WorldWideScience

Sample records for measured vertical profiles

  1. A measurement system for vertical seawater profiles close to the air-sea interface

    Science.gov (United States)

    Sims, Richard P.; Schuster, Ute; Watson, Andrew J.; Yang, Ming Xi; Hopkins, Frances E.; Stephens, John; Bell, Thomas G.

    2017-09-01

    This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s-1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.

  2. A measurement system for vertical seawater profiles close to the air–sea interface

    Directory of Open Access Journals (Sweden)

    R. P. Sims

    2017-09-01

    Full Text Available This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s−1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.

  3. Vertical grid of retrieved atmospheric profiles

    International Nuclear Information System (INIS)

    Ceccherini, Simone; Carli, Bruno; Raspollini, Piera

    2016-01-01

    The choice of the vertical grid of atmospheric profiles retrieved from remote sensing observations is discussed considering the two cases of profiles used to represent the results of individual measurements and of profiles used for subsequent data fusion applications. An ozone measurement of the MIPAS instrument is used to assess, for different vertical grids, the quality of the retrieved profiles in terms of profile values, retrieval errors, vertical resolutions and number of degrees of freedom. In the case of individual retrievals no evident advantage is obtained with the use of a grid finer than the one with a reduced number of grid points, which are optimized according to the information content of the observations. Nevertheless, this instrument dependent vertical grid, which seems to extract all the available information, provides very poor results when used for data fusion applications. A loss of about a quarter of the degrees of freedom is observed when the data fusion is made using the instrument dependent vertical grid relative to the data fusion made using a vertical grid optimized for the data fusion product. This result is explained by the analysis of the eigenvalues of the Fisher information matrix and leads to the conclusion that different vertical grids must be adopted when data fusion is the expected application. - Highlights: • Data fusion application is taken into account for the choice of the vertical grid. • The study is performed using ozone profiles retrieved from MIPAS measurements. • A very fine vertical grid is not needed for the analysis of a single instrument. • The instrument dependent vertical grid is not the best choice for data fusion. • A data fusion dependent vertical grid must be used for profiles that will be fused.

  4. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    Science.gov (United States)

    Raut, J.-C.; Chazette, P.

    2008-02-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  5. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    Science.gov (United States)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  6. Employing Beam-Gas Interaction Vertices for Transverse Profile Measurements

    CERN Document Server

    Rihl, Mariana; Baglin, Vincent; Barschel, Colin; Bay, Aurelio; Blanc, Frederic; Bravin, Enrico; Bregliozzi, Giuseppe; Chritin, Nicolas; Dehning, Bernd; Ferro-Luzzi, Massimiliano; Gaspar, Clara; Gianì, Sebastiana; Giovannozzi, Massimo; Greim, Roman; Haefeli, Guido; Hopchev, Plamen; Jacobsson, Richard; Jensen, Lars; Jones, Owain Rhodri; Jurado, Nicolas; Kain, Verena; Karpinski, Waclaw; Kirn, Thomas; Kuhn, Maria; Luthi, Berengere; Magagnin, Paolo; Matev, Rosen; Nakada, Tatsuya; Neufeld, Niko; Panman, Jaap; Rakotomiaramanana, Barinjaka; Salustino Guimaraes, Valdir; Salvant, Benoit; Schael, Stefan; Schneider, Olivier; Schwering, Georg; Tobin, Mark; Veness, Raymond; Veyrat, Quentin; Vlachos, Sotiris; Wlochal, Michael; Xu, Zhirui; von Dratzig, Arndt

    2016-01-01

    Interactions of high-energy beam particles with residual gas offer a unique opportunity to measure the beam profile in a non-intrusive fashion. Such a method was successfully pioneered* at the LHCb experiment using a silicon microstrip vertex detector. During the recent Large Hadron Collider shutdown at CERN, a demonstrator Beam-Gas Vertexing system based on eight scintillating-fibre modules was designed**, constructed and installed on Ring 2 to be operated as a pure beam diagnostics device. The detector signals are read out and collected with LHCb-type front-end electronics and a DAQ system consisting of a CPU farm. Tracks and vertices will be reconstructed to obtain a beam profile in real time. Here, first commissioning results are reported. The advantages and potential for future applications of this technique are discussed.

  7. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    Science.gov (United States)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  8. Time changes of vertical profile of neutron fluence rate in LVR-15 reactor

    International Nuclear Information System (INIS)

    Viererbl, L.; Stehno, J.; Erben, O.; Lahodova, Z.; Marek, M.

    2003-01-01

    The LVR-15 reactor is a light water research type reactor, which is situated, in Nuclear Research Institute, Rez near Prague. The reactor is used as a multipurpose facility. For some experiments and material productions, e.g. for homogeneity of silicon resistance in production of radiation doped silicon, the time changes of vertical profile of neutron fluence rate are particularly important. The assembly used for silicon irradiation has two self-powered neutron detectors installed in a vertical irradiation channel in LVR-15 reactor. Vertical profile of thermal neutron fluence rate was automatically scanned during reactor operation. The results of measurements made in 2002 and 2003 with these detectors are presented. A set of vertical profile measurements was made during two 21-days reactor cycles. During the cycle the vertical profile slightly changes both in the position of its maximum and in the shape. The time dependences of the position of profile maximum and the profile width at half maximum during the cycle are given. (author)

  9. Vertical profiles of BC direct radiative effect over Italy: high vertical resolution data and atmospheric feedbacks

    Science.gov (United States)

    Močnik, Griša; Ferrero, Luca; Castelli, Mariapina; Ferrini, Barbara S.; Moscatelli, Marco; Grazia Perrone, Maria; Sangiorgi, Giorgia; Rovelli, Grazia; D'Angelo, Luca; Moroni, Beatrice; Scardazza, Francesco; Bolzacchini, Ezio; Petitta, Marcello; Cappelletti, David

    2016-04-01

    Black carbon (BC), and its vertical distribution, affects the climate. Global measurements of BC vertical profiles are lacking to support climate change research. To fill this gap, a campaign was conducted over three Italian basin valleys, Terni Valley (Appennines), Po Valley and Passiria Valley (Alps), to characterize the impact of BC on the radiative budget under similar orographic conditions. 120 vertical profiles were measured in winter 2010. The BC vertical profiles, together with aerosol size distribution, aerosol chemistry and meteorological parameters, have been determined using a tethered balloon-based platform equipped with: a micro-Aethalometer AE51 (Magee Scientific), a 1.107 Grimm OPC (0.25-32 μm, 31 size classes), a cascade impactor (Siuotas SKC), and a meteorological station (LSI-Lastem). The aerosol chemical composition was determined from collected PM2.5 samples. The aerosol absorption along the vertical profiles was measured and optical properties calculated using the Mie theory applied to the aerosol size distribution. The aerosol optical properties were validated with AERONET data and then used as inputs to the radiative transfer model libRadtran. Vertical profiles of the aerosol direct radiative effect, the related atmospheric absorption and the heating rate were calculated. Vertical profile measurements revealed some common behaviors over the studied basin valleys. From below the mixing height to above it, a marked concentration drop was found for both BC (from -48.4±5.3% up to -69.1±5.5%) and aerosol number concentration (from -23.9±4.3% up to -46.5±7.3%). These features reflected on the optical properties of the aerosol. Absorption and scattering coefficients decreased from below the MH to above it (babs from -47.6±2.5% up to -71.3±3.0% and bsca from -23.5±0.8% up to -61.2±3.1%, respectively). Consequently, the Single Scattering Albedo increased above the MH (from +4.9±2.2% to +7.4±1.0%). The highest aerosol absorption was

  10. Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon.

    Science.gov (United States)

    Kuuluvainen, Heino; Poikkimäki, Mikko; Järvinen, Anssi; Kuula, Joel; Irjala, Matti; Dal Maso, Miikka; Keskinen, Jorma; Timonen, Hilkka; Niemi, Jarkko V; Rönkkö, Topi

    2018-05-23

    The vertical profiles of lung deposited surface area (LDSA) concentration were measured in an urban street canyon in Helsinki, Finland, by using an unmanned aerial system (UAS) as a moving measurement platform. The street canyon can be classified as an avenue canyon with an aspect ratio of 0.45 and the UAS was a multirotor drone especially modified for emission measurements. In the experiments of this study, the drone was equipped with a small diffusion charge sensor capable of measuring the alveolar LDSA concentration of particles. The drone measurements were conducted during two days on the same spatial location at the kerbside of the street canyon by flying vertically from the ground level up to an altitude of 50 m clearly above the rooftop level (19 m) of the nearest buildings. The drone data were supported by simultaneous measurements and by a two-week period of measurements at nearby locations with various instruments. The results showed that the averaged LDSA concentrations decreased approximately from 60 μm 2 /cm 3 measured close to the ground level to 36-40 μm 2 /cm 3 measured close to the rooftop level of the street canyon, and further to 16-26 μm 2 /cm 3 measured at 50 m. The high-resolution measurement data enabled an accurate analysis of the functional form of vertical profiles both in the street canyon and above the rooftop level. In both of these regions, exponential fits were used and the parameters obtained from the fits were thoroughly compared to the values found in literature. The results of this study indicated that the role of turbulent mixing caused by traffic was emphasized compared to the street canyon vortex as a driving force of the dispersion. In addition, the vertical profiles above the rooftop level showed a similar exponential decay compared to the profiles measured inside the street canyon. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Tropospheric mercury vertical profiles between 500 and 10 000 m in central Europe

    Directory of Open Access Journals (Sweden)

    A. Weigelt

    2016-03-01

    Full Text Available The knowledge of the vertical distribution of atmospheric mercury (Hg plays an important role in determining the transport and cycling of mercury. However, measurements of the vertical distribution are rare, because airborne measurements are expensive and labour intensive. Consequently, only a few vertical Hg profile measurements have been reported since the 1970s. Besides the Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC observations, the latest vertical profile over Europe was measured in 1996. Within the Global Mercury Observation System (GMOS project, four vertical profiles were taken on board research aircraft (CASA-212 in August 2013 in background air over different locations in Slovenia and Germany. Each vertical profile consists of at least seven 5 min horizontal flight sections from 500 m above ground to 3000 m a.s.l. Gaseous elemental mercury (GEM and total gaseous mercury (TGM were measured with Tekran 2537X and Tekran 2537B analysers. In addition to the mercury measurements, SO2, CO, O3, NO, and NO2, basic meteorological parameters (pressure, temperature, relative humidity have been measured. Additional ground-based mercury measurements at the GMOS master site in Waldhof, Germany and measurements onboard the CARIBIC passenger aircraft were used to extend the profile to the ground and upper troposphere respectively. No vertical gradient was found inside the well-mixed boundary layer (variation of less than 0.1 ng m−3 at different sites, with GEM varying from location to location between 1.4 and 1.6 ng m−3 (standard temperature and pressure, STP: T  =  273.15 K, p  =  1013.25 hPa. At all locations GEM dropped to 1.3 ng m−3 (STP when entering the free troposphere and remained constant at higher altitudes. The combination of the vertical profile, measured on 21 August 2013 over Leipzig, Germany, with the CARIBIC measurements during ascent and descent to

  12. Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements

    Directory of Open Access Journals (Sweden)

    P. J. Sheridan

    2012-12-01

    Full Text Available Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1 measure the in situ aerosol properties and determine their vertical and temporal variability and (2 relate these aircraft measurements to concurrent surface and satellite measurements. The primary profile location was within 15 km of the NOAA/ESRL surface aerosol monitoring station near Bondville, Illinois. Identical instruments at the surface and on the aircraft ensured that the data from both platforms would be directly comparable and permitted a determination of how representative surface aerosol properties were of the lower column. Aircraft profiles were also conducted occasionally at two other nearby locations to increase the frequency of A-Train satellite underflights for the purpose of comparing in situ and satellite-retrieved aerosol data. Measurements of aerosol properties conducted at low relative humidity over the Bondville site compare well with the analogous surface aerosol data and do not indicate any major sampling issues or that the aerosol is radically different at the surface compared with the lowest flyby altitude of ~ 240 m above ground level. Statistical analyses of the in situ vertical profile data indicate that aerosol light scattering and absorption (related to aerosol amount decreases substantially with increasing altitude. Parameters related to the nature of the aerosol (e.g., single-scattering albedo, Ångström exponent, etc., however, are relatively constant throughout the mixed layer, and do not vary as much as the aerosol amount throughout the profile. While individual profiles often showed more variability, the median in situ single-scattering albedo was 0.93–0.95 for all sampled altitudes. Several parameters (e.g., submicrometer scattering fraction, hemispheric backscattering fraction, and

  13. The Design of Ocean Turbulence Measurement with a Free Fall Vertical Profiler

    Science.gov (United States)

    Luan, Xin; Xin, Jia; Zhu, Tieyi; Yang, Hua; Teng, Yuru; Song, Dalei

    2018-03-01

    The newly designed instrument Free Fall Vertical Profiler (FFVP) developed by Ocean University of China (OUC) had been deployed in the Western Pacific in March 08, 2017 and succeed to collect turbulence signals about 350-m-deep water. According to the requirements of turbulence measurement, the mechanical design was developed for turbulence platform to achieve stability and good flow tracking. By analysing the Heading, Pitch and Roll, the results suggested that the platform satisfies the requirements of stability. The power spectrum of the cleaned shear signals using the noise correction algorithm match well with the theoretical Nasmyth spectrum and the rate of turbulence dissipation are approximately 10-8 W/kg. In general, the FFVP was rationally designed and provided a good measurement platform for turbulence observation.

  14. Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Newman, Jennifer

    2017-02-24

    Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in wind profiling aimed at reducing uncertainty and increasing data availability are introduced.

  15. Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon

    International Nuclear Information System (INIS)

    Colls, J.J.; Micallef, A.

    1999-01-01

    Concentrations and vertical profiles of various fractions of airborne particulate matter (suspended particulate matter (SPM), PM 10 and PM 2.5 ) have been measured over the first three metres from ground in a street canyon. Measurements were carried out using automated near real-time apparatus called the Kinetic Sequential Sampling (KSS) system. KSS system is essentially an electronically-controlled lift carrying a real-time particle monitor for sampling air sequentially, at different heights within the breathing zone, which includes all heights within the surface layer of a street canyon at which people may breathe. Data is automatically logged at the different receptor levels, for the determination of the average vertical concentration profile of airborne particulate matter. For measuring the airborne particle concentration, a Grimm Dust Monitor 1.104/5 was used. The recorded data also allows for time series analysis of airborne particulate matter concentration at different heights. Time series data and hourly-average vertical concentration profiles in the boundary layer of the confines of a street are thought to be mainly determined by traffic emissions and traffic associated processes. Hence the measured data were compared with results of a street canyon emission-dispersion model in time and space. This Street Level Air Quality (SLAQ) model employs the plume-box technique and includes modules for simulating vehicle-generated effects such as thermally- and mechanically-generated turbulence and resuspension of road dust. Environmental processes, such as turbulence resulting from surface sensible heat and the formation of sulphate aerosol from sulphur dioxide exhaust emissions, are taken into account. The paper presents an outline description of the measuring technique and model used, and a comparison of the measured and modelled data

  16. CAMEX-3 AIRBORNE VERTICAL ATMOSPHERE PROFILING SYSTEM (AVAPS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-3 DC-8 Airborne Vertical Atmosphere Profiling System (AVAPS) uses dropwindsonde and Global Positioning System (GPS) receivers to measure the atmospheric...

  17. Estimating tropical vertical motion profile shapes from satellite observations

    Science.gov (United States)

    Back, L. E.; Handlos, Z.

    2013-12-01

    The vertical structure of tropical deep convection strongly influences interactions with larger scale circulations and climate. This research focuses on investigating this vertical structure and its relationship with mesoscale tropical weather states. We test the hypothesis that vertical motion shape varies in association with weather state type. We estimate mean state vertical motion profile shapes for six tropical weather states defined using cloud top pressure and optical depth properties from the International Satellite Cloud Climatology Project. The relationship between vertical motion and the dry static energy budget are utilized to set up a regression analysis that empirically determines two modes of variability in vertical motion from reanalysis data. We use these empirically determined modes, this relationship and surface convergence to estimate vertical motion profile shape from observations of satellite retrievals of rainfall and surface convergence. We find that vertical motion profile shapes vary systematically between different tropical weather states. The "isolated systems" regime exhibits a more ''bottom-heavy'' profile shape compared to the convective/thick cirrus and vigorous deep convective regimes, with maximum upward vertical motion occurring in the lower troposphere rather than the middle to upper troposphere. The variability we observe with our method does not coincide with that expected based on conventional ideas about how stratiform rain fraction and vertical motion are related.

  18. Investigating Methods for Serving Visualizations of Vertical Profiles

    Science.gov (United States)

    Roberts, J. T.; Cechini, M. F.; Lanjewar, K.; Rodriguez, J.; Boller, R. A.; Baynes, K.

    2017-12-01

    Several geospatial web servers, web service standards, and mapping clients exist for the visualization of two-dimensional raster and vector-based Earth science data products. However, data products with a vertical component (i.e., vertical profiles) do not have the same mature set of technologies and pose a greater technical challenge when it comes to visualizations. There are a variety of tools and proposed standards, but no obvious solution that can handle the variety of visualizations found with vertical profiles. An effort is being led by members of the NASA Global Imagery Browse Services (GIBS) team to gather a list of technologies relevant to existing vertical profile data products and user stories. The goal is to find a subset of technologies, standards, and tools that can be used to build publicly accessible web services that can handle the greatest number of use cases for the widest audience possible. This presentation will describe results of the investigation and offer directions for moving forward with building a system that is capable of effectively and efficiently serving visualizations of vertical profiles.

  19. Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain

    Science.gov (United States)

    Ran, Liang; Deng, Zhaoze; Xu, Xiaobin; Yan, Peng; Lin, Weili; Wang, Ying; Tian, Ping; Wang, Pucai; Pan, Weilin; Lu, Daren

    2016-08-01

    Black carbon (BC) is a dominant absorber in the visible spectrum and a potent factor in climatic effects. Vertical profiles of BC were measured using a micro-aethalometer attached to a tethered balloon during the Vertical Observations of trace Gases and Aerosols (VOGA) field campaign, in summer 2014 at a semirural site in the North China Plain (NCP). The diurnal cycle of BC vertical distributions following the evolution of the mixing layer (ML) was investigated for the first time in the NCP region. Statistical parameters including identified mixing height (Hm) and average BC mass concentrations within the ML (Cm) and in the free troposphere (Cf) were obtained for a selected dataset of 67 vertical profiles. Hm was usually lower than 0.2 km in the early morning and rapidly rose thereafter due to strengthened turbulence. The maximum height of the ML was reached in the late afternoon. The top of a full developed ML exceeded 1 km on sunny days in summer, while it stayed much lower on cloudy days. The sunset triggered the collapse of the ML, and a stable nocturnal boundary layer (NBL) gradually formed. Accordingly, the highest level Cm was found in the early morning and the lowest was found in the afternoon. In the daytime, BC was almost uniformly distributed within the ML and significantly decreased above the ML. During the field campaign, Cm averaged about 5.16 ± 2.49 µg m-3, with a range of 1.12 to 14.49 µg m-3, comparable with observational results in many polluted urban areas such as Milan in Italy and Shanghai in China. As evening approached, BC gradually built up near the surface and exponentially declined with height. In contrast to the large variability found both in Hm and Cm, Cf stayed relatively unaffected through the day. Cf was less than 10 % of the ground level under clean conditions, while it amounted to half of the ground level in some polluted cases. In situ measurements of BC vertical profiles would hopefully have an important implication for

  20. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    Directory of Open Access Journals (Sweden)

    Luan Pan

    2014-07-01

    Full Text Available Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.

  1. Comparison of the inversion algorithms applied to the ozone vertical profile retrieval from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Rozanov

    2007-09-01

    Full Text Available This paper is devoted to an intercomparison of ozone vertical profiles retrieved from the measurements of scattered solar radiation performed by the SCIAMACHY instrument in the limb viewing geometry. Three different inversion algorithms including the prototype of the operational Level 1 to 2 processor to be operated by the European Space Agency are considered. Unlike usual validation studies, this comparison removes the uncertainties arising when comparing measurements made by different instruments probing slightly different air masses and focuses on the uncertainties specific to the modeling-retrieval problem only. The intercomparison was performed for 5 selected orbits of SCIAMACHY showing a good overall agreement of the results in the middle stratosphere, whereas considerable discrepancies were identified in the lower stratosphere and upper troposphere altitude region. Additionally, comparisons with ground-based lidar measurements are shown for selected profiles demonstrating an overall correctness of the retrievals.

  2. Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain

    Directory of Open Access Journals (Sweden)

    L. Ran

    2016-08-01

    Full Text Available Black carbon (BC is a dominant absorber in the visible spectrum and a potent factor in climatic effects. Vertical profiles of BC were measured using a micro-aethalometer attached to a tethered balloon during the Vertical Observations of trace Gases and Aerosols (VOGA field campaign, in summer 2014 at a semirural site in the North China Plain (NCP. The diurnal cycle of BC vertical distributions following the evolution of the mixing layer (ML was investigated for the first time in the NCP region. Statistical parameters including identified mixing height (Hm and average BC mass concentrations within the ML (Cm and in the free troposphere (Cf were obtained for a selected dataset of 67 vertical profiles. Hm was usually lower than 0.2 km in the early morning and rapidly rose thereafter due to strengthened turbulence. The maximum height of the ML was reached in the late afternoon. The top of a full developed ML exceeded 1 km on sunny days in summer, while it stayed much lower on cloudy  days. The sunset triggered the collapse of the ML, and a stable nocturnal boundary layer (NBL gradually formed. Accordingly, the highest level Cm was found in the early morning and the lowest was found in the afternoon. In the daytime, BC was almost uniformly distributed within the ML and significantly decreased above the ML. During the field campaign, Cm averaged about 5.16 ± 2.49 µg m−3, with a range of 1.12 to 14.49 µg m−3, comparable with observational results in many polluted urban areas such as Milan in Italy and Shanghai in China. As evening approached, BC gradually built up near the surface and exponentially declined with height. In contrast to the large variability found both in Hm and Cm, Cf stayed relatively unaffected through the day. Cf was less than 10 % of the ground level under clean conditions, while it amounted to half of the ground level in some polluted cases. In situ measurements of BC vertical profiles would hopefully

  3. Ground-based lidar and microwave radiometry synergy for high vertical resolution absolute humidity profiling

    Science.gov (United States)

    Barrera-Verdejo, María; Crewell, Susanne; Löhnert, Ulrich; Orlandi, Emiliano; Di Girolamo, Paolo

    2016-08-01

    Continuous monitoring of atmospheric humidity profiles is important for many applications, e.g., assessment of atmospheric stability and cloud formation. Nowadays there are a wide variety of ground-based sensors for atmospheric humidity profiling. Unfortunately there is no single instrument able to provide a measurement with complete vertical coverage, high vertical and temporal resolution and good performance under all weather conditions, simultaneously. For example, Raman lidar (RL) measurements can provide water vapor with a high vertical resolution, albeit with limited vertical coverage, due to sunlight contamination and the presence of clouds. Microwave radiometers (MWRs) receive water vapor information throughout the troposphere, though their vertical resolution is poor. In this work, we present an MWR and RL system synergy, which aims to overcome the specific sensor limitations. The retrieval algorithm combining these two instruments is an optimal estimation method (OEM), which allows for an uncertainty analysis of the retrieved profiles. The OEM combines measurements and a priori information, taking the uncertainty of both into account. The measurement vector consists of a set of MWR brightness temperatures and RL water vapor profiles. The method is applied to a 2-month field campaign around Jülich (Germany), focusing on clear sky periods. Different experiments are performed to analyze the improvements achieved via the synergy compared to the individual retrievals. When applying the combined retrieval, on average the theoretically determined absolute humidity uncertainty is reduced above the last usable lidar range by a factor of ˜ 2 with respect to the case where only RL measurements are used. The analysis in terms of degrees of freedom per signal reveal that most information is gained above the usable lidar range, especially important during daytime when the lidar vertical coverage is limited. The retrieved profiles are further evaluated using

  4. Vertical profile of aerosols in the Himalayan region using an ultralight aircraft platform

    Science.gov (United States)

    Singh, A.; Mahata, K.; Rupakheti, M.; Lawrence, M. G.; Junkermann, W.

