[Errors in medicine. Causes, impact and improvement measures to improve patient safety].
Waeschle, R M; Bauer, M; Schmidt, C E
2015-09-01
The guarantee of quality of care and patient safety is of major importance in hospitals even though increased economic pressure and work intensification are ubiquitously present. Nevertheless, adverse events still occur in 3-4 % of hospital stays and of these 25-50 % are estimated to be avoidable. The identification of possible causes of error and the development of measures for the prevention of medical errors are essential for patient safety. The implementation and continuous development of a constructive culture of error tolerance are fundamental.The origins of errors can be differentiated into systemic latent and individual active causes and components of both categories are typically involved when an error occurs. Systemic causes are, for example out of date structural environments, lack of clinical standards and low personnel density. These causes arise far away from the patient, e.g. management decisions and can remain unrecognized for a long time. Individual causes involve, e.g. confirmation bias, error of fixation and prospective memory failure. These causes have a direct impact on patient care and can result in immediate injury to patients. Stress, unclear information, complex systems and a lack of professional experience can promote individual causes. Awareness of possible causes of error is a fundamental precondition to establishing appropriate countermeasures.Error prevention should include actions directly affecting the causes of error and includes checklists and standard operating procedures (SOP) to avoid fixation and prospective memory failure and team resource management to improve communication and the generation of collective mental models. Critical incident reporting systems (CIRS) provide the opportunity to learn from previous incidents without resulting in injury to patients. Information technology (IT) support systems, such as the computerized physician order entry system, assist in the prevention of medication errors by providing
Yu, Hao; Qian, Zheng; Liu, Huayi; Qu, Jiaqi
2018-02-14
This paper analyzes the measurement error, caused by the position of the current-carrying conductor, of a circular array of magnetic sensors for current measurement. The circular array of magnetic sensors is an effective approach for AC or DC non-contact measurement, as it is low-cost, light-weight, has a large linear range, wide bandwidth, and low noise. Especially, it has been claimed that such structure has excellent reduction ability for errors caused by the position of the current-carrying conductor, crosstalk current interference, shape of the conduction cross-section, and the Earth's magnetic field. However, the positions of the current-carrying conductor-including un-centeredness and un-perpendicularity-have not been analyzed in detail until now. In this paper, for the purpose of having minimum measurement error, a theoretical analysis has been proposed based on vector inner and exterior product. In the presented mathematical model of relative error, the un-center offset distance, the un-perpendicular angle, the radius of the circle, and the number of magnetic sensors are expressed in one equation. The comparison of the relative error caused by the position of the current-carrying conductor between four and eight sensors is conducted. Tunnel magnetoresistance (TMR) sensors are used in the experimental prototype to verify the mathematical model. The analysis results can be the reference to design the details of the circular array of magnetic sensors for current measurement in practical situations.
Directory of Open Access Journals (Sweden)
MATTHIAS ZIEGLER
2009-03-01
Full Text Available The present article reanalyzed data collected by Toomela (2003. The data contain personality self ratings and cognitive ability test results from n = 912 men with military background. In his original article Toomela showed that in the group with the highest cognitive ability, Big-Five-Neuroticism and -Conscientiousness were substantially correlated and could no longer be clearly separated using exploratory factor analysis. The present reanalysis was based on the hypothesis that a spurious measurement error caused by situational demand was responsible. This means, people distorted their answers. Furthermore it was hypothesized that this situational demand was felt due to a person’s military rank but not due to his intelligence. Using a multigroup structural equation model our hypothesis could be confirmed. Moreover, the results indicate that an uncorrelated trait model might represent personalities better when situational demand is partialized. Practical and theoretical implications are discussed.
A correction for emittance-measurement errors caused by finite slit and collector widths
International Nuclear Information System (INIS)
Connolly, R.C.
1992-01-01
One method of measuring the transverse phase-space distribution of a particle beam is to intercept the beam with a slit and measure the angular distribution of the beam passing through the slit using a parallel-strip collector. Together the finite widths of the slit and each collector strip form an acceptance window in phase space whose size and orientation are determined by the slit width, the strip width, and the slit-collector distance. If a beam is measured using a detector with a finite-size phase-space window, the measured distribution is different from the true distribution. The calculated emittance is larger than the true emittance, and the error depends both on the dimensions of the detector and on the Courant-Snyder parameters of the beam. Specifically, the error gets larger as the beam drifts farther from a waist. This can be important for measurements made on high-brightness beams, since power density considerations require that the beam be intercepted far from a waist. In this paper we calculate the measurement error and we show how the calculated emittance and Courant-Snyder parameters can be corrected for the effects of finite sizes of slit and collector. (Author) 5 figs., 3 refs
Correcting the error in neutron moisture probe measurements caused by a water density gradient
International Nuclear Information System (INIS)
Wilson, D.J.
1988-01-01
If a neutron probe lies in or near a water density gradient, the probe may register a water density different to that at the measuring point. The effect of a thin stratum of soil containing an excess or depletion of water at various distances from a probe in an otherwise homogeneous system has been calculated, producing an 'importance' curve. The effect of these strata can be integrated over the soil region in close proximity to the probe resulting in the net effect of the presence of a water density gradient. In practice, the probe is scanned through the point of interest and the count rate at that point is corrected for the influence of the water density on each side of it. An example shows that the technique can reduce an error of 10 per cent to about 2 per cent
International Nuclear Information System (INIS)
Kim, J G; Liu, H
2007-01-01
Near-infrared spectroscopy or imaging has been extensively applied to various biomedical applications since it can detect the concentrations of oxyhaemoglobin (HbO 2 ), deoxyhaemoglobin (Hb) and total haemoglobin (Hb total ) from deep tissues. To quantify concentrations of these haemoglobin derivatives, the extinction coefficient values of HbO 2 and Hb have to be employed. However, it was not well recognized among researchers that small differences in extinction coefficients could cause significant errors in quantifying the concentrations of haemoglobin derivatives. In this study, we derived equations to estimate errors of haemoglobin derivatives caused by the variation of haemoglobin extinction coefficients. To prove our error analysis, we performed experiments using liquid-tissue phantoms containing 1% Intralipid in a phosphate-buffered saline solution. The gas intervention of pure oxygen was given in the solution to examine the oxygenation changes in the phantom, and 3 mL of human blood was added twice to show the changes in [Hb total ]. The error calculation has shown that even a small variation (0.01 cm -1 mM -1 ) in extinction coefficients can produce appreciable relative errors in quantification of Δ[HbO 2 ], Δ[Hb] and Δ[Hb total ]. We have also observed that the error of Δ[Hb total ] is not always larger than those of Δ[HbO 2 ] and Δ[Hb]. This study concludes that we need to be aware of any variation in haemoglobin extinction coefficients, which could result from changes in temperature, and to utilize corresponding animal's haemoglobin extinction coefficients for the animal experiments, in order to obtain more accurate values of Δ[HbO 2 ], Δ[Hb] and Δ[Hb total ] from in vivo tissue measurements
Kim, J. G.; Liu, H.
2007-10-01
Near-infrared spectroscopy or imaging has been extensively applied to various biomedical applications since it can detect the concentrations of oxyhaemoglobin (HbO2), deoxyhaemoglobin (Hb) and total haemoglobin (Hbtotal) from deep tissues. To quantify concentrations of these haemoglobin derivatives, the extinction coefficient values of HbO2 and Hb have to be employed. However, it was not well recognized among researchers that small differences in extinction coefficients could cause significant errors in quantifying the concentrations of haemoglobin derivatives. In this study, we derived equations to estimate errors of haemoglobin derivatives caused by the variation of haemoglobin extinction coefficients. To prove our error analysis, we performed experiments using liquid-tissue phantoms containing 1% Intralipid in a phosphate-buffered saline solution. The gas intervention of pure oxygen was given in the solution to examine the oxygenation changes in the phantom, and 3 mL of human blood was added twice to show the changes in [Hbtotal]. The error calculation has shown that even a small variation (0.01 cm-1 mM-1) in extinction coefficients can produce appreciable relative errors in quantification of Δ[HbO2], Δ[Hb] and Δ[Hbtotal]. We have also observed that the error of Δ[Hbtotal] is not always larger than those of Δ[HbO2] and Δ[Hb]. This study concludes that we need to be aware of any variation in haemoglobin extinction coefficients, which could result from changes in temperature, and to utilize corresponding animal's haemoglobin extinction coefficients for the animal experiments, in order to obtain more accurate values of Δ[HbO2], Δ[Hb] and Δ[Hbtotal] from in vivo tissue measurements.
Energy Technology Data Exchange (ETDEWEB)
Kim, J G; Liu, H [Joint Graduate Program in Biomedical Engineering, University of Texas at Arlington/University of Texas Southwestern Medical Center at Dallas, Arlington, TX 76019 (United States)
2007-10-21
Near-infrared spectroscopy or imaging has been extensively applied to various biomedical applications since it can detect the concentrations of oxyhaemoglobin (HbO{sub 2}), deoxyhaemoglobin (Hb) and total haemoglobin (Hb{sub total}) from deep tissues. To quantify concentrations of these haemoglobin derivatives, the extinction coefficient values of HbO{sub 2} and Hb have to be employed. However, it was not well recognized among researchers that small differences in extinction coefficients could cause significant errors in quantifying the concentrations of haemoglobin derivatives. In this study, we derived equations to estimate errors of haemoglobin derivatives caused by the variation of haemoglobin extinction coefficients. To prove our error analysis, we performed experiments using liquid-tissue phantoms containing 1% Intralipid in a phosphate-buffered saline solution. The gas intervention of pure oxygen was given in the solution to examine the oxygenation changes in the phantom, and 3 mL of human blood was added twice to show the changes in [Hb{sub total}]. The error calculation has shown that even a small variation (0.01 cm{sup -1} mM{sup -1}) in extinction coefficients can produce appreciable relative errors in quantification of {delta}[HbO{sub 2}], {delta}[Hb] and {delta}[Hb{sub total}]. We have also observed that the error of {delta}[Hb{sub total}] is not always larger than those of {delta}[HbO{sub 2}] and {delta}[Hb]. This study concludes that we need to be aware of any variation in haemoglobin extinction coefficients, which could result from changes in temperature, and to utilize corresponding animal's haemoglobin extinction coefficients for the animal experiments, in order to obtain more accurate values of {delta}[HbO{sub 2}], {delta}[Hb] and {delta}[Hb{sub total}] from in vivo tissue measurements.
Correcting AUC for Measurement Error.
Rosner, Bernard; Tworoger, Shelley; Qiu, Weiliang
2015-12-01
Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The proposed method does not require the normality assumption. Both real data analyses and simulation studies show good performance of the proposed measurement error correction method.
Compact disk error measurements
Howe, D.; Harriman, K.; Tehranchi, B.
1993-01-01
The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.
DeLacy, Brendan G; Bandy, Alan R
2008-01-01
An atmospheric pressure ionization mass spectrometry/isotopically labeled standard (APIMS/ILS) method has been developed for the determination of carbon dioxide (CO(2)) concentration. Descriptions of the instrumental components, the ionization chemistry, and the statistics associated with the analytical method are provided. This method represents an alternative to the nondispersive infrared (NDIR) technique, which is currently used in the atmospheric community to determine atmospheric CO(2) concentrations. The APIMS/ILS and NDIR methods exhibit a decreased sensitivity for CO(2) in the presence of water vapor. Therefore, dryers such as a nafion dryer are used to remove water before detection. The APIMS/ILS method measures mixing ratios and demonstrates linearity and range in the presence or absence of a dryer. The NDIR technique, on the other hand, measures molar concentrations. The second half of this paper describes errors in molar concentration measurements that are caused by drying. An equation describing the errors was derived from the ideal gas law, the conservation of mass, and Dalton's Law. The purpose of this derivation was to quantify errors in the NDIR technique that are caused by drying. Laboratory experiments were conducted to verify the errors created solely by the dryer in CO(2) concentration measurements post-dryer. The laboratory experiments verified the theoretically predicted errors in the derived equations. There are numerous references in the literature that describe the use of a dryer in conjunction with the NDIR technique. However, these references do not address the errors that are caused by drying.
Quantile Regression With Measurement Error
Wei, Ying
2009-08-27
Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.
Redundant measurements for controlling errors
International Nuclear Information System (INIS)
Ehinger, M.H.; Crawford, J.M.; Madeen, M.L.
1979-07-01
Current federal regulations for nuclear materials control require consideration of operating data as part of the quality control program and limits of error propagation. Recent work at the BNFP has revealed that operating data are subject to a number of measurement problems which are very difficult to detect and even more difficult to correct in a timely manner. Thus error estimates based on operational data reflect those problems. During the FY 1978 and FY 1979 R and D demonstration runs at the BNFP, redundant measurement techniques were shown to be effective in detecting these problems to allow corrective action. The net effect is a reduction in measurement errors and a significant increase in measurement sensitivity. Results show that normal operation process control measurements, in conjunction with routine accountability measurements, are sensitive problem indicators when incorporated in a redundant measurement program
Li, Dong; Feng, Chi; Gao, Shan; Chen, Liwei; Daniel, Ketui
2018-06-01
Accurate measurement of gas turbine blade temperature is of great significance as far as blade health monitoring is concerned. An important method for measuring this temperature is the use of a radiation pyrometer. In this research, error of the pyrometer caused by reflected radiation from the surfaces surrounding the target and the emission angle of the target was analyzed. Important parameters for this analysis were the view factor between interacting surfaces, spectral directional emissivity, pyrometer operating wavelength and the surface temperature distribution on the blades and the vanes. The interacting surface of the rotor blade and the vane models used were discretized using triangular surface elements from which contour integral was used to calculate the view factor between the surface elements. Spectral directional emissivities were obtained from an experimental setup of Ni based alloy samples. A pyrometer operating wavelength of 1.6 μm was chosen. Computational fluid dynamics software was used to simulate the temperature distribution of the rotor blade and the guide vane based on the actual gas turbine input parameters. Results obtained in this analysis show that temperature error introduced by reflected radiation and emission angle ranges from ‑23 K to 49 K.
Preventing marine accidents caused by technology-induced human error
Bielić, Toni; Hasanspahić, Nermin; Čulin, Jelena
2017-01-01
The objective of embedding technology on board ships, to improve safety, is not fully accomplished. The paper studies marine accidents caused by human error resulting from improper human-technology interaction. The aim of the paper is to propose measures to prevent reoccurrence of such accidents. This study analyses the marine accident reports issued by Marine Accidents Investigation Branch covering the period from 2012 to 2014. The factors that caused these accidents are examined and categor...
Measurement error models with interactions
Midthune, Douglas; Carroll, Raymond J.; Freedman, Laurence S.; Kipnis, Victor
2016-01-01
An important use of measurement error models is to correct regression models for bias due to covariate measurement error. Most measurement error models assume that the observed error-prone covariate (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$W$\\end{document}) is a linear function of the unobserved true covariate (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$X$\\end{document}) plus other covariates (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$Z$\\end{document}) in the regression model. In this paper, we consider models for \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$W$\\end{document} that include interactions between \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$X$\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$Z$\\end{document}. We derive the conditional distribution of
The Causes of Medical Error from the Perspective of Nurses
Directory of Open Access Journals (Sweden)
Oguz Isik
2012-08-01
Full Text Available This study was conducted as a descriptive study in order to determine the medical errors in hospital services and preventive measures that could be taken to reduce these errors, from the perspective of nurses. The population of the study is composed of nurses working in 2 public hospitals in center of the province of Sakarya. We haven’t selected sample and it was aimed to reach as many nurses as possible in the study. A total of 441 questionnaires were send and 324 were returned. A questionnaire as a means of data collection was prepared and used by the authors. Structural Equation Modeling, confirmatory factor analysis, descriptive statistical methods, the significance control test between compared means and ANOVA test were used in statistical analysis. Physicians, nurses, work environment and lack of communication are stated as possible causes of medical error. According to nurses, the major causes of medical errors, in order of their frequency, were inadequate number of health personnel, excessive work stress, high number of patients per nurse, the weariness due to the behavior and attitudes of superiors and the pressure to care so many patients in a very short period of time, and long time of study. Compensation of medical error is very difficult in health care. A great amount of health care is provided in hospitals and medical errors in hospital services must be prevented. In order to prevent these errors which directly affect human life, it is thought that adequate number of staff should be employed in hospitals and the attitude of superiors towards the employees should be motivating. [TAF Prev Med Bull 2012; 11(4.000: 421-430
Cause of depth error of borehole logging and its correction
International Nuclear Information System (INIS)
Iida, Yoshimasa; Ikeda, Koki; Tsuruta, Tadahiko; Ito, Hiroaki; Goto, Junichi.
1996-01-01
Data by borehole logging can be used for detailed analysis of geological structures. Depths measured by portable borehole loggers commonly shift a few meters on the level of 400 to 500 meters deep. Therefore, the cause of depth error has to be recognized to make proper corrections for detailed structural analysis. Correlation between depths of drill core and in-rod radiometric logging has been performed in detail on exploration drill holes in the Athabasca basin, Canada. As a result, a common tendency of logging depth shift has been recognized, and an empirical formula (quadratic equation) for this has been obtained. The physical meaning of the formula and the cause of the depth error has been considered. (author)
Measurement error in a single regressor
Meijer, H.J.; Wansbeek, T.J.
2000-01-01
For the setting of multiple regression with measurement error in a single regressor, we present some very simple formulas to assess the result that one may expect when correcting for measurement error. It is shown where the corrected estimated regression coefficients and the error variance may lie,
Impact of Measurement Error on Synchrophasor Applications
Energy Technology Data Exchange (ETDEWEB)
Liu, Yilu [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gracia, Jose R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ewing, Paul D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhao, Jiecheng [Univ. of Tennessee, Knoxville, TN (United States); Tan, Jin [Univ. of Tennessee, Knoxville, TN (United States); Wu, Ling [Univ. of Tennessee, Knoxville, TN (United States); Zhan, Lingwei [Univ. of Tennessee, Knoxville, TN (United States)
2015-07-01
Phasor measurement units (PMUs), a type of synchrophasor, are powerful diagnostic tools that can help avert catastrophic failures in the power grid. Because of this, PMU measurement errors are particularly worrisome. This report examines the internal and external factors contributing to PMU phase angle and frequency measurement errors and gives a reasonable explanation for them. It also analyzes the impact of those measurement errors on several synchrophasor applications: event location detection, oscillation detection, islanding detection, and dynamic line rating. The primary finding is that dynamic line rating is more likely to be influenced by measurement error. Other findings include the possibility of reporting nonoscillatory activity as an oscillation as the result of error, failing to detect oscillations submerged by error, and the unlikely impact of error on event location and islanding detection.
Assessing errors related to characteristics of the items measured
International Nuclear Information System (INIS)
Liggett, W.
1980-01-01
Errors that are related to some intrinsic property of the items measured are often encountered in nuclear material accounting. An example is the error in nondestructive assay measurements caused by uncorrected matrix effects. Nuclear material accounting requires for each materials type one measurement method for which bounds on these errors can be determined. If such a method is available, a second method might be used to reduce costs or to improve precision. If the measurement error for the first method is longer-tailed than Gaussian, then precision might be improved by measuring all items by both methods. 8 refs
Measurement Error Estimation for Capacitive Voltage Transformer by Insulation Parameters
Directory of Open Access Journals (Sweden)
Bin Chen
2017-03-01
Full Text Available Measurement errors of a capacitive voltage transformer (CVT are relevant to its equivalent parameters for which its capacitive divider contributes the most. In daily operation, dielectric aging, moisture, dielectric breakdown, etc., it will exert mixing effects on a capacitive divider’s insulation characteristics, leading to fluctuation in equivalent parameters which result in the measurement error. This paper proposes an equivalent circuit model to represent a CVT which incorporates insulation characteristics of a capacitive divider. After software simulation and laboratory experiments, the relationship between measurement errors and insulation parameters is obtained. It indicates that variation of insulation parameters in a CVT will cause a reasonable measurement error. From field tests and calculation, equivalent capacitance mainly affects magnitude error, while dielectric loss mainly affects phase error. As capacitance changes 0.2%, magnitude error can reach −0.2%. As dielectric loss factor changes 0.2%, phase error can reach 5′. An increase of equivalent capacitance and dielectric loss factor in the high-voltage capacitor will cause a positive real power measurement error. An increase of equivalent capacitance and dielectric loss factor in the low-voltage capacitor will cause a negative real power measurement error.
Measurement error in longitudinal film badge data
International Nuclear Information System (INIS)
Marsh, J.L.
2002-04-01
The classical measurement error model is that of a simple linear regression with unobservable variables. Information about the covariates is available only through error-prone measurements, usually with an additive structure. Ignoring errors has been shown to result in biased regression coefficients, reduced power of hypothesis tests and increased variability of parameter estimates. Radiation is known to be a causal factor for certain types of leukaemia. This link is mainly substantiated by the Atomic Bomb Survivor study, the Ankylosing Spondylitis Patients study, and studies of various other patients irradiated for therapeutic purposes. The carcinogenic relationship is believed to be a linear or quadratic function of dose but the risk estimates differ widely for the different studies. Previous cohort studies of the Sellafield workforce have used the cumulative annual exposure data for their risk estimates. The current 1:4 matched case-control study also uses the individual worker's film badge data, the majority of which has been unavailable in computerised form. The results from the 1:4 matched (on dates of birth and employment, sex and industrial status) case-control study are compared and contrasted with those for a 1:4 nested (within the worker cohort and matched on the same factors) case-control study using annual doses. The data consist of 186 cases and 744 controls from the work forces of four BNFL sites: Springfields, Sellafield, Capenhurst and Chapelcross. Initial logistic regressions turned up some surprising contradictory results which led to a re-sampling of Sellafield mortality controls without the date of employment matching factor. It is suggested that over matching is the cause of the contradictory results. Comparisons of the two measurements of radiation exposure suggest a strongly linear relationship with non-Normal errors. A method has been developed using the technique of Regression Calibration to deal with these in a case-control study context
Errors of Inference Due to Errors of Measurement.
Linn, Robert L.; Werts, Charles E.
Failure to consider errors of measurement when using partial correlation or analysis of covariance techniques can result in erroneous conclusions. Certain aspects of this problem are discussed and particular attention is given to issues raised in a recent article by Brewar, Campbell, and Crano. (Author)
Measurement error models with uncertainty about the error variance
Oberski, D.L.; Satorra, A.
2013-01-01
It is well known that measurement error in observable variables induces bias in estimates in standard regression analysis and that structural equation models are a typical solution to this problem. Often, multiple indicator equations are subsumed as part of the structural equation model, allowing
Reduction of weighing errors caused by tritium decay heating
International Nuclear Information System (INIS)
Shaw, J.F.
1978-01-01
The deuterium-tritium source gas mixture for laser targets is formulated by weight. Experiments show that the maximum weighing error caused by tritium decay heating is 0.2% for a 104-cm 3 mix vessel. Air cooling the vessel reduces the weighing error by 90%
Medical Error Types and Causes Made by Nurses in Turkey
Directory of Open Access Journals (Sweden)
Dilek Kucuk Alemdar
2013-06-01
Full Text Available AIM: This study was carried out as a descriptive study in order to determine types, causes and prevalence of medical errors made by nurses in Turkey. METHOD: Seventy eight (78 nurses who have worked in a randomly selected hospital from five hospitals in Giresun city centre were enrolled in the study. The data was collected by the researchers using the ‘Information Form for Nurses’ and ‘Medical Error Form’. The Medical Error Form consists of 2 parts and 40 items including types and causes of medical errors. Nurses’ socio-demographic variables, medical error types and causes were evaluated using the percentage distribution and mean. RESULTS: The mean age of the nurses was 25.5 years, with a standard deviation 6.03 years. 50% of the nurses graduated health professional high school in the study. 53.8% of the nurses are single, 63.1% worked between 1-5 years, 71.8% day and night shifts and 42.3% in medical clinics. The common types of medical errors were hospital infection rate of 15.4%, diagnostic errors 12.8%, needle or cutting tool injuries and problems related to drug usage which has side effects 10.3%. In the study 38.5% of the nurses reported that they thought the cause of medical error highly was tiredness, 36.4% increased workload and 34.6% long working hours. CONCLUSION: As a result of the present study, nurses mentioned hospital infection, diagnostic errors, needle or cutting tool injuries as the most common medical errors and fatigue, over work load and long working hours as the most common medical error reasons. [TAF Prev Med Bull 2013; 12(3.000: 307-314
Measurement Error in Education and Growth Regressions
Portela, M.; Teulings, C.N.; Alessie, R.
The perpetual inventory method used for the construction of education data per country leads to systematic measurement error. This paper analyses the effect of this measurement error on GDP regressions. There is a systematic difference in the education level between census data and observations
Measurement error in education and growth regressions
Portela, Miguel; Teulings, Coen; Alessie, R.
2004-01-01
The perpetual inventory method used for the construction of education data per country leads to systematic measurement error. This paper analyses the effect of this measurement error on GDP regressions. There is a systematic difference in the education level between census data and observations
Diagnostic Error in Correctional Mental Health: Prevalence, Causes, and Consequences.
Martin, Michael S; Hynes, Katie; Hatcher, Simon; Colman, Ian
2016-04-01
While they have important implications for inmates and resourcing of correctional institutions, diagnostic errors are rarely discussed in correctional mental health research. This review seeks to estimate the prevalence of diagnostic errors in prisons and jails and explores potential causes and consequences. Diagnostic errors are defined as discrepancies in an inmate's diagnostic status depending on who is responsible for conducting the assessment and/or the methods used. It is estimated that at least 10% to 15% of all inmates may be incorrectly classified in terms of the presence or absence of a mental illness. Inmate characteristics, relationships with staff, and cognitive errors stemming from the use of heuristics when faced with time constraints are discussed as possible sources of error. A policy example of screening for mental illness at intake to prison is used to illustrate when the risk of diagnostic error might be increased and to explore strategies to mitigate this risk. © The Author(s) 2016.
Error calculations statistics in radioactive measurements
International Nuclear Information System (INIS)
Verdera, Silvia
1994-01-01
Basic approach and procedures frequently used in the practice of radioactive measurements.Statistical principles applied are part of Good radiopharmaceutical Practices and quality assurance.Concept of error, classification as systematic and random errors.Statistic fundamentals,probability theories, populations distributions, Bernoulli, Poisson,Gauss, t-test distribution,Ξ2 test, error propagation based on analysis of variance.Bibliography.z table,t-test table, Poisson index ,Ξ2 test
Adverse Drug Events caused by Serious Medication Administration Errors
Sawarkar, Abhivyakti; Keohane, Carol A.; Maviglia, Saverio; Gandhi, Tejal K; Poon, Eric G
2013-01-01
OBJECTIVE To determine how often serious or life-threatening medication administration errors with the potential to cause patient harm (or potential adverse drug events) result in actual patient harm (or adverse drug events (ADEs)) in the hospital setting. DESIGN Retrospective chart review of clinical events that transpired following observed medication administration errors. BACKGROUND Medication errors are common at the medication administration stage for hospitalized patients. While many of these errors are considered capable of causing patient harm, it is not clear how often patients are actually harmed by these errors. METHODS In a previous study where 14,041 medication administrations in an acute-care hospital were directly observed, investigators discovered 1271 medication administration errors, of which 133 had the potential to cause serious or life-threatening harm to patients and were considered serious or life-threatening potential ADEs. In the current study, clinical reviewers conducted detailed chart reviews of cases where a serious or life-threatening potential ADE occurred to determine if an actual ADE developed following the potential ADE. Reviewers further assessed the severity of the ADE and attribution to the administration error. RESULTS Ten (7.5% [95% C.I. 6.98, 8.01]) actual adverse drug events or ADEs resulted from the 133 serious and life-threatening potential ADEs, of which 6 resulted in significant, three in serious, and one life threatening injury. Therefore 4 (3% [95% C.I. 2.12, 3.6]) serious and life threatening potential ADEs led to serious or life threatening ADEs. Half of the ten actual ADEs were caused by dosage or monitoring errors for anti-hypertensives. The life threatening ADE was caused by an error that was both a transcription and a timing error. CONCLUSION Potential ADEs at the medication administration stage can cause serious patient harm. Given previous estimates of serious or life-threatening potential ADE of 1.33 per 100
Measurement Error in Education and Growth Regressions
Portela, Miguel; Alessie, Rob; Teulings, Coen
2010-01-01
The use of the perpetual inventory method for the construction of education data per country leads to systematic measurement error. This paper analyzes its effect on growth regressions. We suggest a methodology for correcting this error. The standard attenuation bias suggests that using these
KMRR thermal power measurement error estimation
International Nuclear Information System (INIS)
Rhee, B.W.; Sim, B.S.; Lim, I.C.; Oh, S.K.
1990-01-01
The thermal power measurement error of the Korea Multi-purpose Research Reactor has been estimated by a statistical Monte Carlo method, and compared with those obtained by the other methods including deterministic and statistical approaches. The results show that the specified thermal power measurement error of 5% cannot be achieved if the commercial RTDs are used to measure the coolant temperatures of the secondary cooling system and the error can be reduced below the requirement if the commercial RTDs are replaced by the precision RTDs. The possible range of the thermal power control operation has been identified to be from 100% to 20% of full power
Effective training based on the cause analysis of operation errors
International Nuclear Information System (INIS)
Fujita, Eimitsu; Noji, Kunio; Kobayashi, Akira.
1991-01-01
The authors have investigated typical error types through our training experience, and analyzed the causes of them. Error types which are observed in simulator training are: (1) lack of knowledge or lack of its applying ability to actual operation; (2) defective mastery of skillbase operation; (3) rote operation or stereotyped manner; (4) mind-setting or lack of redundant verification; (5) lack of team work; (6) misjudgement for the plant overall conditions by operation chief, who directs a reactor operator and a turbine operator in the training. The paper describes training methods used in Japan for BWR utilities to overcome these error types
Measurement Errors and Uncertainties Theory and Practice
Rabinovich, Semyon G
2006-01-01
Measurement Errors and Uncertainties addresses the most important problems that physicists and engineers encounter when estimating errors and uncertainty. Building from the fundamentals of measurement theory, the author develops the theory of accuracy of measurements and offers a wealth of practical recommendations and examples of applications. This new edition covers a wide range of subjects, including: - Basic concepts of metrology - Measuring instruments characterization, standardization and calibration -Estimation of errors and uncertainty of single and multiple measurements - Modern probability-based methods of estimating measurement uncertainty With this new edition, the author completes the development of the new theory of indirect measurements. This theory provides more accurate and efficient methods for processing indirect measurement data. It eliminates the need to calculate the correlation coefficient - a stumbling block in measurement data processing - and offers for the first time a way to obtain...
Assessing Measurement Error in Medicare Coverage
U.S. Department of Health & Human Services — Assessing Measurement Error in Medicare Coverage From the National Health Interview Survey Using linked administrative data, to validate Medicare coverage estimates...
Fixturing error measurement and analysis using CMMs
International Nuclear Information System (INIS)
Wang, Y; Chen, X; Gindy, N
2005-01-01
Influence of fixture on the errors of a machined surface can be very significant. The machined surface errors generated during machining can be measured by using a coordinate measurement machine (CMM) through the displacements of three coordinate systems on a fixture-workpiece pair in relation to the deviation of the machined surface. The surface errors consist of the component movement, component twist, deviation between actual machined surface and defined tool path. A turbine blade fixture for grinding operation is used for case study
Medication error in anaesthesia and critical care: A cause for concern
Directory of Open Access Journals (Sweden)
Dilip Kothari
2010-01-01
Full Text Available Medication error is a major cause of morbidity and mortality in medical profession, and anaesthesia and critical care are no exception to it. Man, medicine, machine and modus operandi are the main contributory factors to it. In this review, incidence, types, risk factors and preventive measures of the medication errors are discussed in detail.
Operator error and emotions. Operator error and emotions - a major cause of human failure
Energy Technology Data Exchange (ETDEWEB)
Patterson, B.K. [Human Factors Practical Incorporated (Canada); Bradley, M. [Univ. of New Brunswick, Saint John, New Brunswick (Canada); Artiss, W.G. [Human Factors Practical (Canada)
2000-07-01
This paper proposes the idea that a large proportion of the incidents attributed to operator and maintenance error in a nuclear or industrial plant are actually founded in our human emotions. Basic psychological theory of emotions is briefly presented and then the authors present situations and instances that can cause emotions to swell and lead to operator and maintenance error. Since emotional information is not recorded in industrial incident reports, the challenge is extended to industry, to review incident source documents for cases of emotional involvement and to develop means to collect emotion related information in future root cause analysis investigations. Training must then be provided to operators and maintainers to enable them to know one's emotions, manage emotions, motivate one's self, recognize emotions in others and handle relationships. Effective training will reduce the instances of human error based in emotions and enable a cooperative, productive environment in which to work. (author)
Operator error and emotions. Operator error and emotions - a major cause of human failure
International Nuclear Information System (INIS)
Patterson, B.K.; Bradley, M.; Artiss, W.G.
2000-01-01
This paper proposes the idea that a large proportion of the incidents attributed to operator and maintenance error in a nuclear or industrial plant are actually founded in our human emotions. Basic psychological theory of emotions is briefly presented and then the authors present situations and instances that can cause emotions to swell and lead to operator and maintenance error. Since emotional information is not recorded in industrial incident reports, the challenge is extended to industry, to review incident source documents for cases of emotional involvement and to develop means to collect emotion related information in future root cause analysis investigations. Training must then be provided to operators and maintainers to enable them to know one's emotions, manage emotions, motivate one's self, recognize emotions in others and handle relationships. Effective training will reduce the instances of human error based in emotions and enable a cooperative, productive environment in which to work. (author)
Errors of isotope conveyor weigher caused by profile variations and shift of material
International Nuclear Information System (INIS)
Machaj, B.
1977-01-01
Results of investigations of isotope conveyor weigher in transmission geometry and with long plastic scintillator as a detector are presented in the paper. The results indicate that errors caused by material shift across the conveyor belt can be decreased by forming probe sensitivity to incident radiation along its axis by means of additional radiation absorbents. The errors caused by material profile variations can effectively be diminished by increase of photon energy. Application of 60 Co instead of 137 Cs ensured more than three times lower errors caused by profile variation. Errors caused by vertical movements of the belt with material, decrease considerably, when single point source situated in the center of the measuring head is replaced at least by two point sources situated out of the center, above the edges of the belt. (author)
Quantifying and handling errors in instrumental measurements using the measurement error theory
DEFF Research Database (Denmark)
Andersen, Charlotte Møller; Bro, R.; Brockhoff, P.B.
2003-01-01
. This is a new way of using the measurement error theory. Reliability ratios illustrate that the models for the two fish species are influenced differently by the error. However, the error seems to influence the predictions of the two reference measures in the same way. The effect of using replicated x...... measurements. A new general formula is given for how to correct the least squares regression coefficient when a different number of replicated x-measurements is used for prediction than for calibration. It is shown that the correction should be applied when the number of replicates in prediction is less than...
Nonclassical measurements errors in nonlinear models
DEFF Research Database (Denmark)
Madsen, Edith; Mulalic, Ismir
Discrete choice models and in particular logit type models play an important role in understanding and quantifying individual or household behavior in relation to transport demand. An example is the choice of travel mode for a given trip under the budget and time restrictions that the individuals...... estimates of the income effect it is of interest to investigate the magnitude of the estimation bias and if possible use estimation techniques that take the measurement error problem into account. We use data from the Danish National Travel Survey (NTS) and merge it with administrative register data...... that contains very detailed information about incomes. This gives a unique opportunity to learn about the magnitude and nature of the measurement error in income reported by the respondents in the Danish NTS compared to income from the administrative register (correct measure). We find that the classical...
Errors in practical measurement in surveying, engineering, and technology
International Nuclear Information System (INIS)
Barry, B.A.; Morris, M.D.
1991-01-01
This book discusses statistical measurement, error theory, and statistical error analysis. The topics of the book include an introduction to measurement, measurement errors, the reliability of measurements, probability theory of errors, measures of reliability, reliability of repeated measurements, propagation of errors in computing, errors and weights, practical application of the theory of errors in measurement, two-dimensional errors and includes a bibliography. Appendices are included which address significant figures in measurement, basic concepts of probability and the normal probability curve, writing a sample specification for a procedure, classification, standards of accuracy, and general specifications of geodetic control surveys, the geoid, the frequency distribution curve and the computer and calculator solution of problems
System tuning and measurement error detection testing
International Nuclear Information System (INIS)
Krejci, Petr; Machek, Jindrich
2008-09-01
The project includes the use of the PEANO (Process Evaluation and Analysis by Neural Operators) system to verify the monitoring of the status of dependent measurements with a view to early measurement fault detection and estimation of selected signal levels. At the present stage, the system's capabilities of detecting measurement errors was assessed and the quality of the estimates was evaluated for various system configurations and the formation of empiric models, and rules were sought for system training at chosen process data recording parameters and operating modes. The aim was to find a suitable system configuration and to document the quality of the tuned system on artificial failures
Adjusting for the Incidence of Measurement Errors in Multilevel ...
African Journals Online (AJOL)
the incidence of measurement errors using these techniques generally revealed coefficient estimates of ... physical, biological, social and medical science, measurement errors are found. The errors are ... (M) and Science and Technology (ST).
Modeling and estimation of measurement errors
International Nuclear Information System (INIS)
Neuilly, M.
1998-01-01
Any person in charge of taking measures is aware of the inaccuracy of the results however cautiously he may handle. Sensibility, accuracy, reproducibility define the significance of a result. The use of statistical methods is one of the important tools to improve the quality of measurement. The accuracy due to these methods revealed the little difference in the isotopic composition of uranium ore which led to the discovery of Oklo fossil reactor. This book is dedicated to scientists and engineers interested in measurement whatever their investigation interests are. Experimental results are presented as random variables and their laws of probability are approximated by normal law, Poison law or Pearson distribution. The impact of 1 or more parameters on the total error can be evaluated by drawing factorial plans and by using variance analysis methods. This method is also used in intercomparison procedures between laboratories and to detect any abnormal shift in a series of measurement. (A.C.)
Varying coefficients model with measurement error.
Li, Liang; Greene, Tom
2008-06-01
We propose a semiparametric partially varying coefficient model to study the relationship between serum creatinine concentration and the glomerular filtration rate (GFR) among kidney donors and patients with chronic kidney disease. A regression model is used to relate serum creatinine to GFR and demographic factors in which coefficient of GFR is expressed as a function of age to allow its effect to be age dependent. GFR measurements obtained from the clearance of a radioactively labeled isotope are assumed to be a surrogate for the true GFR, with the relationship between measured and true GFR expressed using an additive error model. We use locally corrected score equations to estimate parameters and coefficient functions, and propose an expected generalized cross-validation (EGCV) method to select the kernel bandwidth. The performance of the proposed methods, which avoid distributional assumptions on the true GFR and residuals, is investigated by simulation. Accounting for measurement error using the proposed model reduced apparent inconsistencies in the relationship between serum creatinine and GFR among different clinical data sets derived from kidney donor and chronic kidney disease source populations.
Validation of the measurement model concept for error structure identification
International Nuclear Information System (INIS)
Shukla, Pavan K.; Orazem, Mark E.; Crisalle, Oscar D.
2004-01-01
The development of different forms of measurement models for impedance has allowed examination of key assumptions on which the use of such models to assess error structure are based. The stochastic error structures obtained using the transfer-function and Voigt measurement models were identical, even when non-stationary phenomena caused some of the data to be inconsistent with the Kramers-Kronig relations. The suitability of the measurement model for assessment of consistency with the Kramers-Kronig relations, however, was found to be more sensitive to the confidence interval for the parameter estimates than to the number of parameters in the model. A tighter confidence interval was obtained for Voigt measurement model, which made the Voigt measurement model a more sensitive tool for identification of inconsistencies with the Kramers-Kronig relations
Practical application of the theory of errors in measurement
International Nuclear Information System (INIS)
Anon.
1991-01-01
This chapter addresses the practical application of the theory of errors in measurement. The topics of the chapter include fixing on a maximum desired error, selecting a maximum error, the procedure for limiting the error, utilizing a standard procedure, setting specifications for a standard procedure, and selecting the number of measurements to be made
Guan, W; Meng, X F; Dong, X M
2014-12-01
Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.
Common errors of drug administration in infants: causes and avoidance.
Anderson, B J; Ellis, J F
1999-01-01
Drug administration errors are common in infants. Although the infant population has a high exposure to drugs, there are few data concerning pharmacokinetics or pharmacodynamics, or the influence of paediatric diseases on these processes. Children remain therapeutic orphans. Formulations are often suitable only for adults; in addition, the lack of maturation of drug elimination processes, alteration of body composition and influence of size render the calculation of drug doses complex in infants. The commonest drug administration error in infants is one of dose, and the commonest hospital site for this error is the intensive care unit. Drug errors are a consequence of system error, and preventive strategies are possible through system analysis. The goal of a zero drug error rate should be aggressively sought, with systems in place that aim to eliminate the effects of inevitable human error. This involves review of the entire system from drug manufacture to drug administration. The nuclear industry, telecommunications and air traffic control services all practise error reduction policies with zero error as a clear goal, not by finding fault in the individual, but by identifying faults in the system and building into that system mechanisms for picking up faults before they occur. Such policies could be adapted to medicine using interventions both specific (the production of formulations which are for children only and clearly labelled, regular audit by pharmacists, legible prescriptions, standardised dose tables) and general (paediatric drug trials, education programmes, nonpunitive error reporting) to reduce the number of errors made in giving medication to infants.
Cause analysis and preventives for human error events in Daya Bay NPP
International Nuclear Information System (INIS)
Huang Weigang; Zhang Li
1998-01-01
Daya Bay Nuclear Power Plant is put into commercial operation in 1994 Until 1996, there are 368 human error events in operating and maintenance area, occupying 39% of total events. These events occurred mainly in the processes of maintenance, test equipment isolation and system on-line, in particular in refuelling and maintenance. The author analyses root causes for human errorievents, which are mainly operator omission or error procedure deficiency; procedure not followed; lack of training; communication failures; work management inadequacy. The protective measures and treatment principle for human error events are also discussed, and several examples applying them are given. Finally, it is put forward that key to prevent human error event lies in the coordination and management, person in charge of work, and good work habits of staffs
WISC-R Examiner Errors: Cause for Concern.
Slate, John R.; Chick, David
1989-01-01
Clinical psychology graduate students (N=14) administered Wechsler Intelligence Scale for Children-Revised. Found numerous scoring and mechanical errors that influenced full-scale intelligence quotient scores on two-thirds of protocols. Particularly prone to error were Verbal subtests of Vocabulary, Comprehension, and Similarities. Noted specific…
Incorporating measurement error in n=1 psychological autoregressive modeling
Schuurman, Noemi K.; Houtveen, Jan H.; Hamaker, Ellen L.
2015-01-01
Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive
Radiation risk estimation based on measurement error models
Masiuk, Sergii; Shklyar, Sergiy; Chepurny, Mykola; Likhtarov, Illya
2017-01-01
This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies.
The error analysis of coke moisture measured by neutron moisture gauge
International Nuclear Information System (INIS)
Tian Huixing
1995-01-01
The error of coke moisture measured by neutron method in the iron and steel industry is analyzed. The errors are caused by inaccurate sampling location in the calibration procedure on site. By comparison, the instrument error and the statistical fluctuation error are smaller. So the sampling proportion should be increased as large as possible in the calibration procedure on site, and a satisfied calibration effect can be obtained on a suitable size hopper
Human error as the root cause of severe accidents at nuclear reactors
International Nuclear Information System (INIS)
Kovács Zoltán; Rýdzi, Stanislav
2017-01-01
A root cause is a factor inducing an undesirable event. It is feasible for root causes to be eliminated through technological process improvements. Human error was the root cause of all severe accidents at nuclear power plants. The TMI accident was caused by a series of human errors. The Chernobyl disaster occurred after a badly performed test of the turbogenerator at a reactor with design deficiencies, and in addition, the operators ignored the safety principles and disabled the safety systems. At Fukushima the tsunami risk was underestimated and the project failed to consider the specific issues of the site. The paper describes the severe accidents and points out the human errors that caused them. Also, provisions that might have eliminated those severe accidents are suggested. The fact that each severe accident occurred on a different type of reactor is relevant – no severe accident ever occurred twice at the same reactor type. The lessons learnt from the severe accidents and the safety measures implemented on reactor units all over the world seem to be effective. (orig.)
Reader error during CT colonography: causes and implications for training
International Nuclear Information System (INIS)
Slater, Andrew; Tam, Emily; Gartner, Louise; Scarth, Julia; Peiris, Chand; Gupta, Arun; Marshall, Michele; Burling, David; Taylor, Stuart A.; Halligan, Steve
2006-01-01
This study investigated the variability in baseline computed tomography colonography (CTC) performance using untrained readers by documenting sources of error to guide future training requirements. Twenty CTC endoscopically validated data sets containing 32 polyps were consensus read by three unblinded radiologists experienced in CTC, creating a reference standard. Six readers without prior CTC training [four residents and two board-certified subspecialty gastrointestinal (GI) radiologists] read the 20 cases. Readers drew a region of interest (ROI) around every area they considered a potential colonic lesion, even if subsequently dismissed, before creating a final report. Using this final report, reader ROIs were classified as true positive detections, true negatives correctly dismissed, true detections incorrectly dismissed (i.e., classification error), or perceptual errors. Detection of polyps 1-5 mm, 6-9 mm, and ≥10 mm ranged from 7.1% to 28.6%, 16.7% to 41.7%, and 16.7% to 83.3%, respectively. There was no significant difference between polyp detection or false positives for the GI radiologists compared with residents (p=0.67, p=0.4 respectively). Most missed polyps were due to failure of detection rather than characterization (range 82-95%). Untrained reader performance is variable but generally poor. Most missed polyps are due perceptual error rather than characterization, suggesting basic training should focus heavily on lesion detection. (orig.)
Sensor Interaction as a Source of the Electromagnetic Field Measurement Error
Directory of Open Access Journals (Sweden)
Hartansky R.
2014-12-01
Full Text Available The article deals with analytical calculation and numerical simulation of interactive influence of electromagnetic sensors. Sensors are components of field probe, whereby their interactive influence causes the measuring error. Electromagnetic field probe contains three mutually perpendicular spaced sensors in order to measure the vector of electrical field. Error of sensors is enumerated with dependence on interactive position of sensors. Based on that, proposed were recommendations for electromagnetic field probe construction to minimize the sensor interaction and measuring error.
MEASURING LOCAL GRADIENT AND SKEW QUADRUPOLE ERRORS IN RHIC IRS
International Nuclear Information System (INIS)
CARDONA, J.; PEGGS, S.; PILAT, R.; PTITSYN, V.
2004-01-01
The measurement of local linear errors at RHIC interaction regions using an ''action and phase'' analysis of difference orbits has already been presented [2]. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model
Measurement Error in Income and Schooling and the Bias of Linear Estimators
DEFF Research Database (Denmark)
Bingley, Paul; Martinello, Alessandro
2017-01-01
and Retirement in Europe data with Danish administrative registers. Contrary to most validation studies, we find that measurement error in income is classical once we account for imperfect validation data. We find nonclassical measurement error in schooling, causing a 38% amplification bias in IV estimators......We propose a general framework for determining the extent of measurement error bias in ordinary least squares and instrumental variable (IV) estimators of linear models while allowing for measurement error in the validation source. We apply this method by validating Survey of Health, Ageing...
The error model and experiment of measuring angular position error based on laser collimation
Cai, Yangyang; Yang, Jing; Li, Jiakun; Feng, Qibo
2018-01-01
Rotary axis is the reference component of rotation motion. Angular position error is the most critical factor which impair the machining precision among the six degree-of-freedom (DOF) geometric errors of rotary axis. In this paper, the measuring method of angular position error of rotary axis based on laser collimation is thoroughly researched, the error model is established and 360 ° full range measurement is realized by using the high precision servo turntable. The change of space attitude of each moving part is described accurately by the 3×3 transformation matrices and the influences of various factors on the measurement results is analyzed in detail. Experiments results show that the measurement method can achieve high measurement accuracy and large measurement range.
Radon measurements-discussion of error estimates for selected methods
International Nuclear Information System (INIS)
Zhukovsky, Michael; Onischenko, Alexandra; Bastrikov, Vladislav
2010-01-01
The main sources of uncertainties for grab sampling, short-term (charcoal canisters) and long term (track detectors) measurements are: systematic bias of reference equipment; random Poisson and non-Poisson errors during calibration; random Poisson and non-Poisson errors during measurements. The origins of non-Poisson random errors during calibration are different for different kinds of instrumental measurements. The main sources of uncertainties for retrospective measurements conducted by surface traps techniques can be divided in two groups: errors of surface 210 Pb ( 210 Po) activity measurements and uncertainties of transfer from 210 Pb surface activity in glass objects to average radon concentration during this object exposure. It's shown that total measurement error of surface trap retrospective technique can be decreased to 35%.
Yang, Shuai; Wu, Wei; Wang, Xingshu; Xu, Zhiguang
2018-01-01
The coupling error in the measurement of ship hull deformation can significantly influence the attitude accuracy of the shipborne weapons and equipments. It is therefore important to study the characteristics of the coupling error. In this paper, an comprehensive investigation on the coupling error is reported, which has a potential of deducting the coupling error in the future. Firstly, the causes and characteristics of the coupling error are analyzed theoretically based on the basic theory of measuring ship deformation. Then, simulations are conducted for verifying the correctness of the theoretical analysis. Simulation results show that the cross-correlation between dynamic flexure and ship angular motion leads to the coupling error in measuring ship deformation, and coupling error increases with the correlation value between them. All the simulation results coincide with the theoretical analysis.
Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint
Energy Technology Data Exchange (ETDEWEB)
Stynes, J. K.; Ihas, B.
2012-04-01
The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.
Reduction of measurement errors in OCT scanning
Morel, E. N.; Tabla, P. M.; Sallese, M.; Torga, J. R.
2018-03-01
Optical coherence tomography (OCT) is a non-destructive optical technique, which uses a light source with a wide band width that focuses on a point in the sample to determine the distance (strictly, the optical path difference, OPD) between this point and a reference surface. The point can be superficial or at an interior interface of the sample (transparent or semitransparent), allowing topographies and / or tomographies in different materials. The Michelson interferometer is the traditional experimental scheme for this technique, in which a beam of light is divided into two arms, one the reference and the other the sample. The overlap of reflected light in the sample and in the reference generates an interference signal that gives us information about the OPD between arms. In this work, we work on the experimental configuration in which the reference signal and the reflected signal in the sample travel on the same arm, improving the quality of the interference signal. Among the most important aspects of this improvement we can mention that the noise and errors produced by the relative reference-sample movement and by the dispersion of the refractive index are considerably reduced. It is thus possible to obtain 3D images of surfaces with a spatial resolution in the order of microns. Results obtained on the topography of metallic surfaces, glass and inks printed on paper are presented.
Sleep Loss in Resident Physicians: The Cause of Medical Errors?
Directory of Open Access Journals (Sweden)
Milton eKramer
2010-10-01
Full Text Available This review begins with the history of the events starting with the death of Libby Zion that lead to the Bell Commission, that the studied her death and made recommendations for improvement that were codified into law in New York state as the 405 law that the ACGME essentially adopted in putting a cap on work hours and establishing the level of staff supervision that must be available to residents in clinical situations particularly the emergency room and acute care units. A summary is then provided of the findings of the laboratory effects of total sleep deprivation including acute total sleep loss and the consequent widespread physiologic alterations, and of the effects of selective and chronic sleep loss. Generally the sequence of responses to increasing sleep loss goes from mood changes to cognitive effects to performance deficits. In the laboratory situation, deficits resulting from sleep deprivation are clearly and definitively demonstrable. Sleep loss in the clinical situation is usually sleep deprivation superimposed on chronic sleep loss. An examination of questionnaire studies, the literature on reports of sleep loss, studies of the reduction of work hours on performance as well as observational and a few interventional studies have yielded contradictory and often equivocal results. The residents generally find they feel better working fewer hours but improvements in patient care are often not reported or do not occur. A change in the attitude of the resident toward his role and his patient has not been salutary. Decreasing sleep loss should have had a positive effect on patient care in reducing medical error, but this remains to be unequivocally demonstrated.
Quantification and handling of sampling errors in instrumental measurements: a case study
DEFF Research Database (Denmark)
Andersen, Charlotte Møller; Bro, R.
2004-01-01
in certain situations, the effect of systematic errors is also considerable. The relevant errors contributing to the prediction error are: error in instrumental measurements (x-error), error in reference measurements (y-error), error in the estimated calibration model (regression coefficient error) and model...
A straightness error measurement method matched new generation GPS
International Nuclear Information System (INIS)
Zhang, X B; Lu, H; Jiang, X Q; Li, Z
2005-01-01
The axis of the non-diffracting beam produced by an axicon is very stable and can be adopted as the datum line to measure the spatial straightness error in continuous working distance, which may be short, medium or long. Though combining the non-diffracting beam datum-line with LVDT displace detector, a new straightness error measurement method is developed. Because the non-diffracting beam datum-line amends the straightness error gauged by LVDT, the straightness error is reliable and this method is matchs new generation GPS
Propagation of Radiosonde Pressure Sensor Errors to Ozonesonde Measurements
Stauffer, R. M.; Morris, G.A.; Thompson, A. M.; Joseph, E.; Coetzee, G. J. R.; Nalli, N. R.
2014-01-01
Several previous studies highlight pressure (or equivalently, pressure altitude) discrepancies between the radiosonde pressure sensor and that derived from a GPS flown with the radiosonde. The offsets vary during the ascent both in absolute and percent pressure differences. To investigate this problem further, a total of 731 radiosonde-ozonesonde launches from the Southern Hemisphere subtropics to Northern mid-latitudes are considered, with launches between 2005 - 2013 from both longer-term and campaign-based intensive stations. Five series of radiosondes from two manufacturers (International Met Systems: iMet, iMet-P, iMet-S, and Vaisala: RS80-15N and RS92-SGP) are analyzed to determine the magnitude of the pressure offset. Additionally, electrochemical concentration cell (ECC) ozonesondes from three manufacturers (Science Pump Corporation; SPC and ENSCI-Droplet Measurement Technologies; DMT) are analyzed to quantify the effects these offsets have on the calculation of ECC ozone (O3) mixing ratio profiles (O3MR) from the ozonesonde-measured partial pressure. Approximately half of all offsets are 0.6 hPa in the free troposphere, with nearly a third 1.0 hPa at 26 km, where the 1.0 hPa error represents 5 persent of the total atmospheric pressure. Pressure offsets have negligible effects on O3MR below 20 km (96 percent of launches lie within 5 percent O3MR error at 20 km). Ozone mixing ratio errors above 10 hPa (30 km), can approach greater than 10 percent ( 25 percent of launches that reach 30 km exceed this threshold). These errors cause disagreement between the integrated ozonesonde-only column O3 from the GPS and radiosonde pressure profile by an average of +6.5 DU. Comparisons of total column O3 between the GPS and radiosonde pressure profiles yield average differences of +1.1 DU when the O3 is integrated to burst with addition of the McPeters and Labow (2012) above-burst O3 column climatology. Total column differences are reduced to an average of -0.5 DU when
Errors in translation made by English major students: A study on types and causes
Directory of Open Access Journals (Sweden)
Pattanapong Wongranu
2017-05-01
Full Text Available Many Thai English major students have problems when they translate Thai texts into English, as numerous errors can be found. Therefore, a study of translation errors is needed to find solutions to these problems. The objectives of this research were: 1 to examine types of translation errors in translation from Thai into English, 2 to determine the types of translation errors that are most common, and 3 to find possible explanations for the causes of errors. The results of this study will be used to improve translation teaching and the course “Translation from Thai into English”. The participants were 26 third-year, English major students at Kasetsart University. The data were collected from the students' exercises and examinations. Interviews and stimulated recall were also used to determine translation problems and causes of errors. The data were analyzed by considering the frequency and percentage, and by content analysis. The results shows that the most frequent translation errors were syntactic errors (65%, followed by semantic errors (26.5% and miscellaneous errors (8.5%, respectively. The causes of errors found in this study included translation procedures, carelessness, low self-confidence, and anxiety. It is recommended that more class time be spent to address the problematic points. In addition, more authentic translation and group work should be implemented to increase self-confidence and decrease anxiety.
