internship.

    Science.gov (United States)

    Fernandez, Gladys L; Page, David W; Coe, Nicholas P; Lee, Patrick C; Patterson, Lisa A; Skylizard, Loki; St Louis, Myron; Amaral, Marisa H; Wait, Richard B; Seymour, Neal E

    2012-01-01

    Preparatory training for new trainees beginning residency has been used by a variety of programs across the country. To improve the clinical orientation process for our new postgraduate year (PGY)-1 residents, we developed an intensive preparatory training curriculum inclusive of cognitive and procedural skills, training activities considered essential for early PGY-1 clinical management. We define our surgical PGY-1 Boot Camp as preparatory simulation-based training implemented at the onset of internship for introduction of skills necessary for basic surgical patient problem assessment and management. This orientation process includes exposure to simulated patient care encounters and technical skills training essential to new resident education. We report educational results of 4 successive years of Boot Camp training. Results were analyzed to determine if performance evidenced at onset of training was predictive of later educational outcomes. Learners were PGY-1 residents, in both categorical and preliminary positions, at our medium-sized surgical residency program. Over a 4-year period, from July 2007 to July 2010, all 30 PGY-1 residents starting surgical residency at our institution underwent specific preparatory didactic and skills training over a 9-week period. This consisted of mandatory weekly 1-hour and 3-hour sessions in the Simulation Center, representing a 4-fold increase in time in simulation laboratory training compared with the remainder of the year. Training occurred in 8 procedural skills areas (instrument use, knot-tying, suturing, laparoscopic skills, airway management, cardiopulmonary resuscitation, central venous catheter, and chest tube insertion) and in simulated patient care (shock, surgical emergencies, and respiratory, cardiac, and trauma management) using a variety of high- and low-tech simulation platforms. Faculty and senior residents served as instructors. All educational activities were structured to include preparatory materials

  4. Measurement of Root-Mean-Square Phase Errors in Arrayed Waveguide Gratings

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xiao-Ping; CHU Yuan-Liang; ZHAO Wei; ZHANG Han-Yi; GUO Yi-Li

    2004-01-01

    @@ The interference-based method to measure the root-mean-square phase errors in SiO2-based arrayed waveguide gratings (AWGs) is presented. The experimental results show that the rms phase error of the tested AWG is 0. 72 rad.

  5. Estimation of MIMO channel capacity from phase-noise impaired measurements

    DEFF Research Database (Denmark)

    Pedersen, Troels; Yin, Xuefeng; Fleury, Bernard Henri

    2008-01-01

    phase noise samples affecting measurement samples collected with real TDMMIMO channel sounders are correlated. In this contribution a capacity estimator that accounts for the phase noise correlation is proposed. The estimator is based on a linear minimum mean square error estimate of the MIMO channel...

  6. Variational principle and phase space measure in non-canonical coordinates

    Directory of Open Access Journals (Sweden)

    Sergi, A

    2005-11-01

    Full Text Available Non-canonical equations of motion are derived from a variational principle written in symplectic form. The invariant measure of phase space and the covariant expression for the entropy are derived from non-canonical transformations of coordinates. This shows that the geometry of non-canonical phase space is non trivial even if dynamics has no compressibility.

  7. Residual phase noise measurements of the input section in a receiver

    Energy Technology Data Exchange (ETDEWEB)

    Mavric, Uros; Chase, Brian; /Fermilab

    2007-10-01

    If not designed properly, the input section of an analog down-converter can introduce phase noise that can prevail over other noise sources in the system. In the paper we present residual phase noise measurements of a simplified input section of a classical receiver that is composed of various commercially available mixers and driven by an LO amplifier.

  8. Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows.

    NARCIS (Netherlands)

    Nieuwland, J.J.; Meijer, R.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    1996-01-01

    Several techniques reported in the literature for measuring solids concentration and solids velocity in (dense) gas-solid two-phase flow have been briefly reviewed. An optical measuring system, based on detection of light reflected by the suspended particles, has been developed to measure local soli

  9. Fast algorithms for calculating laser wavefront phase compensation given noisy measurements of phase gradient

    Science.gov (United States)

    Gavel, Don

    1989-09-01

    Laser light propagating through atmosphere will become distorted as a result of the changing index of refraction along the light path. Wavefront distortions can be actively compensated using adaptive optic systems, which sense the wavefront aberations and compensate by changing the shape of a reflecting surface. Corrections must be done rapidly in order to keep up with the variations in the atmosphere. Numerically, the calculation of the correcting surface is a least-squares fit problem. However, since a typical adaptive optic system has a large number of actuators and sensors, the ordinary solution methods, such as Gaussian elimination, are infeasible for real time application. Instead, advantage must be taken of the structure and sparseness of the equations in order to speed up the calculation. The algorithm proposed requires only O(nq) calculation steps and uses only O(n) memory storage, where n is the total number of actuators and q is the influence width of a single actuator. The derivation of the proposed algorithm, proofs of convergence, and results of several test runs are presented. The algorithm was incorporated into Y division's ORACLE simulation code where it is used to calculate the phase conjugate surfaces necessary to precompensate a high powered laser beam for atmospheric propagation.

  10. Directional spectrum of ocean waves from array measurements using phase/time/path difference methods

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.

    Wave direction has for the first time been consistently, accurately and unambiguously evaluated from array measurements using the phase/time/path difference (PTPD) methods of Esteva in case of polygonal arrays and Borgman in case of linear arrays...

  11. Concurrent two-phase downflow measurement with an induced voltage electro-magnetic flowmeter

    OpenAIRE

    Opara, Uroš; Bajsič, Ivan

    2015-01-01

    With a set of polynomial approximations a possibility is shown of the use of an induced voltage electromagnetic flowmeter in the area of measuring cocurrent two-phase downflow in tubes. The principle of the meter operation remains hereby unchanged

  12. Sinusoidal Phase-Modulating Fabry-Perot Interferometer for Angular Displacement Measurement

    Institute of Scientific and Technical Information of China (English)

    Caini Zhang; Xiangzhao Wang

    2003-01-01

    In this paper, a sinusoidal phase-modulating Fabry-Perot interferometer is proposed to measure angular displacement.The usefulness of the interferometer is demonstrated by simulations and experiments.

  13. Femtosecond precision measurement of laser-rf phase jitter in a photocathode rf gun

    Science.gov (United States)

    Shi, Libing; Zhao, Lingrong; Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhu, Pengfei; Xiang, Dao

    2017-03-01

    We report on the measurement of the laser-rf phase jitter in a photocathode rf gun with femtosecond precision. In this experiment four laser pulses with equal separation are used to produce electron bunch trains; then the laser-rf phase jitter is obtained by measuring the variations of the electron bunch spacing with an rf deflector. Furthermore, we show that when the gun and the deflector are powered by the same rf source, it is possible to obtain the laser-rf phase jitter in the gun through measurement of the beam-rf phase jitter in the deflector. Based on these measurements, we propose an effective time-stamping method that may be applied in MeV ultrafast electron diffraction facilities to enhance the temporal resolution.

  14. Sinusoidal Phase-Modulating Fabry-Perot Interferometer for Angular Displacement Measurement

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, a sinusoidal phase-modulating Fabry-Perot interferometer is proposed to measure angular displacement. The usefulness of the interferometer is demonstrated by simulations and experiments.

  15. Analysis of Phase Evaluation Algorithms in an Interferometric Method for Static Deformation Measurement

    Directory of Open Access Journals (Sweden)

    J. Novák

    2002-01-01

    Full Text Available This article describes and analyses an interferometric method for measuring displacements and deformation. The method can be used for a very accurate evaluation of the change in the surface shape of structures used in industry. The paper proposes several multistep phase calculation algorithms and describes an automatic evaluation process using the measurement technique. A complex analysis is also performed of various factors that can have a negative effect on the practical measurement and evaluation process. An analysis is made of the proposed multistep phase calculation algorithms using the proposed error model. It is shown that the resulting phase measurement errors can be effectively reduced by using suitable phase calculation algorithms. The analysis can be applied for a complex comparison of the accuracy and stability of such algorithms.

  16. Improving the phase measurement by the apodization filter in the digital holography

    Science.gov (United States)

    Chang, Shifeng; Wang, Dayong; Wang, Yunxin; Zhao, Jie; Rong, Lu

    2012-11-01

    Due to the finite size of the hologram aperture in digital holography, high frequency intensity and phase fluctuations along the edges of the images, which reduce the precision of phase measurement. In this paper, the apodization filters are applied to improve the phase measurement in the digital holography. Firstly, the experimental setup of the lensless Fourier transform digital holography is built, where the sample is a standard phase grating with the grating constant of 300μm and the depth of 150nm. Then, apodization filters are applied to phase measurement of the sample with three kinds of the window functions: Tukey window, Hanning window and Blackman window, respectively. Finally, the results were compared to the detection data given by the commercial white-light interferometer. It is shown that aperture diffraction effects can be reduced by the digital apodization, and the phase measurement with the apodization is more accurate than in the unapodized case. Meanwhile, the Blackman window function produces better effect than the other two window functions in the measurement of the standard phase grating.

  17. Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States

    Institute of Scientific and Technical Information of China (English)

    HOU Shen-Yong; YANG Kuo

    2011-01-01

    @@ A class of measurement phase operators of dual-mode is defined and their properties in a class of entangle coherent states are investigated.Numerical results indicate that the entangle coherent states display some non-classical squeezed effects.%A class of measurement phase operators of dual-mode is defined and their properties in a class of entangle coherent states are investigated. Numerical results indicate that the entangle coherent states display some non-classical squeezed effects.

  18. Validation of EMC near-field scanning amplitude and phase measurement data

    DEFF Research Database (Denmark)

    Mynster, Anders P.; Sørensen, Morten

    2012-01-01

    A frequency selection and data validation procedure is presented. It shows that using data from the reference channel it makes possible to estimate the validity of the measured data from an EMC near-field scan with phase on active circuits.......A frequency selection and data validation procedure is presented. It shows that using data from the reference channel it makes possible to estimate the validity of the measured data from an EMC near-field scan with phase on active circuits....

  19. Frequency-resolved noise figure measurements of phase (in)sensitive fiber optical parametric amplifiers.

    Science.gov (United States)

    Malik, R; Kumpera, A; Lorences-Riesgo, A; Andrekson, P A; Karlsson, M

    2014-11-17

    We measure the frequency-resolved noise figure of fiber optical parametric amplifiers both in phase-insensitive and phase-sensitive modes in the frequency range from 0.03 to 3 GHz. We also measure the variation in noise figure due to the degradation in pump optical signal to noise ratio and also as a function of the input signal powers. Noise figure degradation due to stimulated Brillouin scattering is observed.

  20. Application of length vernier in phase coincidence detection and precision frequency measurement.

    Science.gov (United States)

    Miao, Miao; Wei, Zhou; Bin, Wang

    2012-02-01

    For comparison of arbitrary frequency signals, the paper proposed two levels of length vernier based on the time-space relationship are used in three levels of phase coincidence detecting circuits to extract the phase coincidence information by proper logic calculation. The length∕phase of each vernier is respectively corresponding to the accuracy and the resolution of detecting circuit. The time-space relationship is based on high-stability, high-accuracy, and high-speed of signal transmission. The method is effective to reduce the fuzzy region in the phase coincidence information and reach a higher measuring precision.

  1. Low noise buffer amplifiers and buffered phase comparators for precise time and frequency measurement and distribution

    Science.gov (United States)

    Eichinger, R. A.; Dachel, P.; Miller, W. H.; Ingold, J. S.

    1982-01-01

    Extremely low noise, high performance, wideband buffer amplifiers and buffered phase comparators were developed. These buffer amplifiers are designed to distribute reference frequencies from 30 KHz to 45 MHz from a hydrogen maser without degrading the hydrogen maser's performance. The buffered phase comparators are designed to intercompare the phase of state of the art hydrogen masers without adding any significant measurement system noise. These devices have a 27 femtosecond phase stability floor and are stable to better than one picosecond for long periods of time. Their temperature coefficient is less than one picosecond per degree C, and they have shown virtually no voltage coefficients.

  2. Quantum State Reduction by Matter-Phase-Related Measurements in Optical Lattices

    CERN Document Server

    Kozlowski, Wojciech; Mekhov, Igor B

    2016-01-01

    A many-body atomic system coupled to quantized light is subject to weak measurement. Instead of coupling light to the on-site density, we consider the quantum backaction due to the measurement of matter-phase-related variables such as global phase coherence. We show how this unconventional approach opens up new opportunities to affect system evolution and demonstrate how this can lead to a new class of measurement projections, thus extending the measurement postulate for the case of strong competition with the system's own evolution.

  3. Enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm

    CERN Document Server

    Wang, Minmin; Zhou, Canlin; Zhang, Chaorui; Si, Shuchun; Li, Hui; Lei, Zhenkun; Li, YanJie

    2016-01-01

    It is a challenge for Phase Measurement Profilometry (PMP) to measure objects with a large range of reflectivity variation across the surface. Saturated or dark pixels in the deformed fringe patterns captured by the camera will lead to phase fluctuations and errors. Jiang et al. proposed a high dynamic range real-time 3D shape measurement method without changing camera exposures. Three inverted phase-shifted fringe patterns are used to complement three regular phase-shifted fringe patterns for phase retrieval when any of the regular fringe patterns are saturated. But Jiang's method still has some drawbacks: (1) The phases in saturated pixels are respectively estimated by different formulas for different cases. It is shortage of an universal formula; (2) it cannot be extended to four-step phase-shifting algorithm because inverted fringe patterns are the repetition of regular fringe patterns; (3) only three unsaturated intensity values at every pixel of fringe patterns are chosen for phase demodulation, lying i...

  4. Eddy currents in the anisotropy of out-of-phase magnetic susceptibility measurement - A model study

    Science.gov (United States)

    Jezek, Josef; Hrouda, Frantisek

    2016-04-01

    Analytical solutions of Maxwell equations for eddy currents caused by AC field in a conductive sphere, known from 1950s, provide a general formula for magnetic susceptibility. It contains the parameters describing the sphere (its size, conductivity and permeability), surrounding medium (permeability) and the applied field (frequency). The formula is complex and without numerical evaluation it is difficult to distinguish the real (in-phase) and imaginary (out-of-phase) part of susceptibility. Representing all the parameters by only two, relative permeability (sphere vs. medium) and skin ratio (summarizing the effect of sphere size, conductivity and permeability, and frequency of the field), we derive approximate formulas for both phases and the phase angle. These are valid for a reasonable range of parameters (from rock magnetism point of view) and enable us to study their influence. The in-phase susceptibility depends very weakly on the fourth power of the skin ratio while the out-of-phase susceptibility depends more strongly on its second power. The coefficients of the dependence are expressed by means of relative permeability. The approximations of in-phase and out-of-phase susceptibilities provide a possibility to assess possible effects of eddy currents in rocks in case of low content of conductive minerals and solve problems of the type by which size one piece of a mineral in the measured sample can produce a phase shift that is observed by measurement. Examples of magnetite and pyrrhotite are given.

  5. Superluminescent diode interferometer using sinusoidal phase modulation for step-profile measurement.

    Science.gov (United States)

    Sasaki, O; Ikeada, Y; Suzuki, T

    1998-08-01

    We propose an interferometer in which the relationship between the degree of coherence (DCH) and the optical path difference (OPD) is utilized for determining an OPD longer than a wavelength. A superluminescent diode is employed as the source of the interferometer, and sinusoidal phase-modulating interferometry is used to detect the DCH and the phase of the interference signal. The combination of the OPD determined from the DCH and the phase of an interference signal enables us to measure an OPD longer than a wavelength with a high accuracy of a few nanometers. Experimental results show clearly the usefulness of the interferometer for a step-profile measurement.

  6. Quantitative measurement of phase variation amplitude of ultrasonic diffraction grating based on diffraction spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Meiyan, E-mail: yphantomohive@gmail.com; Zeng, Yingzhi; Huang, Zuohua, E-mail: zuohuah@163.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China)

    2014-09-15

    A new method based on diffraction spectral analysis is proposed for the quantitative measurement of the phase variation amplitude of an ultrasonic diffraction grating. For a traveling wave, the phase variation amplitude of the grating depends on the intensity of the zeroth- and first-order diffraction waves. By contrast, for a standing wave, this amplitude depends on the intensity of the zeroth-, first-, and second-order diffraction waves. The proposed method is verified experimentally. The measured phase variation amplitude ranges from 0 to 2π, with a relative error of approximately 5%. A nearly linear relation exists between the phase variation amplitude and driving voltage. Our proposed method can also be applied to ordinary sinusoidal phase grating.

  7. Non-invasive temperature measurement by using phase changes in electromagnetic waves in a cavity resonator.

    Science.gov (United States)

    Ishihara, Yasutoshi; Ohwada, Hiroshi

    2011-01-01

    To improve the efficacy of hyperthermia treatment, a novel method of non-invasive measurement of changes in body temperature is proposed. The proposed method is based on phase changes with temperature in electromagnetic waves in a heating applicator and the temperature dependence of the dielectric constant. An image of the temperature change inside a body is reconstructed by applying a computed tomography algorithm. This method can be combined easily with a heating applicator based on a cavity resonator and can be used to treat cancer effectively while non-invasively monitoring the heating effect. In this paper the phase change distributions of electromagnetic waves with temperature changes are measured experimentally, and the accuracy of reconstruction is discussed. The phase change distribution is reconstructed by using a prototype system with a rectangular aluminum cavity resonator that can be rotated 360° around an axis of rotation. To make measurements without disturbing the electromagnetic field distribution, an optical electric field sensor is used. The phase change distribution is reconstructed from 4-projection data by using a simple back-projection algorithm. The paper demonstrates that the phase change distribution can be reconstructed. The difference between phase changes obtained experimentally and by numerical analysis is about 20% and is related mainly to the limited signal detection sensitivity of electromagnetic waves. A temperature change inside an object can be reconstructed from the measured phase changes in a cavity resonator.

  8. Extension of Measurable Region of Object Vibration Phasor in Phase-Modulated TV Holographic Interferometry: Experiment

    Science.gov (United States)

    Kojima, Kentaro; Miyazaki, Takeshi; Nojima, Ken; Yamamoto, Hirotaka; Sasaki, Yasuhito

    2004-03-01

    In this paper, we present an experiment based on the previously reported theory concerning the extension of the measurable region of object vibration phasor in phase-modulated TV holographic interferometry. This theory is based on the following facts: (1) the modulation of speckle interference image is proportional to the Bessel function, (2) its argument indicates the distance between the phasors of phase modulation and object vibration in the complex plane, and (3) the modulation increases as the Bessel function argument approaches zero. The phase modulation phasor is scanned, and at each pixel, one seeks the phase modulation phasor producing the maximum modulation. From the modulations produced by four phase modulation phasors adjacent to the sought phase modulation phasor, the object vibration phasor can be calculated. We analyzed the vibration of a phosphor-bronze rectangular plate with free sides, which were vibrated at the center by a piezoelectric transducer (PZT). Twenty-one phase modulation phasors were employed. The results of measurement were presented, and it was confirmed that the object vibration phasor can be measured in the wider region based on the theory concerning the extension of the measurable region.

  9. Concentration and Velocity Measurements of Both Phases in Liquid-Solid Slurries

    Science.gov (United States)

    Altobelli, Stephen; Hill, Kimberly; Caprihan, Arvind

    2007-03-01

    Natural and industrial slurry flows abound. They are difficult to calculate and to measure. We demonstrate a simple technique for studying steady slurries. We previously used time-of-flight techniques to study pressure driven slurry flow in pipes. Only the continuous phase velocity and concentration fields were measured. The discrete phase concentration was inferred. In slurries composed of spherical, oil-filled pills and poly-methyl-siloxane oils, we were able to use inversion nulling to measure the concentration and velocity fields of both phases. Pills are available in 1-5mm diameter and silicone oils are available in a wide range of viscosities, so a range of flows can be studied. We demonstrated the technique in horizontal, rotating cylinder flows. We combined two tried and true methods to do these experiments. The first used the difference in T1 to select between phases. The second used gradient waveforms with controlled first moments to produce velocity dependent phase shifts. One novel processing method was developed that allows us to use static continuous phase measurements to reference both the continuous and discrete phase velocity images. ?

  10. Phase diagram and thermal expansion measurements on the system URu2-xFexSi2.

    Science.gov (United States)

    Ran, Sheng; Wolowiec, Christian T; Jeon, Inho; Pouse, Naveen; Kanchanavatee, Noravee; White, Benjamin D; Huang, Kevin; Martien, Dinesh; DaPron, Tyler; Snow, David; Williamsen, Mark; Spagna, Stefano; Riseborough, Peter S; Maple, M Brian

    2016-11-22

    Thermal expansion, electrical resistivity, magnetization, and specific heat measurements were performed on URu2-xFexSi2 single crystals for various values of Fe concentration x in both the hidden-order (HO) and large-moment antiferromagnetic (LMAFM) regions of the phase diagram. Our results show that the paramagnetic (PM) to HO and LMAFM phase transitions are manifested differently in the thermal expansion coefficient. The uniaxial pressure derivatives of the HO/LMAFM transition temperature T0 change dramatically when crossing from the HO to the LMAFM phase. The energy gap also changes consistently when crossing the phase boundary. In addition, for Fe concentrations at xc ≈ 0.1, we observe two features in the thermal expansion upon cooling, one that appears to be associated with the transition from the PM to the HO phase and another one at lower temperature that may be due to the transition from the HO to the LMAFM phase.

  11. Electric Field Measurement of the Living Human Body for Biomedical Applications: Phase Measurement of the Electric Field Intensity

    Directory of Open Access Journals (Sweden)

    Ichiro Hieda

    2013-01-01

    Full Text Available The authors are developing a technique for conducting measurements inside the human body by applying a weak electric field at a radio frequency (RF. Low RF power is fed to a small antenna, and a similar antenna located 15–50 cm away measures the electric field intensity. Although the resolution of the method is low, it is simple, safe, cost-effective, and able to be used for biomedical applications. One of the technical issues suggested by the authors' previous studies was that the signal pattern acquired from measurement of a human body was essentially different from that acquired from a phantom. To trace the causes of this difference, the accuracy of the phase measurements was improved. This paper describes the new experimental system that can measure the signal phase and amplitude and reports the results of experiments measuring a human body and a phantom. The results were analyzed and then discussed in terms of their contribution to the phase measurement.

  12. Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography

    Science.gov (United States)

    Oyama, Seiji; Yasuda, Jun; Hanayama, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    A fast and accurate measurement of an ultrasound field with various exposure sequences is necessary to ensure the efficacy and safety of various ultrasound applications in medicine. The most common method used to measure an ultrasound pressure field, that is, hydrophone scanning, requires a long scanning time and potentially disturbs the field. This may limit the efficiency of developing applications of ultrasound. In this study, an optical phase contrast method enabling fast and noninterfering measurements is proposed. In this method, the modulated phase of light caused by the focused ultrasound pressure field is measured. Then, a computed tomography (CT) algorithm used to quantitatively reconstruct a three-dimensional (3D) pressure field is applied. For a high-intensity focused ultrasound field, a new approach that combines the optical phase contrast method and acoustic holography was attempted. First, the optical measurement of focused ultrasound was rapidly performed over the field near a transducer. Second, the nonlinear propagation of the measured ultrasound was simulated. The result of the new approach agreed well with that of the measurement using a hydrophone and was improved from that of the phase contrast method alone with phase unwrapping.

  13. Quantitative and dynamic measurements of biological fresh samples with X-ray phase contrast tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Masato, E-mail: hoshino@spring8.or.jp; Uesugi, Kentaro [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Tsukube, Takuro [Japanese Red Cross Kobe Hospital, 1-3-1 Wakinohamakaigandori, Chuo-ku, Kobe, Hyogo 651-0073 (Japan); Yagi, Naoto [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2014-10-08

    Quantitative measurements of biological fresh samples based on three-dimensional densitometry using X-ray phase contrast tomography are presented. X-ray phase contrast tomography using a Talbot grating interferometer was applied to biological fresh samples which were not fixed by any fixatives. To achieve a high-throughput measurement for the fresh samples the X-ray phase contrast tomography measurement procedure was improved. The three-dimensional structure of a fresh mouse fetus was clearly depicted as a mass density map using X-ray phase contrast tomography. The mouse fetus measured in the fresh state was then fixed by formalin and measured in the fixed state. The influence of the formalin fixation on soft tissue was quantitatively evaluated by comparing the fresh and fixed samples. X-ray phase contrast tomography was also applied to the dynamic measurement of a biological fresh sample. Morphological changes of a ring-shaped fresh pig aorta were measured tomographically under different degrees of stretching.

  14. Advanced two-way satellite frequency transfer by carrier-phase and carrier-frequency measurements

    Science.gov (United States)

    Fujieda, Miho; Gotoh, Tadahiro; Amagai, Jun

    2016-06-01

    Carrier-phase measurement is one of the ways to improve the measurement resolution of two-way satellite frequency transfer. We introduce two possible methods for carrier-phase measurement: direct carrier-phase detection identified by Two-Way Carrier-Phase (TWCP) and the use of carrier-frequency information identified by Two-Way Carrier Frequency (TWCF). We performed the former using an arbitrary waveform generator and an analog-to-digital sampler and the latter using a conventional modem. The TWCF measurement using the modem had a resolution of 10-13 and the result agreed with that obtained by GPS carrier-phase frequency transfer in a 1500 km baseline. The measurement accuracy may have been limited by the poor frequency resolution of the modem; however, the TWCF measurement was able to improve the stability of conventional two-way satellite frequency transfer. Additionally, we show that the TWCP measurement system has the potential to achieve a frequency stability of 10-17.

  15. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  16. Design and simulation of a mixer and phase difference measuring circuitry for laser range finding systems

    Science.gov (United States)

    Liu, Guili; Wang, Yanlin; Liu, Gang

    2006-11-01

    This article focuses on the circuit implementation of a mixer and phase difference measurement for laser range finding systems. It will introduce simply the principle of the laser range finding system, which is the basis of the electronic circuitry design. The modulated laser lights of two different frequencies are mixed and the phase difference is detected in order to measure the range. The method of measuring the range is to use the mixer and the phase difference detector. The new and high precision IC that has a high quality makes the circuit simple and reliable. The circuit of the mixer and the phase difference detector for laser range finding systems is designed using AD608 and AD8302 chips.

  17. Constant frequency pulsed phase-locked-loop instrument for measurement of ultrasonic velocity

    Energy Technology Data Exchange (ETDEWEB)

    Yost, William T; Cantrell, John H; Kushnick, Peter W

    1991-10-01

    A new instrument based on a constant frequency pulsed phase-locked-loop (CFPPLL) concept has been developed to accurately measure the ultrasonicwavevelocity in liquids and changes in ultrasonicwavevelocity in solids and liquids. An analysis of the system shows that it is immune to many of the frequency-dependent effects that plague other techniques including the constant phase shifts of reflectors placed in the path of the ultrasonicwave.Measurements of the sound velocity in ultrapure water are used to confirm the analysis. The results are in excellent agreement with values from the literature, and establish that the CFPPLL provides a reliable, accurate way to measurevelocities, as well as for monitoring small changes in velocity without the sensitivity to frequency-dependent phase shifts common to other measurement systems. The estimated sensitivity to phase changes is better than a few parts in 10{sup 7}.

  18. Improving Mixed-phase Cloud Parameterization in Climate Model with the ACRF Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhien [Univ. of Wyoming, Laramie, WY (United States)

    2016-12-13

    of mixed-phase cloud simulations by CAM5 were performed. Measurement results indicate that ice concentrations control stratiform mixed-phase cloud properties. The improvement of ice concentration parameterization in the CAM5 was done in close collaboration with Dr. Xiaohong Liu, PNNL (now at University of Wyoming).

  19. An AC phase measuring interferometer for measuring dn/dT of fused silica and calcium fluoride at 193 nm

    Energy Technology Data Exchange (ETDEWEB)

    Shagam, R.N.

    1998-09-01

    A novel method for the measurement of the change in index of refraction vs. temperature (dn/dT) of fused silica and calcium fluoride at the 193 nm wavelength has been developed in support of thermal modeling efforts for the development of 193 nm-based photolithographic exposure tools. The method, based upon grating lateral shear interferometry, uses a transmissive linear grating to divide a 193 nm laser beam into several beam paths by diffraction which propagate through separate identical material samples. One diffracted order passing through one sample overlaps the undiffracted beam from a second sample and forms interference fringes dependent upon the optical path difference between the two samples. Optical phase delay due to an index change from heating one of the samples causes the interference fringes to change sinusoidally with phase. The interferometer also makes use of AC phase measurement techniques through lateral translation of the grating. Results for several samples of fused silica and calcium fluoride are demonstrated.

  20. Pupil size reveals preparatory processes in the generation of pro-saccades and anti-saccades.

    Science.gov (United States)

    Wang, Chin-An; Brien, Donald C; Munoz, Douglas P

    2015-04-01

    The ability to generate flexible behaviors to accommodate changing goals in response to identical sensory stimuli is a signature that is inherited in humans and higher-level animals. In the oculomotor system, this function has often been examined with the anti-saccade task, in which subjects are instructed, prior to stimulus appearance, to either automatically look at the peripheral stimulus (pro-saccade) or to suppress the automatic response and voluntarily look in the opposite direction from the stimulus (anti-saccade). Distinct neural preparatory activity between the pro-saccade and anti-saccade conditions has been well documented, particularly in the superior colliculus (SC) and the frontal eye field (FEF), and this has shown higher inhibition-related fixation activity in preparation for anti-saccades than in preparation for pro-saccades. Moreover, the level of preparatory activity related to motor preparation is negatively correlated with reaction times. We hypothesised that preparatory signals may be reflected in pupil size through a link between the SC and the pupil control circuitry. Here, we examined human pupil dynamics during saccade preparation prior to the execution of pro-saccades and anti-saccades. Pupil size was larger in preparation for correct anti-saccades than in preparation for correct pro-saccades and erroneous pro-saccades made in the anti-saccade condition. Furthermore, larger pupil dilation prior to stimulus appearance accompanied saccades with faster reaction times, with a trial-by-trial correlation between dilation size and anti-saccade reaction times. Overall, our results demonstrate that pupil size is modulated by saccade preparation, and neural activity in the SC, together with the FEF, supports these findings, providing unique insights into the neural substrate coordinating cognitive processing and pupil diameter.