    2017-12-01

    Indo-gangetic plain (IGP) and Himalayan foothills have large spatial and temporal heterogeneity in aerosols characteristics. Regional meteorology around 850-500 mb plays an important role in the transformation and transportation of aerosols from west Asia to IGP, into Himalayan foothill, as well to high-altitude region of the Himalayas. In order to quantify the vertical and horizontal variation of aerosol properties in the Himalayan , an airborne campaign was carried out in the Pokhara Valley/Nepal (83°50'-84°10' E, 25°7'-28°15' N, 815 masl ) in two phases: test flights during May 2016 and an intensive airborne sampling flight in December-January 2017. This paper provides an overview of airborne measurement campaign from the first phase of measurements in May 2016. A two-seater microlight aircraft (IKARUS C 42) was used as the aerial platform. This was deemed the feasible option in Nepal for an aerial campaign; technical specification of the aircraft include an approximately 6 hrs of flying time, short-take off run, > 100 kgs of payload, suitable for spiral upward and downward profiling. The instrument package consist of GRIMM 1.108 for particle size distribution from 0.3 to 20 um at 6 seconds time resolution, and TSI CPC 3375 for total ultrafine particle (UFP) concentration at 1 s. The package also includes a Magee Scientific Aethalometer (AE42) for aerosol absorption at seven different wavelengths. Meteorological parameters include temperature and dew point at a sampling rate of 1 Hz or higher. The paper provides a snapshot of observed vertical profile (from 800 to 4500masl) of aerosols size, number and black carbon over one of populated mountain valley in Nepal during the pre-monsoon season. During the airborne measurement, local fires- mostly agriculture burn were observed, however no large scale forest fire was captured. Sharp morning and afternoon gradients were observed in the vertical profile for aerosol number and size, mostly dominated by 2000 masl

  5. Airborne Vertical Profiling of Mercury Speciation near Tullahoma, TN, USA

    Directory of Open Access Journals (Sweden)

    Steve Brooks

    2014-08-01

    Full Text Available Atmospheric transport and in situ oxidation are important factors influencing mercury concentrations at the surface and wet and dry deposition rates. Contributions of both natural and anthropogenic processes can significantly impact burdens of mercury on local, regional and global scales. To address these key issues in atmospheric mercury research, airborne measurements of mercury speciation and ancillary parameters were conducted over a region near Tullahoma, Tennessee, USA, from August 2012 to June 2013. Here, for the first time, we present vertical profiles of Hg speciation from aircraft for an annual cycle over the same location. These airborne measurements included gaseous elemental mercury (GEM, gaseous oxidized mercury (GOM and particulate bound mercury (PBM, as well as ozone (O3, sulfur dioxide (SO2, condensation nuclei (CN and meteorological parameters. The flights, each lasting ~3 h, were conducted typically one week out of each month to characterize seasonality in mercury concentrations. Data obtained from 0 to 6 km altitudes show that GEM exhibited a relatively constant vertical profile for all seasons with an average concentration of 1.38 ± 0.17 ng∙m−3. A pronounced seasonality of GOM was observed, with the highest GOM concentrations up to 120 pg∙m−3 in the summer flights and lowest (0–20 pg∙m−3 in the winter flights. Vertical profiles of GOM show the maximum levels at altitudes between 2 and 4 km. Limited PBM measurements exhibit similar levels to GOM at all altitudes. HYSPLIT back trajectories showed that the trajectories for elevated GOM (>70 pg∙m−3 or PBM concentrations (>30 pg∙m−3 were largely associated with air masses coming from west/northwest, while events with low GOM (<20 pg∙m−3 or PBM concentrations (<5 pg∙m−3 were generally associated with winds from a wider range of wind directions. This is the first set of speciated mercury vertical profiles collected in a single location over the course

  6. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Kwon Ho Lee

    2009-06-01

    Full Text Available The use of Geographic Information Systems (GIS and Remote Sensing (RS by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  7. Vertical profile of fog microphysics : a case study

    Science.gov (United States)

    Burnet, Frédéric; Brilouet, Pierre-Etienne; Mazoyer, Marie; Bourrianne, Thierry; Etcheberry, Jean-Michel; Gaillard, Brigitte; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Barrau, Sébastien; Defoy, Stephan

    2016-04-01

    The occurrence and development of fogs result from the non-linear interaction of competing radiative, thermodynamic, microphysical and dynamical processes and the forecasting of their life cycle still remains a challenging issue. Several field campaigns have been carried out at the SIRTA observatory in the Paris suburb area (France). These experiments have shown that fog events exhibit large differences of the microphysical properties and various evolutions during their life cycle. To better understand relationships between the different processes and to validate numerical simulations it is necessary however to document the vertical profile of the fog microphysics. A CDP (Cloud Droplet Spectrometer) from DMT (Droplet Measurement Technology, Boulder, CO) has been modified to allow measurements of the droplet size distribution in fog layers with a tethered balloon. This instrumental set-up has been used during a field campaign during the winter 2013-214 in the Landes area in the South West of France. To validate the vertical profiles provided by the modified CDP, a mast was equipped with microphysical instruments at 2 altitude levels with an another CDP at 24 m and a Fog Monitor FM100 at 42 m. The instrumental set-up deployed during this campaign is presented. Data collected during a fog event that occurred during the night of 5-6 March 2014 are analysed. We show that microphysical properties such as droplet number concentration, LWC and mean droplet size, exhibit different time evolution during the fog life cycle depending on the altitude level. Droplet size distribution measurements are also investigated. They reveal sharp variations along the vertical close to the top of the fog layer. In addition it is shown that the shape of the size distributions at the top follows a time evolution typical of a quasi-adiabatic droplet growth.

  8. Field evaluation of a direct push deployed sensor probe for vertical soil water content profiling

    Science.gov (United States)

    Vienken, Thomas; Reboulet, Ed; Leven, Carsten; Kreck, Manuel; Zschornack, Ludwig; Dietrich, Peter

    2015-04-01

    Reliable high-resolution information about vertical variations in soil water content, i.e. total porosity in the saturated zone, is essential for flow and transport predictions within the subsurface. However, porosity measurements are often associated with high efforts and high uncertainties, e.g. caused by soil disturbance during sampling or sensor installation procedures. In hydrogeological practice, commonly applied tools for the investigation of vertical soil water content distribution include gravimetric laboratory analyses of soil samples and neutron probe measurements. A yet less well established technique is the use of direct push-deployed sensor probes. Each of these methods is associated with inherent advantages and limitations due to their underlying measurement principles and operation modes. The presented study describes results of a joint field evaluation of the individual methods under different depositional and hydrogeological conditions with special focus on the performance on the direct push-deployed water content profiler. Therefore, direct push-profiling results from three different test sites are compared with results obtained from gravimetric analysis of soil cores and neutron probe measurements. In direct comparison, the applied direct push-based sensor probe proved to be a suitable alternative for vertical soil water content profiling to neutron probe technology, and, in addition, proved to be advantageous over gravimetric analysis in terms vertical resolution and time efficiency. Results of this study identify application-specific limitations of the methods and thereby highlight the need for careful data evaluation, even though neutron probe measurements and gravimetric analyses of soil samples are well established techniques (see Vienken et al. 2013). Reference: Vienken, T., Reboulet, E., Leven, C., Kreck, M., Zschornack, L., Dietrich, P., 2013. Field comparison of selected methods for vertical soil water content profiling. Journal of

  9. Evaluation of vertical profiles to design continuous descent approach procedure

    Science.gov (United States)

    Pradeep, Priyank

    The current research focuses on predictability, variability and operational feasibility aspect of Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen). The idle-thrust CDA is a fuel economical, noise and emission abatement procedure, but requires increased separation to accommodate for variability and uncertainties in vertical and speed profiles of arriving aircraft. Although a considerable amount of researches have been devoted to the estimation of potential benefits of the CDA, only few have attempted to explain the predictability, variability and operational feasibility aspect of CDA. The analytical equations derived using flight dynamics and Base of Aircraft and Data (BADA) Total Energy Model (TEM) in this research gives insight into dependency of vertical profile of CDA on various factors like wind speed and gradient, weight, aircraft type and configuration, thrust settings, atmospheric factors (deviation from ISA (DISA), pressure and density of the air) and descent speed profile. Application of the derived equations to idle-thrust CDA gives an insight into sensitivity of its vertical profile to multiple factors. This suggests fixed geometric flight path angle (FPA) CDA has higher degree of predictability and lesser variability at the cost of non-idle and low thrust engine settings. However, with optimized design this impact can be overall minimized. The CDA simulations were performed using Future ATM Concept Evaluation Tool (FACET) based on radar-track and aircraft type data (BADA) of the real air-traffic to some of the busiest airports in the USA (ATL, SFO and New York Metroplex (JFK, EWR and LGA)). The statistical analysis of the vertical profiles of CDA shows 1) mean geometric FPAs derived from various simulated vertical profiles are consistently shallower than 3° glideslope angle and 2) high level of variability in vertical profiles of idle-thrust CDA even in absence of

  10. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    Directory of Open Access Journals (Sweden)

    M. C. Braakhekke

    2013-01-01

    Full Text Available The vertical distribution of soil organic matter (SOM in the profile may constitute an important factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing due to bioturbation, and organic matter leaching. In this study we quantified the contribution of these three processes using Bayesian parameter estimation for the mechanistic SOM profile model SOMPROF. Based on organic carbon measurements, 13 parameters related to decomposition and transport of organic matter were estimated for two temperate forest soils: an Arenosol with a mor humus form (Loobos, the Netherlands, and a Cambisol with mull-type humus (Hainich, Germany. Furthermore, the use of the radioisotope 210Pbex as tracer for vertical SOM transport was studied. For Loobos, the calibration results demonstrate the importance of organic matter transport with the liquid phase for shaping the vertical SOM profile, while the effects of bioturbation are generally negligible. These results are in good agreement with expectations given in situ conditions. For Hainich, the calibration offered three distinct explanations for the observations (three modes in the posterior distribution. With the addition of 210Pbex data and prior knowledge, as well as additional information about in situ conditions, we were able to identify the most likely explanation, which indicated that root litter input is a dominant process for the SOM profile. For both sites the organic matter appears to comprise mainly adsorbed but potentially leachable material, pointing to the importance of organo-mineral interactions. Furthermore, organic matter in the mineral soil appears to be mainly derived from root litter, supporting previous studies that highlighted the importance of root input for soil carbon sequestration. The 210

  11. Vertical profiles of black carbon concentration and particle number size distribution in the North China Plain

    Science.gov (United States)

    Ran, L.; Deng, Z.

    2013-12-01

    The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.

  12. Moisture profile measurements of concrete samples in vertical flow by gamma ray attenuation method. Medidas do perfil de umidade de amostras de concreto em infiltracao vertical, atraves da atenuacao de raios gama

    Energy Technology Data Exchange (ETDEWEB)

    Appoloni, C R; Nardocci, A C; Obuti, M M [Universidade Estadual de Londrina, PR (Brazil). Dept. de Fisica

    1988-04-01

    This work deals with the study of the water diffusion in concrete by the gamma ray attenuation method. The moisture profiles, [theta] (z,t), of the vertical water flow were determined in concrete samples of different trace and porosity. The data were taken with a vertical and horizontal measurement table, a [sup 60] Co gamma ray source, a NaI (T) scintillation detector and the standard gamma ray spectrometry electronic. The [theta] (z,t) data analysis is presented using a phenomenological model of the moisture profile temporal evolution in heterogeneous materials. Two other models, Cell and Sandwich, were also applied to determine the attenuation coefficient of a non-homogeneous media from the attenuation coefficients of the components, taking into account particles-size effects. (author).

  13. One Year of Vertical Wind Profiles Measurements at a Mediterranean Coastal Site of South Italy

    DEFF Research Database (Denmark)

    Calidonna, Claudia Roberta; Gullì, Daniel; Avolio, Elenio

    2015-01-01

    To exploit wind energy both onshore and offshore in coastal area the effect of the coastal discontinuity is important. The shape of the vertical wind profiles and the related c parameter of the Weibull distribution are impacted by the atmospheric internal boundary layers developing from the coast...

  14. Experimental study of vertical stress profiles of a confined granular bed under static and dynamic conditions.

    Science.gov (United States)

    Mandato, S; Cuq, B; Ruiz, T

    2012-07-01

    In a wet agglomeration process inside a low shear mixer, the blade function is to induce i) homogenization of the liquid sprayed on the powder surface and ii) a stress field able to transfer the mechanical energy at the particle scale. In this work we study the mechanical state of a confined powder bed through the analysis of stress distributions (by force measurements) in a rectangular cell in two cases: for a classical model powder (i.e. glass beads) and a complex powder (i.e. wheat semolina). Two types of vertical stress profiles are obtained according to the type of measurements carried out in the powder bed, either locally (at different positions in the cell) or globally (at the entire base). The global vertical stress profile follows Janssen's model and the local vertical stress profile highlights a critical length, identified as the percolation threshold of the force network, and a shielding length near the bottom, which is similar to an influence length of the side walls. In the context of wet agglomeration, the results allow to consider the role of the characteristic lengths in the mixing bowl under vertical mechanical solicitation.

  15. The influence of turbulence and vertical wind profile in wind turbine power curve

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia, A.; Gomez-Lazaro, E. [Castilla-La Mancha Univ., Albacete (Spain). Renewable Energy Research Inst.; Vigueras-Rodriguez, A. [Albacete Science and Technolgy Park, Albacete (Spain)

    2012-07-01

    To identify the influence of turbulence and vertical wind profile in wind turbine performance, wind speed measurements at different heights have been performed. Measurements have been developed using a cup anemometer and a LIDAR equipment, specifically a pulsed wave one. The wind profile has been recorded to study the effect of the atmospheric conditions over the energy generated by a wind turbine located close to the LIDAR system. The changes in the power production of the wind turbine are relevant. (orig.)

  16. In situ profiling of eastern Arabian Sea coastal waters using a new autonomous vertical profiler

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Madhan, R.; Dabholkar, N.A.; Prabhudesai, S.P.; Navelkar, G.S.; Mascarenhas, A.A.M.Q.; Afzulpurkar, S.; Phaldesai, M.; Maurya, P.

    The autonomous vertical profiler (AVP) presented here offers a fast, cost-effective, optimized approach to profiling in coastal waters. It consists of a hands-free, slightly buoyant, motor-driven in situ robot profiler that requires no operator...

  17. Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

    Science.gov (United States)

    Barbre, Robert E., Jr.

    2015-01-01

    This paper describes in detail the QC and splicing methodology for KSC's 50- and 915-MHz DRWP measurements that generates an extensive archive of vertically complete profiles from 0.20-18.45 km. The concurrent POR from each archive extends from April 2000 to December 2009. MSFC NE applies separate but similar QC processes to each of the 50- and 915-MHz DRWP archives. DRWP literature and data examination provide the basis for developing and applying the automated and manual QC processes on both archives. Depending on the month, the QC'ed 50- and 915-MHz DRWP archives retain 52-65% and 16-30% of the possible data, respectively. The 50- and 915-MHz DRWP QC archives retain 84-91% and 85-95%, respectively, of all the available data provided that data exist in the non- QC'ed archives. Next, MSFC NE applies an algorithm to splice concurrent measurements from both DRWP sources. Last, MSFC NE generates a composite profile from the (up to) five available spliced profiles to effectively characterize boundary layer winds and to utilize all possible 915-MHz DRWP measurements at each timestamp. During a given month, roughly 23,000-32,000 complete profiles exist from 0.25-18.45 km from the composite profiles' archive, and approximately 5,000- 27,000 complete profiles exist from an archive utilizing an individual 915-MHz DRWP. One can extract a variety of profile combinations (pairs, triplets, etc.) from this sample for a given application. The sample of vertically complete DRWP wind measurements not only gives launch vehicle customers greater confidence in loads and trajectory assessments versus using balloon output, but also provides flexibility to simulate different DOL situations across applicable altitudes. In addition to increasing sample size and providing more flexibility for DOL simulations in the vehicle design phase, the spliced DRWP database provides any upcoming launch vehicle program with the capability to utilize DRWP profiles on DOL to compute vehicle steering

  18. Estimation of sand dune thickness using a vertical velocity profile

    International Nuclear Information System (INIS)

    Al-Shuhail, Abdullatif A.

    2004-01-01

    Previous field and mathematical studies have shown that sand dunes may have vertical velocity profiles (i.e. continuous increase of velocity with depth). Therefore, computing the dunes thickness using conventional seismic refraction methods that assume a vertically homogeneous layer will likely produce some errors. The purpose of this study is to quantify the effect of the vertical velocity profile in a sand dune on the process of thickness estimation using seismic refraction data. First, the time distance (T-X) data of the direct wave in the dune is calculated using a vertical velocity profile, V (z), derived from Hertz-Mindlin contact theory. Then the thickness is estimated from the calculated T-X data, intercept time and velocity of the refractor at the dune's base assuming a constant velocity in the dune. The error in the estimated thickness due to the constant-velocity assumption increases with increasing thickness and decreasing porosity of the dune. For sand dunes with porosities greater than 0.2 and thickness less than 200 meter, the error is less than 15%. (author)

  19. Temperature and Relative Humidity Vertical Profiles within Planetary Boundary Layer in Winter Urban Airshed

    Science.gov (United States)

    Bendl, Jan; Hovorka, Jan

    2017-12-01

    The planetary boundary layer is a dynamic system with turbulent flow where horizontal and vertical air mixing depends mainly on the weather conditions and geomorphology. Normally, air temperature from the Earth surface decreases with height but inversion situation may occur, mainly during winter. Pollutant dispersion is poor during inversions so air pollutant concentration can quickly rise, especially in urban closed valleys. Air pollution was evaluated by WHO as a human carcinogen (mostly by polycyclic aromatic hydrocarbons) and health effects are obvious. Knowledge about inversion layer height is important for estimation of the pollution impact and it can give us also information about the air pollution sources. Temperature and relative humidity vertical profiles complement ground measurements. Ground measurements were conducted to characterize comprehensively urban airshed in Svermov, residential district of the city of Kladno, about 30 km NW of Prague, from the 2nd Feb. to the 3rd of March 2016. The Svermov is an air pollution hot-spot for long time benzo[a]pyrene (B[a]P) limit exceedances, reaching the highest B[a]P annual concentration in Bohemia - west part of the Czech Republic. Since the Svermov sits in a shallow valley, frequent vertical temperature inversion in winter and low emission heights of pollution sources prevent pollutant dispersal off the valley. Such orography is common to numerous small settlements in the Czech Republic. Ground measurements at the sports field in the Svermov were complemented by temperature and humidity vertical profiles acquired by a Vaisala radiosonde positioned at tethered He-filled balloon. Total number of 53 series of vertical profiles up to the height of 300 m was conducted. Meteorology parameters were acquired with 4 Hz frequency. The measurements confirmed frequent early-morning and night formation of temperature inversion within boundary layer up to the height of 50 m. This rather shallow inversion had significant

  20. Vertical profiles of fine and coarse aerosol particles over Cyprus: Comparison between in-situ drone measurements and remote sensing observations

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Pikridas, Michael; Kottas, Michael; Binietoglou, Ioannis; Kokkalis, Panagiotis; Tsekeri, Aleksandra; Amiridis, Vasilis; Sciare, Jean; Keleshis, Christos; Engelmann, Ronny; Ansmann, Albert; Russchenberg, Herman W. J.; Biskos, George

    2017-04-01

    Vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) measurements were compared to airborne dried optical particle counter (OPC MetOne; Model 212) measurements during the INUIT-BACCHUS-ACTRIS campaign. The campaign took place in April 2016 and its main focus was the study of aerosol dust particles. During the campaign the NOA Polly-XT Raman lidar located at Nicosia (35.08° N, 33.22° E) was providing round-the-clock vertical profiles of aerosol optical properties. In addition, an unmanned aerial vehicle (UAV) carrying an OPC flew on 7 days during the first morning hours. The flights were performed at Orounda (35.1018° N, 33.0944° E) reaching altitudes of 2.5 km a.s.l, which allows comparison with a good fraction of the recorded lidar data. The polarization lidar photometer networking method (POLIPHON) was used for the estimation of the fine (non-dust) and coarse (dust) mode aerosol mass concentration profiles. This method uses as input the particle backscatter coefficient and the particle depolarization profiles of the lidar at 532 nm wavelength and derives the aerosol mass concentration. The first step in this approach makes use of the lidar observations to separate the backscatter and extinction contributions of the weakly depolarizing non-dust aerosol components from the contributions of the strongly depolarizing dust particles, under the assumption of an externally mixed two-component aerosol. In the second step, sun photometer retrievals of the fine and the coarse modes aerosol optical thickness (AOT) and volume concentration are used to calculate the associated concentrations from the extinction coefficients retrieved from the lidar. The estimated aerosol volume concentrations were converted into mass concentration with an assumption for the bulk aerosol density, and compared with the OPC measurements. The first results show agreement within the experimental uncertainty. This project received funding from the

  1. Vertical profiles of aerosol absorption coefficient from micro-Aethalometer data and Mie calculation over Milan.

    Science.gov (United States)

    Ferrero, L; Mocnik, G; Ferrini, B S; Perrone, M G; Sangiorgi, G; Bolzacchini, E

    2011-06-15

    Vertical profiles of aerosol number-size distribution and black carbon (BC) concentration were measured between ground-level and 500m AGL over Milan. A tethered balloon was fitted with an instrumentation package consisting of the newly-developed micro-Aethalometer (microAeth® Model AE51, Magee Scientific, USA), an optical particle counter, and a portable meteorological station. At the same time, PM(2.5) samples were collected both at ground-level and at a high altitude sampling site, enabling particle chemical composition to be determined. Vertical profiles and PM(2.5) data were collected both within and above the mixing layer. Absorption coefficient (b(abs)) profiles were calculated from the Aethalometer data: in order to do so, an optical enhancement factor (C), accounting for multiple light-scattering within the filter of the new microAeth® Model AE51, was determined for the first time. The value of this parameter C (2.05±0.03 at λ=880nm) was calculated by comparing the Aethalometer attenuation coefficient and aerosol optical properties determined from OPC data along vertical profiles. Mie calculations were applied to the OPC number-size distribution data, and the aerosol refractive index was calculated using the effective medium approximation applied to aerosol chemical composition. The results compare well with AERONET data. The BC and b(abs) profiles showed a sharp decrease at the mixing height (MH), and fairly constant values of b(abs) and BC were found above the MH, representing 17±2% of those values measured within the mixing layer. The BC fraction of aerosol volume was found to be lower above the MH: 48±8% of the corresponding ground-level values. A statistical mean profile was calculated, both for BC and b(abs), to better describe their behaviour; the model enabled us to compute their average behaviour as a function of height, thus laying the foundations for valid parametrizations of vertical profile data which can be useful in both remote sensing

  2. A Remote Sensing Approach to Estimate Vertical Profile Classes of Phytoplankton in a Eutrophic Lake

    Directory of Open Access Journals (Sweden)

    Kun Xue

    2015-10-01

    Full Text Available The extension and frequency of algal blooms in surface waters can be monitored using remote sensing techniques, yet knowledge of their vertical distribution is fundamental to determine total phytoplankton biomass and understanding temporal variability of surface conditions and the underwater light field. However, different vertical distribution classes of phytoplankton may occur in complex inland lakes. Identification of the vertical profile classes of phytoplankton becomes the key and first step to estimate its vertical profile. The vertical distribution profile of phytoplankton is based on a weighted integral of reflected light from all depths and is difficult to determine by reflectance data alone. In this study, four Chla vertical profile classes (vertically uniform, Gaussian, exponential and hyperbolic were found to occur in three in situ vertical surveys (28 May, 19–24 July and 10–12 October in a shallow eutrophic lake, Lake Chaohu. We developed and validated a classification and regression tree (CART to determine vertical phytoplankton biomass profile classes. This was based on an algal bloom index (Normalized Difference algal Bloom Index, NDBI applied to both in situ remote sensing reflectance (Rrs and MODIS Rayleigh-corrected reflectance (Rrc data in combination with data of local wind speed. The results show the potential of retrieving Chla vertical profiles information from integrated information sources following a decision tree approach.