About Error in Measuring Oxygen Concentration by Solid-Electrolyte Sensors
Directory of Open Access Journals (Sweden)
V. I. Nazarov
2008-01-01
Full Text Available The paper evaluates additional errors while measuring oxygen concentration in a gas mixture by a solid-electrolyte cell. Experimental dependences of additional errors caused by changes in temperature in a sensor zone, discharge of gas mixture supplied to a sensor zone, partial pressure in the gas mixture and fluctuations in oxygen concentrations in the air.
Unit of measurement used and parent medication dosing errors.
Yin, H Shonna; Dreyer, Benard P; Ugboaja, Donna C; Sanchez, Dayana C; Paul, Ian M; Moreira, Hannah A; Rodriguez, Luis; Mendelsohn, Alan L
2014-08-01
Adopting the milliliter as the preferred unit of measurement has been suggested as a strategy to improve the clarity of medication instructions; teaspoon and tablespoon units may inadvertently endorse nonstandard kitchen spoon use. We examined the association between unit used and parent medication errors and whether nonstandard instruments mediate this relationship. Cross-sectional analysis of baseline data from a larger study of provider communication and medication errors. English- or Spanish-speaking parents (n = 287) whose children were prescribed liquid medications in 2 emergency departments were enrolled. Medication error defined as: error in knowledge of prescribed dose, error in observed dose measurement (compared to intended or prescribed dose); >20% deviation threshold for error. Multiple logistic regression performed adjusting for parent age, language, country, race/ethnicity, socioeconomic status, education, health literacy (Short Test of Functional Health Literacy in Adults); child age, chronic disease; site. Medication errors were common: 39.4% of parents made an error in measurement of the intended dose, 41.1% made an error in the prescribed dose. Furthermore, 16.7% used a nonstandard instrument. Compared with parents who used milliliter-only, parents who used teaspoon or tablespoon units had twice the odds of making an error with the intended (42.5% vs 27.6%, P = .02; adjusted odds ratio=2.3; 95% confidence interval, 1.2-4.4) and prescribed (45.1% vs 31.4%, P = .04; adjusted odds ratio=1.9; 95% confidence interval, 1.03-3.5) dose; associations greater for parents with low health literacy and non-English speakers. Nonstandard instrument use partially mediated teaspoon and tablespoon-associated measurement errors. Findings support a milliliter-only standard to reduce medication errors. Copyright © 2014 by the American Academy of Pediatrics.
Correlated measurement error hampers association network inference
Kaduk, M.; Hoefsloot, H.C.J.; Vis, D.J.; Reijmers, T.; Greef, J. van der; Smilde, A.K.; Hendriks, M.M.W.B.
2014-01-01
Modern chromatography-based metabolomics measurements generate large amounts of data in the form of abundances of metabolites. An increasingly popular way of representing and analyzing such data is by means of association networks. Ideally, such a network can be interpreted in terms of the
Incorporating measurement error in n = 1 psychological autoregressive modeling
Schuurman, Noémi K.; Houtveen, Jan H.; Hamaker, Ellen L.
2015-01-01
Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive parameters. We discuss two models that take measurement error into account: An autoregressive model with a white noise term (AR+WN), and an autoregressive moving average (ARMA) model. In a simulation study we compare the parameter recovery performance of these models, and compare this performance for both a Bayesian and frequentist approach. We find that overall, the AR+WN model performs better. Furthermore, we find that for realistic (i.e., small) sample sizes, psychological research would benefit from a Bayesian approach in fitting these models. Finally, we illustrate the effect of disregarding measurement error in an AR(1) model by means of an empirical application on mood data in women. We find that, depending on the person, approximately 30–50% of the total variance was due to measurement error, and that disregarding this measurement error results in a substantial underestimation of the autoregressive parameters. PMID:26283988
Measurement errors in cirrus cloud microphysical properties
Directory of Open Access Journals (Sweden)
H. Larsen
Full Text Available The limited accuracy of current cloud microphysics sensors used in cirrus cloud studies imposes limitations on the use of the data to examine the cloud's broadband radiative behaviour, an important element of the global energy balance. We review the limitations of the instruments, PMS probes, most widely used for measuring the microphysical structure of cirrus clouds and show the effect of these limitations on descriptions of the cloud radiative properties. The analysis is applied to measurements made as part of the European Cloud and Radiation Experiment (EUCREX to determine mid-latitude cirrus microphysical and radiative properties.
Key words. Atmospheric composition and structure (cloud physics and chemistry · Meteorology and atmospheric dynamics · Radiative processes · Instruments and techniques
Analysis of measured data of human body based on error correcting frequency
Jin, Aiyan; Peipei, Gao; Shang, Xiaomei
2014-04-01
Anthropometry is to measure all parts of human body surface, and the measured data is the basis of analysis and study of the human body, establishment and modification of garment size and formulation and implementation of online clothing store. In this paper, several groups of the measured data are gained, and analysis of data error is gotten by analyzing the error frequency and using analysis of variance method in mathematical statistics method. Determination of the measured data accuracy and the difficulty of measured parts of human body, further studies of the causes of data errors, and summarization of the key points to minimize errors possibly are also mentioned in the paper. This paper analyses the measured data based on error frequency, and in a way , it provides certain reference elements to promote the garment industry development.
Valuation Biases, Error Measures, and the Conglomerate Discount
I. Dittmann (Ingolf); E.G. Maug (Ernst)
2006-01-01
textabstractWe document the importance of the choice of error measure (percentage vs. logarithmic errors) for the comparison of alternative valuation procedures. We demonstrate for several multiple valuation methods (averaging with the arithmetic mean, harmonic mean, median, geometric mean) that the
Directory of Open Access Journals (Sweden)
Claudia Lamina
Full Text Available BACKGROUND: Statistically reconstructing haplotypes from single nucleotide polymorphism (SNP genotypes, can lead to falsely classified haplotypes. This can be an issue when interpreting haplotype association results or when selecting subjects with certain haplotypes for subsequent functional studies. It was our aim to quantify haplotype reconstruction error and to provide tools for it. METHODS AND RESULTS: By numerous simulation scenarios, we systematically investigated several error measures, including discrepancy, error rate, and R(2, and introduced the sensitivity and specificity to this context. We exemplified several measures in the KORA study, a large population-based study from Southern Germany. We find that the specificity is slightly reduced only for common haplotypes, while the sensitivity was decreased for some, but not all rare haplotypes. The overall error rate was generally increasing with increasing number of loci, increasing minor allele frequency of SNPs, decreasing correlation between the alleles and increasing ambiguity. CONCLUSIONS: We conclude that, with the analytical approach presented here, haplotype-specific error measures can be computed to gain insight into the haplotype uncertainty. This method provides the information, if a specific risk haplotype can be expected to be reconstructed with rather no or high misclassification and thus on the magnitude of expected bias in association estimates. We also illustrate that sensitivity and specificity separate two dimensions of the haplotype reconstruction error, which completely describe the misclassification matrix and thus provide the prerequisite for methods accounting for misclassification.
Unaccounted source of systematic errors in measurements of the Newtonian gravitational constant G
DeSalvo, Riccardo
2015-06-01
Many precision measurements of G have produced a spread of results incompatible with measurement errors. Clearly an unknown source of systematic errors is at work. It is proposed here that most of the discrepancies derive from subtle deviations from Hooke's law, caused by avalanches of entangled dislocations. The idea is supported by deviations from linearity reported by experimenters measuring G, similarly to what is observed, on a larger scale, in low-frequency spring oscillators. Some mitigating experimental apparatus modifications are suggested.
Estimation of the measurement error of eccentrically installed orifice plates
Energy Technology Data Exchange (ETDEWEB)
Barton, Neil; Hodgkinson, Edwin; Reader-Harris, Michael
2005-07-01
The presentation discusses methods for simulation and estimation of flow measurement errors. The main conclusions are: Computational Fluid Dynamics (CFD) simulation methods and published test measurements have been used to estimate the error of a metering system over a period when its orifice plates were eccentric and when leaking O-rings allowed some gas to bypass the meter. It was found that plate eccentricity effects would result in errors of between -2% and -3% for individual meters. Validation against test data suggests that these estimates of error should be within 1% of the actual error, but it is unclear whether the simulations over-estimate or under-estimate the error. Simulations were also run to assess how leakage at the periphery affects the metering error. Various alternative leakage scenarios were modelled and it was found that the leakage rate has an effect on the error, but that the leakage distribution does not. Correction factors, based on the CFD results, were then used to predict the system's mis-measurement over a three-year period (tk)
Ionospheric error analysis in gps measurements
Directory of Open Access Journals (Sweden)
G. Pugliano
2008-06-01
Full Text Available The results of an experiment aimed at evaluating the effects of the ionosphere on GPS positioning applications are presented in this paper. Specifically, the study, based upon a differential approach, was conducted utilizing GPS measurements acquired by various receivers located at increasing inter-distances. The experimental research was developed upon the basis of two groups of baselines: the first group is comprised of "short" baselines (less than 10 km; the second group is characterized by greater distances (up to 90 km. The obtained results were compared either upon the basis of the geometric characteristics, for six different baseline lengths, using 24 hours of data, or upon temporal variations, by examining two periods of varying intensity in ionospheric activity respectively coinciding with the maximum of the 23 solar cycle and in conditions of low ionospheric activity. The analysis revealed variations in terms of inter-distance as well as different performances primarily owing to temporal modifications in the state of the ionosphere.
Aliasing errors in measurements of beam position and ellipticity
International Nuclear Information System (INIS)
Ekdahl, Carl
2005-01-01
Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all
Aliasing errors in measurements of beam position and ellipticity
Ekdahl, Carl
2005-09-01
Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all.
An introduction to the measurement errors and data handling
International Nuclear Information System (INIS)
Rubio, J.A.
1979-01-01
Some usual methods to estimate and correlate measurement errors are presented. An introduction to the theory of parameter determination and goodness of the estimates is also presented. Some examples are discussed. (author)
Fusing metabolomics data sets with heterogeneous measurement errors
Waaijenborg, Sandra; Korobko, Oksana; Willems van Dijk, Ko; Lips, Mirjam; Hankemeier, Thomas; Wilderjans, Tom F.; Smilde, Age K.
2018-01-01
Combining different metabolomics platforms can contribute significantly to the discovery of complementary processes expressed under different conditions. However, analysing the fused data might be hampered by the difference in their quality. In metabolomics data, one often observes that measurement errors increase with increasing measurement level and that different platforms have different measurement error variance. In this paper we compare three different approaches to correct for the measurement error heterogeneity, by transformation of the raw data, by weighted filtering before modelling and by a modelling approach using a weighted sum of residuals. For an illustration of these different approaches we analyse data from healthy obese and diabetic obese individuals, obtained from two metabolomics platforms. Concluding, the filtering and modelling approaches that both estimate a model of the measurement error did not outperform the data transformation approaches for this application. This is probably due to the limited difference in measurement error and the fact that estimation of measurement error models is unstable due to the small number of repeats available. A transformation of the data improves the classification of the two groups. PMID:29698490
Measuring worst-case errors in a robot workcell
International Nuclear Information System (INIS)
Simon, R.W.; Brost, R.C.; Kholwadwala, D.K.
1997-10-01
Errors in model parameters, sensing, and control are inevitably present in real robot systems. These errors must be considered in order to automatically plan robust solutions to many manipulation tasks. Lozano-Perez, Mason, and Taylor proposed a formal method for synthesizing robust actions in the presence of uncertainty; this method has been extended by several subsequent researchers. All of these results presume the existence of worst-case error bounds that describe the maximum possible deviation between the robot's model of the world and reality. This paper examines the problem of measuring these error bounds for a real robot workcell. These measurements are difficult, because of the desire to completely contain all possible deviations while avoiding bounds that are overly conservative. The authors present a detailed description of a series of experiments that characterize and quantify the possible errors in visual sensing and motion control for a robot workcell equipped with standard industrial robot hardware. In addition to providing a means for measuring these specific errors, these experiments shed light on the general problem of measuring worst-case errors
Comparing Measurement Error between Two Different Methods of Measurement of Various Magnitudes
Zavorsky, Gerald S.
2010-01-01
Measurement error is a common problem in several fields of research such as medicine, physiology, and exercise science. The standard deviation of repeated measurements on the same person is the measurement error. One way of presenting measurement error is called the repeatability, which is 2.77 multiplied by the within subject standard deviation.…
Correcting systematic errors in high-sensitivity deuteron polarization measurements
Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Özben, C. S.; Prasuhn, D.; Levi Sandri, P.; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.
2012-02-01
This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Jülich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10 -5 for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10 -6 in a search for an electric dipole moment using a storage ring.
Correcting systematic errors in high-sensitivity deuteron polarization measurements
Energy Technology Data Exchange (ETDEWEB)
Brantjes, N.P.M. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Dzordzhadze, V. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Gebel, R. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Gonnella, F. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Hoek, D.J. van der [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Imig, A. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Kruithof, W.L. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Lazarus, D.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Lehrach, A.; Lorentz, B. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Messi, R. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Moricciani, D. [INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Morse, W.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Noid, G.A. [Indiana University Cyclotron Facility, Bloomington, IN 47408 (United States); and others
2012-02-01
This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Juelich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10{sup -5} for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10{sup -6} in a search for an electric dipole moment using a storage ring.
Interval sampling methods and measurement error: a computer simulation.
Wirth, Oliver; Slaven, James; Taylor, Matthew A
2014-01-01
A simulation study was conducted to provide a more thorough account of measurement error associated with interval sampling methods. A computer program simulated the application of momentary time sampling, partial-interval recording, and whole-interval recording methods on target events randomly distributed across an observation period. The simulation yielded measures of error for multiple combinations of observation period, interval duration, event duration, and cumulative event duration. The simulations were conducted up to 100 times to yield measures of error variability. Although the present simulation confirmed some previously reported characteristics of interval sampling methods, it also revealed many new findings that pertain to each method's inherent strengths and weaknesses. The analysis and resulting error tables can help guide the selection of the most appropriate sampling method for observation-based behavioral assessments. © Society for the Experimental Analysis of Behavior.
Measurement errors in voice-key naming latency for Hiragana.
Yamada, Jun; Tamaoka, Katsuo
2003-12-01
This study makes explicit the limitations and possibilities of voice-key naming latency research on single hiragana symbols (a Japanese syllabic script) by examining three sets of voice-key naming data against Sakuma, Fushimi, and Tatsumi's 1997 speech-analyzer voice-waveform data. Analysis showed that voice-key measurement errors can be substantial in standard procedures as they may conceal the true effects of significant variables involved in hiragana-naming behavior. While one can avoid voice-key measurement errors to some extent by applying Sakuma, et al.'s deltas and by excluding initial phonemes which induce measurement errors, such errors may be ignored when test items are words and other higher-level linguistic materials.
Application of grey incidence analysis to connection between human errors and root cause
International Nuclear Information System (INIS)
Ren Yinxiang; Yu Ren; Zhou Gang; Chen Dengke
2008-01-01
By introducing grey incidence analysis, the relatively important impact of root cause upon human errors was researched in the paper. On the basis of WANO statistic data and grey incidence analysis, lack of alternate examine, bad basic operation, short of theoretical knowledge, relaxation of organization and management and deficiency of regulations are the important influence of root cause on human err ors. Finally, the question to reduce human errors was discussed. (authors)
Measurement error in income and schooling, and the bias of linear estimators
DEFF Research Database (Denmark)
Bingley, Paul; Martinello, Alessandro
The characteristics of measurement error determine the bias of linear estimators. We propose a method for validating economic survey data allowing for measurement error in the validation source, and we apply this method by validating Survey of Health, Ageing and Retirement in Europe (SHARE) data...... with Danish administrative registers. We find that measurement error in surveys is classical for annual gross income but non-classical for years of schooling, causing a 21% amplification bias in IV estimators of returns to schooling. Using a 1958 Danish schooling reform, we contextualize our result...
Evaluation of alignment error of micropore X-ray optics caused by hot plastic deformation
Numazawa, Masaki; Ishi, Daiki; Ezoe, Yuichiro; Takeuchi, Kazuma; Terada, Masaru; Fujitani, Maiko; Ishikawa, Kumi; Nakajima, Kazuo; Morishita, Kohei; Ohashi, Takaya; Mitsuda, Kazuhisa; Nakamura, Kasumi; Noda, Yusuke
2018-06-01
We report on the evaluation and characterization of micro-electromechanical system (MEMS) X-ray optics produced by silicon dry etching and hot plastic deformation. Sidewalls of micropores formed by etching through a silicon wafer are used as X-ray reflecting mirrors. The wafer is deformed into a spherical shape to focus parallel incidence X-rays. We quantitatively evaluated a mirror alignment error using an X-ray pencil beam (Al Kα line at 1.49 keV). The deviation angle caused only by the deformation was estimated from angular shifts of the X-ray focusing point before and after the deformation to be 2.7 ± 0.3 arcmin on average within the optics. This gives an angular resolution of 12.9 ± 1.4 arcmin in half-power diameter (HPD). The surface profile of the deformed optics measured using a NH-3Ns surface profiler (Mitaka Kohki) also indicated that the resolution was 11.4 ± 0.9 arcmin in HPD, suggesting that we can simply evaluate the alignment error caused by the hot plastic deformation.
Laser tracker error determination using a network measurement
International Nuclear Information System (INIS)
Hughes, Ben; Forbes, Alistair; Lewis, Andrew; Sun, Wenjuan; Veal, Dan; Nasr, Karim
2011-01-01
We report on a fast, easily implemented method to determine all the geometrical alignment errors of a laser tracker, to high precision. The technique requires no specialist equipment and can be performed in less than an hour. The technique is based on the determination of parameters of a geometric model of the laser tracker, using measurements of a set of fixed target locations, from multiple locations of the tracker. After fitting of the model parameters to the observed data, the model can be used to perform error correction of the raw laser tracker data or to derive correction parameters in the format of the tracker manufacturer's internal error map. In addition to determination of the model parameters, the method also determines the uncertainties and correlations associated with the parameters. We have tested the technique on a commercial laser tracker in the following way. We disabled the tracker's internal error compensation, and used a five-position, fifteen-target network to estimate all the geometric errors of the instrument. Using the error map generated from this network test, the tracker was able to pass a full performance validation test, conducted according to a recognized specification standard (ASME B89.4.19-2006). We conclude that the error correction determined from the network test is as effective as the manufacturer's own error correction methodologies
Errors and Correction of Precipitation Measurements in China
Institute of Scientific and Technical Information of China (English)
REN Zhihua; LI Mingqin
2007-01-01
In order to discover the range of various errors in Chinese precipitation measurements and seek a correction method, 30 precipitation evaluation stations were set up countrywide before 1993. All the stations are reference stations in China. To seek a correction method for wind-induced error, a precipitation correction instrument called the "horizontal precipitation gauge" was devised beforehand. Field intercomparison observations regarding 29,000 precipitation events have been conducted using one pit gauge, two elevated operational gauges and one horizontal gauge at the above 30 stations. The range of precipitation measurement errors in China is obtained by analysis of intercomparison measurement results. The distribution of random errors and systematic errors in precipitation measurements are studied in this paper.A correction method, especially for wind-induced errors, is developed. The results prove that a correlation of power function exists between the precipitation amount caught by the horizontal gauge and the absolute difference of observations implemented by the operational gauge and pit gauge. The correlation coefficient is 0.99. For operational observations, precipitation correction can be carried out only by parallel observation with a horizontal precipitation gauge. The precipitation accuracy after correction approaches that of the pit gauge. The correction method developed is simple and feasible.
Influence of measurement errors and estimated parameters on combustion diagnosis
International Nuclear Information System (INIS)
Payri, F.; Molina, S.; Martin, J.; Armas, O.
2006-01-01
Thermodynamic diagnosis models are valuable tools for the study of Diesel combustion. Inputs required by such models comprise measured mean and instantaneous variables, together with suitable values for adjustable parameters used in different submodels. In the case of measured variables, one may estimate the uncertainty associated with measurement errors; however, the influence of errors in model parameter estimation may not be so easily established on an experimental basis. In this paper, a simulated pressure cycle has been used along with known input parameters, so that any uncertainty in the inputs is avoided. Then, the influence of errors in measured variables and geometric and heat transmission parameters on the results of a diagnosis combustion model for direct injection diesel engines have been studied. This procedure allowed to establish the relative importance of these parameters and to set limits to the maximal errors of the model, accounting for both the maximal expected errors in the input parameters and the sensitivity of the model to those errors
An in-situ measuring method for planar straightness error
Chen, Xi; Fu, Luhua; Yang, Tongyu; Sun, Changku; Wang, Zhong; Zhao, Yan; Liu, Changjie
2018-01-01
According to some current problems in the course of measuring the plane shape error of workpiece, an in-situ measuring method based on laser triangulation is presented in this paper. The method avoids the inefficiency of traditional methods like knife straightedge as well as the time and cost requirements of coordinate measuring machine(CMM). A laser-based measuring head is designed and installed on the spindle of a numerical control(NC) machine. The measuring head moves in the path planning to measure measuring points. The spatial coordinates of the measuring points are obtained by the combination of the laser triangulation displacement sensor and the coordinate system of the NC machine, which could make the indicators of measurement come true. The method to evaluate planar straightness error adopts particle swarm optimization(PSO). To verify the feasibility and accuracy of the measuring method, simulation experiments were implemented with a CMM. Comparing the measurement results of measuring head with the corresponding measured values obtained by composite measuring machine, it is verified that the method can realize high-precise and automatic measurement of the planar straightness error of the workpiece.
Beam induced vacuum measurement error in BEPC II
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
When the beam in BEPCII storage ring aborts suddenly, the measured pressure of cold cathode gauges and ion pumps will drop suddenly and decrease to the base pressure gradually. This shows that there is a beam induced positive error in the pressure measurement during beam operation. The error is the difference between measured and real pressures. Right after the beam aborts, the error will disappear immediately and the measured pressure will then be equal to real pressure. For one gauge, we can fit a non-linear pressure-time curve with its measured pressure data 20 seconds after a sudden beam abortion. From this negative exponential decay pumping-down curve, real pressure at the time when the beam starts aborting is extrapolated. With the data of several sudden beam abortions we have got the errors of that gauge in different beam currents and found that the error is directly proportional to the beam current, as expected. And a linear data-fitting gives the proportion coefficient of the equation, which we derived to evaluate the real pressure all the time when the beam with varied currents is on.
Accounting for measurement error: a critical but often overlooked process.
Harris, Edward F; Smith, Richard N
2009-12-01
Due to instrument imprecision and human inconsistencies, measurements are not free of error. Technical error of measurement (TEM) is the variability encountered between dimensions when the same specimens are measured at multiple sessions. A goal of a data collection regimen is to minimise TEM. The few studies that actually quantify TEM, regardless of discipline, report that it is substantial and can affect results and inferences. This paper reviews some statistical approaches for identifying and controlling TEM. Statistically, TEM is part of the residual ('unexplained') variance in a statistical test, so accounting for TEM, which requires repeated measurements, enhances the chances of finding a statistically significant difference if one exists. The aim of this paper was to review and discuss common statistical designs relating to types of error and statistical approaches to error accountability. This paper addresses issues of landmark location, validity, technical and systematic error, analysis of variance, scaled measures and correlation coefficients in order to guide the reader towards correct identification of true experimental differences. Researchers commonly infer characteristics about populations from comparatively restricted study samples. Most inferences are statistical and, aside from concerns about adequate accounting for known sources of variation with the research design, an important source of variability is measurement error. Variability in locating landmarks that define variables is obvious in odontometrics, cephalometrics and anthropometry, but the same concerns about measurement accuracy and precision extend to all disciplines. With increasing accessibility to computer-assisted methods of data collection, the ease of incorporating repeated measures into statistical designs has improved. Accounting for this technical source of variation increases the chance of finding biologically true differences when they exist.
Measurement Model Specification Error in LISREL Structural Equation Models.
Baldwin, Beatrice; Lomax, Richard
This LISREL study examines the robustness of the maximum likelihood estimates under varying degrees of measurement model misspecification. A true model containing five latent variables (two endogenous and three exogenous) and two indicator variables per latent variable was used. Measurement model misspecification considered included errors of…
QUALITATIVE DATA AND ERROR MEASUREMENT IN INPUT-OUTPUT-ANALYSIS
NIJKAMP, P; OOSTERHAVEN, J; OUWERSLOOT, H; RIETVELD, P
1992-01-01
This paper is a contribution to the rapidly emerging field of qualitative data analysis in economics. Ordinal data techniques and error measurement in input-output analysis are here combined in order to test the reliability of a low level of measurement and precision of data by means of a stochastic
Assessment of salivary flow rate: biologic variation and measure error.
Jongerius, P.H.; Limbeek, J. van; Rotteveel, J.J.
2004-01-01
OBJECTIVE: To investigate the applicability of the swab method in the measurement of salivary flow rate in multiple-handicap drooling children. To quantify the measurement error of the procedure and the biologic variation in the population. STUDY DESIGN: Cohort study. METHODS: In a repeated
Error of the slanted edge method for measuring the modulation transfer function of imaging systems.
Xie, Xufen; Fan, Hongda; Wang, Hongyuan; Wang, Zebin; Zou, Nianyu
2018-03-01
The slanted edge method is a basic approach for measuring the modulation transfer function (MTF) of imaging systems; however, its measurement accuracy is limited in practice. Theoretical analysis of the slanted edge MTF measurement method performed in this paper reveals that inappropriate edge angles and random noise reduce this accuracy. The error caused by edge angles is analyzed using sampling and reconstruction theory. Furthermore, an error model combining noise and edge angles is proposed. We verify the analyses and model with respect to (i) the edge angle, (ii) a statistical analysis of the measurement error, (iii) the full width at half-maximum of a point spread function, and (iv) the error model. The experimental results verify the theoretical findings. This research can be referential for applications of the slanted edge MTF measurement method.
Content Validity of a Tool Measuring Medication Errors.
Tabassum, Nishat; Allana, Saleema; Saeed, Tanveer; Dias, Jacqueline Maria
2015-08-01
The objective of this study was to determine content and face validity of a tool measuring medication errors among nursing students in baccalaureate nursing education. Data was collected from the Aga Khan University School of Nursing and Midwifery (AKUSoNaM), Karachi, from March to August 2014. The tool was developed utilizing literature and the expertise of the team members, expert in different areas. The developed tool was then sent to five experts from all over Karachi for ensuring the content validity of the tool, which was measured on relevance and clarity of the questions. The Scale Content Validity Index (S-CVI) for clarity and relevance of the questions was found to be 0.94 and 0.98, respectively. The tool measuring medication errors has an excellent content validity. This tool should be used for future studies on medication errors, with different study populations such as medical students, doctors, and nurses.
Directory of Open Access Journals (Sweden)
Adriana Ioana Pîrvu
2010-06-01
injured. Also, the fact that numerous convictions obtained by Romania before ECHR were due tothe incoherent or abusive legislation, which the magistrates were and are compelled to observe, must not be neglected. From this point of view, the magistrates could be held materially liable, based on grounded reasons, only in the context of a fair, coherent and concise legislation meeting the justice and celerity need of the litigant parties in the settlement of disputes. Therefore, the avoidance of the convictions based on judicial errors causing material and moral prejudices, before ECHR, but also before national courts, supposes theapplication of coherent measures both in terms of amending the internal legislation and its adaptation and harmonization according to European standards, and in terms of establishing a group of magistrates corresponding to the current optimum magistrate profile, a desiderate which needs to be achieved to meet the current needs of Romanian justice.
Keers, Richard N; Williams, Steven D; Cooke, Jonathan; Ashcroft, Darren M
2013-11-01
Underlying systems factors have been seen to be crucial contributors to the occurrence of medication errors. By understanding the causes of these errors, the most appropriate interventions can be designed and implemented to minimise their occurrence. This study aimed to systematically review and appraise empirical evidence relating to the causes of medication administration errors (MAEs) in hospital settings. Nine electronic databases (MEDLINE, EMBASE, International Pharmaceutical Abstracts, ASSIA, PsycINFO, British Nursing Index, CINAHL, Health Management Information Consortium and Social Science Citations Index) were searched between 1985 and May 2013. Inclusion and exclusion criteria were applied to identify eligible publications through title analysis followed by abstract and then full text examination. English language publications reporting empirical data on causes of MAEs were included. Reference lists of included articles and relevant review papers were hand searched for additional studies. Studies were excluded if they did not report data on specific MAEs, used accounts from individuals not directly involved in the MAE concerned or were presented as conference abstracts with insufficient detail. A total of 54 unique studies were included. Causes of MAEs were categorised according to Reason's model of accident causation. Studies were assessed to determine relevance to the research question and how likely the results were to reflect the potential underlying causes of MAEs based on the method(s) used. Slips and lapses were the most commonly reported unsafe acts, followed by knowledge-based mistakes and deliberate violations. Error-provoking conditions influencing administration errors included inadequate written communication (prescriptions, documentation, transcription), problems with medicines supply and storage (pharmacy dispensing errors and ward stock management), high perceived workload, problems with ward-based equipment (access, functionality
Analysis and improvement of gas turbine blade temperature measurement error
International Nuclear Information System (INIS)
Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui
2015-01-01
Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed. (paper)
Analysis and improvement of gas turbine blade temperature measurement error
Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui
2015-10-01
Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed.
Tan, Jiubin; Qiang, Xifu; Ding, Xuemei
1991-08-01
Optical sensors have two notable advantages in modern precision measurement. One is that they can be used in nondestructive measurement because the sensors need not touch the surfaces of workpieces in measuring. The other one is that they can strongly resist electromagnetic interferences, vibrations, and noises, so they are suitable to be used in machining sites. But the drift of light intensity and the changing of the reflection coefficient at different measuring positions of a workpiece may have great influence on measured results. To solve the problem, a spectroscopic differential characteristic compensating method is put forward. The method can be used effectively not only in compensating the measuring errors resulted from the drift of light intensity but also in eliminating the influence to measured results caused by the changing of the reflection coefficient. Also, the article analyzes the possibility of and the means of separating data errors of a clinical measuring system for form and position errors of circular workpieces.
Yohay Carmel; Curtis Flather; Denis Dean
2006-01-01
This paper summarizes our efforts to investigate the nature, behavior, and implications of positional error and attribute error in spatiotemporal datasets. Estimating the combined influence of these errors on map analysis has been hindered by the fact that these two error types are traditionally expressed in different units (distance units, and categorical units,...
Measuring Error Identification and Recovery Skills in Surgical Residents.
Sternbach, Joel M; Wang, Kevin; El Khoury, Rym; Teitelbaum, Ezra N; Meyerson, Shari L
2017-02-01
Although error identification and recovery skills are essential for the safe practice of surgery, they have not traditionally been taught or evaluated in residency training. This study validates a method for assessing error identification and recovery skills in surgical residents using a thoracoscopic lobectomy simulator. We developed a 5-station, simulator-based examination containing the most commonly encountered cognitive and technical errors occurring during division of the superior pulmonary vein for left upper lobectomy. Successful completion of each station requires identification and correction of these errors. Examinations were video recorded and scored in a blinded fashion using an examination-specific rating instrument evaluating task performance as well as error identification and recovery skills. Evidence of validity was collected in the categories of content, response process, internal structure, and relationship to other variables. Fifteen general surgical residents (9 interns and 6 third-year residents) completed the examination. Interrater reliability was high, with an intraclass correlation coefficient of 0.78 between 4 trained raters. Station scores ranged from 64% to 84% correct. All stations adequately discriminated between high- and low-performing residents, with discrimination ranging from 0.35 to 0.65. The overall examination score was significantly higher for intermediate residents than for interns (mean, 74 versus 64 of 90 possible; p = 0.03). The described simulator-based examination with embedded errors and its accompanying assessment tool can be used to measure error identification and recovery skills in surgical residents. This examination provides a valid method for comparing teaching strategies designed to improve error recognition and recovery to enhance patient safety. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
A Model of Self-Monitoring Blood Glucose Measurement Error.
Vettoretti, Martina; Facchinetti, Andrea; Sparacino, Giovanni; Cobelli, Claudio
2017-07-01
A reliable model of the probability density function (PDF) of self-monitoring of blood glucose (SMBG) measurement error would be important for several applications in diabetes, like testing in silico insulin therapies. In the literature, the PDF of SMBG error is usually described by a Gaussian function, whose symmetry and simplicity are unable to properly describe the variability of experimental data. Here, we propose a new methodology to derive more realistic models of SMBG error PDF. The blood glucose range is divided into zones where error (absolute or relative) presents a constant standard deviation (SD). In each zone, a suitable PDF model is fitted by maximum-likelihood to experimental data. Model validation is performed by goodness-of-fit tests. The method is tested on two databases collected by the One Touch Ultra 2 (OTU2; Lifescan Inc, Milpitas, CA) and the Bayer Contour Next USB (BCN; Bayer HealthCare LLC, Diabetes Care, Whippany, NJ). In both cases, skew-normal and exponential models are used to describe the distribution of errors and outliers, respectively. Two zones were identified: zone 1 with constant SD absolute error; zone 2 with constant SD relative error. Goodness-of-fit tests confirmed that identified PDF models are valid and superior to Gaussian models used so far in the literature. The proposed methodology allows to derive realistic models of SMBG error PDF. These models can be used in several investigations of present interest in the scientific community, for example, to perform in silico clinical trials to compare SMBG-based with nonadjunctive CGM-based insulin treatments.
Shi, Zhaoyao; Song, Huixu; Chen, Hongfang; Sun, Yanqiang
2018-02-01
This paper presents a novel experimental approach for confirming that spherical mirror of a laser tracking system can reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy. By simplifying the optical system model of laser tracking system based on spherical mirror, we can easily extract the laser ranging measurement error caused by rotation errors of gimbal mount axes with the positions of spherical mirror, biconvex lens, cat's eye reflector, and measuring beam. The motions of polarization beam splitter and biconvex lens along the optical axis and vertical direction of optical axis are driven by error motions of gimbal mount axes. In order to simplify the experimental process, the motion of biconvex lens is substituted by the motion of spherical mirror according to the principle of relative motion. The laser ranging measurement error caused by the rotation errors of gimbal mount axes could be recorded in the readings of laser interferometer. The experimental results showed that the laser ranging measurement error caused by rotation errors was less than 0.1 μm if radial error motion and axial error motion were within ±10 μm. The experimental method simplified the experimental procedure and the spherical mirror could reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy of the laser tracking system.
Directory of Open Access Journals (Sweden)
Mohammadreza Azhdari
2017-03-01
Full Text Available Background & Objectives: Maintenance is an important tool for the petrochemical industries to prevent of accidents and increase operational and process safety success. The purpose of this study was to identify the possible causes of incidents caused by human error in the petrochemical maintenance activities by using Human Factors Analysis and Classification System (HFACS. Methods: This study is a cross-sectional analysis that was conducted in Zagros Petrochemical Company, Asaluyeh-Iran. A checklist of human error-induced incidents was developed based on four HFACS main levels and nineteen sub-groups. Hierarchical task analysis (HTA technique was used to identify maintenance activities and tasks. The main causes of possible incidents were identified by checklist and recorded. Corrective and preventive actions were defined depending on priority. Results: The content analysis of worksheets of 444 activities showed 37.6% of the causes at the level of unsafe actions, 27.5% at the level of unsafe supervision, 20.9% at the level of preconditions for unsafe acts and 14% of the causes at the level of organizational effects. The HFACS sub-groups showed errors (24.36% inadequate supervision (14.89% and violations (13.26% with the most frequency. Conclusion: In order to prevent and reduce the occurrence of the identified errors, reducing the rate of the detected errors is crucial. Findings of this study showed that appropriate controlling measures such as periodical training of work procedures and supervision improvement decrease the human error-induced incidents in petrochemical industry maintenance.
GY SAMPLING THEORY IN ENVIRONMENTAL STUDIES 2: SUBSAMPLING ERROR MEASUREMENTS
Sampling can be a significant source of error in the measurement process. The characterization and cleanup of hazardous waste sites require data that meet site-specific levels of acceptable quality if scientifically supportable decisions are to be made. In support of this effort,...
Bayesian modeling of measurement error in predictor variables
Fox, Gerardus J.A.; Glas, Cornelis A.W.
2003-01-01
It is shown that measurement error in predictor variables can be modeled using item response theory (IRT). The predictor variables, that may be defined at any level of an hierarchical regression model, are treated as latent variables. The normal ogive model is used to describe the relation between
Conditional Standard Errors of Measurement for Scale Scores.
Kolen, Michael J.; And Others
1992-01-01
A procedure is described for estimating the reliability and conditional standard errors of measurement of scale scores incorporating the discrete transformation of raw scores to scale scores. The method is illustrated using a strong true score model, and practical applications are described. (SLD)
Confounding and exposure measurement error in air pollution epidemiology
Sheppard, L.; Burnett, R.T.; Szpiro, A.A.; Kim, J.Y.; Jerrett, M.; Pope, C.; Brunekreef, B.|info:eu-repo/dai/nl/067548180
2012-01-01
Studies in air pollution epidemiology may suffer from some specific forms of confounding and exposure measurement error. This contribution discusses these, mostly in the framework of cohort studies. Evaluation of potential confounding is critical in studies of the health effects of air pollution.
Measurement error in pressure-decay leak testing
International Nuclear Information System (INIS)
Robinson, J.N.
1979-04-01
The effect of measurement error in presssure-decay leak testing is considered, and examples are presented to demonstrate how it can be properly accomodated in analyzing data from such tests. Suggestions for more effective specification and conduct of leak tests are presented
Thomas, Felicity Louise; Signal, Mathew; Harris, Deborah L.; Weston, Philip J.; Harding, Jane E.; Shaw, Geoffrey M.; Chase, J. Geoffrey
2014-01-01
Neonatal hypoglycemia is common and can cause serious brain injury. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing blood glucose (BG) measurements. Calibration algorithms use BG measurements to convert sensor signals into CGM data. Thus, inaccuracies in calibration BG measurements directly affect CGM values and any metrics calculated from them. The aim was to quantify the effect of timing delays and calibration BG measurement errors on hypoglycemia me...
Automatic diagnostic system for measuring ocular refractive errors
Ventura, Liliane; Chiaradia, Caio; de Sousa, Sidney J. F.; de Castro, Jarbas C.
1996-05-01
Ocular refractive errors (myopia, hyperopia and astigmatism) are automatic and objectively determined by projecting a light target onto the retina using an infra-red (850 nm) diode laser. The light vergence which emerges from the eye (light scattered from the retina) is evaluated in order to determine the corresponding ametropia. The system basically consists of projecting a target (ring) onto the retina and analyzing the scattered light with a CCD camera. The light scattered by the eye is divided into six portions (3 meridians) by using a mask and a set of six prisms. The distance between the two images provided by each of the meridians, leads to the refractive error of the referred meridian. Hence, it is possible to determine the refractive error at three different meridians, which gives the exact solution for the eye's refractive error (spherical and cylindrical components and the axis of the astigmatism). The computational basis used for the image analysis is a heuristic search, which provides satisfactory calculation times for our purposes. The peculiar shape of the target, a ring, provides a wider range of measurement and also saves parts of the retina from unnecessary laser irradiation. Measurements were done in artificial and in vivo eyes (using cicloplegics) and the results were in good agreement with the retinoscopic measurements.
Reducing systematic errors in measurements made by a SQUID magnetometer
International Nuclear Information System (INIS)
Kiss, L.F.; Kaptás, D.; Balogh, J.
2014-01-01
A simple method is described which reduces those systematic errors of a superconducting quantum interference device (SQUID) magnetometer that arise from possible radial displacements of the sample in the second-order gradiometer superconducting pickup coil. By rotating the sample rod (and hence the sample) around its axis into a position where the best fit is obtained to the output voltage of the SQUID as the sample is moved through the pickup coil, the accuracy of measuring magnetic moments can be increased significantly. In the cases of an examined Co 1.9 Fe 1.1 Si Heusler alloy, pure iron and nickel samples, the accuracy could be increased over the value given in the specification of the device. The suggested method is only meaningful if the measurement uncertainty is dominated by systematic errors – radial displacement in particular – and not by instrumental or environmental noise. - Highlights: • A simple method is described which reduces systematic errors of a SQUID. • The errors arise from a radial displacement of the sample in the gradiometer coil. • The procedure is to rotate the sample rod (with the sample) around its axis. • The best fit to the SQUID voltage has to be attained moving the sample through the coil. • The accuracy of measuring magnetic moment can be increased significantly
#2 - An Empirical Assessment of Exposure Measurement Error ...
Background• Differing degrees of exposure error acrosspollutants• Previous focus on quantifying and accounting forexposure error in single-pollutant models• Examine exposure errors for multiple pollutantsand provide insights on the potential for bias andattenuation of effect estimates in single and bipollutantepidemiological models The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.
Total error vs. measurement uncertainty: revolution or evolution?
Oosterhuis, Wytze P; Theodorsson, Elvar
2016-02-01
The first strategic EFLM conference "Defining analytical performance goals, 15 years after the Stockholm Conference" was held in the autumn of 2014 in Milan. It maintained the Stockholm 1999 hierarchy of performance goals but rearranged them and established five task and finish groups to work on topics related to analytical performance goals including one on the "total error" theory. Jim Westgard recently wrote a comprehensive overview of performance goals and of the total error theory critical of the results and intentions of the Milan 2014 conference. The "total error" theory originated by Jim Westgard and co-workers has a dominating influence on the theory and practice of clinical chemistry but is not accepted in other fields of metrology. The generally accepted uncertainty theory, however, suffers from complex mathematics and conceived impracticability in clinical chemistry. The pros and cons of the total error theory need to be debated, making way for methods that can incorporate all relevant causes of uncertainty when making medical diagnoses and monitoring treatment effects. This development should preferably proceed not as a revolution but as an evolution.
Thomas, Felicity; Signal, Mathew; Harris, Deborah L; Weston, Philip J; Harding, Jane E; Shaw, Geoffrey M; Chase, J Geoffrey
2014-05-01
Neonatal hypoglycemia is common and can cause serious brain injury. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing blood glucose (BG) measurements. Calibration algorithms use BG measurements to convert sensor signals into CGM data. Thus, inaccuracies in calibration BG measurements directly affect CGM values and any metrics calculated from them. The aim was to quantify the effect of timing delays and calibration BG measurement errors on hypoglycemia metrics in newborn infants. Data from 155 babies were used. Two timing and 3 BG meter error models (Abbott Optium Xceed, Roche Accu-Chek Inform II, Nova Statstrip) were created using empirical data. Monte-Carlo methods were employed, and each simulation was run 1000 times. Each set of patient data in each simulation had randomly selected timing and/or measurement error added to BG measurements before CGM data were calibrated. The number of hypoglycemic events, duration of hypoglycemia, and hypoglycemic index were then calculated using the CGM data and compared to baseline values. Timing error alone had little effect on hypoglycemia metrics, but measurement error caused substantial variation. Abbott results underreported the number of hypoglycemic events by up to 8 and Roche overreported by up to 4 where the original number reported was 2. Nova results were closest to baseline. Similar trends were observed in the other hypoglycemia metrics. Errors in blood glucose concentration measurements used for calibration of CGM devices can have a clinically important impact on detection of hypoglycemia. If CGM devices are going to be used for assessing hypoglycemia it is important to understand of the impact of these errors on CGM data. © 2014 Diabetes Technology Society.
Confounding and exposure measurement error in air pollution epidemiology.
Sheppard, Lianne; Burnett, Richard T; Szpiro, Adam A; Kim, Sun-Young; Jerrett, Michael; Pope, C Arden; Brunekreef, Bert
2012-06-01
Studies in air pollution epidemiology may suffer from some specific forms of confounding and exposure measurement error. This contribution discusses these, mostly in the framework of cohort studies. Evaluation of potential confounding is critical in studies of the health effects of air pollution. The association between long-term exposure to ambient air pollution and mortality has been investigated using cohort studies in which subjects are followed over time with respect to their vital status. In such studies, control for individual-level confounders such as smoking is important, as is control for area-level confounders such as neighborhood socio-economic status. In addition, there may be spatial dependencies in the survival data that need to be addressed. These issues are illustrated using the American Cancer Society Cancer Prevention II cohort. Exposure measurement error is a challenge in epidemiology because inference about health effects can be incorrect when the measured or predicted exposure used in the analysis is different from the underlying true exposure. Air pollution epidemiology rarely if ever uses personal measurements of exposure for reasons of cost and feasibility. Exposure measurement error in air pollution epidemiology comes in various dominant forms, which are different for time-series and cohort studies. The challenges are reviewed and a number of suggested solutions are discussed for both study domains.
International Nuclear Information System (INIS)
Yu Watanabe; Masahito Ueda
2012-01-01
Full text: When we try to obtain information about a quantum system, we need to perform measurement on the system. The measurement process causes unavoidable state change. Heisenberg discussed a thought experiment of the position measurement of a particle by using a gamma-ray microscope, and found a trade-off relation between the error of the measured position and the disturbance in the momentum caused by the measurement process. The trade-off relation epitomizes the complementarity in quantum measurements: we cannot perform a measurement of an observable without causing disturbance in its canonically conjugate observable. However, at the time Heisenberg found the complementarity, quantum measurement theory was not established yet, and Kennard and Robertson's inequality erroneously interpreted as a mathematical formulation of the complementarity. Kennard and Robertson's inequality actually implies the indeterminacy of the quantum state: non-commuting observables cannot have definite values simultaneously. However, Kennard and Robertson's inequality reflects the inherent nature of a quantum state alone, and does not concern any trade-off relation between the error and disturbance in the measurement process. In this talk, we report a resolution to the complementarity in quantum measurements. First, we find that it is necessary to involve the estimation process from the outcome of the measurement for quantifying the error and disturbance in the quantum measurement. We clarify the implicitly involved estimation process in Heisenberg's gamma-ray microscope and other measurement schemes, and formulate the error and disturbance for an arbitrary quantum measurement by using quantum estimation theory. The error and disturbance are defined in terms of the Fisher information, which gives the upper bound of the accuracy of the estimation. Second, we obtain uncertainty relations between the measurement errors of two observables [1], and between the error and disturbance in the
The causes of prescribing errors in English general practices: a qualitative study.
Slight, Sarah P; Howard, Rachel; Ghaleb, Maisoon; Barber, Nick; Franklin, Bryony Dean; Avery, Anthony J
2013-10-01
Few detailed studies exist of the underlying causes of prescribing errors in the UK. To examine the causes of prescribing and monitoring errors in general practice and provide recommendations for how they may be overcome. Qualitative interview and focus group study with purposive sampling of English general practices. General practice staff from 15 general practices across three PCTs in England participated in a combination of semi-structured interviews (n = 34) and six focus groups (n = 46). Thematic analysis informed by Reason's Accident Causation Model was used. Seven categories of high-level error-producing conditions were identified: the prescriber, the patient, the team, the working environment, the task, the computer system, and the primary-secondary care interface. These were broken down to reveal various error-producing conditions: the prescriber's therapeutic training, drug knowledge and experience, knowledge of the patient, perception of risk, and their physical and emotional health; the patient's characteristics and the complexity of the individual clinical case; the importance of feeling comfortable within the practice team was highlighted, as well as the safety implications of GPs signing prescriptions generated by nurses when they had not seen the patient for themselves; the working environment with its extensive workload, time pressures, and interruptions; and computer-related issues associated with mis-selecting drugs from electronic pick-lists and overriding alerts were all highlighted as possible causes of prescribing errors and were often interconnected. Complex underlying causes of prescribing and monitoring errors in general practices were highlighted, several of which are amenable to intervention.
DEFF Research Database (Denmark)
Rabøl, Louise Isager; Andersen, Mette Lehmann; Østergaard, Doris
2011-01-01
Introduction Poor teamwork and communication between healthcare staff are correlated to patient safety incidents. However, the organisational factors responsible for these issues are unexplored. Root cause analyses (RCA) use human factors thinking to analyse the systems behind severe patient safety...... and characteristics of verbal communication errors such as handover errors and error during teamwork. Results Raters found description of verbal communication errors in 44 reports (52%). These included handover errors (35 (86%)), communication errors between different staff groups (19 (43%)), misunderstandings (13...... (30%)), communication errors between junior and senior staff members (11 (25%)), hesitance in speaking up (10 (23%)) and communication errors during teamwork (8 (18%)). The kappa values were 0.44-0.78. Unproceduralized communication and information exchange via telephone, related to transfer between...
Errors in accident data, its types, causes and methods of rectification-analysis of the literature.
Ahmed, Ashar; Sadullah, Ahmad Farhan Mohd; Yahya, Ahmad Shukri
2017-07-29
Most of the decisions taken to improve road safety are based on accident data, which makes it the back bone of any country's road safety system. Errors in this data will lead to misidentification of black spots and hazardous road segments, projection of false estimates pertinent to accidents and fatality rates, and detection of wrong parameters responsible for accident occurrence, thereby making the entire road safety exercise ineffective. Its extent varies from country to country depending upon various factors. Knowing the type of error in the accident data and the factors causing it enables the application of the correct method for its rectification. Therefore there is a need for a systematic literature review that addresses the topic at a global level. This paper fulfils the above research gap by providing a synthesis of literature for the different types of errors found in the accident data of 46 countries across the six regions of the world. The errors are classified and discussed with respect to each type and analysed with respect to income level; assessment with regard to the magnitude for each type is provided; followed by the different causes that result in their occurrence, and the various methods used to address each type of error. Among high-income countries the extent of error in reporting slight, severe, non-fatal and fatal injury accidents varied between 39-82%, 16-52%, 12-84%, and 0-31% respectively. For middle-income countries the error for the same categories varied between 93-98%, 32.5-96%, 34-99% and 0.5-89.5% respectively. The only four studies available for low-income countries showed that the error in reporting non-fatal and fatal accidents varied between 69-80% and 0-61% respectively. The logistic relation of error in accident data reporting, dichotomised at 50%, indicated that as the income level of a country increases the probability of having less error in accident data also increases. Average error in recording information related to the
Image pre-filtering for measurement error reduction in digital image correlation
Zhou, Yihao; Sun, Chen; Song, Yuntao; Chen, Jubing
2015-02-01
In digital image correlation, the sub-pixel intensity interpolation causes a systematic error in the measured displacements. The error increases toward high-frequency component of the speckle pattern. In practice, a captured image is usually corrupted by additive white noise. The noise introduces additional energy in the high frequencies and therefore raises the systematic error. Meanwhile, the noise also elevates the random error which increases with the noise power. In order to reduce the systematic error and the random error of the measurements, we apply a pre-filtering to the images prior to the correlation so that the high-frequency contents are suppressed. Two spatial-domain filters (binomial and Gaussian) and two frequency-domain filters (Butterworth and Wiener) are tested on speckle images undergoing both simulated and real-world translations. By evaluating the errors of the various combinations of speckle patterns, interpolators, noise levels, and filter configurations, we come to the following conclusions. All the four filters are able to reduce the systematic error. Meanwhile, the random error can also be reduced if the signal power is mainly distributed around DC. For high-frequency speckle patterns, the low-pass filters (binomial, Gaussian and Butterworth) slightly increase the random error and Butterworth filter produces the lowest random error among them. By using Wiener filter with over-estimated noise power, the random error can be reduced but the resultant systematic error is higher than that of low-pass filters. In general, Butterworth filter is recommended for error reduction due to its flexibility of passband selection and maximal preservation of the allowed frequencies. Binomial filter enables efficient implementation and thus becomes a good option if computational cost is a critical issue. While used together with pre-filtering, B-spline interpolator produces lower systematic error than bicubic interpolator and similar level of the random
Dose variations caused by setup errors in intracranial stereotactic radiotherapy: A PRESAGE study
International Nuclear Information System (INIS)
Teng, Kieyin; Gagliardi, Frank; Alqathami, Mamdooh; Ackerly, Trevor; Geso, Moshi
2014-01-01
Stereotactic radiotherapy (SRT) requires tight margins around the tumor, thus producing a steep dose gradient between the tumor and the surrounding healthy tissue. Any setup errors might become clinically significant. To date, no study has been performed to evaluate the dosimetric variations caused by setup errors with a 3-dimensional dosimeter, the PRESAGE. This research aimed to evaluate the potential effect that setup errors have on the dose distribution of intracranial SRT. Computed tomography (CT) simulation of a CIRS radiosurgery head phantom was performed with 1.25-mm slice thickness. An ideal treatment plan was generated using Brainlab iPlan. A PRESAGE was made for every treatment with and without errors. A prescan using the optical CT scanner was carried out. Before treatment, the phantom was imaged using Brainlab ExacTrac. Actual radiotherapy treatments with and without errors were carried out with the Novalis treatment machine. Postscan was performed with an optical CT scanner to analyze the dose irradiation. The dose variation between treatments with and without errors was determined using a 3-dimensional gamma analysis. Errors are clinically insignificant when the passing ratio of the gamma analysis is 95% and above. Errors were clinically significant when the setup errors exceeded a 0.7-mm translation and a 0.5° rotation. The results showed that a 3-mm translation shift in the superior-inferior (SI), right-left (RL), and anterior-posterior (AP) directions and 2° couch rotation produced a passing ratio of 53.1%. Translational and rotational errors of 1.5 mm and 1°, respectively, generated a passing ratio of 62.2%. Translation shift of 0.7 mm in the directions of SI, RL, and AP and a 0.5° couch rotation produced a passing ratio of 96.2%. Preventing the occurrences of setup errors in intracranial SRT treatment is extremely important as errors greater than 0.7 mm and 0.5° alter the dose distribution. The geometrical displacements affect dose delivery
Measurement of the magnetic field errors on TCV
International Nuclear Information System (INIS)
Piras, F.; Moret, J.-M.; Rossel, J.X.
2010-01-01
A set of 24 saddle loops is used on the Tokamak a Configuration Variable (TCV) to measure the radial magnetic flux at different toroidal and vertical positions. The new system is calibrated together with the standard magnetic diagnostics on TCV. Based on the results of this calibration, the effective current in the poloidal field coils and their position is computed. These corrections are then used to compute the distribution of the error field inside the vacuum vessel for a typical TCV discharge. Since the saddle loops measure the magnetic flux at different toroidal positions, the non-axisymmetric error field is also estimated and correlated to a shift or a tilt of the poloidal field coils.
International Nuclear Information System (INIS)
Nidaira, Kazuo
2008-01-01
International Target Values (ITV) shows random and systematic measurement uncertainty components as a reference for routinely achievable measurement quality in the accountancy measurement. The measurement uncertainty, called error henceforth, needs to be periodically evaluated and checked against ITV for consistency as the error varies according to measurement methods, instruments, operators, certified reference samples, frequency of calibration, and so on. In the paper an error evaluation method was developed with focuses on (1) Specifying clearly error calculation model, (2) Getting always positive random and systematic error variances, (3) Obtaining probability density distribution of an error variance and (4) Confirming the evaluation method by simulation. In addition the method was demonstrated by applying real data. (author)
Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures.
Keller, Joshua P; Chang, Howard H; Strickland, Matthew J; Szpiro, Adam A
2017-05-01
Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data. We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap. Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35). This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight.
Effects of Measurement Error on the Output Gap in Japan
Koichiro Kamada; Kazuto Masuda
2000-01-01
Potential output is the largest amount of products that can be produced by fully utilizing available labor and capital stock; the output gap is defined as the discrepancy between actual and potential output. If data on production factors contain measurement errors, total factor productivity (TFP) cannot be estimated accurately from the Solow residual(i.e., the portion of output that is not attributable to labor and capital inputs). This may give rise to distortions in the estimation of potent...
Directory of Open Access Journals (Sweden)
Eryi Hu
2015-01-01
Full Text Available The phase error caused by the speed mismatch issue is researched in the line-scan images capturing 3D profile measurement. The experimental system is constructed by a line-scan CCD camera, an object moving device, a digital fringe pattern projector, and a personal computer. In the experiment procedure, the detected object is moving relative to the image capturing system by using a motorized translation stage in a stable velocity. The digital fringe pattern is projected onto the detected object, and then the deformed patterns are captured and recorded in the computer. The object surface profile can be calculated by the Fourier transform profilometry. However, the moving speed mismatch error will still exist in most of the engineering application occasion even after an image system calibration. When the moving speed of the detected object is faster than the expected value, the captured image will be compressed in the moving direction of the detected object. In order to overcome this kind of measurement error, an image recovering algorithm is proposed to reconstruct the original compressed image. Thus, the phase values can be extracted much more accurately by the reconstructed images. And then, the phase error distribution caused by the speed mismatch is analyzed by the simulation and experimental methods.
Statistical method for quality control in presence of measurement errors
International Nuclear Information System (INIS)
Lauer-Peccoud, M.R.