  1. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict.

    Science.gov (United States)

    van den Berg, Berry; Krebs, Ruth M; Lorist, Monicque M; Woldorff, Marty G

    2014-06-01

    The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive task performance. In this task, the cue indicated whether or not the participant needed to prepare for an upcoming Stroop stimulus and, if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued attention and cued reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (contingent negative variation [CNV]) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted shorter versus longer response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across participants with the degree to which reward-prospect both facilitated overall task performance (shorter RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information.

  2. Altered preparatory pelvic control during the sit-to-stance-to-sit movement in people with non-specific low back pain.

    Science.gov (United States)

    Claeys, Kurt; Dankaerts, Wim; Janssens, Lotte; Brumagne, Simon

    2012-12-01

    People with non-specific low back pain (LBP) show hampered performance of dynamic tasks such as sit-to-stance-to-sit movement. However, the underlying mechanisms remain obscure. Therefore, the aim of this study was to assess if proprioceptive impairments influence the performance of the sit-to-stance-to-sit movement. First, the proprioceptive steering of 20 healthy subjects and 106 persons with mild LBP was identified during standing using muscle vibration. Second, five sit-to-stance-to-sit repetitions on a stable support and on foam were performed as fast as possible. Total duration, phase duration, center of pressure (COP) displacement, pelvic and thoracic kinematics were analyzed. People with LBP used less lumbar proprioceptive afference for postural control compared to healthy people (P pelvic rotation initiation were recorded to start both movement sequences (P pelvic preparatory movement in the LBP group.

  3. PLL application research of a broadband MEMS phase detector: Theory, measurement and modeling

    Science.gov (United States)

    Han, Juzheng; Liao, Xiaoping

    2017-06-01

    This paper evaluates the capability of a broadband MEMS phase detector in the application of phase locked loops (PLLs) through the aspect of theory, measurement and modeling. For the first time, it demonstrates how broadband property and optimized structure are realized through cascaded transmission lines and ANSYS simulations. The broadband MEMS phase detector shows potential in PLL application for its dc voltage output and large power handling ability which is important for munition applications. S-parameters of the power combiner in the MEMS phase detector are measured with S11 better than -15 dB and S23 better than -10 dB over the whole X-band. Compared to our previous works, developed phase detection measurements are performed and focused on signals at larger power levels up to 1 W. Cosine tendencies are revealed between the output voltage and the phase difference for both small and large signals. Simulation approach through equivalent circuit modeling is proposed to study the PLL application of the broadband MEMS phase detector. Synchronization and tracking properties are revealed.

  4. Dual-frequency grating method based research on phase measurement profilometry (PMP) technology

    Science.gov (United States)

    Wang, Binbin; Liang, Yijun; Deng, Hu

    2014-11-01

    With more than three decades of development, three-dimensional optical measurement technology has reached a mature stage in commercial applications, meanwhile new ones have continually arisen. Due to the development of Charge Coupled Device (CCD) array camera and digital projection technology, the applications of Phase Measurement Profilometry (PMP) become more and more broad. Among these, dual-frequency grating method has drawn many attentions because of its simplicity in principle and optical path, low requirement of equipment, high accuracy and level of automation comparing with other methods. The phase calculation is one of the key technologies in PMP. However, phase unwrapping algorithm in PMP is a difficult issue. A lot of new algorithm have been proposed, but neither one can solve all the problems, so how to set up new phase unwrapping algorithm becomes urgent. In this chapter, we systematically investigate the phase unwrapping method in dual-frequency grating method, and experimentally set up the system. To verify our method, we experimentally measure a three dimensional object which possesses complicated stair shapes on its surface. The results show that our dual-frequency grating method could achieve phase unwrapping without doing conventional phase unwrapping calculations, and it could also detect the detailed stair shapes on the surface of this three dimensional object automatically.

  5. Preparatory steps for a robust dynamic model for organically bound tritium dynamics in agricultural crops

    Energy Technology Data Exchange (ETDEWEB)

    Melintescu, A.; Galeriu, D. [' Horia Hulubei' National Institute for Physics and Nuclear Engineering, Bucharest-Magurele (Romania); Diabate, S.; Strack, S. [Institute of Toxicology and Genetics, Karlsruhe Institute of Technology - KIT, Eggenstein-Leopoldshafen (Germany)

    2015-03-15

    The processes involved in tritium transfer in crops are complex and regulated by many feedback mechanisms. A full mechanistic model is difficult to develop due to the complexity of the processes involved in tritium transfer and environmental conditions. First, a review of existing models (ORYZA2000, CROPTRIT and WOFOST) presenting their features and limits, is made. Secondly, the preparatory steps for a robust model are discussed, considering the role of dry matter and photosynthesis contribution to the OBT (Organically Bound Tritium) dynamics in crops.

  6. Strengthening moral reasoning through dedicated ethics training in dietetic preparatory programs.

    Science.gov (United States)

    Hewko, Sarah J; Cooper, Sarah L; Cummings, Greta G

    2015-01-01

    Moral reasoning skills, associated with the ability to make ethical decisions effectively, must be purposively fostered. Among health professionals, enhanced moral reasoning is linked to superior clinical performance. Research demonstrates that moral reasoning is enhanced through dedicated, discussion-based ethics education offered over a period of 3-12 weeks. Current dietetic students and practicing dietitians seeking to strengthen their moral reasoning skills can undertake elective ethics education. Further research within dietetic preparatory programs is warranted to better inform the development and implementation of ethics courses.

  7. Effect of Cotton Fibers and Their Trash Characteristics on the Performance of Spinning Preparatory Processes

    Directory of Open Access Journals (Sweden)

    Dr. (Mrs. Tasnim N. Shaikh

    2016-06-01

    Full Text Available Technological revolution in the age old cotton textile industry has made spinning preparatory section as a control centre for quality and economy of the outgoing product. Spinners have to chase these goals by cleaning the cotton mix without detoriating feed cotton characteristics and undue increase in the waste levels at higher productivity level. The successful efforts demand through investigation of the cotton fibers and their trash characteristics as well as identification of their best fit interrelationship with process parameters. Set of experimentations done in this direction are described in this paper as case study.

  8. Ultralow interfacial tensions of aqueous two-phase systems measured using drop shape.

    Science.gov (United States)

    Atefi, Ehsan; Mann, J Adin; Tavana, Hossein

    2014-08-19

    Aqueous solutions of different polymers can separate and form aqueous two-phase systems (ATPS). ATPS provide an aqueous, biocompatible, and mild environment for separation and fractionation of biomolecules. The interfacial tension between the two aqueous phases plays a major role in ATPS-mediated partition of biomolecules. Because of the structure of the two aqueous phases, the interfacial tensions between the phases can be 3-4 orders of magnitude smaller than conventional fluid-liquid systems: ∼1-100 μJ/m(2) for ATPS compared to ∼72 mJ/m(2) for the water-vapor interface. This poses a major challenge for the experimental measurements of reproducible interfacial tension data for these systems. We address the need for precise determination of ultralow interfacial tensions by systematically studying a series of polymeric ATPS comprising of polyethylene glycol (PEG) and dextran (DEX) as the phase-forming polymers. Sessile and pendant drops of the denser DEX phase are formed within the immersion PEG phase. An axisymmetric drop shape analysis (ADSA) is used to determine interfacial tensions of eight different ATPS. Specific criteria are used to reproducibly determine ultralow interfacial tensions of the ATPS from pendant and sessile drops. Importantly, for a given ATPS, pendant drop and sessile drop experiments return values within 0.001 mJ/m(2) indicating reliability of our measurements. Then, the pendant drop technique is used to measure interfacial tensions of all eight ATPS. Our measured values range from 0.012 ± 0.001 mJ/m(2) to 0.381 ± 0.006 mJ/m(2) and vary with the concentration of polymers in equilibrated phases of ATPS. Measurements of ultralow interfacial tensions with such reproducibility will broadly benefit studies involving partition of different biomolecules in ATPS and elucidate the critical effect of interfacial tension.

  9. Measurement of average density and relative volumes in a dispersed two-phase fluid

    Science.gov (United States)

    Sreepada, Sastry R.; Rippel, Robert R.

    1992-01-01

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  10. AISI/DOE Advanced Process Control Program Vol. 5 of 6: Phase Measurement of Galvanneal

    Energy Technology Data Exchange (ETDEWEB)

    Cristopher Burnett; Ronald Guel; James R. Philips; L. Lowry; Beverly Tai

    1999-05-31

    Augmentation of the internal software of a commercial X-ray fluorescence gauge is shown to enable the instrument to extend its continuous on-line real-time measurements of a galvanneal coating's total elemental content to encompass similar measurements of the relative thickness of the coating's three principal metallurgical phases. The mathematical structure of this software augmentation is derived from the theory of neural networks. The performance of the augmented gauge is validated by comparing the gauge implied real-time phase distribution with the phase distribution independently measured off-line on between the gauge and laboratory measurements and to suggest preferred approaches to be followed in future application of the augmented gauge.

  11. The quantitative measurement of magnetic moments from phase images of nanoparticles and nanostructures – I. Fundamentals

    DEFF Research Database (Denmark)

    Beleggia, Marco; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2010-01-01

    An approach that can be used to measure the magnetic moment of a magnetized nanoparticle or nanostructure from an electron-optical phase image is introduced. The measurement scheme is based on integration of the gradient of the measured phase image within a circular boundary that contains...... the structure of interest. The quantity obtained is found to be directly proportional to the magnetic moment of the particle, with a constant of proportionality that does not depend on the particle's shape or magnetization state. The measurement of magnetic moments from both simulated and experimental phase...... images is demonstrated, and strategies are presented that can be utilized to overcome sources of error associated with, for example, the presence of neighboring magnetic particles and the perturbation of the holographic reference wave...

  12. The quantitative measurement of magnetic moments from phase images of nanoparticles and nanostructures-I. Fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Beleggia, Marco, E-mail: mb@cen.dtu.dk [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Kasama, Takeshi; Dunin-Borkowski, Rafal E. [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2010-04-15

    An approach that can be used to measure the magnetic moment of a magnetized nanoparticle or nanostructure from an electron-optical phase image is introduced. The measurement scheme is based on integration of the gradient of the measured phase image within a circular boundary that contains the structure of interest. The quantity obtained is found to be directly proportional to the magnetic moment of the particle, with a constant of proportionality that does not depend on the particle's shape or magnetization state. The measurement of magnetic moments from both simulated and experimental phase images is demonstrated, and strategies are presented that can be utilized to overcome sources of error associated with, for example, the presence of neighboring magnetic particles and the perturbation of the holographic reference wave.

  13. Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval

    DEFF Research Database (Denmark)

    Anand, A; Chhaniwal, VK; Almoro, Percival;

    2009-01-01

    Shape and deformation measurement of diffusely reflecting 3D objects are very important in many application areas, including quality control, nondestructive testing, and design. When rough objects are exposed to coherent beams, the scattered light produces speckle fields. A method to measure...... the shape and deformation of 3D objects from the sequential intensity measurements of volume speckle field and phase retrieval based on angular-spectrum propagation technique is described here. The shape of a convex spherical surface was measured directly from the calculated phase map, and micrometer......-sized deformation induced on a metal sheet was obtained upon subtraction of the phase, corresponding to unloaded and loaded states. Results from computer simulations confirm the experiments. (C) 2009 Optical Society of America....

  14. Strain Measurement Using Phase-shifting Digital Holography with Two Cameras

    Directory of Open Access Journals (Sweden)

    Morimoto Y.

    2010-06-01

    Full Text Available Phase-shifting digital holography is a convenient method to measure displacement and strain distributions. Development of compact and conventional strain distribution measurement equipment for practical use is required for inspection of health monitoring and life lengthening of infrastructures such as steel bridges. In this paper, we propose an off-axis reconstruction method for displacement and strain distribution measurement with a phase-shifting digital holography. In the case of off-axis optical setup, the pitch of the fringe appearing on the image sensor becomes smaller than a pixel size. However, the phase-shifting digital hologram can be obtained even if the off-axis setup and effective results can be obtained using a Windowed-PSDHI. The principle and the experimental result of strain distribution measurement was performed with this method using two cameras.

  15. Constant frequency pulsed phase-locked-loop instrument for measurement of ultrasonic velocity

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Kushnick, Peter W.

    1991-10-01

    A new instrument based on a constant-frequency pulsed phase-locked-loop (CFPPLL) concept has been developed to accurately measure the ultrasonic wave velocity in liquids and changes in ultrasonic wave velocity in solids and liquids. An analysis of the system shows that it is immune to many of the frequency-dependent effects that plague other techniques. Measurements of the sound velocity in ultrapure water are used to confirm the analysis. The results are in excellent agreement with values from the literature, and establish that the CFPPLL provides a reliable, accurate way to measure velocities, as well as for monitoring small changes in velocity without the sensitivity to frequency-dependent phase shifts common to other measurement systems. The estimated sensitivity to phase changes is better than a few parts in 10 to the 7th.

  16. Integrated phase unwrapping algorithm for the measurement of 3D shapes by Fourier transform profilometry

    Institute of Scientific and Technical Information of China (English)

    Shuang-qing WU; Yin ZHANG; San-yuan ZHANG; Xiu-zi YE

    2009-01-01

    An integrated and reliable phase unwrapping algorithm is proposed based on residues and blocking-lines detection,closed contour extraction and quality map ordering for the measurement of 3D shapes by Fourier-transform profilometry (FTP).The proposed algorithm first detects the residues on the wrapped phase image, applies wavelet analysis to generate the blockinglines that can just connect the residues of opposite polarity, then carries out the morphology operation to extract the closed contour of the shape, and finally uses the modulation intensity information and the Laplacian of Gaussian operation of the wrapped phase image as the quality map. The unwrapping process is completed from a region of high reliability to that of low reliability and the blocking-lines can prevent the phase error propagation effectively. Furthermore, by using the extracted closed contour to exclude the invalid areas from the phase unwrapping process, the algorithm becomes more efficient. The experiment shows the effectiveness of the new algorithm.

  17. A uniqueness result for propagation-based phase contrast imaging from a single measurement

    CERN Document Server

    Maretzke, Simon

    2014-01-01

    Phase contrast imaging seeks to reconstruct the complex refractive index of an unknown sample from scattering intensities, measured for example under illumination with coherent X-rays. By incorporating refraction, this method yields improved contrast compared to purely absorption-based radiography but involves a phase retrieval problem which, in general, allows for ambiguous reconstructions. In this paper, we show uniqueness of propagation-based phase contrast imaging for compactly supported objects in the near field regime, based on a description by the projection- and paraxial approximations. In this setting, propagation is governed by the Fresnel propagator and the unscattered part of the illumination function provides a known reference wave at the detector which facilitates phase reconstruction. The uniqueness theorem is derived using the theory of entire functions. Unlike previous results based on exact solution formulae, it is valid for arbitrary complex objects and requires intensity measurements only ...

  18. Displacement measurement with multi-level spiral phase filtering in speckle interferometry

    Science.gov (United States)

    Aguilar, Alberto; Dávila, Abundio; Landgrave, J. E. A.

    2014-01-01

    A multi-level spiral phase filter is proposed in electronic speckle pattern interferometry (ESPI) for out-of-plane displacement measurements. This filter generates a particular kind of speckle pattern that results from the convolution of standard speckles with the filter point spread function (Fourier transform). We shall refer to it as a vortex-filtered speckle pattern (VF-SP). It is shown here that if unresolved and fully developed VF-SPs are generated, then each speckle contains embedded phase terms which can be controlled by the multi-level spiral filter rotation. This mechanism effectively allows the application of standard phase extraction procedures for displacement measurements. Numerical simulations of an interferometer working with VF-SPs were done to verify this technique. Experimental validation was achieved with an out-of-plane electronic speckle pattern interferometer, in which an Liquid Crystal on Silicon (LCoS) was used to generate the multi-level spiral phase filters.

  19. Two-phase velocity measurements around cylinders using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Y.A.; Philip, O.G.; Schmidl, W.D. [Texas A& M Univ., College Station, TX (United States)] [and others

    1995-09-01

    The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm{sup 3}/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the air flow rate was approximately 30 cm{sup 3}/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data.

  20. Measured Aperture-Array Noise Temperature of the Mark II Phased Array Feed for ASKAP

    CERN Document Server

    Chippendale, A P; Beresford, R J; Hampson, G A; Shaw, R D; Hayman, D B; Macleod, A; Forsyth, A R; Hay, S G; Leach, M; Cantrall, C; Brothers, M L; Hotan, A W

    2015-01-01

    We have measured the aperture-array noise temperature of the first Mk. II phased array feed that CSIRO has built for the Australian Square Kilometre Array Pathfinder telescope. As an aperture array, the Mk. II phased array feed achieves a beam equivalent noise temperature less than 40 K from 0.78 GHz to 1.7 GHz and less than 50 K from 0.7 GHz to 1.8 GHz for a boresight beam directed at the zenith. We believe these are the lowest reported noise temperatures over these frequency ranges for ambient-temperature phased arrays. The measured noise temperature includes receiver electronics noise, ohmic losses in the array, and stray radiation from sidelobes illuminating the sky and ground away from the desired field of view. This phased array feed was designed for the Australian Square Kilometre Array Pathfinder to demonstrate fast astronomical surveys with a wide field of view for the Square Kilometre Array.

  1. Dynamic measures of regional lung air volume using phase contrast x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kitchen, M J; Lewis, R A; Morgan, M J; Siu, K K W; Habib, A [School of Physics, Monash University, Melbourne VIC 3800 (Australia); Wallace, M J; Siew, M L; Hooper, S B [Department of Physiology, Monash University, Melbourne VIC 3800 (Australia); Fouras, A [Division of Biological Engineering, Monash University, Melbourne VIC 3800 (Australia); Yagi, N; Uesugi, K [SPring-8/JASRI, Sayo, Hyogo 679-5198 (Japan)], E-mail: Marcus.Kitchen@sci.monash.edu.au

    2008-11-07

    Phase contrast x-ray imaging can provide detailed images of lung morphology with sufficient spatial resolution to observe the terminal airways (alveoli). We demonstrate that quantitative functional and anatomical imaging of lung ventilation can be achieved in vivo using two-dimensional phase contrast x-ray images with high contrast and spatial resolution (<100 {mu}m) in near real time. Changes in lung air volume as small as 25 {mu}L were calculated from the images of term and preterm rabbit pup lungs (n = 28) using a single-image phase retrieval algorithm. Comparisons with plethysmography and computed tomography showed that the technique provided an accurate and robust method of measuring total lung air volumes. Furthermore, regional ventilation was measured by partitioning the phase contrast images, which revealed differences in aeration for different ventilation strategies.

  2. Measurement of Phase Difference for Micromachined Gyros Driven by Rotating Aircraft

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2013-08-01

    Full Text Available This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse angular velocity of the rotating aircraft based on the gyroscopic precession principle when the aircraft has transverse rotation. In applications of the rotating aircraft single channel control system, such as damping in the attitude stabilization loop, the gyro signal must be kept in sync with the control signal. Therefore, the phase difference between both signals needs to be measured accurately. Considering that phase difference is mainly produced by both the micromachined part and the signal conditioning circuit, a mathematical model has been established and analyzed to determine the gyro’s phase frequency characteristics. On the basis of theoretical analysis, a dynamic simulation has been done for a case where the spin frequency is 15 Hz. Experimental results with the proposed measurement method applied to a silicon micromachined gyro driven by a rotating aircraft demonstrate that it is effective in practical applications. Measured curve and numerical analysis of phase frequency characteristic are in accordance, and the error between measurement and simulation is only 5.3%.

  3. Measurement of phase difference for micromachined gyros driven by rotating aircraft.

    Science.gov (United States)

    Zhang, Zengping; Zhang, Fuxue; Zhang, Wei

    2013-08-21

    This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse angular velocity of the rotating aircraft based on the gyroscopic precession principle when the aircraft has transverse rotation. In applications of the rotating aircraft single channel control system, such as damping in the attitude stabilization loop, the gyro signal must be kept in sync with the control signal. Therefore, the phase difference between both signals needs to be measured accurately. Considering that phase difference is mainly produced by both the micromachined part and the signal conditioning circuit, a mathematical model has been established and analyzed to determine the gyro's phase frequency characteristics. On the basis of theoretical analysis, a dynamic simulation has been done for a case where the spin frequency is 15 Hz. Experimental results with the proposed measurement method applied to a silicon micromachined gyro driven by a rotating aircraft demonstrate that it is effective in practical applications. Measured curve and numerical analysis of phase frequency characteristic are in accordance, and the error between measurement and simulation is only 5.3%.

  4. Phase noise measurement of wideband microwave sources based on a microwave photonic frequency down-converter.

    Science.gov (United States)

    Zhu, Dengjian; Zhang, Fangzheng; Zhou, Pei; Pan, Shilong

    2015-04-01

    An approach for phase noise measurement of microwave signal sources based on a microwave photonic frequency down-converter is proposed. Using the same optical carrier, the microwave signal under test is applied to generate two +1st-order optical sidebands by two stages of electro-optical modulations. A time delay is introduced between the two sidebands through a span of fiber. By beating the two +1st-order sidebands at a photodetector, frequency down-conversion is implemented, and phase noise of the signal under test can be calculated thereafter. The system has a very large operation bandwidth thanks to the frequency conversion in the optical domain, and good phase noise measurement sensitivity can be achieved since the signal degradation caused by electrical amplifiers is avoided. An experiment is carried out. The phase noise measured by the proposed system agrees well with that measured by a commercial spectrum analyzer or provided by the datasheet. A large operation bandwidth of 5-40 GHz is demonstrated using the proposed system. Moreover, good phase noise floor is achieved (-123  dBc/Hz at 1 kHz and -137  dBc/Hz at 10 kHz at 10 GHz), which is nearly constant over the full measurement range.

  5. Evaluation of algorithms for calculating bioimpedance phase angle values from measured whole-body impedance modulus.

    Science.gov (United States)

    Nordbotten, Bernt J; Tronstad, Christian; Martinsen, Ørjan G; Grimnes, Sverre

    2011-07-01

    This paper addresses the problem of calculating the bioimpedance phase angle from measurements of impedance modulus. A complete impedance measurement was performed on altogether 20 healthy persons using a Solatron 1260/1294 system. The obtained impedance modulus (absolute impedance value) values were used to calculate the Cole parameters and from them the phase angles. In addition, the phase angles were also calculated using a Kramers-Kronig approach. A correlation analysis for all subjects at each frequency (5, 50, 100 and 200 kHz) for both methods gave R(2) values ranging from 0.7 to 0.96 for the Cole approach and from 0.83 to 0.96 for the Kramers-Kronig approach; thus, both methods gave good results compared with the complete measurement results. From further statistical significance testing of the absolute value of the difference between measured and calculated phase angles, it was found that the Cole equation method gave significantly better agreement for the 50 and 100 kHz frequencies. In addition, the Cole equation method gives the four Cole parameters (R(0), R(∞), τ(z) and α) using measurements at frequencies up to 200 kHz while the Kramers-Kronig method used frequencies up to 500 kHz to reduce the effect of truncation on the calculated results. Both methods gave results that can be used for further bioimpedance calculations, thus improving the application potential of bioimpedance measurement results obtained using relatively inexpensive and portable measurement equipment.

  6. High-pressure sapphire cell for phase equilibria measurements of CO2/organic/water systems.

    Science.gov (United States)

    Pollet, Pamela; Ethier, Amy L; Senter, James C; Eckert, Charles A; Liotta, Charles L

    2014-01-24

    The high pressure sapphire cell apparatus was constructed to visually determine the composition of multiphase systems without physical sampling. Specifically, the sapphire cell enables visual data collection from multiple loadings to solve a set of material balances to precisely determine phase composition. Ternary phase diagrams can then be established to determine the proportion of each component in each phase at a given condition. In principle, any ternary system can be studied although ternary systems (gas-liquid-liquid) are the specific examples discussed herein. For instance, the ternary THF-Water-CO2 system was studied at 25 and 40 °C and is described herein. Of key importance, this technique does not require sampling. Circumventing the possible disturbance of the system equilibrium upon sampling, inherent measurement errors, and technical difficulties of physically sampling under pressure is a significant benefit of this technique. Perhaps as important, the sapphire cell also enables the direct visual observation of the phase behavior. In fact, as the CO2 pressure is increased, the homogeneous THF-Water solution phase splits at about 2 MPa. With this technique, it was possible to easily and clearly observe the cloud point and determine the composition of the newly formed phases as a function of pressure. The data acquired with the sapphire cell technique can be used for many applications. In our case, we measured swelling and composition for tunable solvents, like gas-expanded liquids, gas-expanded ionic liquids and Organic Aqueous Tunable Systems (OATS)(1-4). For the latest system, OATS, the high-pressure sapphire cell enabled the study of (1) phase behavior as a function of pressure and temperature, (2) composition of each phase (gas-liquid-liquid) as a function of pressure and temperature and (3) catalyst partitioning in the two liquid phases as a function of pressure and composition. Finally, the sapphire cell is an especially effective tool to gather

  7. Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO

    Science.gov (United States)

    Cesana, G.; Chepfer, H.; Winker, D.; Getzewich, B.; Cai, X.; Jourdan, O.; Mioche, G.; Okamoto, H.; Hagihara, Y.; Noel, V.; Reverdy, M.

    2016-05-01

    We compare the cloud detection and cloud phase determination of three independent climatologies based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) to airborne in situ measurements. Our analysis of the cloud detection shows that the differences between the satellite and in situ measurements mainly arise from three factors. First, averaging CALIPSO Level l data along track before cloud detection increases the estimate of high- and low-level cloud fractions. Second, the vertical averaging of Level 1 data before cloud detection tends to artificially increase the cloud vertical extent. Third, the differences in classification of fully attenuated pixels among the CALIPSO climatologies lead to differences in the low-level Arctic cloud fractions. In another section, we compare the cloudy pixels detected by colocated in situ and satellite observations to study the cloud phase determination. At midlatitudes, retrievals of homogeneous high ice clouds by CALIPSO data sets are very robust (more than 94.6% of agreement with in situ). In the Arctic, where the cloud phase vertical variability is larger within a 480 m pixel, all climatologies show disagreements with the in situ measurements and CALIPSO-General Circulation Models-Oriented Cloud Product (GOCCP) report significant undefined-phase clouds, which likely correspond to mixed-phase clouds. In all CALIPSO products, the phase determination is dominated by the cloud top phase. Finally, we use global statistics to demonstrate that main differences between the CALIPSO cloud phase products stem from the cloud detection (horizontal averaging, fully attenuated pixels) rather than the cloud phase determination procedures.

  8. Measurement of the velocity of a quantum object: A role of phase and group velocities

    Science.gov (United States)

    Lapinski, Mikaila; Rostovtsev, Yuri V.

    2017-08-01

    We consider the motion of a quantum particle in a free space. Introducing an explicit measurement procedure for velocity, we demonstrate that the measured velocity is related to the group and phase velocities of the corresponding matter waves. We show that for long distances the measured velocity coincides with the matter wave group velocity. We discuss the possibilities to demonstrate these effects for the optical pulses in coherently driven media or for radiation propagating in waveguides.

  9. Establishing a Common Phase Reference for Comparing Synthetic Data to RF Range Measurements

    Science.gov (United States)

    2010-05-01

    processes using Theodolite laser measurements. I. INTRODUCTION In order to accurately compare synthetic and measured data, a common phase...utilizing a Theodolite (Sokkia Total Station Set 230R). Reflective targets were placed on the front, back and side walls of the chamber and measured with...the Theodolite and used as reference points. A 31” square flat plate was mounted on the pylon rotator and “peaked” using the radar to establish a

  10. The Phase Stability Measure Method for Transmitting and Receiving Channels of Space-borne SAR

    Directory of Open Access Journals (Sweden)

    Xie Dong-dong

    2012-03-01

    Full Text Available Accurate phase stability measurement of Transmitting and Receiving channels in space-borne SAR (Synthetic Aperture Radar system is important to evaluate imaging quality. Based on fewer instruments, matched filtering and interpolation algorithm, two kinds of measure methods which makes the measurement value more accurate are presented and compared in this paper. The test result of one space-borne SAR prototyping system indicates that the methods are feasible and effective.

  11. Fundamental study of molten pool depth measurement method using an ultrasonic phased array system

    Science.gov (United States)

    Mizota, Hirohisa; Nagashima, Yoshiaki; Obana, Takeshi

    2015-07-01

    The molten pool depth measurement method using an ultrasonic phased array system has been developed. The molten pool depth distribution is evaluated by comparing the times taken by the ultrasonic wave to propagate through a molten pool and a solid-phase and through only the solid-phase near the molten pool. Maximum molten pool depths on a flat type-304 stainless-steel plate, formed with a gas tungsten arc welding machine for different welding currents from 70 to 150 A, were derived within an error of ±0.5 mm.

  12. Phase measurements of erythrocytes affected by metal ions with quantitative interferometric microscopy

    Science.gov (United States)

    Wang, Shouyu; Yan, Keding; Shan, Yanke; Xu, Mingfei; Liu, Fei; Xue, Liang

    2015-12-01

    Erythrocyte morphology is an important factor in disease diagnosis, however, traditional setups as microscopes and cytometers cannot provide enough quantitative information of cellular morphology for in-depth statistics and analysis. In order to capture variations of erythrocytes affected by metal ions, quantitative interferometric microscopy (QIM) is applied to monitor their morphology changes. Combined with phase retrieval and cell recognition, erythrocyte phase images, as well as phase area and volume, can be accurately and automatically obtained. The research proves that QIM is an effective tool in cellular observation and measurement.

  13. Modeling and Measurement of Phase Noise in GaAs HBT Ka-Band Oscillators

    OpenAIRE

    Lenk, Friedrich; Schott, Matthias; Heinrich, Wolfgang

    2001-01-01

    Accurate oscillator phase-noise simulation is a key problem in MMIC design, which is not solved satisfactory so far and needs further investigation. In this paper, a Ka-band MMIC oscillator with GaInP/GaAs HBT and on-chip resonator is treated as an example. Measured phase noise reaches -90 dBc/Hz and below at 100 kHz offset. To evaluate phase-noise predic-tion, the circuit is simulated using different commercial simulation tools and HBT models. Con-siderable differences in simulation results ...