  3. Measurements of the electron concentration and collision frequency during a geophysical ''Vertical-4'' rocket flight

    International Nuclear Information System (INIS)

    Biryukov, A.V.; Danilkin, N.P.; Denisenko, P.F.; Kucherenko, G.M.; Knorin, I.A.; Rudakov, V.A.; Sotskij, V.V.; Faer, Yu.N.; Shnyreva, L.A.

    1978-01-01

    Described are the results of simultaneous measurements of high-altitude density profiles nsub(e) and effective collisions frequency νsub(e) of electrons in ionosphere. The experiment was carried out on 14.10.1976 in middle lattitudes of the European part of the USSR during the geophysical ''Vertical-4'' rocket flight at the zenith Sun distance of 24 deg. The electron density was measured by the method of dispersion interferometer in the range of altitudes of 82-628 km (at rocket descent). The frequency dependence of radiowave adsorption was weasured simultaneously on the Earth. By the data obtained, νsub(e)(h) profile was determined for the altitudes of 103-183 km. The obtained νsub(e) (h) profile differes by two minima (at the altitudes of 140-150 and 170-180 km). Below the F-region maximum, obtained is a satisfactory agreement of nsub(e)(h) profile calculated from vertical probing data, with the profile measured with the help of the rocket

  4. Comparison of the GOSAT TANSO-FTS TIR CH volume mixing ratio vertical profiles with those measured by ACE-FTS, ESA MIPAS, IMK-IAA MIPAS, and 16 NDACC stations

    Directory of Open Access Journals (Sweden)

    K. S. Olsen

    2017-10-01

    Full Text Available The primary instrument on the Greenhouse gases Observing SATellite (GOSAT is the Thermal And Near infrared Sensor for carbon Observations (TANSO Fourier transform spectrometer (FTS. TANSO-FTS uses three short-wave infrared (SWIR bands to retrieve total columns of CO2 and CH4 along its optical line of sight and one thermal infrared (TIR channel to retrieve vertical profiles of CO2 and CH4 volume mixing ratios (VMRs in the troposphere. We examine version 1 of the TANSO-FTS TIR CH4 product by comparing co-located CH4 VMR vertical profiles from two other remote-sensing FTS systems: the Canadian Space Agency's Atmospheric Chemistry Experiment FTS (ACE-FTS on SCISAT (version 3.5 and the European Space Agency's Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on Envisat (ESA ML2PP version 6 and IMK-IAA reduced-resolution version V5R_CH4_224/225, as well as 16 ground stations with the Network for the Detection of Atmospheric Composition Change (NDACC. This work follows an initial inter-comparison study over the Arctic, which incorporated a ground-based FTS at the Polar Environment Atmospheric Research Laboratory (PEARL at Eureka, Canada, and focuses on tropospheric and lower-stratospheric measurements made at middle and tropical latitudes between 2009 and 2013 (mid-2012 for MIPAS. For comparison, vertical profiles from all instruments are interpolated onto a common pressure grid, and smoothing is applied to ACE-FTS, MIPAS, and NDACC vertical profiles. Smoothing is needed to account for differences between the vertical resolution of each instrument and differences in the dependence on a priori profiles. The smoothing operators use the TANSO-FTS a priori and averaging kernels in all cases. We present zonally averaged mean CH4 differences between each instrument and TANSO-FTS with and without smoothing, and we examine their information content, their sensitive altitude range, their correlation, their a priori dependence, and the

  5. Measurements and Mesoscale Modeling of Autumnal Vertical Ozone Profiles in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Yen-Ping Peng

    2008-01-01

    Full Text Available Vertical measurements of ozone were made using a tethered balloon at the Linyuan site in Kaohsiung County, southern Taiwan. Ozone was monitored at altitudes of 0, 100, 300, 500, and 1000 m from November 23 to 25 in 2005. The potential temperature profiles revealed a stable atmosphere during the study period, largely because of the dominance of the high-pressure system and nocturnal radiation cooling close to the surface. The mixing height was low (50 - 300 m, particularly in the late night and early morning. The surface ozone concentrations that were predicted using TAPM (The Air Pollution Model were high (33.7 - 119 ppbv in the daytime (10:00 - 16:00 and were low (10 - 40 ppbv at other times; the predictions of which were consistent with the observations. The simulated surface ozone concentrations reveal that costal lands typically had higher ozone concentrations than those inland, because most industrial parks are located in or close to the boundaries of Kaohsiung City. Both measurements and simulations indicate that daytime ozone concentrations decreased quickly with increasing height at altitudes below 300 m; while nighttime ozone concentrations were lower at low altitudes (50 to 300 m than at higher altitudes, partly because of dry deposition and titration of surface ozone by the near-surface nitrogen oxides (NOx and partly because of the existence of the residual layer above the stable nocturnal boundary layer. The simulations show a good correlation between the maximum daytime surface ozone concentration and average nighttime ozone concentration above the nocturnal boundary layer.

  6. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  7. Importance of A Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals

    Science.gov (United States)

    Johnson, M. S.; Sullivan, J. T.; Liu, X.; Zoogman, P.; Newchurch, M.; Kuang, S.; McGee, T. J.; Leblanc, T.

    2017-12-01

    Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's operational GEOS-5 FP model and reanalysis data from MERRA2) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 km) and tropospheric (0-10 km) TOLNet observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from

  8. "Atmospheric Measurements by Ultra-Light SpEctrometer" (AMULSE) dedicated to vertical profile measurements of greenhouse gases (CO2, CH4) under stratospheric balloons: instrumental development and field application.

    Science.gov (United States)

    Maamary, Rabih; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albora, Grégory; Chauvin, Nicolas; Miftah-El-Khair, Zineb; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Moulin, Eric; Ramonet, Michel; Bréon, François-Marie; Durry, Georges

    2016-04-01

    Human activities disrupt natural biogeochemical cycles such as the carbon and contribute to an increase in the concentrations of the greenhouse gases (carbone dioxide and methane) in the atmosphere. The current atmospheric transport modeling (the vertical trade) still represents an important source of uncertainty in the determination of regional flows of greenhouse gases, which means that a good knowledge of the vertical distribution of CO2 is necessary to (1) make the link between the ground measurements and spatial measurements that consider an integrated concentration over the entire column of the atmosphere, (2) validate and if possible improve CO2 transport model to make the link between surface emissions and observed concentration. The aim of this work is to develop a lightweight instrument (based on mid-infrared laser spectrometry principles) for in-situ measuring at high temporal/spatial resolution (5 Hz) the vertical profiles of the CO2 and the CH4 using balloons (meteorological and BSO at high precision levels (costs and logistics flights. These laser spectrometers are built on recent instrumental developments. Several flights were successfully done in the region Champagne-Ardenne and in Canada recently. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS défi instrumental and the region Champagne-Ardenne.

  9. Measurement of the wetting profile in concrete samples with vertical water by gamma radiation transmission method

    International Nuclear Information System (INIS)

    Silva, L.M. da; Rocha, M.C. da; Appoloni, C.R.; Portezan Filho, O.; Lopes, F.; Melquiades, F.L.; Santos, E.A. dos; Santos, A.O. dos; Moreira, A.C.; Poetker, W.E.; Almeida, E. de; Tannous, C.Q.; Kuramoto, R.; Cavalcante, F.H. de M.; Barbieri, P.F.

    2000-01-01

    Samples of concrete for popular habitation (0,1x0,03x0,1 m) and cellular concrete (0,1x0,05x0,1 m) were submitted to water vertical ascending infiltration. The moisture content spatial and temporal evolution of each sample it was monitored in three halfway positions in a same horizontal line, applying the gamma rays transmission method. The data were taken with a 137 Cs (3,7x10 10 Bq, 0662 MeV) source, NaI (Tl) of 2x2' detector coupled to between wetting profiles and concrete strength. The cellular concrete showed a wetting profile compatible to its greater porosity. (author)

  10. Global carbon monoxide vertical distributions from spaceborne high-resolution FTIR nadir measurements

    Directory of Open Access Journals (Sweden)

    B. Barret

    2005-01-01

    Full Text Available This paper presents the first global distributions of CO vertical profiles retrieved from a thermal infrared FTS working in the nadir geometry. It is based on the exploitation of the high resolution and high quality spectra measured by the Interferometric Monitor of Greenhouse gases (IMG which flew onboard the Japanese ADEOS platform in 1996-1997. The retrievals are performed with an algorithm based on the Optimal Estimation Method (OEM and are characterized in terms of vertical sensitivity and error budget. It is found that most of the IMG measurements contain between 1.5 and 2.2 independent pieces of information about the vertical distribution of CO from the lower troposphere to the upper troposphere-lower stratosphere (UTLS. The retrievals are validated against coincident NOAA/CMDL in situ surface measurements and NDSC/FTIR total columns measurements. The retrieved global distributions of CO are also found to be in good agreement with the distributions modeled by the GEOS-CHEM 3D CTM, highlighting the ability of IMG to capture the horizontal as well as the vertical structure of the CO distributions.

  11. Measuring of vertical stroke Vub vertical stroke in the forthcoming decade

    International Nuclear Information System (INIS)

    Kim, C.S.

    1997-01-01

    I first introduce the importance of measuring V ub precisely. Then, from a theoretician's point of view, I review (a) past history, (b) present trials, and (c) possible future alternatives on measuring vertical stroke V ub vertical stroke and/or vertical stroke V ub /V cb vertical stroke. As of my main topic, I introduce a model-independent method, which predicts Γ(B→X u lν)/Γ(B→X c lν)≡(γ u /γ c ) x vertical stroke V ub /V cb vertical stroke 2 ≅(1.83±0.28) x vertical stroke V ub /V cb vertical stroke 2 and vertical stroke V ub /V cb vertical stroke ≡(γ c /γ u ) 1/2 x [B(B→X u lν)/B(B→ X c lν]) 1/2 ≅(0.74±0.06) x [B(B→X u lν/)B(B→X c lν)] 1/2 , based on the heavy quark effective theory I also explore the possible experimental options to separate B→X u lν from the dominant B→X c lν: the measurement of inclusive hadronic invariant mass distributions, and the 'D-π' (and 'K-π') separation conditions I also clarify the relevant experimental backgrounds. (orig.)

  12. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.

    Science.gov (United States)

    Kong, Weiping; Huang, Wenjiang; Casa, Raffaele; Zhou, Xianfeng; Ye, Huichun; Dong, Yingying

    2017-11-23

    Monitoring the vertical profile of leaf chlorophyll (Chl) content within winter wheat canopies is of significant importance for revealing the real nutritional status of the crop. Information on the vertical profile of Chl content is not accessible to nadir-viewing remote or proximal sensing. Off-nadir or multi-angle sensing would provide effective means to detect leaf Chl content in different vertical layers. However, adequate information on the selection of sensitive spectral bands and spectral index formulas for vertical leaf Chl content estimation is not yet available. In this study, all possible two-band and three-band combinations over spectral bands in normalized difference vegetation index (NDVI)-, simple ratio (SR)- and chlorophyll index (CI)-like types of indices at different viewing angles were calculated and assessed for their capability of estimating leaf Chl for three vertical layers of wheat canopies. The vertical profiles of Chl showed top-down declining trends and the patterns of band combinations sensitive to leaf Chl content varied among different vertical layers. Results indicated that the combinations of green band (520 nm) with NIR bands were efficient in estimating upper leaf Chl content, whereas the red edge (695 nm) paired with NIR bands were dominant in quantifying leaf Chl in the lower layers. Correlations between published spectral indices and all NDVI-, SR- and CI-like types of indices and vertical distribution of Chl content showed that reflectance measured from 50°, 30° and 20° backscattering viewing angles were the most promising to obtain information on leaf Chl in the upper-, middle-, and bottom-layer, respectively. Three types of optimized spectral indices improved the accuracy for vertical leaf Chl content estimation. The optimized three-band CI-like index performed the best in the estimation of vertical distribution of leaf Chl content, with R² of 0.84-0.69, and RMSE of 5.37-5.56 µg/cm² from the top to the bottom layers

  13. Development of an autonomous vertical profiler for oceanographic studies

    Digital Repository Service at National Institute of Oceanography (India)

    Dabholkar, N.; Desa, E.; Afzulpurkar, S.; Madhan, R.; Mascarenhas, A.A.M.Q.; Navelkar, G.; Maurya, P.K.; Prabhudesai, S.; Nagvekar, S.; Martins, H.; Sawkar, G.; Fernandes, P.; Manoj, K.K.

    groups. This paper is based on a concept patent on a thruster driven Autonomous Vertical profiler [AVP], and describes the developmental steps being taken on the integration of sensors, control electronics, communications and a Graphical User interface...

  14. Determining the near-surface current profile from measurements of the wave dispersion relation

    Science.gov (United States)

    Smeltzer, Benjamin; Maxwell, Peter; Aesøy, Eirik; Ellingsen, Simen

    2017-11-01

    The current-induced Doppler shifts of waves can yield information about the background mean flow, providing an attractive method of inferring the current profile in the upper layer of the ocean. We present measurements of waves propagating on shear currents in a laboratory water channel, as well as theoretical investigations of inversion techniques for determining the vertical current structure. Spatial and temporal measurements of the free surface profile obtained using a synthetic Schlieren method are analyzed to determine the wave dispersion relation and Doppler shifts as a function of wavelength. The vertical current profile can then be inferred from the Doppler shifts using an inversion algorithm. Most existing algorithms rely on a priori assumptions of the shape of the current profile, and developing a method that uses less stringent assumptions is a focus of this study, allowing for measurement of more general current profiles. The accuracy of current inversion algorithms are evaluated by comparison to measurements of the mean flow profile from particle image velocimetry (PIV), and a discussion of the sensitivity to errors in the Doppler shifts is presented.

  15. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    NARCIS (Netherlands)

    Braakhekke, M.C.; Wutzler, T.; Beer, C.; Kattge, J.; Schrumpf, M.; Schöning, I.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.

    2012-01-01

    The vertical distribution of soil organic matter (SOM) in the profile may constitute a significant factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing

  16. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    NARCIS (Netherlands)

    Braakhekke, M.C.; Wutzler, T.; Beer, C.; Kattge, J.; Schrumpf, M.; Ahrens, B.; Schoning, I.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.; Reichstein, M.

    2013-01-01

    The vertical distribution of soil organic matter (SOM) in the profile may constitute an important factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing

  17. 3-D x-ray mirror metrology with a vertical scanning long trace profiler

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Li, H.; Li, X.; Grindel, M.W.

    1996-01-01

    The long trace profiler (LTP) was originally developed at Brookhaven National Laboratory for the specific purpose of measuring the surface figure of large cylindrical mirrors used at grazing incidence in synchrotron radiation (SR) beamlines. In its original configuration, it could measure only along one line down the center of the cylinder. A single linear profile is often sufficient to gauge the quality of the optical surface on these kinds of mirrors. For some applications it is necessary to measure the topography of the entire surface, not just along one line but over a grid that covers the entire surface area. We have modified a standard LTP to enable measurement of the complete surface of Wolter telescope optics in a vertical configuration. The vertical scanning LTP (VSLTP) is capable of producing a complete 3-D map of the surface topography errors relative to the ideal desired surface on complete segments of paraboloids and hyperboloids. The instrument uses a penta prism assembly to scan the probe beam in the longitudinal direction parallel to the mirror symmetry axis and uses a precision rotary stage to provide scans in the azimuthal direction. A Risley prism pair and a dove prism are used to orient the probe beam in the proper direction for the azimuthal scans. The repeatability of the prototype instrument is better than 20 nm over trace lengths of 35 mm with a slope measurement accuracy of about 1 microradian. copyright 1996 American Institute of Physics

  18. RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE

    International Nuclear Information System (INIS)

    Russo, Matthew; Thompson, Christopher

    2015-01-01

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B r ∼ (10 −4 –10 −2 )(r/ AU) −2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10 −8 M ⊙ yr −1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper

  19. High-resolution humidity profiles retrieved from wind profiler radar measurements

    Science.gov (United States)

    Saïd, Frédérique; Campistron, Bernard; Di Girolamo, Paolo

    2018-03-01

    The retrieval of humidity profiles from wind profiler radars has already been documented in the past 30 years and is known to be neither as straightforward and nor as robust as the retrieval of the wind velocity. The main constraint to retrieve the humidity profile is the necessity to combine measurements from the wind profiler and additional measurements (such as observations from radiosoundings at a coarser time resolution). Furthermore, the method relies on some assumptions and simplifications that restrict the scope of its application. The first objective of this paper is to identify the obstacles and limitations and solve them, or at least define the field of applicability. To improve the method, we propose using the radar capacity to detect transition levels, such as the top level of the boundary layer, marked by a maximum in the radar reflectivity. This forces the humidity profile from the free troposphere and from the boundary layer to coincide at this level, after an optimization of the calibration coefficients, and reduces the error. The resulting mean bias affecting the specific humidity profile never exceeds 0.25 g kg-1. The second objective is to explore the capability of the algorithm to retrieve the humidity vertical profiles for an operational purpose by comparing the results with observations from a Raman lidar.

  20. Vertical distribution of hydrocarbons in the low troposphere below and above the mixing height: Tethered balloon measurements in Milan, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Sangiorgi, G., E-mail: giorgia.sangiorgi1@unimib.it [POLARIS Research Centre, Department of Environmental Sciences, University of Milano-Bicocca, piazza della Scienza 1, 20126 Milano (Italy); Ferrero, L.; Perrone, M.G.; Bolzacchini, E. [POLARIS Research Centre, Department of Environmental Sciences, University of Milano-Bicocca, piazza della Scienza 1, 20126 Milano (Italy); Duane, M. [Institute for Environment and Sustainability, EU Joint Research Centre Ispra, 21020 Ispra, Varese (Italy); Larsen, B.R. [Institute for Health and Consumer Protection, EU Joint Research Centre Ispra, 21020 Ispra, Varese (Italy)

    2011-12-15

    A novel approach for measuring vertical profiles of HCs and particle number concentrations was described and applied in the low troposphere over Milan (Italy) during typical spring and summer days. Particle profiles yielded nearly homogeneous concentrations below the mixing height, with level-to-ground concentration ratios of 92-97%, while HCs showed a more pronounced decrease (74-95%). Vertical mixing and photochemical loss of HCs were demonstrated to cause these gradients. Much lower concentrations were observed for the profiles above the mixing height, where the HC mixtures showed also a different composition, which was partially explained by the horizontal advection of air with HC sources different to those prevailing at the site. The application of pseudo-first order kinetics for reactions between HCs and the hydroxyl radical allowed for the estimation of the vertical mixing time scale in the order of 100 {+-} 20 min. - Graphical abstract: Display Omitted Highlights: > Experimental vertical profiles of HCs and particle concentration by tethered balloon. > Effect of mixing height on the vertical distribution of HCs and particles. > Effect of tropospheric reactivity on vertical profiles of HCs. > Pseudo-first order kinetic reaction of HCs in convective systems. - Vertical transport and photochemical loss of HCs below and above the mixing height were studied by means of a novel and simple approach.

  1. Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast

    Science.gov (United States)

    Masselink, Thomas; Schluessel, P.

    1995-12-01

    Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.

  2. Vertical profiles of droplet effective radius in shallow convective clouds

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2011-05-01

    >fad becomes smaller, representing a higher degree of mixing, and re becomes smaller (~10 % and more variable. However, for the clean case, smaller fad corresponds to larger re (and larger re variability, reflecting the additional influence of droplet collision-coalescence and sedimentation on re. Finally, profiles of the vertically inhomogeneous clouds as simulated by the LES and those of the vertically homogeneous clouds are used as input to a radiative transfer model to study the effect of cloud vertical inhomogeneity on shortwave radiative forcing. For clouds that have the same liquid water path, re of a vertically homogeneous cloud must be about 76–90 % of the cloud-top re of the vertically inhomogeneous cloud in order for the two clouds to have the same shortwave radiative forcing.

  3. Results from a three-month intercomparison of boundary-layer wind profiler and sodar wind measurements at Lindenberg, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Beyrich, F.; Goersdorf, U.; Neisser, J.; Steinhagen, H.; Weisensee, U. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorologisches Observatorium

    1998-10-01

    Intercomparison experiments with a wind profiler and a Doppler sodar have been performed at the meteorological observatory Lindenberg of the German weather service in summer, 1994, and in autumn, 1995, over a total period of about three months. The paper presents selected results of the wind measurements performed with the two systems. Sodar and wind profiler are shown to complement each other quite well. Therefore, a combination of both is a promising tool for continuous, high-resolution measurements of the wind profile. A problem to be solved is the construction of composite wind profiles when the measurements with the two systems disagree in the height range of overlapping. Measurements of the vertical velocity are difficult to assess due to their small absolute values. Long-term averages of the vertical velocity show slightly negative values, especially for the wind profiler. However, similar signatures have been found in the vertical velocity time series during frontal passages or during well-developed convection. (orig.) 7 refs.

  4. Mechanistic modelling of the vertical soil organic matter profile

    NARCIS (Netherlands)

    Braakhekke, M.C.

    2014-01-01

    Soil organic matter (SOM) constitutes a large global pool of carbon that may play a considerable role for future climate. The vertical distribution of SOM in the profile may be important due to depth-dependence of physical, chemical, and biological conditions, and links to physical processes

  5. RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Matthew [Department of Physics, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7 (Canada); Thompson, Christopher [Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8 (Canada)

    2015-11-10

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B{sub r} ∼ (10{sup −4}–10{sup −2})(r/ AU){sup −2} G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10{sup −8} M{sub ⊙} yr{sup −1} are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.

  6. Vertical profiles of aerosol and black carbon in the Arctic: a seasonal phenomenology along 2 years (2011–2012 of field campaigns

    Directory of Open Access Journals (Sweden)

    L. Ferrero

    2016-10-01

    Full Text Available We present results from a systematic study of vertical profiles of aerosol number size distribution and black carbon (BC concentrations conducted in the Arctic, over Ny-Ålesund (Svalbard. The campaign lasted 2 years (2011–2012 and resulted in 200 vertical profiles measured by means of a tethered balloon (up to 1200 m a.g.l. during the spring and summer seasons. In addition, chemical analysis of filter samples, aerosol size distribution and a full set of meteorological parameters were determined at ground. The collected experimental data allowed a classification of the vertical profiles into different typologies, which allowed us to describe the seasonal phenomenology of vertical aerosol properties in the Arctic. During spring, four main types of profiles were found and their behavior was related to the main aerosol and atmospheric dynamics occurring at the measuring site. Background conditions generated homogenous profiles. Transport events caused an increase of aerosol concentration with altitude. High Arctic haze pollution trapped below thermal inversions promoted a decrease of aerosol concentration with altitude. Finally, ground-based plumes of locally formed secondary aerosol determined profiles with decreasing aerosol concentration located at different altitude as a function of size. During the summer season, the impact from shipping caused aerosol and BC pollution plumes to be constrained close to the ground, indicating that increasing shipping emissions in the Arctic could bring anthropogenic aerosol and BC in the Arctic summer, affecting the climate.