1998-01-01
In a quality inspection of a set of items where the measurements of values of a quality characteristic of the item are contaminated by random errors, one can take wrong decisions which are damageable to the quality. So of is important to control the risks in such a way that a final quality level is insured. We consider that an item is defective or not if the value G of its quality characteristic is larger or smaller than a given level g. We assume that, due to the lack of precision of the measurement instrument, the measurement M of this characteristic is expressed by ∫ (G) + ξ where f is an increasing function such that the value ∫ (g 0 ) is known and ξ is a random error with mean zero and given variance. First we study the problem of the determination of a critical measure m such that a specified quality target is reached after the classification of a lot of items where each item is accepted or rejected depending on whether its measurement is smaller or greater than m. Then we analyse the problem of testing the global quality of a lot from the measurements for a example of items taken from the lot. For these two kinds of problems and for different quality targets, we propose solutions emphasizing on the case where the function ∫ is linear and the error ξ and the variable G are Gaussian. Simulation results allow to appreciate the efficiency of the different considered control procedures and their robustness with respect to deviations from the assumptions used in the theoretical derivations. (author)
Measurement error in CT assessment of appendix diameter
Energy Technology Data Exchange (ETDEWEB)
Trout, Andrew T.; Towbin, Alexander J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, MLC 5031, Cincinnati, OH (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Department of Biostatistics and Epidemiology, Cincinnati, OH (United States)
2016-12-15
Appendiceal diameter continues to be cited as an important criterion for diagnosis of appendicitis by computed tomography (CT). To assess sources of error and variability in appendiceal diameter measurements by CT. In this institutional review board-approved review of imaging and medical records, we reviewed CTs performed in children <18 years of age between Jan. 1 and Dec. 31, 2010. Appendiceal diameter was measured in the axial and coronal planes by two reviewers (R1, R2). One year later, 10% of cases were remeasured. For patients who had multiple CTs, serial measurements were made to assess within patient variability. Measurement differences between planes, within and between reviewers, within patients and between CT and pathological measurements were assessed using correlation coefficients and paired t-tests. Six hundred thirty-one CTs performed in 519 patients (mean age: 10.9 ± 4.9 years, 50.8% female) were reviewed. Axial and coronal measurements were strongly correlated (r = 0.92-0.94, P < 0.0001) with coronal plane measurements significantly larger (P < 0.0001). Measurements were strongly correlated between reviewers (r = 0.89-0.9, P < 0.0001) but differed significantly in both planes (axial: +0.2 mm, P=0.003; coronal: +0.1 mm, P=0.007). Repeat measurements were significantly different for one reviewer only in the axial plane (0.3 mm difference, P<0.05). Within patients imaged multiple times, measured appendix diameters differed significantly in the axial plane for both reviewers (R1: 0.5 mm, P = 0.031; R2: 0.7 mm, P = 0.022). Multiple potential sources of measurement error raise concern about the use of rigid diameter cutoffs for the diagnosis of acute appendicitis by CT. (orig.)
Tracking and shape errors measurement of concentrating heliostats
Coquand, Mathieu; Caliot, Cyril; Hénault, François
2017-09-01
In solar tower power plants, factors such as tracking accuracy, facets misalignment and surface shape errors of concentrating heliostats are of prime importance on the efficiency of the system. At industrial scale, one critical issue is the time and effort required to adjust the different mirrors of the faceted heliostats, which could take several months using current techniques. Thus, methods enabling quick adjustment of a field with a huge number of heliostats are essential for the rise of solar tower technology. In this communication is described a new method for heliostat characterization that makes use of four cameras located near the solar receiver and simultaneously recording images of the sun reflected by the optical surfaces. From knowledge of a measured sun profile, data processing of the acquired images allows reconstructing the slope and shape errors of the heliostats, including tracking and canting errors. The mathematical basis of this shape reconstruction process is explained comprehensively. Numerical simulations demonstrate that the measurement accuracy of this "backward-gazing method" is compliant with the requirements of solar concentrating optics. Finally, we present our first experimental results obtained at the THEMIS experimental solar tower plant in Targasonne, France.
Error reduction techniques for measuring long synchrotron mirrors
International Nuclear Information System (INIS)
Irick, S.
1998-07-01
Many instruments and techniques are used for measuring long mirror surfaces. A Fizeau interferometer may be used to measure mirrors much longer than the interferometer aperture size by using grazing incidence at the mirror surface and analyzing the light reflected from a flat end mirror. Advantages of this technique are data acquisition speed and use of a common instrument. Disadvantages are reduced sampling interval, uncertainty of tangential position, and sagittal/tangential aspect ratio other than unity. Also, deep aspheric surfaces cannot be measured on a Fizeau interferometer without a specially made fringe nulling holographic plate. Other scanning instruments have been developed for measuring height, slope, or curvature profiles of the surface, but lack accuracy for very long scans required for X-ray synchrotron mirrors. The Long Trace Profiler (LTP) was developed specifically for long x-ray mirror measurement, and still outperforms other instruments, especially for aspheres. Thus, this paper focuses on error reduction techniques for the LTP
Goldman, Gretchen T; Mulholland, James A; Russell, Armistead G; Strickland, Matthew J; Klein, Mitchel; Waller, Lance A; Tolbert, Paige E
2011-06-22
Two distinctly different types of measurement error are Berkson and classical. Impacts of measurement error in epidemiologic studies of ambient air pollution are expected to depend on error type. We characterize measurement error due to instrument imprecision and spatial variability as multiplicative (i.e. additive on the log scale) and model it over a range of error types to assess impacts on risk ratio estimates both on a per measurement unit basis and on a per interquartile range (IQR) basis in a time-series study in Atlanta. Daily measures of twelve ambient air pollutants were analyzed: NO2, NOx, O3, SO2, CO, PM10 mass, PM2.5 mass, and PM2.5 components sulfate, nitrate, ammonium, elemental carbon and organic carbon. Semivariogram analysis was applied to assess spatial variability. Error due to this spatial variability was added to a reference pollutant time-series on the log scale using Monte Carlo simulations. Each of these time-series was exponentiated and introduced to a Poisson generalized linear model of cardiovascular disease emergency department visits. Measurement error resulted in reduced statistical significance for the risk ratio estimates for all amounts (corresponding to different pollutants) and types of error. When modelled as classical-type error, risk ratios were attenuated, particularly for primary air pollutants, with average attenuation in risk ratios on a per unit of measurement basis ranging from 18% to 92% and on an IQR basis ranging from 18% to 86%. When modelled as Berkson-type error, risk ratios per unit of measurement were biased away from the null hypothesis by 2% to 31%, whereas risk ratios per IQR were attenuated (i.e. biased toward the null) by 5% to 34%. For CO modelled error amount, a range of error types were simulated and effects on risk ratio bias and significance were observed. For multiplicative error, both the amount and type of measurement error impact health effect estimates in air pollution epidemiology. By modelling
Error Characterization of Altimetry Measurements at Climate Scales
Ablain, Michael; Larnicol, Gilles; Faugere, Yannice; Cazenave, Anny; Meyssignac, Benoit; Picot, Nicolas; Benveniste, Jerome
2013-09-01
Thanks to studies performed in the framework of the SALP project (supported by CNES) since the TOPEX era and more recently in the framework of the Sea- Level Climate Change Initiative project (supported by ESA), strong improvements have been provided on the estimation of the global and regional mean sea level over the whole altimeter period for all the altimetric missions. Thanks to these efforts, a better characterization of altimeter measurements errors at climate scales has been performed and presented in this paper. These errors have been compared to user requirements in order to know if scientific goals are reached by altimeter missions. The main issue of this paper is the importance to enhance the link between altimeter and climate communities to improve or refine user requirements, to better specify future altimeter system for climate applications but also to reprocess older missions beyond their original specifications.
DOI resolution measurement and error analysis with LYSO and APDs
International Nuclear Information System (INIS)
Lee, Chae-hun; Cho, Gyuseong
2008-01-01
Spatial resolution degradation in PET occurs at the edge of Field Of View (FOV) due to parallax error. To improve spatial resolution at the edge of FOV, Depth-Of-Interaction (DOI) PET has been investigated and several methods for DOI positioning were proposed. In this paper, a DOI-PET detector module using two 8x4 array avalanche photodiodes (APDs) (Hamamatsu, S8550) and a 2 cm long LYSO scintillation crystal was proposed and its DOI characteristics were investigated experimentally. In order to measure DOI positions, signals from two APDs were compared. Energy resolution was obtained from the sum of two APDs' signals and DOI positioning error was calculated. Finally, an optimum DOI step size in a 2 cm long LYSO were suggested to help to design a DOI-PET
Measurement system and model for simultaneously measuring 6DOF geometric errors.
Zhao, Yuqiong; Zhang, Bin; Feng, Qibo
2017-09-04
A measurement system to simultaneously measure six degree-of-freedom (6DOF) geometric errors is proposed. The measurement method is based on a combination of mono-frequency laser interferometry and laser fiber collimation. A simpler and more integrated optical configuration is designed. To compensate for the measurement errors introduced by error crosstalk, element fabrication error, laser beam drift, and nonparallelism of two measurement beam, a unified measurement model, which can improve the measurement accuracy, is deduced and established using the ray-tracing method. A numerical simulation using the optical design software Zemax is conducted, and the results verify the correctness of the model. Several experiments are performed to demonstrate the feasibility and effectiveness of the proposed system and measurement model.
Validation and Error Characterization for the Global Precipitation Measurement
Bidwell, Steven W.; Adams, W. J.; Everett, D. F.; Smith, E. A.; Yuter, S. E.
2003-01-01
The Global Precipitation Measurement (GPM) is an international effort to increase scientific knowledge on the global water cycle with specific goals of improving the understanding and the predictions of climate, weather, and hydrology. These goals will be achieved through several satellites specifically dedicated to GPM along with the integration of numerous meteorological satellite data streams from international and domestic partners. The GPM effort is led by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of Japan. In addition to the spaceborne assets, international and domestic partners will provide ground-based resources for validating the satellite observations and retrievals. This paper describes the validation effort of Global Precipitation Measurement to provide quantitative estimates on the errors of the GPM satellite retrievals. The GPM validation approach will build upon the research experience of the Tropical Rainfall Measuring Mission (TRMM) retrieval comparisons and its validation program. The GPM ground validation program will employ instrumentation, physical infrastructure, and research capabilities at Supersites located in important meteorological regimes of the globe. NASA will provide two Supersites, one in a tropical oceanic and the other in a mid-latitude continental regime. GPM international partners will provide Supersites for other important regimes. Those objectives or regimes not addressed by Supersites will be covered through focused field experiments. This paper describes the specific errors that GPM ground validation will address, quantify, and relate to the GPM satellite physical retrievals. GPM will attempt to identify the source of errors within retrievals including those of instrument calibration, retrieval physical assumptions, and algorithm applicability. With the identification of error sources, improvements will be made to the respective calibration
The effect of misclassification errors on case mix measurement.
Sutherland, Jason M; Botz, Chas K
2006-12-01
Case mix systems have been implemented for hospital reimbursement and performance measurement across Europe and North America. Case mix categorizes patients into discrete groups based on clinical information obtained from patient charts in an attempt to identify clinical or cost difference amongst these groups. The diagnosis related group (DRG) case mix system is the most common methodology, with variants adopted in many countries. External validation studies of coding quality have confirmed that widespread variability exists between originally recorded diagnoses and re-abstracted clinical information. DRG assignment errors in hospitals that share patient level cost data for the purpose of establishing cost weights affects cost weight accuracy. The purpose of this study is to estimate bias in cost weights due to measurement error of reported clinical information. DRG assignment error rates are simulated based on recent clinical re-abstraction study results. Our simulation study estimates that 47% of cost weights representing the least severe cases are over weight by 10%, while 32% of cost weights representing the most severe cases are under weight by 10%. Applying the simulated weights to a cross-section of hospitals, we find that teaching hospitals tend to be under weight. Since inaccurate cost weights challenges the ability of case mix systems to accurately reflect patient mix and may lead to potential distortions in hospital funding, bias in hospital case mix measurement highlights the role clinical data quality plays in hospital funding in countries that use DRG-type case mix systems. Quality of clinical information should be carefully considered from hospitals that contribute financial data for establishing cost weights.
Calvo, Roque; D’Amato, Roberto; Gómez, Emilio; Domingo, Rosario
2016-01-01
The development of an error compensation model for coordinate measuring machines (CMMs) and its integration into feature measurement is presented. CMMs are widespread and dependable instruments in industry and laboratories for dimensional measurement. From the tip probe sensor to the machine display, there is a complex transformation of probed point coordinates through the geometrical feature model that makes the assessment of accuracy and uncertainty measurement results difficult. Therefore, error compensation is not standardized, conversely to other simpler instruments. Detailed coordinate error compensation models are generally based on CMM as a rigid-body and it requires a detailed mapping of the CMM’s behavior. In this paper a new model type of error compensation is proposed. It evaluates the error from the vectorial composition of length error by axis and its integration into the geometrical measurement model. The non-explained variability by the model is incorporated into the uncertainty budget. Model parameters are analyzed and linked to the geometrical errors and uncertainty of CMM response. Next, the outstanding measurement models of flatness, angle, and roundness are developed. The proposed models are useful for measurement improvement with easy integration into CMM signal processing, in particular in industrial environments where built-in solutions are sought. A battery of implementation tests are presented in Part II, where the experimental endorsement of the model is included. PMID:27690052
Directory of Open Access Journals (Sweden)
Roque Calvo
2016-09-01
Full Text Available The development of an error compensation model for coordinate measuring machines (CMMs and its integration into feature measurement is presented. CMMs are widespread and dependable instruments in industry and laboratories for dimensional measurement. From the tip probe sensor to the machine display, there is a complex transformation of probed point coordinates through the geometrical feature model that makes the assessment of accuracy and uncertainty measurement results difficult. Therefore, error compensation is not standardized, conversely to other simpler instruments. Detailed coordinate error compensation models are generally based on CMM as a rigid-body and it requires a detailed mapping of the CMM’s behavior. In this paper a new model type of error compensation is proposed. It evaluates the error from the vectorial composition of length error by axis and its integration into the geometrical measurement model. The non-explained variability by the model is incorporated into the uncertainty budget. Model parameters are analyzed and linked to the geometrical errors and uncertainty of CMM response. Next, the outstanding measurement models of flatness, angle, and roundness are developed. The proposed models are useful for measurement improvement with easy integration into CMM signal processing, in particular in industrial environments where built-in solutions are sought. A battery of implementation tests are presented in Part II, where the experimental endorsement of the model is included.
Measurement errors for thermocouples attached to thin plates
International Nuclear Information System (INIS)
Sobolik, K.B.; Keltner, N.R.; Beck, J.V.
1989-01-01
This paper discusses Unsteady Surface Element (USE) methods which are applied to a model of a thermocouple wire attached to a thin disk. Green's functions are used to develop the integral equations for the wire and the disk. The model can be used to evaluate transient and steady state responses for many types of heat flux measurement devices including thin skin calorimeters and circular foil (Gardon) head flux gauges. The model can accommodate either surface or volumetric heating of the disk. The boundary condition at the outer radius of the disk can be either insulated or constant temperature. Effect on the errors of geometrical and thermal factors can be assessed. Examples are given
Unaccounted source of systematic errors in measurements of the Newtonian gravitational constant G
International Nuclear Information System (INIS)
DeSalvo, Riccardo
2015-01-01
Many precision measurements of G have produced a spread of results incompatible with measurement errors. Clearly an unknown source of systematic errors is at work. It is proposed here that most of the discrepancies derive from subtle deviations from Hooke's law, caused by avalanches of entangled dislocations. The idea is supported by deviations from linearity reported by experimenters measuring G, similarly to what is observed, on a larger scale, in low-frequency spring oscillators. Some mitigating experimental apparatus modifications are suggested. - Highlights: • Source of discrepancies on universal gravitational constant G measurements. • Collective motion of dislocations results in breakdown of Hook's law. • Self-organized criticality produce non-predictive shifts of equilibrium point. • New dissipation mechanism different from loss angle and viscous models is necessary. • Mitigation measures proposed may bring coherence to the measurements of G
Development of an Abbe Error Free Micro Coordinate Measuring Machine
Directory of Open Access Journals (Sweden)
Qiangxian Huang
2016-04-01
Full Text Available A micro Coordinate Measuring Machine (CMM with the measurement volume of 50 mm × 50 mm × 50 mm and measuring accuracy of about 100 nm (2σ has been developed. In this new micro CMM, an XYZ stage, which is driven by three piezo-motors in X, Y and Z directions, can achieve the drive resolution of about 1 nm and the stroke of more than 50 mm. In order to reduce the crosstalk among X-, Y- and Z-stages, a special mechanical structure, which is called co-planar stage, is introduced. The movement of the stage in each direction is detected by a laser interferometer. A contact type of probe is adopted for measurement. The center of the probe ball coincides with the intersection point of the measuring axes of the three laser interferometers. Therefore, the metrological system of the CMM obeys the Abbe principle in three directions and is free from Abbe error. The CMM is placed in an anti-vibration and thermostatic chamber for avoiding the influence of vibration and temperature fluctuation. A series of experimental results show that the measurement uncertainty within 40 mm among X, Y and Z directions is about 100 nm (2σ. The flatness of measuring face of the gauge block is also measured and verified the performance of the developed micro CMM.
Covariate measurement error correction methods in mediation analysis with failure time data.
Zhao, Shanshan; Prentice, Ross L
2014-12-01
Mediation analysis is important for understanding the mechanisms whereby one variable causes changes in another. Measurement error could obscure the ability of the potential mediator to explain such changes. This article focuses on developing correction methods for measurement error in the mediator with failure time outcomes. We consider a broad definition of measurement error, including technical error, and error associated with temporal variation. The underlying model with the "true" mediator is assumed to be of the Cox proportional hazards model form. The induced hazard ratio for the observed mediator no longer has a simple form independent of the baseline hazard function, due to the conditioning event. We propose a mean-variance regression calibration approach and a follow-up time regression calibration approach, to approximate the partial likelihood for the induced hazard function. Both methods demonstrate value in assessing mediation effects in simulation studies. These methods are generalized to multiple biomarkers and to both case-cohort and nested case-control sampling designs. We apply these correction methods to the Women's Health Initiative hormone therapy trials to understand the mediation effect of several serum sex hormone measures on the relationship between postmenopausal hormone therapy and breast cancer risk. © 2014, The International Biometric Society.
Comparison of Neural Network Error Measures for Simulation of Slender Marine Structures
DEFF Research Database (Denmark)
Christiansen, Niels H.; Voie, Per Erlend Torbergsen; Winther, Ole
2014-01-01
Training of an artificial neural network (ANN) adjusts the internal weights of the network in order to minimize a predefined error measure. This error measure is given by an error function. Several different error functions are suggested in the literature. However, the far most common measure...
Modeling gene expression measurement error: a quasi-likelihood approach
Directory of Open Access Journals (Sweden)
Strimmer Korbinian
2003-03-01
Full Text Available Abstract Background Using suitable error models for gene expression measurements is essential in the statistical analysis of microarray data. However, the true probabilistic model underlying gene expression intensity readings is generally not known. Instead, in currently used approaches some simple parametric model is assumed (usually a transformed normal distribution or the empirical distribution is estimated. However, both these strategies may not be optimal for gene expression data, as the non-parametric approach ignores known structural information whereas the fully parametric models run the risk of misspecification. A further related problem is the choice of a suitable scale for the model (e.g. observed vs. log-scale. Results Here a simple semi-parametric model for gene expression measurement error is presented. In this approach inference is based an approximate likelihood function (the extended quasi-likelihood. Only partial knowledge about the unknown true distribution is required to construct this function. In case of gene expression this information is available in the form of the postulated (e.g. quadratic variance structure of the data. As the quasi-likelihood behaves (almost like a proper likelihood, it allows for the estimation of calibration and variance parameters, and it is also straightforward to obtain corresponding approximate confidence intervals. Unlike most other frameworks, it also allows analysis on any preferred scale, i.e. both on the original linear scale as well as on a transformed scale. It can also be employed in regression approaches to model systematic (e.g. array or dye effects. Conclusions The quasi-likelihood framework provides a simple and versatile approach to analyze gene expression data that does not make any strong distributional assumptions about the underlying error model. For several simulated as well as real data sets it provides a better fit to the data than competing models. In an example it also
Directory of Open Access Journals (Sweden)
M. Ridolfi
2014-12-01
Full Text Available We review the main factors driving the calculation of the tangent height of spaceborne limb measurements: the ray-tracing method, the refractive index model and the assumed atmosphere. We find that commonly used ray tracing and refraction models are very accurate, at least in the mid-infrared. The factor with largest effect in the tangent height calculation is the assumed atmosphere. Using a climatological model in place of the real atmosphere may cause tangent height errors up to ± 200 m. Depending on the adopted retrieval scheme, these errors may have a significant impact on the derived profiles.
Influence of video compression on the measurement error of the television system
Sotnik, A. V.; Yarishev, S. N.; Korotaev, V. V.
2015-05-01
Video data require a very large memory capacity. Optimal ratio quality / volume video encoding method is one of the most actual problem due to the urgent need to transfer large amounts of video over various networks. The technology of digital TV signal compression reduces the amount of data used for video stream representation. Video compression allows effective reduce the stream required for transmission and storage. It is important to take into account the uncertainties caused by compression of the video signal in the case of television measuring systems using. There are a lot digital compression methods. The aim of proposed work is research of video compression influence on the measurement error in television systems. Measurement error of the object parameter is the main characteristic of television measuring systems. Accuracy characterizes the difference between the measured value abd the actual parameter value. Errors caused by the optical system can be selected as a source of error in the television systems measurements. Method of the received video signal processing is also a source of error. Presence of error leads to large distortions in case of compression with constant data stream rate. Presence of errors increases the amount of data required to transmit or record an image frame in case of constant quality. The purpose of the intra-coding is reducing of the spatial redundancy within a frame (or field) of television image. This redundancy caused by the strong correlation between the elements of the image. It is possible to convert an array of image samples into a matrix of coefficients that are not correlated with each other, if one can find corresponding orthogonal transformation. It is possible to apply entropy coding to these uncorrelated coefficients and achieve a reduction in the digital stream. One can select such transformation that most of the matrix coefficients will be almost zero for typical images . Excluding these zero coefficients also
James W. Hardin; Henrik Schmeidiche; Raymond J. Carroll
2003-01-01
This paper discusses and illustrates the method of regression calibration. This is a straightforward technique for fitting models with additive measurement error. We present this discussion in terms of generalized linear models (GLMs) following the notation defined in Hardin and Carroll (2003). Discussion will include specified measurement error, measurement error estimated by replicate error-prone proxies, and measurement error estimated by instrumental variables. The discussion focuses on s...
Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements
Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.
2014-01-01
This presentation discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 2x4 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and 4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to- ground communication links with enough channel capacity to support voice, data and video links from CubeSats, unmanned air vehicles (UAV), and commercial aircraft.
Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements
Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.
2014-01-01
This paper discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 4x2 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and pi/4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to-ground communication links with enough channel capacity to support voice, data and video links from cubesats, unmanned air vehicles (UAV), and commercial aircraft.
On modeling animal movements using Brownian motion with measurement error.
Pozdnyakov, Vladimir; Meyer, Thomas; Wang, Yu-Bo; Yan, Jun
2014-02-01
Modeling animal movements with Brownian motion (or more generally by a Gaussian process) has a long tradition in ecological studies. The recent Brownian bridge movement model (BBMM), which incorporates measurement errors, has been quickly adopted by ecologists because of its simplicity and tractability. We discuss some nontrivial properties of the discrete-time stochastic process that results from observing a Brownian motion with added normal noise at discrete times. In particular, we demonstrate that the observed sequence of random variables is not Markov. Consequently the expected occupation time between two successively observed locations does not depend on just those two observations; the whole path must be taken into account. Nonetheless, the exact likelihood function of the observed time series remains tractable; it requires only sparse matrix computations. The likelihood-based estimation procedure is described in detail and compared to the BBMM estimation.
Ma, H.-Y.; Klein, S. A.; Xie, S.; Zhang, C.; Tang, S.; Tang, Q.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Ahlgrimm, M.; Berg, L. K.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Liu, Y.; Merryfield, W.; Qian, Y.; Roehrig, R.; Wang, Y.-C.
2018-03-01
Many weather forecast and climate models simulate warm surface air temperature (T2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions of surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.
DEFF Research Database (Denmark)
Rabøl, Louise Isager; Andersen, Mette Lehmann; Østergaard, Doris
2011-01-01
Introduction Poor teamwork and communication between healthcare staff are correlated to patient safety incidents. However, the organisational factors responsible for these issues are unexplored. Root cause analyses (RCA) use human factors thinking to analyse the systems behind severe patient safety...... (30%)), communication errors between junior and senior staff members (11 (25%)), hesitance in speaking up (10 (23%)) and communication errors during teamwork (8 (18%)). The kappa values were 0.44-0.78. Unproceduralized communication and information exchange via telephone, related to transfer between...... incidents. The RCARs rich descriptions of the incidents revealed the organisational factors and needs related to these errors....
Threats to repair injury caused by judicial errors and criminal damage
Directory of Open Access Journals (Sweden)
Muntean Vasilisa
2017-12-01
Full Text Available The grounds for the occurrence of punitive damages are related to the illicit actions of the persons with responsibilities in the courts and the criminal prosecution bodies. In order to provide protection against such unfair situations, there are a number of legal guarantees. The legislator has highlighted both the specific circle of reasons (illegal detention, unlawful criminal prosecution, unlawful sentencing, etc. necessary to ensure that the damage caused to the person can be repaired, as well as the circle of conditions for the right to reparation (the acquittal, the order for termination of the criminal proceedings or for the prosecution, etc.. The reparation of the damage caused by judicial and criminal prosecution errors arises at the time when the act whereby the person was convicted or illegally arrested, ie at the time when the rehabilitation act became irrevocable, was found to be illegal.
The Combined Effects of Measurement Error and Omitting Confounders in the Single-Mediator Model.
Fritz, Matthew S; Kenny, David A; MacKinnon, David P
2016-01-01
Mediation analysis requires a number of strong assumptions be met in order to make valid causal inferences. Failing to account for violations of these assumptions, such as not modeling measurement error or omitting a common cause of the effects in the model, can bias the parameter estimates of the mediated effect. When the independent variable is perfectly reliable, for example when participants are randomly assigned to levels of treatment, measurement error in the mediator tends to underestimate the mediated effect, while the omission of a confounding variable of the mediator-to-outcome relation tends to overestimate the mediated effect. Violations of these two assumptions often co-occur, however, in which case the mediated effect could be overestimated, underestimated, or even, in very rare circumstances, unbiased. To explore the combined effect of measurement error and omitted confounders in the same model, the effect of each violation on the single-mediator model is first examined individually. Then the combined effect of having measurement error and omitted confounders in the same model is discussed. Throughout, an empirical example is provided to illustrate the effect of violating these assumptions on the mediated effect.
Multiple imputation to account for measurement error in marginal structural models
Edwards, Jessie K.; Cole, Stephen R.; Westreich, Daniel; Crane, Heidi; Eron, Joseph J.; Mathews, W. Christopher; Moore, Richard; Boswell, Stephen L.; Lesko, Catherine R.; Mugavero, Michael J.
2015-01-01
Background Marginal structural models are an important tool for observational studies. These models typically assume that variables are measured without error. We describe a method to account for differential and non-differential measurement error in a marginal structural model. Methods We illustrate the method estimating the joint effects of antiretroviral therapy initiation and current smoking on all-cause mortality in a United States cohort of 12,290 patients with HIV followed for up to 5 years between 1998 and 2011. Smoking status was likely measured with error, but a subset of 3686 patients who reported smoking status on separate questionnaires composed an internal validation subgroup. We compared a standard joint marginal structural model fit using inverse probability weights to a model that also accounted for misclassification of smoking status using multiple imputation. Results In the standard analysis, current smoking was not associated with increased risk of mortality. After accounting for misclassification, current smoking without therapy was associated with increased mortality [hazard ratio (HR): 1.2 (95% CI: 0.6, 2.3)]. The HR for current smoking and therapy (0.4 (95% CI: 0.2, 0.7)) was similar to the HR for no smoking and therapy (0.4; 95% CI: 0.2, 0.6). Conclusions Multiple imputation can be used to account for measurement error in concert with methods for causal inference to strengthen results from observational studies. PMID:26214338
Multiple Imputation to Account for Measurement Error in Marginal Structural Models.
Edwards, Jessie K; Cole, Stephen R; Westreich, Daniel; Crane, Heidi; Eron, Joseph J; Mathews, W Christopher; Moore, Richard; Boswell, Stephen L; Lesko, Catherine R; Mugavero, Michael J
2015-09-01
Marginal structural models are an important tool for observational studies. These models typically assume that variables are measured without error. We describe a method to account for differential and nondifferential measurement error in a marginal structural model. We illustrate the method estimating the joint effects of antiretroviral therapy initiation and current smoking on all-cause mortality in a United States cohort of 12,290 patients with HIV followed for up to 5 years between 1998 and 2011. Smoking status was likely measured with error, but a subset of 3,686 patients who reported smoking status on separate questionnaires composed an internal validation subgroup. We compared a standard joint marginal structural model fit using inverse probability weights to a model that also accounted for misclassification of smoking status using multiple imputation. In the standard analysis, current smoking was not associated with increased risk of mortality. After accounting for misclassification, current smoking without therapy was associated with increased mortality (hazard ratio [HR]: 1.2 [95% confidence interval [CI] = 0.6, 2.3]). The HR for current smoking and therapy [0.4 (95% CI = 0.2, 0.7)] was similar to the HR for no smoking and therapy (0.4; 95% CI = 0.2, 0.6). Multiple imputation can be used to account for measurement error in concert with methods for causal inference to strengthen results from observational studies.
The Combined Effects of Measurement Error and Omitting Confounders in the Single-Mediator Model
Fritz, Matthew S.; Kenny, David A.; MacKinnon, David P.
2016-01-01
Mediation analysis requires a number of strong assumptions be met in order to make valid causal inferences. Failing to account for violations of these assumptions, such as not modeling measurement error or omitting a common cause of the effects in the model, can bias the parameter estimates of the mediated effect. When the independent variable is perfectly reliable, for example when participants are randomly assigned to levels of treatment, measurement error in the mediator tends to underestimate the mediated effect, while the omission of a confounding variable of the mediator to outcome relation tends to overestimate the mediated effect. Violations of these two assumptions often co-occur, however, in which case the mediated effect could be overestimated, underestimated, or even, in very rare circumstances, unbiased. In order to explore the combined effect of measurement error and omitted confounders in the same model, the impact of each violation on the single-mediator model is first examined individually. Then the combined effect of having measurement error and omitted confounders in the same model is discussed. Throughout, an empirical example is provided to illustrate the effect of violating these assumptions on the mediated effect. PMID:27739903
Simulation error propagation for a dynamic rod worth measurement technique
International Nuclear Information System (INIS)
Kastanya, D.F.; Turinsky, P.J.
1996-01-01
KRSKO nuclear station, subsequently adapted by Westinghouse, introduced the dynamic rod worth measurement (DRWM) technique for measuring pressurized water reactor rod worths. This technique has the potential for reduced test time and primary loop waste water versus alternatives. The measurement is performed starting from a slightly supercritical state with all rods out (ARO), driving a bank in at the maximum stepping rate, and recording the ex-core detectors responses and bank position as a function of time. The static bank worth is obtained by (1) using the ex-core detectors' responses to obtain the core average flux (2) using the core average flux in the inverse point-kinetics equations to obtain the dynamic bank worth (3) converting the dynamic bank worth to the static bank worth. In this data interpretation process, various calculated quantities obtained from a core simulator are utilized. This paper presents an analysis of the sensitivity to the impact of core simulator errors on the deduced static bank worth
Lee, Y.; Keehm, Y.
2011-12-01
Estimating the degree of weathering in stone cultural heritage, such as pagodas and statues is very important to plan conservation and restoration. The ultrasonic measurement is one of commonly-used techniques to evaluate weathering index of stone cultual properties, since it is easy to use and non-destructive. Typically we use a portable ultrasonic device, PUNDIT with exponential sensors. However, there are many factors to cause errors in measurements such as operators, sensor layouts or measurement directions. In this study, we carried out variety of measurements with different operators (male and female), different sensor layouts (direct and indirect), and sensor directions (anisotropy). For operators bias, we found that there were not significant differences by the operator's sex, while the pressure an operator exerts can create larger error in measurements. Calibrating with a standard sample for each operator is very essential in this case. For the sensor layout, we found that the indirect measurement (commonly used for cultural properties, since the direct measurement is difficult in most cases) gives lower velocity than the real one. We found that the correction coefficient is slightly different for different types of rocks: 1.50 for granite and sandstone and 1.46 for marble. From the sensor directions, we found that many rocks have slight anisotropy in their ultrasonic velocity measurement, though they are considered isotropic in macroscopic scale. Thus averaging four different directional measurement (0°, 45°, 90°, 135°) gives much less errors in measurements (the variance is 2-3 times smaller). In conclusion, we reported the error in ultrasonic meaurement of stone cultural properties by various sources quantitatively and suggested the amount of correction and procedures to calibrate the measurements. Acknowledgement: This study, which forms a part of the project, has been achieved with the support of national R&D project, which has been hosted by
Francesca Hughes: Architecture of Error: Matter, Measure and the Misadventure of Precision
DEFF Research Database (Denmark)
Foote, Jonathan
2016-01-01
Review of "Architecture of Error: Matter, Measure and the Misadventure of Precision" by Francesca Hughes (MIT Press, 2014)......Review of "Architecture of Error: Matter, Measure and the Misadventure of Precision" by Francesca Hughes (MIT Press, 2014)...
Local and omnibus goodness-of-fit tests in classical measurement error models
Ma, Yanyuan; Hart, Jeffrey D.; Janicki, Ryan; Carroll, Raymond J.
2010-01-01
We consider functional measurement error models, i.e. models where covariates are measured with error and yet no distributional assumptions are made about the mismeasured variable. We propose and study a score-type local test and an orthogonal
Measuring the Noise Caused by Tehran Metro
Directory of Open Access Journals (Sweden)
Majid Abbas Pour
1999-03-01
Full Text Available One of the most common and important sources of noise in the residential environments are vehicles such as airplanes and subways. Trafficking of vehicles in streets and highways, psychologically, have damaging impacts on people living close to such areas. The development and expansion of the trading and industrial units is another factor that causes more and more exposure to noise.We have aimed at measuring the noises caused by vibration of subways of the Line of Karaj-Tehran-Mehrshahr and its effect on its surrounding area.To study this effect we designed a mathematical model and put the information of this subway line in the mentioned model. Then we analyzed the findings.This model demonstrated that we can control the harsh noise of the subway by reducing the speed of the train to 60Km/h in some points and increase in other parts to 130Km/h.
Foreign Debt: Causes and Measures Taken
Directory of Open Access Journals (Sweden)
Ion Botescu
2016-01-01
Full Text Available In an increasingly globalized world, any crisis, including the ones caused by the foreign debtdefault of a country, may have a negative impact which can be contagious both at regional and atglobal level. Taking into account all the risks to which international creditors were subjectedover time, thestock of foreign debt worldwide has experienced a significant increase in the current millennium,actually demonstrating that international lending is profitable. The causes of default, the measures taken by the concerned countries to get out of this situationand the specific examples were the elements which I have tried to capture in this paper. Last butnot least, I have performed an analysis of the evolution of the foreign debt stock and the repaymentcapacity of small and medium-income countries, respectively the most vulnerable countries interms of debt repayment.
DEFF Research Database (Denmark)
Rabøl, Louise Isager; Andersen, Mette Lehmann; Østergaard, Doris
2011-01-01
incidents. The objective of this study is to review RCA reports (RCAR) for characteristics of verbal communication errors between hospital staff in an organisational perspective. Method Two independent raters analysed 84 RCARs, conducted in six Danish hospitals between 2004 and 2006, for descriptions......Introduction Poor teamwork and communication between healthcare staff are correlated to patient safety incidents. However, the organisational factors responsible for these issues are unexplored. Root cause analyses (RCA) use human factors thinking to analyse the systems behind severe patient safety...... and characteristics of verbal communication errors such as handover errors and error during teamwork. Results Raters found description of verbal communication errors in 44 reports (52%). These included handover errors (35 (86%)), communication errors between different staff groups (19 (43%)), misunderstandings (13...
Bayesian modeling of measurement error in predictor variables using item response theory
Fox, Gerardus J.A.; Glas, Cornelis A.W.
2000-01-01
This paper focuses on handling measurement error in predictor variables using item response theory (IRT). Measurement error is of great important in assessment of theoretical constructs, such as intelligence or the school climate. Measurement error is modeled by treating the predictors as unobserved
DEFF Research Database (Denmark)
Wang, Z.; Lu, K.; Ye, Y.
2011-01-01
To achieve better performance of sensorless control of PMSM, a precise and stable estimation of rotor position and speed is required. Several parameter uncertainties and variable measurement errors may lead to estimation error, such as resistance and inductance variations due to temperature...... and flux saturation, current and voltage errors due to measurement uncertainties, and signal delay caused by hardwares. This paper reveals some inherent principles for the performance of the back-EMF based sensorless algorithm embedded in a surface mounted PMSM system adapting vector control strategy...
Landing errors in the men’s floor exercise are caused by flight characteristics
Directory of Open Access Journals (Sweden)
M Marinsek
2010-06-01
Full Text Available Landing errors on men’s floor exercises are caused by the flight parameters. Depending of the flight phase is determined the magnitude of the landing mistake. On the sample of all gymnasts (n=97 who were competing in the qualifications of the senior Men’s European Championships 2004 in Ljubljana, we analyzed saltos which were performed by them. Variables according to the theoretical model for the evaluation of salto landings in the floor exercise were used. From the mentioned model we chose only those variables that relate to the flight phase. Axis of rotation, number of turns around longitudinal axis and initial landing height havea significant impact on the magnitude of the landing mistake.
Directory of Open Access Journals (Sweden)
Konstantine K. Mamberger
2012-11-01
Full Text Available Aims This paper treats general problems of metrology and indirect measurement methods in cardiology. It is aimed at an identification of error estimation criteria for indirect measurements of heart cycle phase durations. Materials and methods A comparative analysis of an ECG of the ascending aorta recorded with the use of the Hemodynamic Analyzer Cardiocode (HDA lead versus conventional V3, V4, V5, V6 lead system ECGs is presented herein. Criteria for heart cycle phase boundaries are identified with graphic mathematical differentiation. Stroke volumes of blood SV calculated on the basis of the HDA phase duration measurements vs. echocardiography data are compared herein. Results The comparative data obtained in the study show an averaged difference at the level of 1%. An innovative noninvasive measuring technology originally developed by a Russian R & D team offers measuring stroke volume of blood SV with a high accuracy. Conclusion In practice, it is necessary to take into account some possible errors in measurements caused by hardware. Special attention should be paid to systematic errors.
Predicting crystalline lens fall caused by accommodation from changes in wavefront error
He, Lin; Applegate, Raymond A.
2011-01-01
PURPOSE To illustrate and develop a method for estimating crystalline lens decentration as a function of accommodative response using changes in wavefront error and show the method and limitations using previously published data (2004) from 2 iridectomized monkey eyes so that clinicians understand how spherical aberration can induce coma, in particular in intraocular lens surgery. SETTINGS College of Optometry, University of Houston, Houston, USA. DESIGN Evaluation of diagnostic test or technology. METHODS Lens decentration was estimated by displacing downward the wavefront error of the lens with respect to the limiting aperture (7.0 mm) and ocular first surface wavefront error for each accommodative response (0.00 to 11.00 diopters) until measured values of vertical coma matched previously published experimental data (2007). Lens decentration was also calculated using an approximation formula that only included spherical aberration and vertical coma. RESULTS The change in calculated vertical coma was consistent with downward lens decentration. Calculated downward lens decentration peaked at approximately 0.48 mm of vertical decentration in the right eye and approximately 0.31 mm of decentration in the left eye using all Zernike modes through the 7th radial order. Calculated lens decentration using only coma and spherical aberration formulas was peaked at approximately 0.45 mm in the right eye and approximately 0.23 mm in the left eye. CONCLUSIONS Lens fall as a function of accommodation was quantified noninvasively using changes in vertical coma driven principally by the accommodation-induced changes in spherical aberration. The newly developed method was valid for a large pupil only. PMID:21700108
Epidemic of medical errors and hospital-acquired infections: systemic and social causes
National Research Council Canada - National Science Library
Charney, William
2012-01-01
...) and pharmaceutical errors combined are the second or third leading killer of Americans annually: approximately 300,000 die from a combination of medical errors, hospital acquired infections (HAIs...
Review of errors in the issue of medical certificates of cause of death ...
African Journals Online (AJOL)
... significant errors in MCCD records, with the errors more likely in certificates issued by non-specialist medical officers. All the certificates audited had at least one minor error. Training of doctors on proper completion of MCCDs is strongly advocated. Funding: None of the authors received any financial support for this study.
A heteroscedastic measurement error model for method comparison data with replicate measurements.
Nawarathna, Lakshika S; Choudhary, Pankaj K
2015-03-30
Measurement error models offer a flexible framework for modeling data collected in studies comparing methods of quantitative measurement. These models generally make two simplifying assumptions: (i) the measurements are homoscedastic, and (ii) the unobservable true values of the methods are linearly related. One or both of these assumptions may be violated in practice. In particular, error variabilities of the methods may depend on the magnitude of measurement, or the true values may be nonlinearly related. Data with these features call for a heteroscedastic measurement error model that allows nonlinear relationships in the true values. We present such a model for the case when the measurements are replicated, discuss its fitting, and explain how to evaluate similarity of measurement methods and agreement between them, which are two common goals of data analysis, under this model. Model fitting involves dealing with lack of a closed form for the likelihood function. We consider estimation methods that approximate either the likelihood or the model to yield approximate maximum likelihood estimates. The fitting methods are evaluated in a simulation study. The proposed methodology is used to analyze a cholesterol dataset. Copyright © 2015 John Wiley & Sons, Ltd.
Directory of Open Access Journals (Sweden)
Zhengchun Du
2016-05-01
Full Text Available The use of three-dimensional (3D data in the industrial measurement field is becoming increasingly popular because of the rapid development of laser scanning techniques based on the time-of-flight principle. However, the accuracy and uncertainty of these types of measurement methods are seldom investigated. In this study, a mathematical uncertainty evaluation model for the diameter measurement of standard cylindroid components has been proposed and applied to a 3D laser radar measurement system (LRMS. First, a single-point error ellipsoid analysis for the LRMS was established. An error ellipsoid model and algorithm for diameter measurement of cylindroid components was then proposed based on the single-point error ellipsoid. Finally, four experiments were conducted using the LRMS to measure the diameter of a standard cylinder in the laboratory. The experimental results of the uncertainty evaluation consistently matched well with the predictions. The proposed uncertainty evaluation model for cylindrical diameters can provide a reliable method for actual measurements and support further accuracy improvement of the LRMS.
Measurements of Gun Tube Motion and Muzzle Pointing Error of Main Battle Tanks
Directory of Open Access Journals (Sweden)
Peter L. McCall
2001-01-01
Full Text Available Beginning in 1990, the US Army Aberdeen Test Center (ATC began testing a prototype cannon mounted in a non-armored turret fitted to an M1A1 Abrams tank chassis. The cannon design incorporated a longer gun tube as a means to increase projectile velocity. A significant increase in projectile impact dispersion was measured early in the test program. Through investigative efforts, the cause of the error was linked to the increased dynamic bending or flexure of the longer tube observed while the vehicle was moving. Research and investigative work was conducted through a collaborative effort with the US Army Research Laboratory, Benet Laboratory, Project Manager – Tank Main Armament Systems, US Army Research and Engineering Center, and Cadillac Gage Textron Inc. New test methods, instrumentation, data analysis procedures, and stabilization control design resulted through this series of investigations into the dynamic tube flexure error source. Through this joint research, improvements in tank fire control design have been developed to improve delivery accuracy. This paper discusses the instrumentation implemented, methods applied, and analysis procedures used to characterize the tube flexure during dynamic tests of a main battle tank and the relationship between gun pointing error and muzzle pointing error.
Evaluation of measurement precision errors at different bone density values
International Nuclear Information System (INIS)
Wilson, M.; Wong, J.; Bartlett, M.; Lee, N.
2002-01-01
Full text: The precision error commonly used in serial monitoring of BMD values using Dual Energy X Ray Absorptometry (DEXA) is 0.01-0.015g/cm - for both the L2 L4 lumbar spine and total femur. However, this limit is based on normal individuals with bone densities similar to the population mean. The purpose of this study was to systematically evaluate precision errors over the range of bone density values encountered in clinical practice. In 96 patients a BMD scan of the spine and femur was immediately repeated by the same technologist with the patient taken off the bed and repositioned between scans. Nine technologists participated. Values were obtained for the total femur and spine. Each value was classified as low range (0.75-1.05 g/cm ) and medium range (1.05- 1.35g/cm ) for the spine, low range (0.55 0. 85 g/cm ) and medium range (0.85-1.15 g/cm ) for the total femur. Results show that the precision error was significantly lower in the medium range for total femur results with the medium range value at 0.015 g/cm - and the low range at 0.025 g/cm - (p<0.01). No significant difference was found for the spine results. We also analysed precision errors between three technologists and found a significant difference (p=0.05) occurred between only two technologists and this was seen in the spine data only. We conclude that there is some evidence that the precision error increases at the outer limits of the normal bone density range. Also, the results show that having multiple trained operators does not greatly increase the BMD precision error. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc
Analysis and compensation of synchronous measurement error for multi-channel laser interferometer
International Nuclear Information System (INIS)
Du, Shengwu; Hu, Jinchun; Zhu, Yu; Hu, Chuxiong
2017-01-01
Dual-frequency laser interferometer has been widely used in precision motion system as a displacement sensor, to achieve nanoscale positioning or synchronization accuracy. In a multi-channel laser interferometer synchronous measurement system, signal delays are different in the different channels, which will cause asynchronous measurement, and then lead to measurement error, synchronous measurement error (SME). Based on signal delay analysis of the measurement system, this paper presents a multi-channel SME framework for synchronous measurement, and establishes the model between SME and motion velocity. Further, a real-time compensation method for SME is proposed. This method has been verified in a self-developed laser interferometer signal processing board (SPB). The experiment result showed that, using this compensation method, at a motion velocity 0.89 m s −1 , the max SME between two measuring channels in the SPB is 1.1 nm. This method is more easily implemented and applied to engineering than the method of directly testing smaller signal delay. (paper)
Analysis and compensation of synchronous measurement error for multi-channel laser interferometer
Du, Shengwu; Hu, Jinchun; Zhu, Yu; Hu, Chuxiong
2017-05-01
Dual-frequency laser interferometer has been widely used in precision motion system as a displacement sensor, to achieve nanoscale positioning or synchronization accuracy. In a multi-channel laser interferometer synchronous measurement system, signal delays are different in the different channels, which will cause asynchronous measurement, and then lead to measurement error, synchronous measurement error (SME). Based on signal delay analysis of the measurement system, this paper presents a multi-channel SME framework for synchronous measurement, and establishes the model between SME and motion velocity. Further, a real-time compensation method for SME is proposed. This method has been verified in a self-developed laser interferometer signal processing board (SPB). The experiment result showed that, using this compensation method, at a motion velocity 0.89 m s-1, the max SME between two measuring channels in the SPB is 1.1 nm. This method is more easily implemented and applied to engineering than the method of directly testing smaller signal delay.
Directory of Open Access Journals (Sweden)
Kim Hyang-Mi
2012-09-01
Full Text Available Abstract Background In epidemiological studies, it is often not possible to measure accurately exposures of participants even if their response variable can be measured without error. When there are several groups of subjects, occupational epidemiologists employ group-based strategy (GBS for exposure assessment to reduce bias due to measurement errors: individuals of a group/job within study sample are assigned commonly to the sample mean of exposure measurements from their group in evaluating the effect of exposure on the response. Therefore, exposure is estimated on an ecological level while health outcomes are ascertained for each subject. Such study design leads to negligible bias in risk estimates when group means are estimated from ‘large’ samples. However, in many cases, only a small number of observations are available to estimate the group means, and this causes bias in the observed exposure-disease association. Also, the analysis in a semi-ecological design may involve exposure data with the majority missing and the rest observed with measurement errors and complete response data collected with ascertainment. Methods In workplaces groups/jobs are naturally ordered and this could be incorporated in estimation procedure by constrained estimation methods together with the expectation and maximization (EM algorithms for regression models having measurement error and missing values. Four methods were compared by a simulation study: naive complete-case analysis, GBS, the constrained GBS (CGBS, and the constrained expectation and maximization (CEM. We illustrated the methods in the analysis of decline in lung function due to exposures to carbon black. Results Naive and GBS approaches were shown to be inadequate when the number of exposure measurements is too small to accurately estimate group means. The CEM method appears to be best among them when within each exposure group at least a ’moderate’ number of individuals have their
Liu, Yan; Salvendy, Gavriel
2009-05-01
This paper aims to demonstrate the effects of measurement errors on psychometric measurements in ergonomics studies. A variety of sources can cause random measurement errors in ergonomics studies and these errors can distort virtually every statistic computed and lead investigators to erroneous conclusions. The effects of measurement errors on five most widely used statistical analysis tools have been discussed and illustrated: correlation; ANOVA; linear regression; factor analysis; linear discriminant analysis. It has been shown that measurement errors can greatly attenuate correlations between variables, reduce statistical power of ANOVA, distort (overestimate, underestimate or even change the sign of) regression coefficients, underrate the explanation contributions of the most important factors in factor analysis and depreciate the significance of discriminant function and discrimination abilities of individual variables in discrimination analysis. The discussions will be restricted to subjective scales and survey methods and their reliability estimates. Other methods applied in ergonomics research, such as physical and electrophysiological measurements and chemical and biomedical analysis methods, also have issues of measurement errors, but they are beyond the scope of this paper. As there has been increasing interest in the development and testing of theories in ergonomics research, it has become very important for ergonomics researchers to understand the effects of measurement errors on their experiment results, which the authors believe is very critical to research progress in theory development and cumulative knowledge in the ergonomics field.
DEFF Research Database (Denmark)
Chen, Yangyang; Yang, Ming; Long, Jiang
2017-01-01
For motor control applications, the speed loop performance is largely depended on the accuracy of speed feedback signal. M/T method, due to its high theoretical accuracy, is the most widely used in incremental encoder adopted speed measurement. However, the inherent encoder optical grating error...
Error prevention at a radon measurement service laboratory
International Nuclear Information System (INIS)
Cohen, B.L.; Cohen, F.
1989-01-01
This article describes the steps taken at a high volume counting laboratory to avoid human, instrument, and computer errors. The laboratory analyzes diffusion barrier charcoal adsorption canisters which have been used to test homes and commercial buildings. A series of computer and human cross-checks are utilized to assure that accurate results are reported to the correct client
Measurement Error Affects Risk Estimates for Recruitment to the Hudson River Stock of Striped Bass
Directory of Open Access Journals (Sweden)
Dennis J. Dunning
2002-01-01
Full Text Available We examined the consequences of ignoring the distinction between measurement error and natural variability in an assessment of risk to the Hudson River stock of striped bass posed by entrainment at the Bowline Point, Indian Point, and Roseton power plants. Risk was defined as the probability that recruitment of age-1+ striped bass would decline by 80% or more, relative to the equilibrium value, at least once during the time periods examined (1, 5, 10, and 15 years. Measurement error, estimated using two abundance indices from independent beach seine surveys conducted on the Hudson River, accounted for 50% of the variability in one index and 56% of the variability in the other. If a measurement error of 50% was ignored and all of the variability in abundance was attributed to natural causes, the risk that recruitment of age-1+ striped bass would decline by 80% or more after 15 years was 0.308 at the current level of entrainment mortality (11%. However, the risk decreased almost tenfold (0.032 if a measurement error of 50% was considered. The change in risk attributable to decreasing the entrainment mortality rate from 11 to 0% was very small (0.009 and similar in magnitude to the change in risk associated with an action proposed in Amendment #5 to the Interstate Fishery Management Plan for Atlantic striped bass (0.006— an increase in the instantaneous fishing mortality rate from 0.33 to 0.4. The proposed increase in fishing mortality was not considered an adverse environmental impact, which suggests that potentially costly efforts to reduce entrainment mortality on the Hudson River stock of striped bass are not warranted.
International Nuclear Information System (INIS)
Strömberg, Sten; Nistor, Mihaela; Liu, Jing
2014-01-01
Highlights: • The evaluated factors introduce significant systematic errors (10–38%) in BMP tests. • Ambient temperature (T) has the most substantial impact (∼10%) at low altitude. • Ambient pressure (p) has the most substantial impact (∼68%) at high altitude. • Continuous monitoring of T and p is not necessary for kinetic calculations. - Abstract: The Biochemical Methane Potential (BMP) test is increasingly recognised as a tool for selecting and pricing biomass material for production of biogas. However, the results for the same substrate often differ between laboratories and much work to standardise such tests is still needed. In the current study, the effects from four environmental factors (i.e. ambient temperature and pressure, water vapour content and initial gas composition of the reactor headspace) on the degradation kinetics and the determined methane potential were evaluated with a 2 4 full factorial design. Four substrates, with different biodegradation profiles, were investigated and the ambient temperature was found to be the most significant contributor to errors in the methane potential. Concerning the kinetics of the process, the environmental factors’ impact on the calculated rate constants was negligible. The impact of the environmental factors on the kinetic parameters and methane potential from performing a BMP test at different geographical locations around the world was simulated by adjusting the data according to the ambient temperature and pressure of some chosen model sites. The largest effect on the methane potential was registered from tests performed at high altitudes due to a low ambient pressure. The results from this study illustrate the importance of considering the environmental factors’ influence on volumetric gas measurement in BMP tests. This is essential to achieve trustworthy and standardised results that can be used by researchers and end users from all over the world
Energy Technology Data Exchange (ETDEWEB)
Strömberg, Sten, E-mail: sten.stromberg@biotek.lu.se [Department of Biotechnology, Lund University, Getingevägen 60, 221 00 Lund (Sweden); Nistor, Mihaela, E-mail: mn@bioprocesscontrol.com [Bioprocess Control, Scheelevägen 22, 223 63 Lund (Sweden); Liu, Jing, E-mail: jing.liu@biotek.lu.se [Department of Biotechnology, Lund University, Getingevägen 60, 221 00 Lund (Sweden); Bioprocess Control, Scheelevägen 22, 223 63 Lund (Sweden)
2014-11-15
Highlights: • The evaluated factors introduce significant systematic errors (10–38%) in BMP tests. • Ambient temperature (T) has the most substantial impact (∼10%) at low altitude. • Ambient pressure (p) has the most substantial impact (∼68%) at high altitude. • Continuous monitoring of T and p is not necessary for kinetic calculations. - Abstract: The Biochemical Methane Potential (BMP) test is increasingly recognised as a tool for selecting and pricing biomass material for production of biogas. However, the results for the same substrate often differ between laboratories and much work to standardise such tests is still needed. In the current study, the effects from four environmental factors (i.e. ambient temperature and pressure, water vapour content and initial gas composition of the reactor headspace) on the degradation kinetics and the determined methane potential were evaluated with a 2{sup 4} full factorial design. Four substrates, with different biodegradation profiles, were investigated and the ambient temperature was found to be the most significant contributor to errors in the methane potential. Concerning the kinetics of the process, the environmental factors’ impact on the calculated rate constants was negligible. The impact of the environmental factors on the kinetic parameters and methane potential from performing a BMP test at different geographical locations around the world was simulated by adjusting the data according to the ambient temperature and pressure of some chosen model sites. The largest effect on the methane potential was registered from tests performed at high altitudes due to a low ambient pressure. The results from this study illustrate the importance of considering the environmental factors’ influence on volumetric gas measurement in BMP tests. This is essential to achieve trustworthy and standardised results that can be used by researchers and end users from all over the world.
Wilson, M. D.; Durand, M.; Jung, H. C.; Alsdorf, D.