  14. Phase discrimination inside a spray: LDV measurements using fluorescent seeding particles (FLDV)

    Energy Technology Data Exchange (ETDEWEB)

    Rottenkolber, G.; Meier, R.; Schaefer, O.; Dullenkopf, K.; Wittig, S. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Thermische Stroemungsmaschinen; Wachter, S. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Thermische Stroemungsmaschinen]|[Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Angewandte Physik

    2002-07-01

    Laser Velocimetry measurements in the vicinity of reflecting surfaces are still a major problem in many fluid mechanical applications such as measuring close to walls or wall film surfaces, respectively. Moreover, in any kind of two phase flow an unambiguous separation of the gas and the liquid phase is of particular interest. Commonly used techniques like phase doppler analysers (PDA) with size discrimination are limited to two phase flows where the smallest particle of the dispersed phase is significantly larger than the seeding particles. This condition can rarely be fulfilled in technically relevant spray/air systems. One of the most promising approaches is a phase discrimination using fluorescent tracer particles for the gas phase. In this paper the working principle of the ''fluorescent'' LDV (FLDV) will be explained. Moreover, the applicability of different fluorescent dyes will be discussed. Finally, a comparison between PDA results using size discrimination and FLDV results inside a hollow come spray will be presented. (orig.)

  15. Detecting, visualizing, and measuring gold nanoparticle chirality using helical pitch measurements in nematic liquid crystal phases.

    Science.gov (United States)

    Sharma, Anshul; Mori, Taizo; Lee, Huey-Charn; Worden, Matthew; Bidwell, Eric; Hegmann, Torsten

    2014-12-23

    Chirality at the nanoscale, or more precisely, the chirality or chiroptical effects of chiral ligand-capped metal nanoparticles (NPs) is an intriguing and rapidly evolving field in nanomaterial research with promising applications in catalysis, metamaterials, and chiral sensing. The aim of this work was to seek out a system that not only allows the detection and understanding of NP chirality but also permits visualization of the extent of chirality transfer to a surrounding medium. The nematic liquid crystal phase is an ideal candidate, displaying characteristic defect texture changes upon doping with chiral additives. To test this, we synthesized chiral cholesterol-capped gold NPs and prepared well-dispersed mixtures in two nematic liquid crystal hosts. Induced circular dichroism spectropolarimetry and polarized light optical microscopy revealed that all three gold NPs induce chiral nematic phases, and that those synthesized in the presence of a chiral bias (disulfide) are more powerful chiral inducers than those where the NP was formed in the absence of a chiral bias (prepared by conjugation of a chiral silane to preformed NPs). Helical pitch data here visually show a clear dependence on the NP size and the number of chiral ligands bound to the NP surface, thereby supporting earlier experimental and theoretical data that smaller metal NPs made in the presence of a chiral bias are stronger chiral inducers.

  16. Method to measure the phase modulation characteristics of a liquid crystal spatial light modulator.

    Science.gov (United States)

    Wu, Yunlong; Nie, Jinsong; Shao, Li

    2016-11-01

    The universal liquid crystal spatial light modulator (LC-SLM) is widely used in many aspects of optical studies. The working principles and applications of LC-SLM were introduced briefly. The traditional Twyman-Green interference method, which was used to measure the phase modulation characteristics of a liquid spatial light modulator, had some obvious disadvantages in practice. To avoid these issues, the traditional Twyman-Green interference method was improved. Also, a new method to process interference fringes and measure the shift distances and cycles automatically by computers was proposed. The phase modulation characteristics of P512-1064 LC-SLM produced by the Meadowlark Company were measured to verify the validity of the newly proposed method. In addition, in order to compensate and correct the nonlinear characteristics of the phase modulation curve, three universal inverse interpolation methods were utilized. The root mean squared error and residual sum of squares between the calibrated phase modulation curve and the ideal phase modulation curve were reduced obviously by taking advantage of the inverse interpolation methods. Subsequently, the method of shape-preserving subsection cubic interpolation had acquired the best performance with high computation efficiency. Experiments have been performed to verify the validity of the interpolation method. The experimental results showed that the phase modulation characteristics of LC-LSM could be acquired and calibrated automatically with convenience and high efficiency by utilizing the newly proposed processing method.

  17. High-speed phase-shifting interferometry using triangular prism for time-resolved temperature measurement.

    Science.gov (United States)

    Shoji, Eita; Komiya, Atsuki; Okajima, Junnosuke; Kawamura, Hiroshi; Maruyama, Shigenao

    2015-07-10

    This study proposes a high-speed phase-shifting interferometer with an original optical prism. This phase-shifting interferometer consists of a polarizing Mach-Zehnder interferometer, an original optical prism, a high-speed camera, and an image-processing unit for a three-step phase-shifting technique. The key aspect of the application of the phase-shifting technique to high-speed experiments is an original prism, which is designed and developed specifically for a high-speed phase-shifting technique. The arbaa prism splits an incident beam into four output beams with different information. The interferometer was applied for quantitative visualization of transient heat transfer. In order to test the optical system for measuring high-speed phenomena, the temperature during heat conduction was measured around a heated thin tungsten wire (diameter of 5 μm) in water. The visualization area is approximately 90  μm×210  μm, and the spatial resolution is 3.5 μm at 300,000 fps of the maximum temporal resolution with a high-speed camera. The temperature fields around the heated wire were determined by converting phase-shifted data using the inverse Abel transform. Finally, the measured temperature distribution was compared with numerical calculations to validate the proposed system; a good agreement was obtained.

  18. Determination of electron bunch shape using transition radiation and phase-energy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Crosson, E.R.; Berryman, K.W.; Richman, B.A. [Stanford Univ., CA (United States)] [and others

    1995-12-31

    We present data comparing microbunch temporal information obtained from electron beam phase-energy measurements with that obtained from transition radiation auto-correlation measurements. The data was taken to resolve some of the ambiguities in previous transition radiation results. By measuring the energy spectrum of the electron beam as a function of its phase relative to the accelerating field, phase-energy information was extracted. This data was analyzed using tomographic techniques to reconstruct the phase-space distribution assuming an electron energy dependence of E({var_phi}) = E{sub o} + E{sub acc}cos({var_phi}), where E{sub o} is the energy of an electron entering the field, E{sub acc} is the peak energy gain, and {var_phi} is the phase between the crest of the RF wave and an electron. Temporal information about the beam was obtained from the phase space distribution by taking the one dimensional projection along the time axis. We discuss the use of this technique to verify other transition radiation analysis methods.

  19. Features of high-speed and strength qualities development in young biathlonists aged 14–15 in the preparatory period

    Directory of Open Access Journals (Sweden)

    Artem Burla

    2015-04-01

    Full Text Available Purpose: to substantiate a methodology of high-speed and strength qualities development of young biathlonists aged 14–15 during the preparatory period. Material and Methods: young biathlonists aged 14–15 from control and experimental groups took part in the research. There were 12 athletes in each group. Pedagogical methods and methods of mathematical statistics were used in the work. Pedagogical methods of researches were used for level definition of high-speed and strength qualities development of young biathlonists. Results: reliable increase of motive qualities and polydynamometry results testing of young biathlonists from the experimental group due to implementation of the experimental methodology in the preparatory period is established. Conclusions: application of the developed complexes in the preparatory period in the experimental group of young biathlonists aged 14–15 allows to raise indices of motive qualities and polydynamometry testing statistically significantly.

  20. Tests of the mediational role of preparatory safer sexual behavior in the context of the theory of planned behavior.

    Science.gov (United States)

    Bryan, Angela; Fisher, Jeffrey D; Fisher, William A

    2002-01-01

    The present research details 2 empirical tests within the context of the theory of planned behavior (I. Ajzen & T. Madden, 1986) of the assumption that preparatory behaviors (e.g., discussing safer sex, obtaining condoms) play a mediational role in the relation between psychological variables (e.g., attitudes toward safer sex, social norms about safer sex) and condom use. The assumption of the mediational role of preparatory behaviors is examined in sexually experienced samples from 2 different populations: inner-city high school students (N = 226) and college students (N = 160). The results suggest that the mediational role of preparatory behaviors is a highly significant one. Results indicate no gender differences with regard to the main mediational hypotheses. The methodological, theoretical, and practical implications and importance of these findings are discussed.

  1. [Third preparatory committee for the International Conference on Population and Development. Peru presentation].

    Science.gov (United States)

    Lopez, C

    1994-01-01

    This address by the Peruvian delegation to the Third Preparatory Committee Meeting for the International Conference on Population and Development focuses on four points in the proposed Plan of Action that might require further development. First, the link between drug trafficking and environmental degradation should be recognized. Cultivation of narcotic plants contributes to deforestation of the tropical forest and contamination of rivers, and along with terrorism has caused considerable population movement in Peru. The second point is that widespread poverty, limited investment in human capital, insufficient institutional capacity, and the external debt burden of the developing countries are clearly interrelated with sociodemographic processes and decisively affect the capacity of the nation to implement population policies and programs as a function of current and future international commitments. The third point is that, in the area of information, education, and communication, attention should be given to the entire life cycle and the entirety of themes related to population. Finally, coordinated programs between public and private institutions and nongovernmental organizations at the national level, and between the U.N. Population Fund, the Population Commission, and the Commission on Sustainable Development at the international level, should be organized to assure effective follow-up on Plan of Action proposals and agreements. Peru has participated in a wide variety of international conferences and activities related to population, and was a major participant in the subregional preparatory conference of the Andean nations.

  2. Methods for calculating phase angle from measured whole body bioimpedance modulus

    Science.gov (United States)

    Nordbotten, Bernt J.; Martinsen, Ørjan G.; Grimnes, Sverre

    2010-04-01

    Assuming the Cole equation we have developed a method to calculate the Cole parameters (R0, R∞, α, τZ) and the phase angle from four frequency measurements of impedance modulus values. The values obtained compare well with impedance measurements obtained using the Solatron 1294/1260 as obtained when making whole body measurements on five persons. We have also performed calculations using an algorithm based on the Kramers-Kronig approach. The results which are presented show that it is possible to obtain complete body impedance data combining relatively simple measurements with advanced calculation using a laptop. This extends the potential of portable equipment, since the measurements will require less instrumentation.

  3. Simple digital phase-measuring algorithm for low-noise heterodyne interferometry

    CERN Document Server

    Kokuyama, Wataru; Ohta, Akihiro; Hattori, Koichiro

    2016-01-01

    We present a digital algorithm for measuring the phase difference between two sinusoidal signals that combines the modified fringe-counting method with two-sample zero crossing to enable sequential signal processing. This technique can be applied to a phase meter for measuring dynamic phase differences with high resolution, particularly for heterodyne interferometry. The floor noise obtained from a demonstration with an electrical apparatus is $5\\times10^{-8} \\mathrm{rad/\\sqrt{Hz}}$ at frequencies above approximately 0.1 Hz. In addition, by applying this method to a commercial heterodyne interferometer, the floor-noise level is confirmed to be $7\\times10^{-14} \\mathrm{m/\\sqrt{Hz}}$ from 4 kHz to 1 MHz. We also confirm the validity of the algorithm by comparing its results with those from a standard homodyne interferometer for measuring shock-motion peak acceleration greater than 5000 m/s^2 and a 10 mm stroke.

  4. An intercomparison of measurement systems for vapor and particulate phase concentrations of formic and acetic acids

    Science.gov (United States)

    Keene, William C.; Talbot, Robert W.; Andreae, Meinrat O.; Beecher, Kristene; Berresheim, Harold

    1989-01-01

    During June 1986, eight systems for measuring vapor phase and four for measuring particulate phase concentrations of formic acid (HCOOH) and acetic acid (CH3COOH) were intercompared in central Virginia. HCOOH and CH3COOH vapors were sampled by condensate, mist, Chromosorb 103 GC resin, NaOH-coated annular denuders, NaOH-impregnated quartz filters, K2CO3 and NaCO3-impregnated cellulose filters, and Nylasorb membranes. Atmospheric aerosol was collected on Teflon and Nuclepore filters using both hi-vol and lo-vol systems to measure particulate phase concentrations. Performances of the mist chamber and K2CO3-impregnated filter techniques were evaluated using zero air and ambient air spiked with HCOOH(g) and CH3COOH(g), and formaldehyde from permeation sources. The advantages and drawbacks of these methods are reported and discussed.

  5. Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy

    CERN Document Server

    Cheema, M Imran; Hayat, Ahmad A; Peter, Yves-Alain; Armani, Andrea M; Kirk, Andrew G

    2012-01-01

    Optical resonant microcavities with ultra high quality factors are widely used for biosensing. Until now, the primary method of detection has been based upon tracking the resonant wavelength shift as a function of biological events. One of the sources of noise in all resonant-wavelength shift measurements is the noise due to intensity fluctuations of the laser source. An alternative approach is to track the change in the quality factor of the optical cavity by using phase shift cavity ring down spectroscopy, a technique which is insensitive to the intensity fluctuations of the laser source. Here, using biotinylated microtoroid resonant cavities, we show simultaneous measurement of the quality factor and the wavelength shift by using phase shift cavity ring down spectroscopy. These measurements were performed for disassociation phase of biotin-streptavidin reaction. We found that the disassociation curves are in good agreement with the previously published results. Hence, we demonstrate not only the applicatio...

  6. Heterodyne and adaptive phase measurements on states of fixed mean photon number

    CERN Document Server

    Berry, D; Zhang Zhao Xi; Zhang, Zhong-Xi

    1998-01-01

    The standard technique for measuring the phase of a single mode field is heterodyne detection. Such a measurement may have an uncertainty far above the intrinsic quantum phase uncertainty of the state. Recently it has been shown [H.M. Wiseman and R.B. Killip, Phys. Rev. A 57, 2169 (1998)] that an adaptive technique introduces far less excess noise. Here we quantify this difference by an exact numerical calculation of the minimum measured phase variance for the various schemes, optimized over states with a fixed mean photon number. We also derive analytically the asymptotics for these variances. For the case of heterodyne detection our results disagree with the power law claimed by G.M. D'Ariano and M.G.A. Paris [Phys. Rev. A 49, 3022 (1994)].

  7. A non-destructive method to measure the thermal properties of frozen soils during phase transition

    Institute of Scientific and Technical Information of China (English)

    Bin Zhang; Chanjuan Han; Xiong Bill Yu

    2015-01-01

    Frozen soils cover about 40%of the land surface on the earth and are responsible for the global energy balances affecting the climate. Measurement of the thermal properties of frozen soils during phase transition is important for analyzing the thermal transport process. Due to the involvement of phase transition, the thermal properties of frozen soils are rather complex. This paper introduces the uses of a multifunctional instrument that integrates time domain reflectometry (TDR) sensor and thermal pulse technology (TPT) to measure the thermal properties of soil during phase transition. With this method, the extent of phase transition (freezing/thawing) was measured with the TDR module; and the corre-sponding thermal properties were measured with the TPT module. Therefore, the variation of thermal properties with the extent of freezing/thawing can be obtained. Wet soils were used to demonstrate the performance of this measurement method. The performance of individual modules was first validated with designed experiments. The new sensor was then used to monitor the properties of soils during freezingethawing process, from which the freezing/thawing degree and thermal properties were simultaneously measured. The results are consistent with documented trends of thermal properties variations.

  8. A non-destructive method to measure the thermal properties of frozen soils during phase transition

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2015-04-01

    Full Text Available Frozen soils cover about 40% of the land surface on the earth and are responsible for the global energy balances affecting the climate. Measurement of the thermal properties of frozen soils during phase transition is important for analyzing the thermal transport process. Due to the involvement of phase transition, the thermal properties of frozen soils are rather complex. This paper introduces the uses of a multifunctional instrument that integrates time domain reflectometry (TDR sensor and thermal pulse technology (TPT to measure the thermal properties of soil during phase transition. With this method, the extent of phase transition (freezing/thawing was measured with the TDR module; and the corresponding thermal properties were measured with the TPT module. Therefore, the variation of thermal properties with the extent of freezing/thawing can be obtained. Wet soils were used to demonstrate the performance of this measurement method. The performance of individual modules was first validated with designed experiments. The new sensor was then used to monitor the properties of soils during freezing–thawing process, from which the freezing/thawing degree and thermal properties were simultaneously measured. The results are consistent with documented trends of thermal properties variations.

  9. Experimental optical phase measurement at the exact Heisenberg limit (Conference Presentation)

    Science.gov (United States)

    Daryanoosh, Shakib; Slussarenko, Sergei; Wiseman, Howard M.; Pryde, Geoff J.

    2016-10-01

    Optical phase measurement through its application in quantum metrology has pushed the precision limit with which some physical quantities can be measured accurately. At the very fundamental level, the laws of quantum mechanics dictate that the uncertainty in phase estimations scales as 1/N, where N is the number of quantum resources employed in the protocol [1]. This is the well known Heisenberg limit (HL) which is quadratically better than the traditional precision limit known as the standard quantum limit (SQL) with uncertainty asymptotically scaling as 1/&sqrt{N} [1]. Several experiments have demonstrated that the SQL can be beaten by using an entangled state as the probe and a specific measurement scheme for ab initio estimation of unknown phases [2,3]. It has also been shown experimentally that even in the absence of the entanglement one can measure an unknown phase with imprecision scaling at the HL [4]. In this work we first present a new protocol able to estimate an optical phase at the Heisenberg limit, and then experimentally explore fundamental and practical issues in generating high-quality novel entangled states, for use in this protocol and beyond. Our aim in this study is to measure an unknown phase in the interval [0,2π) with uncertainty attaining the exact HL. There is a condition that should be met to address this objective: preparation of an optimal state [5]. This would cover part of the presentation through which we explain how to experimentally realise such an optimal state with the current technological limitations and the feasibility of the scheme. In particular, we generate an entangled 3-photon (2-photon) state of specific superposition of GHZ (Bell) states. Our numerical simulation of the phase measurement gate together with the experimental outcomes show that the created state should have a high fidelity and purity to be able to have the phase uncertainty achieving the exact HL. Therefore, we briefly explain the modelling for

  10. Measurement of turbulence statistics in single-phase and two-phase flows using ultrasound imaging velocimetry

    Science.gov (United States)

    Gurung, Arati; Poelma, Christian

    2016-11-01

    Ultrasound imaging velocimetry (UIV) has received considerable interest as a tool to measure in non-transparent flows. So far, studies have only reported statistics for steady flows or used a qualitative approach. In this study, we demonstrate that UIV has matured to a level where accurate turbulence statistics can be obtained. The technique is first validated in laminar and fully developed turbulent pipe flow (single-phase, with water as fluid) at a Reynolds number of 5300. The flow statistics agree with the literature data. Subsequently, we obtain similar statistics in turbulent two-phase flows at the same Reynolds number, by adding solid particles up to volume fraction of 3 %. In these cases, the medium is completely opaque, yet UIV provides useable data. The error in the measurements is estimated using an ad hoc approach at a volume load up to 10 %. For this case, the errors are approximately 1.9 and 0.3 % of the centerline velocity for the streamwise and radial velocity components, respectively. Additionally, it is demonstrated that it is possible to estimate the local concentration in stratified flows.

  11. Beam Forming HF Radar Beam Pattern Measurements and Phase Offset Calibration Using a UAV

    Science.gov (United States)

    Cahl, D.; Voulgaris, G.

    2016-12-01

    It has been shown that measuring antenna patterns for direction finding radars improves surface current measurements. For beam forming radars, the beam pattern of the receive array is assumed to be similar to that derived using theoretical calculations. However, local environmental conditions may lead to deviations (i.e., larger sidelobes and beamwidth) from this idealized beam pattern. This becomes particularly important for wave measurements that are sensitive to interference from sidelobes. Common techniques for beam forming HF radar phase calibration include "cross calibration", using a secondary beam forming site as the signal source, or calibration using a ship. The former method is limited to only one direction; on straight coastlines this is often at a large angle from the radar bore site where the beam width and uncertainty in phase calibration might be large. The latter technique requires chartering a ship with an appropriate reflector or transmitter, or the identification of ships of opportunity. Recent advances in UAV technology combined with an easement of FAA restrictions (Part 107) allows phase calibrations and beam pattern measurements to be completed on an HF radar site using a small transmitter attached to a UAV. This presentation describes the use of a UAV and the development of a method for beam forming phase calibration and beam pattern measurements. This method uses the UAV as a moving signal source to provide true sidelobe and beamwidth measurements. Results are shown from a calibration carried out at a beam forming (WERA) radar site (8.3 MHz) located in Georgetown, SC and are compared with results from a cross calibration. Phase calibrations acquired by the UAV showed a dependence on azimuthal angle from the radar bore site. Also, the beam patterns obtained were found to be narrower than those derived using the stationary source method. The effect of the new phase values derived using this method on the accuracy of radial velocities will be

  12. Subpixel Accuracy Analysis of Phase Correlation Shift Measurement Methods Applied to Satellite Imagery

    Directory of Open Access Journals (Sweden)

    S.M. Badwai

    2013-01-01

    Full Text Available the key point of super resolution process is the accurate measuring of sub-pixel shift. Any tiny error in measuring such shift leads to an incorrect image focusing. In this paper, methodology of measuring sub-pixel shift using Phase correlation (PC are evaluated using different window functions, then modified version of (PC method using high pass filter (HPF is introduced . Comprehensive analysis and assessment of (PC methods shows that different natural features yield different shift measurements. It is concluded that there is no universal window function for measuring shift; it mainly depends on the features in the satellite images. Even the question of which window is optimal of particular feature is generally remains open. This paper presents the design of a method for obtaining high accuracy sub pixel shift phase correlation using (HPF.The proposed method makes the change in the different locations that lack of edges easy.

  13. Quantum State Reduction by Matter-Phase-Related Measurements in Optical Lattices

    Science.gov (United States)

    Kozlowski, Wojciech; Caballero-Benitez, Santiago F.; Mekhov, Igor B.

    2017-01-01

    A many-body atomic system coupled to quantized light is subject to weak measurement. Instead of coupling light to the on-site density, we consider the quantum backaction due to the measurement of matter-phase-related variables such as global phase coherence. We show how this unconventional approach opens up new opportunities to affect system evolution. We demonstrate how this can lead to a new class of final states different from those possible with dissipative state preparation or conventional projective measurements. These states are characterised by a combination of Hamiltonian and measurement properties thus extending the measurement postulate for the case of strong competition with the system’s own evolution. PMID:28225012

  14. Evaluation of Two Computational Techniques of Calculating Multipath Using Global Positioning System Carrier Phase Measurements

    Science.gov (United States)

    Gomez, Susan F.; Hood, Laura; Panneton, Robert J.; Saunders, Penny E.; Adkins, Antha; Hwu, Shian U.; Lu, Ba P.

    1996-01-01

    Two computational techniques are used to calculate differential phase errors on Global Positioning System (GPS) carrier war phase measurements due to certain multipath-producing objects. The two computational techniques are a rigorous computati electromagnetics technique called Geometric Theory of Diffraction (GTD) and the other is a simple ray tracing method. The GTD technique has been used successfully to predict microwave propagation characteristics by taking into account the dominant multipath components due to reflections and diffractions from scattering structures. The ray tracing technique only solves for reflected signals. The results from the two techniques are compared to GPS differential carrier phase ns taken on the ground using a GPS receiver in the presence of typical International Space Station (ISS) interference structures. The calculations produced using the GTD code compared to the measured results better than the ray tracing technique. The agreement was good, demonstrating that the phase errors due to multipath can be modeled and characterized using the GTD technique and characterized to a lesser fidelity using the DECAT technique. However, some discrepancies were observed. Most of the discrepancies occurred at lower devations and were either due to phase center deviations of the antenna, the background multipath environment, or the receiver itself. Selected measured and predicted differential carrier phase error results are presented and compared. Results indicate that reflections and diffractions caused by the multipath producers, located near the GPS antennas, can produce phase shifts of greater than 10 mm, and as high as 95 mm. It should be noted tl the field test configuration was meant to simulate typical ISS structures, but the two environments are not identical. The GZ and DECAT techniques have been used to calculate phase errors due to multipath o the ISS configuration to quantify the expected attitude determination errors.

  15. Minimizing errors in phase change correction measurements for gauge blocks using a spherical contact technique

    Science.gov (United States)

    Stoup, John R.; Faust, Bryon S.; Doiron, Theodore D.

    1998-09-01

    One of the most elusive measurement elements in gage block interferometry is the correction for the phase change on reflection. Techniques used to quantify this correction have improved over the year, but the measurement uncertainty has remained relatively constant because some error sources have proven historically difficult to reduce. The precision engineering division at the National Institute of Standards and Technology has recently developed a measurement technique that can quantify the phase change on reflection correction directly for individual gage blocks and eliminates some of the fundamental problems with historical measurement methods. Since only the top surface of the gage block is used in the measurement, wringing film inconsistencies are eliminated with this technique thereby drastically reducing the measurement uncertainty for the correction. However, block geometry and thermal issues still exist. This paper will describe the methods used to minimize the measurement uncertainty of the phase change on reflection evaluation using a spherical contact technique. The work focuses on gage block surface topography and drift eliminating algorithms for the data collection. The extrapolation of the data to an undeformed condition and the failure of these curves to follow theoretical estimates are also discussed. The wavelength dependence of the correction was directly measured for different gage block materials and manufacturers and the data will be presented.

  16. High resolution kilometric range optical telemetry in air by radio frequency phase measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, Joffray; García-Márquez, Jorge; Truong, Daniel; Wallerand, Jean-Pierre [Laboratoire Commun de Métrologie LNE-Cnam (LCM), LNE, 1 rue Gaston Boissier, 75015 Paris (France); Šmíd, Radek [Laboratoire Commun de Métrologie LNE-Cnam (LCM), LNE, 1 rue Gaston Boissier, 75015 Paris (France); Institute of Scientific Instruments of the CAS, Kralovopolska 147, 612 64 Brno (Czech Republic); Alexandre, Christophe [Centre d’Études et de Recherche en Informatique et Communications (CEDRIC), Cnam, 292 rue St-Martin, 75003 Paris (France)

    2016-07-15

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  17. High resolution kilometric range optical telemetry in air by radio frequency phase measurement

    Science.gov (United States)

    Guillory, Joffray; Šmíd, Radek; García-Márquez, Jorge; Truong, Daniel; Alexandre, Christophe; Wallerand, Jean-Pierre

    2016-07-01

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  18. MICRO- AND NANOSCALE MEASUREMENT METHODS FOR PHASE CHANGE HEAT TRANSFER ON PLANAR AND STRUCTURED SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Buongiorno, J; Cahill, DG; Hidrovo, CH; Moghaddam, S; Schmidt, AJ; Shi, L

    2014-07-23

    In this opinion piece, we discuss recent advances in experimental methods for characterizing phase change heat transfer. We begin with a survey of techniques for high-resolution measurements of temperature and heat flux at the solid surface and in the working fluid. Next, we focus on diagnostic tools for boiling heat transfer and describe techniques for visualizing the temperature and velocity fields, as well as measurements at the single bubble level. Finally, we discuss techniques to probe the kinetics of vapor formation within a few molecular layers of the interface. We conclude with our outlook for future progress in experimental methods for phase change heat transfer.

  19. Reflexive and preparatory selection and suppression of salient information in the right and left posterior parietal cortex.

    Science.gov (United States)

    Mevorach, Carmel; Humphreys, Glyn W; Shalev, Lilach

    2009-06-01

    Attentional cues can trigger activity in the parietal cortex in anticipation of visual displays, and this activity may, in turn, induce changes in other areas of the visual cortex, hence, implementing attentional selection. In a recent TMS study [Mevorach, C., Humphreys, G. W., & Shalev, L. Opposite biases in salience-based selection for the left and right posterior parietal cortex. Nature Neuroscience, 9, 740-742, 2006b], it was shown that the posterior parietal cortex (PPC) can utilize the relative saliency (a nonspatial property) of a target and a distractor to bias visual selection. Furthermore, selection was lateralized so that the right PPC is engaged when salient information must be selected and the left PPC when the salient information must be ignored. However, it is not clear how the PPC implements these complementary forms of selection. Here we used on-line triple-pulse TMS over the right or left PPC prior to or after the onset of global/local displays. When delivered after the onset of the display, TMS to the right PPC disrupted the selection of the more salient aspect of the hierarchical letter. In contrast, left PPC TMS delivered prior to the onset of the stimulus disrupted responses to the lower saliency stimulus. These findings suggest that selection and suppression of saliency, rather than being "two sides of the same coin," are fundamentally different processes. Selection of saliency seems to operate reflexively, whereas suppression of saliency relies on a preparatory phase that "sets up" the system in order to effectively ignore saliency.

  20. Phase equilibria from PVT measurements for carbon dioxide, water, and n-decane

    Energy Technology Data Exchange (ETDEWEB)

    Okafor, M.N.

    1987-01-01

    Phase equilibrium properties for the carbon dioxide - water - n-decane system were determined from pressure-temperature-volume (PVT) measurements. PVT properties were also obtained for pure carbon dioxide and water, and the binary mixtures of carbon dioxide - water and carbon dioxide - n-decane. The experiments were conducted at temperatures of 313.17, 353.15 and 393.15 Kelvin, and at pressures from 37 to 416 bar. Measurements for the mixtures were terminated when complete miscibility was observed. The Perturbed-Hard-Chain (PHC) equation of state developed by Gmehling et al (1979) was chosen to correlate the measured data because of its ability to handle the complexity of the molecular interactions in the mixtures. Binary interaction parameters were regressed for the carbon dioxide - water and carbon dioxide - n-decane mixtures while those of water - n-decane were obtained from ternary data. A fiber-optic scope was used to observe the number of phases present and qualitatively measure the equilibrium liquid phase volumes. The measured data were then compared to predictions from the model. Ternary diagrams are presented showing predicted coexisting equilibrium phases for the three isotherms and several pressures.

  1. Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe

    Directory of Open Access Journals (Sweden)

    Park Yu sun

    2011-01-01

    Full Text Available Abstract A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer.