  7. More vertical etch profile using a Faraday cage in plasma etching

    Science.gov (United States)

    Cho, Byeong-Ok; Hwang, Sung-Wook; Ryu, Jung-Hyun; Moon, Sang Heup

    1999-05-01

    Scanning electron microscope images of sidewalls obtained by plasma etching of an SiO2 film with and without a Faraday cage have been compared. When the substrate film is etched in the Faraday cage, faceting is effectively suppressed and the etch profile becomes more vertical regardless of the process conditions. This is because the electric potential in the cage is nearly uniform and therefore distortion of the electric field at the convex corner of a microfeature is prevented. The most vertical etch profile is obtained when the cage is used in fluorocarbon plasmas, where faceting is further suppressed due to the decrease in the chemical sputtering yield and the increase in the radical/ion flux on the substrate.

  8. Measurement of vertical stroke Vub vertical stroke using b hadron semileptonic decay

    International Nuclear Information System (INIS)

    Abbiendi, G.; Aakesson, P.F.

    2001-01-01

    The magnitude of the CKM matrix element vertical stroke V ub vertical stroke is determined by measuring the inclusive charmless semileptonic branching fraction of beauty hadrons at OPAL based on b → X u lν event topology and kinematics. This analysis uses OPAL data collected between 1991 and 1995, which correspond to about four million hadronic Z decays. We measure Br(b → X u lν) to be (1.63 ±0.53 +0.55 -0.62 ) x 10 -3 . The first uncertainty is the statistical error and the second is the systematic error. From this analysis, vertical stroke V ub vertical stroke is determined to be: vertical stroke V ub vertical stroke =(4.00±0.65(stat) +0.67 -0.76 (sys)±0.19(HQE)) x 10 -3 . The last error represents the theoretical uncertainties related to the extraction of vertical stroke V ub vertical stroke from Br(b→X u l ν) using the Heavy Quark Expansion. (orig.)

  9. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX

    Directory of Open Access Journals (Sweden)

    K. W. Wong

    2011-04-01

    Full Text Available Nitrous acid (HONO often plays an important role in tropospheric photochemistry as a major precursor of the hydroxyl radical (OH in early morning hours and potentially during the day. However, the processes leading to formation of HONO and its vertical distribution at night, which can have a considerable impact on daytime ozone formation, are currently poorly characterized by observations and models. Long-path differential optical absorption spectroscopy (LP-DOAS measurements of HONO during the 2006 TexAQS II Radical and Aerosol Measurement Project (TRAMP, near downtown Houston, TX, show nocturnal vertical profiles of HONO, with mixing ratios of up to 2.2 ppb near the surface and below 100 ppt aloft. Three nighttime periods of HONO, NO2 and O3 observations during TRAMP were used to perform model simulations of vertical mixing ratio profiles. By adjusting vertical mixing and NOx emissions the modeled NO2 and O3 mixing ratios showed very good agreement with the observations.

    Using a simple conversion of NO2 to HONO on the ground, direct HONO emissions, as well as HONO loss at the ground and on aerosol, the observed HONO profiles were reproduced by the model for 1–2 and 7–8 September in the nocturnal boundary layer (NBL. The unobserved increase of HONO to NO2 ratio (HONO/NO2 with altitude that was simulated by the initial model runs was found to be due to HONO uptake being too small on aerosol and too large on the ground. Refined model runs, with adjusted HONO uptake coefficients, showed much better agreement of HONO and HONO/NO2 for two typical nights, except during morning rush hour, when other HONO formation pathways are most likely active. One of the nights analyzed showed an increase of HONO mixing ratios together with decreasing NO2 mixing ratios that the model was unable to reproduce, most likely due to the impact of

  10. Multifractal analysis of vertical profiles of soil penetration resistance at the field scale

    Directory of Open Access Journals (Sweden)

    G. M. Siqueira

    2013-07-01

    Full Text Available Soil penetration resistance (PR is widely used as an indirect indicator of soil strength. Soil PR is linked to basic soil properties and correlated to root growth and plant production, and as such it is extensively used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent soil PR profiles and how this information can be used at the field scale. We analysed multifractality of 50 PR vertical profiles, measured from 0 to 60 cm depth and randomly located on a 6.5 ha sugar cane field in northeastern Brazil. The scaling property of each profile was typified by singularity, and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. The singularity and Rènyi spectra showed that the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to 1, ranging from 0.944 to 0.988, indicating strong persistence in PR variation with soil depth. Also, the Hurst exponent was negatively and significantly correlated to coefficient of variation (CV, skewness and maximum values of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean and maximum values of PR. Combination of spatial variability survey and multifractal analysis appear to be useful to manage soil compaction.

  11. Multifractal analysis of vertical profiles of soil penetration resistance at the field scale

    Science.gov (United States)

    Siqueira, G. M.; Silva, E. F. F.; Montenegro, A. A. A.; Vidal Vázquez, E.; Paz-Ferreiro, J.

    2013-07-01

    Soil penetration resistance (PR) is widely used as an indirect indicator of soil strength. Soil PR is linked to basic soil properties and correlated to root growth and plant production, and as such it is extensively used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent soil PR profiles and how this information can be used at the field scale. We analysed multifractality of 50 PR vertical profiles, measured from 0 to 60 cm depth and randomly located on a 6.5 ha sugar cane field in northeastern Brazil. The scaling property of each profile was typified by singularity, and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. The singularity and Rènyi spectra showed that the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to 1, ranging from 0.944 to 0.988, indicating strong persistence in PR variation with soil depth. Also, the Hurst exponent was negatively and significantly correlated to coefficient of variation (CV), skewness and maximum values of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean and maximum values of PR. Combination of spatial variability survey and multifractal analysis appear to be useful to manage soil compaction.

  12. Vertical distribution of hydrocarbons in the low troposphere below and above the mixing height: Tethered balloon measurements in Milan, Italy

    International Nuclear Information System (INIS)

    Sangiorgi, G.; Ferrero, L.; Perrone, M.G.; Bolzacchini, E.; Duane, M.; Larsen, B.R.

    2011-01-01

    A novel approach for measuring vertical profiles of HCs and particle number concentrations was described and applied in the low troposphere over Milan (Italy) during typical spring and summer days. Particle profiles yielded nearly homogeneous concentrations below the mixing height, with level-to-ground concentration ratios of 92-97%, while HCs showed a more pronounced decrease (74-95%). Vertical mixing and photochemical loss of HCs were demonstrated to cause these gradients. Much lower concentrations were observed for the profiles above the mixing height, where the HC mixtures showed also a different composition, which was partially explained by the horizontal advection of air with HC sources different to those prevailing at the site. The application of pseudo-first order kinetics for reactions between HCs and the hydroxyl radical allowed for the estimation of the vertical mixing time scale in the order of 100 ± 20 min. - Graphical abstract: Display Omitted Highlights: → Experimental vertical profiles of HCs and particle concentration by tethered balloon. → Effect of mixing height on the vertical distribution of HCs and particles. → Effect of tropospheric reactivity on vertical profiles of HCs. → Pseudo-first order kinetic reaction of HCs in convective systems. - Vertical transport and photochemical loss of HCs below and above the mixing height were studied by means of a novel and simple approach.

  13. On mean wind and turbulence profile measurements from ground-based wind lidars

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    2009-01-01

    Two types of wind lidar?s have become available for ground-based vertical mean wind and turbulence profiling. A continuous wave (CW) wind lidar, and a pulsed wind lidar. Although they both are build upon the same recent 1.55 μ telecom fibre technology, they possess fundamental differences between...... their temporal and spatial resolution capabilities. A literature review of the two lidar systems spatial and temporal resolution characteristics will be presented, and the implication for the two lidar types vertical profile measurements of mean wind and turbulence in the lower atmospheric boundary layer...

  14. Ice-Tethered Profiler observations: Vertical profiles of temperature, salinity, oxygen, and ocean velocity from an Ice-Tethered Profiler buoy system

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains repeated vertical profiles of ocean temperature and salinity versus pressure, as well as oxygen and velocity for some instruments. Data were...

  15. Velocity and phase distribution measurements in vertical air-water annular flows

    International Nuclear Information System (INIS)

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film

  16. Modification of Turbulent Pipe Flow Equations to Estimate the Vertical Velocity Profiles Under Woody Debris Jams

    Science.gov (United States)

    Cervania, A.; Knack, I. M. W.

    2017-12-01

    The presence of woody debris (WD) jams in rivers and streams increases the risk of backwater flooding and reduces the navigability of a channel, but adds fish and macroinvertebrate habitat to the stream. When designing river engineering projects engineers use hydraulic models to predict flow behavior around these obstructions. However, the complexities of flow through and beneath WD jams are still poorly understood. By increasing the ability to predict flow behavior around WD jams, landowners and engineers are empowered to develop sustainable practices regarding the removal or placement of WD in rivers and flood plains to balance the desirable and undesirable effects to society and the environment. The objective of this study is to address some of this knowledge gap by developing a method to estimate the vertical velocity profile of flow under WD jams. When flow passes under WD jams, it becomes affected by roughness elements on all sides, similar to turbulent flows in pipe systems. Therefore, the method was developed using equations that define the velocity profiles of turbulent pipe flows: the law of the wall, the logarithmic law, and the velocity defect law. Flume simulations of WD jams were conducted and the vertical velocity profiles were measured along the centerline. A calculated velocity profile was fit to the measured profile through the calibration of eight parameters. An optimal value or range of values have been determined for several of these parameters using cross-validation techniques. The results indicate there may be some promise to using this method in hydraulic models.

  17. EFFECTS OF NITROGEN PHOTOABSORPTION CROSS SECTION RESOLUTION ON MINOR SPECIES VERTICAL PROFILES IN TITAN’S UPPER ATMOSPHERE

    International Nuclear Information System (INIS)

    Luspay-Kuti, A.; Mandt, K. E.; Greathouse, T. K.; Plessis, S.

    2015-01-01

    The significant variations in both measured and modeled densities of minor species in Titan’s atmosphere call for the evaluation of possible influencing factors in photochemical modeling. The effect of nitrogen photoabsorption cross section selection on the modeled vertical profiles of minor species is analyzed here, with particular focus on C 2 H 6 and HCN. Our results show a clear impact of cross sections used on all neutral and ion species studied. Affected species include neutrals and ions that are not primary photochemical products, including species that do not even contain nitrogen. The results indicate that photochemical models that employ low-resolution cross sections may significantly miscalculate the vertical profiles of minor species. Such differences are expected to have important implications for Titan’s overall atmospheric structure and chemistry

  18. EFFECTS OF NITROGEN PHOTOABSORPTION CROSS SECTION RESOLUTION ON MINOR SPECIES VERTICAL PROFILES IN TITAN’S UPPER ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Luspay-Kuti, A.; Mandt, K. E.; Greathouse, T. K. [Space Science and Engineering Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Plessis, S., E-mail: aluspaykuti@swri.edu [ICES, The University of Texas at Austin, 201 East 24th Street, Austin, TX 78712 (United States)

    2015-03-01

    The significant variations in both measured and modeled densities of minor species in Titan’s atmosphere call for the evaluation of possible influencing factors in photochemical modeling. The effect of nitrogen photoabsorption cross section selection on the modeled vertical profiles of minor species is analyzed here, with particular focus on C{sub 2}H{sub 6} and HCN. Our results show a clear impact of cross sections used on all neutral and ion species studied. Affected species include neutrals and ions that are not primary photochemical products, including species that do not even contain nitrogen. The results indicate that photochemical models that employ low-resolution cross sections may significantly miscalculate the vertical profiles of minor species. Such differences are expected to have important implications for Titan’s overall atmospheric structure and chemistry.

  19. Impact of the vertical emission profiles on background gas-phase pollution simulated from the EMEP emissions over Europe

    Directory of Open Access Journals (Sweden)

    S. Mailler

    2013-06-01

    Full Text Available Five one-year air quality simulations over a domain covering Europe have been performed using the CHIMERE chemistry transport model and the EMEP emission dataset for Europe. These five simulations differ only by the representation of the effective emission heights for anthropogenic emissions: one has been run using the EMEP standard recommendations, three others with vertical injection profiles derived from the EMEP recommendations but multiplying the injection height by 0.75, 0.50 and 0.25, respectively, while the last one uses vertical profiles derived from the recent literature. It is shown that using injection heights lower than the EMEP recommendations leads to significantly improved simulation of background SO2, NO2 and O3 concentrations when compared to the Airbase station measurements.

  20. Constraining the 0-20 km Vertical Profile of Water Vapor in the Martian Atmosphere with MGS-TES Limb Sounding

    Science.gov (United States)

    McConnochie, T. H.; Smith, M. D.; McDonald, G. D.

    2016-12-01

    The vertical profile of water vapor in the lower atmosphere of Mars is a crucial but poorly-measured detail of the water cycle. Most of our existing water vapor data sets (e.g. Smith, 2002, JGR 107; Smith et al., 2009, JGR 114; Maltagliati et al., 2011, Icarus 213) rely on the traditional assumption of uniform mass mixing from the surface up to a saturation level, but GCM models (Richardson et al., 2002, JGR 107; Navarro et al., 2014, JGR 119) imply that this is not the case in at least some important seasons and locations. For example at the equator during northern summer the water vapor mixing ratio in aforementioned GCMs increases upwards by a factor of two to three in the bottom scale height. This might influence the accuracy of existing precipitable water column (PWC) data sets. Even if not, the correct vertical distribution is critical for determining the extent to which high-altitude cold trapping interferes with inter-hemispheric transport, and its details in the lowest scale heights will be a critical test of the accuracy of modeled water vapor transport. Meanwhile attempts to understand apparent interactions of water vapor with surface soils (e.g. Ojha et al. 2015, Nature Geoscience 8; Savijärvi et al., 2016, Icarus 265) need an estimate for the amount of water vapor in the boundary layer, and existing PWC data sets can't provide this unless the lower atmospheric vertical distribution is known or constrained. Maltagliati et al. (2013, Icarus 223) have obtained vertical profiles of water vapor at higher altitudes with SPICAM on Mars Express, but these are commonly limited to altitudes greater 20 km and they never extend below 10 km. We have previously used Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) limb-sounding to measure the vertical profile of water vapor (e.g. McConnochie and Smith, 2009, Fall AGU #P54B-06), but these preliminary results were clearly not quantitatively accurate in the lower atmosphere. We will present improved TES

  1. The retrieval of profile and chemical information from ground-based UV-visible spectroscopic measurements

    International Nuclear Information System (INIS)

    Schofield, R.; Connor, B.J.; Kreher, K.; Johnston, P.V.; Rodgers, C.D.

    2004-01-01

    An algorithm has been developed to retrieve altitude information at different diurnal stages for trace gas species by combining direct-sun and zenith-sky UV-visible differential slant column density (DSCD) measurements. DSCDs are derived here using differential optical absorption spectroscopy. Combining the complementary zenith-sky measurements (sensitive to the stratosphere) with direct-sun measurements (sensitive to the troposphere) allows this vertical distinction. Trace gas species such as BrO and NO 2 have vertical profiles with strong diurnal dependence. Information about the diurnal variation is simultaneously retrieved with the altitude distribution of the trace gas. The retrieval is a formal optimal estimation profile retrieval, allowing a complete assessment of information content and errors

  2. Comparison of stratospheric NO2 profiles above Kiruna, Sweden retrieved from ground-based zenith sky DOAS measurements, SAOZ balloon measurements and SCIAMACHY limb observations

    Science.gov (United States)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2015-04-01

    Stratospheric NO2 not only destroys ozone but acts as a buffer against halogen catalyzed ozone loss by converting halogen species into stable nitrates. These two roles of stratospheric NO2 depend on the altitude. Hence, the objective of this study is to investigate the vertical distribution of stratospheric NO2. We compare the NO2 profiles derived from the zenith sky DOAS with those obtained from, SAOZ balloon measurements and satellite limb observations. Vertical profiles of stratospheric NO2 are retrieved from ground-based zenith sky DOAS observations operated at Kiruna, Sweden (68.84°N, 20.41°E) since 1996. To determine the profile of stratospheric NO2 measured from ground-based zenith sky DOAS, we apply the Optimal Estimation Method (OEM) to retrieval of vertical profiles of stratospheric NO2 which has been developed by IASB-BIRA. The basic principle behind this profiling approach is the dependence of the mean scattering height on solar zenith angle (SZA). We compare the retrieved profiles to two additional datasets of stratospheric NO2 profile. The first one is derived from satellite limb observations by SCIAMACHY (Scanning Imaging Absorption spectrometer for Atmospheric CHartographY) on EnviSAT. The second is derived from the SAOZ balloon measurements (using a UV/Visible spectrometer) performed at Kiruna in Sweden.

  3. A new software suite for NO2 vertical profile retrieval from ground-based zenith-sky spectrometers

    International Nuclear Information System (INIS)

    Denis, L.; Roscoe, H.K.; Chipperfield, M.P.; Roozendael, M. van; Goutail, F.

    2005-01-01

    Here we present an operational method to improve accuracy and information content of ground-based measurements of stratospheric NO 2 . The motive is to improve the investigation of trends in NO 2 , and is important because the current trend in NO 2 appears to contradict the trend in its source, suggesting that the stratospheric circulation has changed. To do so, a new software package for retrieving NO 2 vertical profiles from slant columns measured by zenith-sky spectrometers has been created. It uses a Rodgers optimal linear inverse method coupled with a radiative transfer model for calculations of transfer functions between profiles and columns, and a chemical box model for taking into account the NO 2 variations during twilight and during the day. Each model has parameters that vary according to season and location. Forerunners of each model have been previously validated. The scheme maps random errors in the measurements and systematic errors in the models and their parameters on to the retrieved profiles. Initialisation for models is derived from well-established climatologies. The software has been tested by comparing retrieved profiles to simultaneous balloon-borne profiles at mid-latitudes in spring

  4. Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.

    2012-12-01

    Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings

  5. Measurement of the CKM matrix element vertical stroke Vts vertical stroke 2

    International Nuclear Information System (INIS)

    Unverdorben, Christopher Gerhard

    2015-03-01

    This is the first direct measurement of the CKM matrix element vertical stroke V ts vertical stroke, using data collected by the ATLAS detector in 2012 at √(s)= 8 TeV pp-collisions with a total integrated luminosity of 20.3 fb -1 . The analysis is based on 112 171 reconstructed t anti t candidate events in the lepton+jets channel, having a purity of 90.0 %. 183 t anti t→W + W - b anti s decays are expected (charge conjugation implied), which are available for the extraction of the CKM matrix element vertical stroke V ts vertical stroke 2 . To identify these rare decays, several observables are examined, such as the properties of jets, tracks and of b-quark identification algorithms. Furthermore, the s-quark hadrons K 0 s are considered, reconstructed by a kinematic fit. The best observables are combined in a multivariate analysis, called ''boosted decision trees''. The responses from Monte Carlo simulations are used as templates for a fit to data events yielding a significance value of 0.7σ for t→s+W decays. An upper limit of vertical stroke V ts vertical stroke 2 <1.74 % at 95 % confidence level is set, including all systematic and statistical uncertainties. So this analysis, using a direct measurement of the CKM matrix element vertical stroke V ts vertical stroke 2 , provides the best direct limit on vertical stroke V ts vertical stroke 2 up to now.

  6. Simultaneous measurements with 3D PIV and Acoustic Doppler Velocity Profiler

    NARCIS (Netherlands)

    Blanckaert, K.J.F.; McLelland, S.J.

    2009-01-01

    Simultaneous velocity measurements were taken using Particle Image Velocimetry (PIV) and an Acoustic Doppler Velocity Profiler (ADVP) in a sharp open-channel bend with an immobile gravel bed. The PIV measures 3D velocity vectors in a vertical plane (~40cm x 20cm) at a frequency of 7.5 Hz, whereas

  7. Analytical models of lateral power devices with arbitrary vertical doping profiles in the drift region

    International Nuclear Information System (INIS)

    Hua Ting-Ting; Guo Yu-Feng; Yu Ying; Jian Tong; Yao Jia-Fei; Sheu Gene

    2013-01-01

    By solving the 2D Poisson's equation, analytical models are proposed to calculate the surface potential and electric field distributions of lateral power devices with arbitrary vertical doping profiles. The vertical and the lateral breakdown voltages are formulized to quantify the breakdown characteristic in completely-depleted and partially-depleted cases. A new reduced surface field (RESURF) criterion which can be used in various drift doping profiles is further derived for obtaining the optimal trade-off between the breakdown voltage and the on-resistance. Based on these models and the numerical simulation, the electric field modulation mechanism and the breakdown characteristics of lateral power devices are investigated in detail for the uniform, linear, Gaussian, and some discrete doping profiles along the vertical direction in the drift region. Then, the mentioned vertical doping profiles of these devices with the same geometric parameters are optimized, and the results show that the optimal breakdown voltages and the effective drift doping concentrations of these devices are identical, which are equal to those of the uniform-doped device, respectively. The analytical results of these proposed models are in good agreement with the numerical results and the previous experimental results, confirming the validity of the models presented here. (interdisciplinary physics and related areas of science and technology)

  8. Analytical models of lateral power devices with arbitrary vertical doping profiles in the drift region

    Science.gov (United States)

    Hua, Ting-Ting; Guo, Yu-Feng; Yu, Ying; Gene, Sheu; Jian, Tong; Yao, Jia-Fei

    2013-05-01

    By solving the 2D Poisson's equation, analytical models are proposed to calculate the surface potential and electric field distributions of lateral power devices with arbitrary vertical doping profiles. The vertical and the lateral breakdown voltages are formulized to quantify the breakdown characteristic in completely-depleted and partially-depleted cases. A new reduced surface field (RESURF) criterion which can be used in various drift doping profiles is further derived for obtaining the optimal trade-off between the breakdown voltage and the on-resistance. Based on these models and the numerical simulation, the electric field modulation mechanism and the breakdown characteristics of lateral power devices are investigated in detail for the uniform, linear, Gaussian, and some discrete doping profiles along the vertical direction in the drift region. Then, the mentioned vertical doping profiles of these devices with the same geometric parameters are optimized, and the results show that the optimal breakdown voltages and the effective drift doping concentrations of these devices are identical, which are equal to those of the uniform-doped device, respectively. The analytical results of these proposed models are in good agreement with the numerical results and the previous experimental results, confirming the validity of the models presented here.

  9. Exploring the nearshore marine wind profile from field measurements and numerical hindcast

    Science.gov (United States)

    del Jesus, F.; Menendez, M.; Guanche, R.; Losada, I.