2015-04-01
The Surface Water and Ocean Topography (SWOT) mission, scheduled for launch in 2020, will provide a step-change improvement in the measurement of terrestrial surface-water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water-surface elevations. In this paper, we aimed to (i) characterise and illustrate in two dimensions the errors which may be found in SWOT swath measurements of terrestrial surface water, (ii) simulate the spatio-temporal sampling scheme of SWOT for the Amazon, and (iii) assess the impact of each of these on estimates of water-surface slope and river discharge which may be obtained from SWOT imagery. We based our analysis on a virtual mission for a ~260 km reach of the central Amazon (Solimões) River, using a hydraulic model to provide water-surface elevations according to SWOT spatio-temporal sampling to which errors were added based on a two-dimensional height error spectrum derived from the SWOT design requirements. We thereby obtained water-surface elevation measurements for the Amazon main stem as may be observed by SWOT. Using these measurements, we derived estimates of river slope and discharge and compared them to those obtained directly from the hydraulic model. We found that cross-channel and along-reach averaging of SWOT measurements using reach lengths greater than 4 km for the Solimões and 7.5 km for Purus reduced the effect of systematic height errors, enabling discharge to be reproduced accurately from the water height, assuming known bathymetry and friction. Using cross-sectional averaging and 20 km reach lengths, results show Nash-Sutcliffe model efficiency values of 0.99 for the Solimões and 0.88 for the Purus, with 2.6 and 19.1 % average overall error in discharge, respectively. We extend the results to other rivers worldwide and infer that SWOT-derived discharge estimates may be more accurate for rivers with larger channel widths (permitting a greater level of cross
The error sources appearing for the gamma radioactive source measurement in dynamic condition
International Nuclear Information System (INIS)
Sirbu, M.
1977-01-01
The error analysis for the measurement of the gamma radioactive sources, placed on the soil, with the help of the helicopter are presented. The analysis is based on a new formula that takes account of the attenuation gamma ray factor in the helicopter walls. They give a complete error formula and an error diagram. (author)
Decrease in Accuracy of a Rotational SINS Caused by its Rotary Table's Errors
Directory of Open Access Journals (Sweden)
Pin Lv
2014-05-01
Full Text Available We call a strapdown inertial navigation system (SINS that uses the rotation auto-compensation technique (which is a common method to reduce the effect of the bias errors of inertial components a ‘rotational SINS’. In a rotational SINS, the rotary table is an important component, rotating the inertial sensor assembly back and forth in azimuth to accomplish error modulation. As a consequence of the manufacturing process, errors may exist in rotary tables which decrease the navigation accuracy of rotational SINSs. In this study, the errors of rotary tables are considered in terms of installation error, wobble error and angular error, and the models of these errors are established for the rotational SINS. Next, the propagation characteristics of these errors in the rotational SINS are analysed and their effects on navigation results are discussed. Finally, the theoretical conclusions are tested by numerical simulation. This paper supplies a good reference for the development of low-cost rotational SINSs, which usually have low accuracy rotary tables and which may be used in robots, intelligent vehicles and unmanned aerial vehicles (UAVs.
Haghighi, Mohammad Hosein Hayavi; Dehghani, Mohammad; Teshnizi, Saeid Hoseini; Mahmoodi, Hamid
2014-01-01
Accurate cause of death coding leads to organised and usable death information but there are some factors that influence documentation on death certificates and therefore affect the coding. We reviewed the role of documentation errors on the accuracy of death coding at Shahid Mohammadi Hospital (SMH), Bandar Abbas, Iran. We studied the death certificates of all deceased patients in SMH from October 2010 to March 2011. Researchers determined and coded the underlying cause of death on the death certificates according to the guidelines issued by the World Health Organization in Volume 2 of the International Statistical Classification of Diseases and Health Related Problems-10th revision (ICD-10). Necessary ICD coding rules (such as the General Principle, Rules 1-3, the modification rules and other instructions about death coding) were applied to select the underlying cause of death on each certificate. Demographic details and documentation errors were then extracted. Data were analysed with descriptive statistics and chi square tests. The accuracy rate of causes of death coding was 51.7%, demonstrating a statistically significant relationship (p=.001) with major errors but not such a relationship with minor errors. Factors that result in poor quality of Cause of Death coding in SMH are lack of coder training, documentation errors and the undesirable structure of death certificates.
Study of systematic errors in the luminosity measurement
International Nuclear Information System (INIS)
Arima, Tatsumi
1993-01-01
The experimental systematic error in the barrel region was estimated to be 0.44 %. This value is derived considering the systematic uncertainties from the dominant sources but does not include uncertainties which are being studied. In the end cap region, the study of shower behavior and clustering effect is under way in order to determine the angular resolution at the low angle edge of the Liquid Argon Calorimeter. We also expect that the systematic error in this region will be less than 1 %. The technical precision of theoretical uncertainty is better than 0.1 % comparing the Tobimatsu-Shimizu program and BABAMC modified by ALEPH. To estimate the physical uncertainty we will use the ALIBABA [9] which includes O(α 2 ) QED correction in leading-log approximation. (J.P.N.)
Study of systematic errors in the luminosity measurement
Energy Technology Data Exchange (ETDEWEB)
Arima, Tatsumi [Tsukuba Univ., Ibaraki (Japan). Inst. of Applied Physics
1993-04-01
The experimental systematic error in the barrel region was estimated to be 0.44 %. This value is derived considering the systematic uncertainties from the dominant sources but does not include uncertainties which are being studied. In the end cap region, the study of shower behavior and clustering effect is under way in order to determine the angular resolution at the low angle edge of the Liquid Argon Calorimeter. We also expect that the systematic error in this region will be less than 1 %. The technical precision of theoretical uncertainty is better than 0.1 % comparing the Tobimatsu-Shimizu program and BABAMC modified by ALEPH. To estimate the physical uncertainty we will use the ALIBABA [9] which includes O({alpha}{sup 2}) QED correction in leading-log approximation. (J.P.N.).
Wang, Biao; Yu, Xiaofen; Li, Qinzhao; Zheng, Yu
2008-10-01
The paper aiming at the influence factor of round grating dividing error, rolling-wheel produce eccentricity and surface shape errors provides an amendment method based on rolling-wheel to get the composite error model which includes all influence factors above, and then corrects the non-circle measurement angle error of the rolling-wheel. We make soft simulation verification and have experiment; the result indicates that the composite error amendment method can improve the diameter measurement accuracy with rolling-wheel theory. It has wide application prospect for the measurement accuracy higher than 5 μm/m.
Towards New Empirical Versions of Financial and Accounting Models Corrected for Measurement Errors
Francois-Éric Racicot; Raymond Théoret; Alain Coen
2006-01-01
In this paper, we propose a new empirical version of the Fama and French Model based on the Hausman (1978) specification test and aimed at discarding measurement errors in the variables. The proposed empirical framework is general enough to be used for correcting other financial and accounting models of measurement errors. Removing measurement errors is important at many levels as information disclosure, corporate governance and protection of investors.
Study of errors in absolute flux density measurements of Cassiopeia A
International Nuclear Information System (INIS)
Kanda, M.
1975-10-01
An error analysis for absolute flux density measurements of Cassiopeia A is discussed. The lower-bound quadrature-accumulation error for state-of-the-art measurements of the absolute flux density of Cas A around 7 GHz is estimated to be 1.71% for 3 sigma limits. The corresponding practicable error for the careful but not state-of-the-art measurement is estimated to be 4.46% for 3 sigma limits
Wrong decisions in radiology. Analysis of causes and strategies for error prevention
International Nuclear Information System (INIS)
Lackner, Klaus-Juergen; Krug, Kathrin Barbara
2009-01-01
The book covers observations on errors concerning radiological decisions within a ten-year period. The compiled information is supposed to prevent similar errors in the future. The case studies cover the following issues: cranium, thorax, mamma, abdomen (liver, pancreas, colon), (gastrointestinal tract, urogenital tract), spinal cord, skeleton and blood vessels.
Ambros Berger; Thomas Gschwantner; Ronald E. McRoberts; Klemens. Schadauer
2014-01-01
National forest inventories typically estimate individual tree volumes using models that rely on measurements of predictor variables such as tree height and diameter, both of which are subject to measurement error. The aim of this study was to quantify the impacts of these measurement errors on the uncertainty of the model-based tree stem volume estimates. The impacts...
A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.
Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing
2018-01-15
Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.
Mobarakabadi, Sedigheh Sedigh; Ebrahimipour, Hosein; Najar, Ali Vafaie; Janghorban, Roksana; Azarkish, Fatemeh
2017-03-01
Patient's safety is one of the main objective in healthcare services; however medical errors are a prevalent potential occurrence for the patients in treatment systems. Medical errors lead to an increase in mortality rate of the patients and challenges such as prolonging of the inpatient period in the hospitals and increased cost. Controlling the medical errors is very important, because these errors besides being costly, threaten the patient's safety. To evaluate the attitudes of nurses and midwives toward the causes and rates of medical errors reporting. It was a cross-sectional observational study. The study population was 140 midwives and nurses employed in Mashhad Public Hospitals. The data collection was done through Goldstone 2001 revised questionnaire. SPSS 11.5 software was used for data analysis. To analyze data, descriptive and inferential analytic statistics were used. Standard deviation and relative frequency distribution, descriptive statistics were used for calculation of the mean and the results were adjusted as tables and charts. Chi-square test was used for the inferential analysis of the data. Most of midwives and nurses (39.4%) were in age range of 25 to 34 years and the lowest percentage (2.2%) were in age range of 55-59 years. The highest average of medical errors was related to employees with three-four years of work experience, while the lowest average was related to those with one-two years of work experience. The highest average of medical errors was during the evening shift, while the lowest were during the night shift. Three main causes of medical errors were considered: illegibile physician prescription orders, similarity of names in different drugs and nurse fatigueness. The most important causes for medical errors from the viewpoints of nurses and midwives are illegible physician's order, drug name similarity with other drugs, nurse's fatigueness and damaged label or packaging of the drug, respectively. Head nurse feedback, peer
Causes and cures for errors in the simulation of ion extraction from plasmas
International Nuclear Information System (INIS)
Becker, R.
2006-01-01
For many years, computer programs have been available to simulate the extraction of positive ions from plasmas. The results of such simulations may not always agree with measurements. There are different reasons for this: the mathematical formulation must match with the simulated physics, the number of meshes must be high enough to correctly take into account the nonlinear space charge in the sheath, and ray tracing must be done in sufficiently small steps, using numerically correct field components and partial derivatives. In addition to these hidden problems the user may create errors by a wrong choice of parameters, which are not matching the assumptions of the mathematical formulation. Examples are the use of a positive ion extraction program for the extraction of negative ones, the choice of a wrong angle between the plasma electrode and the beam boundary in the vicinity of the meniscus, and the use of too few trajectories. The design of extraction electrodes generally has the aim to optimize the optical properties and the current of the ion beam. However, it is also important to take into account the surface fields in order to avoid dark currents and sparking
The study of CD side to side error in line/space pattern caused by post-exposure bake effect
Huang, Jin; Guo, Eric; Ge, Haiming; Lu, Max; Wu, Yijun; Tian, Mingjing; Yan, Shichuan; Wang, Ran
2016-10-01
In semiconductor manufacturing, as the design rule has decreased, the ITRS roadmap requires crucial tighter critical dimension (CD) control. CD uniformity is one of the necessary parameters to assure good performance and reliable functionality of any integrated circuit (IC) [1] [2], and towards the advanced technology nodes, it is a challenge to control CD uniformity well. The study of corresponding CD Uniformity by tuning Post-Exposure bake (PEB) and develop process has some significant progress[3], but CD side to side error happening to some line/space pattern are still found in practical application, and the error has approached to over the uniformity tolerance. After details analysis, even though use several developer types, the CD side to side error has not been found significant relationship to the developing. In addition, it is impossible to correct the CD side to side error by electron beam correction as such error does not appear in all Line/Space pattern masks. In this paper the root cause of CD side to side error is analyzed and the PEB module process are optimized as a main factor for improvement of CD side to side error.
Corruption in India: Causes and Remedial Measures
Ghulam Nabi Naz
2017-01-01
After independence, the popular belief that Gandhian will not indulge in corruption got a setback, post-independence setup paved the way for heavy corruption. The menace which would have dealt with strong legal provisions has become a way of life of Indian society. Corruption is recognized as the single biggest problem facing the country today. It undermines democracy and rule of law, violates human rights, distorts market and corrodes the moral fibre of people. The paper discusses the causes...
Working with Error and Uncertainty to Increase Measurement Validity
Amrein-Beardsley, Audrey; Barnett, Joshua H.
2012-01-01
Over the previous two decades, the era of accountability has amplified efforts to measure educational effectiveness more than Edward Thorndike, the father of educational measurement, likely would have imagined. Expressly, the measurement structure for evaluating educational effectiveness continues to rely increasingly on one sole…
Directory of Open Access Journals (Sweden)
Jian Feng Wu
Full Text Available PURPOSE: To examine the prevalence of refractive errors and prevalence and causes of vision loss among preschool and school children in East China. METHODS: Using a random cluster sampling in a cross-sectional school-based study design, children with an age of 4-18 years were selected from kindergartens, primary schools, and junior and senior high schools in the rural Guanxian County and the city of Weihai. All children underwent a complete ocular examination including measurement of uncorrected (UCVA and best corrected visual acuity (BCVA and auto-refractometry under cycloplegia. Myopia was defined as refractive error of ≤-0.5 diopters (D, high myopia as ≤ -6.0D, and amblyopia as BCVA ≤ 20/32 without any obvious reason for vision reduction and with strabismus or refractive errors as potential reasons. RESULTS: Out of 6364 eligible children, 6026 (94.7% children participated. Prevalence of myopia (overall: 36.9 ± 0.6%;95% confidence interval (CI:36.0,38.0 increased (P<0.001 from 1.7 ± 1.2% (95%CI:0.0,4.0 in the 4-years olds to 84.6 ± 3.2% (95%CI:78.0,91.0 in 17-years olds. Myopia was associated with older age (OR:1.56;95%CI:1.52,1.60;P<0.001, female gender (OR:1.22;95%CI:1.08,1.39;P = 0.002 and urban region (OR:2.88;95%CI:2.53,3.29;P<0.001. Prevalence of high myopia (2.0 ± 0.2% increased from 0.7 ± 0.3% (95%CI:0.1,1.3 in 10-years olds to 13.9 ± 3.0 (95%CI:7.8,19.9 in 17-years olds. It was associated with older age (OR:1.50;95%CI:1.41,1.60;P<0.001 and urban region (OR:3.11;95%CI:2.08,4.66;P<0.001. Astigmatism (≥ 0.75D (36.3 ± 0.6%;95%CI:35.0,38.0 was associated with older age (P<0.001;OR:1.06;95%CI:1.04,1.09, more myopic refractive error (P<0.001;OR:0.94;95%CI:0.91,0.97 and urban region (P<0.001;OR:1.47;95%CI:1.31,1.64. BCVA was ≤ 20/40 in the better eye in 19 (0.32% children. UCVA ≤ 20/40 in at least one eye was found in 2046 (34.05% children, with undercorrected refractive error as cause in 1975 (32.9% children. Amblyopia
Development of an Experimental Measurement System for Human Error Characteristics and a Pilot Test
International Nuclear Information System (INIS)
Jang, Tong-Il; Lee, Hyun-Chul; Moon, Kwangsu
2017-01-01
Some items out of individual and team characteristics were partially selected, and a pilot test was performed to measure and evaluate them using the experimental measurement system of human error characteristics. It is one of the processes to produce input data to the Eco-DBMS. And also, through the pilot test, it was tried to take methods to measure and acquire the physiological data, and to develop data format and quantification methods for the database. In this study, a pilot test to measure the stress and the tension level, and team cognitive characteristics out of human error characteristics was performed using the human error characteristics measurement and experimental evaluation system. In an experiment measuring the stress level, physiological characteristics using EEG was measured in a simulated unexpected situation. As shown in results, although this experiment was pilot, it was validated that relevant results for evaluating human error coping effects of workers’ FFD management guidelines and unexpected situation against guidelines can be obtained. In following researches, additional experiments including other human error characteristics will be conducted. Furthermore, the human error characteristics measurement and experimental evaluation system will be utilized to validate various human error coping solutions such as human factors criteria, design, and guidelines as well as supplement the human error characteristics database.
Kim, ChangHwan; Tamborini, Christopher R.
2012-01-01
Few studies have considered how earnings inequality estimates may be affected by measurement error in self-reported earnings in surveys. Utilizing restricted-use data that links workers in the Survey of Income and Program Participation with their W-2 earnings records, we examine the effect of measurement error on estimates of racial earnings…
Analysis on the dynamic error for optoelectronic scanning coordinate measurement network
Shi, Shendong; Yang, Linghui; Lin, Jiarui; Guo, Siyang; Ren, Yongjie
2018-01-01
Large-scale dynamic three-dimension coordinate measurement technique is eagerly demanded in equipment manufacturing. Noted for advantages of high accuracy, scale expandability and multitask parallel measurement, optoelectronic scanning measurement network has got close attention. It is widely used in large components jointing, spacecraft rendezvous and docking simulation, digital shipbuilding and automated guided vehicle navigation. At present, most research about optoelectronic scanning measurement network is focused on static measurement capacity and research about dynamic accuracy is insufficient. Limited by the measurement principle, the dynamic error is non-negligible and restricts the application. The workshop measurement and positioning system is a representative which can realize dynamic measurement function in theory. In this paper we conduct deep research on dynamic error resources and divide them two parts: phase error and synchronization error. Dynamic error model is constructed. Based on the theory above, simulation about dynamic error is carried out. Dynamic error is quantized and the rule of volatility and periodicity has been found. Dynamic error characteristics are shown in detail. The research result lays foundation for further accuracy improvement.
On the determinants of measurement error in time-driven costing
Cardinaels, E.; Labro, E.
2008-01-01
Although time estimates are used extensively for costing purposes, they are prone to measurement error. In an experimental setting, we research how measurement error in time estimates varies with: (1) the level of aggregation in the definition of costing system activities (aggregated or
Accounting for covariate measurement error in a Cox model analysis of recurrence of depression.
Liu, K; Mazumdar, S; Stone, R A; Dew, M A; Houck, P R; Reynolds, C F
2001-01-01
When a covariate measured with error is used as a predictor in a survival analysis using the Cox model, the parameter estimate is usually biased. In clinical research, covariates measured without error such as treatment procedure or sex are often used in conjunction with a covariate measured with error. In a randomized clinical trial of two types of treatments, we account for the measurement error in the covariate, log-transformed total rapid eye movement (REM) activity counts, in a Cox model analysis of the time to recurrence of major depression in an elderly population. Regression calibration and two variants of a likelihood-based approach are used to account for measurement error. The likelihood-based approach is extended to account for the correlation between replicate measures of the covariate. Using the replicate data decreases the standard error of the parameter estimate for log(total REM) counts while maintaining the bias reduction of the estimate. We conclude that covariate measurement error and the correlation between replicates can affect results in a Cox model analysis and should be accounted for. In the depression data, these methods render comparable results that have less bias than the results when measurement error is ignored.
Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Tang, Yangchao
2016-02-01
The paper designs a roundness measurement model with multi-systematic error, which takes eccentricity, probe offset, radius of tip head of probe, and tilt error into account for roundness measurement of cylindrical components. The effects of the systematic errors and radius of components are analysed in the roundness measurement. The proposed method is built on the instrument with a high precision rotating spindle. The effectiveness of the proposed method is verified by experiment with the standard cylindrical component, which is measured on a roundness measuring machine. Compared to the traditional limacon measurement model, the accuracy of roundness measurement can be increased by about 2.2 μm using the proposed roundness measurement model for the object with a large radius of around 37 mm. The proposed method can improve the accuracy of roundness measurement and can be used for error separation, calibration, and comparison, especially for cylindrical components with a large radius.
Nooteboom, S.G.; Quené, H.
2008-01-01
This paper reports two experiments designed to investigate whether lexical bias in phonological speech errors is caused by immediate feedback of activation, by self-monitoring of inner speech, or by both. The experiments test a number of predictions derived from a model of self-monitoring of inner
William G. Luppold; William G. Luppold
1995-01-01
The quality of data concerning international hardwood products trade declined in the 1980s because of several problems associated with the collection and processing of individual export transaction records. This note examines the source, impact, and remedies for data problems caused by data screening procedures, nonreporting, recording errors, and alternative...
Error analysis of thermocouple measurements in the Radiant Heat Facility
International Nuclear Information System (INIS)
Nakos, J.T.; Strait, B.G.
1980-12-01
The measurement most frequently made in the Radiant Heat Facility is temperature, and the transducer which is used almost exclusively is the thermocouple. Other methods, such as resistance thermometers and thermistors, are used but very rarely. Since a majority of the information gathered at Radiant Heat is from thermocouples, a reasonable measure of the quality of the measurements made at the facility is the accuracy of the thermocouple temperature data
Metrological Array of Cyber-Physical Systems. Part 11. Remote Error Correction of Measuring Channel
Directory of Open Access Journals (Sweden)
Yuriy YATSUK
2015-09-01
Full Text Available The multi-channel measuring instruments with both the classical structure and the isolated one is identified their errors major factors basing on general it metrological properties analysis. Limiting possibilities of the remote automatic method for additive and multiplicative errors correction of measuring instruments with help of code-control measures are studied. For on-site calibration of multi- channel measuring instruments, the portable voltage calibrators structures are suggested and their metrological properties while automatic errors adjusting are analysed. It was experimentally envisaged that unadjusted error value does not exceed ± 1 mV that satisfies most industrial applications. This has confirmed the main approval concerning the possibilities of remote errors self-adjustment as well multi- channel measuring instruments as calibration tools for proper verification.
Error-measure for anisotropic grid-adaptation in turbulence-resolving simulations
Toosi, Siavash; Larsson, Johan
2015-11-01
Grid-adaptation requires an error-measure that identifies where the grid should be refined. In the case of turbulence-resolving simulations (DES, LES, DNS), a simple error-measure is the small-scale resolved energy, which scales with both the modeled subgrid-stresses and the numerical truncation errors in many situations. Since this is a scalar measure, it does not carry any information on the anisotropy of the optimal grid-refinement. The purpose of this work is to introduce a new error-measure for turbulence-resolving simulations that is capable of predicting nearly-optimal anisotropic grids. Turbulent channel flow at Reτ ~ 300 is used to assess the performance of the proposed error-measure. The formulation is geometrically general, applicable to any type of unstructured grid.
International Nuclear Information System (INIS)
Doherty, W.
2015-01-01
A nebulizer-centric instrument response function model of the plasma mass spectrometer was combined with a signal drift model, and the result was used to identify the causes of the non-spectroscopic determinate errors remaining in mass bias-corrected Pb isotope ratios (Tl as internal standard) measured using a multi-collector plasma mass spectrometer. Model calculations, confirmed by measurement, show that the detectable time-dependent errors are a result of the combined effect of signal drift and differences in the coordinates of the Pb and Tl response function maxima (horizontal offset effect). If there are no horizontal offsets, then the mass bias-corrected isotope ratios are approximately constant in time. In the absence of signal drift, the response surface curvature and horizontal offset effects are responsible for proportional errors in the mass bias-corrected isotope ratios. The proportional errors will be different for different analyte isotope ratios and different at every instrument operating point. Consequently, mass bias coefficients calculated using different isotope ratios are not necessarily equal. The error analysis based on the combined model provides strong justification for recommending a three step correction procedure (mass bias correction, drift correction and a proportional error correction, in that order) for isotope ratio measurements using a multi-collector plasma mass spectrometer
Tso, Chak-Hau Michael; Kuras, Oliver; Wilkinson, Paul B.; Uhlemann, Sebastian; Chambers, Jonathan E.; Meldrum, Philip I.; Graham, James; Sherlock, Emma F.; Binley, Andrew
2017-11-01
Measurement errors can play a pivotal role in geophysical inversion. Most inverse models require users to prescribe or assume a statistical model of data errors before inversion. Wrongly prescribed errors can lead to over- or under-fitting of data; however, the derivation of models of data errors is often neglected. With the heightening interest in uncertainty estimation within hydrogeophysics, better characterisation and treatment of measurement errors is needed to provide improved image appraisal. Here we focus on the role of measurement errors in electrical resistivity tomography (ERT). We have analysed two time-lapse ERT datasets: one contains 96 sets of direct and reciprocal data collected from a surface ERT line within a 24 h timeframe; the other is a two-year-long cross-borehole survey at a UK nuclear site with 246 sets of over 50,000 measurements. Our study includes the characterisation of the spatial and temporal behaviour of measurement errors using autocorrelation and correlation coefficient analysis. We find that, in addition to well-known proportionality effects, ERT measurements can also be sensitive to the combination of electrodes used, i.e. errors may not be uncorrelated as often assumed. Based on these findings, we develop a new error model that allows grouping based on electrode number in addition to fitting a linear model to transfer resistance. The new model explains the observed measurement errors better and shows superior inversion results and uncertainty estimates in synthetic examples. It is robust, because it groups errors together based on the electrodes used to make the measurements. The new model can be readily applied to the diagonal data weighting matrix widely used in common inversion methods, as well as to the data covariance matrix in a Bayesian inversion framework. We demonstrate its application using extensive ERT monitoring datasets from the two aforementioned sites.
Errors in anthropometric measurements in neonates and infants
Directory of Open Access Journals (Sweden)
D Harrison
2001-09-01
Full Text Available The accuracy of methods used in Cape Town hospitals and clinics for the measurement of weight, length and age in neonates and infants became suspect during a survey of 12 local authority and 5 private sector clinics in 1994-1995 (Harrison et al. 1998. A descriptive prospective study to determine the accuracy of these methods in neonates at four maternity hospitals [ 2 public and 2 private] and infants at four child health clinics of the Cape Town City Council was carried out. The main outcome measures were an assessment of three currently used methods namely to measure crown-heel length with a measuring board, a mat and a tape measure; a comparison of weight differences when an infant is fully clothed, naked and in napkin only; and the differences in age estimated by calendar dates and by a specially designed electronic calculator. The results showed that the current methods which are used to measure infants in Cape Town vary widely from one institution to another. Many measurements are inaccurate and there is a real need for uniformity and accuracy. This can only be implemented by an effective education program so as to ensure that accurate measurements are used in monitoring the health of young children in Cape Town and elsewhere.
State-independent error-disturbance trade-off for measurement operators
International Nuclear Information System (INIS)
Zhou, S.S.; Wu, Shengjun; Chau, H.F.
2016-01-01
In general, classical measurement statistics of a quantum measurement is disturbed by performing an additional incompatible quantum measurement beforehand. Using this observation, we introduce a state-independent definition of disturbance by relating it to the distinguishability problem between two classical statistical distributions – one resulting from a single quantum measurement and the other from a succession of two quantum measurements. Interestingly, we find an error-disturbance trade-off relation for any measurements in two-dimensional Hilbert space and for measurements with mutually unbiased bases in any finite-dimensional Hilbert space. This relation shows that error should be reduced to zero in order to minimize the sum of error and disturbance. We conjecture that a similar trade-off relation with a slightly relaxed definition of error can be generalized to any measurements in an arbitrary finite-dimensional Hilbert space.
Energy Technology Data Exchange (ETDEWEB)
Ghezzehei, T.A.
2008-05-29
Application of time domain reflectometry (TDR) in soil hydrology often involves the conversion of TDR-measured dielectric permittivity to water content using universal calibration equations (empirical or physically based). Deviations of soil-specific calibrations from the universal calibrations have been noted and are usually attributed to peculiar composition of soil constituents, such as high content of clay and/or organic matter. Although it is recognized that soil disturbance by TDR waveguides may have impact on measurement errors, to our knowledge, there has not been any quantification of this effect. In this paper, we introduce a method that estimates this error by combining two models: one that describes soil compaction around cylindrical objects and another that translates change in bulk density to evolution of soil water retention characteristics. Our analysis indicates that the compaction pattern depends on the mechanical properties of the soil at the time of installation. The relative error in water content measurement depends on the compaction pattern as well as the water content and water retention properties of the soil. Illustrative calculations based on measured soil mechanical and hydrologic properties from the literature indicate that the measurement errors of using a standard three-prong TDR waveguide could be up to 10%. We also show that the error scales linearly with the ratio of rod radius to the interradius spacing.
International Nuclear Information System (INIS)
Liu Xiaoxue; Li Ziqiang; Zhao Hongsheng; Zhang Kaihong; Tang Chunhe
2014-01-01
The thicknesses of four coatings of HTR coated fuel particle are very important parameters. It is indispensable to control the thickness of four coatings of coated fuel particles for the safety of HTR. A measurement method, ceramographic sample-microanalysis method, to analyze the thickness of coatings was developed. During the process of ceramographic sample-microanalysis, there are two main errors, including ceramographic sample preparation error and thickness measurement error. With the development of microscopic techniques, thickness measurement error can be easily controlled to meet the design requirements. While, due to the coated particles are spherical particles of different diameters ranged from 850 to 1000μm, the sample preparation process will introduce an error. And this error is different from one sample to another. It’s also different from one particle to another in the same sample. In this article, the error of the ceramographic sample preparation was calculated and analyzed. Results show that the error introduced by sample preparation is minor. The minor error of sample preparation guarantees the high accuracy of the mentioned method, which indicates this method is a proper method to measure the thickness of four coatings of coated particles. (author)
Errors due to random noise in velocity measurement using incoherent-scatter radar
Directory of Open Access Journals (Sweden)
P. J. S. Williams
1996-12-01
Full Text Available The random-noise errors involved in measuring the Doppler shift of an 'incoherent-scatter' spectrum are predicted theoretically for all values of Te/Ti from 1.0 to 3.0. After correction has been made for the effects of convolution during transmission and reception and the additional errors introduced by subtracting the average of the background gates, the rms errors can be expressed by a simple semi-empirical formula. The observed errors are determined from a comparison of simultaneous EISCAT measurements using an identical pulse code on several adjacent frequencies. The plot of observed versus predicted error has a slope of 0.991 and a correlation coefficient of 99.3%. The prediction also agrees well with the mean of the error distribution reported by the standard EISCAT analysis programme.
International Nuclear Information System (INIS)
Lee, Yong Hee; Lee, Yong Hee
2011-01-01
The Fukushima I nuclear accident following the Tohoku earthquake and tsunami on 11 March 2011 occurred after twelve years had passed since the JCO accident which was caused as a result of an error made by JCO employees. These accidents, along with the Chernobyl accident, associated with characteristic problems of various organizations caused severe social and economic disruptions and have had significant environmental and health impact. The cultural problems with human errors occur for various reasons, and different actions are needed to prevent different errors. Unfortunately, much of the research on organization and human error has shown widely various or different results which call for different approaches. In other words, we have to find more practical solutions from various researches for nuclear safety and lead a systematic approach to organizational deficiency causing human error. This paper reviews Hofstede's criteria, IAEA safety culture, safety areas of periodic safety review (PSR), teamwork and performance, and an evaluation of HANARO safety culture to verify the measures used to assess the organizational safety
Energy Technology Data Exchange (ETDEWEB)
Lee, Yong Hee; Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2011-10-15
The Fukushima I nuclear accident following the Tohoku earthquake and tsunami on 11 March 2011 occurred after twelve years had passed since the JCO accident which was caused as a result of an error made by JCO employees. These accidents, along with the Chernobyl accident, associated with characteristic problems of various organizations caused severe social and economic disruptions and have had significant environmental and health impact. The cultural problems with human errors occur for various reasons, and different actions are needed to prevent different errors. Unfortunately, much of the research on organization and human error has shown widely various or different results which call for different approaches. In other words, we have to find more practical solutions from various researches for nuclear safety and lead a systematic approach to organizational deficiency causing human error. This paper reviews Hofstede's criteria, IAEA safety culture, safety areas of periodic safety review (PSR), teamwork and performance, and an evaluation of HANARO safety culture to verify the measures used to assess the organizational safety
International Nuclear Information System (INIS)
Matyushevskij, E.A.; Morozov, N.A.; Syresin, E.M.
2005-01-01
At the Joint Institute for Nuclear Research (Dubna) the electromagnetic undulator with maximal magnetic field 1.2 T and 40 cm period is under development. The computer models for the undulator magnet system were realized on the basis of POISSON and RADIA codes. The undulator magnetic field imperfections due to the design errors were simulated by the models
Period, epoch, and prediction errors of ephemerides from continuous sets of timing measurements
Deeg, H. J.
2015-06-01
Space missions such as Kepler and CoRoT have led to large numbers of eclipse or transit measurements in nearly continuous time series. This paper shows how to obtain the period error in such measurements from a basic linear least-squares fit, and how to correctly derive the timing error in the prediction of future transit or eclipse events. Assuming strict periodicity, a formula for the period error of these time series is derived, σP = σT (12 / (N3-N))1 / 2, where σP is the period error, σT the timing error of a single measurement, and N the number of measurements. Compared to the iterative method for period error estimation by Mighell & Plavchan (2013), this much simpler formula leads to smaller period errors, whose correctness has been verified through simulations. For the prediction of times of future periodic events, usual linear ephemeris were epoch errors are quoted for the first time measurement, are prone to an overestimation of the error of that prediction. This may be avoided by a correction for the duration of the time series. An alternative is the derivation of ephemerides whose reference epoch and epoch error are given for the centre of the time series. For long continuous or near-continuous time series whose acquisition is completed, such central epochs should be the preferred way for the quotation of linear ephemerides. While this work was motivated from the analysis of eclipse timing measures in space-based light curves, it should be applicable to any other problem with an uninterrupted sequence of discrete timings for which the determination of a zero point, of a constant period and of the associated errors is needed.
Directory of Open Access Journals (Sweden)
Sean Patrick Clifford MD
2016-05-01
Full Text Available A 28-year-old man presented emergently to the operating room following a gun-shot injury to his right groin. Our hospital’s Massive Transfusion Protocol was initiated as the patient entered the operating room actively hemorrhaging and severely hypotensive. During the aggressive resuscitation efforts, the patient was inadvertently transfused 2 units of packed red blood cells intended for another patient due to a series of errors. Fortunately, the incorrect product was compatible, and the patient recovered from his near-fatal injuries. Root cause analysis was used to review the transfusion error and develop an action plan to help prevent future occurrences.
Clifford, Sean Patrick; Mick, Paul Brian; Derhake, Brian Matthew
2016-01-01
A 28-year-old man presented emergently to the operating room following a gun-shot injury to his right groin. Our hospital's Massive Transfusion Protocol was initiated as the patient entered the operating room actively hemorrhaging and severely hypotensive. During the aggressive resuscitation efforts, the patient was inadvertently transfused 2 units of packed red blood cells intended for another patient due to a series of errors. Fortunately, the incorrect product was compatible, and the patient recovered from his near-fatal injuries. Root cause analysis was used to review the transfusion error and develop an action plan to help prevent future occurrences.
International Nuclear Information System (INIS)
Erdtmann, G.
1993-08-01
A sufficiently accurate characterization of the neutron flux and spectrum, i.e. the determination of the thermal flux, the flux ratio and the epithermal flux spectrum shape factor, α, is a prerequisite for all types of absolute and monostandard methods of reactor neutron activation analysis. A convenient method for these measurements is the bare triple monitor method. However, the results of this method, are very imprecise, because there are high error propagation factors form the counting errors of the monitor activities. Procedures are described to calculate the errors of the flux parameters, the α-dependent cross-section ratios, and of the analytical results from the errors of the activities of the monitor isotopes. They are included in FORTRAN programs which also allow a graphical representation of the results. A great number of examples were calculated for ten different irradiation facilities in four reactors and for 28 elements. Plots of the results are presented and discussed. (orig./HP) [de
International Nuclear Information System (INIS)
Gómez de León, F C; Meroño Pérez, P A
2010-01-01
The traditional method for measuring the velocity and the angular vibration in the shaft of rotating machines using incremental encoders is based on counting the pulses at given time intervals. This method is generically called the time interval measurement system (TIMS). A variant of this method that we have developed in this work consists of measuring the corresponding time of each pulse from the encoder and sampling the signal by means of an A/D converter as if it were an analog signal, that is to say, in discrete time. For this reason, we have denominated this method as the discrete time interval measurement system (DTIMS). This measurement system provides a substantial improvement in the precision and frequency resolution compared with the traditional method of counting pulses. In addition, this method permits modification of the width of some pulses in order to obtain a mark-phase on every lap. This paper explains the theoretical fundamentals of the DTIMS and its application for measuring the angular vibrations of rotating machines. It also displays the required relationship between the sampling rate of the signal, the number of pulses of the encoder and the rotating velocity in order to obtain the required resolution and to delimit the methodological errors in the measurement
Comparing objective and subjective error measures for color constancy
Lucassen, M.P.; Gijsenij, A.; Gevers, T.
2008-01-01
We compare an objective and a subjective performance measure for color constancy algorithms. Eight hyper-spectral images were rendered under a neutral reference illuminant and four chromatic illuminants (Red, Green, Yellow, Blue). The scenes rendered under the chromatic illuminants were color
From Measurements Errors to a New Strain Gauge Design
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard; Zike, Sanita; Salviato, Marco
2015-01-01
Significant over-prediction of the material stiffness in the order of 1-10% for polymer based composites has been experimentally observed and numerical determined when using strain gauges for strain measurements instead of non-contact methods such as digital image correlation or less stiff method...
Investigation of an Error Theory for Conjoint Measurement Methodology.
1983-05-01
1ybren, 1982; Srinivasan and Shocker, 1973a, 1973b; Ullrich =d Cumins , 1973; Takane, Young, and de Leeui, 190C; Yount,, 1972’. & OEM...procedures as a diagnostic tool. Specifically, they used the oompted STRESS - value and a measure of fit they called PRECAP that could be obtained
Correcting systematic errors in high-sensitivity deuteron polarization measurements
Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Ozben, C. S.; Prasuhn, D.; Sandri, P. Levi; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.
2012-01-01
This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY
Random measurement error: Why worry? An example of cardiovascular risk factors.
Brakenhoff, Timo B; van Smeden, Maarten; Visseren, Frank L J; Groenwold, Rolf H H
2018-01-01
With the increased use of data not originally recorded for research, such as routine care data (or 'big data'), measurement error is bound to become an increasingly relevant problem in medical research. A common view among medical researchers on the influence of random measurement error (i.e. classical measurement error) is that its presence leads to some degree of systematic underestimation of studied exposure-outcome relations (i.e. attenuation of the effect estimate). For the common situation where the analysis involves at least one exposure and one confounder, we demonstrate that the direction of effect of random measurement error on the estimated exposure-outcome relations can be difficult to anticipate. Using three example studies on cardiovascular risk factors, we illustrate that random measurement error in the exposure and/or confounder can lead to underestimation as well as overestimation of exposure-outcome relations. We therefore advise medical researchers to refrain from making claims about the direction of effect of measurement error in their manuscripts, unless the appropriate inferential tools are used to study or alleviate the impact of measurement error from the analysis.
Random measurement error: Why worry? An example of cardiovascular risk factors.
Directory of Open Access Journals (Sweden)
Timo B Brakenhoff
Full Text Available With the increased use of data not originally recorded for research, such as routine care data (or 'big data', measurement error is bound to become an increasingly relevant problem in medical research. A common view among medical researchers on the influence of random measurement error (i.e. classical measurement error is that its presence leads to some degree of systematic underestimation of studied exposure-outcome relations (i.e. attenuation of the effect estimate. For the common situation where the analysis involves at least one exposure and one confounder, we demonstrate that the direction of effect of random measurement error on the estimated exposure-outcome relations can be difficult to anticipate. Using three example studies on cardiovascular risk factors, we illustrate that random measurement error in the exposure and/or confounder can lead to underestimation as well as overestimation of exposure-outcome relations. We therefore advise medical researchers to refrain from making claims about the direction of effect of measurement error in their manuscripts, unless the appropriate inferential tools are used to study or alleviate the impact of measurement error from the analysis.
Whittle, Rebecca; Peat, George; Belcher, John; Collins, Gary S; Riley, Richard D
2018-05-18
Measurement error in predictor variables may threaten the validity of clinical prediction models. We sought to evaluate the possible extent of the problem. A secondary objective was to examine whether predictors are measured at the intended moment of model use. A systematic search of Medline was used to identify a sample of articles reporting the development of a clinical prediction model published in 2015. After screening according to a predefined inclusion criteria, information on predictors, strategies to control for measurement error and intended moment of model use were extracted. Susceptibility to measurement error for each predictor was classified into low and high risk. Thirty-three studies were reviewed, including 151 different predictors in the final prediction models. Fifty-one (33.7%) predictors were categorised as high risk of error, however this was not accounted for in the model development. Only 8 (24.2%) studies explicitly stated the intended moment of model use and when the predictors were measured. Reporting of measurement error and intended moment of model use is poor in prediction model studies. There is a need to identify circumstances where ignoring measurement error in prediction models is consequential and whether accounting for the error will improve the predictions. Copyright © 2018. Published by Elsevier Inc.
Sources of errors in the measurements of underwater profiling radiometer
Digital Repository Service at National Institute of Oceanography (India)
Silveira, N.; Suresh, T.; Talaulikar, M.; Desa, E.; Matondkar, S.G.P.; Lotlikar, A.
to meet the stringent quality requirements of marine optical data for satellite ocean color sensor validation, development of algorithms and other related applications, it is very essential to take great care while measuring these parameters. There are two... of the pelican hook. The radiometer dives vertically and the cable is paid out with less tension, keeping in tandem with the descent of the radiometer while taking care to release only the required amount of cable. The operation of the release mechanism lever...
Mean-Square Error Due to Gradiometer Field Measuring Devices
1991-06-01
convolving the gradiometer data with the inverse transform of I /T(a, 13), applying an ap- Hence (2) may be expressed in the transform domain as propriate... inverse transform of I / T(ot, 1) will not be possible quency measurements," Superconductor Applications: SQUID’s and because its inverse does not exist...and because it is a high- Machines, B. B. Schwartz and S. Foner, Eds. New York: Plenum pass function its use in an inverse transform technique Press
Error Modelling for Multi-Sensor Measurements in Infrastructure-Free Indoor Navigation
Directory of Open Access Journals (Sweden)
Laura Ruotsalainen
2018-02-01
Full Text Available The long-term objective of our research is to develop a method for infrastructure-free simultaneous localization and mapping (SLAM and context recognition for tactical situational awareness. Localization will be realized by propagating motion measurements obtained using a monocular camera, a foot-mounted Inertial Measurement Unit (IMU, sonar, and a barometer. Due to the size and weight requirements set by tactical applications, Micro-Electro-Mechanical (MEMS sensors will be used. However, MEMS sensors suffer from biases and drift errors that may substantially decrease the position accuracy. Therefore, sophisticated error modelling and implementation of integration algorithms are key for providing a viable result. Algorithms used for multi-sensor fusion have traditionally been different versions of Kalman filters. However, Kalman filters are based on the assumptions that the state propagation and measurement models are linear with additive Gaussian noise. Neither of the assumptions is correct for tactical applications, especially for dismounted soldiers, or rescue personnel. Therefore, error modelling and implementation of advanced fusion algorithms are essential for providing a viable result. Our approach is to use particle filtering (PF, which is a sophisticated option for integrating measurements emerging from pedestrian motion having non-Gaussian error characteristics. This paper discusses the statistical modelling of the measurement errors from inertial sensors and vision based heading and translation measurements to include the correct error probability density functions (pdf in the particle filter implementation. Then, model fitting is used to verify the pdfs of the measurement errors. Based on the deduced error models of the measurements, particle filtering method is developed to fuse all this information, where the weights of each particle are computed based on the specific models derived. The performance of the developed method is
Computing in the presence of soft bit errors. [caused by single event upset on spacecraft
Rasmussen, R. D.
1984-01-01
It is shown that single-event-upsets (SEUs) due to cosmic rays are a significant source of single bit error in spacecraft computers. The physical mechanism of SEU, electron hole generation by means of Linear Energy Transfer (LET), it discussed with reference made to the results of a study of the environmental effects on computer systems of the Galileo spacecraft. Techniques for making software more tolerant of cosmic ray effects are considered, including: reducing the number of registers used by the software; continuity testing of variables; redundant execution of major procedures for error detection; and encoding state variables to detect single-bit changes. Attention is also given to design modifications which may reduce the cosmic ray exposure of on-board hardware. These modifications include: shielding components operating in LEO; removing low-power Schottky parts; and the use of CMOS diodes. The SEU parameters of different electronic components are listed in a table.
Measuring Articulatory Error Consistency in Children with Developmental Apraxia of Speech
Betz, Stacy K.; Stoel-Gammon, Carol
2005-01-01
Error inconsistency is often cited as a characteristic of children with speech disorders, particularly developmental apraxia of speech (DAS); however, few researchers operationally define error inconsistency and the definitions that do exist are not standardized across studies. This study proposes three formulas for measuring various aspects of…
To Error Problem Concerning Measuring Concentration of Carbon Oxide by Thermo-Chemical Sen
Directory of Open Access Journals (Sweden)
V. I. Nazarov
2007-01-01
Full Text Available The paper gives additional errors in respect of measuring concentration of carbon oxide by thermo-chemical sensors. A number of analytical expressions for calculation of error data and corrections for environmental factor deviations from admissible ones have been obtained in the paper
Cheng, Jin-Mei; Li, Jian; Tang, Ji-Xin; Hao, Xiao-Xia; Wang, Zhi-Peng; Sun, Tie-Cheng; Wang, Xiu-Xia; Zhang, Yan; Chen, Su-Ren; Liu, Yi-Xun
2017-08-03
Mammalian oocyte chromosomes undergo 2 meiotic divisions to generate haploid gametes. The frequency of chromosome segregation errors during meiosis I increase with age. However, little attention has been paid to the question of how aging affects sister chromatid segregation during oocyte meiosis II. More importantly, how aneuploid metaphase II (MII) oocytes from aged mice evade the spindle assembly checkpoint (SAC) mechanism to complete later meiosis II to form aneuploid embryos remains unknown. Here, we report that MII oocytes from naturally aged mice exhibited substantial errors in chromosome arrangement and configuration compared with young MII oocytes. Interestingly, these errors in aged oocytes had no impact on anaphase II onset and completion as well as 2-cell formation after parthenogenetic activation. Further study found that merotelic kinetochore attachment occurred more frequently and could stabilize the kinetochore-microtubule interaction to ensure SAC inactivation and anaphase II onset in aged MII oocytes. This orientation could persist largely during anaphase II in aged oocytes, leading to severe chromosome lagging and trailing as well as delay of anaphase II completion. Therefore, merotelic kinetochore attachment in oocyte meiosis II exacerbates age-related genetic instability and is a key source of age-dependent embryo aneuploidy and dysplasia.
Intrinsic measurement errors for the speed of light in vacuum
Braun, Daniel; Schneiter, Fabienne; Fischer, Uwe R.
2017-09-01
The speed of light in vacuum, one of the most important and precisely measured natural constants, is fixed by convention to c=299 792 458 m s-1 . Advanced theories predict possible deviations from this universal value, or even quantum fluctuations of c. Combining arguments from quantum parameter estimation theory and classical general relativity, we here establish rigorously the existence of lower bounds on the uncertainty to which the speed of light in vacuum can be determined in a given region of space-time, subject to several reasonable restrictions. They provide a novel perspective on the experimental falsifiability of predictions for the quantum fluctuations of space-time.
Low-frequency Periodic Error Identification and Compensation for Star Tracker Attitude Measurement
Institute of Scientific and Technical Information of China (English)
WANG Jiongqi; XIONG Kai; ZHOU Haiyin
2012-01-01
The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequency periodic error for star tracker in attitude measurement.The analytical expression between the estimated gyro drift and the low-frequency periodic error of star tracker is derived firstly.And then the low-frequency periodic error,which can be expressed by Fourier series,is identified by the frequency spectrum of the estimated gyro drift according to the solution of the first step.Furthermore,the compensated model of the low-frequency periodic error is established based on the identified parameters to improve the attitude determination accuracy.Finally,promising simulated experimental results demonstrate the validity and effectiveness of the proposed method.The periodic error for attitude determination is eliminated basically and the estimation precision is improved greatly.
Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.
Samoli, Evangelia; Butland, Barbara K
2017-12-01
Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data. We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.
Helle, Samuli
2018-03-01
Revealing causal effects from correlative data is very challenging and a contemporary problem in human life history research owing to the lack of experimental approach. Problems with causal inference arising from measurement error in independent variables, whether related either to inaccurate measurement technique or validity of measurements, seem not well-known in this field. The aim of this study is to show how structural equation modeling (SEM) with latent variables can be applied to account for measurement error in independent variables when the researcher has recorded several indicators of a hypothesized latent construct. As a simple example of this approach, measurement error in lifetime allocation of resources to reproduction in Finnish preindustrial women is modelled in the context of the survival cost of reproduction. In humans, lifetime energetic resources allocated in reproduction are almost impossible to quantify with precision and, thus, typically used measures of lifetime reproductive effort (e.g., lifetime reproductive success and parity) are likely to be plagued by measurement error. These results are contrasted with those obtained from a traditional regression approach where the single best proxy of lifetime reproductive effort available in the data is used for inference. As expected, the inability to account for measurement error in women's lifetime reproductive effort resulted in the underestimation of its underlying effect size on post-reproductive survival. This article emphasizes the advantages that the SEM framework can provide in handling measurement error via multiple-indicator latent variables in human life history studies. © 2017 Wiley Periodicals, Inc.
Using surrogate biomarkers to improve measurement error models in nutritional epidemiology
Keogh, Ruth H; White, Ian R; Rodwell, Sheila A
2013-01-01
Nutritional epidemiology relies largely on self-reported measures of dietary intake, errors in which give biased estimated diet–disease associations. Self-reported measurements come from questionnaires and food records. Unbiased biomarkers are scarce; however, surrogate biomarkers, which are correlated with intake but not unbiased, can also be useful. It is important to quantify and correct for the effects of measurement error on diet–disease associations. Challenges arise because there is no gold standard, and errors in self-reported measurements are correlated with true intake and each other. We describe an extended model for error in questionnaire, food record, and surrogate biomarker measurements. The focus is on estimating the degree of bias in estimated diet–disease associations due to measurement error. In particular, we propose using sensitivity analyses to assess the impact of changes in values of model parameters which are usually assumed fixed. The methods are motivated by and applied to measures of fruit and vegetable intake from questionnaires, 7-day diet diaries, and surrogate biomarker (plasma vitamin C) from over 25000 participants in the Norfolk cohort of the European Prospective Investigation into Cancer and Nutrition. Our results show that the estimated effects of error in self-reported measurements are highly sensitive to model assumptions, resulting in anything from a large attenuation to a small amplification in the diet–disease association. Commonly made assumptions could result in a large overcorrection for the effects of measurement error. Increased understanding of relationships between potential surrogate biomarkers and true dietary intake is essential for obtaining good estimates of the effects of measurement error in self-reported measurements on observed diet–disease associations. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23553407
Error causes in the determination of the acid-base reactivity of oxi-hydroxides
International Nuclear Information System (INIS)
Duc, M.; Lefevre, G.; Fedoroff, M.
2004-01-01
The long term safety of radioactive waste depositories is based on the sorption of radionuclides from underground water onto engineered and natural barriers. For a quantitative prediction of the migration in such barriers, we need accurate sorption data. Models should be in agreement with the sorption mechanism. Surface complexation is the most often used model for oxides and hydroxides. In fact, there are several types of surface complexation models such as 1-pK and 2-pK monosite, 1-pK and 2-pK multisite, pK-distribution models. Furthermore, there are several ways to describe the distribution of the electrostatic potential in the vicinity of the solid surface (CCM, DLM, BSM, TLM,..). However, all these models are based on the acid-base properties of superficial hydroxide or oxide groups of the solid. It is necessary to determine the surface charge versus pH (titration curves), the point of zero charge (pzc), the surface density of sites active towards protons and hydroxides in aqueous solutions, the acid-base constants of these sites. These parameters are then used for calculating the sorption constants of ions other than protons and hydroxide ions. It is therefore important to determine these parameters very accurately. A comparison of acid-base parameters published in the literature shows a large scatter for the ''same'' oxides [1,2]. Several causes could explain this scatter. One reason is the use of different models, each electrostatic models leading to different values of site density and constants. However, titration curves and pzc are independent of the model chosen. Another reason may be uncontrolled differences in the composition and purity of oxides. Finally, other causes could be found in the titration procedure, in the solubility and the stability of the solid. In order to understand more about the acid-base properties of oxides and about the origin of the discrepancies between measurements, we have performed a systematic experimental study of several
Laurier, Dominique; Rage, Estelle
2018-01-01
Exposure measurement error represents one of the most important sources of uncertainty in epidemiology. When exposure uncertainty is not or only poorly accounted for, it can lead to biased risk estimates and a distortion of the shape of the exposure-response relationship. In occupational cohort studies, the time-dependent nature of exposure and changes in the method of exposure assessment may create complex error structures. When a method of group-level exposure assessment is used, individual worker practices and the imprecision of the instrument used to measure the average exposure for a group of workers may give rise to errors that are shared between workers, within workers or both. In contrast to unshared measurement error, the effects of shared errors remain largely unknown. Moreover, exposure uncertainty and magnitude of exposure are typically highest for the earliest years of exposure. We conduct a simulation study based on exposure data of the French cohort of uranium miners to compare the effects of shared and unshared exposure uncertainty on risk estimation and on the shape of the exposure-response curve in proportional hazards models. Our results indicate that uncertainty components shared within workers cause more bias in risk estimation and a more severe attenuation of the exposure-response relationship than unshared exposure uncertainty or exposure uncertainty shared between individuals. These findings underline the importance of careful characterisation and modeling of exposure uncertainty in observational studies. PMID:29408862
Morcrette, C. J.; Van Weverberg, K.; Ma, H.-Y.; Ahlgrimm, M.; Bazile, E.; Berg, L. K.; Cheng, A.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Lee, W.-S.; Liu, Y.; Mellul, L.; Merryfield, W. J.; Qian, Y.; Roehrig, R.; Wang, Y.-C.; Xie, S.; Xu, K.-M.; Zhang, C.; Klein, S.; Petch, J.
2018-03-01
We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally, a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.
An integrity measure to benchmark quantum error correcting memories
Xu, Xiaosi; de Beaudrap, Niel; O'Gorman, Joe; Benjamin, Simon C.
2018-02-01
Rapidly developing experiments across multiple platforms now aim to realise small quantum codes, and so demonstrate a memory within which a logical qubit can be protected from noise. There is a need to benchmark the achievements in these diverse systems, and to compare the inherent power of the codes they rely upon. We describe a recently introduced performance measure called integrity, which relates to the probability that an ideal agent will successfully ‘guess’ the state of a logical qubit after a period of storage in the memory. Integrity is straightforward to evaluate experimentally without state tomography and it can be related to various established metrics such as the logical fidelity and the pseudo-threshold. We offer a set of experimental milestones that are steps towards demonstrating unconditionally superior encoded memories. Using intensive numerical simulations we compare memories based on the five-qubit code, the seven-qubit Steane code, and a nine-qubit code which is the smallest instance of a surface code; we assess both the simple and fault-tolerant implementations of each. While the ‘best’ code upon which to base a memory does vary according to the nature and severity of the noise, nevertheless certain trends emerge.
Statistical methods for biodosimetry in the presence of both Berkson and classical measurement error
Miller, Austin
In radiation epidemiology, the true dose received by those exposed cannot be assessed directly. Physical dosimetry uses a deterministic function of the source term, distance and shielding to estimate dose. For the atomic bomb survivors, the physical dosimetry system is well established. The classical measurement errors plaguing the location and shielding inputs to the physical dosimetry system are well known. Adjusting for the associated biases requires an estimate for the classical measurement error variance, for which no data-driven estimate exists. In this case, an instrumental variable solution is the most viable option to overcome the classical measurement error indeterminacy. Biological indicators of dose may serve as instrumental variables. Specification of the biodosimeter dose-response model requires identification of the radiosensitivity variables, for which we develop statistical definitions and variables. More recently, researchers have recognized Berkson error in the dose estimates, introduced by averaging assumptions for many components in the physical dosimetry system. We show that Berkson error induces a bias in the instrumental variable estimate of the dose-response coefficient, and then address the estimation problem. This model is specified by developing an instrumental variable mixed measurement error likelihood function, which is then maximized using a Monte Carlo EM Algorithm. These methods produce dose estimates that incorporate information from both physical and biological indicators of dose, as well as the first instrumental variable based data-driven estimate for the classical measurement error variance.
Directory of Open Access Journals (Sweden)
Kovacevic, Srdja
2016-12-01
Full Text Available This paper describes the two-step method used to analyse the factors and aspects influencing human error during the maintenance of mining machines. The first step is the cause-effect analysis, supported by brainstorming, where five factors and 21 aspects are identified. During the second step, the group fuzzy analytic hierarchy process is used to rank the identified factors and aspects. A case study is done on mining companies in Serbia. The key aspects are ranked according to an analysis that included experts who assess risks in mining companies (a maintenance engineer, a technologist, an ergonomist, a psychologist, and an organisational scientist. Failure to follow technical maintenance instructions, poor organisation of the training process, inadequate diagnostic equipment, and a lack of understanding of the work process are identified as the most important causes of human error.