  2. Iterative least square phase-measuring method that tolerates extended finite bandwidth illumination.

    Science.gov (United States)

    Munteanu, Florin; Schmit, Joanna

    2009-02-20

    Iterative least square phase-measuring techniques address the phase-shifting interferometry issue of sensitivity to vibrations and scanner nonlinearity. In these techniques the wavefront phase and phase steps are determined simultaneously from a single set of phase-shifted fringe frames where the phase shift does not need to have a nominal value or be a priori precisely known. This method is commonly used in laser interferometers in which the contrast of fringes is constant between frames and across the field. We present step-by-step modifications to the basic iterative least square method. These modifications allow for vibration insensitive measurements in an interferometric system in which fringe contrast varies across a single frame, as well as from frame to frame, due to the limited bandwidth light source and the nonzero numerical aperture of the objective. We demonstrate the efficiency of the new algorithm with experimental data, and we analyze theoretically the degree of contrast variation that this new algorithm can tolerate.

  3. Errors and uncertainties in the measurement of ultrasonic wave attenuation and phase velocity.

    Science.gov (United States)

    Kalashnikov, Alexander N; Challis, Richard E

    2005-10-01

    This paper presents an analysis of the error generation mechanisms that affect the accuracy of measurements of ultrasonic wave attenuation coefficient and phase velocity as functions of frequency. In the first stage of the analysis we show that electronic system noise, expressed in the frequency domain, maps into errors in the attenuation and the phase velocity spectra in a highly nonlinear way; the condition for minimum error is when the total measured attenuation is around 1 Neper. The maximum measurable total attenuation has a practical limit of around 6 Nepers and the minimum measurable value is around 0.1 Neper. In the second part of the paper we consider electronic noise as the primary source of measurement error; errors in attenuation result from additive noise whereas errors in phase velocity result from both additive noise and system timing jitter. Quantization noise can be neglected if the amplitude of the additive noise is comparable with the quantization step, and coherent averaging is employed. Experimental results are presented which confirm the relationship between electronic noise and measurement errors. The analytical technique is applicable to the design of ultrasonic spectrometers, formal assessment of the accuracy of ultrasonic measurements, and the optimization of signal processing procedures to achieve a specified accuracy.

  4. Oil-water two-phase flow measurement with combined ultrasonic transducer and electrical sensors

    Science.gov (United States)

    Tan, Chao; Yuan, Ye; Dong, Xiaoxiao; Dong, Feng

    2016-12-01

    A combination of ultrasonic transducers operated in continuous mode and a conductance/capacitance sensor (UTCC) is proposed to estimate the individual flow velocities in oil-water two-phase flows. Based on the Doppler effect, the transducers measure the flow velocity and the conductance/capacitance sensor estimates the phase fraction. A set of theoretical correlations based on the boundary layer models of the oil-water two-phase flow was proposed to describe the velocity profile. The models were separately established for the dispersion flow and the separate flow. The superficial flow velocity of each phase is calculated with the velocity measured in the sampling volume of the ultrasonic transducer with the phase fraction through the velocity profile models. The measuring system of the UTCC was designed and experimentally verified on a multiphase flow loop. The results indicate that the proposed system and correlations estimate the overall flow velocity at an uncertainty of U J   =  0.038 m s-1, and the water superficial velocity at U Jw   =  0.026 m s-1, and oil superficial velocity at U Jo   =  0.034 m s-1. The influencing factors of uncertainty were analyzed.

  5. Measuring the Gouy Phase of Matter Waves using Singular Atom Optics with Spinor BECs

    Science.gov (United States)

    Schultz, Justin T.; Hansen, Azure; Murphree, Joseph D.; Jayaseelan, Maitreyi; Bigelow, Nicholas P.

    2016-05-01

    The Gouy phase is a propagation-dependent geometric phase found in confined waves as they propagate through a focus. Although it has been observed and studied extensively both in scalar and vector optical beams as well as in electron vortex beams, it has not yet been directly observed in ultracold matter waves. The Schrödinger equation has the same form as the paraxial wave equation from electromagnetism; expansion of a BEC upon release from a trap has the same mathematical form as a beam propagating away from a focus. We employ and extend this analogy between coherent optical beams and coherent matter waves to include spin angular momentum (polarization), which enables us measure the matter wave Gouy phase using coreless vortex spin textures in spinor BECs. Because the Gouy phase is dependent on the orbital angular momentum of the wave, the vortex and core states acquire different Gouy phase shifts. Parameters that are sensitive to the relative phase such as two-dimensional maps of the Stokes parameters rotate during evolution due to this phase difference. Using atom-optic polarimetry we can access the evolution of the atomic Stokes parameters and observe this rotation.

  6. Phase behavior of hard-core lattice gases: A fundamental measure approach

    Science.gov (United States)

    Lafuente, Luis; Cuesta, José A.

    2003-11-01

    We use an extension of fundamental measure theory to lattice hard-core fluids to study the phase diagram of two different systems. First, two-dimensional parallel hard squares with edge-length σ=2 in a simple square lattice. This system is equivalent to the lattice gas with first and second neighbor exclusion in the same lattice, and has the peculiarity that its close packing is degenerated (the system orders in sliding columns). A comparison with other theories is discussed. Second, a three-dimensional binary mixture of parallel hard cubes with σL=6 and σS=2. Previous simulations of this model only focused on fluid phases. Thanks to the simplicity introduced by the discrete nature of the lattice we have been able to map out the complete phase diagram (both uniform and nonuniform phases) through a free minimization of the free energy functional, so the structure of the ordered phases is obtained as a result. A zoo of entropy-driven phase transitions is found: one-, two- and three-dimensional positional ordering, as well as fluid-ordered phase and solid-solid demixings.

  7. Double sinusoidal phase modulating laser diode interferometer for thickness measurements of transparent plates

    Institute of Scientific and Technical Information of China (English)

    Dailin Li(李代林); Xiangzhao Wang(王向朝); Yingming Liu(刘英明)

    2004-01-01

    A double sinusoidal phase modulating (SPM) laser diode interferometer for thickness measurements of a transparent plate is presented. A carrier signal is given to the interference signal by using a piezoelectric transducer, and the SPM interferometry is applied to measure the thickness of a transparent plate. By combining the double-modulation technique with the Bessel function ratio method, the measurement error originating from light intensity fluctuations caused by the modulation current can be decreased greatly.The thicknesses of a glass parallel plate and a quartz glass are measured in real time, and the corresponding experimental results are also given.

  8. Use of photoelectron laser phase determination method for attosecond measurements with quantum-mechanical calculations

    Institute of Scientific and Technical Information of China (English)

    Ge Yu-Cheng

    2008-01-01

    This paper calculates quantum-mechanically the photoelectron energy spectra excited by attosecond x-rays in the presence of a few-cycle laser. A photoelectron laser phase determination method is used for precise measurements of the pulse natural properties of x-ray intensity and the instantaneous frequency profiles. As a direct procedure without any previous pulse profile assumptions and time-resolved measurements as well as data fitting analysis, this method can be used to improve the time resolutions of attosecond timing and measurements with metrological precision. The measurement range is half of a laser optical cycle.

  9. Phase Determination Method to Directly Measure Intensity and Frequency of Temporal Profiles of Attosecond EUV Pulses

    Institute of Scientific and Technical Information of China (English)

    GE Yu-Cheng

    2005-01-01

    @@ A new method of phase determination is presented to directly measure the intensity and frequency temporalprofiles of attosecond EUV pulses. The profiles can be reconstructed from the photoelectron energy spectra measured with two different laser intensities at 0° and 180° with respect to the linear laser polarization using a cross correlation between the femtosecond laser and the attosecond EUV. The method has a temporal measurement range from a quarter to about half of a laser oscillation period. The time resolution depends on the jitter and control precision of laser and EUV pulses. This method improves the time resolution in measuring attosecond EUV pulses.

  10. Error minimization method for spectroscopic and phase-modulated ellipsometric measurements on highly transparent thin films

    Energy Technology Data Exchange (ETDEWEB)

    Campmany, J.; Bertran, E.; Canillas, A.; Andujar, J.L.; Costa, J. (Universitat de Barcelona, Catalonia (Spain))

    1993-04-01

    The authors point out that there is an intrinsic magnification of error in the measurement of transparent or semitransparent thin films by the usual method of phase-modulated ellipsometry. This procedure is suitable for absorbing materials, but for nonabsorbing materials it gives a great amount of error in the measurement of ellipsometric angles at some critical values. A new methodology is proposed for the phase-modulated ellipsometric measurements that avoids this magnification. The advantages of this new method are illustrated by measuring the index of refraction of a low-pressure chemical-vapor-deposited SiO[sub 2] thin film with greater accuracy than that achieved by the usual method. 16 refs., 6 figs.

  11. In situ measurement of solvent-mediated phase transformations during dissolution testing

    DEFF Research Database (Denmark)

    Aaltonen, Jaakko; Heinänen, Paula; Peltonen, Leena

    2006-01-01

    In this study, solvent-mediated phase transformations of theophylline (TP) and nitrofurantoin (NF) were measured in a channel flow intrinsic dissolution test system. The test set-up comprised simultaneous measurement of drug concentration in the dissolution medium (with UV-Vis spectrophotometry......). Transformation of TP anhydrate to TP monohydrate resulted in a clear decrease in the dissolution rate, while the transformation of NF anhydrate (form beta) to NF monohydrate (form II) could not be linked as clearly to changes in the dissolution rate. The transformation of TP was an order of magnitude faster than...... that of NF. The presence of a water absorbing excipient, microcrystalline cellulose, was found to delay the onset of the transformation of TP anhydrate. Combining the measurement of drug concentration in the dissolution medium with the solid phase measurement offers a deeper understanding of the solvent...

  12. MEASURING BETA FUNCTION AND PHASE ADVANCE IN RHIC WITH AN AC DIPOLE.

    Energy Technology Data Exchange (ETDEWEB)

    BAI,M.PEGGS,S.ROSER,T.SATOGATA,T.

    2003-05-12

    High energy hadron collider operation requires accurate measurements of the beta functions and phase advances, to check the linear optics and to locate gradient errors. During the RHIC 2003 run, two AC dipoles with vertical and horizontal magnetic field [1] were used to measure the linear optics at storage and at injection energies. The two AC dipoles are set up to adiabatically induce sizable coherent oscillations at a frequency close to the betatron frequencies. The beta functions and phase advances are then calculated from the 1024 turn-by-turn measurements available from all the RHIC BPMs (Beam Position Monitors). Because the coherent excitation is adiabatic, the beam emittance is preserved after the measurement. The algorithm is discussed in this paper, and experimental results are presented.

  13. Nonparaxial multi-Gaussian beam models and measurement models for phased array transducers.

    Science.gov (United States)

    Zhao, Xinyu; Gang, Tie

    2009-01-01

    A nonparaxial multi-Gaussian beam model is proposed in order to overcome the limitation that paraxial Gaussian beam models lose accuracy in simulating the beam steering behavior of phased array transducers. Using this nonparaxial multi-Gaussian beam model, the focusing and steering sound fields generated by an ultrasonic linear phased array transducer are calculated and compared with the corresponding results obtained by paraxial multi-Gaussian beam model and more exact Rayleigh-Sommerfeld integral model. In addition, with help of this novel nonparaxial method, an ultrasonic measurement model is provided to investigate the sensitivity of linear phased array transducers versus steering angles. Also the comparisons of model predictions with experimental results are presented to certify the accuracy of this provided measurement model.

  14. Thickness Measurements from Single X-ray Phase-contrast Speckle Projection

    CERN Document Server

    Xi, Yan; Ma, Jingchen; Zhao, Jun

    2015-01-01

    We propose a one-shot thickness measurement method for sponge-like structures using a propagation-based X-ray phase-contrast imaging (P-PCI) method. In P-PCI, the air-material interface refracts the incident X-ray. Refracted many times along their paths by such a structure, incident X-rays propagate randomly within a small divergent angle range, resulting in a speckle pattern in the captured image. We found structure thickness and contrast of a phase-contrast projection are directly related in images. This relationship can be described by a natural logarithm equation. Thus, from the one phase-contrast view, depth information can be retrieved from its contrast. Our preliminary biological experiments indicate promise in its application to measurements requiring in vivo and ongoing assessment of lung tumor progression.

  15. Measuring finite-range phase coherence in an optical lattice using Talbot interferometry

    Science.gov (United States)

    Santra, Bodhaditya; Baals, Christian; Labouvie, Ralf; Bhattacherjee, Aranya B.; Pelster, Axel; Ott, Herwig

    2017-06-01

    One of the important goals of present research is to control and manipulate coherence in a broad variety of systems, such as semiconductor spintronics, biological photosynthetic systems, superconducting qubits and complex atomic networks. Over the past decades, interferometry of atoms and molecules has proven to be a powerful tool to explore coherence. Here we demonstrate a near-field interferometer based on the Talbot effect, which allows us to measure finite-range phase coherence of ultracold atoms in an optical lattice. We apply this interferometer to study the build-up of phase coherence after a quantum quench of a Bose-Einstein condensate residing in a one-dimensional optical lattice. Our technique of measuring finite-range phase coherence is generic, easy to adopt and can be applied in practically all lattice experiments without further modifications.

  16. ACCURACY ANALYSIS OF PASSIVE LOCATION SYSTEM WITH PHASE DIFFERENCE RATE MEASUREMENT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The conventional mono-station passive location techniques of direction finding are low in speed and accuracy, due to the little information available. In this paper, a novel measurement-rate (derivative) of phase difference from a two-element antenna array (interferometer) is introduced, accuracy of a passive location system with this measurement and directions of arrival (DOA) is analyzed, and the Cramer-Rao bound of location error of this system for 3D location is examined by simulations.

  17. Phase-referenced probe interferometer for biological surface profiling and displacement measurements

    Science.gov (United States)

    Fang-Yen, Christopher; Chu, Mark C.; Seung, H. Sebastian; Dasari, Ramachandra R.; Feld, Michael S.

    2007-12-01

    We present a probe-based, phase-referenced low coherence interferometer in which the reference field is provided by a fiber end reflection. A gradient-index microlens focuses light onto a sample and collects reflected light. We use the probe interferometer to measure surface profiles of the compound eye of a housefly (Musca domestica) and measure nanometer-scale vibrations in a test sample.

  18. Phase Retrieval From Multiple-Window Short-Time Fourier Measurements

    Science.gov (United States)

    Li, Lan; Cheng, Cheng; Han, Deguang; Sun, Qiyu; Shi, Guangming

    2017-04-01

    In this paper, we introduce two symmetric directed graphs depending on supports of signals and windows, and we show that the connectivity of those graphs provides either necessary and sufficient conditions to phase retrieval of a signal from magnitude measurements of its multiple-window short-time Fourier transform. Also we propose an algebraic reconstruction algorithm, and provide an error estimate to our algorithm when magnitude measurements are corrupted by deterministic/random noises.

  19. On measuring surface wave phase velocity from station–station cross-correlation of ambient signal

    DEFF Research Database (Denmark)

    Boschi, Lapo; Weemstra, Cornelis; Verbeke, Julie

    2012-01-01

    We apply two different algorithms to measure surface wave phase velocity, as a function of frequency, from seismic ambient noise recorded at pairs of stations from a large European network. The two methods are based on consistent theoretical formulations, but differ in the implementation: one met...

  20. Local phase measurements of light in a one-dimensional photonic crystal

    NARCIS (Netherlands)

    Flück, E.; Otter, A.M.; Korterik, J.P.; Balistreri, M.L.M.; Kuipers, L.; Hulst, van N.F.

    2001-01-01

    For the first time the local optical phase evolution in and around a small, o­ne-dimensional photonic crystal has been visualized with a heterodyne interferometric photon scanning tunnelling microscope. The measurements show an exponential decay of the optical intensity inside the crystal, which con

  1. Heterodyne technique for measuring the amplitude and phase transfer functions of an optical modulator

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper

    2002-01-01

    In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From...

  2. Maximal entanglement of squeezed vacuum states via swapping with number-phase measurement

    CERN Document Server

    Kitagawa, A; Kitagawa, Akira; Yamamoto, Katsuji

    2002-01-01

    We propose a method to realize entanglement via swapping from a pair of squeezed vacuum states by performing number sum and phase difference measurements. The resultant states are maximally entangled by adjusting the two squeezing parameters to the same value. We then describe a teleportation protocol by using the entangled states prepared in this way.

  3. Nondestructive Determination of Moisture Content in Dry Fruits by Impedance and Phase angle measurements

    Science.gov (United States)

    Impedance (Z), and phase angle (') of a cylindrical parallel-plate capacitor with dry fruits between the plates was measured using a CI meter (Chari’s Impedance meter), at 1 and 9 MHz . Capacitance, C was derived from Z and ', and using the C, ', and Z values of a set of cherries whose moisture con...

  4. Phase retrieval and time-frequency methods in the measurement of ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, K.W.; Fittinghoff, D.N.; Ladera, C.L.; Trebino, R.

    1995-02-01

    Recently several techniques have become available to measure the time- (or frequency-) dependent intensity and phase of ultrashort laser pulses. One of these, Frequency-Resolved Optical Gating (FROG), is rigorous and has achieved single-laser-shot operation. FROG combines the concepts of time-frequency analysis in the form of spectrogram generation (in order to create a two-dimensional problem), and uses a phase-retrieval-based algorithm to invert the experimental data to yield the intensity and phase of the laboratory laser pulse. In FROG it is easy to generate a spectrogram of the unknown signal, and inversion of the spectrogram to recover the signal is the main goal. Because the temporal width of a femtosecond laser pulse is much shorter than anything achievable by electronics, FROG uses the pulse to measure itself. In FROG, the laser pulse is split into two replicas of itself by a partially reflecting beamsplitter, and the two replicas interact with each other in a medium with an instantaneous nonlinear-optical response. This interaction generates a signal field that is then frequency-resolved using a spectrometer. The spectrum of the signal field is measured for all relevant values of the temporal delay between the two pulses. Here, the authors employ FROG and FROG related techniques to measure the time-dependent intensity and phase of an ultrashort laser pulse.

  5. Phase-Contrast Magnetic Resonance Angiography Measurements of Global Cerebral Blood Flow in the Neonate

    NARCIS (Netherlands)

    Benders, Manon J. N. L.; Hendrikse, Jeroen; de Vries, Linda S.; van Bel, Frank; Groenendaal, Floris

    2011-01-01

    Cerebral blood flow (CBF) alterations are important in pathogenesis of neonatal ischemic/hemorrhagic brain damage. In clinical practice, estimation of neonatal CBF is mostly based on Doppler-measured blood flow velocities in major intracranial arteries. Using phase-contrast magnetic resonance angiog

  6. The Accuracy and Precision of Flow Measurements Using Phase Contrast Techniques

    Science.gov (United States)

    Tang, Chao

    Quantitative volume flow rate measurements using the magnetic resonance imaging technique are studied in this dissertation because the volume flow rates have a special interest in the blood supply of the human body. The method of quantitative volume flow rate measurements is based on the phase contrast technique, which assumes a linear relationship between the phase and flow velocity of spins. By measuring the phase shift of nuclear spins and integrating velocity across the lumen of the vessel, we can determine the volume flow rate. The accuracy and precision of volume flow rate measurements obtained using the phase contrast technique are studied by computer simulations and experiments. The various factors studied include (1) the partial volume effect due to voxel dimensions and slice thickness relative to the vessel dimensions; (2) vessel angulation relative to the imaging plane; (3) intravoxel phase dispersion; (4) flow velocity relative to the magnitude of the flow encoding gradient. The partial volume effect is demonstrated to be the major obstacle to obtaining accurate flow measurements for both laminar and plug flow. Laminar flow can be measured more accurately than plug flow in the same condition. Both the experiment and simulation results for laminar flow show that, to obtain the accuracy of volume flow rate measurements to within 10%, at least 16 voxels are needed to cover the vessel lumen. The accuracy of flow measurements depends strongly on the relative intensity of signal from stationary tissues. A correction method is proposed to compensate for the partial volume effect. The correction method is based on a small phase shift approximation. After the correction, the errors due to the partial volume effect are compensated, allowing more accurate results to be obtained. An automatic program based on the correction method is developed and implemented on a Sun workstation. The correction method is applied to the simulation and experiment results. The

  7. Spindle error motion measurement using concentric circle grating and phase modulation interferometers

    Science.gov (United States)

    Aketagawa, M.; Madden, M.; Uesugi, S.; Kumagai, T.; Maeda, Y.; Okuyama, E.

    2012-11-01

    In the conventional methods to measure radial, axial and angular motions of spindles, complicated artifacts with relative large volume (such as two balls linked with a cylinder) are required. Small volume artifact is favorable from the viewpoint of the accurate and practical measurement of the spindle motion. This paper describes a concurrent measurement of spindle radial, axial and angular motions using concentric circle grating and phase modulation interferometers. In the measurement, the concentric circle grating with fine pitch is installed on top of the spindle of interest. The grating is a reference artifact in the method. Three optical sensors are fixed over the concentric circle grating, and observe the proper positions of the grating. The optical sensor consists of a frequency modulated laser diode as a light source, and two interferometers. One interferometer observes an interference fringe between reflected light form a fixed mirror and 0-th order diffraction light from the grating to measure the axial motion. Another interferometer observes an interference fringe between +/-2nd diffraction lights from the grating to measure the radial motion. Using three optical sensors, three radial displacements and three axial displacements of the proper observed position of the grating can be measured. From these measured displacements, radial, axial and angular motions of the spindle can be calculated concurrently. In the paper, a measurement instrument, a novel fringe interpolation technique by sinusoidal phase modulation and experimental results are discussed.

  8. Time-resolved lattice measurements of shock-induced phase transitions in polycrystalline materials

    Science.gov (United States)

    Milathianaki, Despina

    The response of materials under extreme temperature and pressure conditions is a topic of great significance because of its relevance in astrophysics, geophysics, and inertial confinement fusion. In recent years, environments exceeding several hundred gigapascals in pressure have been produced in the laboratory via laser-based dynamic loading techniques. Shock-loading is of particular interest as the shock provides a fiducial for measuring time-dependent processes in the lattice such as phase transitions. Time-resolved x-ray diffraction is the only technique that offers an insight into these shock-induced processes at the relevant spatial (atomic) and temporal scales. In this study, nanosecond resolution x-ray diffraction techniques were developed and implemented towards the study of shock-induced phase transitions in polycrystalline materials. More specifically, the capability of a focusing x-ray diffraction geometry in high-resolution in situ lattice measurements was demonstrated by probing shock-compressed Cu and amorphous metallic glass samples. In addition, simultaneous lattice and free surface velocity measurements of shock-compressed Mg in the ambient hexagonal close packed (hcp) and shock-induced body centered cubic (bcc) phases between 12 and 45 GPa were performed. These measurements revealed x-ray diffraction signals consistent with a compressed bcc lattice above a shock pressure of 26.2+/-1.3 GPa, thus capturing for the first time direct lattice evidence of a shock-induced hcp to bcc phase transition in Mg. Our measurement of the hcp-bcc phase boundary in Mg was found to be consistent with the calculated boundary from generalized pseudopotential theory in the pressure and temperature region intersected by the principal shock Hugoniot. Furthermore, the subnanosecond timescale of the phase transition implied by the shock-loading conditions was in agreement with the kinetics of a martensitic transformation. In conclusion, we report on the progress and

  9. Two-phase PIV measurements of particle suspension in a forced impinging jet

    Science.gov (United States)

    Mulinti, Rahul; Kiger, Ken

    2010-11-01

    The condition of rotorcraft brownout is characterized by intense dust suspension that is uplifted during landing and takeoff operations in regions covered with loose sediment. To predict particle suspension and sedimentation within coupled particle-laden flows, detailed characterization of the micro-scale mechanics is needed within a prototypical flow that captures the essence of the rotorcraft/ground wake interactions. Two-phase PIV has been used to study the interaction of a sediment bed made of glass spheres with characteristic flow structures reminiscent from flow within a rotor wake. In order to make reliable simultaneous two-phase PIV measurements, a phase discrimination algorithm from a single two-phase image has been implemented. The validity of the separation is checked by processing images that consisted only of the very small tracer particles, or only the dispersed phase particles, and examining how much "cross-talk" was present between the phases. The mobilization and wall-normal flux of particulates by the vortex-wall interaction will be reported for several different operational conditions, and correlated to the local vortex conditions.

  10. English language proficiency and academic performance: A study of a medical preparatory year program in Saudi Arabia

    Science.gov (United States)

    Kaliyadan, Feroze; Thalamkandathil, Nazer; Parupalli, Srinivas Rao; Amin, Tarek Tawfik; Balaha, Magdy Hassan; Al Bu Ali, Waleed Hamad

    2015-01-01

    Introduction: All medical schools in Saudi Arabia have English as the primary official medium of instruction. Most of the high school education, however, is delivered in Arabic and hence the transition to an English based learning environment tends to be difficult for some students. Our study aims to correlate English language proficiency with academic performance among medical students in their preparatory year. Methods: A cross-sectional study design was used. Test scores of 103 preparatory year students (54 female and 49 male) were analyzed after the students completed an English language course and medical introductory course in their preparatory year. The total score obtained in the English course assessment was compared to each component of the medical content assessment. Results: A significantly positive correlation (Spearman's Rho, at 0.01 levels) was seen between the scores of the English exam and the written exam (P English exam score was not obtained for the other components of the medical assessment, namely; student assignments, presentations and portfolios. Conclusion: English language proficiency is an important factor in determining academic proficiency of medical students in our college at the preparatory year level. PMID:26629471

  11. The Effectiveness of Student Extracurricular Activities in Evaluating Violent Behavior among Students in the Preparatory Year at Hail University

    Science.gov (United States)

    Aleid, Alkhamsah Saleh

    2016-01-01

    This study aimed to examine the effectiveness of student extracurricular activities in evaluating violent behavior among students in the preparatory year at Hail University. The researcher used the descriptive analytical method, and used two tools for the purpose of the study, the study sample consisted of 104 (violent) female students from the…

  12. The Use of Discourse Markers in Paragraph Writings: The Case of Preparatory Year Program Students in Qassim University

    Science.gov (United States)

    Daif-Allah, Ayman Sabry; Albesher, Khaled

    2013-01-01

    The purpose of this paper is to identify the discourse markers used by Saudi EFL learners in their paragraph writing. The study was conducted on fifty students of the Preparatory Year Program at Qassim University. Data were collected from one hundred paragraphs written by the students at the end of the first and second semesters of the academic…

  13. A Program Based on English Digital Stories to Develop the Writing Performance and Reflective Thinking of Preparatory School Pupils

    Science.gov (United States)

    Hassan Seifeddin, Ahmed; Zakareya Ahmed, Samah; Yahia Mohammed Ebrahim, Eman

    2015-01-01

    This study aimed to investigate the effect of a program based on English digital stories on second-year preparatory pupils' writing performance and reflective thinking. Two writing performance tests (pretest and posttest) as well as a reflective thinking test were prepared by the researchers. Two 2nd-year intact classes from El Sadat Prep School…

  14. A Reciprocal Model of Psychographic Attributes Related to Their Learning among Preparatory Year of Undergraduate Students in West Saudi Arabia

    Science.gov (United States)

    Talafha, Feras

    2015-01-01

    This study examines the level of psychographic attributes among the preparatory year students enrolled at the University of Dammam, Saudi Arabia. The study sample consists of 209 students chosen with the help of random sampling and questionnaire survey was employed for data collection. Based on the findings, the entire study variables, which are…

  15. English language proficiency and academic performance: A study of a medical preparatory year program in Saudi Arabia.

    Science.gov (United States)

    Kaliyadan, Feroze; Thalamkandathil, Nazer; Parupalli, Srinivas Rao; Amin, Tarek Tawfik; Balaha, Magdy Hassan; Al Bu Ali, Waleed Hamad

    2015-01-01

    All medical schools in Saudi Arabia have English as the primary official medium of instruction. Most of the high school education, however, is delivered in Arabic and hence the transition to an English based learning environment tends to be difficult for some students. Our study aims to correlate English language proficiency with academic performance among medical students in their preparatory year. A cross-sectional study design was used. Test scores of 103 preparatory year students (54 female and 49 male) were analyzed after the students completed an English language course and medical introductory course in their preparatory year. The total score obtained in the English course assessment was compared to each component of the medical content assessment. A significantly positive correlation (Spearman's Rho, at 0.01 levels) was seen between the scores of the English exam and the written exam (P correlation with the English exam score was not obtained for the other components of the medical assessment, namely; student assignments, presentations and portfolios. English language proficiency is an important factor in determining academic proficiency of medical students in our college at the preparatory year level.

  16. The Silence about Oral Presentation Skills in Distance and Online Education: New Perspectives from an Australian University Preparatory Programme

    Science.gov (United States)

    McDougall, Jenny; Holden, Helen

    2017-01-01

    Oral presentation skills are considered essential workplace skills and are therefore highly valued in higher education. However, research into this aspect of adult learning is limited, especially in the context of distance and online education. This paper reports on an innovative approach used in a university preparatory program in Australia.…

  17. George W. Wingate High School, Bilingual Demonstration College Preparatory Program. O.E.E. Evaluation Report, 1982-1983.

    Science.gov (United States)

    Sjostrom, Barbara R.; Sica, Michael

    The Bilingual Demonstration College Preparatory Program, in its second year of funding, provided English as a second language (ESL) and native language instruction, in addition to bilingual instruction in mathematics, social studies, and science, to 120 Spanish-speaking students in grades 9-12 at George W. Wingate High School (Brooklyn, New York).…

  18. BARRIERS TO CALL PRACTICES IN AN EFL CONTEXT: A CASE STUDY OF PREPARATORY YEAR ENGLISH COURSES

    Directory of Open Access Journals (Sweden)

    Taj Mohammad

    2016-07-01

    Full Text Available The present study attempts to find out the practical barriers to technology integration in an Arab EFL scenario, particularly in the context of Preparatory Year English courses. The practical barriers to CALL practices are multifaceted and vary according to contexts. In this mixed method study, 50 ESL teachers were surveyed using a 5-point Likert-scale questionnaire. The questionnaire focused on the pedagogical, technological, personal and administrative barriers to CALL integration in an EFL context. In addition, 21 teachers participated in the focus group discussion. Overall, the survey results found that the barriers influencing CALL integration in the study context were moderate. However, lack of administrative support, inadequate training, and absence of suitable materials were found as significant barriers to CALL integration. The focus group discussion reiterated the issues and suggested practical solutions for maximization of CALL practices. The study suggests a holistic administrative approach to solve the barriers to CALL integration.