    2012-12-01

    Wind power is the predominant offshore renewable energy resource. In the last years, offshore wind farms have become a technically feasible source of electrical power. The economic feasibility of offshore wind farms depends on the quality of the offshore wind conditions compared to that of onshore sites. Installation and maintenance costs must be balanced with more hours and a higher quality of the available resources. European offshore wind development has revealed that the optimum offshore sites are those in which the distance from the coast is limited with high available resource. Due to the growth in the height of the turbines and the complexity of the coast, with interactions between inland wind/coastal orography and ocean winds, there is a need for field measurements and validation of numerical models to understand the marine wind profile near the coast. Moreover, recent studies have pointed out that the logarithmic law describing the vertical wind profile presents limitations. The aim of this work is to characterize the nearshore vertical wind profile in the medium atmosphere boundary layer. Instrumental observations analyzed in this work come from the Idermar project (www.Idermar.es). Three floating masts deployed at different locations on the Cantabrian coast provide wind measurements from a height of 20 to 90 meters. Wind speed and direction are measured as well as several meteorological variables at different heights of the profile. The shortest wind time series has over one year of data. A 20 year high-resolution atmospheric hindcast, using the WRF-ARW model and focusing on hourly offshore wind fields, is also analyzed. Two datasets have been evaluated: a European reanalysis with a ~15 Km spatial resolution, and a hybrid downscaling of wind fields with a spatial resolution of one nautical mile over the northern coast of Spain.. These numerical hindcasts have been validated based on field measurement data. Several parameterizations of the vertical wind

  10. Retrieval of vertical concentration profiles from OSIRIS UV-visible limb spectra

    International Nuclear Information System (INIS)

    Strong, K.; Joseph, B.M.; Dosanjh, R.; McDade, I.C.; McLinden, C.A.; McConnell, J.C.; Stegman, J.; Murtagh, D.P.; Llewellyn, E.J.

    2002-01-01

    The OSIRIS instrument, launched on the Odin satellite in February 2001, includes an optical spectrograph that will record UV-visible spectra of sunlight scattered from the limb over a range of tangent heights. These spectra will be used to retrieve vertical profiles of ozone, NO 2 , OC1O, BrO, NO 3 , O 2 , and aerosols, for the investigation of both stratospheric and mesospheric processes, particularly those related to ozone chemistry. In this work, the retrieval of vertical profiles of trace-gas concentrations from OSIRIS limb-radiance spectra is described. A forward model has been developed to simulate these spectra, and it consists of a single-scattering radiative-transfer model with partial spherical geometry, trace-gas absorption, Mic scattering by stratospheric aerosols, a Lambertian surface contribution, and OSIRIS instrument response and noise. Number-density profiles have been retrieved by using optimal estimation (OE) to combine an a priori profile with the information from sets of synthetic 'measurements'. For ozone, OE has been applied both to limb radiances at one or more discrete wavelengths and to effective-column abundances retrieved over a broad spectral range using differential optical absorption spectroscopy (DOAS). The results suggest that, between 15 and 35 km, ozone number densities can be retrieved to 10% accuracy or better on 1 and 2 km grids and to 5% on a 5 km grid. The combined DOAS-OE approach has also been used to retrieve NO 2 number densities, yielding 13% accuracy or better for altitudes from 18 to 36 km (in a 2 km grid. Differential optical absorption spectroscopy - optimal estimation retrievals of BrO and OC1O reproduce the true profiles above 15 km in the noise-free case, but the quality of the retrievals is highly sensitive to noise on the simulated OSIRIS spectra because of the weak absorption of these two gases. The development of inversion methods for the retrieval of trace-gas concentrations from OSIRIS spectra is continuing

  11. Experimental investigation and numerical simulations of void profile development in a vertical cylindrical pipe

    International Nuclear Information System (INIS)

    Grossetete, Claudie

    1995-01-01

    We present here an experimental investigation and some numerical simulations of void profile development in a vertical cylindrical pipe. This study is motivated by the lack of information dealing with the influence of entrance effects and bubble size evolution upon the multidimensional development of upward bubbly flow in pipe. The axial development of two-phase air-water upward bubbly and bubbly-to-slug transition flows in a vertical pipe is investigated experimentally first. Profiles of liquid mean velocity, liquid axial turbulent intensity, void fraction, bubble frequency, bubble velocity, mean equivalent bubble diameter and volumetric interfacial area are determined along the same test section at three axial locations. It is found that the bubbly-to-slug transition can be deduced from the simultaneous analysis of the different measured profiles. Local analysis of the studied bubbly flows shows that their development does not depend on the shape of the void distribution at the inlet. However, it is found that the bubble size evolution strongly affects the void distribution. Secondly, multidimensional numerical simulations of bubbly flows with very different gas injection modes are made with the help of the tri dimensional two-fluid ASTRID code. It is shown that the classical models used to close the transverse momentum equations of the two-fluid model (lift and dispersion forces) do not capture the physical phenomena of bubble migration in pipe flows. (author) [fr

  12. Experimental investigation and numerical simulations of void profile development in a vertical cylindrical pipe

    International Nuclear Information System (INIS)

    Grossetete, C.

    1995-12-01

    We present here an experimental investigation and some numerical simulations of void profile development in a vertical cylindrical pipe. This study is motivated by the lack of information dealing with the influence of entrance effects and bubble size evolution upon the multidimensional development of upward bubbly flow in pipe. The axial development of two-phase air-water upward bubbly and bubbly-to-slug transition flows in a vertical pipe is investigated experimentally first. Profiles of liquid mean velocity, liquid axial turbulent intensity, void fraction, bubble frequency, bubble velocity, mean equivalent bubble diameter and volumetric interfacial area are determined along the same test section at three axial locations. It is found that the bubbly-to-slug transition can be deduced from the simultaneous analysis of the different measured profiles. Local analysis of the studied bubbly flows shows that their development does not depend on the shape of the void distribution at the inlet. However, it is found that the bubble size evolution strongly affects the void distribution. Secondly, multidimensional numerical simulations of bubbly flows with very different gas injection modes are made with the help of the tridimensional two-fluid ASTRID code. It is shown that the classical models used to close the transverse momentum equations of the two-fluid model (lift and dispersion forces) do not capture the physical phenomena of bubble migration in pipe flows

  13. Wind profile modelling using WAsP and "tall" wind measurements

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph; Kelly, Mark C.; Troen, Ib

    2015-01-01

    extrapolations (the wind profile) this is done using the Weibull distribution and the geostrophic drag law. Wind lidar measurements obtained during the ’Tall wind’ campaign at three different sites are used to evaluate the assumptions and equations that are used in the WAsP vertical extrapolation strategy...

  14. Nine-component vertical seismic profiling at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Balch, A.H.; Erdemir, C.; Spengler, R.W.; Hunter, W.C.

    1996-01-01

    Nine-component vertical seismic profiling has been conducted at the UE-25 UZ No. 16 borehole at Yucca Mountain, Nevada, in support of investigation of the hydrologic significance of fault and fracture systems. A large data set from multi-component sources and receivers allows state-of-the-art advances in processing using polarization filtering and reverse time migration, for enhanced interpretation of geologic features

  15. The effect of sediment thermal conductivity on vertical groundwater flux estimates

    Science.gov (United States)

    Sebok, Eva; Müller, Sascha; Engesgaard, Peter; Duque, Carlos

    2015-04-01

    The interaction between groundwater and surface water is of great importance both from ecological and water management perspective. The exchange fluxes are often estimated based on vertical temperature profiles taken from shallow sediments assuming a homogeneous standard value of sediment thermal conductivity. Here we report on a field investigation in a stream and in a fjord, where vertical profiles of sediment thermal conductivity and temperatures were measured in order to, (i) define the vertical variability in sediment thermal conductivity, (ii) quantify the effect of heterogeneity in sediment thermal conductivity on the estimated vertical groundwater fluxes. The study was carried out at field sites located in Ringkøbing fjord and Holtum stream in Western Denmark. Both locations have soft, sandy sediments with an upper organic layer at the fjord site. First 9 and 12 vertical sediment temperature profiles up to 0.5 m depth below the sediment bed were collected in the fjord and in the stream, respectively. Later sediment cores of 0.05 m diameter were removed at the location of the temperature profiles. Sediment thermal conductivity was measured in the sediment cores at 0.1 m intervals with a Decagon KD2 Pro device. A 1D flow and heat transport model (HydroGeoSphere) was set up and vertical groundwater fluxes were estimated based on the measured vertical sediment temperature profiles by coupling the model with PEST. To determine the effect of heterogeneity in sediment thermal conductivity on estimated vertical groundwater fluxes, the model was run by assigning (i) a homogeneous thermal conductivity for all sediment layers, calculated as the average sediment thermal conductivity of the profile, (ii) measured sediment thermal conductivities to the different model layers. The field survey showed that sediment thermal conductivity over a 0.5 m profile below the sediment bed is not uniform, having the largest variability in the fjord where organic sediments were also

  16. Vertical and Horizontal Measurements of Ambient Ozone over a Gas and Oil Production Area using a UAV Platform

    Science.gov (United States)

    Jensen, A.; Gowing, I.; Martin, R. S.

    2013-12-01

    During the 2013 wintertime Uintah Basin Ozone Study (UBOS13), an autonomous unmanned aerial vehicle (UAV) platform, coupled with an on-board UV ozone monitor, flew several spatial profiles near the location (Horse Pool) of other concentrated measurements by other co-investigators. The airframe, part of the Utah Water Research Laboratory's (UWRL) AggieAir UAV program, consisted of a custom-built, battery-operated plane with and 2.4 m (8 ft) wing span and a 12.7 cm x 12.7 cm x 30.5 cm payload bay with a carrying capacity of approximately 2.0 kg. With the current power system, the fully-loaded AggieAir UAV can fly for approximately 45 minutes at a nominal airspeed of 13.4 m/s (30 mph). The system can be operated either in manual control or be flown autonomously following preprogrammed waypoints via a built in GPS system. The AggieAir UAV systems were primarily designed for photographic and telemetry tracking projects. For the UBOS13 flights, a 2B Technologies Model 205 Ozone (O3) monitor was modified for minimal weight optimization, wrapped with lightweight insulation and secured into the UAV payload bay. Additionally, HOBO Model H08-001-02 shielded temperature/datalogger was secured to the exterior of the UAV from parallel thermal profile determination. During the study period, three demonstration flight profiles were obtained on February 17 and 18, 2013: two vertical 'curtain' profiles and a pair of 'stacked' horizontal profiles. As recorded by numerous ground-based monitoring sites, the ozone during the UAV test periods was characterized by initial trends of daytime O3 maximums over 130 ppb, followed by a meteorological front partially ventilating the Basin on the evening of Feb. 17th leading to decreased O3 minimums around 40 ppb. However, the ground level O3 rebuilt quickly to ground level maximums approaching 100 ppb. The vertical 'curtain' flown on the evening of Feb. 17th only reached a maximum elevation of about 2160 m ASL (600 m AGL) due to encountering

  17. Velocity Profile measurements in two-phase flow using multi-wave sensors

    Science.gov (United States)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  18. Velocity Profile measurements in two-phase flow using multi-wave sensors

    International Nuclear Information System (INIS)

    Biddinika, M K; Ito, D; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  19. A new software suite for NO{sub 2} vertical profile retrieval from ground-based zenith-sky spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Denis, L. [British Antarctic Survey/NERC, Madingley Road, Cambridge CB3 0ET (United Kingdom); Roscoe, H.K. [British Antarctic Survey/NERC, Madingley Road, Cambridge CB3 0ET (United Kingdom)]. E-mail: h.roscoe@bas.ac.uk; Chipperfield, M.P. [Environment Centre, University of Leeds, Leeds LS2 9JT (United Kingdom); Roozendael, M. van [Belgian Institute for Space Aeronomy (BIRA/IASB), 1180 Brussels (Belgium); Goutail, F. [Service d' Aeronomie du CNRS, BP3, 91271 Verrieres le Buisson (France)

    2005-05-15

    Here we present an operational method to improve accuracy and information content of ground-based measurements of stratospheric NO{sub 2}. The motive is to improve the investigation of trends in NO{sub 2}, and is important because the current trend in NO{sub 2} appears to contradict the trend in its source, suggesting that the stratospheric circulation has changed. To do so, a new software package for retrieving NO{sub 2} vertical profiles from slant columns measured by zenith-sky spectrometers has been created. It uses a Rodgers optimal linear inverse method coupled with a radiative transfer model for calculations of transfer functions between profiles and columns, and a chemical box model for taking into account the NO{sub 2} variations during twilight and during the day. Each model has parameters that vary according to season and location. Forerunners of each model have been previously validated. The scheme maps random errors in the measurements and systematic errors in the models and their parameters on to the retrieved profiles. Initialisation for models is derived from well-established climatologies. The software has been tested by comparing retrieved profiles to simultaneous balloon-borne profiles at mid-latitudes in spring.

  20. Vertical profiles of ozone, carbon monoxide, and dew-point temperature obtained during GTE/CITE 1, October-November 1983. [Chemical Instrumentation Test and Evaluation

    Science.gov (United States)

    Fishman, Jack; Gregory, Gerald L.; Sachse, Glen W.; Beck, Sherwin M.; Hill, Gerald F.

    1987-01-01

    A set of 14 pairs of vertical profiles of ozone and carbon monoxide, obtained with fast-response instrumentation, is presented. Most of these profiles, which were measured in the remote troposphere, also have supporting fast-response dew-point temperature profiles. The data suggest that the continental boundary layer is a source of tropospheric ozone, even in October and November, when photochemical activity should be rather small. In general, the small-scale vertical variability between CO and O3 is in phase. At low latitudes this relationship defines levels in the atmosphere where midlatitude air is being transported to lower latitudes, since lower dew-point temperatures accompany these higher CO and O3 concentrations. A set of profiles which is suggestive of interhemispheric transport is also presented. Independent meteorological analyses support these interpretations.

  1. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions

    Science.gov (United States)

    Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin

    2018-05-01

    The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

  2. A study of the horizontal and vertical profile of submicrometer particles in relation to a busy road

    Science.gov (United States)

    Morawska, Lidia; Thomas, Stephen; Gilbert, Dale; Greenaway, Chris; Rijnders, Esther

    Epidemiological studies are consistently reporting an association between fine particulate pollution and ill-health. Motor vehicle emissions are considered to be the main source of fine particles in ambient urban air of cities which are not directly influenced by industrial emissions. The aim of this work was to assess the influence of a major arterial road on concentration levels of airborne fine particles in its vicinity. Measurements of over 500 particle size distributions in the particle size range 16-626 nm, were made using two scanning mobility particle sizers (SMPS). A subsequent comparison of the recorded values from differing locations is discussed, with reference made to topographic and climatic influences. Both horizontal and vertical profile measurements of fine particle number size distributions are described; the combination of the two yielding information as to the relative exposures of occupants of buildings in the vicinity of a major arterial route. With the exception of measurements in close proximity to the freeway (about 15 m), the horizontal profile measurements did not provide any evidence of a statistically significant difference in fine particle number concentration with respect to distance at ground level up to a distance of 200 m within the study area. The vertical profile measurements also revealed no significant correlation between particle concentration and height. However, for buildings in the immediate proximity to the arterial road (about 15 m) concentrations around the building envelope are very high, comparable to those in the immediate vicinity of the road, indicating undiluted concentrations drawn directly from the freeway. This finding has a significant implication for management of indoor air quality in the buildings located in the immediate vicinity of major roads.

  3. PHL10/460: Cancerfacts.com - Vertical Portal with Newly Developed Health Profiler

    OpenAIRE

    Lenz, C; Brucksch, M

    1999-01-01

    Introduction Unlike general health portals such as WebMD and Drkoop.com that cover everything from the flu to heart disease, Silicon Valley-based cancerfacts.com is a so-called vertical portal. It covers only one small vertical niche of health care: cancer, and in particular, prostate cancer. As a value-added proprietary technology, the company offers its newly developed profile engine to health information retrievers. Methods Users are enabled to insert their specific medical information - r...

  4. Continuous Real-time Measurements of Vertical Distribution of Magnetic Susceptibility In Soils

    Science.gov (United States)

    Petrovsky, E.; Hulka, Z.; Kapicka, A.; Magprox Team

    Measurements of top-soil magnetic susceptibility are used in approximative outlining polluted areas. However, one of the serious limitations of the method is discrimina- tion between top-soil layers enhanced by atmospherically deposited anthropogenic particles from those dominated by natural particles migrating from magnetically-rich basement rocks. For this purpose, measurements of vertical distribution of magnetic susceptibility along soil profiles is one of the most effective ways in estimating the effect of lithogenic contribution. Up to now, in most cases soil cores have to be mea- sured in laboratory. This method is quite time consuming and does not allow flexible decision about the suitability of the measured site for surface magnetic mapping. In our contribution we will present a new device enabling continuous real-time measure- ments of vertical distribution of magnetic susceptibility directly in field, performed in holes after soil coring. The method is fast, yielding smooth curves (6 data points per 1 mm dept), at least as sensitive as laboratory methods available until now, and at- tached notebook enables direct, on-line control of the lithogenic versus anthropogenic contributions.

  5. Airborne in situ vertical profiling of HDO / H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    Science.gov (United States)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; Gonzalez-Ramos, Y.; Schneider, M.

    2015-05-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δD(H2O) were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δD) ≈10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote sensing measurements of δD(H2O) as a means to validate the remote sensing humidity and δD(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δD(H2O) correlations we were able to identify different layers of air masses with specific isotopic signatures. The results are discussed.

  6. Automatic tuning of Bragg condition in a radio-acoustic system for PBL temperature profile measurement

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, G; Trivero, P

    1985-01-01

    A Radio-Acoustic Sounding System (RASS) with acoustic wavelength lambda/sub a/ approx. 1m was designed and successfully tested. The system proved to be capable of measuring the vertical temperature profile in the Planetary Boundary Layer (PBL) with an accuracy and vertical resolution comparable to that of traditional apparatus (radiothermosondes borne by tethered or disposable balloons, thermosondes borne by aircraft and so on), yet combined with the advantages typical of remote sensing techniques. Up to the summer of 1983 the system needed attendance by an operator who had to identify the acoustic sounding frequency affording the fundamental condition of Bragg resonance between acoustic and radio wavelengths. Features and performance of the new completely automatic RASS arrangement are presented. These include the possibility of obtaining average thermal vertical profiles at preset time intervals. Maximum range of the possibility of obtaining average thermal vertical profiles at preset time intervals. Maximum range of measurements obtained in about 1000 1/2-h averages was: in 90% of cases greater than or equal to 600 m; in 50% of cases greater than or equal to 1100m. Such results indicate the usefulness of automatic RASS as a tool for meteorological purposes and for the application of air pollution control strategies.

  7. Technical Note: Variance-covariance matrix and averaging kernels for the Levenberg-Marquardt solution of the retrieval of atmospheric vertical profiles

    Directory of Open Access Journals (Sweden)

    S. Ceccherini

    2010-03-01

    Full Text Available The variance-covariance matrix (VCM and the averaging kernel matrix (AKM are widely used tools to characterize atmospheric vertical profiles retrieved from remote sensing measurements. Accurate estimation of these quantities is essential for both the evaluation of the quality of the retrieved profiles and for the correct use of the profiles themselves in subsequent applications such as data comparison, data assimilation and data fusion. We propose a new method to estimate the VCM and AKM of vertical profiles retrieved using the Levenberg-Marquardt iterative technique. We apply the new method to the inversion of simulated limb emission measurements. Then we compare the obtained VCM and AKM with those resulting from other methods already published in the literature and with accurate estimates derived using statistical and numerical estimators. The proposed method accounts for all the iterations done in the inversion and provides the most accurate VCM and AKM. Furthermore, it correctly estimates the VCM and the AKM also if the retrieval iterations are stopped when a physically meaningful convergence criterion is fulfilled, i.e. before achievement of the numerical convergence at machine precision. The method can be easily implemented in any Levenberg-Marquardt iterative retrieval scheme, either constrained or unconstrained, without significant computational overhead.

  8. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air

    International Nuclear Information System (INIS)

    Zhang Yuzhong; Deng Shuxing; Liu Yanan; Shen Guofeng; Li Xiqing; Cao Jun; Wang Xilong; Reid, Brian; Tao Shu

    2011-01-01

    Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH LMW4 ) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH LMW4 within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. - Research highlights: → Design, field test and calibration of the novel passive air sampler, PAS-V-I. → Vertical concentration gradients of PAH LMW4 within a thin layer close to soil. → Comparison of results between PAS-V-I measurement and fugacity approach. → Potential application of PAS-V-I and further modifications. - A novel passive sampling device was developed and tested for measuring vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.

  9. A multi-model analysis of vertical ozone profiles

    Directory of Open Access Journals (Sweden)

    J. E. Jonson

    2010-06-01

    Full Text Available A multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP under the Convention on Long-range Transboundary Air Pollution (LRTAP. Vertical profiles of ozone at 12-h intervals from 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations.

    In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. This may explain why statistical relationships between models and ozonesonde measurements are far less satisfactory than shown in previous studies for surface measurements at all seasons. The lowest bias between model-calculated ozone profiles and the ozonesonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months, the spread in model results increases, and the agreement between ozonesonde measurements and the individual models deteriorates further.

    At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are shown. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and

  10. Inversely estimating the vertical profile of the soil CO2 production rate in a deciduous broadleaf forest using a particle filtering method.

    Science.gov (United States)

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki

    2015-01-01

    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the "actual" values by decreasing the variance of the posterior distribution of the values.

  11. Two Years of Ozone Vertical Profiles Collected from Aircraft over California and the Pacific Ocean

    Science.gov (United States)

    Austerberry, D.; Yates, E. L.; Roby, M.; Chatfield, R. B.; Iraci, L. T.; Pierce, B.; Fairlie, T. D.; Johnson, B. J.; Ives, M.

    2012-12-01

    Tropospheric ozone transported across the Pacific Ocean has been strongly suggested to contribute substantially to surface ozone levels at several sites within Northern California's Sacramento Valley. Because this contribution can affect a city's ability to meet regulatory ozone limits, the influence of Pacific ozone transport has implications for air quality control strategies in the San Joaquin Valley (SJV). The Alpha Jet Atmospheric Experiment is designed to collect a multi-year data set of tropospheric ozone vertical profiles. Forty-four flights with ozone profiles were conducted between February 2nd, 2011 and August 9th, 2012, and approximately ten more flights are expected in the remainder of 2012. Twenty marine air profiles have been collected at sites including Trinidad Head and two locations tens of kilometers offshore at 37° N latitude. Good agreement is seen with ozonesondes launched from Trinidad Head. Additional profiles over Merced, California were obtained on many of these flight days. These in-situ measurements were conducted during spiral descents of H211's Alpha Jet at mid-day local times using a 2B Technologies Dual Beam Ozone Monitor. Hourly surface ambient ozone data were obtained from the California Air Resources Board's SJV monitoring sites. For each site, the Pearson linear correlation coefficient was calculated between ozone in a 300m vertical layer of an offshore profile and the surface site at varying time offsets from the time of the profile. Each site's local and regional ozone production component was estimated and removed. The resulting correlations suggest instances of Pacific ozone transport following some of the offshore observations. Real-Time Air Quality Modeling System (RAQMS) products constrained by assimilated satellite data model the transport of ozone enhancements and guide flight planning. RAQMS hindcasts also suggest that ozone transport to the surface of the SJV basin occurred following some of these offshore profiles

  12. Vertical distribution of hydrocarbons in the low troposphere below and above the mixing height: tethered balloon measurements in Milan, Italy.