Determining The Factors Causing Human Error Deficiencies At A Public Utility Company
Directory of Open Access Journals (Sweden)
F. W. Badenhorst
2004-11-01
Full Text Available According to Neff (1977, as cited by Bergh (1995, the westernised culture considers work important for industrial mental health. Most individuals experience work positively, which creates a positive attitude. Should this positive attitude be inhibited, workers could lose concentration and become bored, potentially resulting in some form of human error. The aim of this research was to determine the factors responsible for human error events, which lead to power supply failures at Eskom power stations. Proposals were made for the reduction of these contributing factors towards improving plant performance. The target population was 700 panel operators in Eskom’s Power Generation Group. The results showed that factors leading to human error can be reduced or even eliminated. Opsomming Neff (1977 soos aangehaal deur Bergh (1995, skryf dat in die westerse kultuur werk belangrik vir bedryfsgeestesgesondheid is. Die meeste persone ervaar werk as positief, wat ’n positiewe gesindheid kweek. Indien hierdie positiewe gesindheid geïnhibeer word, kan dit lei tot ’n gebrek aan konsentrasie by die werkers. Werkers kan verveeld raak en dit kan weer lei tot menslike foute. Die doel van hierdie navorsing is om die faktore vas te stel wat tot menslike foute lei, en wat bydra tot onderbrekings in kragvoorsiening by Eskom kragstasies. Voorstelle is gemaak vir die vermindering van hierdie bydraende faktore ten einde die kragaanleg se prestasie te verbeter. Die teiken-populasie was 700 paneel-operateurs in die Kragopwekkingsgroep by Eskom. Die resultate dui daarop dat die faktore wat aanleiding gee tot menslike foute wel verminder, of geëlimineer kan word.
Measuring Identification and Quantification Errors in Spectral CT Material Decomposition
Directory of Open Access Journals (Sweden)
Aamir Younis Raja
2018-03-01
Full Text Available Material decomposition methods are used to identify and quantify multiple tissue components in spectral CT but there is no published method to quantify the misidentification of materials. This paper describes a new method for assessing misidentification and mis-quantification in spectral CT. We scanned a phantom containing gadolinium (1, 2, 4, 8 mg/mL, hydroxyapatite (54.3, 211.7, 808.5 mg/mL, water and vegetable oil using a MARS spectral scanner equipped with a poly-energetic X-ray source operated at 118 kVp and a CdTe Medipix3RX camera. Two imaging protocols were used; both with and without 0.375 mm external brass filter. A proprietary material decomposition method identified voxels as gadolinium, hydroxyapatite, lipid or water. Sensitivity and specificity information was used to evaluate material misidentification. Biological samples were also scanned. There were marked differences in identification and quantification between the two protocols even though spectral and linear correlation of gadolinium and hydroxyapatite in the reconstructed images was high and no qualitative segmentation differences in the material decomposed images were observed. At 8 mg/mL, gadolinium was correctly identified for both protocols, but concentration was underestimated by over half for the unfiltered protocol. At 1 mg/mL, gadolinium was misidentified in 38% of voxels for the filtered protocol and 58% of voxels for the unfiltered protocol. Hydroxyapatite was correctly identified at the two higher concentrations for both protocols, but mis-quantified for the unfiltered protocol. Gadolinium concentration as measured in the biological specimen showed a two-fold difference between protocols. In future, this methodology could be used to compare and optimize scanning protocols, image reconstruction methods, and methods for material differentiation in spectral CT.
International Nuclear Information System (INIS)
Tanner, R.J.; Thomas, D.J.; Bartlett, D.T.; Horwood, N.
1999-01-01
A study has been performed to assess the extent to which variations in the energy dependence of response of neutron personal dosemeters can cause systematic errors in readings obtained in workplace fields. This involved a detailed determination of the response functions of personal dosemeters used in the UK. These response functions were folded with workplace spectra to ascertain the under- or over-response in workplace fields
Tanner, R J; Bartlett, D T; Horwood, N
1999-01-01
A study has been performed to assess the extent to which variations in the energy dependence of response of neutron personal dosemeters can cause systematic errors in readings obtained in workplace fields. This involved a detailed determination of the response functions of personal dosemeters used in the UK. These response functions were folded with workplace spectra to ascertain the under- or over-response in workplace fields.
The systematic error of temperature noise correlation measurement method and self-calibration
International Nuclear Information System (INIS)
Tian Hong; Tong Yunxian
1993-04-01
The turbulent transport behavior of fluid noise and the nature of noise affect on the velocity measurement system have been studied. The systematic error of velocity measurement system is analyzed. A theoretical calibration method is proposed, which makes the velocity measurement of time-correlation as an absolute measurement method. The theoretical results are in good agreement with experiments
Energy Technology Data Exchange (ETDEWEB)
Coakley, K.J., E-mail: kevin.coakley@nist.go [National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305 (United States); Dewey, M.S. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Yue, A.T. [University of Tennessee, Knoxville, TN (United States); Laptev, A.B. [Tulane University, New Orleans, LA (United States)
2009-12-11
Many experiments at neutron scattering facilities require nearly monochromatic neutron beams. In such experiments, one must accurately measure the mean wavelength of the beam. We seek to reduce the systematic uncertainty of this measurement to approximately 0.1%. This work is motivated mainly by an effort to improve the measurement of the neutron lifetime determined from data collected in a 2003 in-beam experiment performed at NIST. More specifically, we seek to reduce systematic uncertainty by calibrating the neutron detector used in this lifetime experiment. This calibration requires simultaneous measurement of the responses of both the neutron detector used in the lifetime experiment and an absolute black neutron detector to a highly collimated nearly monochromatic beam of cold neutrons, as well as a separate measurement of the mean wavelength of the neutron beam. The calibration uncertainty will depend on the uncertainty of the measured efficiency of the black neutron detector and the uncertainty of the measured mean wavelength. The mean wavelength of the beam is measured by Bragg diffracting the beam from a nearly perfect silicon analyzer crystal. Given the rocking curve data and knowledge of the directions of the rocking axis and the normal to the scattering planes in the silicon crystal, one determines the mean wavelength of the beam. In practice, the direction of the rocking axis and the normal to the silicon scattering planes are not known exactly. Based on Monte Carlo simulation studies, we quantify systematic uncertainties in the mean wavelength measurement due to these geometric errors. Both theoretical and empirical results are presented and compared.
Sinha, Samiran; Mallick, Bani K.; Kipnis, Victor; Carroll, Raymond J.
2009-01-01
We propose a semiparametric Bayesian method for handling measurement error in nutritional epidemiological data. Our goal is to estimate nonparametrically the form of association between a disease and exposure variable while the true values
Local and omnibus goodness-of-fit tests in classical measurement error models
Ma, Yanyuan
2010-09-14
We consider functional measurement error models, i.e. models where covariates are measured with error and yet no distributional assumptions are made about the mismeasured variable. We propose and study a score-type local test and an orthogonal series-based, omnibus goodness-of-fit test in this context, where no likelihood function is available or calculated-i.e. all the tests are proposed in the semiparametric model framework. We demonstrate that our tests have optimality properties and computational advantages that are similar to those of the classical score tests in the parametric model framework. The test procedures are applicable to several semiparametric extensions of measurement error models, including when the measurement error distribution is estimated non-parametrically as well as for generalized partially linear models. The performance of the local score-type and omnibus goodness-of-fit tests is demonstrated through simulation studies and analysis of a nutrition data set.
Statistical analysis with measurement error or misclassification strategy, method and application
Yi, Grace Y
2017-01-01
This monograph on measurement error and misclassification covers a broad range of problems and emphasizes unique features in modeling and analyzing problems arising from medical research and epidemiological studies. Many measurement error and misclassification problems have been addressed in various fields over the years as well as with a wide spectrum of data, including event history data (such as survival data and recurrent event data), correlated data (such as longitudinal data and clustered data), multi-state event data, and data arising from case-control studies. Statistical Analysis with Measurement Error or Misclassification: Strategy, Method and Application brings together assorted methods in a single text and provides an update of recent developments for a variety of settings. Measurement error effects and strategies of handling mismeasurement for different models are closely examined in combination with applications to specific problems. Readers with diverse backgrounds and objectives can utilize th...
DEFF Research Database (Denmark)
Ashraf, Bilal; Janss, Luc; Jensen, Just
sample). The GBSeq data can be used directly in genomic models in the form of individual SNP allele-frequency estimates (e.g., reference reads/total reads per polymorphic site per individual), but is subject to measurement error due to the low sequencing depth per individual. Due to technical reasons....... In the current work we show how the correction for measurement error in GBSeq can also be applied in whole genome genomic variance and genomic prediction models. Bayesian whole-genome random regression models are proposed to allow implementation of large-scale SNP-based models with a per-SNP correction...... for measurement error. We show correct retrieval of genomic explained variance, and improved genomic prediction when accounting for the measurement error in GBSeq data...
Directory of Open Access Journals (Sweden)
Tao Li
2016-03-01
Full Text Available The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF and Kalman filter (KF. The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.
Li, Tao; Yuan, Gannan; Li, Wang
2016-03-15
The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.
The impact of measurement errors in the identification of regulatory networks
Directory of Open Access Journals (Sweden)
Sato João R
2009-12-01
Full Text Available Abstract Background There are several studies in the literature depicting measurement error in gene expression data and also, several others about regulatory network models. However, only a little fraction describes a combination of measurement error in mathematical regulatory networks and shows how to identify these networks under different rates of noise. Results This article investigates the effects of measurement error on the estimation of the parameters in regulatory networks. Simulation studies indicate that, in both time series (dependent and non-time series (independent data, the measurement error strongly affects the estimated parameters of the regulatory network models, biasing them as predicted by the theory. Moreover, when testing the parameters of the regulatory network models, p-values computed by ignoring the measurement error are not reliable, since the rate of false positives are not controlled under the null hypothesis. In order to overcome these problems, we present an improved version of the Ordinary Least Square estimator in independent (regression models and dependent (autoregressive models data when the variables are subject to noises. Moreover, measurement error estimation procedures for microarrays are also described. Simulation results also show that both corrected methods perform better than the standard ones (i.e., ignoring measurement error. The proposed methodologies are illustrated using microarray data from lung cancer patients and mouse liver time series data. Conclusions Measurement error dangerously affects the identification of regulatory network models, thus, they must be reduced or taken into account in order to avoid erroneous conclusions. This could be one of the reasons for high biological false positive rates identified in actual regulatory network models.
2016-03-01
CYCLONE TRACK FORECAST ERROR DISTRIBUTIONS WITH MEASUREMENTS OF FORECAST UNCERTAINTY by Nicholas M. Chisler March 2016 Thesis Advisor...March 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE RELATING TROPICAL CYCLONE TRACK FORECAST ERROR DISTRIBUTIONS...WITH MEASUREMENTS OF FORECAST UNCERTAINTY 5. FUNDING NUMBERS 6. AUTHOR(S) Nicholas M. Chisler 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES
Carroll, Raymond J.
2010-05-01
This paper considers identification and estimation of a general nonlinear Errors-in-Variables (EIV) model using two samples. Both samples consist of a dependent variable, some error-free covariates, and an error-prone covariate, for which the measurement error has unknown distribution and could be arbitrarily correlated with the latent true values; and neither sample contains an accurate measurement of the corresponding true variable. We assume that the regression model of interest - the conditional distribution of the dependent variable given the latent true covariate and the error-free covariates - is the same in both samples, but the distributions of the latent true covariates vary with observed error-free discrete covariates. We first show that the general latent nonlinear model is nonparametrically identified using the two samples when both could have nonclassical errors, without either instrumental variables or independence between the two samples. When the two samples are independent and the nonlinear regression model is parameterized, we propose sieve Quasi Maximum Likelihood Estimation (Q-MLE) for the parameter of interest, and establish its root-n consistency and asymptotic normality under possible misspecification, and its semiparametric efficiency under correct specification, with easily estimated standard errors. A Monte Carlo simulation and a data application are presented to show the power of the approach.
Urban, Michal; Leššo, Roman; Pelclová, Daniela
2016-07-01
The purpose of the article was to study unintentional pharmaceutical-related poisonings committed by laypersons that were reported to the Toxicological Information Centre in the Czech Republic. Identifying frequency, sources, reasons and consequences of the medication errors in laypersons could help to reduce the overall rate of medication errors. Records of medication error enquiries from 2013 to 2014 were extracted from the electronic database, and the following variables were reviewed: drug class, dosage form, dose, age of the subject, cause of the error, time interval from ingestion to the call, symptoms, prognosis at the time of the call and first aid recommended. Of the calls, 1354 met the inclusion criteria. Among them, central nervous system-affecting drugs (23.6%), respiratory drugs (18.5%) and alimentary drugs (16.2%) were the most common drug classes involved in the medication errors. The highest proportion of the patients was in the youngest age subgroup 0-5 year-old (46%). The reasons for the medication errors involved the leaflet misinterpretation and mistaken dose (53.6%), mixing up medications (19.2%), attempting to reduce pain with repeated doses (6.4%), erroneous routes of administration (2.2%), psychiatric/elderly patients (2.7%), others (9.0%) or unknown (6.9%). A high proportion of children among the patients may be due to the fact that children's dosages for many drugs vary by their weight, and more medications come in a variety of concentrations. Most overdoses could be prevented by safer labelling, proper cap closure systems for liquid products and medication reconciliation by both physicians and pharmacists. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Directory of Open Access Journals (Sweden)
Yuriy YATSUK
2015-06-01
Full Text Available Since during design it is impossible to use the uncertainty approach because the measurement results are still absent and as noted the error approach that can be successfully applied taking as true the nominal value of instruments transformation function. Limiting possibilities of additive error correction of measuring instruments for Cyber-Physical Systems are studied basing on general and special methods of measurement. Principles of measuring circuit maximal symmetry and its minimal reconfiguration are proposed for measurement or/and calibration. It is theoretically justified for the variety of correction methods that minimum additive error of measuring instruments exists under considering the real equivalent parameters of input electronic switches. Terms of self-calibrating and verification the measuring instruments in place are studied.
Analysis of causes and effects errors in calculation of rolling slewing bearings capacity
Directory of Open Access Journals (Sweden)
Marek Krynke
2016-09-01
Full Text Available In the paper the basic design features and essential assumption of calculation models as well as the factors influencing quality improvement and improvement of calculation process of bearing capacity of rolling slewing bearings are discussed. The aim of conducted research is the identification and elimination of sources of errors in determining the characteristics of slewing bearing capacity. The result of the research aims atdeterminingthe risk of making mistakes and specifying tips for designers of slewing bearings. It is shown that there is a necessity fora numerical method to be applied and that real conditions of bearing work must necessarily be taken into account e.g. carrying structure deformations as the first ones.
International Nuclear Information System (INIS)
Burr, T.; Croft, S.; Krieger, T.; Martin, K.; Norman, C.; Walsh, S.
2016-01-01
One example of top-down uncertainty quantification (UQ) involves comparing two or more measurements on each of multiple items. One example of bottom-up UQ expresses a measurement result as a function of one or more input variables that have associated errors, such as a measured count rate, which individually (or collectively) can be evaluated for impact on the uncertainty in the resulting measured value. In practice, it is often found that top-down UQ exhibits larger error variances than bottom-up UQ, because some error sources are present in the fielded assay methods used in top-down UQ that are not present (or not recognized) in the assay studies used in bottom-up UQ. One would like better consistency between the two approaches in order to claim understanding of the measurement process. The purpose of this paper is to refine bottom-up uncertainty estimation by using calibration information so that if there are no unknown error sources, the refined bottom-up uncertainty estimate will agree with the top-down uncertainty estimate to within a specified tolerance. Then, in practice, if the top-down uncertainty estimate is larger than the refined bottom-up uncertainty estimate by more than the specified tolerance, there must be omitted sources of error beyond those predicted from calibration uncertainty. The paper develops a refined bottom-up uncertainty approach for four cases of simple linear calibration: (1) inverse regression with negligible error in predictors, (2) inverse regression with non-negligible error in predictors, (3) classical regression followed by inversion with negligible error in predictors, and (4) classical regression followed by inversion with non-negligible errors in predictors. Our illustrations are of general interest, but are drawn from our experience with nuclear material assay by non-destructive assay. The main example we use is gamma spectroscopy that applies the enrichment meter principle. Previous papers that ignore error in predictors
Design and application of location error teaching aids in measuring and visualization
Directory of Open Access Journals (Sweden)
Yu Fengning
2015-01-01
Full Text Available As an abstract concept, ‘location error’ in is considered to be an important element with great difficult to understand and apply. The paper designs and develops an instrument to measure the location error. The location error is affected by different position methods and reference selection. So we choose position element by rotating the disk. The tiny movement transfers by grating ruler and programming by PLC can show the error on text display, which also helps students understand the position principle and related concepts of location error. After comparing measurement results with theoretical calculations and analyzing the measurement accuracy, the paper draws a conclusion that the teaching aid owns reliability and a promotion of high value.
Errors in measuring transverse and energy jitter by beam position monitors
Energy Technology Data Exchange (ETDEWEB)
Balandin, V.; Decking, W.; Golubeva, N.
2010-02-15
The problem of errors, arising due to finite BPMresolution, in the difference orbit parameters, which are found as a least squares fit to the BPM data, is one of the standard and important problems of accelerator physics. Even so for the case of transversely uncoupled motion the covariance matrix of reconstruction errors can be calculated ''by hand'', the direct usage of obtained solution, as a tool for designing of a ''good measurement system'', does not look to be fairly straightforward. It seems that a better understanding of the nature of the problem is still desirable. We make a step in this direction introducing dynamic into this problem, which at the first glance seems to be static. We consider a virtual beam consisting of virtual particles obtained as a result of application of reconstruction procedure to ''all possible values'' of BPM reading errors. This beam propagates along the beam line according to the same rules as any real beam and has all beam dynamical characteristics, such as emittances, energy spread, dispersions, betatron functions and etc. All these values become the properties of the BPM measurement system. One can compare two BPM systems comparing their error emittances and rms error energy spreads, or, for a given measurement system, one can achieve needed balance between coordinate and momentum reconstruction errors by matching the error betatron functions in the point of interest to the desired values. (orig.)
Estimation of heading gyrocompass error using a GPS 3DF system: Impact on ADCP measurements
Directory of Open Access Journals (Sweden)
Simón Ruiz
2002-12-01
Full Text Available Traditionally the horizontal orientation in a ship (heading has been obtained from a gyrocompass. This instrument is still used on research vessels but has an estimated error of about 2-3 degrees, inducing a systematic error in the cross-track velocity measured by an Acoustic Doppler Current Profiler (ADCP. The three-dimensional positioning system (GPS 3DF provides an independent heading measurement with accuracy better than 0.1 degree. The Spanish research vessel BIO Hespérides has been operating with this new system since 1996. For the first time on this vessel, the data from this new instrument are used to estimate gyrocompass error. The methodology we use follows the scheme developed by Griffiths (1994, which compares data from the gyrocompass and the GPS system in order to obtain an interpolated error function. In the present work we apply this methodology on mesoscale surveys performed during the observational phase of the OMEGA project, in the Alboran Sea. The heading-dependent gyrocompass error dominated. Errors in gyrocompass heading of 1.4-3.4 degrees have been found, which give a maximum error in measured cross-track ADCP velocity of 24 cm s-1.
Errors in measuring transverse and energy jitter by beam position monitors
International Nuclear Information System (INIS)
Balandin, V.; Decking, W.; Golubeva, N.
2010-02-01
The problem of errors, arising due to finite BPMresolution, in the difference orbit parameters, which are found as a least squares fit to the BPM data, is one of the standard and important problems of accelerator physics. Even so for the case of transversely uncoupled motion the covariance matrix of reconstruction errors can be calculated ''by hand'', the direct usage of obtained solution, as a tool for designing of a ''good measurement system'', does not look to be fairly straightforward. It seems that a better understanding of the nature of the problem is still desirable. We make a step in this direction introducing dynamic into this problem, which at the first glance seems to be static. We consider a virtual beam consisting of virtual particles obtained as a result of application of reconstruction procedure to ''all possible values'' of BPM reading errors. This beam propagates along the beam line according to the same rules as any real beam and has all beam dynamical characteristics, such as emittances, energy spread, dispersions, betatron functions and etc. All these values become the properties of the BPM measurement system. One can compare two BPM systems comparing their error emittances and rms error energy spreads, or, for a given measurement system, one can achieve needed balance between coordinate and momentum reconstruction errors by matching the error betatron functions in the point of interest to the desired values. (orig.)
Biggs, Adam T
2017-07-01
Visual search studies are common in cognitive psychology, and the results generally focus upon accuracy, response times, or both. Most research has focused upon search scenarios where no more than 1 target will be present for any single trial. However, if multiple targets can be present on a single trial, it introduces an additional source of error because the found target can interfere with subsequent search performance. These errors have been studied thoroughly in radiology for decades, although their emphasis in cognitive psychology studies has been more recent. One particular issue with multiple-target search is that these subsequent search errors (i.e., specific errors which occur following a found target) are measured differently by different studies. There is currently no guidance as to which measurement method is best or what impact different measurement methods could have upon various results and conclusions. The current investigation provides two efforts to address these issues. First, the existing literature is reviewed to clarify the appropriate scenarios where subsequent search errors could be observed. Second, several different measurement methods are used with several existing datasets to contrast and compare how each method would have affected the results and conclusions of those studies. The evidence is then used to provide appropriate guidelines for measuring multiple-target search errors in future studies.
Measurements of stem diameter: implications for individual- and stand-level errors.
Paul, Keryn I; Larmour, John S; Roxburgh, Stephen H; England, Jacqueline R; Davies, Micah J; Luck, Hamish D
2017-08-01
Stem diameter is one of the most common measurements made to assess the growth of woody vegetation, and the commercial and environmental benefits that it provides (e.g. wood or biomass products, carbon sequestration, landscape remediation). Yet inconsistency in its measurement is a continuing source of error in estimates of stand-scale measures such as basal area, biomass, and volume. Here we assessed errors in stem diameter measurement through repeated measurements of individual trees and shrubs of varying size and form (i.e. single- and multi-stemmed) across a range of contrasting stands, from complex mixed-species plantings to commercial single-species plantations. We compared a standard diameter tape with a Stepped Diameter Gauge (SDG) for time efficiency and measurement error. Measurement errors in diameter were slightly (but significantly) influenced by size and form of the tree or shrub, and stem height at which the measurement was made. Compared to standard tape measurement, the mean systematic error with SDG measurement was only -0.17 cm, but varied between -0.10 and -0.52 cm. Similarly, random error was relatively large, with standard deviations (and percentage coefficients of variation) averaging only 0.36 cm (and 3.8%), but varying between 0.14 and 0.61 cm (and 1.9 and 7.1%). However, at the stand scale, sampling errors (i.e. how well individual trees or shrubs selected for measurement of diameter represented the true stand population in terms of the average and distribution of diameter) generally had at least a tenfold greater influence on random errors in basal area estimates than errors in diameter measurements. This supports the use of diameter measurement tools that have high efficiency, such as the SDG. Use of the SDG almost halved the time required for measurements compared to the diameter tape. Based on these findings, recommendations include the following: (i) use of a tape to maximise accuracy when developing allometric models, or when
Furlan, Leonardo; Sterr, Annette
2018-01-01
Motor learning studies face the challenge of differentiating between real changes in performance and random measurement error. While the traditional p -value-based analyses of difference (e.g., t -tests, ANOVAs) provide information on the statistical significance of a reported change in performance scores, they do not inform as to the likely cause or origin of that change, that is, the contribution of both real modifications in performance and random measurement error to the reported change. One way of differentiating between real change and random measurement error is through the utilization of the statistics of standard error of measurement (SEM) and minimal detectable change (MDC). SEM is estimated from the standard deviation of a sample of scores at baseline and a test-retest reliability index of the measurement instrument or test employed. MDC, in turn, is estimated from SEM and a degree of confidence, usually 95%. The MDC value might be regarded as the minimum amount of change that needs to be observed for it to be considered a real change, or a change to which the contribution of real modifications in performance is likely to be greater than that of random measurement error. A computer-based motor task was designed to illustrate the applicability of SEM and MDC to motor learning research. Two studies were conducted with healthy participants. Study 1 assessed the test-retest reliability of the task and Study 2 consisted in a typical motor learning study, where participants practiced the task for five consecutive days. In Study 2, the data were analyzed with a traditional p -value-based analysis of difference (ANOVA) and also with SEM and MDC. The findings showed good test-retest reliability for the task and that the p -value-based analysis alone identified statistically significant improvements in performance over time even when the observed changes could in fact have been smaller than the MDC and thereby caused mostly by random measurement error, as opposed
Kromhout, D.
2009-01-01
Within-person variability in measured values of multiple risk factors can bias their associations with disease. The multivariate regression calibration (RC) approach can correct for such measurement error and has been applied to studies in which true values or independent repeat measurements of the
A first look at measurement error on FIA plots using blind plots in the Pacific Northwest
Susanna Melson; David Azuma; Jeremy S. Fried
2002-01-01
Measurement error in the Forest Inventory and Analysis work of the Pacific Northwest Station was estimated with a recently implemented blind plot measurement protocol. A small subset of plots was revisited by a crew having limited knowledge of the first crew's measurements. This preliminary analysis of the first 18 months' blind plot data indicates that...
Experimental validation of error in temperature measurements in thin walled ductile iron castings
DEFF Research Database (Denmark)
Pedersen, Karl Martin; Tiedje, Niels Skat
2007-01-01
An experimental analysis has been performed to validate the measurement error of cooling curves measured in thin walled ductile cast iron. Specially designed thermocouples with Ø0.2 mm thermocouple wire in Ø1.6 mm ceramic tube was used for the experiments. Temperatures were measured in plates...
Directory of Open Access Journals (Sweden)
Yun Shi
2014-01-01
Full Text Available Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM.
International Nuclear Information System (INIS)
Miyazaki, Takamasa
2007-01-01
The adverse events which occurred in nuclear power plants are analyzed to prevent similar events, and in the analysis of each event, the cause of the event is classified by a cause classification method. This paper shows a new cause classification method which is improved in several points as follows: (1) the whole causes are systematically classified into three major categories such as machine system, operation system and plant outside causes, (2) the causes of the operation system are classified into several management errors normally performed in a nuclear power plant, (3) the content of ageing is defined in detail for their further analysis, (4) human errors are divided and defined by the error stage, (5) human errors can be related to background factors, and so on. This new method is applied to the adverse events which occurred in domestic and overseas nuclear power plants in 2005. From these results, it is clarified that operation system errors account for about 60% of the whole causes, of which approximately 60% are maintenance errors, about 40% are worker's human errors, and that the prevention of maintenance errors, especially worker's human errors is crucial. (author)
Abokyi, Samuel; Ilechie, Alex; Nsiah, Peter; Darko-Takyi, Charles; Abu, Emmanuel Kwasi; Osei-Akoto, Yaw Jnr; Youfegan-Baanam, Mathurin
2016-01-01
To determine the prevalence of visual impairment attributable to refractive error and other causes in a youthful Ghanaian population. A prospective survey of all consecutive visits by first-year tertiary students to the Optometry clinic between August, 2013 and April, 2014. Of the 4378 first-year students aged 16-39 years enumerated, 3437 (78.5%) underwent the eye examination. The examination protocol included presenting visual acuity (PVA), ocular motility, and slit-lamp examination of the external eye, anterior segment and media, and non-dilated fundus examination. Pinhole acuity and fundus examination were performed when the PVA≤6/12 in one or both eyes to determine the principal cause of the vision loss. The mean age of participants was 21.86 years (95% CI: 21.72-21.99). The prevalence of bilateral visual impairment (BVI; PVA in the better eye ≤6/12) and unilateral visual impairment UVI; PVA in the worse eye ≤6/12) were 3.08% (95% CI: 2.56-3.72) and 0.79% (95% CI: 0.54-1.14), respectively. Among 106 participants with BVI, refractive error (96.2%) and corneal opacity (3.8%) were the causes. Of the 27 participants with UVI, refractive error (44.4%), maculopathy (18.5%) and retinal disease (14.8%) were the major causes. There was unequal distribution of BVI in the different age groups, with those above 20 years having a lesser burden. Eye screening and provision of affordable spectacle correction to the youth could be timely to eliminate visual impairment. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
A new accuracy measure based on bounded relative error for time series forecasting.
Chen, Chao; Twycross, Jamie; Garibaldi, Jonathan M
2017-01-01
Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising commonly used accuracy measures, a special review is made on the symmetric mean absolute percentage error. Moreover, a new accuracy measure called the Unscaled Mean Bounded Relative Absolute Error (UMBRAE), which combines the best features of various alternative measures, is proposed to address the common issues of existing measures. A comparative evaluation on the proposed and related measures has been made with both synthetic and real-world data. The results indicate that the proposed measure, with user selectable benchmark, performs as well as or better than other measures on selected criteria. Though it has been commonly accepted that there is no single best accuracy measure, we suggest that UMBRAE could be a good choice to evaluate forecasting methods, especially for cases where measures based on geometric mean of relative errors, such as the geometric mean relative absolute error, are preferred.
Directory of Open Access Journals (Sweden)
Ivan M Roitt
2010-01-01
Full Text Available Bioimpedance measurements are of great use and can provide considerable insight into biological processes. However, there are a number of possible sources of measurement error that must be considered. The most dominant source of error is found in bipolar measurements where electrode polarisation effects are superimposed on the true impedance of the sample. Even with the tetrapolar approach that is commonly used to circumvent this issue, other errors can persist. Here we characterise the positive phase and rise in impedance magnitude with frequency that can result from the presence of any parallel conductive pathways in the measurement set-up. It is shown that fitting experimental data to an equivalent electrical circuit model allows for accurate determination of the true sample impedance as validated through finite element modelling (FEM of the measurement chamber. Finally, the model is used to extract dispersion information from cell cultures to characterise their growth.
Energy Technology Data Exchange (ETDEWEB)
Chung, Ting-Yi; Huang, Szu-Jung; Fu, Huang-Wen; Chang, Ho-Ping; Chang, Cheng-Hsiang [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Hwang, Ching-Shiang [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 30050, Taiwan (China)
2016-08-01
The effect of an APPLE II-type elliptically polarized undulator (EPU) on the beam dynamics were investigated using active and passive methods. To reduce the tune shift and improve the injection efficiency, dynamic multipole errors were compensated using L-shaped iron shims, which resulted in stable top-up operation for a minimum gap. The skew quadrupole error was compensated using a multipole corrector, which was located downstream of the EPU for minimizing betatron coupling, and it ensured the enhancement of the synchrotron radiation brightness. The investigation methods, a numerical simulation algorithm, a multipole error correction method, and the beam-based measurement results are discussed.
An in-process form error measurement system for precision machining
International Nuclear Information System (INIS)
Gao, Y; Huang, X; Zhang, Y
2010-01-01
In-process form error measurement for precision machining is studied. Due to two key problems, opaque barrier and vibration, the study of in-process form error optical measurement for precision machining has been a hard topic and so far very few existing research works can be found. In this project, an in-process form error measurement device is proposed to deal with the two key problems. Based on our existing studies, a prototype system has been developed. It is the first one of the kind that overcomes the two key problems. The prototype is based on a single laser sensor design of 50 nm resolution together with two techniques, a damping technique and a moving average technique, proposed for use with the device. The proposed damping technique is able to improve vibration attenuation by up to 21 times compared to the case of natural attenuation. The proposed moving average technique is able to reduce errors by seven to ten times without distortion to the form profile results. The two proposed techniques are simple but they are especially useful for the proposed device. For a workpiece sample, the measurement result under coolant condition is only 2.5% larger compared with the one under no coolant condition. For a certified Wyko test sample, the overall system measurement error can be as low as 0.3 µm. The measurement repeatability error can be as low as 2.2%. The experimental results give confidence in using the proposed in-process form error measurement device. For better results, further improvement in design and tests are necessary
Sarkar, Abhra
2014-10-02
We consider the problem of estimating the density of a random variable when precise measurements on the variable are not available, but replicated proxies contaminated with measurement error are available for sufficiently many subjects. Under the assumption of additive measurement errors this reduces to a problem of deconvolution of densities. Deconvolution methods often make restrictive and unrealistic assumptions about the density of interest and the distribution of measurement errors, e.g., normality and homoscedasticity and thus independence from the variable of interest. This article relaxes these assumptions and introduces novel Bayesian semiparametric methodology based on Dirichlet process mixture models for robust deconvolution of densities in the presence of conditionally heteroscedastic measurement errors. In particular, the models can adapt to asymmetry, heavy tails and multimodality. In simulation experiments, we show that our methods vastly outperform a recent Bayesian approach based on estimating the densities via mixtures of splines. We apply our methods to data from nutritional epidemiology. Even in the special case when the measurement errors are homoscedastic, our methodology is novel and dominates other methods that have been proposed previously. Additional simulation results, instructions on getting access to the data set and R programs implementing our methods are included as part of online supplemental materials.
Tests for detecting overdispersion in models with measurement error in covariates.
Yang, Yingsi; Wong, Man Yu
2015-11-30
Measurement error in covariates can affect the accuracy in count data modeling and analysis. In overdispersion identification, the true mean-variance relationship can be obscured under the influence of measurement error in covariates. In this paper, we propose three tests for detecting overdispersion when covariates are measured with error: a modified score test and two score tests based on the proposed approximate likelihood and quasi-likelihood, respectively. The proposed approximate likelihood is derived under the classical measurement error model, and the resulting approximate maximum likelihood estimator is shown to have superior efficiency. Simulation results also show that the score test based on approximate likelihood outperforms the test based on quasi-likelihood and other alternatives in terms of empirical power. By analyzing a real dataset containing the health-related quality-of-life measurements of a particular group of patients, we demonstrate the importance of the proposed methods by showing that the analyses with and without measurement error correction yield significantly different results. Copyright © 2015 John Wiley & Sons, Ltd.
Vispoel, Walter P; Morris, Carrie A; Kilinc, Murat
2018-05-02
Over the years, research in the social sciences has been dominated by reporting of reliability coefficients that fail to account for key sources of measurement error. Use of these coefficients, in turn, to correct for measurement error can hinder scientific progress by misrepresenting true relationships among the underlying constructs being investigated. In the research reported here, we addressed these issues using generalizability theory (G-theory) in both traditional and new ways to account for the three key sources of measurement error (random-response, specific-factor, and transient) that affect scores from objectively scored measures. Results from 20 widely used measures of personality, self-concept, and socially desirable responding showed that conventional indices consistently misrepresented reliability and relationships among psychological constructs by failing to account for key sources of measurement error and correlated transient errors within occasions. The results further revealed that G-theory served as an effective framework for remedying these problems. We discuss possible extensions in future research and provide code from the computer package R in an online supplement to enable readers to apply the procedures we demonstrate to their own research.
Sarkar, Abhra; Mallick, Bani K.; Staudenmayer, John; Pati, Debdeep; Carroll, Raymond J.
2014-01-01
We consider the problem of estimating the density of a random variable when precise measurements on the variable are not available, but replicated proxies contaminated with measurement error are available for sufficiently many subjects. Under the assumption of additive measurement errors this reduces to a problem of deconvolution of densities. Deconvolution methods often make restrictive and unrealistic assumptions about the density of interest and the distribution of measurement errors, e.g., normality and homoscedasticity and thus independence from the variable of interest. This article relaxes these assumptions and introduces novel Bayesian semiparametric methodology based on Dirichlet process mixture models for robust deconvolution of densities in the presence of conditionally heteroscedastic measurement errors. In particular, the models can adapt to asymmetry, heavy tails and multimodality. In simulation experiments, we show that our methods vastly outperform a recent Bayesian approach based on estimating the densities via mixtures of splines. We apply our methods to data from nutritional epidemiology. Even in the special case when the measurement errors are homoscedastic, our methodology is novel and dominates other methods that have been proposed previously. Additional simulation results, instructions on getting access to the data set and R programs implementing our methods are included as part of online supplemental materials.
Study of the magnetic spectrograph BIG KARL on image errors and their causes
International Nuclear Information System (INIS)
Paul, D.
1987-12-01
The ionoptical aberrations of the QQDDQ spectrograph BIG KARL are measured and analyzed in order to improve resolution and transmission at large acceptance. The entrance phasespace is scanned in a cartesian grid by means of a narrow collimated beam of scattered deuterons. The distortions due to the nonlinear transformation by the system are measured in the detector plane. A model is developed which describes the measured distortions. The model allows to locate nonlinearities in the system responsible for the observed distortions. It gives a good understanding of geometrical nonlinearities up to the fifth order and chromatical nonlinearities up to the third order. To confirm the model, the magnetic field in the quadrupoles is measured including the fringe field region. Furthermore, nonlinearities appearing in ideal magnets are discussed and compared to experimental data. (orig.) [de
Linear and nonlinear magnetic error measurements using action and phase jump analysis
Directory of Open Access Journals (Sweden)
Javier F. Cardona
2009-01-01
Full Text Available “Action and phase jump” analysis is presented—a beam based method that uses amplitude and phase knowledge of a particle trajectory to locate and measure magnetic errors in an accelerator lattice. The expected performance of the method is first tested using single-particle simulations in the optical lattice of the Relativistic Heavy Ion Collider (RHIC. Such simulations predict that under ideal conditions typical quadrupole errors can be estimated within an uncertainty of 0.04%. Other simulations suggest that sextupole errors can be estimated within a 3% uncertainty. Then the action and phase jump analysis is applied to real RHIC orbits with known quadrupole errors, and to real Super Proton Synchrotron (SPS orbits with known sextupole errors. It is possible to estimate the strength of a skew quadrupole error from measured RHIC orbits within a 1.2% uncertainty, and to estimate the strength of a strong sextupole component from the measured SPS orbits within a 7% uncertainty.
Wiseman, Alan
2004-01-01
Single nucleotide polymorphisms (SNPs) are the result of point mutations in nuclear (and mitochondrial) DNA. Such localised damage to DNA (and its replicative mechanisms) may not be excised fully by the DNA repair mechanism in the genome: and therefore can become inheritable; subsequently to manifest later as an inborn error of metabolism (IEM). Causes of mutagenic damage to the DNA can include background radiation (such as emitted by radon gas), and by reactive oxygen species (ROS): and also by mutagenic chemicals that occur naturally (inter alia in the diet). Other causes of DNA damage are variable environmental hazards such as solar-derived short wave ultraviolet light A. Gene therapy involves the placement of missing genes into particular tissues by the harnessing of suitable vectors (originally these were animal viruses such as SV40). For example, gene therapy in the rat for diabetes has succeeded by liver-production of insulin (using genes obtained from pancreatic Islets of Langerhans cells). Many inborn errors of metabolism could be treated in this way: examples may include 100 haemoglobinopathies (such as sickle cell anaemia), phenylketonuria; and other diseases caused by lack of tissue-production of a particular enzyme (in its catalytically-active conformation).
DEFF Research Database (Denmark)
Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe
2003-01-01
Non-differential measurement error in the exposure variable is known to attenuate the dose-response relationship. The amount of attenuation introduced in a given situation is not only a function of the precision of the exposure measurement but also depends on the conditional variance of the true...... exposure given the other independent variables. In addition, confounder effects may also be affected by the exposure measurement error. These difficulties in statistical model development are illustrated by examples from a epidemiological study performed in the Faroe Islands to investigate the adverse...
MEASUREMENT ERROR EFFECT ON THE POWER OF CONTROL CHART FOR ZERO-TRUNCATED POISSON DISTRIBUTION
Directory of Open Access Journals (Sweden)
Ashit Chakraborty
2013-09-01
Full Text Available Measurement error is the difference between the true value and the measured value of a quantity that exists in practice and may considerably affect the performance of control charts in some cases. Measurement error variability has uncertainty which can be from several sources. In this paper, we have studied the effect of these sources of variability on the power characteristics of control chart and obtained the values of average run length (ARL for zero-truncated Poisson distribution (ZTPD. Expression of the power of control chart for variable sample size under standardized normal variate for ZTPD is also derived.
Grauer, Jared A.; Morelli, Eugene A.
2013-01-01
A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.
Utilizing measure-based feedback in control-mastery theory: A clinical error.
Snyder, John; Aafjes-van Doorn, Katie
2016-09-01
Clinical errors and ruptures are an inevitable part of clinical practice. Often times, therapists are unaware that a clinical error or rupture has occurred, leaving no space for repair, and potentially leading to patient dropout and/or less effective treatment. One way to overcome our blind spots is by frequently and systematically collecting measure-based feedback from the patient. Patient feedback measures that focus on the process of psychotherapy such as the Patient's Experience of Attunement and Responsiveness scale (PEAR) can be used in conjunction with treatment outcome measures such as the Outcome Questionnaire 45.2 (OQ-45.2) to monitor the patient's therapeutic experience and progress. The regular use of these types of measures can aid clinicians in the identification of clinical errors and the associated patient deterioration that might otherwise go unnoticed and unaddressed. The current case study describes an instance of clinical error that occurred during the 2-year treatment of a highly traumatized young woman. The clinical error was identified using measure-based feedback and subsequently understood and addressed from the theoretical standpoint of the control-mastery theory of psychotherapy. An alternative hypothetical response is also presented and explained using control-mastery theory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Buonaccorsi, John P; Romeo, Giovanni; Thoresen, Magne
2018-03-01
When fitting regression models, measurement error in any of the predictors typically leads to biased coefficients and incorrect inferences. A plethora of methods have been proposed to correct for this. Obtaining standard errors and confidence intervals using the corrected estimators can be challenging and, in addition, there is concern about remaining bias in the corrected estimators. The bootstrap, which is one option to address these problems, has received limited attention in this context. It has usually been employed by simply resampling observations, which, while suitable in some situations, is not always formally justified. In addition, the simple bootstrap does not allow for estimating bias in non-linear models, including logistic regression. Model-based bootstrapping, which can potentially estimate bias in addition to being robust to the original sampling or whether the measurement error variance is constant or not, has received limited attention. However, it faces challenges that are not present in handling regression models with no measurement error. This article develops new methods for model-based bootstrapping when correcting for measurement error in logistic regression with replicate measures. The methodology is illustrated using two examples, and a series of simulations are carried out to assess and compare the simple and model-based bootstrap methods, as well as other standard methods. While not always perfect, the model-based approaches offer some distinct improvements over the other methods. © 2017, The International Biometric Society.
Quantitative shearography: error reduction by using more than three measurement channels
International Nuclear Information System (INIS)
Charrett, Tom O. H.; Francis, Daniel; Tatam, Ralph P.
2011-01-01
Shearography is a noncontact optical technique used to measure surface displacement derivatives. Full surface strain characterization can be achieved using shearography configurations employing at least three measurement channels. Each measurement channel is sensitive to a single displacement gradient component defined by its sensitivity vector. A matrix transformation is then required to convert the measured components to the orthogonal displacement gradients required for quantitative strain measurement. This transformation, conventionally performed using three measurement channels, amplifies any errors present in the measurement. This paper investigates the use of additional measurement channels using the results of a computer model and an experimental shearography system. Results are presented showing that the addition of a fourth channel can reduce the errors in the computed orthogonal components by up to 33% and that, by using 10 channels, reductions of around 45% should be possible.
Measurement error of a simplified protocol for quantitative sensory tests in chronic pain patients
DEFF Research Database (Denmark)
Müller, Monika; Biurrun Manresa, José; Limacher, Andreas
2017-01-01
BACKGROUND AND OBJECTIVES: Large-scale application of Quantitative Sensory Tests (QST) is impaired by lacking standardized testing protocols. One unclear methodological aspect is the number of records needed to minimize measurement error. Traditionally, measurements are repeated 3 to 5 times...
Can i just check...? Effects of edit check questions on measurement error and survey estimates
Lugtig, Peter; Jäckle, Annette
2014-01-01
Household income is difficult to measure, since it requires the collection of information about all potential income sources for each member of a household.Weassess the effects of two types of edit check questions on measurement error and survey estimates: within-wave edit checks use responses to
Assessing thermally induced errors of machine tools by 3D length measurements
Florussen, G.H.J.; Delbressine, F.L.M.; Schellekens, P.H.J.
2003-01-01
A new measurement technique is proposed for the assessment of thermally induced errors of machine tools. The basic idea is to measure changes of length by a telescopic double ball bar (TDEB) at multiple locations in the machine's workspace while the machine is thermally excited. In addition thermal
Energy Technology Data Exchange (ETDEWEB)
Hui, S.K.; Lusczek, E.; Dusenbery, K. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Therapeutic Radiology - Radiation Oncology; DeFor, T. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Biostatistics and Informatics Core; Levitt, S. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Therapeutic Radiology - Radiation Oncology; Karolinska Institutet, Stockholm (Sweden). Dept. of Onkol-Patol
2012-04-15
Reduction of interfraction setup uncertainty is vital for assuring the accuracy of conformal radiotherapy. We report a systematic study of setup error to assess patients' three-dimensional (3D) localization at various treatment sites. Tomotherapy megavoltage CT (MVCT) images were scanned daily in 259 patients from 2005-2008. We analyzed 6,465 MVCT images to measure setup error for head and neck (H and N), chest/thorax, abdomen, prostate, legs, and total marrow irradiation (TMI). Statistical comparisons of the absolute displacements across sites and time were performed in rotation (R), lateral (x), craniocaudal (y), and vertical (z) directions. The global systematic errors were measured to be less than 3 mm in each direction with increasing order of errors for different sites: H and N, prostate, chest, pelvis, spine, legs, and TMI. The differences in displacements in the x, y, and z directions, and 3D average displacement between treatment sites were significant (p < 0.01). Overall improvement in patient localization with time (after 3-4 treatment fractions) was observed. Large displacement (> 5 mm) was observed in the 75{sup th} percentile of the patient groups for chest, pelvis, legs, and spine in the x and y direction in the second week of the treatment. MVCT imaging is essential for determining 3D setup error and to reduce uncertainty in localization at all anatomical locations. Setup error evaluation should be performed daily for all treatment regions, preferably for all treatment fractions. (orig.)
Cause-specific measures of life years lost
Directory of Open Access Journals (Sweden)
Per Kragh Andersen
2013-12-01
Full Text Available Background: A new measure of the number of life years lost due to specific causes of death is introduced. Methods: This measure is based on the cumulative incidence of death, it does not require "independence" of causes, and it satisfies simple balance equations: "total number of life years lost = sum of cause-specific life years lost", and "total number of life years lost before age x + temporary life expectancy between birth and age x = x". Results: The measure is contrasted to alternatives suggested in the demographic literature and allmethods are illustrated using Danish and Russian multiple decrement life-tables.
Shen, Chung-Wei; Chen, Yi-Hau
2015-10-01
Missing observations and covariate measurement error commonly arise in longitudinal data. However, existing methods for model selection in marginal regression analysis of longitudinal data fail to address the potential bias resulting from these issues. To tackle this problem, we propose a new model selection criterion, the Generalized Longitudinal Information Criterion, which is based on an approximately unbiased estimator for the expected quadratic error of a considered marginal model accounting for both data missingness and covariate measurement error. The simulation results reveal that the proposed method performs quite well in the presence of missing data and covariate measurement error. On the contrary, the naive procedures without taking care of such complexity in data may perform quite poorly. The proposed method is applied to data from the Taiwan Longitudinal Study on Aging to assess the relationship of depression with health and social status in the elderly, accommodating measurement error in the covariate as well as missing observations. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Wu Yan; Shannon, Mark A.
2006-01-01
The dependence of the contact potential difference (CPD) reading on the ac driving amplitude in scanning Kelvin probe microscope (SKPM) hinders researchers from quantifying true material properties. We show theoretically and demonstrate experimentally that an ac driving amplitude dependence in the SKPM measurement can come from a systematic error, and it is common for all tip sample systems as long as there is a nonzero tracking error in the feedback control loop of the instrument. We further propose a methodology to detect and to correct the ac driving amplitude dependent systematic error in SKPM measurements. The true contact potential difference can be found by applying a linear regression to the measured CPD versus one over ac driving amplitude data. Two scenarios are studied: (a) when the surface being scanned by SKPM is not semiconducting and there is an ac driving amplitude dependent systematic error; (b) when a semiconductor surface is probed and asymmetric band bending occurs when the systematic error is present. Experiments are conducted using a commercial SKPM and CPD measurement results of two systems: platinum-iridium/gap/gold and platinum-iridium/gap/thermal oxide/silicon are discussed
The Influence of Training Phase on Error of Measurement in Jump Performance.
Taylor, Kristie-Lee; Hopkins, Will G; Chapman, Dale W; Cronin, John B
2016-03-01
The purpose of this study was to calculate the coefficients of variation in jump performance for individual participants in multiple trials over time to determine the extent to which there are real differences in the error of measurement between participants. The effect of training phase on measurement error was also investigated. Six subjects participated in a resistance-training intervention for 12 wk with mean power from a countermovement jump measured 6 d/wk. Using a mixed-model meta-analysis, differences between subjects, within-subject changes between training phases, and the mean error values during different phases of training were examined. Small, substantial factor differences of 1.11 were observed between subjects; however, the finding was unclear based on the width of the confidence limits. The mean error was clearly higher during overload training than baseline training, by a factor of ×/÷ 1.3 (confidence limits 1.0-1.6). The random factor representing the interaction between subjects and training phases revealed further substantial differences of ×/÷ 1.2 (1.1-1.3), indicating that on average, the error of measurement in some subjects changes more than in others when overload training is introduced. The results from this study provide the first indication that within-subject variability in performance is substantially different between training phases and, possibly, different between individuals. The implications of these findings for monitoring individuals and estimating sample size are discussed.
Bhadra, Anindya; Carroll, Raymond J
2016-07-01
In truncated polynomial spline or B-spline models where the covariates are measured with error, a fully Bayesian approach to model fitting requires the covariates and model parameters to be sampled at every Markov chain Monte Carlo iteration. Sampling the unobserved covariates poses a major computational problem and usually Gibbs sampling is not possible. This forces the practitioner to use a Metropolis-Hastings step which might suffer from unacceptable performance due to poor mixing and might require careful tuning. In this article we show for the cases of truncated polynomial spline or B-spline models of degree equal to one, the complete conditional distribution of the covariates measured with error is available explicitly as a mixture of double-truncated normals, thereby enabling a Gibbs sampling scheme. We demonstrate via a simulation study that our technique performs favorably in terms of computational efficiency and statistical performance. Our results indicate up to 62 and 54 % increase in mean integrated squared error efficiency when compared to existing alternatives while using truncated polynomial splines and B-splines respectively. Furthermore, there is evidence that the gain in efficiency increases with the measurement error variance, indicating the proposed method is a particularly valuable tool for challenging applications that present high measurement error. We conclude with a demonstration on a nutritional epidemiology data set from the NIH-AARP study and by pointing out some possible extensions of the current work.
Qin, Guoyou; Zhang, Jiajia; Zhu, Zhongyi; Fung, Wing
2016-12-20
Outliers, measurement error, and missing data are commonly seen in longitudinal data because of its data collection process. However, no method can address all three of these issues simultaneously. This paper focuses on the robust estimation of partially linear models for longitudinal data with dropouts and measurement error. A new robust estimating equation, simultaneously tackling outliers, measurement error, and missingness, is proposed. The asymptotic properties of the proposed estimator are established under some regularity conditions. The proposed method is easy to implement in practice by utilizing the existing standard generalized estimating equations algorithms. The comprehensive simulation studies show the strength of the proposed method in dealing with longitudinal data with all three features. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study and confirms the effectiveness of the intervention in producing weight loss at month 9. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Schomaker, Michael; Hogger, Sara; Johnson, Leigh F; Hoffmann, Christopher J; Bärnighausen, Till; Heumann, Christian
2015-09-01
Both CD4 count and viral load in HIV-infected persons are measured with error. There is no clear guidance on how to deal with this measurement error in the presence of missing data. We used multiple overimputation, a method recently developed in the political sciences, to account for both measurement error and missing data in CD4 count and viral load measurements from four South African cohorts of a Southern African HIV cohort collaboration. Our knowledge about the measurement error of ln CD4 and log10 viral load is part of an imputation model that imputes both missing and mismeasured data. In an illustrative example, we estimate the association of CD4 count and viral load with the hazard of death among patients on highly active antiretroviral therapy by means of a Cox model. Simulation studies evaluate the extent to which multiple overimputation is able to reduce bias in survival analyses. Multiple overimputation emphasizes more strongly the influence of having high baseline CD4 counts compared to both a complete case analysis and multiple imputation (hazard ratio for >200 cells/mm vs. <25 cells/mm: 0.21 [95% confidence interval: 0.18, 0.24] vs. 0.38 [0.29, 0.48], and 0.29 [0.25, 0.34], respectively). Similar results are obtained when varying assumptions about measurement error, when using p-splines, and when evaluating time-updated CD4 count in a longitudinal analysis. The estimates of the association with viral load are slightly more attenuated when using multiple imputation instead of multiple overimputation. Our simulation studies suggest that multiple overimputation is able to reduce bias and mean squared error in survival analyses. Multiple overimputation, which can be used with existing software, offers a convenient approach to account for both missing and mismeasured data in HIV research.
Compensation for positioning error of industrial robot for flexible vision measuring system
Guo, Lei; Liang, Yajun; Song, Jincheng; Sun, Zengyu; Zhu, Jigui
2013-01-01
Positioning error of robot is a main factor of accuracy of flexible coordinate measuring system which consists of universal industrial robot and visual sensor. Present compensation methods for positioning error based on kinematic model of robot have a significant limitation that it isn't effective in the whole measuring space. A new compensation method for positioning error of robot based on vision measuring technique is presented. One approach is setting global control points in measured field and attaching an orientation camera to vision sensor. Then global control points are measured by orientation camera to calculate the transformation relation from the current position of sensor system to global coordinate system and positioning error of robot is compensated. Another approach is setting control points on vision sensor and two large field cameras behind the sensor. Then the three dimensional coordinates of control points are measured and the pose and position of sensor is calculated real-timely. Experiment result shows the RMS of spatial positioning is 3.422mm by single camera and 0.031mm by dual cameras. Conclusion is arithmetic of single camera method needs to be improved for higher accuracy and accuracy of dual cameras method is applicable.
DEFF Research Database (Denmark)
Tybjærg-Hansen, Anne
2009-01-01
Within-person variability in measured values of multiple risk factors can bias their associations with disease. The multivariate regression calibration (RC) approach can correct for such measurement error and has been applied to studies in which true values or independent repeat measurements...... of the risk factors are observed on a subsample. We extend the multivariate RC techniques to a meta-analysis framework where multiple studies provide independent repeat measurements and information on disease outcome. We consider the cases where some or all studies have repeat measurements, and compare study......-specific, averaged and empirical Bayes estimates of RC parameters. Additionally, we allow for binary covariates (e.g. smoking status) and for uncertainty and time trends in the measurement error corrections. Our methods are illustrated using a subset of individual participant data from prospective long-term studies...
Measurement Rounding Errors in an Assessment Model of Project Led Engineering Education
Directory of Open Access Journals (Sweden)
Francisco Moreira
2009-11-01
Full Text Available This paper analyzes the rounding errors that occur in the assessment of an interdisciplinary Project-Led Education (PLE process implemented in the Integrated Master degree on Industrial Management and Engineering (IME at University of Minho. PLE is an innovative educational methodology which makes use of active learning, promoting higher levels of motivation and students’ autonomy. The assessment model is based on multiple evaluation components with different weights. Each component can be evaluated by several teachers involved in different Project Supporting Courses (PSC. This model can be affected by different types of errors, namely: (1 rounding errors, and (2 non-uniform criteria of rounding the grades. A rigorous analysis of the assessment model was made and the rounding errors involved on each project component were characterized and measured. This resulted in a global maximum error of 0.308 on the individual student project grade, in a 0 to 100 scale. This analysis intended to improve not only the reliability of the assessment results, but also teachers’ awareness of this problem. Recommendations are also made in order to improve the assessment model and reduce the rounding errors as much as possible.