  19. Investigating Reading Strategy Use in EFL Environment: Instructors and Preparatory Class Students’ Perspectives

    Directory of Open Access Journals (Sweden)

    Tolga KOÇER

    2013-04-01

    Full Text Available This study investigated if receiving cognitive and metacognitive reading strategy training explicitly would make a difference in the University preparatory class students’ reading comprehension. From the instructors’ aspect, the instructors’ views about and approaches to teaching reading strategies were investigated and compared with each other. 83 students and 4 instructors particapated to this mix-method study. Following the Solomon-four-group design the participants were divided into 2 research and 2 comparison groups. Data collection methods were pre-post reading comprehension test, CRSUS, MRSUS, TRSUS, self-evaluation checklists, interviews and classroom observations. The results of the study show that there is no significant difference in the reading comprehension of the comparison and research group students at the end of the term. For the instructors, the results indicate that the research group instructors had tendency to use more reading strategies. The paper concluded with implications and suggestions for the future research.

  20. The Impact of Smartboard on Preparatory Year EFL Learners’ Motivation at a Saudi University

    Directory of Open Access Journals (Sweden)

    Waqar Ahmad

    2017-06-01

    Full Text Available Smartboards, which are now widely used in the teaching and learning process in Saudi Arabia, have turned the traditional environments of the classrooms, especially the EFL classrooms to be more interesting and encouraging. Literature reviews suggest that Saudi students usually lack motivation for studying English as a foreign language. This study tends to investigate the impact of Smartboards on preparatory year EFL learners motivation at a Saudi university. Two intact groups were selected, in which one was termed as experimental and the second as control group. The experimental group was taught using the Smartboard while the control group was taught with the traditional whiteboard, pen and book method. The treatment was given for seven weeks. A questionnaire was administered to both the groups at the beginning and the end of the study. The data was analysed using the SPSS and the results showed that there was significant difference between the experimental and control groups in terms of motivation.

  1. A CASE STUDY: WORKSHEETS USED IN A LANGUAGE PREPARATORY SCHOOL IN HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    Buket KASAP

    2016-12-01

    Full Text Available The aim of this case study is to analyze the supplementary instructional materials, namely worksheets, used in an English preparatory school in one of the Turkish universities. The data were gathered from the materials development unit of the school. Using the content analysis method, worksheets from 2015 spring and 2016 spring terms were analyzed. The findings revealed that most worksheets included decontextualized, repetitive grammar activities though the theme-based course book included integrated skills activities, appealing various learning styles. It was also observed that students were evaluated based on their proficiency in basic four skills while they studied mostly grammar based worksheets. As a result, a shift to a more eclectic method which caters for all learning styles and equally includes all skills is suggested to the school board.

  2. Dynamic displacement measurements with a stabilized fiber Michelson interferometer based on quadratrue-phase-tracking technique

    Science.gov (United States)

    Chen, Zhimin; Xie, Fang; Li, Min; Feng, Qibo

    2010-01-01

    A highly stabilized dynamic displacement measurement system, which employs fiber Bragg gratings to interleave two fiber Michelson interferometers that share the common interferometric optical path, is presented. The phase change in the interferometric signals of the two fiber Michelson interferometers is tracked respectively by maintaining the phase difference in quadrature with two electronic feedback loops. One of the fiber interferometers is used to stabilize the system by the use of an electronic feedback loop to eliminate the influences that result from the environmental disturbances, while the other fiber interferometer is used for the measurement by employing another electronic feedback loop to track the phase change in the interferometric signal. The system is able to measure dynamic displacement and provide a sense of direction of the displacement at the same time. The dynamic displacement with frequencies ranging from 0.1 Hz to 200 Hz and with a maximum amplitude of 60 μm can be measured, and the measurement resolution can reach 10 nm.

  3. Single-pulse and multipulse longitudinal phase space and temperature measurements of an intense ion beam

    Science.gov (United States)

    Coleman, J. E.; Seidl, P. A.; Bieniosek, F. M.; Leitner, M. A.; Lidia, S. M.; Vay, J. L.; Waldron, W. L.; Grote, D. P.; Welch, D. R.

    2012-07-01

    Longitudinal phase space and temperature measurements were conducted on a 2-3μs long, singly charged K+ ion bunch with an ion energy of ˜0.3MeV and current of 30 mA. The principal objective of these experiments was to measure the longitudinal beam dynamics and study the limits of axial compression. The differences between the measured beam energy, longitudinal beam dynamics, and the amplitude and time history of the Marx voltage waveform were all quantified. Longitudinal phase space measurements indicate a slight chromaticity (<1%) in the beam from head to tail. Record low longitudinal temperatures of Tz=2-4×10-2eV were measured for a beam bunch of this intensity with negligible effects from neutralizing the beam space charge with a background plasma. A qualitative comparison of experimental and calculated results are presented, which include time resolved longitudinal distributions, and phase space of the beam at 430 cm.

  4. Effect of sampling frequency on the measurement of phase-locked action potentials.

    Directory of Open Access Journals (Sweden)

    Go eAshida

    2010-09-01

    Full Text Available Phase-locked spikes in various types of neurons encode temporal information. To quantify the degree of phase-locking, the metric called vector strength (VS has been most widely used. Since VS is derived from spike timing information, error in measurement of spike occurrence should result in errors in VS calculation. In electrophysiological experiments, the timing of an action potential is detected with finite temporal precision, which is determined by the sampling frequency. In order to evaluate the effects of the sampling frequency on the measurement of VS, we derive theoretical upper and lower bounds of VS from spikes collected with finite sampling rates. We next estimate errors in VS assuming random sampling effects, and show that our theoretical calculation agrees with data from electrophysiological recordings in vivo. Our results provide a practical guide for choosing the appropriate sampling frequency in measuring VS.

  5. A New Optical Surface Measurement Method with Iterative Sparsity-Constrained Threshold Phase Retrieval Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Niu

    2014-01-01

    Full Text Available Due to its low complexity and acceptable accuracy, phase retrieval technique has been proposed as an alternative to solve the classic optical surface measurement task. However, to capture the overall wave field, phase retrieval based optical surface measurement (PROSM system has to moderate the CCD position during the multiple-sampling procedure. The mechanical modules of CCD movement may bring about unexpectable deviation to the final results. To overcome this drawback, we propose a new PROSM method based on spatial light modulator (SLM. The mechanical CCD movement can be replaced by an electrical moderation of SLM patterns; thus the deviation can be significantly suppressed in the new PROSM method. In addition, to further improve the performance, we propose a new iterative threshold phase retrieval algorithm with sparsity-constraint to effectively reconstruct the phase of wave field. Experimental results show that the new method provides a more simple and robust solution for the optical surface measurement than the traditional techniques and achieves higher accuracy.

  6. Two New Sliding DTFT Algorithms for Phase Difference Measurement Based on a New Kind of Windows

    Directory of Open Access Journals (Sweden)

    Tu Yaqing

    2014-12-01

    Full Text Available For the ultra-low frequency signals or adjacent Nyquist frequency signals, which exist in the vibration engineering domain, the traditional DTFT-based algorithm shows serious bias for phase difference measurement. It is indicated that the spectrum leakage and negative frequency contribution are the essential causes of the bias. In order to improve the phase difference measurement accuracy of the DTFT-based algorithm, two new sliding DTFT algorithms for phase difference measurement based on a new kind of windows are proposed, respectively. Firstly, the new kind of windows developed by convolving conventional rectangular windows is introduced, which obtains a stronger inhibition of spectrum leakage. Then, with negative frequency contribution considered, two new formulas for phase difference calculation under the new kind of windows are derived in detail. Finally, the idea of sliding recursive is proposed to decrease the computational load. The proposed algorithms are easy to be realized and have a higher accuracy than the traditional DTFT-based algorithm. Simulations and engineering applications verified the feasibility and effectiveness of the proposed algorithms.

  7. Research on the Implementation of Preparatory Behavior%预备行为实行化问题研究

    Institute of Scientific and Technical Information of China (English)

    郑伟

    2016-01-01

    刑法对犯罪预备没有规定独立的法定刑,只是可以比照既遂犯从轻、减轻或者免除处罚。但当刑法分则将犯罪预备行为规定为独立的罪名时,此时行为已是一种实行状态而非预备。预备行为实行化将一罪的预备行为规定为独立的预备罪,虽然对法益的保护提前了,但扩大了刑法的处罚范围,因此有必要对其进行合理的限定。犯罪预备是一种非实行行为,预备行为实行化之后,准备工具、制造条件的预备行为提升为实行行为,其就存在未遂的可能,也即独立预备罪的未遂。预备行为同时触犯独立预备罪与其他犯罪时,应依照处罚较重的规定定罪处罚。%The Criminal Code does not provide a separate offense preparatory legal punishment , but it can be compared to the completed crime to be punished lighter, reduced or waived. When the criminal law provisions take the preparatory acts as separate offenses, the acts at this time are a state of practice rather than a ready status. The implementation of the preparatory acts is defined as an independent preparatory crime. It’s a kind of protection of the legal interests, but it expands the scope of criminal law penalties, and therefore it is necessary to enunciate the clear limitations. The preparatory acts are non-implementation of crime. After the implementation of preparatory acts , tools preparation and other conditions for making the crime become acts of perpetrating which may be attempted , that is the crime of attempted independent preparation. Preparatory acts while committing the crime and other crimes independent preparation, they should be punished in accordance with the provisions for a heavier convicted and punished.

  8. Real-time displacement measurement with large range and high accuracy using sinusoidal phase modulating laser diode interferometer

    Institute of Scientific and Technical Information of China (English)

    Guotian He; Xiangzhao Wang; Aijun Zeng; Feng Tang; Bingjie Huang

    2007-01-01

    To resolve the conflict of large measurement range and high accuracy in the existing real-time displacement measurement laser diode (LD) interferometers, a novel real-time displacement measurement LD interferometry is proposed and its measurement principle is analyzed. By use of a new phase demodulation algorithm and a new phase compensation lgorithm of real-time phase unwrapping, the measurement accuracy is improved, and the measurement range is enlarged to a few wavelengths. In experiments, the peak-to-peak amplitude of the speaker vibration was 2361.7 nm, and the repeatability was 2.56 nm. The measurement time was less than 26μs.

  9. Electromagnetic losses in a three-phase high temperature superconducting cable determined by calorimetric measurements

    DEFF Research Database (Denmark)

    Traeholt, C.; Veje, E.; Tønnesen, Ole

    2002-01-01

    A 10 m long high temperature superconducting (HTS) cable conductor was placed in a plane three-phase arrangement. The test-bed enabled us to study the conductor losses for different separations between the phases. The superconductor was fixed symmetrically in the centre, whilst the two outer conv...... a calorimetric technique where the temperature increase in the flowing LN2 was measured with a set of thermo-couples. Results indicate that the total AC loss increases significantly when the separation between the conductors is reduced....

  10. The phase ambiguity in dispersion measurements by white light spectral interferometry

    Science.gov (United States)

    Arosa, Yago; López Lago, Elena; de la Fuente, Raúl

    2017-10-01

    In this work, we address the phase ambiguity in white light spectral interferometry. This ambiguity prevents one from obtaining the refractive index over a broad spectral range with high accuracy. We first determine the error when the refractive index is fitted to a linear combination of power functions. We demonstrate that the error is proportional to wavelength and independent of sample thickness. We show how to reduce the error over the entire spectral band by measuring the spectral phase at the output of the interferometer for some suitable wavelengths as a function of sample orientation.

  11. Electromagnetic losses in a three-phase high temperature superconducting cable determined by calorimetric measurements

    DEFF Research Database (Denmark)

    Traeholt, C.; Veje, E.; Tønnesen, Ole

    2002-01-01

    A 10 m long high temperature superconducting (HTS) cable conductor was placed in a plane three-phase arrangement. The test-bed enabled us to study the conductor losses for different separations between the phases. The superconductor was fixed symmetrically in the centre, whilst the two outer conv...... a calorimetric technique where the temperature increase in the flowing LN2 was measured with a set of thermo-couples. Results indicate that the total AC loss increases significantly when the separation between the conductors is reduced....

  12. Two dimensional density and its fluctuation measurements by using phase imaging method in GAMMA 10

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, M.; Negishi, S.; Shima, Y.; Hojo, H.; Imai, T. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Mase, A. [Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Kogi, Y. [Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashiku, Fukuoka 811-0295 (Japan)

    2010-10-15

    Two dimensional (2D) plasma image analysis is useful to study the improvement of plasma confinement in magnetically confined fusion plasmas. We have constructed a 2D interferometer system with phase imaging method for studying 2D plasma density distribution and its fluctuation measurement in the tandem mirror GAMMA 10. 2D profiles of electron density and its fluctuation have been successfully obtained by using this 2D phase imaging system. We show that 2D plasma density and fluctuation profiles clearly depends on the axial confining potential formation with application of plug electron cyclotron heating in GAMMA 10.

  13. Thermal Warpage Measurement of Electronic Packages by Shadow Moiré with Phase Stepping Technique

    Institute of Scientific and Technical Information of China (English)

    Yinyan Wang

    2011-01-01

    Phase-stepping technique is applied to the analysis of fringe patterns of shadow moiré of electronic packages.Sensitivity of the fringe pattern analysis is demonstrated to be significantly increased. Thermally induced warpage of electronic packages is successfully measured in real-time as the sample is driven through a simulated reflow process.The paper discusses the technique of phase stepping,noise filtering and its application to the shadow moiré method.Applications of the technology are presented.

  14. Measurement of the atmospheric muon flux at 3500 m depth with the NEMO Phase-2 detector

    Directory of Open Access Journals (Sweden)

    Distefano C.

    2016-01-01

    Full Text Available In March 2013, the Nemo Phase-2 tower was successfully deployed at 80 km off-shore Capo Passero (Italy at 3500 m depth. The tower operated continuously until August 2014. We present the results of the atmospheric muon analysis from the data collected in 411 days of live time. The zenith-angle distribution of atmospheric muons was measured and results compared with Monte Carlo simulations. The associated depth intensity relation was then measured and compared with previous measurements and theoretical predictions.

  15. Measurement of the /CP violation phase $\\phi_s$ at LHCb

    CERN Document Server

    Wang, Mengzhen

    2017-01-01

    The measurement of the mixing- induced CP- violating phase $\\phi_s$ in the $B^0_s$ - $B^0_s$ system is one of the key goals of the LHCb experiment, and provides an excellent opportunity to search for New Physics beyond Standard Model. Using Run-I data, $\\phi_s$ has been measured in several decay channels. These proceedings briefly summarise the previous LHCb Run-I results of $\\phi_s$ measurement, and show the most recent results obtained by analysing the decay channel $B^0_s \\to J/\\psi K^+K^-$ in the $K^+K^-$ mass region above the $\\phi$ (1020) resonance.

  16. Measurements of the CP violating phase $\\phi_s$ at LHCb arXiv

    CERN Document Server

    Wang, Mengzhen

    The measurement of the mixing-induced CP-violating phase $\\phi_s$ in the $B^0_s - \\bar{B}^0_s$ system is one of the key goals of the LHCb experiment, and provides an excellent opportunity to search for New Physics beyond Standard Model. Using Run-I data, $\\phi_s$ has been measured in several decay channels. These proceedings briefly summarise the previous LHCb Run-I results of $\\phi_s$ measurement, and show the most recent results obtained by analysing the decay channel $B^0_s \\to J/\\psi K^+ K^-$ in the $K^+ K^-$ mass region above the $\\phi$(1020) resonance.

  17. Trustworthiness of measurement devices in round-robin differential-phase-shift quantum key distribution

    Science.gov (United States)

    Cao, Zhu; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-02-01

    Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) has been proposed to raise the noise tolerability of the channel. However, in practice, the measurement device in RRDPS QKD may be imperfect. Here, we show that, with these imperfections, the security of RRDPS may be damaged by proposing two attacks for RRDPS systems with uncharacterized measurement devices. One is valid even for a system with unit total efficiency, while the other is valid even when a single-photon state is sent. To prevent these attacks, either security arguments need to be fundamentally revised or further practical assumptions on the measurement device should be put.

  18. Inertial rotation measurement with atomic spins: From angular momentum conservation to quantum phase theory

    Science.gov (United States)

    Zhang, C.; Yuan, H.; Tang, Z.; Quan, W.; Fang, J. C.

    2016-12-01

    Rotation measurement in an inertial frame is an important technology for modern advanced navigation systems and fundamental physics research. Inertial rotation measurement with atomic spin has demonstrated potential in both high-precision applications and small-volume low-cost devices. After rapid development in the last few decades, atomic spin gyroscopes are considered a promising competitor to current conventional gyroscopes—from rate-grade to strategic-grade applications. Although it has been more than a century since the discovery of the relationship between atomic spin and mechanical rotation by Einstein [Naturwissenschaften, 3(19) (1915)], research on the coupling between spin and rotation is still a focus point. The semi-classical Larmor precession model is usually adopted to describe atomic spin gyroscope measurement principles. More recently, the geometric phase theory has provided a different view of the rotation measurement mechanism via atomic spin. The theory has been used to describe a gyroscope based on the nuclear spin ensembles in diamond. A comprehensive understanding of inertial rotation measurement principles based on atomic spin would be helpful for future applications. This work reviews different atomic spin gyroscopes and their rotation measurement principles with a historical overlook. In addition, the spin-rotation coupling mechanism in the context of the quantum phase theory is presented. The geometric phase is assumed to be the origin of the measurable rotation signal from atomic spins. In conclusion, with a complete understanding of inertial rotation measurements using atomic spin and advances in techniques, wide application of high-performance atomic spin gyroscopes is expected in the near future.

  19. Phase Equilibria Measurement of Binary Mixture for the Propoxylated Neopentyl Glycol Diacrylate in Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hun-Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2016-04-15

    Experimental data are reported on the phase equilibrium of propoxylated neopentyl glycol diacrylate in supercritical carbon dioxide. Phase equilibria data were measured in static method at a temperature of (313.2, 333.2, 353.2, 373.2 and 393.2) K and at pressures up to 27.82 MPa. At a constant pressure, the solubility of propoxylated neopentyl glycol diacrylate for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system increases as temperature increases. The (carbon dioxide + propoxylated neopentyl glycol diacrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + propoxylated neopentyl glycol diacrylate) system is correlated with Peng- Robinson equation of state using mixing rule. The critical property of propoxylated neopentyl glycol diacrylate is predicted with Joback and Lyderson method.

  20. PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming

    CERN Document Server

    Candes, Emmanuel J; Voroninski, Vladislav

    2011-01-01

    Suppose we wish to recover a signal x in C^n from m intensity measurements of the form ||^2, i = 1, 2,..., m; that is, from data in which phase information is missing. We prove that if the vectors z_i are sampled independently and uniformly at random on the unit sphere, then the signal x can be recovered exactly (up to a global phase factor) by solving a convenient semidefinite program---a trace-norm minimization problem; this holds with large probability provided that m is on the order of n log n, and without any assumption about the signal whatsoever. This novel result demonstrates that in some instances, the combinatorial phase retrieval problem can be solved by convex programming techniques. Finally, we also prove that our methodology is robust vis a vis additive noise.

  1. Velocity measurements in the liquid metal flow driven by a two-phase inductor

    CERN Document Server

    Pedcenko, A; Priede, J; Gerbeth, G; Hermann, R

    2013-01-01

    We present the results of velocity measurements obtained by ultrasonic Doppler velocimetry and local potential probes in the flow of GaInSn eutectic melt driven by a two-phase inductor in a cylindrical container. This type of flow is expected in a recent modification to the floating zone technique for the growth of small-diameter single intermetallic compound crystals. We show that the flow structure can be changed from the typical two toroidal vortices to a single vortex by increasing the phase shift between the currents in the two coils from 0 to 90 degrees. The latter configuration is thought to be favourable for the growth of single crystals. The flow is also computed numerically and a reasonable agreement with the experimental results is found. The obtained results may be useful for the design of combined two-phase electromagnetic stirrers and induction heaters for metal or semiconductor melts.

  2. Proposal for a macroscopic test of local realism with phase-space measurements

    Science.gov (United States)

    Arora, Atul S.; Asadian, Ali

    2015-12-01

    We propose a test of local realism based on correlation measurements of continuum valued functions of positions and momenta, known as modular variables. The Wigner representations of these observables are bounded in phase space and, therefore, the associated inequality holds for any state described by a non-negative Wigner function. This agrees with Bell's remark that positive Wigner functions, serving as a valid probability distribution over local (hidden) phase-space coordinates, do not reveal nonlocality. We construct a class of entangled states resulting in a violation of the inequality and thus truly demonstrate nonlocality in phase space. The states can be realized through grating techniques in spacelike separated interferometric setups. The nonlocality is verified from the spatial correlation data that is collected from the screens.

  3. FPGA-based real-time phase measuring profilometry algorithm design and implementation

    Science.gov (United States)

    Zhan, Guomin; Tang, Hongwei; Zhong, Kai; Li, Zhongwei; Shi, Yusheng

    2016-11-01

    Phase measuring profilometry (PMP) has been widely used in many fields, like Computer Aided Verification (CAV), Flexible Manufacturing System (FMS) et al. High frame-rate (HFR) real-time vision-based feedback control will be a common demands in near future. However, the instruction time delay in the computer caused by numerous repetitive operations greatly limit the efficiency of data processing. FPGA has the advantages of pipeline architecture and parallel execution, and it fit for handling PMP algorithm. In this paper, we design a fully pipelined hardware architecture for PMP. The functions of hardware architecture includes rectification, phase calculation, phase shifting, and stereo matching. The experiment verified the performance of this method, and the factors that may influence the computation accuracy was analyzed.

  4. Hot-wire based phase resolved measurement techniques for turbomachinery flows

    Science.gov (United States)

    Jaffa, Nicholas; Morris, Scott; Cameron, Joshua

    2013-11-01

    Resolving the details of turbomachinery rotor flows from the stationary reference frame is difficult due to the high sensor frequency response required. Hot-wires have the necessary frequency response but are sensitive to both total temperature and velocity. In high-speed turbomachinery flows, the large blade-to-blade total temperature gradients prevent traditional hot-wire methods from being used to measure velocity directly. In order to decouple the effects from the temperature variation, a single constant temperature hot-wire was operated at different overheats at the exit of a high-speed transonic axial compressor rotor. The multiple overheat method was used to decouple the phase locked averages of total temperature and velocity magnitude from the phase locked average hot-wire voltages for different overheats. The phase locked average total temperature and velocity magnitude fields show flow features relative to the rotor including blade wakes, boundary layers, and tip clearance flows.

  5. The importance of the boundary condition in the transport of intensity equation based phase measurement

    Science.gov (United States)

    Zhang, Jialin; Chen, Qian; Li, Jiaji; Zuo, Chao

    2017-02-01

    The transport of intensity equation (TIE) is a powerful tool for direct quantitative phase retrieval in microscopy imaging. However, there may be some problems when dealing with the boundary condition of the TIE. The previous work introduces a hard-edged aperture to the camera port of the traditional bright field microscope to generate the boundary signal for the TIE solver. Under this Neumann boundary condition, we can obtain the quantitative phase without any assumption or prior knowledge about the test object and the setup. In this paper, we will demonstrate the effectiveness of this method based on some experiments in practice. The micro lens array will be used for the comparison of two TIE solvers results based on introducing the aperture or not and this accurate quantitative phase imaging technique allows measuring cell dry mass which is used in biology to follow cell cycle, to investigate cell metabolism, or to address effects of drugs.

  6. Simultaneous dual directional strain measurement using spatial phase-shift digital shearography

    Science.gov (United States)

    Wang, Yonghong; Gao, Xinya; Xie, Xin; Wu, Sijing; Liu, Yingxue; Yang, Lianxiang

    2016-12-01

    This paper presents a Dual Directional Sheared Spatial Phase-Shift Digital Shearography (DDS-SPS-DS) system for simultaneous measurement of strains/displacement derivative in two directions. Two Michelson Interferometers are used as the shearing device to create two shearograms, one in the x-shearing direction and one in the y-shearing direction, which are recorded by a single CCD camera. Two lasers with different wavelengths are used for illumination, and corresponding band pass filters are applied in front of each Michelson Interferometer to avoid cross-interference between the two shearing direction channels. Two perpendicular shearing directions in the two measurement channels introduce two different spatial frequency carriers whose spectrums are orientated in different directions after Fourier Transform. Phase maps of the recorded two shearograms can be obtained by applying a windowed inverse Fourier transform, which enables simultaneous measurement of dual directional strains/displacement derivatives. The new system is well suited for nondestructive testing and strain measurement with a continuous or dynamic load. The capability of the dual directional spatial phase-shift digital shearography system is described by theoretical discussions as well as experiments.

  7. Positive phase error from parallel conductance in tetrapolar bio-impedance measurements and its compensation

    Directory of Open Access Journals (Sweden)

    Ivan M Roitt

    2010-01-01

    Full Text Available Bioimpedance measurements are of great use and can provide considerable insight into biological processes.  However, there are a number of possible sources of measurement error that must be considered.  The most dominant source of error is found in bipolar measurements where electrode polarisation effects are superimposed on the true impedance of the sample.  Even with the tetrapolar approach that is commonly used to circumvent this issue, other errors can persist. Here we characterise the positive phase and rise in impedance magnitude with frequency that can result from the presence of any parallel conductive pathways in the measurement set-up.  It is shown that fitting experimental data to an equivalent electrical circuit model allows for accurate determination of the true sample impedance as validated through finite element modelling (FEM of the measurement chamber.  Finally, the model is used to extract dispersion information from cell cultures to characterise their growth.

  8. Gradient measurement technique to identify phase transitions in nano-dispersed liquid crystalline compounds

    Science.gov (United States)

    Pardhasaradhi, P.; Madhav, B. T. P.; Venugopala Rao, M.; Manepalli, R. K. N. R.; Pisipati, V. G. K. M.

    2016-09-01

    Characterization and phase transitions in pure and 0.5% BaTiO3 nano-dispersed liquid crystalline (LC) N-(p-n-heptyloxybenzylidene)-p-n-nonyloxy aniline, 7O.O9, com-pounds are carried out using a polarizing microscope attached with hot stage and camera. We observed that when any of these images are distorted, different local structures suffer from various degradations in a gradient magnitude. So, we examined the pixel-wise gradient magnitude similarity between the reference and distorted images combined with a novel pooling strategy - the standard deviation of the GMS map - to determine the overall phase transition variations. In this regard, MATLAB software is used for gradient measurement technique to identify the phase transitions and transition temperature of the pure and nano-dispersed LC compounds. The image analysis of this method proposed is in good agreement with the standard methods like polarizing microscope (POM) and differential scanning calorimeter (DSC). 0.5% BaTiO3 nano-dispersed 7O.O9 compound induces cholesteric phase quenching the nematic phase, which the pure compound exhibits.

  9. Measurement of absolute phase Shift on reflection of thin films using white-light spectral interferometry

    Institute of Scientific and Technical Information of China (English)

    Hui Xue; Weidong Shen; Peifu Gu; Zhenyue Luo; Yueguang Zhang; Xu Liu

    2009-01-01

    A novel method to measure the absolute phase shift on reflection of thin film is presented utilizing a white-light interferometer in spectral domain.By applying Fourier transformation to the recorded spectral interference signal,we retrieve the spectral phase function ф,which is induced by three parts:the path length difference in air L,the effective thickness of slightly dispersive cube beam splitter Teff and the nonlinear phase function due to multi-reflection of the thin film structure.We utilize the fact that the overall optical path difference(OPD)is linearly dependent on the refractive index of the beam splitter to determine both L and Teff.The spectral phase shift on reflection of thin film structure can be obtained by subtracting these two parts from ф.We show theoretically and experimentally that our now method can provide a sinlple and fast solution in calculating the absolute spectral phase function of optical thin films,while still maintaining high accuracy.

  10. Information and backaction due to phase contrast imaging measurements of cold atomic gases: beyond Gaussian states

    CERN Document Server

    Ilo-Okeke, Ebubechukwu O

    2016-01-01

    We further examine a theory of phase contrast imaging (PCI) of cold atomic gases, first introduced by us in Phys. Rev. Lett. {\\bf 112}, 233602 (2014). We model the PCI measurement by directly calculating the entangled state between the light and the atoms due to the ac Stark shift, which induces a conditional phase shift on the light depending upon the atomic state. By interfering the light that passes through the BEC with the original light, one can obtain information of the atomic state at a single shot level. We derive an exact expression for a measurement operator that embodies the information obtained from PCI, as well as the back-action on the atomic state. By the use of exact expressions for the measurement process, we go beyond the continuous variables approximation such that the non-Gaussian regime can be accessed for both the measured state and the post-measurement state. Features such as the photon probability density, signal, signal variance, Fisher information, error of the measurement, and the b...