    Science.gov (United States)

    Sangiorgi, G; Ferrero, L; Perrone, M G; Bolzacchini, E; Duane, M; Larsen, B R

    2011-12-01

    A novel approach for measuring vertical profiles of HCs and particle number concentrations was described and applied in the low troposphere over Milan (Italy) during typical spring and summer days. Particle profiles yielded nearly homogeneous concentrations below the mixing height, with level-to-ground concentration ratios of 92-97%, while HCs showed a more pronounced decrease (74-95%). Vertical mixing and photochemical loss of HCs were demonstrated to cause these gradients. Much lower concentrations were observed for the profiles above the mixing height, where the HC mixtures showed also a different composition, which was partially explained by the horizontal advection of air with HC sources different to those prevailing at the site. The application of pseudo-first order kinetics for reactions between HCs and the hydroxyl radical allowed for the estimation of the vertical mixing time scale in the order of 100 ± 20 min. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Measurement of vertical stability metrics in KSTAR

    Science.gov (United States)

    Hahn, Sang-Hee; Humphreys, D. A.; Mueller, D.; Bak, J. G.; Eidietis, N. W.; Kim, H.-S.; Ko, J. S.; Walker, M. L.; Kstar Team

    2017-10-01

    The paper summarizes results of multi-year ITPA experiments regarding measurement of the vertical stabilization capability of KSTAR discharges, including most recent measurements at the highest achievable elongation (κ 2.0 - 2.1). The measurements of the open-loop growth rate of VDE (γz) and the maximum controllable vertical displacement (ΔZmax) are done by the release-and-catch method. The dynamics of the vertical movement of the plasma is verified by both relevant magnetic reconstructions and non-magnetic diagnostics. The measurements of γz and ΔZmax were done for different plasma currents, βp, internal inductances, elongations and different configurations of the vessel conductors that surround the plasma as the first wall. Effects of control design choice and diagnostics noise are discussed, and comparison with the axisymmetric plasma response model is given for partial accounting for the measured control capability. This work supported by Ministry of Science, ICT, and Future Planning under KSTAR project.

  14. Quantitative precipitation estimation in complex orography using quasi-vertical profiles of dual polarization radar variables

    Science.gov (United States)

    Montopoli, Mario; Roberto, Nicoletta; Adirosi, Elisa; Gorgucci, Eugenio; Baldini, Luca

    2017-04-01

    Weather radars are nowadays a unique tool to estimate quantitatively the rain precipitation near the surface. This is an important task for a plenty of applications. For example, to feed hydrological models, mitigate the impact of severe storms at the ground using radar information in modern warning tools as well as aid the validation studies of satellite-based rain products. With respect to the latter application, several ground validation studies of the Global Precipitation Mission (GPM) products have recently highlighted the importance of accurate QPE from ground-based weather radars. To date, a plenty of works analyzed the performance of various QPE algorithms making use of actual and synthetic experiments, possibly trained by measurement of particle size distributions and electromagnetic models. Most of these studies support the use of dual polarization variables not only to ensure a good level of radar data quality but also as a direct input in the rain estimation equations. Among others, one of the most important limiting factors in radar QPE accuracy is the vertical variability of particle size distribution that affects at different levels, all the radar variables acquired as well as rain rates. This is particularly impactful in mountainous areas where the altitudes of the radar sampling is likely several hundred of meters above the surface. In this work, we analyze the impact of the vertical profile variations of rain precipitation on several dual polarization radar QPE algorithms when they are tested a in complex orography scenario. So far, in weather radar studies, more emphasis has been given to the extrapolation strategies that make use of the signature of the vertical profiles in terms of radar co-polar reflectivity. This may limit the use of the radar vertical profiles when dual polarization QPE algorithms are considered because in that case all the radar variables used in the rain estimation process should be consistently extrapolated at the surface

  15. Validation of GOME (ERS-2) NO2 vertical column data with ground-based measurements at Issyk-Kul (Kyrgyzstan)

    Science.gov (United States)

    Ionov, D.; Sinyakov, V.; Semenov, V.

    Starting from 1995 the global monitoring of atmospheric nitrogen dioxide is carried out by the measurements of nadir-viewing GOME spectrometer aboard ERS-2 satellite. Continuous validation of that data by means of comparisons with well-controlled ground-based measurements is important to ensure the quality of GOME data products and improve related retrieval algorithms. At the station of Issyk-Kul (Kyrgyzstan) the ground-based spectroscopic observations of NO2 vertical column have been started since 1983. The station is located on the northern shore of Issyk-Kul lake, 1650 meters above the sea level (42.6 N, 77.0 E). The site is equipped with grating spectrometer for the twilight measurements of zenith-scattered solar radiation in the visible range, and applies the DOAS technique to retrieve NO2 vertical column. It is included in the list of NDSC stations as a complementary one. The present study is focused on validation of GOME NO2 vertical column data, based on 8-year comparison with correlative ground-based measurements at Issyk-Kul station in 1996-2003. Within the investigation, an agreement of both individual and monthly averaged GOME measurements with corresponding twilight ground-based observations is examined. Such agreement is analyzed with respect to different conditions (season, sun elevation), temporal/spatial criteria choice (actual overpass location, correction for diurnal variation) and data processing (GDP version 2.7, 3.0). In addition, NO2 vertical columns were integrated from simultaneous stratospheric profile measurements by NASA HALOE and SAGE-II/III satellite instruments and introduced to explain the differences with ground-based observations. In particular cases, NO2 vertical profiles retrieved from the twilight ground-based measurements at Issuk-Kul were also included into comparison. Overall, summertime GOME NO2 vertical columns were found to be systematicaly lower than ground-based data. This work was supported by International Association

  16. Comparisons of Soft Tissue Thickness Measurements in Adult Patients With Various Vertical Patterns

    Directory of Open Access Journals (Sweden)

    Neslihan Seyhan Cezairli

    2017-08-01

    Full Text Available Objective: The purposes of this study were to evaluate to study soft tissue facial profile among the different vertical patterns using the Holdaway analysis and the soft tissue thickness measurements. Materials and Methods: The study sample consisted of 90 patients divided into 3 groups: low angle group (30 patients; mean age, 20.38±3.76 years, normal angle group (30 patients; mean age, 19.36±2.83 years and high angle group (30 patients; mean age, 19.44±2.14 years. The study sample, comprised a total of 90 patients (54 women and 36 men divided into low-angle, normal-angle and high angle groups based on vertical growth pattern using the SN/GoGn angle (high-angle group >37°; low-angle group <27°; and control group or normal angle group 27-37°. Facial soft-tissue thickness and Holdaway measurements were analyzed on each radiograph with Image J programme. One-way analysis of variance and post-hoc test (Tukey were used to compare Holdaway measurements and soft tissue thicknesses among the three groups. Results: Significant differences among vertical patterns were observed for the ‘gnathion’, ‘menton’, ‘stomion’ and ‘inferior sulcus to H line’ when both genders were combined. These measurements were thinner in the high-angle group. Significant differences among vertical patterns were observed for ‘gnathion’ and ‘lower lip to H line’ in women; for ‘stomion’ and ‘nose prominence’ in men when examined separately. Conclusion: Facial soft tissue measurements except some for in high angle group were thinner than in low angle group. All soft tissue measurements were greater except for gnathion in low angle group in men than in women.

  17. Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China

    Science.gov (United States)

    Xing, Chengzhi; Liu, Cheng; Wang, Shanshan; Chan, Ka Lok; Gao, Yang; Huang, Xin; Su, Wenjing; Zhang, Chengxin; Dong, Yunsheng; Fan, Guangqiang; Zhang, Tianshu; Chen, Zhenyi; Hu, Qihou; Su, Hang; Xie, Zhouqing; Liu, Jianguo

    2017-12-01

    Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lidar measurements were performed in Shanghai, China, during May 2016 to investigate the vertical distribution of summertime atmospheric pollutants. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2) and formaldehyde (HCHO) concentrations were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO) algorithm, while vertical distribution of ozone (O3) was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori profile demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. Tropospheric NO2 vertical column densities (VCDs) measured with MAX-DOAS show a good agreement with OMI satellite observations with a Pearson correlation coefficient (R) of 0.95. In addition, measurements of the O3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km). Planetary boundary layer (PBL) height and horizontal and vertical wind field information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground level and upper altitudes are not directly related to horizontal and vertical transportation. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs) in the lower troposphere.

  18. Vertical seismic profile data from well Mallik 2L-38 for gas hydrate studies

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Y [Calgary Univ., AB (Canada); Walia, R [Victoria Univ., BC (Canada); Hyndman, R D; Sakai, A

    1999-01-01

    A gas hydrate research well was drilled in the Canadian Arctic to determine gas hydrates in a permafrost setting in a collaborative research project between the Japan National Oil Corp., and the Geological Survey of Canada with the participation of other agencies. The multidisciplinary study included an electromagnetic survey, permafrost and gas hydrate coring, and comprehensive downhole geophysical logging and measurement. Laboratory studies on recovered cores and cuttings included sedimentology, physical properties, geochemistry, and reservoir characteristics of the Mallik gas accumulation. As part of the field program, a vertical seismic profiling survey was conducted at zero and offset source positions with 3 component receiver tools and horizontal and vertical vibration sources. A special effort was made to record shear wave data, and results from this work were combined with down hole logs and regional surface seismic data. The data will be used also to determine the effect of gas hydrates on formation velocities and to measure gas hydrate concentrations as a function of depth in the formation penetrated by the well. Certain conclusions followed from the initial VSP analysis. 1) Zero offset vertical vibration Z component and horizontal X component data give reliable velocity estimation within the gas hydrate formation zone, and P wave velocities from offset data indicate excellent consistency with that from zero offset data and with the sonic log. 2) The VSP data permitted reliable identification of gas hydrate bearing zones. 4 refs.

  19. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu; Yoshioka, Yuzuru.

    1996-01-01

    The authors have been developing a measurement system for bubbly flow in order to clarify its multi-dimensional flow characteristics and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system combining an ultrasonic velocity profile monitor with a video data processing unit is proposed, which can measure simultaneously velocity profiles in both gas and liquid phases, a void fraction profile for bubbly flow in a channel, and an average bubble diameter and void fraction. Furthermore, the proposed measurement system is applied to measure flow characteristics of a bubbly countercurrent flow in a vertical rectangular channel to verify its capability. (author)

  20. Rain cell-based identification of the vertical profile of reflectivity as observed by weather radar and its use for precipitation uncertainty estimation

    Science.gov (United States)

    Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Uijlenhoet, R.

    2012-04-01

    The wide scale implementation of weather radar systems over the last couple of decades has increased our understanding concerning spatio-temporal precipitation dynamics. However, the quantitative estimation of precipitation by these devices is affected by many sources of error. A very dominant source of error results from vertical variations in the hydrometeor size distribution known as the vertical profile of reflectivity (VPR). Since the height of the measurement as well as the beam volume increases with distance from the radar, for stratiform precipitation this results in a serious underestimation (overestimation) of the surface reflectivity while sampling within the snow (bright band) region. This research presents a precipitation cell-based implementation to correct volumetric weather radar measurements for VPR effects. Using the properties of a flipping carpenter square, a contour-based identification technique was developed, which is able to identify and track precipitation cells in real time, distinguishing between convective, stratiform and undefined precipitation. For the latter two types of systems, for each individual cell, a physically plausible vertical profile of reflectivity is estimated using a Monte Carlo optimization method. Since it can be expected that the VPR will vary within a given precipitation cell, a method was developed to take the uncertainty of the VPR estimate into account. As a result, we are able to estimate the amount of precipitation uncertainty as observed by weather radar due to VPR for a given precipitation type and storm cell. We demonstrate the possibilities of this technique for a number of winter precipitation systems observed within the Belgian Ardennes. For these systems, in general, the precipitation uncertainty estimate due to vertical reflectivity profile variations varies between 10-40%.

  1. Elastic kirchhoff migration for vertical seismic profiles

    International Nuclear Information System (INIS)

    Keho, T.H.; Wu, R.S.

    1987-01-01

    Elastic Kirchhoff migration is implemented for the VSP recording geometry. The resulting migration formula requires measurement of the stress as well as the displacement. Since stress is not measured in a VSP, and in many cases the horizontal component of displacement is not measured, approximate migration formulas are given for these cases. The elastic migration formula for the case where only the vertical components are available, is the same as the acoustic migration formula, where the pressure data are replaced by the magnitudes of the elastic data as reconstructed from the vertical components, and the acoustic Green's functions are replaced with either the P or S wave elastic Green's functions. Two expressions for migration of two component displacement data are presented. In the first, the terms involving traction data are simply ignored. In the second, an improved backpropagation operator for the displacement field is obtained by replacing the traction data in the Kirchhoff integral by displacement data using Hooke's law. The migration expressions for the cases where two component data are available produce images which are less contaminated by artifacts than the migration images of one component data

  2. Analysis of photonic spot profile converter and bridge structure on SOI platform for horizontal and vertical integration

    Science.gov (United States)

    Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib

    2017-08-01

    Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.

  3. Light hydrocarbons vertical profiles and fluxes in a french rural area

    Science.gov (United States)

    Kanakidou, M.; Bonsang, B.; Lambert, G.

    By means of manned hot air balloon flights, in July 1986, an experiment was conducted in a rural area of southwest France in order to determine the production at ground level of non-methane hydrocarbons in the C 2-C 6 range. Flux determinations were based on vertical profiles before and after the development of a temperature inversion layer which allowed the measurement of the NMHC accumulation close to ground level. The main species produced in the late afternoon were acetylene, propane, ethene, propene and ethane with production rates of the order of 0.5 to 2 × 10 -4g of C m -2 h -1. Isoprene was found to be the main other unsaturated species also produced. The fluxes and the atmospheric content of the air column before the inversion are consistent with an average OH radical concentration of 2 × 10 6 cm -3.

  4. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    Science.gov (United States)

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  5. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  6. Past changes in the vertical distribution of ozone – Part 1: Measurement techniques, uncertainties and availability

    Directory of Open Access Journals (Sweden)

    B. Hassler

    2014-05-01

    Full Text Available Peak stratospheric chlorofluorocarbon (CFC and other ozone depleting substance (ODS concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP/World Meteorological Organization (WMO Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument. Archive location information for each data set is also given.

  7. Global mapping of vertical injection profiles of wild-fire emission

    Science.gov (United States)

    Sofiev, M.; Vankevich, R.; Ermakova, T.; Hakkarainen, J.

    2012-08-01

    A problem of a characteristic vertical profile of smoke released from wild-land fires is considered. A methodology for bottom-up evaluation of this profile is suggested and a corresponding global dataset is calculated. The profile estimation is based on: (i) a semi-empirical formula for plume-top height recently suggested by the authors, (ii) MODIS satellite observations of active wild-land fires, and (iii) meteorological conditions evaluated at each fireplace using output of ECMWF weather prediction model. Plumes from all fires recorded globally during two arbitrarily picked years 2001 and 2008 are evaluated and their smoke injection profiles are estimated with a time step of 3 h. The resulting 4-dimensional dataset is split to day- and night-time subsets. Each of the subsets is projected to global grid with resolution 1° × 1° × 500 m, averaged to monthly level, and normalised with total emission. Evaluation of the obtained dataset was performed at several levels. Firstly, the quality of the semi-empirical formula for plume-top computations was evaluated using recent additions to the MISR fire plume-height dataset. Secondly, the obtained maps of injection profiles are compared with another global distribution available from literature. Thirdly, the upper percentiles of the profiles are compared with an independent dataset of space-based lidar CALIOP. Finally, the stability of the calculated profiles with regard to inter-annual variations of the fire activity and meteorological conditions is roughly estimated by comparing the sub-sets for 2001 and 2008.

  8. Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China

    Directory of Open Access Journals (Sweden)

    C. Xing

    2017-12-01

    Full Text Available Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS and lidar measurements were performed in Shanghai, China, during May 2016 to investigate the vertical distribution of summertime atmospheric pollutants. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2 and formaldehyde (HCHO concentrations were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO algorithm, while vertical distribution of ozone (O3 was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori profile demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. Tropospheric NO2 vertical column densities (VCDs measured with MAX-DOAS show a good agreement with OMI satellite observations with a Pearson correlation coefficient (R of 0.95. In addition, measurements of the O3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km. Planetary boundary layer (PBL height and horizontal and vertical wind field information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground level and upper altitudes are not directly related to horizontal and vertical transportation. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs in the lower troposphere.

  9. Development of a balloonborne radiosonde to measure extremely low mixing ratios of nitric oxide in the atmosphere up to the altitude of 40 km first measured and stratospheric vertical profiles

    Energy Technology Data Exchange (ETDEWEB)

    Weiler, K H

    1979-01-01

    Vertical profiles of NO were measured at midlatitudes by means of a balloonborne payload using the chemiluminescent principle. A newly developed pressure dependent turbofan enables sufficient main flow even under near vacuum conditions, as low as 3 mb a flight duration of 20 hours. The data are continuously transmitted via a PCM-system to the ground station. The whole instrument was sealed prior to the flight and opened above the clouds by telecommand in order to avoid contamination by water vapour. Extensive laboratory and in situ calibration procedures led for the first time to overall errors of less than +-5% for the midday mean value between 3 to 10 mb and +- 25% at 150 mb. The resolving power is better than 20 pptsub(v) (10/sup -11/) depending on the actual temperature, maniflow, and pressure. At about 25 mb, the reduction in NO with the setting of the sun was observed. A very slow decrease in the mixing ratio was found, which agrees with measurements of other workers but not with present model predictions. The mixing ratio between 7 and 10 mb was between 3 and 4 ppbsub(v) (10/sup -9/). The minimum mixing ratio of about 0.07 ppbsub(v) was observed at about 60 mb. Also a hysteresis between ascent and descent was observed. It is concluded that the different diurnal variations of NO are strongly dependent on vertical exchange processes, scattering processes, and the surface albedo.

  10. Vertical ozone measurements in the troposphere over the Eastern Mediterranean and comparison with Central Europe

    Directory of Open Access Journals (Sweden)

    P. D. Kalabokas

    2007-07-01

    Full Text Available Vertical ozone profiles measured in the period 1996–2002 in the framework of the MOZAIC project (Measurement of Ozone and Water Vapor by Airbus in Service Aircraft for flights connecting Central Europe to the Eastern Mediterranean basin (Heraklion, Rhodes, Antalya were analysed in order to evaluate the high rural ozone levels recorded in the Mediterranean area during summertime. The 77 flights during summer (JJAS showed substantially (10–12 ppb, 20–40% enhanced ozone mixing ratios in the lower troposphere over the Eastern Mediterranean frequently exceeding the 60 ppb, 8-h EU air quality standard, whereas ozone between 700 hPa and 400 hPa was only slightly (3–5 ppb, 5–10% higher than over Central Europe. Analysis of composite weather maps for the high and low ozone cases, as well as back-trajectories and vertical profiles of carbon monoxide, suggest that the main factor leading to high tropospheric ozone values in the area is anticyclonic influence, in combination with a persistent northerly flow in the lower troposphere during summertime over the Aegean. On the other hand the lowest ozone levels are associated with low-pressure systems, especially the extension of the Middle East low over the Eastern Mediterranean area.

  11. RASS sound speed profile (SSP) measurements for use in outdoor sound propagation models

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, S G [Physics Department, University of Auckland (New Zealand); Huenerbein, S v; Waddington, D [Research Institute for the Built and Human Environment, University of Salford (United Kingdom)], E-mail: s.vonhunerbein@salford.ac.uk

    2008-05-01

    The performance of outdoor sound propagation models depends to a great extent on meteorological input parameters. In an effort to improve speed and accuracy, model output synthetic sound speed profiles (SSP) are commonly used depending on meteorological classification schemes. In order to use SSP measured by RASS in outdoor sound propagation models, the complex profiles need to be simplified. In this paper we extend an investigation on the spatial and temporal characteristics of the meteorological data set required to yield adequate comparisons between models and field measurements, so that the models can be fairly judged. Vertical SSP from RASS, SODAR wind profiles as well as mast wind and temperature data from a flat terrain site and measured over a period of several months are used to evaluate applicability of the logarithmic approximation for a stability classification scheme proposed by the HARMONOISE working group.

  12. RASS sound speed profile (SSP) measurements for use in outdoor sound propagation models

    International Nuclear Information System (INIS)

    Bradley, S G; Huenerbein, S v; Waddington, D

    2008-01-01

    The performance of outdoor sound propagation models depends to a great extent on meteorological input parameters. In an effort to improve speed and accuracy, model output synthetic sound speed profiles (SSP) are commonly used depending on meteorological classification schemes. In order to use SSP measured by RASS in outdoor sound propagation models, the complex profiles need to be simplified. In this paper we extend an investigation on the spatial and temporal characteristics of the meteorological data set required to yield adequate comparisons between models and field measurements, so that the models can be fairly judged. Vertical SSP from RASS, SODAR wind profiles as well as mast wind and temperature data from a flat terrain site and measured over a period of several months are used to evaluate applicability of the logarithmic approximation for a stability classification scheme proposed by the HARMONOISE working group

  13. Vertical seismic profile data from well Mallik 2L-38 for gas hydrate studies

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Y [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics; Walia, R [Victoria Univ., BC (Canada) School of Earth and Ocean Sciences; Hyndman, R [Geological Survey of Canada, Sidney, BC (Canada) Pacific Geoscience Centre

    1999-07-01

    A gas hydrate research well was drilled in the Canadian Arctic to study gas hydrates in a permafrost setting in a collaborative research project between the Japan National Oil Corp., the Geological Survey of Canada and other agencies. The multidisciplinary study included an electromagnetic survey, permafrost and gas hydrate coring, comprehensive downhole geophysical logging and measurement. Laboratory studies concerned studies on recovered cuttings and core including sedimentology, physical properties, geochemistry, and reservoir characteristics of the Mallik gas accumulation. As part of the Mallik 2L-38 field program, a vertical seismic profiling survey was conducted at zero and other offset source positions with three component receiver tools and horizontal and vertical vibration sources. A special effort was made to record shear wave data, which will be used to estimate the effect of gas hydrate on formation velocities and to determine gas hydrate concentration as a function of the Mallik gas accumulation. From the initial VSP analysis, certain conclusions follow: 1) zero offset vertical vibration component Z and horizontal X component data give reliable velocity determination within the gas hydrate formation zone. P wave velocities from offset VSP data show an excellent consistency with that from offset data and with the sonic log. And 2) the VSP data permit reliable identification of gas hydrate bearing zones. Abstract only included.

  14. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles

    Science.gov (United States)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2010-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.

  15. Comparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (HSRL) Measurements and the Calipso Vertical Feature Mask

    Science.gov (United States)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.; hide

    2012-01-01

    Knowledge of the vertical profile, composition, concentration, and size of aerosols is required for assessing the direct impact of aerosols on radiation, the indirect effects of aerosols on clouds and precipitation, and attributing these effects to natural and anthropogenic aerosols. Because anthropogenic aerosols are predominantly submicrometer, fine mode fraction (FMF) retrievals from satellite have been used as a tool for deriving anthropogenic aerosols. Although column and profile satellite retrievals of FMF have been performed over the ocean, such retrievals have not yet been been done over land. Consequently, uncertainty in satellite estimates of the anthropogenic component of the aerosol direct radiative forcing is greatest over land, due in large part to uncertainties in the FMF. Satellite measurements have been used to detect and evaluate aerosol impacts on clouds; however, such efforts have been hampered by the difficulty in retrieving vertically-resolved cloud condensation nuclei (CCN) concentration, which is the most direct parameter linking aerosol and clouds. Recent studies have shown correlations between average satellite derived column aerosol optical thickness (AOT) and in situ measured CCN. However, these same studies, as well as others that use detailed airborne in situ measurements have noted that vertical variability of the aerosol distribution, impacts of relative humidity, and the presence of coarse mode aerosols such as dust introduce large uncertainties in such relations.

  16. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol–cloud interactions

    Directory of Open Access Journals (Sweden)

    R. Calmer

    2018-05-01

    Full Text Available The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA. In atmospheric research, lightweight RPAs ( <  2.5 kg are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol–cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol–cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS. The five-hole probe is calibrated on a multi-axis platform, and the probe–INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD functions and turbulent kinetic energy (TKE derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland, a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological

  17. Vega-1 and Vega-2: vertical profiles of wind velocity according to Doppler measurements data at landing spacecrafts

    International Nuclear Information System (INIS)

    Kerzhanovich, V.V.; Antsibor, N.M.; Bakit'ko, R.V.