DeCesare, A; Secanell, M; Lagravère, M O; Carey, J
2013-01-01
The purpose of this study is to minimize errors that occur when using a four vs six landmark superimpositioning method in the cranial base to define the co-ordinate system. Cone beam CT volumetric data from ten patients were used for this study. Co-ordinate system transformations were performed. A co-ordinate system was constructed using two planes defined by four anatomical landmarks located by an orthodontist. A second co-ordinate system was constructed using four anatomical landmarks that are corrected using a numerical optimization algorithm for any landmark location operator error using information from six landmarks. The optimization algorithm minimizes the relative distance and angle between the known fixed points in the two images to find the correction. Measurement errors and co-ordinates in all axes were obtained for each co-ordinate system. Significant improvement is observed after using the landmark correction algorithm to position the final co-ordinate system. The errors found in a previous study are significantly reduced. Errors found were between 1 mm and 2 mm. When analysing real patient data, it was found that the 6-point correction algorithm reduced errors between images and increased intrapoint reliability. A novel method of optimizing the overlay of three-dimensional images using a 6-point correction algorithm was introduced and examined. This method demonstrated greater reliability and reproducibility than the previous 4-point correction algorithm.
CSIR Research Space (South Africa)
Kruger, OA
2000-01-01
Full Text Available on face-to-face angle measurements. The results show that flatness and eccentricity deviations have less effect on angle measurements than do pyramidal errors. 1. Introduction Polygons and angle blocks are the most important transfer standards in the field... of angle metrology. Polygons are used by national metrology institutes (NMIs) as transfer standards to industry, where they are used in conjunction with autocollimators to calibrate index tables, rotary tables and other forms of angle- measuring equipment...
Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad
Energy Technology Data Exchange (ETDEWEB)
Alcock, Simon G., E-mail: simon.alcock@diamond.ac.uk; Nistea, Ioana; Sawhney, Kawal [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)
2016-05-15
We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM’s autocollimator adds into the overall measured value of the mirror’s slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.
Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad
International Nuclear Information System (INIS)
Alcock, Simon G.; Nistea, Ioana; Sawhney, Kawal
2016-01-01
We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM’s autocollimator adds into the overall measured value of the mirror’s slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.
Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad.
Alcock, Simon G; Nistea, Ioana; Sawhney, Kawal
2016-05-01
We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM's autocollimator adds into the overall measured value of the mirror's slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.
Accounting for measurement error in log regression models with applications to accelerated testing.
Directory of Open Access Journals (Sweden)
Robert Richardson
Full Text Available In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.
Accounting for measurement error in log regression models with applications to accelerated testing.
Richardson, Robert; Tolley, H Dennis; Evenson, William E; Lunt, Barry M
2018-01-01
In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.
Directory of Open Access Journals (Sweden)
Khasanov Zimfir
2018-01-01
Full Text Available The article reviews the capabilities and particularities of the approach to the improvement of metrological characteristics of fiber-optic pressure sensors (FOPS based on estimation estimation of dynamic errors in laser optoelectronic dimension gauges for geometric measurement of details. It is shown that the proposed criteria render new methods for conjugation of optoelectronic converters in the dimension gauge for geometric measurements in order to reduce the speed and volume requirements for the Random Access Memory (RAM of the video controller which process the signal. It is found that the lower relative error, the higher the interrogetion speed of the CCD array. It is shown that thus, the maximum achievable dynamic accuracy characteristics of the optoelectronic gauge are determined by the following conditions: the parameter stability of the electronic circuits in the CCD array and the microprocessor calculator; linearity of characteristics; error dynamics and noise in all electronic circuits of the CCD array and microprocessor calculator.
Yang, Jie; Liu, Qingquan; Dai, Wei
2017-02-01
To improve the air temperature observation accuracy, a low measurement error temperature sensor is proposed. A computational fluid dynamics (CFD) method is implemented to obtain temperature errors under various environmental conditions. Then, a temperature error correction equation is obtained by fitting the CFD results using a genetic algorithm method. The low measurement error temperature sensor, a naturally ventilated radiation shield, a thermometer screen, and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated platform served as an air temperature reference. The mean temperature errors of the naturally ventilated radiation shield and the thermometer screen are 0.74 °C and 0.37 °C, respectively. In contrast, the mean temperature error of the low measurement error temperature sensor is 0.11 °C. The mean absolute error and the root mean square error between the corrected results and the measured results are 0.008 °C and 0.01 °C, respectively. The correction equation allows the temperature error of the low measurement error temperature sensor to be reduced by approximately 93.8%. The low measurement error temperature sensor proposed in this research may be helpful to provide a relatively accurate air temperature result.
Verghese, Abraham; Charlton, Blake; Kassirer, Jerome P; Ramsey, Meghan; Ioannidis, John P A
2015-12-01
Oversights in the physical examination are a type of medical error not easily studied by chart review. They may be a major contributor to missed or delayed diagnosis, unnecessary exposure to contrast and radiation, incorrect treatment, and other adverse consequences. Our purpose was to collect vignettes of physical examination oversights and to capture the diversity of their characteristics and consequences. A cross-sectional study using an 11-question qualitative survey for physicians was distributed electronically, with data collected from February to June of 2011. The participants were all physicians responding to e-mail or social media invitations to complete the survey. There were no limitations on geography, specialty, or practice setting. Of the 208 reported vignettes that met inclusion criteria, the oversight was caused by a failure to perform the physical examination in 63%; 14% reported that the correct physical examination sign was elicited but misinterpreted, whereas 11% reported that the relevant sign was missed or not sought. Consequence of the physical examination inadequacy included missed or delayed diagnosis in 76% of cases, incorrect diagnosis in 27%, unnecessary treatment in 18%, no or delayed treatment in 42%, unnecessary diagnostic cost in 25%, unnecessary exposure to radiation or contrast in 17%, and complications caused by treatments in 4%. The mode of the number of physicians missing the finding was 2, but many oversights were missed by many physicians. Most oversights took up to 5 days to identify, but 66 took longer. Special attention and skill in examining the skin and its appendages, as well as the abdomen, groin, and genitourinary area could reduce the reported oversights by half. Physical examination inadequacies are a preventable source of medical error, and adverse events are caused mostly by failure to perform the relevant examination. Copyright © 2015 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Hinckley, C. Martin [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
1994-01-01
The performance of Japanese products in the marketplace points to the dominant role of quality in product competition. Our focus is motivated by the tremendous pressure to improve conformance quality by reducing defects to previously unimaginable limits in the range of 1 to 10 parts per million. Toward this end, we have developed a new model of conformance quality that addresses each of the three principle defect sources: (1) Variation, (2) Human Error, and (3) Complexity. Although the role of variation in conformance quality is well documented, errors occur so infrequently that their significance is not well known. We have shown that statistical methods are not useful in characterizing and controlling errors, the most common source of defects. Excessive complexity is also a root source of defects, since it increases errors and variation defects. A missing link in the defining a global model has been the lack of a sound correlation between complexity and defects. We have used Design for Assembly (DFA) methods to quantify assembly complexity and have shown that assembly times can be described in terms of the Pareto distribution in a clear exception to the Central Limit Theorem. Within individual companies we have found defects to be highly correlated with DFA measures of complexity in broad studies covering tens of millions of assembly operations. Applying the global concepts, we predicted that Motorola`s Six Sigma method would only reduce defects by roughly a factor of two rather than orders of magnitude, a prediction confirmed by Motorola`s data. We have also shown that the potential defects rates of product concepts can be compared in the earliest stages of development. The global Conformance Quality Model has demonstrated that the best strategy for improvement depends upon the quality control strengths and weaknesses.
Characterization of the main error sources of chromatic confocal probes for dimensional measurement
International Nuclear Information System (INIS)
Nouira, H; El-Hayek, N; Yuan, X; Anwer, N
2014-01-01
Chromatic confocal probes are increasingly used in high-precision dimensional metrology applications such as roughness, form, thickness and surface profile measurements; however, their measurement behaviour is not well understood and must be characterized at a nanometre level. This paper provides a calibration bench for the characterization of two chromatic confocal probes of 20 and 350 µm travel ranges. The metrology loop that includes the chromatic confocal probe is stable and enables measurement repeatability at the nanometer level. With the proposed system, the major error sources, such as the relative axial and radial motions of the probe with respect to the sample, the material, colour and roughness of the measured sample, the relative deviation/tilt of the probe and the scanning speed are identified. Experimental test results show that the chromatic confocal probes are sensitive to these errors and that their measurement behaviour is highly dependent on them. (paper)
Bias and spread in extreme value theory measurements of probability of error
Smith, J. G.
1972-01-01
Extreme value theory is examined to explain the cause of the bias and spread in performance of communications systems characterized by low bit rates and high data reliability requirements, for cases in which underlying noise is Gaussian or perturbed Gaussian. Experimental verification is presented and procedures that minimize these effects are suggested. Even under these conditions, however, extreme value theory test results are not particularly more significant than bit error rate tests.
Analysis of interactive fixed effects dynamic linear panel regression with measurement error
Nayoung Lee; Hyungsik Roger Moon; Martin Weidner
2011-01-01
This paper studies a simple dynamic panel linear regression model with interactive fixed effects in which the variable of interest is measured with error. To estimate the dynamic coefficient, we consider the least-squares minimum distance (LS-MD) estimation method.
Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin
2018-04-01
We present an analysis for measurement-device-independent quantum key distribution with correlated source-light-intensity errors. Numerical results show that the results here can greatly improve the key rate especially with large intensity fluctuations and channel attenuation compared with prior results if the intensity fluctuations of different sources are correlated.
DEFF Research Database (Denmark)
Hansen, Peter Reinhard; Lunde, Asger
2014-01-01
An economic time series can often be viewed as a noisy proxy for an underlying economic variable. Measurement errors will influence the dynamic properties of the observed process and may conceal the persistence of the underlying time series. In this paper we develop instrumental variable (IV...
Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C.
2018-01-01
Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…
Self-test web-based pure-tone audiometry: validity evaluation and measurement error analysis.
Masalski, Marcin; Kręcicki, Tomasz
2013-04-12
Potential methods of application of self-administered Web-based pure-tone audiometry conducted at home on a PC with a sound card and ordinary headphones depend on the value of measurement error in such tests. The aim of this research was to determine the measurement error of the hearing threshold determined in the way described above and to identify and analyze factors influencing its value. The evaluation of the hearing threshold was made in three series: (1) tests on a clinical audiometer, (2) self-tests done on a specially calibrated computer under the supervision of an audiologist, and (3) self-tests conducted at home. The research was carried out on the group of 51 participants selected from patients of an audiology outpatient clinic. From the group of 51 patients examined in the first two series, the third series was self-administered at home by 37 subjects (73%). The average difference between the value of the hearing threshold determined in series 1 and in series 2 was -1.54dB with standard deviation of 7.88dB and a Pearson correlation coefficient of .90. Between the first and third series, these values were -1.35dB±10.66dB and .84, respectively. In series 3, the standard deviation was most influenced by the error connected with the procedure of hearing threshold identification (6.64dB), calibration error (6.19dB), and additionally at the frequency of 250Hz by frequency nonlinearity error (7.28dB). The obtained results confirm the possibility of applying Web-based pure-tone audiometry in screening tests. In the future, modifications of the method leading to the decrease in measurement error can broaden the scope of Web-based pure-tone audiometry application.
International Nuclear Information System (INIS)
Du, Z C; Lv, C F; Hong, M S
2006-01-01
A new error modelling and identification method based on the cross grid encoder is proposed in this paper. Generally, there are 21 error components in the geometric error of the 3 axis NC machine tools. However according our theoretical analysis, the squareness error among different guide ways affects not only the translation error component, but also the rotational ones. Therefore, a revised synthetic error model is developed. And the mapping relationship between the error component and radial motion error of round workpiece manufactured on the NC machine tools are deduced. This mapping relationship shows that the radial error of circular motion is the comprehensive function result of all the error components of link, worktable, sliding table and main spindle block. Aiming to overcome the solution singularity shortcoming of traditional error component identification method, a new multi-step identification method of error component by using the Cross Grid Encoder measurement technology is proposed based on the kinematic error model of NC machine tool. Firstly, the 12 translational error components of the NC machine tool are measured and identified by using the least square method (LSM) when the NC machine tools go linear motion in the three orthogonal planes: XOY plane, XOZ plane and YOZ plane. Secondly, the circular error tracks are measured when the NC machine tools go circular motion in the same above orthogonal planes by using the cross grid encoder Heidenhain KGM 182. Therefore 9 rotational errors can be identified by using LSM. Finally the experimental validation of the above modelling theory and identification method is carried out in the 3 axis CNC vertical machining centre Cincinnati 750 Arrow. The entire 21 error components have been successfully measured out by the above method. Research shows the multi-step modelling and identification method is very suitable for 'on machine measurement'
Impact of shrinking measurement error budgets on qualification metrology sampling and cost
Sendelbach, Matthew; Sarig, Niv; Wakamoto, Koichi; Kim, Hyang Kyun (Helen); Isbester, Paul; Asano, Masafumi; Matsuki, Kazuto; Vaid, Alok; Osorio, Carmen; Archie, Chas
2014-04-01
When designing an experiment to assess the accuracy of a tool as compared to a reference tool, semiconductor metrologists are often confronted with the situation that they must decide on the sampling strategy before the measurements begin. This decision is usually based largely on the previous experience of the metrologist and the available resources, and not on the statistics that are needed to achieve acceptable confidence limits on the final result. This paper shows a solution to this problem, called inverse TMU analysis, by presenting statistically-based equations that allow the user to estimate the needed sampling after providing appropriate inputs, allowing him to make important "risk vs. reward" sampling, cost, and equipment decisions. Application examples using experimental data from scatterometry and critical dimension scanning electron microscope (CD-SEM) tools are used first to demonstrate how the inverse TMU analysis methodology can be used to make intelligent sampling decisions before the start of the experiment, and then to reveal why low sampling can lead to unstable and misleading results. A model is developed that can help an experimenter minimize the costs associated both with increased sampling and with making wrong decisions caused by insufficient sampling. A second cost model is described that reveals the inadequacy of current TEM (Transmission Electron Microscopy) sampling practices and the enormous costs associated with TEM sampling that is needed to provide reasonable levels of certainty in the result. These high costs reach into the tens of millions of dollars for TEM reference metrology as the measurement error budgets reach angstrom levels. The paper concludes with strategies on how to manage and mitigate these costs.
DEFF Research Database (Denmark)
Kjær, Daniel; Hansen, Ole; Østerberg, Frederik Westergaard
2015-01-01
Thin-film sheet resistance measurements at high spatial resolution and on small pads are important and can be realized with micrometer-scale four-point probes. As a result of the small scale the measurements are affected by electrode position errors. We have characterized the electrode position...... errors in measurements on Ru thin film using an Au-coated 12-point probe. We show that the standard deviation of the static electrode position error is on the order of 5 nm, which significantly affects the results of single configuration measurements. Position-error-corrected dual......-configuration measurements, however, are shown to eliminate the effect of position errors to a level limited either by electrical measurement noise or dynamic position errors. We show that the probe contact points remain almost static on the surface during the measurements (measured on an atomic scale) with a standard...
Thin film thickness measurement error reduction by wavelength selection in spectrophotometry
International Nuclear Information System (INIS)
Tsepulin, Vladimir G; Perchik, Alexey V; Tolstoguzov, Victor L; Karasik, Valeriy E
2015-01-01
Fast and accurate volumetric profilometry of thin film structures is an important problem in the electronic visual display industry. We propose to use spectrophotometry with a limited number of working wavelengths to achieve high-speed control and an approach to selecting the optimal working wavelengths to reduce the thickness measurement error. A simple expression for error estimation is presented and tested using a Monte Carlo simulation. The experimental setup is designed to confirm the stability of film thickness determination using a limited number of wavelengths
Mark, W. D.; Reagor, C. P.
2007-02-01
To assess gear health and detect gear-tooth damage, the vibratory response from meshing gear-pair excitations is commonly monitored by accelerometers. In an earlier paper, strong evidence was presented suggesting that, in the case of tooth bending-fatigue damage, the principal source of detectable damage is whole-tooth plastic deformation; i.e. yielding, rather than changes in tooth stiffness caused by tooth-root cracks. Such plastic deformations are geometric deviation contributions to the "static-transmission-error" (STE) vibratory excitation caused by meshing gear pairs. The STE contributions caused by two likely occurring forms of such plastic deformations on a single tooth are derived, and displayed in the time domain as a function of involute "roll distance." Example calculations are provided for transverse contact ratios of Qt=1.4 and 1.8, for spur gears and for helical-gear axial contact ratios ranging from Qa=1.2 to Qa=3.6. Low-pass- and band-pass-filtered versions of these same STE contributions also are computed and displayed in the time domain. Several calculations, consisting of superposition of the computed STE tooth-meshing fundamental harmonic contribution and the band-pass STE contribution caused by a plastically deformed tooth, exhibit the amplitude and frequency or phase modulation character commonly observed in accelerometer-response waveforms caused by damaged teeth. General formulas are provided that enable computation of these STE vibratory-excitation contributions for any form of plastic deformation on any number of teeth for spur and helical gears with any contact ratios.
Vinay BC; Nikhitha MK; Patel Sunil B
2015-01-01
In this present review article, regarding medication errors its definition, medication error problem, types of medication errors, common causes of medication errors, monitoring medication errors, consequences of medication errors, prevention of medication error and managing medication errors have been explained neatly and legibly with proper tables which is easy to understand.
Lamadrid-Figueroa, Héctor; Téllez-Rojo, Martha M; Angeles, Gustavo; Hernández-Ávila, Mauricio; Hu, Howard
2011-01-01
In-vivo measurement of bone lead by means of K-X-ray fluorescence (KXRF) is the preferred biological marker of chronic exposure to lead. Unfortunately, considerable measurement error associated with KXRF estimations can introduce bias in estimates of the effect of bone lead when this variable is included as the exposure in a regression model. Estimates of uncertainty reported by the KXRF instrument reflect the variance of the measurement error and, although they can be used to correct the measurement error bias, they are seldom used in epidemiological statistical analyzes. Errors-in-variables regression (EIV) allows for correction of bias caused by measurement error in predictor variables, based on the knowledge of the reliability of such variables. The authors propose a way to obtain reliability coefficients for bone lead measurements from uncertainty data reported by the KXRF instrument and compare, by the use of Monte Carlo simulations, results obtained using EIV regression models vs. those obtained by the standard procedures. Results of the simulations show that Ordinary Least Square (OLS) regression models provide severely biased estimates of effect, and that EIV provides nearly unbiased estimates. Although EIV effect estimates are more imprecise, their mean squared error is much smaller than that of OLS estimates. In conclusion, EIV is a better alternative than OLS to estimate the effect of bone lead when measured by KXRF. Copyright Â© 2010 Elsevier Inc. All rights reserved.
Flanders, W Dana; Kirkland, Kimberly H; Shelton, Brian G
2014-10-01
Outbreaks of Legionnaires' disease require environmental testing of water samples from potentially implicated building water systems to identify the source of exposure. A previous study reports a large impact on Legionella sample results due to shipping and delays in sample processing. Specifically, this same study, without accounting for measurement error, reports more than half of shipped samples tested had Legionella levels that arbitrarily changed up or down by one or more logs, and the authors attribute this result to shipping time. Accordingly, we conducted a study to determine the effects of sample holding/shipping time on Legionella sample results while taking into account measurement error, which has previously not been addressed. We analyzed 159 samples, each split into 16 aliquots, of which one-half (8) were processed promptly after collection. The remaining half (8) were processed the following day to assess impact of holding/shipping time. A total of 2544 samples were analyzed including replicates. After accounting for inherent measurement error, we found that the effect of holding time on observed Legionella counts was small and should have no practical impact on interpretation of results. Holding samples increased the root mean squared error by only about 3-8%. Notably, for only one of 159 samples, did the average of the 8 replicate counts change by 1 log. Thus, our findings do not support the hypothesis of frequent, significant (≥= 1 log10 unit) Legionella colony count changes due to holding. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Direct measurement of the poliovirus RNA polymerase error frequency in vitro
International Nuclear Information System (INIS)
Ward, C.D.; Stokes, M.A.M.; Flanegan, J.B.
1988-01-01
The fidelity of RNA replication by the poliovirus-RNA-dependent RNA polymerase was examined by copying homopolymeric RNA templates in vitro. The poliovirus RNA polymerase was extensively purified and used to copy poly(A), poly(C), or poly(I) templates with equimolar concentrations of noncomplementary and complementary ribonucleotides. The error frequency was expressed as the amount of a noncomplementary nucleotide incorporated divided by the total amount of complementary and noncomplementary nucleotide incorporated. The polymerase error frequencies were very high, depending on the specific reaction conditions. The activity of the polymerase on poly(U) and poly(G) was too low to measure error frequencies on these templates. A fivefold increase in the error frequency was observed when the reaction conditions were changed from 3.0 mM Mg 2+ (pH 7.0) to 7.0 mM Mg 2+ (pH 8.0). This increase in the error frequency correlates with an eightfold increase in the elongation rate that was observed under the same conditions in a previous study
A study of the effect of measurement error in predictor variables in nondestructive assay
International Nuclear Information System (INIS)
Burr, Tom L.; Knepper, Paula L.
2000-01-01
It is not widely known that ordinary least squares estimates exhibit bias if there are errors in the predictor variables. For example, enrichment measurements are often fit to two predictors: Poisson-distributed count rates in the region of interest and in the background. Both count rates have at least random variation due to counting statistics. Therefore, the parameter estimates will be biased. In this case, the effect of bias is a minor issue because there is almost no interest in the parameters themselves. Instead, the parameters will be used to convert count rates into estimated enrichment. In other cases, this bias source is potentially more important. For example, in tomographic gamma scanning, there is an emission stage which depends on predictors (the 'system matrix') that are estimated with error during the transmission stage. In this paper, we provide background information for the impact and treatment of errors in predictors, present results of candidate methods of compensating for the effect, review some of the nondestructive assay situations where errors in predictors occurs, and provide guidance for when errors in predictors should be considered in nondestructive assay
Harshman, Jordan; Yezierski, Ellen
2016-01-01
Determining the error of measurement is a necessity for researchers engaged in bench chemistry, chemistry education research (CER), and a multitude of other fields. Discussions regarding what constructs measurement error entails and how to best measure them have occurred, but the critiques about traditional measures have yielded few alternatives.…
International Nuclear Information System (INIS)
Foggi, C.; Liebetrau, A.M.; Petraglia, E.
1999-01-01
One of the most common procedures used in determining the amount of nuclear material contained in solutions consists of first measuring the volume and the density of the solution, and then determining the concentrations of this material. This presentation will focus on errors generated at the process lime in the measurement of volume and density. These errors and their associated uncertainties can be grouped into distinct categories depending on their origin: those attributable to measuring instruments; those attributable to operational procedures; variability in measurement conditions; errors in the analysis and interpretation of results. Possible errors sources, their relative magnitudes, and an error propagation rationale are discussed, with emphasis placed on bases and errors of the last three types called systematic errors [ru
Bryson, Mitch; Ferrari, Renata; Figueira, Will; Pizarro, Oscar; Madin, Josh; Williams, Stefan; Byrne, Maria
2017-08-01
Habitat structural complexity is one of the most important factors in determining the makeup of biological communities. Recent advances in structure-from-motion and photogrammetry have resulted in a proliferation of 3D digital representations of habitats from which structural complexity can be measured. Little attention has been paid to quantifying the measurement errors associated with these techniques, including the variability of results under different surveying and environmental conditions. Such errors have the potential to confound studies that compare habitat complexity over space and time. This study evaluated the accuracy, precision, and bias in measurements of marine habitat structural complexity derived from structure-from-motion and photogrammetric measurements using repeated surveys of artificial reefs (with known structure) as well as natural coral reefs. We quantified measurement errors as a function of survey image coverage, actual surface rugosity, and the morphological community composition of the habitat-forming organisms (reef corals). Our results indicated that measurements could be biased by up to 7.5% of the total observed ranges of structural complexity based on the environmental conditions present during any particular survey. Positive relationships were found between measurement errors and actual complexity, and the strength of these relationships was increased when coral morphology and abundance were also used as predictors. The numerous advantages of structure-from-motion and photogrammetry techniques for quantifying and investigating marine habitats will mean that they are likely to replace traditional measurement techniques (e.g., chain-and-tape). To this end, our results have important implications for data collection and the interpretation of measurements when examining changes in habitat complexity using structure-from-motion and photogrammetry.
International Nuclear Information System (INIS)
Siegrist, R.L.
1991-01-01
Due to their widespread use throughout commerce and industry, volatile hydrocarbons such as toluene, trichloroethene, and 1, 1,1-trichloroethane routinely appears as principal pollutants in contamination of soil system hydrocarbons is necessary to confirm the presence of contamination and its nature and extent; to assess site risks and the need for cleanup; to evaluate remedial technologies; and to verify the performance of a selected alternative. Decisions regarding these issues have far-reaching impacts and, ideally, should be based on accurate measurements of soil hydrocarbon concentrations. Unfortunately, quantification of volatile hydrocarbons in soils is extremely difficult and there is normally little understanding of the accuracy and precision of these measurements. Rather, the assumptions often implicitly made that the hydrocarbon data are sufficiently accurate for the intended purpose. This appear presents a discussion of measurement error potential when quantifying volatile hydrocarbons in soils, and outlines some methods for understanding the managing these errors
Topping, David J.; Wright, Scott A.
2016-05-04
these sites. In addition, detailed, step-by-step procedures are presented for the general river application of the method.Quantification of errors in sediment-transport measurements made using this acoustical method is essential if the measurements are to be used effectively, for example, to evaluate uncertainty in long-term sediment loads and budgets. Several types of error analyses are presented to evaluate (1) the stability of acoustical calibrations over time, (2) the effect of neglecting backscatter from silt and clay, (3) the bias arising from changes in sand grain size, (4) the time-varying error in the method, and (5) the influence of nonrandom processes on error. Results indicate that (1) acoustical calibrations can be stable for long durations (multiple years), (2) neglecting backscatter from silt and clay can result in unacceptably high bias, (3) two frequencies are likely required to obtain sand-concentration measurements that are unbiased by changes in grain size, depending on site-specific conditions and acoustic frequency, (4) relative errors in silt-and-clay- and sand-concentration measurements decrease substantially as concentration increases, and (5) nonrandom errors may arise from slow changes in the spatial structure of suspended sediment that affect the relations between concentration in the acoustically ensonified part of the cross section and concentration in the entire river cross section. Taken together, the error analyses indicate that the two-frequency method produces unbiased measurements of suspended-silt-and-clay and sand concentration, with errors that are similar to, or larger than, those associated with conventional sampling methods.
Batistatou, Evridiki; McNamee, Roseanne
2012-12-10
It is known that measurement error leads to bias in assessing exposure effects, which can however, be corrected if independent replicates are available. For expensive replicates, two-stage (2S) studies that produce data 'missing by design', may be preferred over a single-stage (1S) study, because in the second stage, measurement of replicates is restricted to a sample of first-stage subjects. Motivated by an occupational study on the acute effect of carbon black exposure on respiratory morbidity, we compare the performance of several bias-correction methods for both designs in a simulation study: an instrumental variable method (EVROS IV) based on grouping strategies, which had been recommended especially when measurement error is large, the regression calibration and the simulation extrapolation methods. For the 2S design, either the problem of 'missing' data was ignored or the 'missing' data were imputed using multiple imputations. Both in 1S and 2S designs, in the case of small or moderate measurement error, regression calibration was shown to be the preferred approach in terms of root mean square error. For 2S designs, regression calibration as implemented by Stata software is not recommended in contrast to our implementation of this method; the 'problematic' implementation of regression calibration although substantially improved with use of multiple imputations. The EVROS IV method, under a good/fairly good grouping, outperforms the regression calibration approach in both design scenarios when exposure mismeasurement is severe. Both in 1S and 2S designs with moderate or large measurement error, simulation extrapolation severely failed to correct for bias. Copyright © 2012 John Wiley & Sons, Ltd.
Error Analysis of Relative Calibration for RCS Measurement on Ground Plane Range
Directory of Open Access Journals (Sweden)
Wu Peng-fei
2012-03-01
Full Text Available Ground plane range is a kind of outdoor Radar Cross Section (RCS test range used for static measurement of full-size or scaled targets. Starting from the characteristics of ground plane range, the impact of environments on targets and calibrators is analyzed during calibration in the RCS measurements. The error of relative calibration produced by the different illumination of target and calibrator is studied. The relative calibration technique used in ground plane range is to place the calibrator on a fixed and auxiliary pylon somewhere between the radar and the target under test. By considering the effect of ground reflection and antenna pattern, the relationship between the magnitude of echoes and the position of calibrator is discussed. According to the different distances between the calibrator and target, the difference between free space and ground plane range is studied and the error of relative calibration is calculated. Numerical simulation results are presented with useful conclusions. The relative calibration error varies with the position of calibrator, frequency and antenna beam width. In most case, set calibrator close to the target may keep the error under control.
Cost-Sensitive Feature Selection of Numeric Data with Measurement Errors
Directory of Open Access Journals (Sweden)
Hong Zhao
2013-01-01
Full Text Available Feature selection is an essential process in data mining applications since it reduces a model’s complexity. However, feature selection with various types of costs is still a new research topic. In this paper, we study the cost-sensitive feature selection problem of numeric data with measurement errors. The major contributions of this paper are fourfold. First, a new data model is built to address test costs and misclassification costs as well as error boundaries. It is distinguished from the existing models mainly on the error boundaries. Second, a covering-based rough set model with normal distribution measurement errors is constructed. With this model, coverings are constructed from data rather than assigned by users. Third, a new cost-sensitive feature selection problem is defined on this model. It is more realistic than the existing feature selection problems. Fourth, both backtracking and heuristic algorithms are proposed to deal with the new problem. Experimental results show the efficiency of the pruning techniques for the backtracking algorithm and the effectiveness of the heuristic algorithm. This study is a step toward realistic applications of the cost-sensitive learning.
Measurement error of spiral CT volumetry: influence of low dose CT technique
International Nuclear Information System (INIS)
Chung, Myung Jin; Cho, Jae Min; Lee, Tae Gyu; Cho, Sung Bum; Kim, Seog Joon; Baik, Sang Hyun
2004-01-01
To examine the possible measurement errors of lung nodule volumetry at the various scan parameters by using a small nodule phantom. We obtained images of a nodule phantom using a spiral CT scanner. The nodule phantom was made of paraffin and urethane and its real volume was known. For the CT scanning experiments, we used three different values for both the pitch of the table feed, i.e. 1:1, 1:15 and 1:2, and the tube current, i.e. 40 mA, 80 mA and 120 mA. All of the images acquired through CT scanning were reconstructed three dimensionally and measured with volumetry software. We tested the correlation between the true volume and the measured volume for each set of parameters using linear regression analysis. For the pitches of table feed of 1:1, 1:1.5 and 1:2, the mean relative errors were 23.3%, 22.8% and 22.6%, respectively. There were perfect correlations among the three sets of measurements (Pearson's coefficient = 1.000, p< 0.001). For the tube currents of 40 mA, 80 mA and 120 mA, the mean relative errors were 22.6%, 22.6% and 22.9%, respectively. There were perfect correlations among them (Pearson's coefficient=1.000, p<0.001). In the measurement of the volume of the lung nodule using spiral CT, the measurement error was not increased in spite of the tube current being decreased or the pitch of table feed being increased
A study on fatigue measurement of operators for human error prevention in NPPs
Energy Technology Data Exchange (ETDEWEB)
Ju, Oh Yeon; Il, Jang Tong; Meiling, Luo; Hee, Lee Young [KAERI, Daejeon (Korea, Republic of)
2012-10-15
The identification and the analysis of individual factor of operators, which is one of the various causes of adverse effects in human performance, is not easy in NPPs. There are work types (including shift), environment, personality, qualification, training, education, cognition, fatigue, job stress, workload, etc in individual factors for the operators. Research at the Finnish Institute of Occupational Health (FIOH) reported that a 'burn out (extreme fatigue)' is related to alcohol dependent habits and must be dealt with using a stress management program. USNRC (U.S. Nuclear Regulatory Commission) developed FFD (Fitness for Duty) for improving the task efficiency and preventing human errors. 'Managing Fatigue' of 10CFR26 presented as requirements to control operator fatigue in NPPs. The committee explained that excessive fatigue is due to stressful work environments, working hours, shifts, sleep disorders, and unstable circadian rhythms. In addition, an International Labor Organization (ILO) developed and suggested a checklist to manage fatigue and job stress. In domestic, a systematic evaluation way is presented by the Final Safety Analysis Report (FSAR) chapter 18, Human Factors, in the licensing process. However, it almost focused on the interface design such as HMI (Human Machine Interface), not individual factors. In particular, because our country is in a process of the exporting the NPP to UAE, the development and setting of fatigue management technique is important and urgent to present the technical standard and FFD criteria to UAE. And also, it is anticipated that the domestic regulatory body applies the FFD program as the regulation requirement so that a preparation for that situation is required. In this paper, advanced researches are investigated to find the fatigue measurement and evaluation methods of operators in a high reliability industry. Also, this study tries to review the NRC report and discuss the causal factors and
A study on fatigue measurement of operators for human error prevention in NPPs
International Nuclear Information System (INIS)
Ju, Oh Yeon; Il, Jang Tong; Meiling, Luo; Hee, Lee Young
2012-01-01
The identification and the analysis of individual factor of operators, which is one of the various causes of adverse effects in human performance, is not easy in NPPs. There are work types (including shift), environment, personality, qualification, training, education, cognition, fatigue, job stress, workload, etc in individual factors for the operators. Research at the Finnish Institute of Occupational Health (FIOH) reported that a 'burn out (extreme fatigue)' is related to alcohol dependent habits and must be dealt with using a stress management program. USNRC (U.S. Nuclear Regulatory Commission) developed FFD (Fitness for Duty) for improving the task efficiency and preventing human errors. 'Managing Fatigue' of 10CFR26 presented as requirements to control operator fatigue in NPPs. The committee explained that excessive fatigue is due to stressful work environments, working hours, shifts, sleep disorders, and unstable circadian rhythms. In addition, an International Labor Organization (ILO) developed and suggested a checklist to manage fatigue and job stress. In domestic, a systematic evaluation way is presented by the Final Safety Analysis Report (FSAR) chapter 18, Human Factors, in the licensing process. However, it almost focused on the interface design such as HMI (Human Machine Interface), not individual factors. In particular, because our country is in a process of the exporting the NPP to UAE, the development and setting of fatigue management technique is important and urgent to present the technical standard and FFD criteria to UAE. And also, it is anticipated that the domestic regulatory body applies the FFD program as the regulation requirement so that a preparation for that situation is required. In this paper, advanced researches are investigated to find the fatigue measurement and evaluation methods of operators in a high reliability industry. Also, this study tries to review the NRC report and discuss the causal factors and management
Kawamura, H
2001-03-01
Given the complexity of the intravenous medication process, systematic thinking is essential to reduce medication errors. Two thousand eight hundred cases of 'Hiyari-Hatto' were analyzed. Eight important factors which cause intravenous medication error were clarified as a result. In the following I summarize the systematic approach for each factor. 1. Failed communication of information: illegible handwritten orders, and inaccurate verbal orders and copying cause medication error. Rules must be established to prevent miscommunication. 2. Error-prone design of the hardware: Look-alike packaging and labeling of drugs and the poor design of infusion pumps cause errors. The human-hardware interface should be improved by error-resistant design by manufacturers. 3. Patient names similar to simultaneously operating surgical procedures and interventions: This factor causes patient misidentification. Automated identification devices should be introduced into health care settings. 4. Interruption in the middle of tasks: The efficient assignment of medical work and business work should be made. 5. Inaccurate mixing procedure and insufficient mixing space: Mixing procedures must be standardized and the layout of the working space must be examined. 6. Time pressure: Mismatch between workload and manpower should be improved by reconsidering the work to be done. 7. Lack of information about high alert medications: The pharmacist should play a greater role in the medication process overall. 8. Poor knowledge and skill of recent graduates: Training methods and tools to prevent medication errors must be developed.
Correction for dynamic bias error in transmission measurements of void fraction
International Nuclear Information System (INIS)
Andersson, P.; Sundén, E. Andersson; Svärd, S. Jacobsson; Sjöstrand, H.
2012-01-01
Dynamic bias errors occur in transmission measurements, such as X-ray, gamma, or neutron radiography or tomography. This is observed when the properties of the object are not stationary in time and its average properties are assessed. The nonlinear measurement response to changes in transmission within the time scale of the measurement implies a bias, which can be difficult to correct for. A typical example is the tomographic or radiographic mapping of void content in dynamic two-phase flow systems. In this work, the dynamic bias error is described and a method to make a first-order correction is derived. A prerequisite for this method is variance estimates of the system dynamics, which can be obtained using high-speed, time-resolved data acquisition. However, in the absence of such acquisition, a priori knowledge might be used to substitute the time resolved data. Using synthetic data, a void fraction measurement case study has been simulated to demonstrate the performance of the suggested method. The transmission length of the radiation in the object under study and the type of fluctuation of the void fraction have been varied. Significant decreases in the dynamic bias error were achieved to the expense of marginal decreases in precision.
Measurement of tokamak error fields using plasma response and its applicability to ITER
International Nuclear Information System (INIS)
Strait, E.J.; Buttery, R.J.; Chu, M.S.; Garofalo, A.M.; La Haye, R.J.; Schaffer, M.J.; Casper, T.A.; Gribov, Y.; Hanson, J.M.; Reimerdes, H.; Volpe, F.A.
2014-01-01
The nonlinear response of a low-beta tokamak plasma to non-axisymmetric fields offers an alternative to direct measurement of the non-axisymmetric part of the vacuum magnetic fields, often termed ‘error fields’. Possible approaches are discussed for determination of error fields and the required current in non-axisymmetric correction coils, with an emphasis on two relatively new methods: measurement of the torque balance on a saturated magnetic island, and measurement of the braking of plasma rotation in the absence of an island. The former is well suited to ohmically heated discharges, while the latter is more appropriate for discharges with a modest amount of neutral beam heating to drive rotation. Both can potentially provide continuous measurements during a discharge, subject to the limitation of a minimum averaging time. The applicability of these methods to ITER is discussed, and an estimate is made of their uncertainties in light of the specifications of ITER's diagnostic systems. The use of plasma response-based techniques in normal ITER operational scenarios may allow identification of the error field contributions by individual central solenoid coils, but identification of the individual contributions by the outer poloidal field coils or other sources is less likely to be feasible. (paper)
Zhong, Xuemin; Liu, Hongqi; Mao, Xinyong; Li, Bin; He, Songping; Peng, Fangyu
2018-05-01
Large multi-axis propeller-measuring machines have two types of geometric error, position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs), which both have significant effects on the volumetric error of the measuring tool relative to the worktable. This paper focuses on modeling, identifying and compensating for the volumetric error of the measuring machine. A volumetric error model in the base coordinate system is established based on screw theory considering all the geometric errors. In order to fully identify all the geometric error parameters, a new method for systematic measurement and identification is proposed. All the PIGEs of adjacent axes and the six PDGEs of the linear axes are identified with a laser tracker using the proposed model. Finally, a volumetric error compensation strategy is presented and an inverse kinematic solution for compensation is proposed. The final measuring and compensation experiments have further verified the efficiency and effectiveness of the measuring and identification method, indicating that the method can be used in volumetric error compensation for large machine tools.
Carroll, Raymond J.
2011-03-01
In many applications we can expect that, or are interested to know if, a density function or a regression curve satisfies some specific shape constraints. For example, when the explanatory variable, X, represents the value taken by a treatment or dosage, the conditional mean of the response, Y , is often anticipated to be a monotone function of X. Indeed, if this regression mean is not monotone (in the appropriate direction) then the medical or commercial value of the treatment is likely to be significantly curtailed, at least for values of X that lie beyond the point at which monotonicity fails. In the case of a density, common shape constraints include log-concavity and unimodality. If we can correctly guess the shape of a curve, then nonparametric estimators can be improved by taking this information into account. Addressing such problems requires a method for testing the hypothesis that the curve of interest satisfies a shape constraint, and, if the conclusion of the test is positive, a technique for estimating the curve subject to the constraint. Nonparametric methodology for solving these problems already exists, but only in cases where the covariates are observed precisely. However in many problems, data can only be observed with measurement errors, and the methods employed in the error-free case typically do not carry over to this error context. In this paper we develop a novel approach to hypothesis testing and function estimation under shape constraints, which is valid in the context of measurement errors. Our method is based on tilting an estimator of the density or the regression mean until it satisfies the shape constraint, and we take as our test statistic the distance through which it is tilted. Bootstrap methods are used to calibrate the test. The constrained curve estimators that we develop are also based on tilting, and in that context our work has points of contact with methodology in the error-free case.
Some effects of random dose measurement errors on analysis of atomic bomb survivor data
International Nuclear Information System (INIS)
Gilbert, E.S.
1985-01-01
The effects of random dose measurement errors on analyses of atomic bomb survivor data are described and quantified for several procedures. It is found that the ways in which measurement error is most likely to mislead are through downward bias in the estimated regression coefficients and through distortion of the shape of the dose-response curve. The magnitude of the bias with simple linear regression is evaluated for several dose treatments including the use of grouped and ungrouped data, analyses with and without truncation at 600 rad, and analyses which exclude doses exceeding 200 rad. Limited calculations have also been made for maximum likelihood estimation based on Poisson regression. 16 refs., 6 tabs
Potentiometric Measurement of Transition Ranges and Titration Errors for Acid/Base Indicators
Flowers, Paul A.
1997-07-01
Sophomore analytical chemistry courses typically devote a substantial amount of lecture time to acid/base equilibrium theory, and usually include at least one laboratory project employing potentiometric titrations. In an effort to provide students a laboratory experience that more directly supports their classroom discussions on this important topic, an experiment involving potentiometric measurement of transition ranges and titration errors for common acid/base indicators has been developed. The pH and visually-assessed color of a millimolar strong acid/base system are monitored as a function of added titrant volume, and the resultant data plotted to permit determination of the indicator's transition range and associated titration error. Student response is typically quite positive, and the measured quantities correlate reasonably well to literature values.
DEFF Research Database (Denmark)
Pitkänen, Timo; Mäntysaari, Esa A; Nielsen, Ulrik Sander
2013-01-01
of variance correction is developed for the same observations. As automated milking systems are becoming more popular the current evaluation model needs to be enhanced to account for the different measurement error variances of observations from automated milking systems. In this simulation study different...... models and different approaches to account for heterogeneous variance when observations have different measurement error variances were investigated. Based on the results we propose to upgrade the currently applied models and to calibrate the heterogeneous variance adjustment method to yield same genetic......The Nordic Holstein yield evaluation model describes all available milk, protein and fat test-day yields from Denmark, Finland and Sweden. In its current form all variance components are estimated from observations recorded under conventional milking systems. Also the model for heterogeneity...
DEFF Research Database (Denmark)
Hansen, Peter Reinhard; Lunde, Asger
An economic time series can often be viewed as a noisy proxy for an underlying economic variable. Measurement errors will influence the dynamic properties of the observed process and may conceal the persistence of the underlying time series. In this paper we develop instrumental variable (IV...... application despite the large sample. Unit root tests based on the IV estimator have better finite sample properties in this context....
Rate estimation in partially observed Markov jump processes with measurement errors
Amrein, Michael; Kuensch, Hans R.
2010-01-01
We present a simulation methodology for Bayesian estimation of rate parameters in Markov jump processes arising for example in stochastic kinetic models. To handle the problem of missing components and measurement errors in observed data, we embed the Markov jump process into the framework of a general state space model. We do not use diffusion approximations. Markov chain Monte Carlo and particle filter type algorithms are introduced, which allow sampling from the posterior distribution of t...
Sanderson, Eleanor; Macdonald-Wallis, Corrie; Davey Smith, George
2018-04-01
Negative control exposure studies are increasingly being used in epidemiological studies to strengthen causal inference regarding an exposure-outcome association when unobserved confounding is thought to be present. Negative control exposure studies contrast the magnitude of association of the negative control, which has no causal effect on the outcome but is associated with the unmeasured confounders in the same way as the exposure, with the magnitude of the association of the exposure with the outcome. A markedly larger effect of the exposure on the outcome than the negative control on the outcome strengthens inference that the exposure has a causal effect on the outcome. We investigate the effect of measurement error in the exposure and negative control variables on the results obtained from a negative control exposure study. We do this in models with continuous and binary exposure and negative control variables using analysis of the bias of the estimated coefficients and Monte Carlo simulations. Our results show that measurement error in either the exposure or negative control variables can bias the estimated results from the negative control exposure study. Measurement error is common in the variables used in epidemiological studies; these results show that negative control exposure studies cannot be used to precisely determine the size of the effect of the exposure variable, or adequately adjust for unobserved confounding; however, they can be used as part of a body of evidence to aid inference as to whether a causal effect of the exposure on the outcome is present.
Cheng, Dunlei; Branscum, Adam J; Stamey, James D
2010-07-01
To quantify the impact of ignoring misclassification of a response variable and measurement error in a covariate on statistical power, and to develop software for sample size and power analysis that accounts for these flaws in epidemiologic data. A Monte Carlo simulation-based procedure is developed to illustrate the differences in design requirements and inferences between analytic methods that properly account for misclassification and measurement error to those that do not in regression models for cross-sectional and cohort data. We found that failure to account for these flaws in epidemiologic data can lead to a substantial reduction in statistical power, over 25% in some cases. The proposed method substantially reduced bias by up to a ten-fold margin compared to naive estimates obtained by ignoring misclassification and mismeasurement. We recommend as routine practice that researchers account for errors in measurement of both response and covariate data when determining sample size, performing power calculations, or analyzing data from epidemiological studies. 2010 Elsevier Inc. All rights reserved.
Dagne, Getachew A; Huang, Yangxin
2013-09-30
Common problems to many longitudinal HIV/AIDS, cancer, vaccine, and environmental exposure studies are the presence of a lower limit of quantification of an outcome with skewness and time-varying covariates with measurement errors. There has been relatively little work published simultaneously dealing with these features of longitudinal data. In particular, left-censored data falling below a limit of detection may sometimes have a proportion larger than expected under a usually assumed log-normal distribution. In such cases, alternative models, which can account for a high proportion of censored data, should be considered. In this article, we present an extension of the Tobit model that incorporates a mixture of true undetectable observations and those values from a skew-normal distribution for an outcome with possible left censoring and skewness, and covariates with substantial measurement error. To quantify the covariate process, we offer a flexible nonparametric mixed-effects model within the Tobit framework. A Bayesian modeling approach is used to assess the simultaneous impact of left censoring, skewness, and measurement error in covariates on inference. The proposed methods are illustrated using real data from an AIDS clinical study. . Copyright © 2013 John Wiley & Sons, Ltd.
Degradation data analysis based on a generalized Wiener process subject to measurement error
Li, Junxing; Wang, Zhihua; Zhang, Yongbo; Fu, Huimin; Liu, Chengrui; Krishnaswamy, Sridhar
2017-09-01
Wiener processes have received considerable attention in degradation modeling over the last two decades. In this paper, we propose a generalized Wiener process degradation model that takes unit-to-unit variation, time-correlated structure and measurement error into considerations simultaneously. The constructed methodology subsumes a series of models studied in the literature as limiting cases. A simple method is given to determine the transformed time scale forms of the Wiener process degradation model. Then model parameters can be estimated based on a maximum likelihood estimation (MLE) method. The cumulative distribution function (CDF) and the probability distribution function (PDF) of the Wiener process with measurement errors are given based on the concept of the first hitting time (FHT). The percentiles of performance degradation (PD) and failure time distribution (FTD) are also obtained. Finally, a comprehensive simulation study is accomplished to demonstrate the necessity of incorporating measurement errors in the degradation model and the efficiency of the proposed model. Two illustrative real applications involving the degradation of carbon-film resistors and the wear of sliding metal are given. The comparative results show that the constructed approach can derive a reasonable result and an enhanced inference precision.
Influence of the statistical distribution of bioassay measurement errors on the intake estimation
International Nuclear Information System (INIS)
Lee, T. Y; Kim, J. K
2006-01-01
The purpose of this study is to provide the guidance necessary for making a selection of error distributions by analyzing influence of statistical distribution for a type of bioassay measurement error on the intake estimation. For this purpose, intakes were estimated using maximum likelihood method for cases that error distributions are normal and lognormal, and comparisons between two distributions for the estimated intakes were made. According to the results of this study, in case that measurement results for lung retention are somewhat greater than the limit of detection it appeared that distribution types have negligible influence on the results. Whereas in case of measurement results for the daily excretion rate, the results obtained from assumption of a lognormal distribution were 10% higher than those obtained from assumption of a normal distribution. In view of these facts, in case where uncertainty component is governed by counting statistics it is considered that distribution type have no influence on intake estimation. Whereas in case where the others are predominant, it is concluded that it is clearly desirable to estimate the intake assuming a lognormal distribution
Optics measurement algorithms and error analysis for the proton energy frontier
Langner, A
2015-01-01
Optics measurement algorithms have been improved in preparation for the commissioning of the LHC at higher energy, i.e., with an increased damage potential. Due to machine protection considerations the higher energy sets tighter limits in the maximum excitation amplitude and the total beam charge, reducing the signal to noise ratio of optics measurements. Furthermore the precision in 2012 (4 TeV) was insufficient to understand beam size measurements and determine interaction point (IP) β-functions (β). A new, more sophisticated algorithm has been developed which takes into account both the statistical and systematic errors involved in this measurement. This makes it possible to combine more beam position monitor measurements for deriving the optical parameters and demonstrates to significantly improve the accuracy and precision. Measurements from the 2012 run have been reanalyzed which, due to the improved algorithms, result in a significantly higher precision of the derived optical parameters and decreased...
Visual acuity measures do not reliably detect childhood refractive error--an epidemiological study.
Directory of Open Access Journals (Sweden)
Lisa O'Donoghue
Full Text Available PURPOSE: To investigate the utility of uncorrected visual acuity measures in screening for refractive error in white school children aged 6-7-years and 12-13-years. METHODS: The Northern Ireland Childhood Errors of Refraction (NICER study used a stratified random cluster design to recruit children from schools in Northern Ireland. Detailed eye examinations included assessment of logMAR visual acuity and cycloplegic autorefraction. Spherical equivalent refractive data from the right eye were used to classify significant refractive error as myopia of at least 1DS, hyperopia as greater than +3.50DS and astigmatism as greater than 1.50DC, whether it occurred in isolation or in association with myopia or hyperopia. RESULTS: Results are presented from 661 white 12-13-year-old and 392 white 6-7-year-old school-children. Using a cut-off of uncorrected visual acuity poorer than 0.20 logMAR to detect significant refractive error gave a sensitivity of 50% and specificity of 92% in 6-7-year-olds and 73% and 93% respectively in 12-13-year-olds. In 12-13-year-old children a cut-off of poorer than 0.20 logMAR had a sensitivity of 92% and a specificity of 91% in detecting myopia and a sensitivity of 41% and a specificity of 84% in detecting hyperopia. CONCLUSIONS: Vision screening using logMAR acuity can reliably detect myopia, but not hyperopia or astigmatism in school-age children. Providers of vision screening programs should be cognisant that where detection of uncorrected hyperopic and/or astigmatic refractive error is an aspiration, current UK protocols will not effectively deliver.
Optics measurement algorithms and error analysis for the proton energy frontier
Directory of Open Access Journals (Sweden)
A. Langner
2015-03-01
Full Text Available Optics measurement algorithms have been improved in preparation for the commissioning of the LHC at higher energy, i.e., with an increased damage potential. Due to machine protection considerations the higher energy sets tighter limits in the maximum excitation amplitude and the total beam charge, reducing the signal to noise ratio of optics measurements. Furthermore the precision in 2012 (4 TeV was insufficient to understand beam size measurements and determine interaction point (IP β-functions (β^{*}. A new, more sophisticated algorithm has been developed which takes into account both the statistical and systematic errors involved in this measurement. This makes it possible to combine more beam position monitor measurements for deriving the optical parameters and demonstrates to significantly improve the accuracy and precision. Measurements from the 2012 run have been reanalyzed which, due to the improved algorithms, result in a significantly higher precision of the derived optical parameters and decreased the average error bars by a factor of three to four. This allowed the calculation of β^{*} values and demonstrated to be fundamental in the understanding of emittance evolution during the energy ramp.
Optics measurement algorithms and error analysis for the proton energy frontier
Langner, A.; Tomás, R.
2015-03-01
Optics measurement algorithms have been improved in preparation for the commissioning of the LHC at higher energy, i.e., with an increased damage potential. Due to machine protection considerations the higher energy sets tighter limits in the maximum excitation amplitude and the total beam charge, reducing the signal to noise ratio of optics measurements. Furthermore the precision in 2012 (4 TeV) was insufficient to understand beam size measurements and determine interaction point (IP) β -functions (β*). A new, more sophisticated algorithm has been developed which takes into account both the statistical and systematic errors involved in this measurement. This makes it possible to combine more beam position monitor measurements for deriving the optical parameters and demonstrates to significantly improve the accuracy and precision. Measurements from the 2012 run have been reanalyzed which, due to the improved algorithms, result in a significantly higher precision of the derived optical parameters and decreased the average error bars by a factor of three to four. This allowed the calculation of β* values and demonstrated to be fundamental in the understanding of emittance evolution during the energy ramp.
Precision Measurements of the Cluster Red Sequence using an Error Corrected Gaussian Mixture Model
Energy Technology Data Exchange (ETDEWEB)
Hao, Jiangang; /Fermilab /Michigan U.; Koester, Benjamin P.; /Chicago U.; Mckay, Timothy A.; /Michigan U.; Rykoff, Eli S.; /UC, Santa Barbara; Rozo, Eduardo; /Ohio State U.; Evrard, August; /Michigan U.; Annis, James; /Fermilab; Becker, Matthew; /Chicago U.; Busha, Michael; /KIPAC, Menlo Park /SLAC; Gerdes, David; /Michigan U.; Johnston, David E.; /Northwestern U. /Brookhaven
2009-07-01
The red sequence is an important feature of galaxy clusters and plays a crucial role in optical cluster detection. Measurement of the slope and scatter of the red sequence are affected both by selection of red sequence galaxies and measurement errors. In this paper, we describe a new error corrected Gaussian Mixture Model for red sequence galaxy identification. Using this technique, we can remove the effects of measurement error and extract unbiased information about the intrinsic properties of the red sequence. We use this method to select red sequence galaxies in each of the 13,823 clusters in the maxBCG catalog, and measure the red sequence ridgeline location and scatter of each. These measurements provide precise constraints on the variation of the average red galaxy populations in the observed frame with redshift. We find that the scatter of the red sequence ridgeline increases mildly with redshift, and that the slope decreases with redshift. We also observe that the slope does not strongly depend on cluster richness. Using similar methods, we show that this behavior is mirrored in a spectroscopic sample of field galaxies, further emphasizing that ridgeline properties are independent of environment. These precise measurements serve as an important observational check on simulations and mock galaxy catalogs. The observed trends in the slope and scatter of the red sequence ridgeline with redshift are clues to possible intrinsic evolution of the cluster red-sequence itself. Most importantly, the methods presented in this work lay the groundwork for further improvements in optically-based cluster cosmology.
PRECISION MEASUREMENTS OF THE CLUSTER RED SEQUENCE USING AN ERROR-CORRECTED GAUSSIAN MIXTURE MODEL
International Nuclear Information System (INIS)
Hao Jiangang; Annis, James; Koester, Benjamin P.; Mckay, Timothy A.; Evrard, August; Gerdes, David; Rykoff, Eli S.; Rozo, Eduardo; Becker, Matthew; Busha, Michael; Wechsler, Risa H.; Johnston, David E.; Sheldon, Erin
2009-01-01
The red sequence is an important feature of galaxy clusters and plays a crucial role in optical cluster detection. Measurement of the slope and scatter of the red sequence are affected both by selection of red sequence galaxies and measurement errors. In this paper, we describe a new error-corrected Gaussian Mixture Model for red sequence galaxy identification. Using this technique, we can remove the effects of measurement error and extract unbiased information about the intrinsic properties of the red sequence. We use this method to select red sequence galaxies in each of the 13,823 clusters in the maxBCG catalog, and measure the red sequence ridgeline location and scatter of each. These measurements provide precise constraints on the variation of the average red galaxy populations in the observed frame with redshift. We find that the scatter of the red sequence ridgeline increases mildly with redshift, and that the slope decreases with redshift. We also observe that the slope does not strongly depend on cluster richness. Using similar methods, we show that this behavior is mirrored in a spectroscopic sample of field galaxies, further emphasizing that ridgeline properties are independent of environment. These precise measurements serve as an important observational check on simulations and mock galaxy catalogs. The observed trends in the slope and scatter of the red sequence ridgeline with redshift are clues to possible intrinsic evolution of the cluster red sequence itself. Most importantly, the methods presented in this work lay the groundwork for further improvements in optically based cluster cosmology.