  11. Feasibility study on longitudinal phase-space measurements at GSI UNILAC using charged-particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Milosic, Timo

    2014-04-14

    Accelerator facilities require access to many beam parameters during operation. The field of beam instrumentation serves this crucial role in commissioning, setup and optimisation of the facility. An important information is contained in the phase-space distribution of the accelerated particles. In case of GSI (Helmholtzzentrum fuer Schwerionenforschung) those are ions from protons to uranium. If established methods to access certain beam parameters do not exist, new approaches have to emerge. This is the case for the presented measurement setup which has been designed and realised by Forck et al. to support commissioning of the GSI high-current injector. It is aiming at an experimental method to access the longitudinal phase-space distribution at low energies of 1.4 AMeV. Established methods for higher energies and based on the measurement of the electric field distribution are not feasible at non-relativistic velocities. The presented method is based on a time-of-flight (TOF) measurement between two particle detectors. A modification allows, alternatively, the direct measurement of the kinetic energy using a mono-crystalline (MC) diamond detector. Currently, besides others, the focus of the optimisation of the injector is put on the longitudinal phase-space distribution. It allows for a systematic optimisation of the matching into the accelerator cavities and, thus, an improved transmission as well as lower emittance values. The new accelerator facility FAIR (Facility for Antiproton and Ion Research), a large-scale upgrade at GSI, requires an improved beam quality at the existing injector. In this work the experimental setup is investigated for its feasibility to measure the longitudinal phase-space distribution. To this end, the phase and momentum of the single ions along the beam axis have to be determined with high precision. Finally, the longitudinal phase-space distribution is identified with the measured ensemble. The setup is presented in detail

  12. Compound cavity theory of resonant phase modulation in laser self-mixing ultrasonic vibration measurement

    Science.gov (United States)

    Tao, Yufeng; Wang, Ming; Guo, Dongmei

    2016-07-01

    The theoretical basis of self-mixing interference (SMI) employing a resonant phase modulator is explored to prove its tempting advantages. The adopted method induces a pure phase carrier without increasing system complexity. A simple time-domain signal process is used to estimate modulation depth and precisely track vibrating trail, which promises the flexibility of measuring ultrasonic vibration regardless of the constraint of the Bessel functions. The broad bandwidth, low speckle noise, compact, safe, and easy operating SMI system obtains the best resolution of a poor reflection environment. Numerical simulation discusses the spectrum broadening and errors due to multiple reflections. Experimental results agree with theory coherently and are compared with laser Doppler vibration meter showing a dynamical error better than 20 nm in ultrasonic vibration measurement.

  13. Phase space density as a measure of cooling performance for the international muon ionization cooling experiment

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    The International Muon Ionization Cooling Experiment (MICE) is an experiment to demonstrate ionization cooling of a muon beam in a beamline that shares characteristics with one that might be used for a muon collider or neutrino factory. I describe a way to quantify cooling performance by examining the phase space density of muons, and determining how much that density increases. This contrasts with the more common methods that rely on the covariance matrix and compute emittances from that. I discuss why a direct measure of phase space density might be preferable to a covariance matrix method. I apply this technique to an early proposal for the MICE final step beamline. I discuss how matching impacts the measured performance.

  14. Impact of Mesoscale Convective Systems on GPS measurements in West Africa : statistical analysis of phase residuals

    Science.gov (United States)

    Nahmani, Samuel; Bock, Olivier

    2013-04-01

    Six permanent GPS stations have been deployed in West Africa within the framework of the African Monsoon Multidisciplinary Analysis (AMMA) project in order to monitor precipitable water vapor (PWV) estimates. This quantity turns out to be relevant for computing water budgets to study atmospheric processes associated with the monsoon precipitations. 90% of annual rainfalls in Sahel are produced by Mesoscale Convective Systems (MCSs). During these extreme meteorological conditions, the residuals of GPS phase measurements show strong variations that are spatially and temporally correlated with the passages of the MCSs. Using in-situ observations of pressure, temperature and humidity, brightness temperatures from Meteosat and measurements of reflectivity from MIT C-band Doppler radar, we analysed the cases of MCS over Niamey (Niger) during the whole rainy season of 2006. We found some signals in GPS phase residuals in connection with the structure of MCS. These signals could be used to better understand and classify these extreme meteorological events.

  15. Measurement and Modelling of Phase Equilibrium of Oil - Water - Polar Chemicals

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup

    . Thesechemicals belong to different families like alcohols, glycols, alkanolamines, surfactants andpolymers. They have various functions, e.g., methanol and MEG are used as gas hydrate inhibitors,surfactants are used to lower interfacial tension between crude oil and microemulsion and polymersin a polymer......-waterflooding process act primarily as thickeners. The main purpose of this work, focusing on the phase equilibrium of complex systems containingthermodynamic gas hydrate inhibitors, is to give a solid contribution in bridging the existing gaps inwhat experimental data is concerned. This was achieved not just...... with the measurement of newexperimental data, but through the development of new experimental equipment for the study ofmulti-phase equilibrium. In addition to measurement of well-defined systems, LLE have beenmeasured for North Sea oils with MEG and water. The work can be split up into two parts: Experimental: VLE...

  16. First measurement of the CP-violating phase in Bs(0) → ϕϕ decays.

    Science.gov (United States)

    Aaij, R; Abellan Beteta, C; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Mcnab, A; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-06-14

    A first flavor-tagged measurement of the time-dependent CP-violating asymmetry in B(s)(0) → ϕϕ decays is presented. In this decay channel, the CP-violating weak phase arises due to CP violation in the interference between B(s)(0)-B(s)(0) mixing and the b → sss gluonic penguin decay amplitude. Using a sample of pp collision data corresponding to an integrated luminosity of 1.0 fb(-1) and collected at a center-of-mass energy of 7 TeV with the LHCb detector, 880 B(s)(0) → ϕϕ signal decays are obtained. The CP-violating phase is measured to be in the interval [-2.46,-0.76] rad at a 68% confidence level. The p value of the standard model prediction is 16%.

  17. Aniseikonia in patients with a unilateral artificial lens, measured with Aulhorn's phase difference haploscope.

    Science.gov (United States)

    Miyake, S; Awaya, S; Miyake, K

    1981-01-01

    Aniseikonia was measured in unilaterally pseudophakic patients using Aulhorn's phase difference haploscope. Mean values of aniseikonia were 1.5% horizontally and 2.0% vertically without correction, and 2.1% horizontally and 2.3% vertically with correction. With spectacle correction, the greater the dioptric difference between two eyes, the greater the amount of aniseikonia. In either case, patients tolerated these amounts of aniseikonia according to our criteria of aniseikonia tolerance.

  18. Measurement of Phase Difference for Micromachined Gyros Driven by Rotating Aircraft

    OpenAIRE

    Wei Zhang; Zengping Zhang; Fuxue Zhang

    2013-01-01

    This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse angular velocity of the rotating aircraft based on the gyroscopic precession principle when the aircraft has transverse rotation. In applications of the rotating aircraft single channel control syste...

  19. Dynamic phase microscopy: measurements of translational displacements at sub-nanometer scale

    OpenAIRE

    Tichinsky, V. P.; Kretushev, A. V.; Luskinovich, P. N.

    2006-01-01

    Dynamic phase microscopy has been applied for measurements of nanometer-scale displacements of a piezoelectric scanner. This scanner, which was designed for calibration purposes for scanning probe microscopy and TEM, exhibited a linear and hysteresis-free translation in the 0.05-20 nm range. The voltage-activated motion is described by a coefficient of 0.03 \\pm 0.005 nm/V.

  20. High angle phase modulated low coherence interferometry for path length resolved Doppler measurements of multiply scattered light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; Leeuwen, van Ton G.; Steenbergen, Wiendelt

    2008-01-01

    We describe an improved method for coherence domain path length resolved measurements of multiply scattered photons in turbid media. An electro-optic phase modulator sinusoidally modulates the phase in the reference arm of a low coherence fiber optic Mach–Zehnder interferometer, at a high phase modu

  1. Evaluation of an EMG bioimpedance measurement system for recording and analysing the pharyngeal phase of swallowing.

    Science.gov (United States)

    Schultheiss, Corinna; Schauer, Thomas; Nahrstaedt, Holger; Seidl, Rainer O

    2013-07-01

    A neuroprosthetic device for treating swallowing disorders requires an implantable measurement system capable to analysing the timing and quality of the swallowing process in real time. A combined EMG bioimpedance (EMBI) measurement system was developed and is evaluated here. The study was planned and performed as a case-control study. The studies were approved by the Charité Berlin ethics committee in votes EA1/160/09 and EA1/161/09. Investigations were carried out on healthy volunteers in order to examine the usefulness and reproducibility of measurements, the ability to distinguish between swallowing and head movements and the effect of different food consistencies. The correlation between bioimpedance and anatomical and functional changes occurring during the pharyngeal phase of swallowing in non-healthy patients was examined using videofluoroscopy (VFSS). 31 healthy subjects (15♂, 16♀) were tested over the course of 1350 swallows and 19 (17♂, 2♀) non-healthy patients over the course of 54 swallows. The signal curves obtained from both transcutaneous and subcutaneous measurement were similar, characteristic and reproducible (r > 0.5) and correlated with anatomical and functional changes during the pharyngeal phase of swallowing observed using VFSS. Statistically significant differences between head movements and swallowing movements, food volumes and consistencies were found. Neither the conductivity of the food, the sex of the test subject nor the position of the measurement electrodes exerted a statistically significant effect on the measured signal. EMBI is able to reproducibly map the pharyngeal phase of swallowing and changes associated with it both transcutaneously and subcutaneously. The procedure therefore appears to be suitable for use in performing automated evaluation of the swallowing process and for use as a component of an implant.

  2. Interfacial area and two-phase flow structure development measured by a double-sensor probe

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Waihung; Revankar, S.T.; Ishii, Yoshihiko; Ishii, Mamoru

    1992-06-01

    In this report, we studied the local phasic characters of dispersed flow regime both at the entrance and at the fully developed regions. Since the dispersed phase is distributed randomly in the medium and enclosed in relatively small interfaces, the phasic measurement becomes difficult to obtain. Local probe must be made with a miniaturized sensor in order to reduce the interface distortion. The double-sensor resistivity probe has been widely used in local void fraction and interface velocity measurements because the are small in comparison with the interfaces. It has been tested and proved to be an accurate local phasic measurement tool. In these experiments, a double-sensor probe was employed to measure the local void fraction and interface velocity in an air-water system. The test section was flow regime can be determined by visualization. Furthermore, local phasic measurements can be verified by photographic studies. We concentrated our study on the bubbly flow regime only. The local measurements were conducted at two axial locations, L/D = 8 and 60, in which the first measurement represents the entrance region where the flow develops, and the second measurement represents the fully developed flow region where the radial profile does not change as the flow moves along the axial direction. Four liquid flow rates were chosen in combination with four different gas injection rates. The superficial liquid velocities were j{sub t} = 1.0, 0.6,0.4, and 0.1 m/s and superficial gas velocities were j{sub g} = 0.0965, 0.0696, 0.0384, and 0.0192 m/s. These combinations put the two-phase flow well in the bubbly flow regime. In this sequence of phenomenological studies, the local void fraction, interface area concentration, sauter mean diameter, bubble velocity and bubble frequency were measured.

  3. Measuring melt and velocity of Alaskan mountain glaciers using phase-sensitive radar and differential GPS

    Science.gov (United States)

    Neuhaus, S.; Tulaczyk, S. M.

    2015-12-01

    Alaskan glaciers show some of the highest rates of retreat worldwide, contributing to sea level rise. This retreat is due to both increased velocity and increased melt. We seek to understand the role of glacial meltwater on velocity. Matanuska glacier, a land terminating glacier in Alaska, has been well-studied using traditional glaciological techniques, but new technology has emerged that allows us to measure melt and velocity more accurately. We employed high-resolution differential GPS to create surface velocity profiles across flow in the ablation zone during the summer of 2015. We also measured surface ablation using stakes and measured basal melt using phase-sensitive radar designed by the British Antarctic Survey. The positions acquired by differential GPS are obtained to a resolution of less than 0.5m, while feature tracking using time-lapse photography for the same time period yields positions with greater and more variable uncertainty. The phase-sensitive radar provides ice thinning rates. Phase-sensitive radar together with ground penetrating radar provides us with an understanding of the internal structure of the glacier. This suite of data allows us to determine the relative importance of surface melt, basal melt, and internal deformation on ice velocity in warm mountain glaciers.

  4. Net-proton measurements at RHIC and the quantum chromodynamics phase diagram

    Indian Academy of Sciences (India)

    Bedangadas Mohanty

    2014-11-01

    Two measurements related to the proton and antiproton production near midrapidity in $\\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV Au+Au collisions using the STAR detector at the Relativistic Heavy Ion Collider (RHIC) are discussed. At intermediate impact parameters, the net-proton midrapidity d$v_1$/d, where $v_1$ and are directed flow and rapidity, respectively, shows non-monotonic variation as a function of beam energy. This non-monotonic variation is characterized by the presence of a minimum in d$v_1$/d between $\\sqrt{s_{NN}}$ = 11.5 and 19.6 GeV and a change in the sign of d$v_1$/d twice between $\\sqrt{s_{NN}}$ = 7.7 and 39 GeV. At small impact parameters the product of the moments of net-proton distribution, kurtosis × variance ( 2) and skewness × standard deviation ($S$) are observed to be significantly below the corresponding measurements at large impact parameter collisions for $\\sqrt{s_{NN}}$ = 19.6 and 27 GeV. The 2 and $S$ values at these beam energies deviate from the expectations from Poisson statistics and that from a hadron resonance gas model. Both these measurements have implications towards understanding the quantum chromodynamics (QCD) phase structures, the first-order phase transition and the critical point in the high baryonic chemical potential region of the phase diagram.

  5. Simple digital phase-measuring algorithm for low-noise heterodyne interferometry

    Science.gov (United States)

    Kokuyama, Wataru; Nozato, Hideaki; Ohta, Akihiro; Hattori, Koichiro

    2016-08-01

    We present a digital algorithm for measuring the phase of a sinusoidal signal that combines the modified digital fringe-counting method with two-sample zero crossing to enable sequential signal processing. This technique can be applied to a phase meter for measuring dynamic phase differences between two sinusoidal signals with high resolution, particularly for heterodyne interferometry. The floor noise obtained from a demonstration with an electrical apparatus is 5× {{10}-8} \\text{rad}\\text{/}{{\\sqrt{\\text{Hz}}}{}} at frequencies above approximately 0.1 Hz for 80 kHz signal frequency. In addition, by applying this method to a commercial heterodyne interferometer with a modulation frequency of 80 MHz, the floor-noise level is confirmed to be 7× {{10}-14}\\text{m}\\text{/}{{\\sqrt{\\text{Hz}}}{}} from 4 kHz to 1 MHz. We also confirm the validity of the algorithm by comparing its results with those from a standard homodyne interferometer for measuring shock-motion peak acceleration greater than 5000 \\text{m} {{\\text{s}}-2} and a 10 mm stroke.

  6. Measurement of Three-Dimensional Deformations by Phase-Shifting Digital Holographic Interferometry

    Directory of Open Access Journals (Sweden)

    Percival Almoro

    2003-06-01

    Full Text Available Out-of-plane deformations of a cantilever were measured using phase-shifting digital holographicinterferometry (PSDHI and the Fourier transform method (FTM. The cantilever was recorded in twodifferent states, and holograms were stored electronically with a charge-coupled device (CCD camera.When the holograms are superimposed and reconstructed jointly, a holographic interferogram results.The three-dimensional (3D surface deformations were successfully visualized by applying FTM toholographic interferogram analysis. The minimum surface displacement measured was 0.317 µm. Theprocessing time for the digital reconstruction and visualization of 3D deformation took about 1 minute.The technique was calibrated using Michelson interferometry setup.

  7. Strain measurement in individual phases of an Al/TiC composite during mechanical loading

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, M.A.M.; Goldstone, J.A.; Stout, M.G.; Lawson, A.C. (Los Alamos National Lab., NM (United States)); Allison, J.E. (Ford Motor Co., Dearborn, MI (United States). Scientific Research Lab.)

    1992-01-01

    Neutron diffraction provides a unique method for examining materials during thermo-mechanical loading because it is nondestructive and penetrating and can distinguish between the strains in individual phases. Using a pulsed neutron source, all lattice reflections are recorded in all constituents simultaneously. Preliminary in-situ strain measurements under- load of an aluminum/titanium carbide composite are presented here. The measurements were made using a compact stress rig on the neutron powder diffractometer at the Manuel Lujan Jr. Neutron Scattering Center at Los Alamos National Laboratory.

  8. Measurements of viscosity and permeability of two phase miscible fluid flow in rock cores.

    Science.gov (United States)

    Williams, J L; Taylor, D G

    1994-01-01

    This paper describes the application of 1H magnetic resonance imaging (MRI) to the measurement of fluid viscosity and rock core plug permeability during two phase miscible displacements in certain rock types. The core plug permeability was determined by monitoring glycerol solutions displacing D2O. Simple physical principles were used to calculate the core permeability from the measured displacement angle for a set of Lochaline sandstone core plugs. In a further experiment the viscosity of polyacrylamide solution 1500 ppm was determined in the core plug. The permeability and viscosity results compared well to conventional core analysis methods.

  9. Renyi-Wehrl entropies as measures of localization in phase space

    CERN Document Server

    Gnutzmann, S; Gnutzmann, Sven; Zyczkowski, Karol

    2001-01-01

    We generalize the concept of the Wehrl entropy of quantum states which gives a basis-independent measure of their localization in phase space. We discuss the minimal values and the typical values of these R{enyi-Wehrl entropies for pure states for spin systems. According to Lieb's conjecture the minimal values are provided by the spin coherent states. Though Lieb's conjecture remains unproven, we give new proofs of partial results that may be generalized for other systems. We also investigate random pure states and calculate the mean Renyi-Wehrl entropies averaged over the natural measure in the space of pure quantum states.

  10. Renyi-Wehrl entropies as measures of localization in phase space

    Energy Technology Data Exchange (ETDEWEB)

    Gnutzmann, Sven [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot (Israel)]. E-mail: sven@gnutzmann.net; Zyczkowski, Karol [Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Warszawa (Poland)]. E-mail: karol@theta1.cft.edu.pl

    2001-11-30

    We generalize the concept of the Wehrl entropy of quantum states which gives a basis-independent measure of their localization in phase space. We discuss the minimal values and the typical values of these Renyi-Wehrl entropies for pure states for spin systems. According to Lieb's conjecture the minimal values are provided by the spin coherent states. Though Lieb's conjecture remains unproven, we give new proofs of partial results that may be generalized for other systems. We also investigate random pure states and calculate the mean Renyi-Wehrl entropies averaged over the natural measure in the space of pure quantum states. (author)

  11. Simultaneous microscopic measurements of thermal and spectroscopic fields of a phase change material

    Science.gov (United States)

    Romano, M.; Ryu, M.; Morikawa, J.; Batsale, J. C.; Pradere, C.

    2016-05-01

    In this paper, simultaneous microscopic measurements of thermal and spectroscopic fields of a paraffin wax n-alkane phase change material are reported. Measurements collected using an original set-up are presented and discussed with emphasis on the ability to perform simultaneous characterization of the system when the proposed imaging process is used. Finally, this work reveals that the infrared wavelength contains two sets of important information. Furthermore, this versatile and flexible technique is well adapted to characterize many systems in which the mass and heat transfers effects are coupled.

  12. Spectral amplitude and phase measurement of ultrafast pulses using all-optical differential tomography.

    Science.gov (United States)

    Londero, Pablo; Kuzucu, Onur; Gaeta, Alexander L

    2011-05-01

    We demonstrate a simple, all-optical, fiber-based method for characterizing the spectral amplitude and phase of ultrafast pulses using a differential tomographic measurement realized via four-wave mixing. The technique is applied to subpicosecond pulses in the C-band of the telecommunication spectrum. Characterization of amplified pulses and propagation through dispersive media is demonstrated and compared with autocorrelation measurements and calculated predictions. We show how our approach can be extended to larger bandwidths in similar systems, extending tomographic reconstruction of coherent fields to nearly an octave of bandwidth while maintaining a robust, waveguide-based geometry.

  13. High-speed deformation measurement using spatially phase-shifted speckle interferometry

    Science.gov (United States)

    Beckmann, Tobias; Fratz, Markus; Bertz, Alexander; Carl, Daniel

    2014-02-01

    Electronic speckle pattern interferometry (ESPI) is a powerful technique for differential shape measurement with submicron resolution. Using spatial phase-shifting (SPS), no moving parts are required, allowing frame acquisition rates limited by camera hardware. We present ESPI images of 1 megapixel resolution at 500 fps. Analysis of SPS data involves complex, time-consuming calculations. The graphics processing units found in state-of-the-art personal computers have exceptional parallel processing capabilities, allowing real-time SPS measurements at video frame rates. Deformation analysis at this frame rate can be used to analyze transient phenomena such as transient temperature effects in integrated circuit chips or during material processing.

  14. Automated inter-station phase velocity measurements across the eastern Mediterranean and Middle East

    Science.gov (United States)

    El-Sharkawy, Amr; Weidle, Christian; Christiano, Luigia; Soomro, Riaz; Lebedev, Sergi; Meier, Thomas

    2016-04-01

    The structure of the lithosphere in northeastern Africa, eastern Mediterranean and the Middle East is highly variable. It ranges from young oceanic lithosphere in the Red Sea to what is considered the oldest oceanic lithosphere on Earth in the Mediterranean Sea north of Libya, and from highly deformed continental lithosphere at the east-Mediterranean margins to more stable continental lithosphere of Phanerozoic origin and to cratonic lithosphere beneath the Arabian Peninsula. Details of the lithospheric structure are, however, poorly known. Surface waves are ideally suited for studies of the lithosphere and the sublithospheric mantle. Our goal is to better define the 3D lithospheric shear-wave velocity structure within this region by surface wave tomography. Using regional to teleseismic Rayleigh and Love waves that traverse the area we can obtain information about its seismic structure by examining phase velocities as a function of frequency. A newly developed algorithm for automated inter-station phase velocity measurements (Soomro et al. 2016) is applied here to obtain both Rayleigh and Love fundamental mode phase velocities. We utilize a database consisting of more than 3800 regional and teleseismic earthquakes recorded by more than 1850 broadband seismic stations within the area, provided by the European Integrated Data Archive (WebDc/EIDA) and IRIS. Moreover, for the first time, data from the Egyptian National Seismological Network (ENSN), recorded by up to 25 broad band seismic stations, is also included in the analysis. For each station pair approximately located on the same great circle path, the recorded waveforms are cross correlated and the dispersion curves of fundamental modes are calculated from the phase of the weighted cross correlation functions. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. Parameters tests and preliminary results of automatically measured phase velocities are

  15. Investigating mixed phase clouds using a synergy of ground based remote sensing measurements

    Science.gov (United States)

    Gierens, Rosa; Kneifel, Stefan; Löhnert, Ulrich

    2017-04-01

    Low level mixed phase clouds occur frequently in the Arctic, and can persist from hours to several days. However, the processes that lead to the commonality and persistence of these clouds are not well understood. The aim of our work is to get a more detailed understanding of the dynamics of and the processes in Arctic mixed phase clouds using a combination of instruments operating at the AWIPEV station in Svalbard. In addition, an aircraft campaign collecting in situ measurements inside mixed phase clouds above the station is planned for May-June 2017. The in situ data will be used for developing and validating retrievals for microphysical properties from Doppler cloud radar measurements. Once observational data for cloud properties is obtained, it can be used for evaluating model performance, for studies combining modeling and observational approaches, and eventually lead to developing model parameterizations of mixed phase microphysics. To describe the low-level mixed phase clouds, and the atmospheric conditions in which they occur, we present a case study of a persistent mixed phase cloud observed above the AWIPEV station. In the frame of the Arctic Amplification: Climate Relevant Atmospheric and Surface Processes and Feedback Mechanisms ((AC)3) -project, a millimeter wavelength cloud radar was installed at the site in June 2016. The high vertical (4 m in the lowest layer) and temporal (2.5 sec) resolution allows for a detailed description of the structure of the cloud. In addition to radar reflectivity and mean vertical velocity, we also utilize the higher moments of the Doppler spectra, such as skewness and kurtosis. To supplement the radar measurements, a ceilometer is used to detect liquid layers inside the cloud. Liquid water path and integrated water vapor are estimated using a microwave radiometer, which together with soundings can also provide temperature and humidity profiles in the lower troposphere. Moreover, a three-dimensional wind field is be

  16. A method to measure the movement of a rough plane ultrasonically by Doppler - phase shift

    Science.gov (United States)

    Kortelainen, Juha

    The Doppler effect has been used to measure the horizontal movement of a rough plane. The operational principle is based on the measurement of the phase shift of an ultrasonic wave scattered from the surface. This method has been developed for measuring the length of logs in a forest machine. Equations for the Doppler phase shift have been derived for the situation where the moving object is a single particle. Later this 'one-particle-theory' has been expanded for the situation where the moving object is a rough plane. The theory uses some simplifications and assumptions from the reality, but the results still agree well with measurements. This method has been tested by moving logs with a velocity varying from 0 to 1 m/s. The variability of measurement with different kind of logs was about 0.3 ... 2% when the movement was about one meter. The analysis of the errors and ideas to compensate them are presented in the paper.

  17. Highly sensitive simple homodyne phase detector for ultrasonic pulse-echo measurements

    Science.gov (United States)

    Grossmann, John; Suslov, Alexey; Yong, Grace; Boatner, Lynn A.; Svitelskiy, Oleksiy

    2016-04-01

    We have designed and built a modern versatile research-grade instrument for ultrasound pulse-echo probing of the elastic properties of a wide range of materials under laboratory conditions. The heart of the instrument lies in an AD8302 microchip: a gain and phase detector from Analog Devices, Inc. To construct the device, we have implemented a schematic that utilizes the homodyne principle for signal processing instead of the traditional superheterodyne approach. This design allows one to measure phase shifts with high precision and linearity over the entire range of 0°-360°. The system is simple in construction and usage; it makes ultrasound measurements easily accessible to a broad range of researchers. It was tested by measuring the temperature dependence of the ultrasound speed and attenuation in a KTa0.92Nb0.08O3 (KTN) single crystal at a frequency of ˜40 MHz. The tests were performed in the vicinity of the ferroelectric transitions where the large variations of the speed and attenuation demand a detector with outstanding characteristics. The described detector has a wide dynamic range and allows for measuring in a single run over the whole temperature range of the ferroelectric transitions, rather than just in limited intervals available previously. Moreover, due to the wide dynamic range of the gain measurements and high sensitivity this instrument was able to reveal previously unresolvable features associated with the development of the ferroelectric transitions of KTN crystals.

  18. Gas-phase pesticide measurement using iodide ionization time-of-flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    T. Murschell

    2017-06-01

    Full Text Available Volatilization and subsequent processing in the atmosphere are an important environmental pathway for the transport and chemical fate of pesticides. However, these processes remain a particularly poorly understood component of pesticide lifecycles due to analytical challenges in measuring pesticides in the atmosphere. Most pesticide measurements require long (hours to days sampling times coupled with offline analysis, inhibiting observation of meteorologically driven events or investigation of rapid oxidation chemistry. Here, we present chemical ionization time-of-flight mass spectrometry with iodide reagent ions as a fast and sensitive measurement of four current-use pesticides. These semi-volatile pesticides were calibrated with injections of solutions onto a filter and subsequently volatilized to generate gas-phase analytes. Trifluralin and atrazine are detected as iodide–molecule adducts, while permethrin and metolachlor are detected as adducts between iodide and fragments of the parent analyte molecule. Limits of detection (1 s are 0.37, 0.67, 0.56, and 1.1 µg m−3 for gas-phase trifluralin, metolachlor, atrazine, and permethrin, respectively. The sensitivities of trifluralin and metolachlor depend on relative humidity, changing as much as 70 and 59, respectively, as relative humidity of the sample air varies from 0 to 80 %. This measurement approach is thus appropriate for laboratory experiments and potentially near-source field measurements.

  19. Measurement of depth-resolved thermal deformation distribution using phase-contrast spectral optical coherence tomography.

    Science.gov (United States)

    Zhang, Yun; Dong, Bo; Bai, Yulei; Ye, Shuangli; Lei, Zhenkun; Zhou, Yanzhou

    2015-10-19

    An updated B-scan method is proposed for measuring the evolution of thermal deformation fields in polymers. In order to measure the distributions of out-of-plane deformation and normal strain field, phase-contrast spectral optical coherence tomography (PC-SOCT) was performed with the depth range and resolution of 4.3 mm and 10.7 μm, respectively, as thermal loads were applied to three different multilayer samples. The relation between temperature and material refractive index was predetermined before the measurement. After accounting for the refractive index, the thermal deformation fields in the polymer were obtained. The measured thermal expansion coefficient of silicone sealant was approximately equal to its reference value. This method allows correctly assessing the mechanical properties in semitransparent polymers.

  20. Phase transitions for the multifractal analysis of self-similar measures

    Science.gov (United States)

    Testud, B.

    2006-05-01

    We are interested in the multifractal analysis of a class of self-similar measures with overlaps. This class, for which we obtain explicit formulae for the Lq-spectrum, τ(q), as well as the singularity spectrum f(α), is sufficiently large to point out new phenomena in the multifractal structure of self-similar measures. We show that, unlike in the classical quasi-Bernoulli case, the Lq-spectrum, τ(q), of the measures studied can have an arbitrarily large number of non-differentiability points (phase transitions). These singularities occur only for the negative values of q and yield to measures that do not satisfy the usual multifractal formalism. The weak quasi-Bernoulli property is the key point of most of the arguments.

  1. Digital holographic setups for phase object measurements in micro and macro scale

    Directory of Open Access Journals (Sweden)

    Lédl Vít

    2015-01-01

    Full Text Available The measurement of properties of so called phase objects is being solved for more than one Century starting probably with schlieren technique 1. Classical interferometry served as a great measurement tool for several decades and was replaced by holographic interferometry, which disposes with many benefits when compared to classical interferometry. Holographic interferometry undergone an enormous development in last decade when digital holography has been established as a standard technique and most of the drawbacks were solved. The paper deals with scope of the huge applicability of digital holographic interferometry in heat and mass transfer measurement from micro to macro scale and from simple 2D measurement up to complex tomographic techniques. Recently the very complex experimental setups are under development in our labs combining many techniques leading to digital holographic micro tomography methods.

  2. Phase-locked loop based on machine surface topography measurement using lensed fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin-Ho; Lee, ChaBum; Joo, Jae-Young; Lee, Sun-Kyu

    2011-02-01

    We present the phase-locked loop (PLL)-based metrology concept using lensed fibers for on-machine surface topography measurement. The shape of a single-mode fiber at the endface was designed using an ABCD matrix method, and two designed lensed fibers--the ball type and the tapered type--were fabricated, and the performance was evaluated, respectively. As a result, the interferometric fringe was not found in the case of the ball lensed fiber, but the machined surface could be measured by utilization of autofocusing and intensity methods. On the other hand, a very clear Fizeau interferometric fringe was observed in the case of the tapered lensed fiber. Its performance was compared with the results of the capacitance sensor and a commercially available white-light interferometer. We confirmed that PLL-based surface profile measurement using the tapered and ball lensed fibers can be applied for on-machine surface topography measurement applications.