    1987-01-01

    Results of the measurements of the Venus atmosphere vertical motion using the ''Vega'' landing spacecrafts are presented. Signal emitted by the landing spacecraft transmitter was received by flying apparatus and retranslated to the Earth. The difference between the measured frequency of the retranslated signal and reference one (Doppler's shift) permitted to determine the velocity of the landing spacecraft with the accuracy of 2 cm/s with the pitch of 1 s

  18. Vertical distribution of organochlorine pesticides in humus along Alpine altitudinal profiles in relation to ambiental parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kirchner, M., E-mail: kirchner@helmholtz-muenchen.d [Helmholtz Zentrum Muenchen, GmbH, Institutes of Ecological Chemistry, Developmental Genetics and Soil Ecology, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Faus-Kessler, T.; Jakobi, G.; Levy, W.; Henkelmann, B.; Bernhoeft, S.; Kotalik, J.; Zsolnay, A. [Helmholtz Zentrum Muenchen, GmbH, Institutes of Ecological Chemistry, Developmental Genetics and Soil Ecology, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Bassan, R. [Regional Agency for Environmental Prevention and Protection of Veneto (Italy); Belis, C. [Regional Agency for Environmental Protection of Lombardy (Italy); Kraeuchi, N. [Swiss Federal Institute for Forest, Snow and Landscape Research (Switzerland); Moche, W. [Federal Environment Agency Ltd. (Austria); Simoncic, P. [Slovenian Forestry Institute (Slovenia); Uhl, M.; Weiss, P. [Federal Environment Agency Ltd. (Austria); Schramm, K.-W. [Helmholtz Zentrum Muenchen, GmbH, Institutes of Ecological Chemistry, Developmental Genetics and Soil Ecology, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany)

    2009-12-15

    In forest soils along vertical profiles located in different parts of the Alps, concentrations of persistent organic pollutants (POPs), namely organochlorine pesticides (OCPs) like dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCH), heptachlor, aldrin, dieldrin and mirex, were measured. Though local characteristics of the sites are influenced by numerous factors like orographic and meteorological parameters, forest stand characteristics and humus parameters, we ascertained a marked vertical increase of concentrations of some organochlorine compounds in the soil. On the basis of climatological values of each site, we found that the contamination increase with altitude can be ascribed to a certain 'cold condensation effect'. In addition, the perennial atmospheric deposition of POPs is controlled by precipitation. Other key parameters explaining the accumulation of POPs are the soil organic carbon stocks, the turnover times, the re-volatilisation and degradation processes, which vary with altitude. - Caused by temperature-dependent processes regarding deposition, re-volatilization and decomposition of POPs, the concentration of organochlorine pesticides varies in the Alpine region with altitude.

  19. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed.

    Science.gov (United States)

    Wellig, Sascha D; Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K; Arlettaz, Raphaël

    2018-01-01

    Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi's pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely.

  20. The development of a balloonborne radiosonde to measure extremely low mixing ratios of nitric oxide in the atmosphere up to the altitude of 40 km first measured and stratospheric vertical profiles

    International Nuclear Information System (INIS)

    Weiler, K.H.

    1979-01-01

    Vertical profiles of NO were measured at midlatitudes by means of a balloonborne payload using the chemiluminescent principle. A newly developed pressure dependent turbofan enables sufficient main flow even under near vacuum conditions, as low as 3 mb a flight duration of 20 hours. The data are continuously transmitted via a PCM-system to the ground station. The whole instrument was sealed prior to the flight and opened above the clouds by telecommand in order to avoid contamination by water vapour. Extensive laboratory and in situ calibration procedures led for the first time to overall errors of less than +-5% for the midday mean value between 3 to 10 mb and +- 25% at 150 mb. The resolving power is better than 20 pptsub(v) (10 -11 ) depending on the actual temperature, maniflow, and pressure. At about 25 mb, the reduction in NO with the setting of the sun was observed. A very slow decrease in the mixing ratio was found, which agrees with measurements of other workers but not with present model predictions. The mixing ratio between 7 and 10 mb was between 3 and 4 ppbsub(v) (10 -9 ). The minimum mixing ratio of about 0.07 ppbsub(v) was observed at about 60 mb. Also a hysteresis between ascent and descent was observed. It is concluded that the different diurnal variations of NO are strongly dependent on vertical exchange processes, scattering processes, and the surface albedo. (orig.) [de

  1. Flow measurement behind a pair of vertical-axis wind turbines

    Science.gov (United States)

    Parker, Colin M.; Hummels, Raymond; Leftwich, Megan C.

    2017-11-01

    The wake from a pair of vertical-axis wind turbines (VAWTs) is measured using particle imaging velocimetry (PIV). The VAWT models are mounted in a low-speed wind tunnel and driven using a motor control system. The rotation of the turbines is synced using a proportional controller that allows the turbine's rotational position to be set relative to each other. The rotation of the turbines is also synced with the PIV system for taking phase averaged results. The VAWTs are tested for both co- and counter-rotating cases over a range of relative phase offsets. Time averaged and phase averaged results are measured at the horizontal mid-plane in the near wake. The time-averaged results compare the bulk wake profiles from the pair of turbines. Phase averaged results look at the vortex interactions in the near wake of the turbines. By changing the phase relation between the turbines we can see the impact of the structure interactions in both the phase and time averaged results.

  2. 2-D Low Energy Electron Beam Profile Measurement Based on Computer Tomography Algorithm with Multi-Wire Scanner

    CERN Document Server

    Yu, Nengjie; Li Qing Feng; Tang, Chuan-Xiang; Zheng, Shuxin

    2005-01-01

    A new method for low energy electron beam profile measurement is advanced, which presents a full 2-D beam profile distribution other than the traditional 2-D beam profile distribution given by 1-D vertical and horizontal beam profiles. The method is based on the CT (Computer Tomography) algorithm. Multi-sets of data about the 1-D beam profile projections are attained by rotating the multi-wire scanner. Then a 2-D beam profile is reconstructed from these projections with CT algorithm. The principle of this method is presented. The simulation and the experiment results are compared and analyzed in detail.

  3. Profile of capillary bridges between two vertically stacked cylindrical fibers under gravitational effect

    Science.gov (United States)

    Sun, Xiaohang; Lee, Hoon Joo; Michielsen, Stephen; Wilusz, Eugene

    2018-05-01

    Although profiles of axisymmetric capillary bridges between two cylindrical fibers have been extensively studied, little research has been reported on capillary bridges under external forces such as the gravitational force. This is because external forces add significant complications to the Laplace-Young equation, making it difficult to predict drop profiles based on analytical approaches. In this paper, simulations of capillary bridges between two vertically stacked cylindrical fibers with gravitational effect taken into consideration are studied. The asymmetrical structure of capillary bridges that are hard to predict based on analytical approaches was studied via a numerical approach based on Surface Evolver (SE). The axial and the circumferential spreading of liquids on two identical fibers in the presence of gravitational effects are predicted to determine when the gravitational effects are significant or can be neglected. The effect of liquid volume, equilibrium contact angle, the distance between two fibers and fiber radii. The simulation results were verified by comparing them with experimental measurements. Based on SE simulations, curves representing the spreading of capillary bridges along the two cylindrical fibers were obtained. The gravitational effect was scaled based on the difference of the spreading on upper and lower fibers.

  4. Vertically resolved characteristics of air pollution during two severe winter haze episodes in urban Beijing, China

    Science.gov (United States)

    Wang, Qingqing; Sun, Yele; Xu, Weiqi; Du, Wei; Zhou, Libo; Tang, Guiqian; Chen, Chen; Cheng, Xueling; Zhao, Xiujuan; Ji, Dongsheng; Han, Tingting; Wang, Zhe; Li, Jie; Wang, Zifa

    2018-02-01

    We conducted the first real-time continuous vertical measurements of particle extinction (bext), gaseous NO2, and black carbon (BC) from ground level to 260 m during two severe winter haze episodes at an urban site in Beijing, China. Our results illustrated four distinct types of vertical profiles: (1) uniform vertical distributions (37 % of the time) with vertical differences less than 5 %, (2) higher values at lower altitudes (29 %), (3) higher values at higher altitudes (16 %), and (4) significant decreases at the heights of ˜ 100-150 m (14 %). Further analysis demonstrated that vertical convection as indicated by mixing layer height, temperature inversion, and local emissions are three major factors affecting the changes in vertical profiles. Particularly, the formation of type 4 was strongly associated with the stratified layer that was formed due to the interactions of different air masses and temperature inversions. Aerosol composition was substantially different below and above the transition heights with ˜ 20-30 % higher contributions of local sources (e.g., biomass burning and cooking) at lower altitudes. A more detailed evolution of vertical profiles and their relationship with the changes in source emissions, mixing layer height, and aerosol chemistry was illustrated by a case study. BC showed overall similar vertical profiles as those of bext (R2 = 0.92 and 0.69 in November and January, respectively). While NO2 was correlated with bext for most of the time, the vertical profiles of bext / NO2 varied differently for different profiles, indicating the impact of chemical transformation on vertical profiles. Our results also showed that more comprehensive vertical measurements (e.g., more aerosol and gaseous species) at higher altitudes in the megacities are needed for a better understanding of the formation mechanisms and evolution of severe haze episodes in China.

  5. Observations of the vertical structure of turbulent oscillatory boundary layers above fixed roughness beds using a prototype wideband coherent Doppler profiler: 1. The oscillatory component of the flow

    Science.gov (United States)

    Hay, Alex E.; Zedel, Len; Cheel, Richard; Dillon, Jeremy

    2012-03-01

    Results are presented from an experimental investigation of rough turbulent oscillatory boundary layers using a prototype wideband bistatic coherent Doppler profiler. The profiler operates in the 1.2 MHz to 2.3 MHz frequency band and uses software-defined radio technologies for digital control of the frequency content and shape of the transmit pulse and for digital complex demodulation of the received signals. Velocity profiles are obtained at sub-millimeter range resolution and 100 Hz profiling rates (each profile being an ensemble average of 10 pulse pairs). The measurements were carried out above beds of fixed sand or gravel particles, with median grain diameters of 0.37 mm and 3.9 mm, respectively, oscillating sinusoidally at a 10 s period through excursions of 0.75 m to 1.5 m. The resulting vertical profiles of horizontal velocity magnitude and phase, with the vertical axis scaled by ℓ = κu∗m/ω, are comparable to similarly scaled profiles obtained using laser Doppler anemometry by Sleath (1987) and Jensen (1988). A key objective of the comparisons between the previous experiments and those reported here was to establish how close to the bed reliable velocity measurements can be made with the sonar. This minimum distance above the bed is estimated to be 5 ± 1 mm, a value approaching the 3 to 4 mm limit set by the path of least time.

  6. Initial time-resolved particle beam profile measurements at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Yang, B.X.; Lumpkin, A.H.

    1995-01-01

    The commissioning of the 7-GeV Advanced Photon Source (APS) storage ring began in early 1995. Characterization of the stored particle beam properties involved time-resolved transverse and longitudinal profile measurements using optical synchrotron radiation (OSR) monitors. Early results include the observation of the beam on a single turn, measurements of the transverse beam sizes after damping using a 100 μs integration time (σ x ∼ 150 ± 25 μm, σ γ ∼ 65 ± 25 μm, depending on vertical coupling), and measurement of the bunch length (σ τ ∼ 25 to 55 ps, depending on the charge per bunch). The results are consistent with specifications and predictions based on the 8.2 nm-rad natural emittance, the calculated lattice parameters, and vertical coupling less than 10%. The novel, single-element focusing mirror for the photon transport line and the dual-sweep streak camera techniques which allow turn-by-turn measurements will also be presented. The latter measurements are believed to be the first of their kind on a storage ring in the USA

  7. Tracer concentration profiles measured in central London as part of the REPARTEE campaign

    Directory of Open Access Journals (Sweden)

    D. Martin

    2011-01-01

    Full Text Available There have been relatively few tracer experiments carried out that have looked at vertical plume spread in urban areas. In this paper we present results from two tracer (cyclic perfluorocarbon experiments carried out in 2006 and 2007 in central London centred on the BT Tower as part of the REPARTEE (Regent's Park and Tower Environmental Experiment campaign. The height of the tower gives a unique opportunity to study vertical dispersion profiles and transport times in central London. Vertical gradients are contrasted with the relevant Pasquill stability classes. Estimation of lateral advection and vertical mixing times are made and compared with previous measurements. Data are then compared with a simple operational dispersion model and contrasted with data taken in central London as part of the DAPPLE campaign. This correlates dosage with non-dimensionalised distance from source. Such analyses illustrate the feasibility of the use of these empirical correlations over these prescribed distances in central London.

  8. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    Directory of Open Access Journals (Sweden)

    Siomos N.

    2016-01-01

    Full Text Available Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC, that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E from the period 2013-2014 were used in this study.

  9. Estimating Oceanic Primary Production Using Vertical Irradiance and Chlorophyll Profiles from Ocean Gliders in the North Atlantic.

    Science.gov (United States)

    Hemsley, Victoria S; Smyth, Timothy J; Martin, Adrian P; Frajka-Williams, Eleanor; Thompson, Andrew F; Damerell, Gillian; Painter, Stuart C

    2015-10-06

    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope ((13)C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements.

  10. Relation of Cloud Occurrence Frequency, Overlap, and Effective Thickness Derived from CALIPSO and CloudSat Merged Cloud Vertical Profiles

    Science.gov (United States)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2009-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.

  11. Verification of optical coordinate measuring machines along the vertical measurement axis

    DEFF Research Database (Denmark)

    Morace, Renata Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper deals with the performance verification of optical coordinate measuring machines (CMMs) equipped with video probes along the vertical measurement axis. The aim of this work was to investigate the capability of artefacts like gauge blocks and angle blocks for calibrating, verifying...

  12. Polar measurements on profiles

    Energy Technology Data Exchange (ETDEWEB)

    Althaus, D.

    1985-03-01

    Wind tunnel models with a profile depth of t=0.5 m were measured in a laminar wind tunnel by the usual measuring processes. The profile resistance was determined by integration along the width of span. The smooth profiles were examined at Re=0.7/1.0 and 1.5 million. At Re=1.0 million, the position of the changeover points were determined with a stethoscope. Also at this Reynolds number measurements were taken with a trip wire of d=2 mm diameter, directly on the profile nose. The tables contain the co-ordinates of the profiles, the contours, the theoretical speed distributions for 4 different angles of attack, the csub(a)-csub(w) polar measurements and changeover points, and the torque coefficients around the t/4 point. (BR).

  13. Vertical gradients of nitrous acid (HONO) measured in Beijing during winter smog events.

    Science.gov (United States)

    Kramer, Louisa; Crilley, Leigh; Thomson, Steven; Bloss, William; Tong, Shengrui

    2017-04-01

    HONO is an important atmospheric constituent, as the photolysis of HONO leads to the formation of OH radicals in the boundary layer, with contributions of up to 60% in urban regions. This is particularly important in mega-cities, such as Beijing, where measured HONO levels can reach parts per billion. Research has shown that direct emissions, homogeneous gas phase reactions and heterogeneous conversion of NO2 on surfaces all contribute to HONO in urban areas. There are, however, still uncertainties regarding the magnitude of these sources, and models are still unable to account for total measured HONO mixing ratios. To assess the sources of HONO, vertical profile measurements were performed up to an altitude of 260 m on the Institute of Atmospheric Physics (IAP) Meteorological Tower in Beijing. These measurements were performed as part of the Air Pollution and Human Health (APHH) project, during Nov/Dec 2016. Here we present HONO profile measurements using a long-path absorption photometer (LOPAP), during both clear and hazy days. HONO levels near the ground were very high during smog events with concentrations over 10 ppb observed. The data show a strong negative gradient with altitude, suggesting a source close to the surface. The largest gradients were observed overnight during smog events, with differences in HONO between the ground and the highest level up to 6 ppb.

  14. Identification and uncertainty estimation of vertical reflectivity profiles using a Lagrangian approach to support quantitative precipitation measurements by weather radar

    Science.gov (United States)

    Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Delrieu, G.; Uijlenhoet, R.

    2013-09-01

    This paper presents a novel approach to estimate the vertical profile of reflectivity (VPR) from volumetric weather radar data using both a traditional Eulerian as well as a newly proposed Lagrangian implementation. For this latter implementation, the recently developed Rotational Carpenter Square Cluster Algorithm (RoCaSCA) is used to delineate precipitation regions at different reflectivity levels. A piecewise linear VPR is estimated for either stratiform or neither stratiform/convective precipitation. As a second aspect of this paper, a novel approach is presented which is able to account for the impact of VPR uncertainty on the estimated radar rainfall variability. Results show that implementation of the VPR identification and correction procedure has a positive impact on quantitative precipitation estimates from radar. Unfortunately, visibility problems severely limit the impact of the Lagrangian implementation beyond distances of 100 km. However, by combining this procedure with the global Eulerian VPR estimation procedure for a given rainfall type (stratiform and neither stratiform/convective), the quality of the quantitative precipitation estimates increases up to a distance of 150 km. Analyses of the impact of VPR uncertainty shows that this aspect accounts for a large fraction of the differences between weather radar rainfall estimates and rain gauge measurements.

  15. Validation of vertical profile from atmosphere using ATOVS products and its impact over Indian region.

    Science.gov (United States)

    Mahandru, Riddhi; Kumar, Adarsh; Mitra, Ashim kumar

    This research paper summarizes the validation of atmospheric vertical profile using NOAA(National Oceanic and Atmospheric Administration)/ MetOp satellite derived data over India with radiosonde observations over a span of 8 months. NOAA's International Advanced Television and Infrared Observations satellite Vertical Sounder (ATOVS) processing package (IAPP) obtains temperature and moisture profiles in different pressure levels ranging from 1000hpa to 10hpa from real time direct broadcast (DB) receiving system installed at India Meteorological department. Different pressure levels were substituted to the same pressure levels for calculations of standard deviation, bias and RMSE (root mean square error) The sounder derived products like Total precipitable water vapor (TPW) and Lifting index(LI) from NOAA Satellite was also validated with radiosonde data which provided significant results for weather forecasting. The validation shows that the sounder provides unique information about the state of atmosphere and monitoring the convective environment for severe weather forecasting In addition to this, case study on severe weather events was analyzed using ATOVS products.

  16. Vertically resolved characteristics of air pollution during two severe winter haze episodes in urban Beijing, China

    Directory of Open Access Journals (Sweden)

    Q. Wang

    2018-02-01

    Full Text Available We conducted the first real-time continuous vertical measurements of particle extinction (bext, gaseous NO2, and black carbon (BC from ground level to 260 m during two severe winter haze episodes at an urban site in Beijing, China. Our results illustrated four distinct types of vertical profiles: (1 uniform vertical distributions (37 % of the time with vertical differences less than 5 %, (2 higher values at lower altitudes (29 %, (3 higher values at higher altitudes (16 %, and (4 significant decreases at the heights of ∼ 100–150 m (14 %. Further analysis demonstrated that vertical convection as indicated by mixing layer height, temperature inversion, and local emissions are three major factors affecting the changes in vertical profiles. Particularly, the formation of type 4 was strongly associated with the stratified layer that was formed due to the interactions of different air masses and temperature inversions. Aerosol composition was substantially different below and above the transition heights with ∼ 20–30 % higher contributions of local sources (e.g., biomass burning and cooking at lower altitudes. A more detailed evolution of vertical profiles and their relationship with the changes in source emissions, mixing layer height, and aerosol chemistry was illustrated by a case study. BC showed overall similar vertical profiles as those of bext (R2 = 0.92 and 0.69 in November and January, respectively. While NO2 was correlated with bext for most of the time, the vertical profiles of bext ∕ NO2 varied differently for different profiles, indicating the impact of chemical transformation on vertical profiles. Our results also showed that more comprehensive vertical measurements (e.g., more aerosol and gaseous species at higher altitudes in the megacities are needed for a better understanding of the formation mechanisms and evolution of severe haze episodes in China.

  17. Transmission of vertical stress in a real soil profile. Part III

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    2011-01-01

    The transmission of stress in soils is extremely sensitive to changes in water content. According to the elasticity theory, for a given load applied to a given soil, an increase in soil water content yields a higher concentration of stresses under the centre of the load and a deeper propagation...... of stresses. We quantified the effect of soil water content of topsoil/subsoil layers (wet/wet, wet/dry, and dry/dry) on stress transmission. 3D measurements of vertical stresses under a towed wheel (800/50R34) were performed in situ in a Stagnic Luvisol. The tyre was loaded with 60 kN, and we used...... were measured in separate tests. Increase of water content in the topsoil by 114% increased the contact area by 149%, decreased the vertical stresses at the tyre–soil interface by 50%, and decreased the maximum vertical stress at 0.3 and 0.6 m depth by 46 and 63%, respectively. Stress attenuation...

  18. Repeated absolute gravity measurements for monitoring slow intraplate vertical deformation in Western Europe

    Science.gov (United States)

    Van Camp, M. J.; de Viron, O.; Scherneck, H.; Hinzen, K. G.; Williams, S. D.; Lecocq, T.; Quinif, Y.; Camelbeeck, T.

    2011-12-01

    In continental plate interiors, ground surface movements are at the limit of the noise level and close to or below the accuracy of current geodetic techniques. Absolute gravity measurements are valuable to quantify slow vertical movements, as this instrument is drift free and, unlike GPS, independent of the terrestrial reference frame. Repeated absolute gravity (AG) measurements have been performed in Oostende (Belgian coastline) and at 8 stations along a southwest-northeast profile across the Belgian Ardennes and the Roer Valley Graben (Germany), in order to estimate the tectonic deformation in the area. The AG measurements, repeated once or twice a year, can resolve elusive gravity changes with a precision better than 3.7 nm/s2/yr (95% confidence interval) after 11 years, even in difficult conditions. After 8-15 years (depending on the station), we find that the gravity rates of change lie in the [-3.1, 8.1] nm/s2/yr interval and result from a combination of anthropogenic, climatic, tectonic, and Glacial Isostatic Adjustment (GIA) effects. After correcting for the GIA, the inferred gravity rates and consequently, the vertical land movements, reduce to zero within the uncertainty level at all stations except Jülich (due to man-induced subsidence) and Sohier (possibly, an artefact due to the shortness of the time series at that station).

  19. Vertical profile of 137Cs in soil.

    Science.gov (United States)

    Krstić, D; Nikezić, D; Stevanović, N; Jelić, M

    2004-12-01

    In this paper, a vertical distribution of 137Cs in undisturbed soil was investigated experimentally and theoretically. Soil samples were taken from the surroundings of the city of Kragujevac in central Serbia during spring-summer of 2001. The sampling locations were chosen in such a way that the influence of soil characteristics on depth distribution of 137Cs in soil could be investigated. Activity of 137Cs in soil samples was measured using a HpGe detector and multi-channel analyzer. Based on vertical distribution of 137Cs in soil which was measured for each of 10 locations, the diffusion coefficient of 137Cs in soil was determined. In the next half-century, 137Cs will remain as the source of the exposure. Fifteen years after the Chernobyl accident, and more than 30 years after nuclear probes, the largest activity of 137Cs is still within 10 cm of the upper layer of the soil. This result confirms that the penetration of 137Cs in soil is a very slow process. Experimental results were compared with two different Green functions and no major differences were found between them. While both functions fit experimental data well in the upper layer of soil, the fitting is not so good in deeper layers. Although the curves obtained by these two functions are very close to each other, there are some differences in the values of parameters acquired by them.

  20. Retrieving Vertical Air Motion and Raindrop Size Distributions from Vertically Pointing Doppler Radars

    Science.gov (United States)

    Williams, C. R.; Chandra, C. V.