Freedman, Laurence S; Midthune, Douglas; Dodd, Kevin W; Carroll, Raymond J; Kipnis, Victor
2015-11-30
Most statistical methods that adjust analyses for measurement error assume that the target exposure T is a fixed quantity for each individual. However, in many applications, the value of T for an individual varies with time. We develop a model that accounts for such variation, describing the model within the framework of a meta-analysis of validation studies of dietary self-report instruments, where the reference instruments are biomarkers. We demonstrate that in this application, the estimates of the attenuation factor and correlation with true intake, key parameters quantifying the accuracy of the self-report instrument, are sometimes substantially modified under the time-varying exposure model compared with estimates obtained under a traditional fixed-exposure model. We conclude that accounting for the time element in measurement error problems is potentially important. Copyright © 2015 John Wiley & Sons, Ltd.
Ryu, Gyeong Suk; Lee, Yu Jeung
2012-01-01
Patients use several types of devices to measure liquid medication. Using a criterion ranging from a 10% to 40% variation from a target 5 mL for a teaspoon dose, previous studies have found that a considerable proportion of patients or caregivers make errors when dosing liquid medication with measuring devices. To determine the rate and magnitude of liquid medication dose errors that occur with patient/caregiver use of various measuring devices in a community pharmacy. Liquid medication measurements by patients or caregivers were observed in a convenience sample of community pharmacy patrons in Korea during a 2-week period in March 2011. Participants included all patients or caregivers (N = 300) who came to the pharmacy to buy over-the-counter liquid medication or to have a liquid medication prescription filled during the study period. The participants were instructed by an investigator who was also a pharmacist to select their preferred measuring devices from 6 alternatives (etched-calibration dosing cup, printed-calibration dosing cup, dosing spoon, syringe, dispensing bottle, or spoon with a bottle adapter) and measure a 5 mL dose of Coben (chlorpheniramine maleate/phenylephrine HCl, Daewoo Pharm. Co., Ltd) syrup using the device of their choice. The investigator used an ISOLAB graduated cylinder (Germany, blue grad, 10 mL) to measure the amount of syrup dispensed by the study participants. Participant characteristics were recorded including gender, age, education level, and relationship to the person for whom the medication was intended. Of the 300 participants, 257 (85.7%) were female; 286 (95.3%) had at least a high school education; and 282 (94.0%) were caregivers (parent or grandparent) for the patient. The mean (SD) measured dose was 4.949 (0.378) mL for the 300 participants. In analysis of variance of the 6 measuring devices, the greatest difference from the 5 mL target was a mean 5.552 mL for 17 subjects who used the regular (etched) dosing cup and 4
International Nuclear Information System (INIS)
Vincent, C.H.
1982-01-01
Bayes' principle is applied to the differential counting measurement of a positive quantity in which the statistical errors are not necessarily small in relation to the true value of the quantity. The methods of estimation derived are found to give consistent results and to avoid the anomalous negative estimates sometimes obtained by conventional methods. One of the methods given provides a simple means of deriving the required estimates from conventionally presented results and appears to have wide potential applications. Both methods provide the actual posterior probability distribution of the quantity to be measured. A particularly important potential application is the correction of counts on low radioacitvity samples for background. (orig.)
International Nuclear Information System (INIS)
Sanfilippo, L.
1987-01-01
A physical model and a computer program have been developed to simulate all the measurement operations involved with the Isotopic Dilution Analysis technique currently applied in the Volume - Concentration method for the Reprocessing Input Accountancy, together with their errors or uncertainties. The simulator is apt to easily solve a number of problems related to the measurement sctivities of the plant operator and the inspector. The program, written in Fortran 77, is based on a particular Montecarlo technique named ''Random Sampling''; a full description of the code is reported
Lugtig, Peter
2017-01-01
This paper proposes a method to simultaneously estimate both measurement and nonresponse errors for attitudinal and behavioural questions in a longitudinal survey. The method uses a Multi-Trait Multi-Method (MTMM) approach, which is commonly used to estimate the reliability and validity of survey
Directory of Open Access Journals (Sweden)
M. Toohey
2013-04-01
Full Text Available Climatologies of atmospheric observations are often produced by binning measurements according to latitude and calculating zonal means. The uncertainty in these climatological means is characterised by the standard error of the mean (SEM. However, the usual estimator of the SEM, i.e., the sample standard deviation divided by the square root of the sample size, holds only for uncorrelated randomly sampled measurements. Measurements of the atmospheric state along a satellite orbit cannot always be considered as independent because (a the time-space interval between two nearest observations is often smaller than the typical scale of variations in the atmospheric state, and (b the regular time-space sampling pattern of a satellite instrument strongly deviates from random sampling. We have developed a numerical experiment where global chemical fields from a chemistry climate model are sampled according to real sampling patterns of satellite-borne instruments. As case studies, the model fields are sampled using sampling patterns of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and Atmospheric Chemistry Experiment Fourier-Transform Spectrometer (ACE-FTS satellite instruments. Through an iterative subsampling technique, and by incorporating information on the random errors of the MIPAS and ACE-FTS measurements, we produce empirical estimates of the standard error of monthly mean zonal mean model O3 in 5° latitude bins. We find that generally the classic SEM estimator is a conservative estimate of the SEM, i.e., the empirical SEM is often less than or approximately equal to the classic estimate. Exceptions occur only when natural variability is larger than the random measurement error, and specifically in instances where the zonal sampling distribution shows non-uniformity with a similar zonal structure as variations in the sampled field, leading to maximum sensitivity to arbitrary phase shifts between the sample distribution and
Martín-Rodríguez, Saúl; Loturco, Irineu; Hunter, Angus M; Rodríguez-Ruiz, David; Munguia-Izquierdo, Diego
2017-12-01
Martín-Rodríguez, S, Loturco, I, Hunter, AM, Rodríguez-Ruiz, D, and Munguia-Izquierdo, D. Reliability and measurement error of tensiomyography to assess mechanical muscle function: A systematic review. J Strength Cond Res 31(12): 3524-3536, 2017-Interest in studying mechanical skeletal muscle function through tensiomyography (TMG) has increased in recent years. This systematic review aimed to (a) report the reliability and measurement error of all TMG parameters (i.e., maximum radial displacement of the muscle belly [Dm], contraction time [Tc], delay time [Td], half-relaxation time [½ Tr], and sustained contraction time [Ts]) and (b) to provide critical reflection on how to perform accurate and appropriate measurements for informing clinicians, exercise professionals, and researchers. A comprehensive literature search was performed of the Pubmed, Scopus, Science Direct, and Cochrane databases up to July 2017. Eight studies were included in this systematic review. Meta-analysis could not be performed because of the low quality of the evidence of some studies evaluated. Overall, the review of the 9 studies involving 158 participants revealed high relative reliability (intraclass correlation coefficient [ICC]) for Dm (0.91-0.99); moderate-to-high ICC for Ts (0.80-0.96), Tc (0.70-0.98), and ½ Tr (0.77-0.93); and low-to-high ICC for Td (0.60-0.98), independently of the evaluated muscles. In addition, absolute reliability (coefficient of variation [CV]) was low for all TMG parameters except for ½ Tr (CV = >20%), whereas measurement error indexes were high for this parameter. In conclusion, this study indicates that 3 of the TMG parameters (Dm, Td, and Tc) are highly reliable, whereas ½ Tr demonstrate insufficient reliability, and thus should not be used in future studies.
International Nuclear Information System (INIS)
Cui, J W; Tan, J B; Zhou, Y; Zhang, H
2007-01-01
This paper presents the Zernike moment based model developed to compensate edge location errors for further improvement of the vision measurement accuracy by compensating the slight changes resulting from sampling and establishing mathematic expressions for subpixel location of theoretical and actual edges which are either vertical to or at an angle with X-axis. Experimental results show that the proposed model can be used to achieve a vision measurement accuracy of up to 0.08 pixel while the measurement uncertainty is less than 0.36μm. It is therefore concluded that as a model which can be used to achieve a significant improvement of vision measurement accuracy, the proposed model is especially suitable for edge location of images with low contrast
ADC border effect and suppression of quantization error in the digital dynamic measurement
International Nuclear Information System (INIS)
Bai Li-Na; Liu Hai-Dong; Zhou Wei; Zhai Hong-Qi; Cui Zhen-Jian; Zhao Ming-Ying; Gu Xiao-Qian; Liu Bei-Ling; Huang Li-Bei; Zhang Yong
2017-01-01
The digital measurement and processing is an important direction in the measurement and control field. The quantization error widely existing in the digital processing is always the decisive factor that restricts the development and applications of the digital technology. In this paper, we find that the stability of the digital quantization system is obviously better than the quantization resolution. The application of a border effect in the digital quantization can greatly improve the accuracy of digital processing. Its effective precision has nothing to do with the number of quantization bits, which is only related to the stability of the quantization system. The high precision measurement results obtained in the low level quantization system with high sampling rate have an important application value for the progress in the digital measurement and processing field. (paper)
International Nuclear Information System (INIS)
Bogónez-Franco, P; Nescolarde, L; Bragós, R; Rosell-Ferrer, J; Yandiola, I
2009-01-01
The purpose of this study is to compare measurement errors in two commercially available multi-frequency bioimpedance analyzers, a Xitron 4000B and an ImpediMed SFB7, including electrode impedance mismatch. The comparison was made using resistive electrical models and in ten human volunteers. We used three different electrical models simulating three different body segments: the right-side, leg and thorax. In the electrical models, we tested the effect of the capacitive coupling of the patient to ground and the skin–electrode impedance mismatch. Results showed that both sets of equipment are optimized for right-side measurements and for moderate skin–electrode impedance mismatch. In right-side measurements with mismatch electrode, 4000B is more accurate than SFB7. When an electrode impedance mismatch was simulated, errors increased in both bioimpedance analyzers and the effect of the mismatch in the voltage detection leads was greater than that in current injection leads. For segments with lower impedance as the leg and thorax, SFB7 is more accurate than 4000B and also shows less dependence on electrode mismatch. In both devices, impedance measurements were not significantly affected (p > 0.05) by the capacitive coupling to ground
Takada, Koki; Takahashi, Kana; Hirao, Kazuki
2018-01-17
Although the self-report version of Liebowitz Social Anxiety Scale (LSAS) is frequently used to measure social anxiety, data is lacking on the smallest detectable change (SDC), an important index of measurement error. We therefore aimed to determine the SDC of LSAS. Japanese adults aged 20-69 years were invited from a panel managed by a nationwide internet research agency. We then conducted a test-retest internet survey with a two-week interval to estimate the SDC at the individual (SDC ind ) and group (SDC group ) levels. The analysis included 1300 participants. The SDC ind and SDC group for the total fear subscale (scoring range: 0-72) were 23.52 points (32.7%) and 0.65 points (0.9%), respectively. The SDC ind and SDC group for the total avoidance subscale (scoring range: 0-72) were 32.43 points (45.0%) and 0.90 points (1.2%), respectively. The SDC ind and SDC group for the overall total score (scoring range: 0-144) were 45.90 points (31.9%) and 1.27 points (0.9%), respectively. Measurement error is large and indicate the potential for major problems when attempting to use the LSAS to detect changes at the individual level. These results should be considered when using the LSAS as measures of treatment change.
Kipnis, Victor; Freedman, Laurence S; Carroll, Raymond J; Midthune, Douglas
2016-03-01
Semicontinuous data in the form of a mixture of a large portion of zero values and continuously distributed positive values frequently arise in many areas of biostatistics. This article is motivated by the analysis of relationships between disease outcomes and intakes of episodically consumed dietary components. An important aspect of studies in nutritional epidemiology is that true diet is unobservable and commonly evaluated by food frequency questionnaires with substantial measurement error. Following the regression calibration approach for measurement error correction, unknown individual intakes in the risk model are replaced by their conditional expectations given mismeasured intakes and other model covariates. Those regression calibration predictors are estimated using short-term unbiased reference measurements in a calibration substudy. Since dietary intakes are often "energy-adjusted," e.g., by using ratios of the intake of interest to total energy intake, the correct estimation of the regression calibration predictor for each energy-adjusted episodically consumed dietary component requires modeling short-term reference measurements of the component (a semicontinuous variable), and energy (a continuous variable) simultaneously in a bivariate model. In this article, we develop such a bivariate model, together with its application to regression calibration. We illustrate the new methodology using data from the NIH-AARP Diet and Health Study (Schatzkin et al., 2001, American Journal of Epidemiology 154, 1119-1125), and also evaluate its performance in a simulation study. © 2015, The International Biometric Society.
Measurement error in epidemiologic studies of air pollution based on land-use regression models.
Basagaña, Xavier; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Foraster, Maria; Marrugat, Jaume; Elosua, Roberto; Künzli, Nino
2013-10-15
Land-use regression (LUR) models are increasingly used to estimate air pollution exposure in epidemiologic studies. These models use air pollution measurements taken at a small set of locations and modeling based on geographical covariates for which data are available at all study participant locations. The process of LUR model development commonly includes a variable selection procedure. When LUR model predictions are used as explanatory variables in a model for a health outcome, measurement error can lead to bias of the regression coefficients and to inflation of their variance. In previous studies dealing with spatial predictions of air pollution, bias was shown to be small while most of the effect of measurement error was on the variance. In this study, we show that in realistic cases where LUR models are applied to health data, bias in health-effect estimates can be substantial. This bias depends on the number of air pollution measurement sites, the number of available predictors for model selection, and the amount of explainable variability in the true exposure. These results should be taken into account when interpreting health effects from studies that used LUR models.
Comparing Two Inferential Approaches to Handling Measurement Error in Mixed-Mode Surveys
Directory of Open Access Journals (Sweden)
Buelens Bart
2017-06-01
Full Text Available Nowadays sample survey data collection strategies combine web, telephone, face-to-face, or other modes of interviewing in a sequential fashion. Measurement bias of survey estimates of means and totals are composed of different mode-dependent measurement errors as each data collection mode has its own associated measurement error. This article contains an appraisal of two recently proposed methods of inference in this setting. The first is a calibration adjustment to the survey weights so as to balance the survey response to a prespecified distribution of the respondents over the modes. The second is a prediction method that seeks to correct measurements towards a benchmark mode. The two methods are motivated differently but at the same time coincide in some circumstances and agree in terms of required assumptions. The methods are applied to the Labour Force Survey in the Netherlands and are found to provide almost identical estimates of the number of unemployed. Each method has its own specific merits. Both can be applied easily in practice as they do not require additional data collection beyond the regular sequential mixed-mode survey, an attractive element for national statistical institutes and other survey organisations.
International Nuclear Information System (INIS)
Furuhama, Yutaka; Furuta, Kazuo; Kondo, Shunsuke
1995-01-01
This paper proposes a methodology to identify causes of human error in the operation of plant systems to support the development of CAI system for operator training. The target task of this methodology is goal-driven and knowledge-based planning behaviour, the cognitive process of which is assumed to be modeled as means-end analysis. The methodology uses four criteria to classify errors in an operation into eight groups, and then asks the trainee several questions to prune the causes. To confirm the usefulness of this methodology, a prototype CAI system is developed for the operation of filling up sodium into the primary coolant system of a liquid-metal-cooled fast reactor. The experimental result indicates that the system has the capability of identifying causes of the trainee's error, and consequently of figuring out the characteristics of his/her defect. As a result of this study, several issues are identified for future research
Chernobyl accident: Causes, consequences and problems of radiation measurements
International Nuclear Information System (INIS)
Kortov, V.; Ustyantsev, Yu.
2013-01-01
General description of Chernobyl accident is given in the review. The accident causes are briefly described. Special attention is paid to radiation situation after the accident and radiation measurements problems. Some data on Chernobyl disaster are compared with the corresponding data on Fukushima accident. It is noted that Chernobyl and Fukushima lessons should be taken into account while developing further measures on raising nuclear industry safety. -- Highlights: ► The short comparative analysis of accidents at Chernobyl and Fukushima is given. ► We note the great effect of β-radiation on the radiation situation at Chernobyl. ► We discuss the problems of radiation measurements under these conditions. ► The impact of shelter on the radiation situation near Chernobyl NPS is described
Directory of Open Access Journals (Sweden)
Sang-Wook Jin
2017-01-01
Full Text Available One of the most important issues in keeping membrane structures in stable condition is to maintain the proper stress distribution over the membrane. However, it is difficult to determine the quantitative real stress level in the membrane after the completion of the structure. The stress relaxation phenomenon of the membrane and the fluttering effect due to strong wind or ponding caused by precipitation may cause severe damage to the membrane structure itself. Therefore, it is very important to know the magnitude of the existing stress in membrane structures for their maintenance. The authors have proposed a new method for separately estimating the membrane stress in two different directions using sound waves instead of directly measuring the membrane stress. The new method utilizes the resonance phenomenon of the membrane, which is induced by sound excitations given through an audio speaker. During such experiment, the effect of the surrounding air on the vibrating membrane cannot be overlooked in order to assure high measurement precision. In this paper, an evaluation scheme for the added mass of membrane with the effect of air on the vibrating membrane and the correction of measurement error is discussed. In addition, three types of membrane materials are used in the experiment in order to verify the expandability and accuracy of the membrane measurement equipment.
Influence of Marker Movement Errors on Measuring 3 Dimentional Scapular Position and Orientation
Directory of Open Access Journals (Sweden)
Afsoun Nodehi-Moghaddam
2003-12-01
Full Text Available Objective: Scapulothoracic muscles weakness or fatique can result in abnormal scapular positioning and compromising scapulo-humeral rhythm and shoulder dysfunction .The scapula moves in a -3 Dimentional fashion so the use of 2-Dimentional Techniques cannot fully capture scapular motion . One of approaches to positioining markers of kinematic systems is to mount each marker directly on the skin generally over a bony anatomical landmarks . Howerer skin movement and Motion of underlying bony structures are not Necessaritly identical and substantial errors may be introduced in the description of bone movement when using skin –mounted markers. evaluation of Influence of marker movement errors on 3-Dimentional scapular position and orientation. Materials & Methods: 10 Healthy subjects with a mean age 30.50 participated in the study . They were tested in three sessions A 3-dimentiional electro mechanical digitizer was used to measure scapular position and orientation measures were obtained while arm placed at the side of the body and elevated 45٫90٫120 and full Rang of motion in the scapular plane . At each test positions six bony landmarks were palpated and skin markers were mounted on them . This procedure repeated in the second test session in third session Removal of markers was not performed through obtaining entire Range of motion after mounting the markers . Results: The intraclass correlation coefficients (ICC for scapulor variables were higher (0.92-0.84 when markers were replaced and re-mounted on bony landmarks with Increasing the angle of elevation. Conclusion: our findings suggested significant markers movement error on measuring the upward Rotation and posterior tilt angle of scapula.
Rothe, C F; Kim, K C
1980-11-01
The purpose of this study was to evaluate the magnitude of possible error in the measurement of systolic blood pressure if disposable, built-in diaphragm, transducer domes or long extension tubes between the patient and pressure transducer are used. Sinusoidal or arterial pressure patterns were generated with specially designed equipment. With a long extension tube or trapped air bubbles, the resonant frequency of the catheter system was reduced so that the arterial pulse was amplified as it acted on the transducer and, thus, gave an erroneously high systolic pressure measurement. The authors found this error to be as much as 20 mm Hg. Trapped air bubbles, not stopcocks or connections, per se, lead to poor fidelity. The utility of a continuous catheter flush system (Sorenson, Intraflow) to estimate the resonant frequency and degree of damping of a catheter-transducer system is described, as are possibly erroneous conclusions. Given a rough estimate of the resonant frequency of a catheter-transducer system and the magnitude of overshoot in response to a pulse, the authors present a table to predict the magnitude of probable error. These studies confirm the variability and unreliability of static calibration that may occur using some safety diaphragm domes and show that the system frequency response is decreased if air bubbles are trapped between the diaphragms. The authors conclude that regular procedures should be established to evaluate the accuracy of the pressure measuring systems in use, the transducer should be placed as close to the patient as possible, the air bubbles should be assiduously eliminated from the system.
Errors of car wheels rotation rate measurement using roller follower on test benches
Potapov, A. S.; Svirbutovich, O. A.; Krivtsov, S. N.
2018-03-01
The article deals with rotation rate measurement errors, which depend on the motor vehicle rate, on the roller, test benches. Monitoring of the vehicle performance under operating conditions is performed on roller test benches. Roller test benches are not flawless. They have some drawbacks affecting the accuracy of vehicle performance monitoring. Increase in basic velocity of the vehicle requires increase in accuracy of wheel rotation rate monitoring. It determines the degree of accuracy of mode identification for a wheel of the tested vehicle. To ensure measurement accuracy for rotation velocity of rollers is not an issue. The problem arises when measuring rotation velocity of a car wheel. The higher the rotation velocity of the wheel is, the lower the accuracy of measurement is. At present, wheel rotation frequency monitoring on roller test benches is carried out by following-up systems. Their sensors are rollers following wheel rotation. The rollers of the system are not kinematically linked to supporting rollers of the test bench. The roller follower is forced against the wheels of the tested vehicle by means of a spring-lever mechanism. Experience of the test bench equipment operation has shown that measurement accuracy is satisfactory at small rates of vehicles diagnosed on roller test benches. With a rising diagnostics rate, rotation velocity measurement errors occur in both braking and pulling modes because a roller spins about a tire tread. The paper shows oscillograms of changes in wheel rotation velocity and rotation velocity measurement system’s signals when testing a vehicle on roller test benches at specified rates.
Errors in short circuit measurements due to spectral mismatch between sunlight and solar simulators
Curtis, H. B.
1976-01-01
Errors in short circuit current measurement were calculated for a variety of spectral mismatch conditions. The differences in spectral irradiance between terrestrial sunlight and three types of solar simulator were studied, as well as the differences in spectral response between three types of reference solar cells and various test cells. The simulators considered were a short arc xenon lamp AMO sunlight simulator, an ordinary quartz halogen lamp, and an ELH-type quartz halogen lamp. Three types of solar cells studied were a silicon cell, a cadmium sulfide cell and a gallium arsenide cell.
Qibo, Feng; Bin, Zhang; Cunxing, Cui; Cuifang, Kuang; Yusheng, Zhai; Fenglin, You
2013-11-04
A simple method for simultaneously measuring the 6DOF geometric motion errors of the linear guide was proposed. The mechanisms for measuring straightness and angular errors and for enhancing their resolution are described in detail. A common-path method for measuring the laser beam drift was proposed and it was used to compensate the errors produced by the laser beam drift in the 6DOF geometric error measurements. A compact 6DOF system was built. Calibration experiments with certain standard measurement meters showed that our system has a standard deviation of 0.5 µm in a range of ± 100 µm for the straightness measurements, and standard deviations of 0.5", 0.5", and 1.0" in the range of ± 100" for pitch, yaw, and roll measurements, respectively.
Sinha, Samiran
2009-08-10
We propose a semiparametric Bayesian method for handling measurement error in nutritional epidemiological data. Our goal is to estimate nonparametrically the form of association between a disease and exposure variable while the true values of the exposure are never observed. Motivated by nutritional epidemiological data, we consider the setting where a surrogate covariate is recorded in the primary data, and a calibration data set contains information on the surrogate variable and repeated measurements of an unbiased instrumental variable of the true exposure. We develop a flexible Bayesian method where not only is the relationship between the disease and exposure variable treated semiparametrically, but also the relationship between the surrogate and the true exposure is modeled semiparametrically. The two nonparametric functions are modeled simultaneously via B-splines. In addition, we model the distribution of the exposure variable as a Dirichlet process mixture of normal distributions, thus making its modeling essentially nonparametric and placing this work into the context of functional measurement error modeling. We apply our method to the NIH-AARP Diet and Health Study and examine its performance in a simulation study.
Accounting for baseline differences and measurement error in the analysis of change over time.
Braun, Julia; Held, Leonhard; Ledergerber, Bruno
2014-01-15
If change over time is compared in several groups, it is important to take into account baseline values so that the comparison is carried out under the same preconditions. As the observed baseline measurements are distorted by measurement error, it may not be sufficient to include them as covariate. By fitting a longitudinal mixed-effects model to all data including the baseline observations and subsequently calculating the expected change conditional on the underlying baseline value, a solution to this problem has been provided recently so that groups with the same baseline characteristics can be compared. In this article, we present an extended approach where a broader set of models can be used. Specifically, it is possible to include any desired set of interactions between the time variable and the other covariates, and also, time-dependent covariates can be included. Additionally, we extend the method to adjust for baseline measurement error of other time-varying covariates. We apply the methodology to data from the Swiss HIV Cohort Study to address the question if a joint infection with HIV-1 and hepatitis C virus leads to a slower increase of CD4 lymphocyte counts over time after the start of antiretroviral therapy. Copyright © 2013 John Wiley & Sons, Ltd.
Chang, Howard H; Peng, Roger D; Dominici, Francesca
2011-10-01
In air pollution epidemiology, there is a growing interest in estimating the health effects of coarse particulate matter (PM) with aerodynamic diameter between 2.5 and 10 μm. Coarse PM concentrations can exhibit considerable spatial heterogeneity because the particles travel shorter distances and do not remain suspended in the atmosphere for an extended period of time. In this paper, we develop a modeling approach for estimating the short-term effects of air pollution in time series analysis when the ambient concentrations vary spatially within the study region. Specifically, our approach quantifies the error in the exposure variable by characterizing, on any given day, the disagreement in ambient concentrations measured across monitoring stations. This is accomplished by viewing monitor-level measurements as error-prone repeated measurements of the unobserved population average exposure. Inference is carried out in a Bayesian framework to fully account for uncertainty in the estimation of model parameters. Finally, by using different exposure indicators, we investigate the sensitivity of the association between coarse PM and daily hospital admissions based on a recent national multisite time series analysis. Among Medicare enrollees from 59 US counties between the period 1999 and 2005, we find a consistent positive association between coarse PM and same-day admission for cardiovascular diseases.
Somarathna, P D S N; Minasny, Budiman; Malone, Brendan P; Stockmann, Uta; McBratney, Alex B
2018-08-01
Spatial modelling of environmental data commonly only considers spatial variability as the single source of uncertainty. In reality however, the measurement errors should also be accounted for. In recent years, infrared spectroscopy has been shown to offer low cost, yet invaluable information needed for digital soil mapping at meaningful spatial scales for land management. However, spectrally inferred soil carbon data are known to be less accurate compared to laboratory analysed measurements. This study establishes a methodology to filter out the measurement error variability by incorporating the measurement error variance in the spatial covariance structure of the model. The study was carried out in the Lower Hunter Valley, New South Wales, Australia where a combination of laboratory measured, and vis-NIR and MIR inferred topsoil and subsoil soil carbon data are available. We investigated the applicability of residual maximum likelihood (REML) and Markov Chain Monte Carlo (MCMC) simulation methods to generate parameters of the Matérn covariance function directly from the data in the presence of measurement error. The results revealed that the measurement error can be effectively filtered-out through the proposed technique. When the measurement error was filtered from the data, the prediction variance almost halved, which ultimately yielded a greater certainty in spatial predictions of soil carbon. Further, the MCMC technique was successfully used to define the posterior distribution of measurement error. This is an important outcome, as the MCMC technique can be used to estimate the measurement error if it is not explicitly quantified. Although this study dealt with soil carbon data, this method is amenable for filtering the measurement error of any kind of continuous spatial environmental data. Copyright © 2018 Elsevier B.V. All rights reserved.
Murdoch, Maureen; Pryor, John B; Griffin, Joan M; Ripley, Diane Cowper; Gackstetter, Gary D; Polusny, Melissa A; Hodges, James S
2011-01-01
The Department of Defense's "gold standard" sexual harassment measure, the Sexual Harassment Core Measure (SHCore), is based on an earlier measure that was developed primarily in college women. Furthermore, the SHCore requires a reading grade level of 9.1. This may be higher than some troops' reading abilities and could generate unreliable estimates of their sexual harassment experiences. Results from 108 male and 96 female soldiers showed that the SHCore's temporal stability and alternate-forms reliability was significantly worse (a) in soldiers without college experience compared to soldiers with college experience and (b) in men compared to women. For men without college experience, almost 80% of the temporal variance in SHCore scores was attributable to error. A plain language version of the SHCore had mixed effects on temporal stability depending on education and gender. The SHCore may be particularly ill suited for evaluating population trends of sexual harassment in military men without college experience.
International Nuclear Information System (INIS)
Zhang, Zhenjiu; Hu, Hong
2013-01-01
The linear and rotary axes are fundamental parts of multi-axis machine tools. The geometric error components of the axes must be measured for motion error compensation to improve the accuracy of the machine tools. In this paper, a simple method named the three point method is proposed to measure the geometric error of the linear and rotary axes of the machine tools using a laser tracker. A sequential multilateration method, where uncertainty is verified through simulation, is applied to measure the 3D coordinates. Three noncollinear points fixed on the stage of each axis are selected. The coordinates of these points are simultaneously measured using a laser tracker to obtain their volumetric errors by comparing these coordinates with ideal values. Numerous equations can be established using the geometric error models of each axis. The geometric error components can be obtained by solving these equations. The validity of the proposed method is verified through a series of experiments. The results indicate that the proposed method can measure the geometric error of the axes to compensate for the errors in multi-axis machine tools.
The error analysis of Lobular and segmental division of right liver by volume measurement.
Zhang, Jianfei; Lin, Weigang; Chi, Yanyan; Zheng, Nan; Xu, Qiang; Zhang, Guowei; Yu, Shengbo; Li, Chan; Wang, Bin; Sui, Hongjin
2017-07-01
The aim of this study is to explore the inconsistencies between right liver volume as measured by imaging and the actual anatomical appearance of the right lobe. Five healthy donated livers were studied. The liver slices were obtained with hepatic segments multicolor-infused through the portal vein. In the slices, the lobes were divided by two methods: radiological landmarks and real anatomical boundaries. The areas of the right anterior lobe (RAL) and right posterior lobe (RPL) on each slice were measured using Photoshop CS5 and AutoCAD, and the volumes of the two lobes were calculated. There was no statistically significant difference between the volumes of the RAL or RPL as measured by the radiological landmarks (RL) and anatomical boundaries (AB) methods. However, the curves of the square error value of the RAL and RPL measured using CT showed that the three lowest points were at the cranial, intermediate, and caudal levels. The U- or V-shaped curves of the square error rate of the RAL and RPL revealed that the lowest value is at the intermediate level and the highest at the cranial and caudal levels. On CT images, less accurate landmarks were used to divide the RAL and RPL at the cranial and caudal layers. The measured volumes of hepatic segments VIII and VI would be less than their true values, and the measured volumes of hepatic segments VII and V would be greater than their true values, according to radiological landmarks. Clin. Anat. 30:585-590, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
ERRORS MEASUREMENT OF INTERPOLATION METHODS FOR GEOID MODELS: STUDY CASE IN THE BRAZILIAN REGION
Directory of Open Access Journals (Sweden)
Daniel Arana
Full Text Available Abstract: The geoid is an equipotential surface regarded as the altimetric reference for geodetic surveys and it therefore, has several practical applications for engineers. In recent decades the geodetic community has concentrated efforts on the development of highly accurate geoid models through modern techniques. These models are supplied through regular grids which users need to make interpolations. Yet, little information can be obtained regarding the most appropriate interpolation method to extract information from the regular grid of geoidal models. The use of an interpolator that does not represent the geoid surface appropriately can impair the quality of geoid undulations and consequently the height transformation. This work aims to quantify the magnitude of error that comes from a regular mesh of geoid models. The analysis consisted of performing a comparison between the interpolation of the MAPGEO2015 program and three interpolation methods: bilinear, cubic spline and neural networks Radial Basis Function. As a result of the experiments, it was concluded that 2.5 cm of the 18 cm error of the MAPGEO2015 validation is caused by the use of interpolations in the 5'x5' grid.
Preis, Sarah Rosner; Spiegelman, Donna; Zhao, Barbara Bojuan; Moshfegh, Alanna; Baer, David J; Willett, Walter C
2011-03-15
Repeat-biomarker measurement error models accounting for systematic correlated within-person error can be used to estimate the correlation coefficient (ρ) and deattenuation factor (λ), used in measurement error correction. These models account for correlated errors in the food frequency questionnaire (FFQ) and the 24-hour diet recall and random within-person variation in the biomarkers. Failure to account for within-person variation in biomarkers can exaggerate correlated errors between FFQs and 24-hour diet recalls. For 2 validation studies, ρ and λ were calculated for total energy and protein density. In the Automated Multiple-Pass Method Validation Study (n=471), doubly labeled water (DLW) and urinary nitrogen (UN) were measured twice in 52 adults approximately 16 months apart (2002-2003), yielding intraclass correlation coefficients of 0.43 for energy (DLW) and 0.54 for protein density (UN/DLW). The deattenuated correlation coefficient for protein density was 0.51 for correlation between the FFQ and the 24-hour diet recall and 0.49 for correlation between the FFQ and the biomarker. Use of repeat-biomarker measurement error models resulted in a ρ of 0.42. These models were similarly applied to the Observing Protein and Energy Nutrition Study (1999-2000). In conclusion, within-person variation in biomarkers can be substantial, and to adequately assess the impact of correlated subject-specific error, this variation should be assessed in validation studies of FFQs. © The Author 2011. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved.
International Nuclear Information System (INIS)
Yamazaki, Satoru; Tanaka, Izumi; Wakabayashi, Toshio
2012-01-01
A trend analysis of human error events is important for preventing the recurrence of human error events. We propose a new method for identifying the common characteristics from results of trend analysis, such as the latent weakness of organization, and a management process for strategic error prevention. In this paper, we describe a trend analysis method for human error events that have been accumulated in the organization and the utilization of the results of trend analysis to prevent accidents proactively. Although the systematic analysis of human error events, the monitoring of their overall trend, and the utilization of the analyzed results have been examined for the plant operation, such information has never been utilized completely. Sharing information on human error events and analyzing their causes lead to the clarification of problems in the management and human factors. This new method was applied to the human error events that occurred in the Rokkasho reprocessing plant from 2010 October. Results revealed that the output of this method is effective in judging the error prevention plan and that the number of human error events is reduced to about 50% those observed in 2009 and 2010. (author)
Research on the Factors Influencing the Measurement Errors of the Discrete Rogowski Coil †
Xu, Mengyuan; Yan, Jing; Geng, Yingsan; Zhang, Kun; Sun, Chao
2018-01-01
An innovative array of magnetic coils (the discrete Rogowski coil—RC) with the advantages of flexible structure, miniaturization and mass producibility is investigated. First, the mutual inductance between the discrete RC and circular and rectangular conductors are calculated using the magnetic vector potential (MVP) method. The results are found to be consistent with those calculated using the finite element method, but the MVP method is simpler and more practical. Then, the influence of conductor section parameters, inclination, and eccentricity on the accuracy of the discrete RC is calculated to provide a reference. Studying the influence of an external current on the discrete RC’s interference error reveals optimal values for length, winding density, and position arrangement of the solenoids. It has also found that eccentricity and interference errors decreasing with increasing number of solenoids. Finally, a discrete RC prototype is devised and manufactured. The experimental results show consistent output characteristics, with the calculated sensitivity and mutual inductance of the discrete RC being very close to the experimental results. The influence of an external conductor on the measurement of the discrete RC is analyzed experimentally, and the results show that interference from an external current decreases with increasing distance between the external and measured conductors. PMID:29534006
Research on the Factors Influencing the Measurement Errors of the Discrete Rogowski Coil.
Xu, Mengyuan; Yan, Jing; Geng, Yingsan; Zhang, Kun; Sun, Chao
2018-03-13
An innovative array of magnetic coils (the discrete Rogowski coil-RC) with the advantages of flexible structure, miniaturization and mass producibility is investigated. First, the mutual inductance between the discrete RC and circular and rectangular conductors are calculated using the magnetic vector potential (MVP) method. The results are found to be consistent with those calculated using the finite element method, but the MVP method is simpler and more practical. Then, the influence of conductor section parameters, inclination, and eccentricity on the accuracy of the discrete RC is calculated to provide a reference. Studying the influence of an external current on the discrete RC's interference error reveals optimal values for length, winding density, and position arrangement of the solenoids. It has also found that eccentricity and interference errors decreasing with increasing number of solenoids. Finally, a discrete RC prototype is devised and manufactured. The experimental results show consistent output characteristics, with the calculated sensitivity and mutual inductance of the discrete RC being very close to the experimental results. The influence of an external conductor on the measurement of the discrete RC is analyzed experimentally, and the results show that interference from an external current decreases with increasing distance between the external and measured conductors.
Research on the Factors Influencing the Measurement Errors of the Discrete Rogowski Coil
Directory of Open Access Journals (Sweden)
Mengyuan Xu
2018-03-01
Full Text Available An innovative array of magnetic coils (the discrete Rogowski coil—RC with the advantages of flexible structure, miniaturization and mass producibility is investigated. First, the mutual inductance between the discrete RC and circular and rectangular conductors are calculated using the magnetic vector potential (MVP method. The results are found to be consistent with those calculated using the finite element method, but the MVP method is simpler and more practical. Then, the influence of conductor section parameters, inclination, and eccentricity on the accuracy of the discrete RC is calculated to provide a reference. Studying the influence of an external current on the discrete RC’s interference error reveals optimal values for length, winding density, and position arrangement of the solenoids. It has also found that eccentricity and interference errors decreasing with increasing number of solenoids. Finally, a discrete RC prototype is devised and manufactured. The experimental results show consistent output characteristics, with the calculated sensitivity and mutual inductance of the discrete RC being very close to the experimental results. The influence of an external conductor on the measurement of the discrete RC is analyzed experimentally, and the results show that interference from an external current decreases with increasing distance between the external and measured conductors.
Study of principle error sources in gamma spectrometry. Application to cross sections measurement
International Nuclear Information System (INIS)
Majah, M. Ibn.
1985-01-01
The principle error sources in gamma spectrometry have been studied in purpose to measure cross sections with great precision. Three error sources have been studied: dead time and pile up which depend on counting rate, and coincidence effect that depends on the disintegration scheme of the radionuclide in question. A constant frequency pulse generator has been used to correct the counting loss due to dead time and pile up in cases of long and short disintegration periods. The loss due to coincidence effect can reach 25% and over, depending on the disintegration scheme and on the distance source-detector. After establishing the correction formula and verifying its validity for four examples: iron 56, scandium 48, antimony 120 and gold 196 m, an application has been done by measuring cross sections of nuclear reactions that lead to long disintegration periods which need short distance source-detector counting and thus correcting the loss due to dead time effect, pile up and coincidence effect. 16 refs., 45 figs., 25 tabs. (author)
Energy Technology Data Exchange (ETDEWEB)
Bard, D.; Chang, C.; Kahn, S. M.; Gilmore, K.; Marshall, S. [KIPAC, Stanford University, 452 Lomita Mall, Stanford, CA 94309 (United States); Kratochvil, J. M.; Huffenberger, K. M. [Department of Physics, University of Miami, Coral Gables, FL 33124 (United States); May, M. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); AlSayyad, Y.; Connolly, A.; Gibson, R. R.; Jones, L.; Krughoff, S. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Ahmad, Z.; Bankert, J.; Grace, E.; Hannel, M.; Lorenz, S. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Haiman, Z.; Jernigan, J. G., E-mail: djbard@slac.stanford.edu [Department of Astronomy and Astrophysics, Columbia University, New York, NY 10027 (United States); and others
2013-09-01
We study the effect of galaxy shape measurement errors on predicted cosmological constraints from the statistics of shear peak counts with the Large Synoptic Survey Telescope (LSST). We use the LSST Image Simulator in combination with cosmological N-body simulations to model realistic shear maps for different cosmological models. We include both galaxy shape noise and, for the first time, measurement errors on galaxy shapes. We find that the measurement errors considered have relatively little impact on the constraining power of shear peak counts for LSST.
Mcruer, D. T.; Clement, W. F.; Allen, R. W.
1981-01-01
Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.
Directory of Open Access Journals (Sweden)
Paikar Fatima Mazhar Hameed
2016-02-01
Full Text Available The craziness of English spelling has undeniably perplexed learners, especially in an EFL context as in the Kingdom of Saudi Arabia. In these situations, among other obstacles, learners also have to tackle the perpetual and unavoidable problem of MT interference. Sadly, this perplexity takes the shape of a real problem in the language classroom where the English teacher has a tough time rationalizing with the learners why ‘cough’ is not spelt as /kuf/ or ‘knee’ has to do with a silent /k/. It is observed that students of English as second/foreign language in Saudi Arabia commit spelling errors that cause not only a lot of confusion to the teachers but also lower the self-esteem of the students concerned. The current study aims to identify the key problem areas as far as English spelling ability of Saudi EFL learners is concerned. It aims to also suggest remedial and pedagogical measures to improve the learners’ competence in this crucial, though hitherto, nascent skill area in the Saudi education system. Keywords: EFL; error-pattern, spelling instructions, orthography, phonology, vocabulary, language skills, language users
Pennington, Audrey Flak; Strickland, Matthew J; Klein, Mitchel; Zhai, Xinxin; Russell, Armistead G; Hansen, Craig; Darrow, Lyndsey A
2017-09-01
Prenatal air pollution exposure is frequently estimated using maternal residential location at the time of delivery as a proxy for residence during pregnancy. We describe residential mobility during pregnancy among 19,951 children from the Kaiser Air Pollution and Pediatric Asthma Study, quantify measurement error in spatially resolved estimates of prenatal exposure to mobile source fine particulate matter (PM 2.5 ) due to ignoring this mobility, and simulate the impact of this error on estimates of epidemiologic associations. Two exposure estimates were compared, one calculated using complete residential histories during pregnancy (weighted average based on time spent at each address) and the second calculated using only residence at birth. Estimates were computed using annual averages of primary PM 2.5 from traffic emissions modeled using a Research LINE-source dispersion model for near-surface releases (RLINE) at 250 m resolution. In this cohort, 18.6% of children were born to mothers who moved at least once during pregnancy. Mobile source PM 2.5 exposure estimates calculated using complete residential histories during pregnancy and only residence at birth were highly correlated (r S >0.9). Simulations indicated that ignoring residential mobility resulted in modest bias of epidemiologic associations toward the null, but varied by maternal characteristics and prenatal exposure windows of interest (ranging from -2% to -10% bias).
Furman, Gabriel R; Lin, Chia-Cheng; Bellanca, Jennica L; Marchetti, Gregory F; Collins, Michael W; Whitney, Susan L
2013-06-01
High-technology methods demonstrate that balance problems may persist up to 30 days after a concussion, whereas with low-technology methods such as the Balance Error Scoring System (BESS), performance becomes normal after only 3 days based on previously published studies in collegiate and high school athletes. To compare the National Institutes of Health's Balance Accelerometer Measure (BAM) with the BESS regarding the ability to detect differences in postural sway between adolescents with sports concussions and age-matched controls. Cohort study (diagnosis); Level of evidence, 2. Forty-three patients with concussions and 27 control participants were tested with the standard BAM protocol, while sway was quantified using the normalized path length (mG/s) of pelvic accelerations in the anterior-posterior direction. The BESS was scored by experts using video recordings. The BAM was not able to discriminate between healthy and concussed adolescents, whereas the BESS, especially the tandem stance conditions, was good at discriminating between healthy and concussed adolescents. A total BESS score of 21 or more errors optimally identified patients in the acute concussion group versus healthy participants at 60% sensitivity and 82% specificity. The BAM is not as effective as the BESS in identifying abnormal postural control in adolescents with sports concussions. The BESS, a simple and economical method of assessing postural control, was effective in discriminating between young adults with acute concussions and young healthy people, suggesting that the test has value in the assessment of acute concussions.
Sanjuan, J.; Nofrarias, M.
2018-04-01
Laser Interferometer Space Antenna (LISA) Pathfinder is a mission to test the technology enabling gravitational wave detection in space and to demonstrate that sub-femto-g free fall levels are possible. To do so, the distance between two free falling test masses is measured to unprecedented sensitivity by means of laser interferometry. Temperature fluctuations are one of the noise sources limiting the free fall accuracy and the interferometer performance and need to be known at the ˜10 μK Hz-1/2 level in the sub-millihertz frequency range in order to validate the noise models for the future space-based gravitational wave detector LISA. The temperature measurement subsystem on LISA Pathfinder is in charge of monitoring the thermal environment at key locations with noise levels of 7.5 μK Hz-1/2 at the sub-millihertz. However, its performance worsens by one to two orders of magnitude when slowly changing temperatures are measured due to errors introduced by analog-to-digital converter non-linearities. In this paper, we present a method to reduce this effect by data post-processing. The method is applied to experimental data available from on-ground validation tests to demonstrate its performance and the potential benefit for in-flight data. The analog-to-digital converter effects are reduced by a factor between three and six in the frequencies where the errors play an important role. An average 2.7 fold noise reduction is demonstrated in the 0.3 mHz-2 mHz band.
Kipnis, Victor; Midthune, Douglas; Buckman, Dennis W.; Dodd, Kevin W.; Guenther, Patricia M.; Krebs-Smith, Susan M.; Subar, Amy F.; Tooze, Janet A.; Carroll, Raymond J.; Freedman, Laurence S.
2009-01-01
Dietary assessment of episodically consumed foods gives rise to nonnegative data that have excess zeros and measurement error. Tooze et al. (2006, Journal of the American Dietetic Association 106, 1575-1587) describe a general statistical approach
The Effect of Error Correlation on Interfactor Correlation in Psychometric Measurement
Westfall, Peter H.; Henning, Kevin S. S.; Howell, Roy D.
2012-01-01
This article shows how interfactor correlation is affected by error correlations. Theoretical and practical justifications for error correlations are given, and a new equivalence class of models is presented to explain the relationship between interfactor correlation and error correlations. The class allows simple, parsimonious modeling of error…
Energy Technology Data Exchange (ETDEWEB)
Mattei, E [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy); Triventi, M [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy); Calcagnini, G [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy); Censi, F [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy); Kainz, W [Center for Devices and Radiological Health, Food and Drug Administration, Rockville, MD (United States); Bassen, H I [Center for Devices and Radiological Health, Food and Drug Administration, Rockville, MD (United States); Bartolini, P [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy)
2007-03-21
The purpose of this work is to evaluate the error associated with temperature and SAR measurements using fluoroptic (registered) temperature probes on pacemaker (PM) leads during magnetic resonance imaging (MRI). We performed temperature measurements on pacemaker leads, excited with a 25, 64, and 128 MHz current. The PM lead tip heating was measured with a fluoroptic (registered) thermometer (Luxtron, Model 3100, USA). Different contact configurations between the pigmented portion of the temperature probe and the PM lead tip were investigated to find the contact position minimizing the temperature and SAR underestimation. A computer model was used to estimate the error made by fluoroptic (registered) probes in temperature and SAR measurement. The transversal contact of the pigmented portion of the temperature probe and the PM lead tip minimizes the underestimation for temperature and SAR. This contact position also has the lowest temperature and SAR error. For other contact positions, the maximum temperature error can be as high as -45%, whereas the maximum SAR error can be as high as -54%. MRI heating evaluations with temperature probes should use a contact position minimizing the maximum error, need to be accompanied by a thorough uncertainty budget and the temperature and SAR errors should be specified.
Measurement of Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter
Imig, Astrid; Stephenson, Edward
2009-10-01
The Storage Ring EDM Collaboration was using the Cooler Synchrotron (COSY) and the EDDA detector at the Forschungszentrum J"ulich to explore systematic errors in very sensitive storage-ring polarization measurements. Polarized deuterons of 235 MeV were used. The analyzer target was a block of 17 mm thick carbon placed close to the beam so that white noise applied to upstream electrostatic plates increases the vertical phase space of the beam, allowing deuterons to strike the front face of the block. For a detector acceptance that covers laboratory angles larger than 9 ^o, the efficiency for particles to scatter into the polarimeter detectors was about 0.1% (all directions) and the vector analyzing power was about 0.2. Measurements were made of the sensitivity of the polarization measurement to beam position and angle. Both vector and tensor asymmetries were measured using beams with both vector and tensor polarization. Effects were seen that depend upon both the beam geometry and the data rate in the detectors.
Correction of thickness measurement errors for two adjacent sheet structures in MR images
International Nuclear Information System (INIS)
Cheng Yuanzhi; Wang Shuguo; Sato, Yoshinobu; Nishii, Takashi; Tamura, Shinichi
2007-01-01
We present a new method for measuring the thickness of two adjacent sheet structures in MR images. In the hip joint, in which the femoral and acetabular cartilages are adjacent to each other, a conventional measurement technique based on the second derivative zero crossings (called the zero-crossings method) can introduce large underestimation errors in measurements of cartilage thickness. In this study, we have developed a model-based approach for accurate thickness measurement. We model the imaging process for two adjacent sheet structures, which simulate the two articular cartilages in the hip joint. This model can be used to predict the shape of the intensity profile along the sheet normal orientation. Using an optimization technique, the model parameters are adjusted to minimize the differences between the predicted intensity profile and the actual intensity profiles observed in the MR data. The set of model parameters that minimize the difference between the model and the MR data yield the thickness estimation. Using three phantoms and one normal cadaveric specimen, the usefulness of the new model-based method is demonstrated by comparing the model-based results with the results generated using the zero-crossings method. (author)
A portable non-contact displacement sensor and its application of lens centration error measurement
Yu, Zong-Ru; Peng, Wei-Jei; Wang, Jung-Hsing; Chen, Po-Jui; Chen, Hua-Lin; Lin, Yi-Hao; Chen, Chun-Cheng; Hsu, Wei-Yao; Chen, Fong-Zhi
2018-02-01
We present a portable non-contact displacement sensor (NCDS) based on astigmatic method for micron displacement measurement. The NCDS are composed of a collimated laser, a polarized beam splitter, a 1/4 wave plate, an aspheric objective lens, an astigmatic lens and a four-quadrant photodiode. A visible laser source is adopted for easier alignment and usage. The dimension of the sensor is limited to 115 mm x 36 mm x 56 mm, and a control box is used for dealing with signal and power control between the sensor and computer. The NCDS performs micron-accuracy with +/-30 μm working range and the working distance is constrained in few millimeters. We also demonstrate the application of the NCDS for lens centration error measurement, which is similar to the total indicator runout (TIR) or edge thickness difference (ETD) of a lens measurement using contact dial indicator. This application has advantage for measuring lens made in soft materials that would be starched by using contact dial indicator.
Analytical model and error analysis of arbitrary phasing technique for bunch length measurement
Chen, Qushan; Qin, Bin; Chen, Wei; Fan, Kuanjun; Pei, Yuanji
2018-05-01
An analytical model of an RF phasing method using arbitrary phase scanning for bunch length measurement is reported. We set up a statistical model instead of a linear chirp approximation to analyze the energy modulation process. It is found that, assuming a short bunch (σφ / 2 π → 0) and small relative energy spread (σγ /γr → 0), the energy spread (Y =σγ 2) at the exit of the traveling wave linac has a parabolic relationship with the cosine value of the injection phase (X = cosφr|z=0), i.e., Y = AX2 + BX + C. Analogous to quadrupole strength scanning for emittance measurement, this phase scanning method can be used to obtain the bunch length by measuring the energy spread at different injection phases. The injection phases can be randomly chosen, which is significantly different from the commonly used zero-phasing method. Further, the systematic error of the reported method, such as the influence of the space charge effect, is analyzed. This technique will be especially useful at low energies when the beam quality is dramatically degraded and is hard to measure using the zero-phasing method.
International Nuclear Information System (INIS)
Ahmad, Rozilawati; Hoogeman, Mischa S.; Quint, Sandra; Mens, Jan Willem; Osorio, Eliana M. Vásquez; Heijmen, Ben J.M.
2012-01-01
Purpose: To quantify the impact of uncorrected or partially corrected pelvis rotation and spine bending on region-specific residual setup errors in prone-treated cervical cancer patients. Methods and materials: Fifteen patients received an in-room CBCT scan twice a week. CBCT scans were registered to the planning CT-scan using a pelvic clip box and considering both translations and rotations. For daily correction of the detected translational pelvis setup errors by couch shifts, residual setup errors were determined for L5, L4 and seven other points of interest (POIs). The same was done for a procedure with translational corrections and limited rotational correction (±3°) by a 6D positioning device. Results: With translational correction only, residual setup errors were large especially for L5/L4 in AP direction (Σ = 5.1/5.5 mm). For the 7 POIs the residual setup errors ranged from 1.8 to 5.6 mm (AP). Using the 6D positioning device, the errors were substantially smaller (for L5/L4 in AP direction Σ = 2.7/2.2 mm). Using this device, the percentage of fractions with a residual AP displacement for L4 > 5 mm reduced from 47% to 9%. Conclusions: Setup variations caused by pelvis rotations are large and cannot be ignored in prone treatment of cervical cancer patients. Corrections with a 6D positioning device may considerably reduce resulting setup errors, but the residual setup errors should still be accounted for by appropriate CTV-to-PTV margins.
Evaluation of error bands and confidence limits for thermal measurements in the CFTL bundle
International Nuclear Information System (INIS)
Childs, K.W.; Sanders, J.P.; Conklin, J.C.
1979-01-01
Surface cladding temperatures for the fuel rod simulators in the Core Flow Test Loop (CFTL) must be inferred from a measurement at a thermocouple junction within the rod. This step requires the evaluation of the thermal field within the rod based on known parameters such as heat generation rate, dimensional tolerances, thermal properties, and contact coefficients. Uncertainties in the surface temperature can be evaluated by assigning error bands to each of the parameters used in the calculation. A statistical method has been employed to establish the confidence limits for the surface temperature from a combination of the standard deviations of the important parameters. This method indicates that for a CFTL fuel rod simulator with a total power of 38 kW and a ratio of maximum to average axial power of 1.21, the 95% confidence limit for the calculated surface temperature is +- 45 0 C at the midpoint of the rod
Statistics and error considerations at the application of SSND T-technique in radon measurement
International Nuclear Information System (INIS)
Jonsson, G.
1993-01-01
Plastic films are used for the detection of alpha particles from disintegrating radon and radon daughter nuclei. After etching there are tracks (cones) or holes in the film as a result of the exposure. The step from a counted number of tracks/holes per surface unit of the film to a reliable value of the radon and radon daughter level is surrounded by statistical considerations of different nature. Some of them are the number of counted tracks, the length of the time of exposure, the season of the time of exposure, the etching technique and the method of counting the tracks or holes. The number of background tracks of an unexposed film increases the error of the measured radon level. Some of the mentioned effects of statistical nature will be discussed in the report. (Author)
Impact of mixed modes on measurement errors and estimates of change in panel data
Directory of Open Access Journals (Sweden)
Alexandru Cernat
2015-07-01
Full Text Available Mixed mode designs are receiving increased interest as a possible solution for saving costs in panel surveys, although the lasting effects on data quality are unknown. To better understand the effects of mixed mode designs on panel data we will examine its impact on random and systematic error and on estimates of change. The SF12, a health scale, in the Understanding Society Innovation Panel is used for the analysis. Results indicate that only one variable out of 12 has systematic differences due to the mixed mode design. Also, four of the 12 items overestimate variance of change in time in the mixed mode design. We conclude that using a mixed mode approach leads to minor measurement differences but it can result in the overestimation of individual change compared to a single mode design.
DEFF Research Database (Denmark)
Picchini, Umberto; Forman, Julie Lyng
2016-01-01
a nonlinear stochastic differential equation model observed with correlated measurement errors and an application to protein folding modelling. An approximate Bayesian computation (ABC)-MCMC algorithm is suggested to allow inference for model parameters within reasonable time constraints. The ABC algorithm......In recent years, dynamical modelling has been provided with a range of breakthrough methods to perform exact Bayesian inference. However, it is often computationally unfeasible to apply exact statistical methodologies in the context of large data sets and complex models. This paper considers...... applications. A simulation study is conducted to compare our strategy with exact Bayesian inference, the latter resulting two orders of magnitude slower than ABC-MCMC for the considered set-up. Finally, the ABC algorithm is applied to a large size protein data. The suggested methodology is fairly general...
The Euler equation with habits and measurement errors: Estimates on Russian micro data
Directory of Open Access Journals (Sweden)
Khvostova Irina
2016-01-01
Full Text Available This paper presents estimates of the consumption Euler equation for Russia. The estimation is based on micro-level panel data and accounts for the heterogeneity of agents’ preferences and measurement errors. The presence of multiplicative habits is checked using the Lagrange multiplier (LM test in a generalized method of moments (GMM framework. We obtain estimates of the elasticity of intertemporal substitution and of the subjective discount factor, which are consistent with the theoretical model and can be used for the calibration and the Bayesian estimation of dynamic stochastic general equilibrium (DSGE models for the Russian economy. We also show that the effects of habit formation are not significant. The hypotheses of multiplicative habits (external, internal, and both external and internal are not supported by the data.