  3. Turbulent stress measurements with phase-contrast magnetic resonance through tilted slices

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Jordan; Soederberg, Daniel; Lundell, Fredrik [Linne FLOW Centre, KTH Mechanics, Stockholm (Sweden); Swerin, Agne [SP Technical Research Institute of Sweden-Chemistry, Materials and Surfaces, Stockholm (Sweden); KTH Royal Institute of Technology, Surface and Corrosion Science, Stockholm (Sweden)

    2017-05-15

    Aiming at turbulent measurements in opaque suspensions, a simplistic methodology for measuring the turbulent stresses with phase-contrast magnetic resonance velocimetry is described. The method relies on flow-compensated and flow-encoding protocols with the flow encoding gradient normal to the slice. The experimental data is compared with direct numerical simulations (DNS), both directly but also, more importantly, after spatial averaging of the DNS data that resembles the measurement and data treatment of the experimental data. The results show that the most important MRI data (streamwise velocity, streamwise variance and Reynolds shear stress) is reliable up to at least anti r = 0.75 without any correction, paving the way for dearly needed turbulence and stress measurements in opaque suspensions. (orig.)

  4. Proposed method for controlling turbid particles in solid-phase bioluminescent toxicity measurement.

    Science.gov (United States)

    Yeo, Seul-Ki; Park, Jun-Boum; Ahn, Joo-Sung; Han, Young-Soo

    2015-06-01

    In the recent half century, numerous methods have been developed to assess ecological toxicity. However, the presence of solid-particle turbidity sometimes causes such tests to end with questionable results. Many researchers focused on controlling this arbitrary turbidity effect when using the Microtox® solid-phase toxicity system, but there is not yet a standard method. In this study, we examined four solid-phase sample test methods recommended in the Microtox® manual, or proposed from the literature, and compared the existing methods with our proposed method (centrifuged basic solid-phase test, c-BSPT). Four existing methods use the following strategies to control turbid particles: complete separation of liquid and solid using 0.45-μm filtration before contacting solid samples and bacteria, natural settlement, moderate separation of large particles using coarser pore size filtration, and exclusion of light loss in the toxicity calculation caused by turbidity after full disturbance of samples. Our proposed method uses moderate centrifugation to separate out the heavier soil particles from the lighter bacteria after direct contact between them. Among the solid-phase methods tested, in which the bacteria and solid particles were in direct contact (i.e., the three existing methods and the newly proposed one, c-BSPT), no single method could be recommended as optimal for samples over a range of turbidity. Instead, a simple screening strategy for selecting a sample-dependent solid-phase test method was suggested, depending on the turbidity of the solid suspension. The results of this study highlight the importance of considering solid particles, and the necessity for optimal selection of test method to reduce errors in the measurement of solid-phase toxicity.

  5. Recovering refractive index correlation function from measurement of tissue scattering phase function (Conference Presentation)

    Science.gov (United States)

    Rogers, Jeremy D.

    2016-03-01

    Numerous methods have been developed to quantify the light scattering properties of tissue. These properties are of interest in diagnostic and screening applications due to sensitivity to changes in tissue ultrastructure and changes associated with disease such as cancer. Tissue is considered a weak scatterer because that the mean free path is much larger than the correlation length. When this is the case, all scattering properties can be calculated from the refractive index correlation function Bn(r). Direct measurement of Bn(r) is challenging because it requires refractive index measurement at high resolution over a large tissue volume. Instead, a model is usually assumed. One particularly useful model, the Whittle-Matern function includes several realistic function types such as mass fractal and exponential. Optical scattering properties for weakly scattering media can be determined analytically from Bn(r) by applying the Rayleigh-Gans-Debye (RGD) or Born Approximation, and so measured scattering properties are used to fit parameters of the model function. Direct measurement of Bn(r) would provide confirmation that the function is a good representation of tissue or help in identifying the length scale at which changes occur. The RGD approximation relates the scattering phase function to the refractive index correlation function through a Fourier transform. This can be inverted without approximation, so goniometric measurement of the scattering can be converted to Bn(r). However, geometric constraints of the measurement of the phase function, angular resolution, and wavelength result in a band limited measurement of Bn(r). These limits are discussed and example measurements are described.

  6. Experimental measurement of oil-water two-phase flow by data fusion of electrical tomography sensors and venturi tube

    Science.gov (United States)

    Liu, Yinyan; Deng, Yuchi; Zhang, Maomao; Yu, Peining; Li, Yi

    2017-09-01

    Oil-water two-phase flows are commonly found in the production processes of the petroleum industry. Accurate online measurement of flow rates is crucial to ensure the safety and efficiency of oil exploration and production. A research team from Tsinghua University has developed an experimental apparatus for multiphase flow measurement based on an electrical capacitance tomography (ECT) sensor, an electrical resistance tomography (ERT) sensor, and a venturi tube. This work presents the phase fraction and flow rate measurements of oil-water two-phase flows based on the developed apparatus. Full-range phase fraction can be obtained by the combination of the ECT sensor and the ERT sensor. By data fusion of differential pressures measured by venturi tube and the phase fraction, the total flow rate and single-phase flow rate can be calculated. Dynamic experiments were conducted on the multiphase flow loop in horizontal and vertical pipelines and at various flow rates.

  7. Dynamic measurements of total hepatic blood flow with Phase Contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yzet, Thierry [Department of Radiology, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: Yzet.Thierry@chu-amiens.fr; Bouzerar, Roger [Department of Imaging and Biophysics, University Hospital, Jules Verne University of Picardie, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: bouzerar.roger@chu-amiens.fr; Baledent, Olivier [Department of Imaging and Biophysics, University Hospital, Jules Verne University of Picardie, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: Olivier.Baledent@chu-amiens.fr; Renard, Cedric [Department of Radiology, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: Renard.Cedric@chu-amiens.fr; Lumbala, Didier Mbayo [Department of Radiology, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: MbayoLumbala.Didier@chu-amiens.fr; Nguyen-Khac, Eric [Mobile Unit of Alcoology, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: Nguyen-Khac.Eric@chu-amiens.fr; Regimbeau, Jean-Marc [Department of Visceral and Digestive General Surgery, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: regimbeau.jean-marc@chu-amiens.fr; Deramond, H. [Department of Radiology, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: deramond.herve@chu-amiens.fr; Meyer, Marc-Etienne [Department of Imaging and Biophysics, University Hospital, Jules Verne University of Picardie, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: Meyer.Marc-Etienne@chu-amiens.fr

    2010-01-15

    Background/Aims: To measure total hepatic blood flow including portal and proper hepatic artery flows as well as the temporal evolution of the vessel's section during a cardiac cycle. Methods: Twenty healthy subjects, with a mean age of 26 years, were explored. Magnetic resonance imaging blood flow measurements were carried out in the portal vein and the proper hepatic artery. MR studies were performed using a 1.5T imager (General Electric Medical Systems). Gradient-echo 2D Fast Cine Phase Contrast sequences were used with both cardiac and respiratory gatings. Data analysis was performed using a semi-automatic software built in our laboratory. Results: The total hepatic flow rate measured was 1.35 {+-} 0.18 L/min or 19.7 {+-} 4.6 mL/(min kg). The proper hepatic artery provided 19.1% of the total hepatic blood flow entering the liver. Those measurements were in agreement with earlier studies using direct measurements. Mean and maximum velocities were also assessed and a discrepancy between our values and the literature's Doppler data was found. Measurements of the portal vein area have shown a mean variation, defined as a 'pulsatility' index of 18% over a cardiac cycle. Conclusions: We report here proper hepatic artery blood flow rate measurements using MRI. Associated with portal flow measurements, we have shown the feasibility of total hepatic flowmetry using a non-invasive and harmless technique.

  8. JUSTIFICATION OF THE EXISTENCE OF PREPARATORY GROUPS IN SPECIAL SCOOLS FOR CHILDREN LIGHTLY HANDICAPPED

    Directory of Open Access Journals (Sweden)

    Aneta ANDONAKIS

    1997-03-01

    Full Text Available Researches about child’s intellectual development in the psychology has started in the 19th century and the first step has been made by Tiedemann in “ Observation of the development of the mental abilities of the children”. His work caused a great interest in the circles of doctors and psychologists. Their interpretation of intelligence was different, but the most acceptable is the performance of complicated activities for getting knowledge and skills and getting over the obstacles in the development of the person”.The social ability do not correspond with the intelligence. The two aspects are tested and a complete picture of their functioning can be seen. The developmental principle is determined from general to the separate as functionally connected.In the period when a child does not accept the higher level of intelligence and thinking , in relation to which are effectuated by sense-motor activities, than we say that a child is mentally handicapped. The widest approach of the educational system should be treated as a functional, institutional and organizational, that takes part in the realization of the social aims and tasks.Not getting into viewing of the curriculum's and programs for preparatory groups in the preeducational period, we may say that the justification for the existence of these group in the regular schools, is maturation of the perceptive motor coordination and learning. With the maturing the function of the "ego" is increasing.As a child adapts better he can learn better, and the maturity comes sooner. In this way these groups are justified.Mentally handicapped child has not the opportunity to attend an organized prepared education which provides:-forming of the speech, self-control, which can be achieved in the process of learning through a direct contact with other children;· regulation of the lateralization through re-education of the psycho-motor abilities, and in general neuro-motor experienced maturation

  9. Real-time single-shot measurement and correction of pulse phase and amplitude for ultrafast lasers

    Science.gov (United States)

    Pestov, Dmitry; Ryabtsev, Anton; Rasskazov, Gennady; Lozovoy, Vadim V.; Dantus, Marcos

    2014-05-01

    The transition of femtosecond lasers from the laboratory to commercial applications requires real-time automated pulse compression, ensuring optimum performance without assistance. Single-shot phase measurements together with closed-loop optimization based on real-time multiphoton intrapulse interference phase scan are demonstrated. On-the-fly correction of amplitude, as well as second- and third-order phase distortions based on the real-time measurements, is accomplished by a pulse shaper.

  10. Hilbert phase dynamometry (HPD) for real-time measurement of cell generated forces (Conference Presentation)

    Science.gov (United States)

    Sridharan, Shamira; Li, Yanfen; Bhaduri, Basanta; Majeed, Hassaan; Dupenloup, Paul; Levine, Alex; Kilian, Kristopher A.; Popescu, Gabriel

    2016-03-01

    Traction force microscopy is the most widely used technique for studying the forces exerted by cells on deformable substrates. However, the method is computationally intense and cells have to be detached from the substrate prior to measuring the displacement map. We have developed a new method, referred to as Hilbert phase dynamometry (HPD), which yields real-time force fields and, simultaneously, cell dry mass and growth information. HPD operates by imaging cells on a deformable substrate that is patterned with a grid of fluorescent proteins. A Hilbert transform is used to extract the phase map associated with the grid deformation, which provides the displacement field. By combining this information with substrate stiffness, an elasticity model was developed to measure forces exerted by cells with high spatial resolution. In our study, we prepared 10kPa gels and them with a 2-D grid of FITC-conjugated fibrinogen/fibronectin mixture, an extracellular matrix protein to which cells adhere. We cultured undifferentiated mesenchymal stem cells (MSC), and MSCs that were in the process of undergoing adipogenesis and osteogenesis. The cells were measured over the course of 24 hours using Spatial Light Interference Microscopy (SLIM) and wide-field epi-fluorescence microscopy allowing us to simultaneously measure cell growth and the forces exerted by the cells on the substrate.

  11. Feasibility study on longitudinal phase-space measurements at GSI UNILAC using charged-particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Milosic, Timo

    2014-04-14

    Accelerator facilities require access to many beam parameters during operation. The field of beam instrumentation serves this crucial role in commissioning, setup and optimisation of the facility. An important information is contained in the phase-space distribution of the accelerated particles. In case of GSI (Helmholtzzentrum fuer Schwerionenforschung) those are ions from protons to uranium. If established methods to access certain beam parameters do not exist, new approaches have to emerge. This is the case for the presented measurement setup which has been designed and realised by Forck et al. to support commissioning of the GSI high-current injector. It is aiming at an experimental method to access the longitudinal phase-space distribution at low energies of 1.4 AMeV. Established methods for higher energies and based on the measurement of the electric field distribution are not feasible at non-relativistic velocities. The presented method is based on a time-of-flight (TOF) measurement between two particle detectors. A modification allows, alternatively, the direct measurement of the kinetic energy using a mono-crystalline (MC) diamond detector. Currently, besides others, the focus of the optimisation of the injector is put on the longitudinal phase-space distribution. It allows for a systematic optimisation of the matching into the accelerator cavities and, thus, an improved transmission as well as lower emittance values. The new accelerator facility FAIR (Facility for Antiproton and Ion Research), a large-scale upgrade at GSI, requires an improved beam quality at the existing injector. In this work the experimental setup is investigated for its feasibility to measure the longitudinal phase-space distribution. To this end, the phase and momentum of the single ions along the beam axis have to be determined with high precision. Finally, the longitudinal phase-space distribution is identified with the measured ensemble. The setup is presented in detail

  12. Spatial resolution characterization of differential phase contrast CT systems via modulation transfer function (MTF) measurements

    Science.gov (United States)

    Li, Ke; Zambelli, Joseph; Bevins, Nicholas; Ge, Yongshuai; Chen, Guang-Hong

    2013-06-01

    By adding a Talbot-Lau interferometer to a conventional x-ray absorption computed tomography (CT) imaging system, both differential phase contrast (DPC) signal and absorption contrast signal can be simultaneously measured from the same set of CT measurements. The imaging performance of such multi-contrast x-ray CT imaging systems can be characterized with standard metrics such as noise variance, noise power spectrum, contrast-to-noise ratio, modulation transfer function (MTF), and task-based detectability index. Among these metrics, the measurement of the MTF can be challenging in DPC-CT systems due to several confounding factors such as phase wrapping and the difficulty of using fine wires as probes. To address these technical challenges, this paper discusses a viable and reliable method to experimentally measure the MTF of DPC-CT. It has been found that the spatial resolution of DPC-CT is degraded, when compared to that of the corresponding absorption CT, due to the presence of a source grating G0 in the Talbot-Lau interferometer. An effective MTF was introduced and experimentally estimated to describe the impact of the Talbot-Lau interferometer on the system MTF.

  13. Optical measurements of phase steps in segmented mirrors - fundamental precision limits

    CERN Document Server

    Noethe, L

    2006-01-01

    Phase steps are an important type of wavefront aberrations generated by large telescopes with segmented mirrors. In a closed-loop correction cycle these phase steps have to be measured with the highest possible precision using natural reference stars, that is with a small number of photons. In this paper the classical Fisher information of statistics is used for calculating the Cramer-Rao bound, which determines the limit to the precision with which the height of the steps can be estimated in an unbiased fashion with a given number of photons and a given measuring device. Four types of measurement devices are discussed: a Shack-Hartmann sensor with one small cylindrical lenslet covering a sub-aperture centred over a border, a modified Mach-Zehnder interferometer, a Foucault test, and a curvature sensor. The Cramer-Rao bound is calculated for all sensors under ideal conditions, that is narrowband measurements without additional noise or disturbances apart from the photon shot noise. This limit is compared with...

  14. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    CERN Document Server

    Rondo, L.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosolnucleation. Based on quantum chemical calculations it has been suggested that the quantitative detectionof gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased inthe presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was setup at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection ofH2SO4in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time inthe CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF(Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutralsulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presenceof dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS...

  15. Technique for phase measurement and surface reconstruction by use of colored structured light.

    Science.gov (United States)

    Skydan, Oleksandr A; Lalor, Michael J; Burton, David R

    2002-10-10

    We present a new method for improving the measurement of three-dimensional (3-D) shapes by using color information of the measured scene as an additional parameter. The widest used algorithms for 3-D surface measurement by use of structured fringe patterns are phase stepping and Fourier fringe analysis. There are a number of problems and limitations inherent in these algorithms that include: that the phase maps produced are wrapped modulo 2pi, that in some cases the acquired fringe pattern does not fill the field of view, that there may be spatially isolated areas, and that there is often invalid and/or noisy data. The new method presented to our knowledge for the first time here uses multiple colored fringe patterns, which are projected at different angles onto the measured scene. These patterns are analyzed with a specially adapted multicolor version of the standard Fourier fringe analysis method. In this way a number of the standard difficulties outlined above are addressed.

  16. Depth-Encoded Spectral Domain Phase Microscopy for Simultaneous Multi-Site Nanoscale Optical Measurements.

    Science.gov (United States)

    Hendargo, Hansford C; Bower, Bradley A; Reinstein, Alex S; Shepherd, Neal; Tao, Yuankai K; Izatt, Joseph A

    2011-09-01

    Spectral domain phase microscopy (SDPM) is an extension of spectral domain optical coherence tomography (SDOCT) that exploits the extraordinary phase stability of spectrometer-based systems with common-path geometry to resolve sub-wavelength displacements within a sample volume. This technique has been implemented for high resolution axial displacement and velocity measurements in biological samples, but since axial displacement information is acquired serially along the lateral dimension, it has been unable to measure fast temporal dynamics in extended samples. Depth-Encoded SDPM (DESDPM) uses multiple sample arms with unevenly spaced common path reference reflectors to multiplex independent SDPM signals from separate lateral positions on a sample simultaneously using a single interferometer, thereby reducing the time required to detect unique optical events to the integration period of the detector. Here, we introduce DESDPM and demonstrate the ability to acquire useful phase data concurrently at two laterally separated locations in a phantom sample as well as a biological preparation of spontaneously beating chick cardiomyocytes. DESDPM may be a useful tool for imaging fast cellular phenomena such as nervous conduction velocity or contractile motion.

  17. Two generalized algorithms measuring phase-amplitude cross-frequency coupling in neuronal oscillations network.

    Science.gov (United States)

    Li, Qun; Zheng, Chen-Guang; Cheng, Ning; Wang, Yi-Yi; Yin, Tao; Zhang, Tao

    2016-06-01

    An increasing number of studies pays attention to cross-frequency coupling in neuronal oscillations network, as it is considered to play an important role in exchanging and integrating of information. In this study, two generalized algorithms, phase-amplitude coupling-evolution map approach and phase-amplitude coupling-conditional mutual information which have been developed and applied originally in an identical rhythm, are generalized to measure cross-frequency coupling. The effectiveness of quantitatively distinguishing the changes of coupling strength from the measurement of phase-amplitude coupling (PAC) is demonstrated based on simulation data. The data suggest that the generalized algorithms are able to effectively evaluate the strength of PAC, which are consistent with those traditional approaches, such as PAC-PLV and PAC-MI. Experimental data, which are local field potentials obtained from anaesthetized SD rats, have also been analyzed by these two generalized approaches. The data show that the theta-low gamma PAC in the hippocampal CA3-CA1 network is significantly decreased in the glioma group compared to that in the control group. The results, obtained from either simulation data or real experimental signals, are consistent with that of those traditional approaches PAC-MI and PAC-PLV. It may be considered as a proper indicator for the cross frequency coupling in sub-network, such as the hippocampal CA3 and CA1.

  18. Measuring the Nonuniform Evaporation Dynamics of Sprayed Sessile Microdroplets with Quantitative Phase Imaging.

    Science.gov (United States)

    Edwards, Chris; Arbabi, Amir; Bhaduri, Basanta; Wang, Xiaozhen; Ganti, Raman; Yunker, Peter J; Yodh, Arjun G; Popescu, Gabriel; Goddard, Lynford L

    2015-10-13

    We demonstrate real-time quantitative phase imaging as a new optical approach for measuring the evaporation dynamics of sessile microdroplets. Quantitative phase images of various droplets were captured during evaporation. The images enabled us to generate time-resolved three-dimensional topographic profiles of droplet shape with nanometer accuracy and, without any assumptions about droplet geometry, to directly measure important physical parameters that characterize surface wetting processes. Specifically, the time-dependent variation of the droplet height, volume, contact radius, contact angle distribution along the droplet's perimeter, and mass flux density for two different surface preparations are reported. The studies clearly demonstrate three phases of evaporation reported previously: pinned, depinned, and drying modes; the studies also reveal instances of partial pinning. Finally, the apparatus is employed to investigate the cooperative evaporation of the sprayed droplets. We observe and explain the neighbor-induced reduction in evaporation rate, that is, as compared to predictions for isolated droplets. In the future, the new experimental methods should stimulate the exploration of colloidal particle dynamics on the gas-liquid-solid interface.

  19. Modified T-history method for measuring thermophysical properties of phase change materials at high temperature

    Science.gov (United States)

    Omaraa, Ehsan; Saman, Wasim; Bruno, Frank; Liu, Ming

    2017-06-01

    Latent heat storage using phase change materials (PCMs) can be used to store large amounts of energy in a narrow temperature difference during phase transition. The thermophysical properties of PCMs such as latent heat, specific heat and melting and solidification temperature need to be defined at high precision for the design and estimating the cost of latent heat storage systems. The existing laboratory standard methods, such as differential thermal analysis (DTA) and differential scanning calorimetry (DSC), use a small sample size (1-10 mg) to measure thermophysical properties, which makes these methods suitable for homogeneous elements. In addition, this small amount of sample has different thermophysical properties when compared with the bulk sample and may have limitations for evaluating the properties of mixtures. To avoid the drawbacks in existing methods, the temperature - history (T-history) method can be used with bulk quantities of PCM salt mixtures to characterize PCMs. This paper presents a modified T-history setup, which was designed and built at the University of South Australia to measure the melting point, heat of fusion, specific heat, degree of supercooling and phase separation of salt mixtures for a temperature range between 200 °C and 400 °C. Sodium Nitrate (NaNO3) was used to verify the accuracy of the new setup.

  20. Ka-Band Atmospheric Phase Stability Measurements in Goldstone, CA; White Sands, NM; and Guam

    Science.gov (United States)

    Zemba, Michael J.; Morse, Jacquelynne Rose; Nessel, James A.

    2014-01-01

    As spacecraft communication links are driven to higher frequencies (e.g. Ka-band) both by spectrum congestion and the appeal of higher data rates, the propagation phenomena at these frequencies must be well characterized for effective system design. In particular, the phase stability of a site at a given frequency will govern whether or not the site is a practical location for an antenna array, particularly if uplink capabilities are desired. Propagation studies to characterize such phenomena must be done on a site-by-site basis due to the wide variety of climates and weather conditions at each ground terminal. Accordingly, in order to statistically characterize the atmospheric effects on Ka-Band links, site test interferometers (STIs) have been deployed at three of NASA's operational sites to directly measure each site's tropospheric phase stability. Using three years of results from these experiments, this paper will statistically characterize the simultaneous atmospheric phase noise measurements recorded by the STIs deployed at the following ground station sites: the Goldstone Deep Space Communications Complex near Barstow, CA; the White Sands Ground Terminal near Las Cruces, NM; and the Guam Remote Ground Terminal on the island of Guam.

  1. Error analysis of cine phase contrast MRI velocity measurements used for strain calculation.

    Science.gov (United States)

    Jensen, Elisabeth R; Morrow, Duane A; Felmlee, Joel P; Odegard, Gregory M; Kaufman, Kenton R

    2015-01-02

    Cine Phase Contrast (CPC) MRI offers unique insight into localized skeletal muscle behavior by providing the ability to quantify muscle strain distribution during cyclic motion. Muscle strain is obtained by temporally integrating and spatially differentiating CPC-encoded velocity. The aim of this study was to quantify CPC measurement accuracy and precision and to describe error propagation into displacement and strain. Using an MRI-compatible jig to move a B-gel phantom within a 1.5 T MRI bore, CPC-encoded velocities were collected. The three orthogonal encoding gradients (through plane, frequency, and phase) were evaluated independently in post-processing. Two systematic error types were corrected: eddy current-induced bias and calibration-type error. Measurement accuracy and precision were quantified before and after removal of systematic error. Through plane- and frequency-encoded data accuracy were within 0.4 mm/s after removal of systematic error - a 70% improvement over the raw data. Corrected phase-encoded data accuracy was within 1.3 mm/s. Measured random error was between 1 to 1.4 mm/s, which followed the theoretical prediction. Propagation of random measurement error into displacement and strain was found to depend on the number of tracked time segments, time segment duration, mesh size, and dimensional order. To verify this, theoretical predictions were compared to experimentally calculated displacement and strain error. For the parameters tested, experimental and theoretical results aligned well. Random strain error approximately halved with a two-fold mesh size increase, as predicted. Displacement and strain accuracy were within 2.6 mm and 3.3%, respectively. These results can be used to predict the accuracy and precision of displacement and strain in user-specific applications.

  2. Raman measurements of phase transitions in dense solid hydrogen and deuterium to 325 GPa.

    Science.gov (United States)

    Zha, Chang-sheng; Cohen, R E; Mao, Ho-kwang; Hemley, Russell J

    2014-04-01

    Raman spectroscopy of dense hydrogen and deuterium performed to 325 GPa at 300 K reveals previously unidentified transitions. Detailed analysis of the spectra from multiple experimental runs, together with comparison with previous infrared and Raman measurements, provides information on structural modifications of hydrogen as a function of density through the I-III-IV transition sequence, beginning near 200 GPa at 300 K. The data suggest that the transition sequence at these temperatures proceeds by formation of disordered stacking of molecular and distorted layers. Weaker spectral changes are observed at 250, 285, and 300 GPa, that are characterized by discontinuities in pressure shifts of Raman frequencies, and changes in intensities and linewidths. The results indicate changes in structure and bonding, molecular orientational order, and electronic structure of dense hydrogen at these conditions. The data suggest the existence of new phases, either variations of phase IV, or altogether new structures.

  3. Technique for Measurement of Inter-Phase Line Tension in Langmuir Films

    Science.gov (United States)

    Zou, Lu; Pugh, Jacob M.; Mann, Elizabeth K.; Bernoff, Andrew J.; Alexander, James C.; Mann, J. Adin, Jr.

    2006-10-01

    Line tension, the free energy per unit length associated with the line boundary, controls properties such as size and shape of surface domains. It plays an important role in two-dimensional surface phases. It has been extremely difficult to measure this parameter to better than +/-20%. We made a model of the fluid dynamics governing the relaxation of phase domains in Langmuir Films and implemented a numerical solution. Experimentally, a four-roll mill provided symmetric shear forces about a central stagnation point on the 8CB multilayers sitting at air/water interface. 8CB domains were stretched into bola shape and then performed relaxations. We compared relaxations observed with a Brewster-angle microscope to the simulated ones and deduced the line tension driving the relaxation from this comparison. In this way, the relative standard deviation could be remarkably reduced to < 5%.

  4. The Tracking Resonance Frequency Method for Photoacoustic Measurements Based on the Phase Response

    Science.gov (United States)

    Suchenek, Mariusz

    2017-04-01

    One of the major issues in the use of the resonant photoacoustic cell is the resonance frequency of the cell. The frequency is not stable, and its changes depend mostly on temperature and gas mixture. This paper presents a new method for tracking resonance frequency, where both the amplitude and phase are calculated from the input samples. The stimulating frequency can be adjusted to the resonance frequency of the cell based on the phase. This method was implemented using a digital measurement system with an analog to digital converter, field programmable gate array (FPGA) and a microcontroller. The resonance frequency was changed by the injection of carbon dioxide into the cell. A theoretical description and experimental results are also presented.

  5. Phase-Noise and Amplitude-Noise Measurement of Low-Power Signals

    Science.gov (United States)

    Rubiola, Enrico; Salik, Ertan; Yu, Nan; Maleki, Lute

    2004-01-01

    Measuring the phase fluctuation between a pair of low-power microwave signals, the signals must be amplified before detection. In such cases the phase noise of the amplifier pair is the main cause of 1/f background noise of the instrument. this article proposes a scheme that makes amplification possible while rejecting the close in 1/f (flicker) noise of the two amplifiers. Noise rejection, which relies upon the understanding of the amplifier noise mechanism does not require averaging. Therefore, our scheme can also be the detector of a closed loop noise reduction system. the first prototype, compared to a traditional saturated mixer system under the same condition, show a 24 dB noise reduction of the 1/f region.

  6. Measurement of the longitudinal phase space at the photo injector test facility at DESY Zeuthen

    CERN Document Server

    Lipka, D; Bähr, J; Flöttmann, K; Richter, D; Stephan, F; Zhao, Q

    2002-01-01

    The photo injector test facility at DESY Zeuthen (PITZ) has been developed with the aim to deliver low emittance electron beams and study its characteristics for future applications at free electron lasers and linear accelerators. The energy of the electron beam varies in the range between 4 and 5 MeV. One of the important properties of the delivered beam is the longitudinal phase space of the electron beam. Measurements of the momentum distributions show a small energy spread. The principle of the measurement of the bunch length will be discussed, time resolutions will be shown and preliminary results will be given. The design to measure the correlation between momentum and time distribution of the electron bunch will be shown with calculated resolutions.

  7. Measurements of the $CP$ violating phase $\\phi_s$ at LHCb

    CERN Multimedia

    Wang, Mengzhen

    2017-01-01

    The measurement of the mixing-induced CP-violating phase $\\phi_s$ in the Bs-Bsbar system is one of the key goals of the LHCb experiment. It has been measured at LHCb exploiting the Run I data set and using several decay channels. The poster shows the most recent results obtained analyzing $B_s^0 \\to J/\\psi K^+K^-$ candidates in the mass region above the $\\phi(1020)$ resonance. The poster also shows previous measurements obtained analyzing the golden channel, $B_s^0 \\to J/\\psi K^+K^-$ in $\\phi(1020)$ region, and $B_s^0 \\to J/\\psi \\pi^+ \\pi^-$. Finally, a combination of those studies is presented.

  8. Measuring tail beat frequency and coast phase in school of fish for collective motion analysis

    Science.gov (United States)

    Terayama, Kei; Hioki, Hirohisa; Sakagami, Masa-aki

    2017-02-01

    We propose a measurement method of Tail Beat Frequency (TBF) and Coast Phase (CP) of fish swimming for isolated fish in a school of fish with visual tracking. For analysis of fish swimming behaviors, features that represent fish movements, e.g., TBF and CP, have been commonly used in the fields of biological and fisheries researches. We propose a measurement method for such features using particle filter and apply the method to a large school of fish in an aquarium. Experimental results show that the TBFs and the CPs are measured with our method accurately enough for further analysis of fish behaviors. The average errors of the TBFs was 0.126 (Hz) and the precision and recall of the classification for CP detection were 0.945 and 0.879 respectively.