Oh, Eric J; Shepherd, Bryan E; Lumley, Thomas; Shaw, Pamela A
2018-04-15
For time-to-event outcomes, a rich literature exists on the bias introduced by covariate measurement error in regression models, such as the Cox model, and methods of analysis to address this bias. By comparison, less attention has been given to understanding the impact or addressing errors in the failure time outcome. For many diseases, the timing of an event of interest (such as progression-free survival or time to AIDS progression) can be difficult to assess or reliant on self-report and therefore prone to measurement error. For linear models, it is well known that random errors in the outcome variable do not bias regression estimates. With nonlinear models, however, even random error or misclassification can introduce bias into estimated parameters. We compare the performance of 2 common regression models, the Cox and Weibull models, in the setting of measurement error in the failure time outcome. We introduce an extension of the SIMEX method to correct for bias in hazard ratio estimates from the Cox model and discuss other analysis options to address measurement error in the response. A formula to estimate the bias induced into the hazard ratio by classical measurement error in the event time for a log-linear survival model is presented. Detailed numerical studies are presented to examine the performance of the proposed SIMEX method under varying levels and parametric forms of the error in the outcome. We further illustrate the method with observational data on HIV outcomes from the Vanderbilt Comprehensive Care Clinic. Copyright © 2017 John Wiley & Sons, Ltd.
Directory of Open Access Journals (Sweden)
B. Torres
2013-08-01
Full Text Available Sensitivity studies indicate that among the diverse error sources of ground-based sky radiometer observations, the pointing error plays an important role in the correct retrieval of aerosol properties. The accurate pointing is specially critical for the characterization of desert dust aerosol. The present work relies on the analysis of two new measurement procedures (cross and matrix specifically designed for the evaluation of the pointing error in the standard instrument of the Aerosol Robotic Network (AERONET, the Cimel CE-318 Sun photometer. The first part of the analysis contains a preliminary study whose results conclude on the need of a Sun movement correction for an accurate evaluation of the pointing error from both new measurements. Once this correction is applied, both measurements show equivalent results with differences under 0.01° in the pointing error estimations. The second part of the analysis includes the incorporation of the cross procedure in the AERONET routine measurement protocol in order to monitor the pointing error in field instruments. The pointing error was evaluated using the data collected for more than a year, in 7 Sun photometers belonging to AERONET sites. The registered pointing error values were generally smaller than 0.1°, though in some instruments values up to 0.3° have been observed. Moreover, the pointing error analysis shows that this measurement can be useful to detect mechanical problems in the robots or dirtiness in the 4-quadrant detector used to track the Sun. Specifically, these mechanical faults can be detected due to the stable behavior of the values over time and vs. the solar zenith angle. Finally, the matrix procedure can be used to derive the value of the solid view angle of the instruments. The methodology has been implemented and applied for the characterization of 5 Sun photometers. To validate the method, a comparison with solid angles obtained from the vicarious calibration method was
Short-read reading-frame predictors are not created equal: sequence error causes loss of signal
Directory of Open Access Journals (Sweden)
Trimble William L
2012-07-01
Full Text Available Abstract Background Gene prediction algorithms (or gene callers are an essential tool for analyzing shotgun nucleic acid sequence data. Gene prediction is a ubiquitous step in sequence analysis pipelines; it reduces the volume of data by identifying the most likely reading frame for a fragment, permitting the out-of-frame translations to be ignored. In this study we evaluate five widely used ab initio gene-calling algorithms—FragGeneScan, MetaGeneAnnotator, MetaGeneMark, Orphelia, and Prodigal—for accuracy on short (75–1000 bp fragments containing sequence error from previously published artificial data and “real” metagenomic datasets. Results While gene prediction tools have similar accuracies predicting genes on error-free fragments, in the presence of sequencing errors considerable differences between tools become evident. For error-containing short reads, FragGeneScan finds more prokaryotic coding regions than does MetaGeneAnnotator, MetaGeneMark, Orphelia, or Prodigal. This improved detection of genes in error-containing fragments, however, comes at the cost of much lower (50% specificity and overprediction of genes in noncoding regions. Conclusions Ab initio gene callers offer a significant reduction in the computational burden of annotating individual nucleic acid reads and are used in many metagenomic annotation systems. For predicting reading frames on raw reads, we find the hidden Markov model approach in FragGeneScan is more sensitive than other gene prediction tools, while Prodigal, MGA, and MGM are better suited for higher-quality sequences such as assembled contigs.
Camporese, Matteo; Botto, Anna
2017-04-01
Data assimilation is becoming increasingly popular in hydrological and earth system modeling, as it allows us to integrate multisource observation data in modeling predictions and, in doing so, to reduce uncertainty. For this reason, data assimilation has been recently the focus of much attention also for physically-based integrated hydrological models, whereby multiple terrestrial compartments (e.g., snow cover, surface water, groundwater) are solved simultaneously, in an attempt to tackle environmental problems in a holistic approach. Recent examples include the joint assimilation of water table, soil moisture, and river discharge measurements in catchment models of coupled surface-subsurface flow using the ensemble Kalman filter (EnKF). One of the typical assumptions in these studies is that the measurement errors are uncorrelated, whereas in certain situations it is reasonable to believe that some degree of correlation occurs, due for example to the fact that a pair of sensors share the same soil type. The goal of this study is to show if and how the measurement error correlations between different observation data play a significant role on assimilation results in a real-world application of an integrated hydrological model. The model CATHY (CATchment HYdrology) is applied to reproduce the hydrological dynamics observed in an experimental hillslope. The physical model, located in the Department of Civil, Environmental and Architectural Engineering of the University of Padova (Italy), consists of a reinforced concrete box containing a soil prism with maximum height of 3.5 m, length of 6 m, and width of 2 m. The hillslope is equipped with sensors to monitor the pressure head and soil moisture responses to a series of generated rainfall events applied onto a 60 cm thick sand layer overlying a sandy clay soil. The measurement network is completed by two tipping bucket flow gages to measure the two components (subsurface and surface) of the outflow. By collecting
Error Correction and Calibration of a Sun Protection Measurement System for Textile Fabrics
International Nuclear Information System (INIS)
Moss, A.R.L.
2000-01-01
Clothing is increasingly being labelled with a Sun Protection Factor number which indicates the protection against sunburn provided by the textile fabric. This Factor is obtained by measuring the transmittance of samples of the fabric in the ultraviolet region (290-400 nm). The accuracy and hence the reliability of the label depends on the accuracy of the measurement. Some sun protection measurement systems quote a transmittance accuracy at 2%T of ± 1.5%T. This means a fabric classified under the Australian standard (AS/NZ 4399:1996) with an Ultraviolet Protection Factor (UPF) of 40 would have an uncertainty of +15 or -10. This would not allow classification to the nearest 5, and a UVR protection category of 'excellent protection' might in fact be only 'very good protection'. An accuracy of ±0.1%T is required to give a UPF uncertainty of ±2.5. The measurement system then does not contribute significantly to the error, and the problems are now limited to sample conditioning, position and consistency. A commercial sun protection measurement system has been developed by Camspec Ltd which used traceable neutral density filters and appropriate design to ensure high accuracy. The effects of small zero offsets are corrected and the effect of the reflectivity of the sample fabric on the integrating sphere efficiency is measured and corrected. Fabric orientation relative to the light patch is considered. Signal stability is ensured by means of a reference beam. Traceable filters also allow wavelength accuracy to be conveniently checked. (author)
Error Correction and Calibration of a Sun Protection Measurement System for Textile Fabrics
Energy Technology Data Exchange (ETDEWEB)
Moss, A.R.L
2000-07-01
Clothing is increasingly being labelled with a Sun Protection Factor number which indicates the protection against sunburn provided by the textile fabric. This Factor is obtained by measuring the transmittance of samples of the fabric in the ultraviolet region (290-400 nm). The accuracy and hence the reliability of the label depends on the accuracy of the measurement. Some sun protection measurement systems quote a transmittance accuracy at 2%T of {+-} 1.5%T. This means a fabric classified under the Australian standard (AS/NZ 4399:1996) with an Ultraviolet Protection Factor (UPF) of 40 would have an uncertainty of +15 or -10. This would not allow classification to the nearest 5, and a UVR protection category of 'excellent protection' might in fact be only 'very good protection'. An accuracy of {+-}0.1%T is required to give a UPF uncertainty of {+-}2.5. The measurement system then does not contribute significantly to the error, and the problems are now limited to sample conditioning, position and consistency. A commercial sun protection measurement system has been developed by Camspec Ltd which used traceable neutral density filters and appropriate design to ensure high accuracy. The effects of small zero offsets are corrected and the effect of the reflectivity of the sample fabric on the integrating sphere efficiency is measured and corrected. Fabric orientation relative to the light patch is considered. Signal stability is ensured by means of a reference beam. Traceable filters also allow wavelength accuracy to be conveniently checked. (author)
Altuntaş, Emine; Ammon, Jeffrey; Cahn, Sidney B.; DeMille, David
2018-04-01
Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson exchange between electrons and the nucleus and from the magnetic interaction between electrons and the parity-violating nuclear anapole moment. It has been proposed to study NSD-PV effects using an enhancement of the observable effect in diatomic molecules [D. DeMille et al., Phys. Rev. Lett. 100, 023003 (2008), 10.1103/PhysRevLett.100.023003]. Here we demonstrate highly sensitive measurements of this type, using the test system 138Ba19F. We show that systematic errors associated with our technique can be suppressed to at least the level of the present statistical sensitivity. With ˜170 h of data, we measure the matrix element W of the NSD-PV interaction with uncertainty δ W /(2 π )<0.7 Hz for each of two configurations where W must have different signs. This sensitivity would be sufficient to measure NSD-PV effects of the size anticipated across a wide range of nuclei.
Valuing urban open space using the travel-cost method and the implications of measurement error.
Hanauer, Merlin M; Reid, John
2017-08-01
Urbanization has placed pressure on open space within and adjacent to cities. In recent decades, a greater awareness has developed to the fact that individuals derive multiple benefits from urban open space. Given the location, there is often a high opportunity cost to preserving urban open space, thus it is important for both public and private stakeholders to justify such investments. The goals of this study are twofold. First, we use detailed surveys and precise, accessible, mapping methods to demonstrate how travel-cost methods can be applied to the valuation of urban open space. Second, we assess the degree to which typical methods of estimating travel times, and thus travel costs, introduce bias to the estimates of welfare. The site we study is Taylor Mountain Regional Park, a 1100-acre space located immediately adjacent to Santa Rosa, California, which is the largest city (∼170,000 population) in Sonoma County and lies 50 miles north of San Francisco. We estimate that the average per trip access value (consumer surplus) is $13.70. We also demonstrate that typical methods of measuring travel costs significantly understate these welfare measures. Our study provides policy-relevant results and highlights the sensitivity of urban open space travel-cost studies to bias stemming from travel-cost measurement error. Copyright © 2017 Elsevier Ltd. All rights reserved.
Calibration of a camera–projector measurement system and error impact analysis
International Nuclear Information System (INIS)
Huang, Junhui; Wang, Zhao; Xue, Qi; Gao, Jianmin
2012-01-01
In the camera–projector measurement system, calibration is a key to the measurement accuracy; especially, it is more difficult to obtain the same calibration accuracy for projector than camera due to the inaccurate corresponding relationship between its calibration points and imaging points. Thus, based on stereo vision measurement models of the camera and the projector, a calibration method with direct linear transformation (DLT) and bundle adjustment (BA) is introduced to adjust the corresponding relationships for better optimization purpose in this paper, which minimize the effect of inaccurate calibration points. And an integral method is presented to improve the precision of projection patterns to compensate the projector resolution limitation. Moreover impacts of system parameter and calibration points errors are evaluated when the calibration points positions change, which not only provides theoretical guidance for the rational layout of the calibration points, but also can be used for the optimization of system structure. Finally, the calibration of the system is carried out and the experiment results show that better precision can be achieved with those processes. (paper)
Agogo, George O; van der Voet, Hilko; van't Veer, Pieter; Ferrari, Pietro; Leenders, Max; Muller, David C; Sánchez-Cantalejo, Emilio; Bamia, Christina; Braaten, Tonje; Knüppel, Sven; Johansson, Ingegerd; van Eeuwijk, Fred A; Boshuizen, Hendriek
2014-01-01
In epidemiologic studies, measurement error in dietary variables often attenuates association between dietary intake and disease occurrence. To adjust for the attenuation caused by error in dietary intake, regression calibration is commonly used. To apply regression calibration, unbiased reference measurements are required. Short-term reference measurements for foods that are not consumed daily contain excess zeroes that pose challenges in the calibration model. We adapted two-part regression calibration model, initially developed for multiple replicates of reference measurements per individual to a single-replicate setting. We showed how to handle excess zero reference measurements by two-step modeling approach, how to explore heteroscedasticity in the consumed amount with variance-mean graph, how to explore nonlinearity with the generalized additive modeling (GAM) and the empirical logit approaches, and how to select covariates in the calibration model. The performance of two-part calibration model was compared with the one-part counterpart. We used vegetable intake and mortality data from European Prospective Investigation on Cancer and Nutrition (EPIC) study. In the EPIC, reference measurements were taken with 24-hour recalls. For each of the three vegetable subgroups assessed separately, correcting for error with an appropriately specified two-part calibration model resulted in about three fold increase in the strength of association with all-cause mortality, as measured by the log hazard ratio. Further found is that the standard way of including covariates in the calibration model can lead to over fitting the two-part calibration model. Moreover, the extent of adjusting for error is influenced by the number and forms of covariates in the calibration model. For episodically consumed foods, we advise researchers to pay special attention to response distribution, nonlinearity, and covariate inclusion in specifying the calibration model.
Aerodynamical errors on tower mounted wind speed measurements due to the presence of the tower
Energy Technology Data Exchange (ETDEWEB)
Bergstroem, H. [Uppsala Univ. (Sweden). Dept. of Meteorology; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden)
1996-12-01
Field measurements of wind speed from two lattice towers showed large differences for wind directions where the anemometers of both towers should be unaffected by any upstream obstacle. The wind speed was measured by cup anemometers mounted on booms along the side of the tower. A simple wind tunnel test indicates that the boom, for the studied conditions, could cause minor flow disturbances. A theoretical study, by means of simple 2D flow modelling of the flow around the mast, demonstrates that the tower itself could cause large wind flow disturbances. A theoretical study, based on simple treatment of the physics of motion of a cup anemometer, demonstrates that a cup anemometer is sensitive to velocity gradients across the cups and responds clearly to velocity gradients in the vicinity of the tower. Comparison of the results from the theoretical study and field tests show promising agreement. 2 refs, 8 figs
Cook, Nancy R; Rosner, Bernard A; Chen, Wei; Srinivasan, Sathanur R; Berenson, Gerald S
2004-11-30
Tracking correlations of blood pressure, particularly childhood measures, may be attenuated by within-person variability. Combining multiple measurements can reduce this error substantially. The area under the curve (AUC) computed from longitudinal growth curve models can be used to improve the prediction of young adult blood pressure from childhood measures. Quadratic random-effects models over unequally spaced repeated measures were used to compute the area under the curve separately within the age periods 5-14 and 20-34 years in the Bogalusa Heart Study. This method adjusts for the uneven age distribution and captures the underlying or average blood pressure, leading to improved estimates of correlation and risk prediction. Tracking correlations were computed by race and gender, and were approximately 0.6 for systolic, 0.5-0.6 for K4 diastolic, and 0.4-0.6 for K5 diastolic blood pressure. The AUC can also be used to regress young adult blood pressure on childhood blood pressure and childhood and young adult body mass index (BMI). In these data, while childhood blood pressure and young adult BMI were generally directly predictive of young adult blood pressure, childhood BMI was negatively correlated with young adult blood pressure when childhood blood pressure was in the model. In addition, racial differences in young adult blood pressure were reduced, but not eliminated, after controlling for childhood blood pressure, childhood BMI, and young adult BMI, suggesting that other genetic or lifestyle factors contribute to this difference. 2004 John Wiley & Sons, Ltd.
Law, Katherine E; Ray, Rebecca D; D'Angelo, Anne-Lise D; Cohen, Elaine R; DiMarco, Shannon M; Linsmeier, Elyse; Wiegmann, Douglas A; Pugh, Carla M
The study aim was to determine whether residents' error management strategies changed across 2 simulated laparoscopic ventral hernia (LVH) repair procedures after receiving feedback on their initial performance. We hypothesize that error detection and recovery strategies would improve during the second procedure without hands-on practice. Retrospective review of participant procedural performances of simulated laparoscopic ventral herniorrhaphy. A total of 3 investigators reviewed procedure videos to identify surgical errors. Errors were deconstructed. Error management events were noted, including error identification and recovery. Residents performed the simulated LVH procedures during a course on advanced laparoscopy. Participants had 30 minutes to complete a LVH procedure. After verbal and simulator feedback, residents returned 24 hours later to perform a different, more difficult simulated LVH repair. Senior (N = 7; postgraduate year 4-5) residents in attendance at the course participated in this study. In the first LVH procedure, residents committed 121 errors (M = 17.14, standard deviation = 4.38). Although the number of errors increased to 146 (M = 20.86, standard deviation = 6.15) during the second procedure, residents progressed further in the second procedure. There was no significant difference in the number of errors committed for both procedures, but errors shifted to the late stage of the second procedure. Residents changed the error types that they attempted to recover (χ 2 5 =24.96, perrors, but decreased for strategy errors. Residents also recovered the most errors in the late stage of the second procedure (p error management strategies changed between procedures following verbal feedback on their initial performance and feedback from the simulator. Errors and recovery attempts shifted to later steps during the second procedure. This may reflect residents' error management success in the earlier stages, which allowed further progression in the
International Nuclear Information System (INIS)
Myint Wazo; Cai Yufeng; Schiffer, Celia A.; Ishima, Rieko
2012-01-01
Nitrogen-15 Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiment are widely used to characterize protein backbone dynamics and chemical exchange parameters. Although an accurate value of the transverse relaxation rate, R 2 , is needed for accurate characterization of dynamics, the uncertainty in the R 2 value depends on the experimental settings and the details of the data analysis itself. Here, we present an analysis of the impact of CPMG pulse phase alternation on the accuracy of the 15 N CPMG R 2 . Our simulations show that R 2 can be obtained accurately for a relatively wide spectral width, either using the conventional phase cycle or using phase alternation when the r.f. pulse power is accurately calibrated. However, when the r.f. pulse is miscalibrated, the conventional CPMG experiment exhibits more significant uncertainties in R 2 caused by the off-resonance effect than does the phase alternation experiment. Our experiments show that this effect becomes manifest under the circumstance that the systematic error exceeds that arising from experimental noise. Furthermore, our results provide the means to estimate practical parameter settings that yield accurate values of 15 N transverse relaxation rates in the both CPMG experiments.
DEFF Research Database (Denmark)
Laitinen, Tommi; Nielsen, Jeppe Majlund; Pivnenko, Sergiy
2004-01-01
An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe.......An investigation is performed to study the error of the far-field pattern determined from a spherical near-field antenna measurement in the case where a first-order (mu=+-1) probe correction scheme is applied to the near-field signal measured by a higher-order probe....
Tooze, Janet A; Troiano, Richard P; Carroll, Raymond J; Moshfegh, Alanna J; Freedman, Laurence S
2013-06-01
Systematic investigations into the structure of measurement error of physical activity questionnaires are lacking. We propose a measurement error model for a physical activity questionnaire that uses physical activity level (the ratio of total energy expenditure to basal energy expenditure) to relate questionnaire-based reports of physical activity level to true physical activity levels. The 1999-2006 National Health and Nutrition Examination Survey physical activity questionnaire was administered to 433 participants aged 40-69 years in the Observing Protein and Energy Nutrition (OPEN) Study (Maryland, 1999-2000). Valid estimates of participants' total energy expenditure were also available from doubly labeled water, and basal energy expenditure was estimated from an equation; the ratio of those measures estimated true physical activity level ("truth"). We present a measurement error model that accommodates the mixture of errors that arise from assuming a classical measurement error model for doubly labeled water and a Berkson error model for the equation used to estimate basal energy expenditure. The method was then applied to the OPEN Study. Correlations between the questionnaire-based physical activity level and truth were modest (r = 0.32-0.41); attenuation factors (0.43-0.73) indicate that the use of questionnaire-based physical activity level would lead to attenuated estimates of effect size. Results suggest that sample sizes for estimating relationships between physical activity level and disease should be inflated, and that regression calibration can be used to provide measurement error-adjusted estimates of relationships between physical activity and disease.
Vasquez, Monica M; Hu, Chengcheng; Roe, Denise J; Halonen, Marilyn; Guerra, Stefano
2017-01-01
Measurement of serum biomarkers by multiplex assays may be more variable as compared to single biomarker assays. Measurement error in these data may bias parameter estimates in regression analysis, which could mask true associations of serum biomarkers with an outcome. The Least Absolute Shrinkage and Selection Operator (LASSO) can be used for variable selection in these high-dimensional data. Furthermore, when the distribution of measurement error is assumed to be known or estimated with replication data, a simple measurement error correction method can be applied to the LASSO method. However, in practice the distribution of the measurement error is unknown and is expensive to estimate through replication both in monetary cost and need for greater amount of sample which is often limited in quantity. We adapt an existing bias correction approach by estimating the measurement error using validation data in which a subset of serum biomarkers are re-measured on a random subset of the study sample. We evaluate this method using simulated data and data from the Tucson Epidemiological Study of Airway Obstructive Disease (TESAOD). We show that the bias in parameter estimation is reduced and variable selection is improved.
International Nuclear Information System (INIS)
Cummins, J.D.
1964-02-01
The sources of error in the measurement of system impulse response using test signals of a discrete interval binary nature are considered. Methods of correcting for the errors due to theoretical imperfections are given and the variance of the estimate of the system impulse response due to random noise is determined. Several topics related to the main topic are considered e.g. determination of a theoretical model from experimental results. General conclusions about the magnitude of the errors due to the theoretical imperfections are made. (author)
Energy Technology Data Exchange (ETDEWEB)
Cummins, J D [Dynamics Group, Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1964-02-15
The sources of error in the measurement of system impulse response using test signals of a discrete interval binary nature are considered. Methods of correcting for the errors due to theoretical imperfections are given and the variance of the estimate of the system impulse response due to random noise is determined. Several topics related to the main topic are considered e.g. determination of a theoretical model from experimental results. General conclusions about the magnitude of the errors due to the theoretical imperfections are made. (author)
Heavner, Karyn; Newschaffer, Craig; Hertz-Picciotto, Irva; Bennett, Deborah; Burstyn, Igor
2014-05-01
The Early Autism Risk Longitudinal Investigation (EARLI), an ongoing study of a risk-enriched pregnancy cohort, examines genetic and environmental risk factors for autism spectrum disorders (ASDs). We simulated the potential effects of both measurement error (ME) in exposures and misclassification of ASD-related phenotype (assessed as Autism Observation Scale for Infants (AOSI) scores) on measures of association generated under this study design. We investigated the impact on the power to detect true associations with exposure and the false positive rate (FPR) for a non-causal correlate of exposure (X2, r=0.7) for continuous AOSI score (linear model) versus dichotomised AOSI (logistic regression) when the sample size (n), degree of ME in exposure, and strength of the expected (true) OR (eOR)) between exposure and AOSI varied. Exposure was a continuous variable in all linear models and dichotomised at one SD above the mean in logistic models. Simulations reveal complex patterns and suggest that: (1) There was attenuation of associations that increased with eOR and ME; (2) The FPR was considerable under many scenarios; and (3) The FPR has a complex dependence on the eOR, ME and model choice, but was greater for logistic models. The findings will stimulate work examining cost-effective strategies to reduce the impact of ME in realistic sample sizes and affirm the importance for EARLI of investment in biological samples that help precisely quantify a wide range of environmental exposures.
Error Correction of Measured Unstructured Road Profiles Based on Accelerometer and Gyroscope Data
Directory of Open Access Journals (Sweden)
Jinhua Han
2017-01-01
Full Text Available This paper describes a noncontact acquisition system composed of several time synchronized laser height sensors, accelerometers, gyroscope, and so forth in order to collect the road profiles of vehicle riding on the unstructured roads. A method of correcting road profiles based on the accelerometer and gyroscope data is proposed to eliminate the adverse impacts of vehicle vibration and attitudes change. Because the power spectral density (PSD of gyro attitudes concentrates in the low frequency band, a method called frequency division is presented to divide the road profiles into two parts: high frequency part and low frequency part. The vibration error of road profiles is corrected by displacement data obtained through two times integration of measured acceleration data. After building the mathematical model between gyro attitudes and road profiles, the gyro attitudes signals are separated from low frequency road profile by the method of sliding block overlap based on correlation analysis. The accuracy and limitations of the system have been analyzed, and its validity has been verified by implementing the system on wheeled equipment for road profiles’ measuring of vehicle testing ground. The paper offers an accurate and practical approach to obtaining unstructured road profiles for road simulation test.
Ferguson, C. R.; Tree, D. R.; Dewitt, D. P.; Wahiduzzaman, S. A. H.
1987-01-01
The paper reports the methodology and uncertainty analyses of instrumentation for heat transfer measurements in internal combustion engines. Results are presented for determining the local wall heat flux in an internal combustion engine (using a surface thermocouple-type heat flux gage) and the apparent flame-temperature and soot volume fraction path length product in a diesel engine (using two-color pyrometry). It is shown that a surface thermocouple heat transfer gage suitably constructed and calibrated will have an accuracy of 5 to 10 percent. It is also shown that, when applying two-color pyrometry to measure the apparent flame temperature and soot volume fraction-path length, it is important to choose at least one of the two wavelengths to lie in the range of 1.3 to 2.3 micrometers. Carefully calibrated two-color pyrometer can ensure that random errors in the apparent flame temperature and in the soot volume fraction path length will remain small (within about 1 percent and 10-percent, respectively).
Cui, Cunxing; Feng, Qibo; Zhang, Bin; Zhao, Yuqiong
2016-03-21
A novel method for simultaneously measuring six degree-of-freedom (6DOF) geometric motion errors is proposed in this paper, and the corresponding measurement instrument is developed. Simultaneous measurement of 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser is accomplished for the first time to the best of the authors' knowledge. Dual-frequency laser beams that are orthogonally linear polarized were adopted as the measuring datum. Positioning error measurement was achieved by heterodyne interferometry, and other 5DOF geometric motion errors were obtained by fiber collimation measurement. A series of experiments was performed to verify the effectiveness of the developed instrument. The experimental results showed that the stability and accuracy of the positioning error measurement are 31.1 nm and 0.5 μm, respectively. For the straightness error measurements, the stability and resolution are 60 and 40 nm, respectively, and the maximum deviation of repeatability is ± 0.15 μm in the x direction and ± 0.1 μm in the y direction. For pitch and yaw measurements, the stabilities are 0.03″ and 0.04″, the maximum deviations of repeatability are ± 0.18″ and ± 0.24″, and the accuracies are 0.4″ and 0.35″, respectively. The stability and resolution of roll measurement are 0.29″ and 0.2″, respectively, and the accuracy is 0.6″.
Directory of Open Access Journals (Sweden)
Roohollah Askari
2017-09-01
Methods: A cross-sectional study was conducted on 220 nurses working in educational hospitals affiliated to Yazd University of Medical Sciences (Shahid Sadoughi, Shahid Rahnemoon and Afshar Hospitals. Stratified random sampling was used. Required data was gathered by Gladstone questionnaire. Data analysis was done through SPSS 16. Results: The most common causes of medication errors were the failure to match the patients' names with ordered drugs, the ill-considered and unreadable nature of the physicians' orders and the nominal similarity of drugs. Failure to match the patients' names with ordered drugs (3.45 ± 2.85 and the incorrect setting of the infusion device by the nurse (8.81 ± 2.57 had the highest and lowest scores from the viewpoints of nurses. Conclusion: Establishing and implementing electronic drug prescription, in service training for improving nurses' pharmacological knowledge, identifying the main types and causes of drug errors, the teaching of proper prescribing techniques are needed.
Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.
1994-01-01
It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.
Nicewander, W. Alan
2018-01-01
Spearman's correction for attenuation (measurement error) corrects a correlation coefficient for measurement errors in either-or-both of two variables, and follows from the assumptions of classical test theory. Spearman's equation removes all measurement error from a correlation coefficient which translates into "increasing the reliability of…
Three model systems measure oxidation/nitration damage caused ...
Indian Academy of Sciences (India)
Unknown
caused by peroxynitrite ... (OONO–) or its carbon dioxide derivatives cause oxidation/nitration and hence mutation to various body poly- mers e.g. .... The work described in this paper is quite brief due to ex- ... exact way to balance the dose of antioxidants in mixtures ... tralizing conditions the half-life of OONO– is less than.
Directory of Open Access Journals (Sweden)
Francisco J. Casas
2015-08-01
Full Text Available This paper presents preliminary polarization measurements and systematic-error characterization of the Thirty Gigahertz Instrument receiver developed for the QUIJOTE experiment. The instrument has been designed to measure the polarization of Cosmic Microwave Background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. Two kinds of linearly polarized input signals have been used as excitations in the polarimeter measurement tests in the laboratory; these show consistent results in terms of the Stokes parameters obtained. A measurement-based systematic-error characterization technique has been used in order to determine the possible sources of instrumental errors and to assist in the polarimeter calibration process.
Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.
2015-02-01
Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s-1) and errors in the vertical velocity measurement exceed the actual vertical velocity
Estimation of perspective errors in 2D2C-PIV measurements for 3D concentrated vortices
Ma, Bao-Feng; Jiang, Hong-Gang
2018-06-01
Two-dimensional planar PIV (2D2C) is still extensively employed in flow measurement owing to its availability and reliability, although more advanced PIVs have been developed. It has long been recognized that there exist perspective errors in velocity fields when employing the 2D2C PIV to measure three-dimensional (3D) flows, the magnitude of which depends on out-of-plane velocity and geometric layouts of the PIV. For a variety of vortex flows, however, the results are commonly represented by vorticity fields, instead of velocity fields. The present study indicates that the perspective error in vorticity fields relies on gradients of the out-of-plane velocity along a measurement plane, instead of the out-of-plane velocity itself. More importantly, an estimation approach to the perspective error in 3D vortex measurements was proposed based on a theoretical vortex model and an analysis on physical characteristics of the vortices, in which the gradient of out-of-plane velocity is uniquely determined by the ratio of the maximum out-of-plane velocity to maximum swirling velocity of the vortex; meanwhile, the ratio has upper limits for naturally formed vortices. Therefore, if the ratio is imposed with the upper limits, the perspective error will only rely on the geometric layouts of PIV that are known in practical measurements. Using this approach, the upper limits of perspective errors of a concentrated vortex can be estimated for vorticity and other characteristic quantities of the vortex. In addition, the study indicates that the perspective errors in vortex location, vortex strength, and vortex radius can be all zero for axisymmetric vortices if they are calculated by proper methods. The dynamic mode decomposition on an oscillatory vortex indicates that the perspective errors of each DMD mode are also only dependent on the gradient of out-of-plane velocity if the modes are represented by vorticity.
Deffner, Veronika; Küchenhoff, Helmut; Breitner, Susanne; Schneider, Alexandra; Cyrys, Josef; Peters, Annette
2018-03-13
The ultrafine particle measurements in the Augsburger Umweltstudie, a panel study conducted in Augsburg, Germany, exhibit measurement error from various sources. Measurements of mobile devices show classical possibly individual-specific measurement error; Berkson-type error, which may also vary individually, occurs, if measurements of fixed monitoring stations are used. The combination of fixed site and individual exposure measurements results in a mixture of the two error types. We extended existing bias analysis approaches to linear mixed models with a complex error structure including individual-specific error components, autocorrelated errors, and a mixture of classical and Berkson error. Theoretical considerations and simulation results show, that autocorrelation may severely change the attenuation of the effect estimations. Furthermore, unbalanced designs and the inclusion of confounding variables influence the degree of attenuation. Bias correction with the method of moments using data with mixture measurement error partially yielded better results compared to the usage of incomplete data with classical error. Confidence intervals (CIs) based on the delta method achieved better coverage probabilities than those based on Bootstrap samples. Moreover, we present the application of these new methods to heart rate measurements within the Augsburger Umweltstudie: the corrected effect estimates were slightly higher than their naive equivalents. The substantial measurement error of ultrafine particle measurements has little impact on the results. The developed methodology is generally applicable to longitudinal data with measurement error. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Latorre-Arteaga, Sergio; Gil-González, Diana; Enciso, Olga; Phelan, Aoife; García-Muñoz, Ángel; Kohler, Johannes
2014-01-01
Background Refractive error is defined as the inability of the eye to bring parallel rays of light into focus on the retina, resulting in nearsightedness (myopia), farsightedness (Hyperopia) or astigmatism. Uncorrected refractive error in children is associated with increased morbidity and reduced educational opportunities. Vision screening (VS) is a method for identifying children with visual impairment or eye conditions likely to lead to visual impairment. Objective To analyze the utility of vision screening conducted by teachers and to contribute to a better estimation of the prevalence of childhood refractive errors in Apurimac, Peru. Design A pilot vision screening program in preschool (Group I) and elementary school children (Group II) was conducted with the participation of 26 trained teachers. Children whose visual acuity was<6/9 [20/30] (Group I) and≤6/9 (Group II) in one or both eyes, measured with the Snellen Tumbling E chart at 6 m, were referred for a comprehensive eye exam. Specificity and positive predictive value to detect refractive error were calculated against clinical examination. Program assessment with participants was conducted to evaluate outcomes and procedures. Results A total sample of 364 children aged 3–11 were screened; 45 children were examined at Centro Oftalmológico Monseñor Enrique Pelach (COMEP) Eye Hospital. Prevalence of refractive error was 6.2% (Group I) and 6.9% (Group II); specificity of teacher vision screening was 95.8% and 93.0%, while positive predictive value was 59.1% and 47.8% for each group, respectively. Aspects highlighted to improve the program included extending training, increasing parental involvement, and helping referred children to attend the hospital. Conclusion Prevalence of refractive error in children is significant in the region. Vision screening performed by trained teachers is a valid intervention for early detection of refractive error, including screening of preschool children. Program
Chan, Leo Li-Ying; Laverty, Daniel J; Smith, Tim; Nejad, Parham; Hei, Hillary; Gandhi, Roopali; Kuksin, Dmitry; Qiu, Jean
2013-02-28
Peripheral blood mononuclear cells (PBMCs) have been widely researched in the fields of immunology, infectious disease, oncology, transplantation, hematological malignancy, and vaccine development. Specifically, in immunology research, PBMCs have been utilized to monitor concentration, viability, proliferation, and cytokine production from immune cells, which are critical for both clinical trials and biomedical research. The viability and concentration of isolated PBMCs are traditionally measured by manual counting with trypan blue (TB) using a hemacytometer. One of the common issues of PBMC isolation is red blood cell (RBC) contamination. The RBC contamination can be dependent on the donor sample and/or technical skill level of the operator. RBC contamination in a PBMC sample can introduce error to the measured concentration, which can pass down to future experimental assays performed on these cells. To resolve this issue, RBC lysing protocol can be used to eliminate potential error caused by RBC contamination. In the recent years, a rapid fluorescence-based image cytometry system has been utilized for bright-field and fluorescence imaging analysis of cellular characteristics (Nexcelom Bioscience LLC, Lawrence, MA). The Cellometer image cytometry system has demonstrated the capability of automated concentration and viability detection in disposable counting chambers of unpurified mouse splenocytes and PBMCs stained with acridine orange (AO) and propidium iodide (PI) under fluorescence detection. In this work, we demonstrate the ability of Cellometer image cytometry system to accurately measure PBMC concentration, despite RBC contamination, by comparison of five different total PBMC counting methods: (1) manual counting of trypan blue-stained PBMCs in hemacytometer, (2) manual counting of PBMCs in bright-field images, (3) manual counting of acetic acid lysing of RBCs with TB-stained PBMCs, (4) automated counting of acetic acid lysing of RBCs with PI-stained PBMCs
Error in interpreting field chlorophyll fluorescence measurements: heat gain from solar radiation
International Nuclear Information System (INIS)
Marler, T.E.; Lawton, P.D.
1994-01-01
Temperature and chlorophyll fluorescence characteristics were determined on leaves of various horticultural species following a dark adaptation period where dark adaptation cuvettes were shielded from or exposed to solar radiation. In one study, temperature of Swietenia mahagoni (L.) Jacq. leaflets within cuvettes increased from approximately 36C to approximately 50C during a 30-minute exposure to solar radiation. Alternatively, when the leaflets and cuvettes were shielded from solar radiation, leaflet temperature declined to 33C in 10 to 15 minutes. In a second study, 16 horticultural species exhibited a lower variable: maximum fluorescence (F v :F m ) when cuvettes were exposed to solar radiation during the 30-minute dark adaptation than when cuvettes were shielded. In a third study with S. mahagoni, the influence of self-shielding the cuvettes by wrapping them with white tape, white paper, or aluminum foil on temperature and fluorescence was compared to exposing or shielding the entire leaflet and cuvette. All of the shielding methods reduced leaflet temperature and increased the F v :F m ratio compared to leaving cuvettes exposed. These results indicate that heat stress from direct exposure to solar radiation is a potential source of error when interpreting chlorophyll fluorescence measurements on intact leaves. Methods for moderating or minimizing radiation interception during dark adaptation are recommended. (author)
Local measurement of error field using naturally rotating tearing mode dynamics in EXTRAP T2R
Sweeney, R. M.; Frassinetti, L.; Brunsell, P.; Fridström, R.; Volpe, F. A.
2016-12-01
An error field (EF) detection technique using the amplitude modulation of a naturally rotating tearing mode (TM) is developed and validated in the EXTRAP T2R reversed field pinch. The technique was used to identify intrinsic EFs of m/n = 1/-12, where m and n are the poloidal and toroidal mode numbers. The effect of the EF and of a resonant magnetic perturbation (RMP) on the TM, in particular on amplitude modulation, is modeled with a first-order solution of the modified Rutherford equation. In the experiment, the TM amplitude is measured as a function of the toroidal angle as the TM rotates rapidly in the presence of an unknown EF and a known, deliberately applied RMP. The RMP amplitude is fixed while the toroidal phase is varied from one discharge to the other, completing a full toroidal scan. Using three such scans with different RMP amplitudes, the EF amplitude and phase are inferred from the phases at which the TM amplitude maximizes. The estimated EF amplitude is consistent with other estimates (e.g. based on the best EF-cancelling RMP, resulting in the fastest TM rotation). A passive variant of this technique is also presented, where no RMPs are applied, and the EF phase is deduced.
Spoken Word Recognition Errors in Speech Audiometry: A Measure of Hearing Performance?
Directory of Open Access Journals (Sweden)
Martine Coene
2015-01-01
Full Text Available This report provides a detailed analysis of incorrect responses from an open-set spoken word-repetition task which is part of a Dutch speech audiometric test battery. Single-consonant confusions were analyzed from 230 normal hearing participants in terms of the probability of choice of a particular response on the basis of acoustic-phonetic, lexical, and frequency variables. The results indicate that consonant confusions are better predicted by lexical knowledge than by acoustic properties of the stimulus word. A detailed analysis of the transmission of phonetic features indicates that “voicing” is best preserved whereas “manner of articulation” yields most perception errors. As consonant confusion matrices are often used to determine the degree and type of a patient’s hearing impairment, to predict a patient’s gain in hearing performance with hearing devices and to optimize the device settings in view of maximum output, the observed findings are highly relevant for the audiological practice. Based on our findings, speech audiometric outcomes provide a combined auditory-linguistic profile of the patient. The use of confusion matrices might therefore not be the method best suited to measure hearing performance. Ideally, they should be complemented by other listening task types that are known to have less linguistic bias, such as phonemic discrimination.
Smith, G. L.; Bess, T. D.; Minnis, P.
1983-01-01
The processes which determine the weather and climate are driven by the radiation received by the earth and the radiation subsequently emitted. A knowledge of the absorbed and emitted components of radiation is thus fundamental for the study of these processes. In connection with the desire to improve the quality of long-range forecasting, NASA is developing the Earth Radiation Budget Experiment (ERBE), consisting of a three-channel scanning radiometer and a package of nonscanning radiometers. A set of these instruments is to be flown on both the NOAA-F and NOAA-G spacecraft, in sun-synchronous orbits, and on an Earth Radiation Budget Satellite. The purpose of the scanning radiometer is to obtain measurements from which the average reflected solar radiant exitance and the average earth-emitted radiant exitance at a reference level can be established. The estimate of regional average exitance obtained will not exactly equal the true value of the regional average exitance, but will differ due to spatial sampling. A method is presented for evaluating this spatial sampling error.
Melnychuk, O; Grassellino, A; Romanenko, A
2014-12-01
In this paper, we discuss error analysis for intrinsic quality factor (Q0) and accelerating gradient (Eacc) measurements in superconducting radio frequency (SRF) resonators. The analysis is applicable for cavity performance tests that are routinely performed at SRF facilities worldwide. We review the sources of uncertainties along with the assumptions on their correlations and present uncertainty calculations with a more complete procedure for treatment of correlations than in previous publications [T. Powers, in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27]. Applying this approach to cavity data collected at Vertical Test Stand facility at Fermilab, we estimated total uncertainty for both Q0 and Eacc to be at the level of approximately 4% for input coupler coupling parameter β1 in the [0.5, 2.5] range. Above 2.5 (below 0.5) Q0 uncertainty increases (decreases) with β1 whereas Eacc uncertainty, in contrast with results in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27], is independent of β1. Overall, our estimated Q0 uncertainty is approximately half as large as that in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27].
Measurement-based analysis of error latency. [in computer operating system
Chillarege, Ram; Iyer, Ravishankar K.
1987-01-01
This paper demonstrates a practical methodology for the study of error latency under a real workload. The method is illustrated with sampled data on the physical memory activity, gathered by hardware instrumentation on a VAX 11/780 during the normal workload cycle of the installation. These data are used to simulate fault occurrence and to reconstruct the error discovery process in the system. The technique provides a means to study the system under different workloads and for multiple days. An approach to determine the percentage of undiscovered errors is also developed and a verification of the entire methodology is performed. This study finds that the mean error latency, in the memory containing the operating system, varies by a factor of 10 to 1 (in hours) between the low and high workloads. It is found that of all errors occurring within a day, 70 percent are detected in the same day, 82 percent within the following day, and 91 percent within the third day. The increase in failure rate due to latency is not so much a function of remaining errors but is dependent on whether or not there is a latent error.
climate change: causes, effects and mitigation measures-a review
African Journals Online (AJOL)
BARTH EKWUEME
Both natural and human causes of climate change including the earth's orbital changes, solar variations .... analysis supported by climate models have revealed that cloud ... clouds could actually exert a small cooling effect as temperature ...
Mayr, Andreas; Schmid, Matthias; Pfahlberg, Annette; Uter, Wolfgang; Gefeller, Olaf
2017-06-01
Measurement errors of medico-technical devices can be separated into systematic bias and random error. We propose a new method to address both simultaneously via generalized additive models for location, scale and shape (GAMLSS) in combination with permutation tests. More precisely, we extend a recently proposed boosting algorithm for GAMLSS to provide a test procedure to analyse potential device effects on the measurements. We carried out a large-scale simulation study to provide empirical evidence that our method is able to identify possible sources of systematic bias as well as random error under different conditions. Finally, we apply our approach to compare measurements of skin pigmentation from two different devices in an epidemiological study.
Systematic Error Study for ALICE charged-jet v2 Measurement
Energy Technology Data Exchange (ETDEWEB)
Heinz, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soltz, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-07-18
We study the treatment of systematic errors in the determination of v_{2} for charged jets in √ sNN = 2:76 TeV Pb-Pb collisions by the ALICE Collaboration. Working with the reported values and errors for the 0-5% centrality data we evaluate the Χ^{2} according to the formulas given for the statistical and systematic errors, where the latter are separated into correlated and shape contributions. We reproduce both the Χ^{2} and p-values relative to a null (zero) result. We then re-cast the systematic errors into an equivalent co-variance matrix and obtain identical results, demonstrating that the two methods are equivalent.
Raban, Magdalena Z; Walter, Scott R; Douglas, Heather E; Strumpman, Dana; Mackenzie, John; Westbrook, Johanna I
2015-10-13
Interruptions and multitasking are frequent in clinical settings, and have been shown in the cognitive psychology literature to affect performance, increasing the risk of error. However, comparatively less is known about their impact on errors in clinical work. This study will assess the relationship between prescribing errors, interruptions and multitasking in an emergency department (ED) using direct observations and chart review. The study will be conducted in an ED of a 440-bed teaching hospital in Sydney, Australia. Doctors will be shadowed at proximity by observers for 2 h time intervals while they are working on day shift (between 0800 and 1800). Time stamped data on tasks, interruptions and multitasking will be recorded on a handheld computer using the validated Work Observation Method by Activity Timing (WOMBAT) tool. The prompts leading to interruptions and multitasking will also be recorded. When doctors prescribe medication, type of chart and chart sections written on, along with the patient's medical record number (MRN) will be recorded. A clinical pharmacist will access patient records and assess the medication orders for prescribing errors. The prescribing error rate will be calculated per prescribing task and is defined as the number of errors divided by the number of medication orders written during the prescribing task. The association between prescribing error rates, and rates of prompts, interruptions and multitasking will be assessed using statistical modelling. Ethics approval has been obtained from the hospital research ethics committee. Eligible doctors will be provided with written information sheets and written consent will be obtained if they agree to participate. Doctor details and MRNs will be kept separate from the data on prescribing errors, and will not appear in the final data set for analysis. Study results will be disseminated in publications and feedback to the ED. Published by the BMJ Publishing Group Limited. For permission
Handyside, Alan H.; Montag, Markus; Magli, M. Cristina; Repping, Sjoerd; Harper, Joyce; Schmutzler, Andreas; Vesela, Katerina; Gianaroli, Luca; Geraedts, Joep
2012-01-01
Chromosome aneuploidy is a major cause of pregnancy loss, abnormal pregnancy and live births following both natural conception and in vitro fertilisation (IVF) and increases exponentially with maternal age in the decade preceding the menopause. Molecular genetic analysis following natural conception
International Nuclear Information System (INIS)
Beenakker, W.; Martinez, M.; Pietrzyk, B.
1995-02-01
The precision of the calculation of Z-boson-exchange contributions to the luminosity measurements at LEP is studied for both the first and second generation of LEP luminosity detectors. It is shown that the theoretical errors associated with these contributions are sufficiently small so that the high-precision measurements at LEP, based on the second generation of luminosity detectors, are not limited. The same is true for the c.m.s.-energy-dependent theoretical errors of the Z line-shape formulae. (author) 19 refs.; 3 figs.; 7 tabs
International Nuclear Information System (INIS)
Li, Bin; Li, Feng; Liu, Hongqi; Cai, Hui; Mao, Xinyong; Peng, Fangyu
2014-01-01
This study presents a novel measurement strategy and an error-compensation model for the measurement of large-scale free-form surfaces in on-machine laser measurement systems. To improve the measurement accuracy, the effects of the scan depth, surface roughness, incident angle and azimuth angle on the measurement results were investigated experimentally, and a practical measurement strategy considering the position and orientation of the sensor is presented. Also, a semi-quantitative model based on geometrical optics is proposed to compensate for the measurement error associated with the incident angle. The normal vector of the measurement point is determined using a cross-curve method from the acquired surface data. Then, the azimuth angle and incident angle are calculated to inform the measurement strategy and error-compensation model, respectively. The measurement strategy and error-compensation model are verified through the measurement of a large propeller blade on a heavy machine tool in a factory environment. The results demonstrate that the strategy and the model are effective in increasing the measurement accuracy. (paper)
Coal Mine Accidents in Bangladesh: Its Causes and Remedial Measures
Directory of Open Access Journals (Sweden)
MD. MINHAJ UDDIN MONIR
2012-12-01
Full Text Available Barapukuria coal mine (BCM is located at Dinajpur district, NW Bangladesh. Total area is about 6.68 km2 and coal was encountered at a depth ranging between 118 and 509 m. Six major coal seams (seam I to seam VI were identified at BCM, of which, thickest one is the seam-VI (~36 m. The estimated coal reserves is about 390 million tons and of this, nearly 64 million tons of coal is extractable. The annual production of coal is about 1 million ton. In this study several parameters were used to explore minimization of accidents and improvement of coal production in BCM. Considering the geological, hydrological and other technical parameters, longwall mining method is applied for extraction of coal. Longwall retreating mining method is also applied for extraction of coal from single face with the operational area protected by self-advancing hydraulic powered roof support (HPRS system. These supports are moved forward causing the roof behind them to form an extensive abandoned area named goaf, which may lead to collapse with air blast. Coal in BCM is extracted from seam VI, using a multislice Longwall top coal caving method. Average ventilated air composition is ~20.94% oxygen, ~79.00% nitrogen, ~0.04% carbon monoxide, and minor water steam with huge dust. Production of coal was completed from 12 Longwall faces of 1st slice from seam VI. During production period several accidents and troubles within BCM have occurred. Poisonous gases such as carbon monoxide were detected during/after development of 1110 Longwall face, which increases up to 6000 ppm, therefore, sealed-off the face with mining equipments. During the development of belt gate roadway of 1101 Longwall face, maximum temperature and humidity increases up to 37 oC and 100%, respectively. Miners of BCM experienced some difficulties to work in that adverse environment. Air return roadway temperature was always 40 to 41oC in 1101 Longwall face during production period, faces temperature 46o
Directory of Open Access Journals (Sweden)
Greg A. Breed
2015-08-01
Full Text Available Consumer-grade GPS units are a staple of modern field ecology, but the relatively large error radii reported by manufacturers (up to 10 m ostensibly precludes their utility in measuring fine-scale movement of small animals such as insects. Here we demonstrate that for data collected at fine spatio-temporal scales, these devices can produce exceptionally accurate data on step-length and movement patterns of small animals. With an understanding of the properties of GPS error and how it arises, it is possible, using a simple field protocol, to use consumer grade GPS units to collect step-length data for the movement of small animals that introduces a median error as small as 11 cm. These small error rates were measured in controlled observations of real butterfly movement. Similar conclusions were reached using a ground-truth test track prepared with a field tape and compass and subsequently measured 20 times using the same methodology as the butterfly tracking. Median error in the ground-truth track was slightly higher than the field data, mostly between 20 and 30 cm, but even for the smallest ground-truth step (70 cm, this is still a signal-to-noise ratio of 3:1, and for steps of 3 m or more, the ratio is greater than 10:1. Such small errors relative to the movements being measured make these inexpensive units useful for measuring insect and other small animal movements on small to intermediate scales with budgets orders of magnitude lower than survey-grade units used in past studies. As an additional advantage, these units are simpler to operate, and insect or other small animal trackways can be collected more quickly than either survey-grade units or more traditional ruler/gird approaches.
Climate change: Causes, effects and mitigation measures- A review ...
African Journals Online (AJOL)
Global Journal of Pure and Applied Sciences ... far more than at any time in the last 650,000 years resulting in climate change or global warming. Both natural and human causes of climate change including the earth's orbital changes, ... food production, loss of biodiversity, food insecurity, decreased animal health et cetera.
Response of residential electricity demand to price: The effect of measurement error
International Nuclear Information System (INIS)
Alberini, Anna; Filippini, Massimo
2011-01-01
In this paper we present an empirical analysis of the residential demand for electricity using annual aggregate data at the state level for 48 US states from 1995 to 2007. Earlier literature has examined residential energy consumption at the state level using annual or monthly data, focusing on the variation in price elasticities of demand across states or regions, but has failed to recognize or address two major issues. The first is that, when fitting dynamic panel models, the lagged consumption term in the right-hand side of the demand equation is endogenous. This has resulted in potentially inconsistent estimates of the long-run price elasticity of demand. The second is that energy price is likely mismeasured. To address these issues, we estimate a dynamic partial adjustment model using the Kiviet corrected Least Square Dummy Variables (LSDV) (1995) and the Blundell-Bond (1998) estimators. We find that the long-term elasticities produced by the Blundell-Bond system GMM methods are largest, and that from the bias-corrected LSDV are greater than that from the conventional LSDV. From an energy policy point of view, the results obtained using the Blundell-Bond estimator where we instrument for price imply that a carbon tax or other price-based policy may be effective in discouraging residential electricity consumption and hence curbing greenhouse gas emissions in an electricity system mainly based on coal and gas power plants. - Research Highlights: → Updated information on price elasticities for the US energy policy. → Taking into account measurement error in the price variable increase price elasticity. → Room for discouraging residential electricity consumption using price increases.
Response of residential electricity demand to price: The effect of measurement error
Energy Technology Data Exchange (ETDEWEB)
Alberini, Anna [Department of Agricultural Economics, University of Maryland (United States); Centre for Energy Policy and Economics (CEPE), ETH Zurich (Switzerland); Gibson Institute and Institute for a Sustainable World, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom); Filippini, Massimo, E-mail: mfilippini@ethz.ch [Centre for Energy Policy and Economics (CEPE), ETH Zurich (Switzerland); Department of Economics, University of Lugano (Switzerland)
2011-09-15
In this paper we present an empirical analysis of the residential demand for electricity using annual aggregate data at the state level for 48 US states from 1995 to 2007. Earlier literature has examined residential energy consumption at the state level using annual or monthly data, focusing on the variation in price elasticities of demand across states or regions, but has failed to recognize or address two major issues. The first is that, when fitting dynamic panel models, the lagged consumption term in the right-hand side of the demand equation is endogenous. This has resulted in potentially inconsistent estimates of the long-run price elasticity of demand. The second is that energy price is likely mismeasured. To address these issues, we estimate a dynamic partial adjustment model using the Kiviet corrected Least Square Dummy Variables (LSDV) (1995) and the Blundell-Bond (1998) estimators. We find that the long-term elasticities produced by the Blundell-Bond system GMM methods are largest, and that from the bias-corrected LSDV are greater than that from the conventional LSDV. From an energy policy point of view, the results obtained using the Blundell-Bond estimator where we instrument for price imply that a carbon tax or other price-based policy may be effective in discouraging residential electricity consumption and hence curbing greenhouse gas emissions in an electricity system mainly based on coal and gas power plants. - Research Highlights: > Updated information on price elasticities for the US energy policy. > Taking into account measurement error in the price variable increase price elasticity. > Room for discouraging residential electricity consumption using price increases.
International Nuclear Information System (INIS)
Winterflood, A.H.
1980-01-01
In discussing Einstein's Special Relativity theory it is claimed that it violates the principle of relativity itself and that an anomalous sign in the mathematics is found in the factor which transforms one inertial observer's measurements into those of another inertial observer. The apparent source of this error is discussed. Having corrected the error a new theory, called Observational Kinematics, is introduced to replace Einstein's Special Relativity. (U.K.)
Zhang, Jiyang; Ma, Jie; Dou, Lei; Wu, Songfeng; Qian, Xiaohong; Xie, Hongwei; Zhu, Yunping; He, Fuchu
2009-02-01
The hybrid linear trap quadrupole Fourier-transform (LTQ-FT) ion cyclotron resonance mass spectrometer, an instrument with high accuracy and resolution, is widely used in the identification and quantification of peptides and proteins. However, time-dependent errors in the system may lead to deterioration of the accuracy of these instruments, negatively influencing the determination of the mass error tolerance (MET) in database searches. Here, a comprehensive discussion of LTQ/FT precursor ion mass error is provided. On the basis of an investigation of the mass error distribution, we propose an improved recalibration formula and introduce a new tool, FTDR (Fourier-transform data recalibration), that employs a graphic user interface (GUI) for automatic calibration. It was found that the calibration could adjust the mass error distribution to more closely approximate a normal distribution and reduce the standard deviation (SD). Consequently, we present a new strategy, LDSF (Large MET database search and small MET filtration), for database search MET specification and validation of database search results. As the name implies, a large-MET database search is conducted and the search results are then filtered using the statistical MET estimated from high-confidence results. By applying this strategy to a standard protein data set and a complex data set, we demonstrate the LDSF can significantly improve the sensitivity of the result validation procedure.
Fitting a Bivariate Measurement Error Model for Episodically Consumed Dietary Components
Zhang, Saijuan
2011-01-06
There has been great public health interest in estimating usual, i.e., long-term average, intake of episodically consumed dietary components that are not consumed daily by everyone, e