  9. Unseeded Large Scale PIV measurements accounting for capillary-gravity waves phase speed

    CERN Document Server

    Benetazzo,; Gamba,; M.,; Barbariol,; F,

    2016-01-01

    Large Scale Particle Image Velocimetry (LSPIV) is widely recognized as a reliable method to measure water surface velocity field in open channels and rivers. LSPIV technique is based on a camera view that frames the water surface in a sequence, and image-processing methods to compute water surface displacements between consecutive frames. Using LSPIV, high flow velocities, as for example flood conditions, were accurately measured, whereas determinations of low flow velocities is more challenging, especially in absence of floating seeding transported by the flow velocity. In fact, in unseeded conditions, typical surface features dynamics must be taken into account: besides surface structures convected by the current, capillary-gravity waves travel in all directions, with their own dynamics. Discrimination between all these phenomena is here discussed, providing a new method to distinguish and to correct unseeded LSPIV measurements associated with wavy structures, accounting for their phase speed magnitude and ...

  10. Magnitude-frequency characteristics and preparatory factors for spatial debris-slide distribution in the northern Faroe Islands

    DEFF Research Database (Denmark)

    Dahl, Mads-Peter Jakob; Jensen, Niels H.; Veihe, Anita

    2013-01-01

    the magnitude and frequency of their debris-slide origins as well as identifying which preparatory factors are responsible for the spatial debris-slide distribution in the landscape. For that purpose a debris-slide inventory was generated from aerial photo interpretation (API), fieldwork and anecdotal sources......, covering a 159 km(2) study area in the northern Faroe Islands. A magnitude-cumulative frequency (MCF) curve was derived to predict magnitude dependant debris-slide frequencies, while preparatory factors responsible for spatial debris-slide distribution were quantified through GIS-supported discriminant...... function analysis (DFA). Nine factors containing geological (lithology, dip), geomorphological (slope angle, altitude, aspect; plan and profile curvature) and land use (infield/outfield, sheep density) information were included in the multivariate analysis. Debris-slides larger than 100 m(2) with magnitude...

  11. A multiple case study comparison of normal private preparatory school and substance abusing/mood disordered adolescents and their families.

    Science.gov (United States)

    Yeh, L S; Hedgespeth, J

    1995-01-01

    This multiple case study of ten families of normal private preparatory school adolescents and five families of substance abusing/mood disordered adolescents was an effort to identify factors that may suggest a relationship between the abuse of substances in adolescents who also have mood disorders and the following family factors: parental marital discord, degree of family satisfaction, and family problem-solving styles. The fifteen families completed four assessment instruments and participated in a videotaped problem-solving exercise. The results of this study showed that all members of the substance abusing/mood disordered adolescents' families rated themselves as dysfunctional in all major areas of family life. In contrast, the normal private preparatory school families reported satisfaction with most areas of family functioning. Communication styles also differed considerably between the two small groups of families. These results appear to support the importance of family evaluation and treatment when addressing the issue of adolescent substance abusers with mood disorders.

  12. The Impact of a Modified Cooperative Learning Technique on the Grade Frequencies Observed in a Preparatory Chemistry Course

    Science.gov (United States)

    Hayes Russell, Bridget J.

    This dissertation explored the impact of a modified cooperative learning technique on the final grade frequencies observed in a large preparatory chemistry course designed for pre-science majors. Although the use of cooperative learning at all educational levels is well researched and validated in the literature, traditional lectures still dominate as the primary methodology of teaching. This study modified cooperative learning techniques by addressing commonly cited reasons for not using the methodology. Preparatory chemistry students were asked to meet in cooperative groups outside of class time to complete homework assignments. A chi-square goodness-of-fit revealed that the final grade frequency distributions observed were different than expected. Although the distribution was significantly different, the resource investment using this particular design challenged the practical significance of the findings. Further, responses from a survey revealed that the students did not use the suggested group functioning methods that empirically are known to lead to more practically significant results.

  13. A method for measuring the phase of the reflection coefficient in the visible range of the spectrum

    Science.gov (United States)

    Shvets, V. A.

    2017-08-01

    A method for measuring the phase of the reflection coefficient in the optical wavelength range is proposed. The method is simple in experimental implementation and is based on measuring the energyreflection coefficients of a sample in two media with different refractive indices. Analytical and numerical estimates show that the measurement accuracy of the phase is on the order of 1°. The possibilities of using the results of the phase measurement in practice for a more complete characterization of materials and structures under investigation are considered.

  14. Effects of preparatory and action planning instructions on situation-specific and general fruit and snack intake.

    Science.gov (United States)

    de Bruijn, Gert-Jan; Nguyen, Minh Hao; Rhodes, Ryan E; van Osch, Liesbeth

    2017-01-01

    Evidence to date suggests heterogeneity in the effects of implementation intentions on health behaviour, including diet. Additional variables and study designs may impact on their effectiveness. Preparatory action, such as making sure fruits are available for consumption, may be an important additional variable. Likewise, most implementation intention research has focused on changes in general intake, yet implementation intention instructions typically require participants to consider behaviour in specific situations. Little is known on how implementation intentions impact situation-specific intake. The present study sought to add to the evidence base by comparing (1) the effects of action planning instructions versus preparatory planning instructions on (2) both situation-specific (as formulated in the implementation intention instruction) and general intake of fruits and in-between meal snack intake frequency. Fruit intake was assessed in average pieces per day, whereas snacking intake was assessed as average frequency in days per week. Using non-probability sampling, 243 undergraduate students who intended to have a healthy diet were randomized to either a standard information control condition, an action planning condition, or a preparatory planning condition. Planning manipulations were based on previous work. Two weeks later, general and situation-specific intake was assessed again in 181 participants. Data were analysed using 2 (time) x 3 (conditions) analyses of variance. Results showed that both planning manipulations were successful in decreasing snack intake frequency in the specified situation, with larger effect sizes for the action planning condition than for the preparatory planning condition. No effects were found on general snack intake frequency or fruit intake. Future planning interventions should more explicitly compare changes in situational and general intake, as well as simultaneously assessed decreases in unhealthy intake and increases in

  15. Remote sensing of phytoplankton functional types in the coastal ocean from the HyspIRI Preparatory Flight Campaign

    OpenAIRE

    Palacios, SL; Kudela, RM; Guild, LS; Negrey, KH; Torres-Perez, J; Broughton, J

    2015-01-01

    © 2015 Elsevier Inc. The 2013-2015 Hyperspectral Infrared Imager (HyspIRI) Preparatory Flight Campaign, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS/ASTER Airborne Simulator (MASTER), seeks to demonstrate appropriate sensor signal, spatial and spectral resolution, and orbital pass geometry for a global mission to reveal ecological and climatic gradients expressed in the selected California, USA study area. One of the awarded projects focused on the flight transe...

  16. Measuring dynamic membrane fluctuations in cell membrane using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Lee, SangYun; Kim, Kyoohyun; Park, YongKeun

    2017-02-01

    There is a strong correlation between the dynamic membrane fluctuations and the biomechanical properties of living cells. The dynamic membrane fluctuation consists of submicron displacements, and can be altered by changing the cells' pathophysiological conditions. These results have significant relevance to the understanding of RBC biophysics and pathology, as follows. RBCs must withstand large mechanical deformations during repeated passages through the microvasculature and the fenestrated walls of the splenic sinusoids. This essential ability is diminished with senescence, resulting in physiological destruction of the aging RBCs. Pathological destruction of the red cells, however, occurs in cells affected by a host of diseases such as spherocytosis, malaria, and Sickle cell disease, as RBCs depart from their normal discoid shape and lose their deformability. Therefore, quantifying the RBC deformability insight into a variety of problems regarding the interplay of cell structure, dynamics, and function. Furthermore, the ability to monitor mechanical properties of RBCs is of vital interest in monitoring disease progression or response to treatment as molecular and pharmaceutical approaches for treatment of chronic diseases. Here, we present the measurements of dynamic membrane fluctuations in live cells using quantitative phase imaging techniques. Measuring both the 3-D refractive index maps and the dynamic phase images of live cells are simultaneously measured, from which dynamic membrane fluctuation and deformability of cells are precisely calculated. We also present its applications to various diseases ranging from sickle cell diseases, babesiosis, and to diabetes.

  17. Highly sensitive simple homodyne phase detector for ultrasonic pulse-echo measurements

    CERN Document Server

    Grossmann, John; Yong, Grace; Boatner, Lynn A; Svitelskiy, Oleksiy

    2016-01-01

    We have designed and built a modern versatile research-grade instrument for ultrasound pulse-echo probing of the elastic properties of a wide range of materials under laboratory conditions. The heart of the instrument lies in an AD8302 microchip: a gain and phase detector from Analog Devices, Inc. To construct the device, we have implemented a schematic that utilizes the homodyne principle for signal processing instead of the traditional superheterodyne approach. This design allows one to measure phase shifts with high precision and linearity over the entire range of $0-360^\\circ$. The system is simple in construction and usage; it makes ultrasound measurements easily accessible to a broad range of researchers. It was tested by measuring the temperature dependence of the ultrasound speed and attenuation in a KTa$_{0.92}$Nb$_{0.08}$O$_{3}$ (KTN) single crystal at a frequency of $\\sim$ 40 MHz. The tests were performed in the vicinity of the ferroelectric transitions where the large variations of the speed and a...

  18. Measuring small absorptions exploiting photo-thermal self-phase modulation

    CERN Document Server

    Lastzka, Nico; Steinlechner, Sebastian; Schnabel, Roman

    2010-01-01

    We present a method for the measurement of small optical absorption coefficients. The method exploits the deformation of cavity Airy peaks that occur if the cavity contains an absorbing material with a non-zero thermo-refractive coefficient dn/dT or a non-zero expansion coefficient ath . Light absorption leads to a local temperature change and to an intensity-dependent phase shift, i.e. to a photo-thermal self-phase modulation. The absorption coefficient is derived from a comparison of time-resolved measurements with a numerical time-domain simulation applying a Markov-chain Monte-Carlo (MCMC) algorithm. We apply our method to the absorption coefficient of lithium niobate (LN) doped with 7mol% magnesium oxide (MgO) and derive a value of alphaLN = (5.9 +/- 0.9) *10^-4/cm . Our method should also apply to materials with much lower absorption coefficients. Based on our modelling we estimate that with cavity finesse values of the order 10^4, absorption coefficients of as low as 10^-8 /cm can be measured.

  19. A fundamental measure density functional for fluid and crystal phases of the Asakura-Oosawa model

    Science.gov (United States)

    Mortazavifar, Mostafa; Oettel, Martin

    2016-06-01

    We investigate a density functional for the Asakura-Oosawa model of colloid-polymer mixtures, describing both fluid and crystal phases. It is derived by linearizing the two-component fundamental-measure hard sphere tensor functional in the second (polymer) component. We discuss the formulation of an effective density functional for colloids only. For small polymer-colloid size ratios the effective, polymer-induced potential between colloids is short-range attractive and of two-body form but we show that the effective density functional is not equivalent to standard mean-field approaches where attractions are taken into account by terms second order in the colloid density. We calculate numerically free energies and phase diagrams in good agreement with available simulations, furthermore we discuss the colloid and polymer distributions in the crystal and determine equilibrium vacancy concentrations. Numerical results reveal a fairly strong sensitivity to the specific type of underlying fundamental measure hard sphere functional which could aid further development of fundamental measure theory.

  20. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  1. Monitoring and analysis of thermal deformation waves with a high-speed phase measurement system.

    Science.gov (United States)

    Taylor, Lucas; Talghader, Joseph

    2015-10-20

    Thermal effects in optical substrates are vitally important in determining laser damage resistance in long-pulse and continuous-wave laser systems. Thermal deformation waves in a soda-lime-silica glass substrate have been measured using high-speed interferometry during a series of laser pulses incident on the surface. Two-dimensional images of the thermal waves were captured at a rate of up to six frames per thermal event using a quantitative phase measurement method. The system comprised a Mach-Zehnder interferometer, along with a high-speed camera capable of up to 20,000 frames-per-second. The sample was placed in the interferometer and irradiated with 100 ns, 2 kHz Q-switched pulses from a high-power Nd:YAG laser operating at 1064 nm. Phase measurements were converted to temperature using known values of thermal expansion and temperature-dependent refractive index for glass. The thermal decay at the center of the thermal wave was fit to a function derived from first principles with excellent agreement. Additionally, the spread of the thermal distribution over time was fit to the same function. Both the temporal decay fit and the spatial fit produced a thermal diffusivity of 5×10-7  m2/s.

  2. Comparison of measured and computed phase functions of individual tropospheric ice crystals

    Science.gov (United States)

    Stegmann, Patrick G.; Tropea, Cameron; Järvinen, Emma; Schnaiter, Martin

    2016-07-01

    Airplanes passing the incuda (lat. anvils) regions of tropical cumulonimbi-clouds are at risk of suffering an engine power-loss event and engine damage due to ice ingestion (Mason et al., 2006 [1]). Research in this field relies on optical measurement methods to characterize ice crystals; however the design and implementation of such methods presently suffer from the lack of reliable and efficient means of predicting the light scattering from ice crystals. The nascent discipline of direct measurement of phase functions of ice crystals in conjunction with particle imaging and forward modelling through geometrical optics derivative- and Transition matrix-codes for the first time allow us to obtain a deeper understanding of the optical properties of real tropospheric ice crystals. In this manuscript, a sample phase function obtained via the Particle Habit Imaging and Polar Scattering (PHIPS) probe during a measurement campaign in flight over Brazil will be compared to three different light scattering codes. This includes a newly developed first order geometrical optics code taking into account the influence of the Gaussian beam illumination used in the PHIPS device, as well as the reference ray tracing code of Macke and the T-matrix code of Kahnert.

  3. Superresolving Phase Measurement with Short-Wavelength NOON States by Quantum Frequency Up-Conversion

    Science.gov (United States)

    Zhou, Zhi-Yuan; Liu, Shi-Long; Liu, Shi-Kai; Li, Yin-Hai; Ding, Dong-Sheng; Guo, Guang-Can; Shi, Bao-Sen

    2017-06-01

    Precise measurements are the key to advances in all fields of science. Quantum entanglement shows higher sensitivity than that which is achievable by classical methods. Most physical quantities including position, displacement, distance, angle, and optical path length can be obtained by optical phase measurements. Reducing the photon wavelength of the interferometry can further enhance the optical-path-length sensitivity and imaging resolution. By quantum frequency up-conversion, we realize a short-wavelength two-photon number entangled state. Nearly perfect Hong-Ou-Mandel interference is achieved after both 1547-nm photons are up-converted to 525 nm. Optical phase measurement of the two-photon entanglement state yields a visibility greater than the threshold to surpass the standard quantum limit. A spectra change of the photon pair after being up-converted is observed and well explained. These results offer alternative ways for high-precision quantum metrology using a short-wavelength quantum entanglement number state and offer a potential all-optical spectra engineering technique for the photon pair source.

  4. The preparatory set: A novel approach to understanding "stress", trauma, and the bodymind therapies

    Directory of Open Access Journals (Sweden)

    Peter ePayne

    2015-04-01

    Full Text Available Basic to all motile life is a differential approach/avoid response to perceived features of environment. The stages of response are initial reflexive noticing and orienting to the stimulus, preparation, and execution of response. Preparation involves a coordination of many aspects of the organism: muscle tone, posture, breathing, autonomic functions, motivational/emotional state, attentional orientation and expectations. The organism organizes itself in relation to the challenge. We propose to call this the preparatory set (PS. We suggest that the concept of the PS can offer a more nuanced and flexible perspective on the stress response than do current theories. We also hypothesize that the mechanisms of bodymind therapeutic and educational systems (BTES can be understood through the PS framework. We suggest that the BTES, including meditative movement, meditation, somatic education, and the body-oriented psychotherapies, are approaches that use interventions on the PS to remedy stress and trauma. We discuss how the PS can be adaptive or maladaptive, how BTES interventions may restore adaptive PS, and how these concepts offer a broader and more flexible view of the phenomena of stress and trauma. We offer supportive evidence for our hypotheses, and suggest directions for future research. We believe that the PS framework will point to ways of improving the management of stress and trauma, and that it will suggest directions of research into the mechanisms of action of BTES.

  5. Intragroup Conflicts during Collaborative Writing in an ESL/EFL Preparatory Programme

    Directory of Open Access Journals (Sweden)

    Santini Pathinathan

    2012-11-01

    Full Text Available This paper seeks to investigate the types of conflicts that occur during collaborative writing among a group of ESL/EFL upper intermediate students in a preparatory programme. It also examines how these conflicts are resolved among the group members. A group consisting of four students was chosen for this study. Audio and video-recordings of collaborative sessions, semi-structured interviews and students’ journal were used in the data collection process. The results of this qualitative study showed that there were two prominent types of conflicts that occurred during the collaboration, namely, substantive conflict and affective conflict. Substantive conflict was found to be useful as the group was able to voice disagreements and consider alternative ideas. However, there was more evidence of affective conflict where the group had misunderstandings and differences due to personal views about group members. The study shows that the success of collaborative writing depends very much on how conflict is handled and resolved among the members.Keywords: collaborative writing, substantive conflict, affective conflict, argumentative essay, ESL/EFL learners

  6. Article Errors in the English Writing of Saudi EFL Preparatory Year Students

    Directory of Open Access Journals (Sweden)

    Eid Alhaisoni

    2017-02-01

    Full Text Available This study aims at providing a comprehensive account of the types of errors produced by Saudi EFL students enrolled in the preparatory year programe in their use of articles, based on the Surface Structure Taxonomies (SST of errors. The study describes the types, frequency and sources of the definite and indefinite article errors in writing compositions. Data were collected from written samples of 150 students. They were given one-and-a-half hours to write on one of four different descriptive topics. Analysis of  inter-lingual and intra-lingual sources of article errors revealed that the frequency of eliminating both the indefinite articles and the definite article was higher than the frequency of inserting and substituting one article with the other. The study also shows that errors of using ‘a’ were more common than errors of using ‘an’ and ‘the’ in the writing texts.  This result also indicates that L1 interference strongly influences the process of second language acquisition of the articles, having a negative effect on the learning process Pedagogical practices including comparison of article use in learners’ both language systems may improve learners’ ability to use the articles correctly in writing and the other language skills.

  7. Tracking chemistry self-efficacy and achievement in a preparatory chemistry course

    Science.gov (United States)

    Garcia, Carmen Alicia

    Self-efficacy is a person's own perception about performing a task with a certain level of proficiency (Bandura, 1986). An important affective aspect of learning chemistry is chemistry self-efficacy (CSE). Several researchers have found chemistry self-efficacy to be a fair predictor of achievement in chemistry. This study was done in a college preparatory chemistry class for science majors exploring chemistry self-efficacy and its change as it relates to achievement. A subscale of CAEQ, Chemistry Attitudes and Experiences Questionnaire (developed by Dalgety et al, 2003) as well as student interviews were used to determine student chemistry self-efficacy as it changed during the course. The questionnaire was given to the students five times during the semester: in the first class and the class before each the four tests taken through the semester. Twenty-six students, both men and women, of the four major races/ethnicities were interviewed three times during the semester and events that triggered changes in CSE were followed through the interviews. HLM (hierarchical linear modeling) was used to model the results of the CSE surveys. Among the findings, women who started at significantly lower CSE than men accomplished a significant gain by the end of the semester. Blacks' CSE trends through the semester were found to be significantly different from the rest of the ethnicities.

  8. Electrophysiological evidence for abnormal preparatory states and inhibitory processing in adult ADHD

    Directory of Open Access Journals (Sweden)

    Brandeis Daniel

    2010-10-01

    Full Text Available Abstract Background Attention deficit hyperactivity disorder (ADHD is a common neurodevelopmental disorder that starts in childhood and frequently persists in adults. Several theories postulate deficits in ADHD that have effects across many executive functions or in more narrowly defined aspects, such as response inhibition. Electrophysiological studies on children, however, indicate that ADHD is not associated with a core deficit of response inhibition, as abnormal inhibitory processing is typically preceded or accompanied by other processing deficits. It is not yet known if this pattern of abnormal processing is evident in adult ADHD. Methods The objective of this paper was to investigate event-related potential indices of preparatory states and subsequent response inhibition processing in adults with ADHD. Two cued continuous performance tasks were presented to 21 adults meeting current criteria for adult ADHD and combined type ADHD in childhood, and 20 controls. Results The ADHD group exhibited significantly weaker orienting attention to cues, cognitive preparation processes and inhibitory processing. In addition, we observed a strong correlation between the resources allocated to orienting to cues and the strength of the subsequent response strength control processes, suggesting that orienting deficits partly predict and determine response control deficits in ADHD. Conclusions These findings closely resemble those previously found in children with ADHD, which indicate that there is not a core response inhibition deficit in ADHD. These findings therefore suggest the possibility of developmental stability into adulthood of the underlying abnormal processes in ADHD.

  9. SmartCanvas: Context-inferred Interpretation of Sketches for Preparatory Design Studies

    KAUST Repository

    Zheng, Youyi

    2016-05-27

    In early or preparatory design stages, an architect or designer sketches out rough ideas, not only about the object or structure being considered, but its relation to its spatial context. This is an iterative process, where the sketches are not only the primary means for testing and refining ideas, but also for communicating among a design team and to clients. Hence, sketching is the preferred media for artists and designers during the early stages of design, albeit with a major drawback: sketches are 2D and effects such as view perturbations or object movement are not supported, thereby inhibiting the design process. We present an interactive system that allows for the creation of a 3D abstraction of a designed space, built primarily by sketching in 2D within the context of an anchoring design or photograph. The system is progressive in the sense that the interpretations are refined as the user continues sketching. As a key technical enabler, we reformulate the sketch interpretation process as a selection optimization from a set of context-generated canvas planes in order to retrieve a regular arrangement of planes. We demonstrate our system (available at http:/geometry.cs.ucl.ac.uk/projects/2016/smartcanvas/) with a wide range of sketches and design studies. © 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  10. Analysis of Preferred Directions in Phase Space for Tidal Measurements at Europa

    Science.gov (United States)

    Boone, D.; Scheeres, D. J.

    2012-12-01

    The NASA Jupiter Europa Orbiter mission requires a circular, near-polar orbit to measure Europa's Love numbers, geophysical coefficients which give insight into whether a liquid ocean exists. This type of orbit about planetary satellites is known to be unstable. The effects of Jupiter's tidal gravity are seen in changes in Europa's gravity field and surface deformation, which are sensed through doppler tracking over time and altimetry measurements respectively. These two measurement types separately determine the h and k Love numbers, a combination of which bounds how thick the ice shell of Europa is and whether liquid water is present. This work shows how the properties of an unstable periodic orbit about Europa generate preferred measurement directions in position and velocity phase space for the orbit determination process. We generate an error covariance over seven days for the orbiter state and science parameters using a periodic orbit and then disperse the orbit initial conditions in a Monte Carlo simulation according to this covariance. The dispersed orbits are shown to have a bias toward longer lifetimes and we discuss this as an effect of the stable and unstable manifolds of the periodic orbit. Using an epoch formulation of a square-root information filter, measurements aligned with the unstable manifold mapped back in time add more information to the orbit determination process than measurements aligned with the stable manifold. This corresponds to a contraction in the uncertainty of the estimate of the desired parameters, including the Love numbers. We demonstrate this mapping mathematically using a representation of the State Transition Matrix involving its eigenvectors and eigenvalues. Then using the properties of left and right eigenvectors, we show how measurements in the orbit determination process are mapped in time leading to a concentration of information at epoch. We present examples of measurements taken on different time schedules to show the

  11. New measurements and phase shift analysis of p16O elastic scattering at astrophysical energies

    Science.gov (United States)

    Dubovichenko, Sergey; Burtebayev, Nassurlla; Dzhazairov-Kakhramanov, Albert; Zazulin, Denis; Kerimkulov, Zhambul; Nassurlla, Marzhan; Omarov, Chingis; Tkachenko, Alesya; Shmygaleva, Tatyana; Kliczewski, Stanislaw; Sadykov, Turlan

    2017-01-01

    The results of new experimental measurements of p16O elastic scattering in the energy range of 0.6-1.0 MeV at angles of 40°-160° are given. Phase shift analysis of p16O elastic scattering was made using these and other experimental data on differential cross sections in excitation functions and angular distributions at energies of up to 2.5 MeV. Supported by the Ministry of Education and Science of the Republic of Kazakhstan (0073/PCF-IS-MES)

  12. Measured Sensitivity of the First Mark II Phased Array Feed on an ASKAP Antenna

    CERN Document Server

    Chippendale, A P; Beresford, R J; Hampson, G A; Macleod, A; Shaw, R D; Brothers, M L; Cantrall, C; Forsyth, A R; Hay, S G; Leach, M

    2015-01-01

    This paper presents the measured sensitivity of CSIRO's first Mk. II phased array feed (PAF) on an ASKAP antenna. The Mk. II achieves a minimum system-temperature-over-efficiency $T_\\mathrm{sys}/\\eta$ of 78 K at 1.23 GHz and is 95 K or better from 835 MHz to 1.8 GHz. This PAF was designed for the Australian SKA Pathfinder telescope to demonstrate fast astronomical surveys with a wide field of view for the Square Kilometre Array (SKA).

  13. Measurement of CP violating phase $\\phi_s$ and control of penguin pollution at LHCb

    CERN Document Server

    Kanso, Walaa

    2014-01-01

    The study of CP violation in \\Bs\\, oscillations is a key measurement at the LHCb experiment. In this document, we discuss the latest LHCb results on the CP-violating phase, called $\\phi_s$, using \\BsJKK\\, and \\BsJpipi\\, channels. To conclude on the presence of New Physics in $\\phi_s$, the estimation of the sub-dominant contributions from the Standard Model becomes crucial now. We outline a method to estimate the contribution of penguin diagrams in $\\phi_s$. Branching fractions and upper limits of \\BdKshh\\,($ h^{(')}=K,\\pi)$\\, modes are presented.

  14. The Temperature Measurement in a Three-Phase Power Transformer under Different Conditions

    Directory of Open Access Journals (Sweden)

    K. Karakoulidis

    2015-12-01

    Full Text Available Infrared thermography is a powerful non contact method with the ability to fast inspection of abnormal situations in many electrical systems and equipments. With the aim of a high resolution thermal camera a laboratory power transformer was checked under different scenarios. These scenarios include thermal measurements for 58%, 87% and 116% of rated load conditions, problems in primary or secondary phases and an asymmetric charge. The thermograpic system illustrate fast and reliable the changes in the windings of the power transformer.

  15. Measurement of vapor-liquid-liquid phase equilibrium-Equipment and results

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; von Solms, Nicolas; Richon, Dominique;

    2015-01-01

    -water-gas hydrate inhibitor systems, at temperatures ranging from 283 to 353 K and at pressures up to 40 MPa. The core of the equipment is an equilibrium cell, equipped with sapphire windows and connected to an analytical system by capillary samplers.New vapor-liquid-liquid equilibrium data are reported for methane......+ n-hexane + methanol + water at 296.2 K and pressures of 6 to 10 MPa. The Cubic-Plus-Association (CPA) equation of state is used to model the phase equilibria data measured. A good agreement between predictions and experimental data is observed, supporting the reliability of the new data. (C) 2015...

  16. Wide-band residual phase-noise measurements on 40-GHz monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Larsson, David; Hvam, Jørn Märcher

    2005-01-01

    We have performed wide-band residual phase-noise measurements on semiconductor 40-GHz mode-locked lasers by employing electrical waveguide components for the radio-frequency circuit. The intrinsic timing jitters of lasers with one, two, and three quantum wells (QW) are compared and our design...... prediction, concerning noise versus number of QWs, for the first time corroborated by experiments. A minimum jitter of 44 fs is found, by extrapolating to the Nyquist frequency, for the one-QW device having nearly transform-limited pulses of 1.2 ps. This jitter is nearly three times lower than for a three...

  17. State university preparatory class EFL instructors' attitudes towards assessment methods used at their institutions and portfolios as a method of alternative assessment

    OpenAIRE

    Oğuz, Şebnem

    2003-01-01

    Cataloged from PDF version of article. The purpose of this study was to investigate preparatory class instructors’ attitudes towards the methods of assessment they are currently using at their institutions, and their knowledge about and attitudes towards portfolios as an alternative method of assessment. The study was conducted with 386 English instructors from the preparatory class programs of 14 Turkish state universities. Data were collected through a fourpart questio...

  18. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    OpenAIRE

    Huajun Li; Haifeng Ji; Zhiyao Huang; Baoliang Wang; Haiqing Li; Guohua Wu

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Mach...

  19. Phases equilibria at low temperature between light hydrocarbons mixtures, methanol and water: measures and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rossilhol, N.

    1995-12-01

    In this work we discuss phase equilibria of mixtures similar to those formed during natural gas treatment (transportation and purification). The mixtures can contain light hydrocarbons (methane, ethane, propane, etc), acid gases (hydrogen sulfide, carbon dioxide), methanol (solvent, inhibitor) and (water). We present a low temperature phase equilibrium equipment to obtain two and three phase equilibrium data of light hydrocarbon-methanol-water mixtures. The realisation of the equipment, the measuring procedure and some determination of binary, ternary and quaternary systems are described. The range of application is - 100 deg. C to 0 deg. C in temperature and between 0 and 100 bar in pressure. The binary subsystems of the systems mentioned above are calculated in order to study the possibilities of the MHV2 and Wong and Sandler methods to represent simultaneously their vapor-liquid and liquid-liquid equilibria. According to the formalism proposed by the two methods, the cubic Soave-Redlich-Kwong equation of state is systematically combined with the NRTL excess Gibbs energy model. (authors). 72 refs., 47 figs., 38 tabs.

  20. Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI

    Science.gov (United States)

    Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.

    2004-01-01

    We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.