    2017-12-01

    The vertical evolution of falling raindrops is a result of evaporation, breakup, and coalescence acting upon those raindrops. Computing these processes using vertically pointing radar observations is a two-step process. First, the raindrop size distribution (DSD) and vertical air motion need to be estimated throughout the rain shaft. Then, the changes in DSD properties need to be quantified as a function of height. The change in liquid water content is a measure of evaporation, and the change in raindrop number concentration and size are indicators of net breakup or coalescence in the vertical column. The DSD and air motion can be retrieved using observations from two vertically pointing radars operating side-by-side and at two different wavelengths. While both radars are observing the same raindrop distribution, they measure different reflectivity and radial velocities due to Rayleigh and Mie scattering properties. As long as raindrops with diameters greater than approximately 2 mm are in the radar pulse volumes, the Rayleigh and Mie scattering signatures are unique enough to estimate DSD parameters using radars operating at 3- and 35-GHz (Williams et al. 2016). Vertical decomposition diagrams (Williams 2016) are used to explore the processes acting on the raindrops. Specifically, changes in liquid water content with height quantify evaporation or accretion. When the raindrops are not evaporating, net raindrop breakup and coalescence are identified by changes in the total number of raindrops and changes in the DSD effective shape as the raindrops. This presentation will focus on describing the DSD and air motion retrieval method using vertical profiling radar observations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in Northern Oklahoma.

  1. Measurement of vertical stroke Vcb vertical stroke at the Z energy from B mesons exclusive decays

    International Nuclear Information System (INIS)

    Marinelli, N.

    1998-01-01

    Recent ALEPH, DELPHI and OPAL measurements of the form factors in the exclusive decay modes anti B 0 → D *+ l - anti ν l and anti B 0 →D + l - anti ν l are reviewed here. The values obtained allow an almost model-independent determination of vertical stroke V cb vertical stroke in the HQET framework. (orig.)

  2. ACTRIS aerosol vertical profile data and observations: potentiality and first examples of integrated studies with models

    Science.gov (United States)

    Mona, Lucia; Benedetti, Angela; D'Amico, Giuseppe; Myhre, Cathrine Lund; Schulz, Michael; Wandinger, Ulla; Laj, Paolo; Pappalardo, Gelsomina

    2016-04-01

    The ACTRIS-2 project, funded by Horizon 2020, addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases, capitalizing on the work of FP7-ACTRIS. It aims at achieving the construction of a user-oriented RI, unique in the EU-RI landscape for providing 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column) which are relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit the harmonization of collected data and their dissemination. ACTRIS secures provision and dissemination of a unique set of data and data-products that would not otherwise be available with the same level of quality and standardization. This results from a 10-year plus effort in constructing a research infrastructure capable of responding to community needs and requirements, and has been engaged since the start of the FP5 EU commission program. ACTRIS ensures compliance with reporting requirements (timing, format, traceability) defined by the major global observing networks. EARLINET (European Aerosol research Lidar NETwork), the aerosol vertical profiling component of ACTRIS, is providing since May 2000 vertical profiles of aerosol extinction and backscatter over Europe. A new structure of the EARLINET database has been designed in a more user oriented approach reporting new data products which are more effective for specific uses of different communities. In particular, a new era is starting with the Copernicus program during which the aerosol vertical profiling capability will be fundamental for assimilation and validation purposes. The new data products have been designed thanks to a strong link with EARLINET data users, first of all modeling and satellite communities, established since the beginning of EARLINET and re-enforced within ACTRIS2

  3. Tropospheric profiles of nitrogen oxides, ozone, and other related trace species measured over the Atlantic near the west coast of Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, F; Bruening, D; Grobler, E S; Koppmann, R; Kraus, A B; Schrimpf, W; Weber, M; Ehhalt, D H [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Atmosphaerische Chemie

    1998-12-31

    In June and December 1994, the concentrations of the nitrogen oxides NO, NO{sub 2} and NO{sub y} were measured together with ozone, photolysis frequency of NO{sub 2}, methane, CO, CO{sub 2}, PAN, and light hydrocarbons near the west coast of Europe above the Atlantic Ocean. Two vertical profiles for each season were obtained in the altitude range 1.5 to 12 km at four locations: near Prestwick (56 deg N, 9 deg W), Brest (49 deg N, 6 deg W), Faro (37 deg N, 12 deg W) and Tenerife (30 deg N, 18 deg W). The measured vertical profiles of NO are compared to the results of a low resolution 3-D chemical tracer model. (author)

  4. Tropospheric profiles of nitrogen oxides, ozone, and other related trace species measured over the Atlantic near the west coast of Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, F.; Bruening, D.; Grobler, E.S.; Koppmann, R.; Kraus, A.B.; Schrimpf, W.; Weber, M.; Ehhalt, D.H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Atmosphaerische Chemie

    1997-12-31

    In June and December 1994, the concentrations of the nitrogen oxides NO, NO{sub 2} and NO{sub y} were measured together with ozone, photolysis frequency of NO{sub 2}, methane, CO, CO{sub 2}, PAN, and light hydrocarbons near the west coast of Europe above the Atlantic Ocean. Two vertical profiles for each season were obtained in the altitude range 1.5 to 12 km at four locations: near Prestwick (56 deg N, 9 deg W), Brest (49 deg N, 6 deg W), Faro (37 deg N, 12 deg W) and Tenerife (30 deg N, 18 deg W). The measured vertical profiles of NO are compared to the results of a low resolution 3-D chemical tracer model. (author)

  5. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    Science.gov (United States)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  6. Measurement of lower-hybrid-driven current profile by Abel inversion of electron-cyclotron wave transmission spectra

    International Nuclear Information System (INIS)

    Fidone, I.; Giruzzi, G.; Caron, X.; Meyer, R.L.

    1991-01-01

    A method for measuring the radial profile of the lower-hybrid-driven current in a low-density tokamak plasma using electron-cyclotron wave attenuation is discussed. This diagnostic scheme is reminiscent of the transmission interferometry approach, commonly used in tokamaks to measure the plasma density, but now the wave amplitude instead of the phase is measured. Wave attenuation of the ordinary mode at ω p much-lt ω c along vertical chords is measured; at these frequencies, the waves are absorbed by the superthermal tail sustained by lower-hybrid waves and the local wave absorption coefficient is proportional to the noninductive current density. The radial profile of this current is obtained from Abel inversion. An application to the Tore Supra tokamak is presented

  7. Analysis of Vertical Weighting Functions for Lidar Measurements of Atmospheric CO2 and O2

    Science.gov (United States)

    Kooi, S.; Mao, J.; Abshire, J. B.; Browell, E. V.; Weaver, C. J.; Kawa, S. R.

    2011-12-01

    accurate characterization of the CO2 and dry air vertical density profiles for each flight. Using this data, we have also computed some representative vertical weighting functions for CO2 lines near 1572 nm and the and O2 lines near 764 and 1270 nm and compared to the weighting functions of the NASA Langley's Continuous-Wave Laser Absorption Spectrometer for several flights in the ASCENDS airborne campaigns. The analysis provides guidance for measurement wavelength selection, retrieval algorithm development and ASCENDS mission simulation studies. Details of the methodology and computations for the airborne and future space measurements will be presented.

  8. Moving gantry method for electron beam dose profile measurement at extended source-to-surface distances.

    Science.gov (United States)

    Fekete, Gábor; Fodor, Emese; Pesznyák, Csilla

    2015-03-08

    A novel method has been put forward for very large electron beam profile measurement. With this method, absorbed dose profiles can be measured at any depth in a solid phantom for total skin electron therapy. Electron beam dose profiles were collected with two different methods. Profile measurements were performed at 0.2 and 1.2 cm depths with a parallel plate and a thimble chamber, respectively. 108cm × 108 cm and 45 cm × 45 cm projected size electron beams were scanned by vertically moving phantom and detector at 300 cm source-to-surface distance with 90° and 270° gantry angles. The profiles collected this way were used as reference. Afterwards, the phantom was fixed on the central axis and the gantry was rotated with certain angular steps. After applying correction for the different source-to-detector distances and incidence of angle, the profiles measured in the two different setups were compared. Correction formalism has been developed. The agreement between the cross profiles taken at the depth of maximum dose with the 'classical' scanning and with the new moving gantry method was better than 0.5 % in the measuring range from zero to 71.9 cm. Inverse square and attenuation corrections had to be applied. The profiles measured with the parallel plate chamber agree better than 1%, except for the penumbra region, where the maximum difference is 1.5%. With the moving gantry method, very large electron field profiles can be measured at any depth in a solid phantom with high accuracy and reproducibility and with much less time per step. No special instrumentation is needed. The method can be used for commissioning of very large electron beams for computer-assisted treatment planning, for designing beam modifiers to improve dose uniformity, and for verification of computed dose profiles.

  9. Stratospheric NO2 vertical profile retrieved from ground-based Zenith-Sky DOAS observations at Kiruna, Sweden

    Science.gov (United States)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2014-05-01

    Stratospheric NO2 destroys ozone and acts as a buffer against halogen-catalyzed ozone loss through the formation of reservoir species (ClONO2, BrONO2). Since the importance of both mechanisms depends on the altitude, the investigation of stratospheric NO2 vertical distribution can provide more insight into the role of nitrogen compounds in the destruction of ozone. Here we present stratospheric NO2 vertical profiles retrieved from twilight ground-based zenith-sky DOAS observations at Kiruna, Sweden (68.84°N, 20.41°E) covering 1997 - 2013 periods. This instrument observes zenith scattered sunlight. The sensitivity for stratospheric trace gases is highest during twilight due to the maximum altitude of the scattering profile and the light path through the stratosphere, which vary with the solar zenith angle. The profiling algorithm, based on the Optimal Estimation Method, has been developed by IASB-BIRA and successfully applied at other stations (Hendrick et al., 2004). The basic principle behind this profiling approach is that during twilight, the mean Rayleigh scattering altitude scans the stratosphere rapidly, providing height-resolved information on the absorption by stratospheric NO2. In this study, the long-term evolution of the stratospheric NO2 profile at polar latitude will be investigated. Hendrick, F., B. Barret, M. Van Roozendael, H. Boesch, A. Butz, M. De Mazière, F. Goutail, C. Hermans, J.-C. Lambert, K. Pfeilsticker, and J.-P. Pommereau, Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: Validation of the technique through correlative comparisons, Atmospheric Chemistry and Physics, 4, 2091-2106, 2004

  10. Spectra and gross features of vertical temperature and salinity profiles off the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Nagarajan, R.

    Continuous vertical profiles of temperature and salinity recorded by a CTD-system from the continental slope and the continental rise off Goa, west coast of India, were used for delineating the gross statistical features of the fine structure...

  11. Effects of wall roughness and entry length on void profile in vertical bubbly flow

    International Nuclear Information System (INIS)

    Takamasa, Tomoji

    1988-01-01

    An experimental study of upward air-water bubbly two-phase flow in an entry region was performed with various rough wall test tubes. The objective of the work is to clarify the effects of wall roughness and entry length on void profile. The fluid flows in the vertical circular test tube of 25 mm I.D. under nearly atmospheric pressure, at room temperature. The void profile changes from a pattern similar in appearance to the saddle shape which has local void peaks near the wall, into the power law shape whose curve is approximated by a power law formula, with increasing wall roughness and/or entry length. That is, wall roughness and entry length have a similar effect upon void profile. There are two patterns in the power law shape, a pattern with sharp center peak and a pattern with obtuse center peak. As wall roughness and/or entry length increase, the void profile changes from the former pattern to the latter pattern. At enough long entry length (L/D ≅ 150), every void profile has almost the same power law shape independent of wall roughness. Some void profiles are asymmetric to the axis. (author)

  12. A new method to derive middle atmospheric temperature profiles using a combination of Rayleigh lidar and O2 airglow temperatures measurements

    Science.gov (United States)

    Taori, A.; Jayaraman, A.; Raghunath, K.; Kamalakar, V.

    2012-01-01

    The vertical temperature profiles in a typical Rayleigh lidar system depends on the backscatter photon counts and the CIRA-86 model inputs. For the first time, we show that, by making simultaneous measurements of Rayleigh lidar and upper mesospheric O2 temperatures, the lidar capability can be enhanced to obtain mesospheric temperature profile up to about 95 km altitudes. The obtained results are compared with instantaneous space-borne SABER measurements for a validation.

  13. Atmospheric Measurements by Ultra-Light SpEctrometer (AMULSE Dedicated to Vertical Profile in Situ Measurements of Carbon Dioxide (CO2 Under Weather Balloons: Instrumental Development and Field Application

    Directory of Open Access Journals (Sweden)

    Lilian Joly

    2016-09-01

    Full Text Available The concentration of greenhouse gases in the atmosphere plays an important role in the radiative effects in the Earth’s climate system. Therefore, it is crucial to increase the number of atmospheric observations in order to quantify the natural sinks and emission sources. We report in this paper the development of a new compact lightweight spectrometer (1.8 kg called AMULSE based on near infrared laser technology at 2.04 µm coupled to a 6-m open-path multipass cell. The measurements were made using the Wavelength Modulation Spectroscopy (WMS technique and the spectrometer is hence dedicated to in situ measuring the vertical profiles of the CO2 at high precision levels (σAllan = 0.96 ppm in 1 s integration time (1σ and with high temporal/spatial resolution (1 Hz/5 m using meteorological balloons. The instrument is compact, robust, cost-effective, fully autonomous, has low-power consumption, a non-intrusive probe and is plug & play. It was first calibrated and validated in the laboratory and then used for 17 successful flights up to 10 km altitude in the region Champagne—Ardenne, France in 2014. A rate of 100% of instrument recovery was validated due to the pre-localization prediction of the Météo—France based on the flight simulation software.

  14. Nitrous oxide emission estimates using atmospheric observations of vertical profiles in a polluted agricultural region

    Science.gov (United States)

    Herrera, S.; Diskin, G. S.; Pusede, S.

    2016-12-01

    Nitrous oxide (N2O) is a long-lived and highly potent greenhouse gas that also destroys stratospheric ozone. Largely attributed to changes in agricultural sources, N2O concentrations are increasing at a steady rate of 0.8 ppb y-1 globally. Emission rates of N2O remain poorly constrained, with N2O sources arguably among the most uncertain of the long-lived greenhouse gases. This study quantifies N2O emissions at the kilometer-spatial scale in the wintertime in a region with both agricultural and urban sources, the San Joaquin Valley of California. To do this, we use the large number vertical profiles of N2O and other relevant trace gases measured by the P3 aircraft during the NASA DISCOVER-AQ campaign that took place throughout the San Joaquin Valley in January-February 2013. We exploit the observed variability in profile shape by time of day, day to day, and location (over urban versus agricultural sources), along with chemical and physical constraints on mixing and the timing of decoupling between the surface boundary layer and residual layers aloft.

  15. Beam profile measurements on RHIC

    International Nuclear Information System (INIS)

    Connolly, R.; Michnoff, R.; Moore, T.; Shea, T.; Tepikian, S.

    2000-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab was commissioned during the summer of 1999. Transverse beam profiles on RHIC are measured with ionization profile monitors (IPMs). An IPM measures beam profiles by collecting the electrons liberated by residual gas ionization by the beam. The detector is placed in the gap of a dipole magnet to force the electrons to travel in straight lines from the beamline center to the collector. One IPM was tested and it measured the profiles of a single gold bunch containing 10 8 ions on consecutive turns. We show an example of one of these profiles giving transverse emittance. Also several profiles are combined into a mountain-range plot which shows betatron oscillations at injection

  16. Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances

    Directory of Open Access Journals (Sweden)

    D. Noone

    2012-02-01

    Full Text Available Thermal infrared (IR radiances measured near 8 microns contain information about the vertical distribution of water vapor (H2O, the water isotopologue HDO, and methane (CH4, key gases in the water and carbon cycles. Previous versions (Version 4 or less of the TES profile retrieval algorithm used a "spectral-window" approach to minimize uncertainty from interfering species at the expense of reduced vertical resolution and sensitivity. In this manuscript we document changes to the vertical resolution and uncertainties of the TES version 5 retrieval algorithm. In this version (Version 5, joint estimates of H2O, HDO, CH4 and nitrous oxide (N2O are made using radiances from almost the entire spectral region between 1100 cm−1 and 1330 cm−1. The TES retrieval constraints are also modified in order to better use this information. The new H2O estimates show improved vertical resolution in the lower troposphere and boundary layer, while the new HDO/H2O estimates can now profile the HDO/H2O ratio between 925 hPa and 450 hPa in the tropics and during summertime at high latitudes. The new retrievals are now sensitive to methane in the free troposphere between 800 and 150 mb with peak sensitivity near 500 hPa; whereas in previous versions the sensitivity peaked at 200 hPa. However, the upper troposphere methane concentrations are biased high relative to the lower troposphere by approximately 4% on average. This bias is likely related to temperature, calibration, and/or methane spectroscopy errors. This bias can be mitigated by normalizing the CH4 estimate by the ratio of the N2O estimate relative to the N2O prior, under the assumption that the same systematic error affects both the N2O and CH4 estimates. We demonstrate that applying this ratio theoretically reduces the CH4 estimate for non-retrieved parameters that jointly affect both the N2O and CH4 estimates. The relative upper troposphere to lower troposphere bias is approximately 2.8% after this bias

  17. Tethered balloon-based particle number concentration, and size distribution vertical profiles within the lower troposphere of Shanghai

    Science.gov (United States)

    Zhang, Kun; Wang, Dongfang; Bian, Qinggen; Duan, Yusen; Zhao, Mengfei; Fei, Dongnian; Xiu, Guangli; Fu, Qingyan

    2017-04-01

    A tethered balloon-based measurement campaign of particle number concentration (PNC) and particle number size distribution (PNSD) in the size range of 15.7-661.2 nm was conducted within the lower troposphere of 1000 m in Shanghai, a Chinese megacity, during December of 2015. The meteorological conditions, PNC, and PNSD were synchronously measured at the ground-based station as well as by the tethered balloon. On ground level, the 88.2 nm particles were found to have the highest PNC. The Pearson correlation analysis based on the ground level data showed NO2 had a strong correlation with PNC. The synchronous measurement of PNC and PNSD at the ground station and on the tethered balloon showed that the 15.7-200 nm particles had higher PNC on ground level, but the PNC of 200-661.2 nm particles was higher at 400 m. One haze event (Dec 22nd-Dec 23rd) was selected for detailed discussion on the variation of vertical profiles of PNSD and PNC. The vertical distribution of characteristics of PNC and PNSD were observed and compared. Results indicated that the highest MaxDm (the diameter with the highest PNC) during those three launches all appeared at a high altitude, usually above 300 m. Compared to the clean days, the relatively bigger MaxDm at each height in the haze days also indicated regional transport of pollutants might contribute to more to that haze event.

  18. HURRICANE AND SEVERE STORM SENTINEL (HS3) GLOBAL HAWK ADVANCED VERTICAL ATMOSPHERIC PROFILING SYSTEM (AVAPS) DROPSONDE SYSTEM V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Global Hawk Advanced Vertical Atmospheric Profiling System (AVAPS) Dropsonde System dataset was collected by the...

  19. A new method to derive middle atmospheric temperature profiles using a combination of Rayleigh lidar and O{sub 2} airglow temperatures measurements

    Energy Technology Data Exchange (ETDEWEB)

    Taori, A.; Jayaraman, A.; Raghunath, K. [National Atmospheric Research Laboratory, Gadanki (India); Kamalakar, V. [S.V. Univ., Tirupati (India). Dept. of Physics

    2012-07-01

    The vertical temperature profiles in a typical Rayleigh lidar system depends on the backscatter photon counts and the CIRA-86 model inputs. For the first time, we show that, by making simultaneous measurements of Rayleigh lidar and upper mesospheric O{sub 2} temperatures, the lidar capability can be enhanced to obtain mesospheric temperature profile up to about 95 km altitudes. The obtained results are compared with instantaneous space-borne SABER measurements for a validation. (orig.)

  20. Characterization of magnetic field profiles at RFX-mod by Faraday rotation measurements

    Science.gov (United States)

    Auriemma, Fulvio; Brombin, Matteo; Canton, Alessandra; Giudicotti, Leonardo; Innocente, Paolo; Zilli, Enrico

    2009-11-01

    A multichannel far-infrared (FIR, λ=118.8 μm) polarimeter has been recently upgraded and re-installed on RFX-mod to measure the Faraday rotation angle along five vertical chords. Polarimetric data, associated with electron density profile, allow the reconstruction of the poloidal magnetic field profile. In this work the setup of the diagnostic is presented and the first Faraday rotation measurements are analyzed. The measurements have been performed at plasma current above 1.2 MA and electron density between 2 and 6x10^19 m-3. The actual S/N ratio is slightly lower than the expected one, due to electromagnetic coupling of the detectors with the saddle coils close to the polarimeter position. Due to this limit, only average information in the flat-top phase of the discharge could be so far obtained. The experimental data have been compared with the result of the μ&p equilibrium model [1], showing a good agreement between experiment and model, whereas the main differences are in the external region of the plasma. A different parameterization of the μ=μ0 J.B/B^2 profile has been proposed to enhance the agreement between model and experiment. [0pt] [1] Ortolani and Snack, World Scientific (1993) Singapore

  1. Measurement of Cabbibo-suppressed τ lepton decays and the determination of vertical stroke Vus vertical stroke

    International Nuclear Information System (INIS)

    Schenk, Stefan

    2008-01-01

    This work presents simultaneous branching fraction measurements of the decay modes τ - →K - nπ 0 ν τ with n=0,1,2,3 and τ - →π - nπ 0 ν τ with n=3,4. The analysis is based on a data sample of 427 x 10 6 τ + τ - pairs recorded with the BABAR detector, which corresponds to an integrated luminosity of 464.4 fb -1 . The measured values are B(τ - →K - ν τ )=(6.57±0.03±0.11) x 10 -3 , B(τ - →K - π 0 ν τ )=(4.61±0.03±0.11) x 10 -3 , B(τ - →K - π 0 π 0 ν τ )=(5.05±0.17±0.44) x 10 -4 , B(τ - →K - π 0 π 0 π 0 ν τ )=(1.31±0.43±0.40) x 10 -4 , B(τ - →π - π 0 π 0 π 0 ν τ )=(1.263±0.008±0.078) x 10 -2 and B(τ - →π - π 0 π 0 π 0 π 0 ν τ )=(9.6±0.5±1.2) x 10 -4 , where the uncertainties are statistical and systematic, respectively. All measurements are compatible with the current world averages whereas the uncertainties are significantly smaller by a factor of up to five. The determination of B(τ - →π - π 0 π 0 π 0 π 0 ν τ ) is the first measurement of this branching fraction. The measured branching fractions are combined with the current world averages. Using the new averages, an updated determination of vertical stroke V us vertical stroke from hadronic τ decays yields vertical stroke V us vertical stroke =0.2146±0.0025, which improves previous measurements by 19%. Its uncertainty is comparable to the one of the current world average from semileptonic kaon decays. (orig.)

  2. The High Accuracy Measurement of CO2 Mixing Ratio Profiles Using Ground Based 1.6 μm CO2-DIAL with Temperature Measurement Techniques in the Lower-Atmosphere

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    We have developed a ground based direct detection three-wavelength 1.6 μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 concentration and temperature profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. Conventionally, we have obtained the vertical profile of absorption cross sections using the atmospheric temperature profile by the objective analysis and the atmospheric pressure profile calculated by the pressure height equation. Comparison of atmospheric pressure profiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan is consistent within 0.2 % below 3 km altitude. But the temperature dependency of the CO2 density is 0.25 %/°C near the surface. Moreover, the CO2 concentration is often evaluated by the mixing ratio. Because the air density is related by the ideal gas law, the mixing ratio is also related by the atmospheric temperature. Therefore, the temperature affects not only accuracy of CO2 concentration but the CO2 mixing ratio. In this paper, some experimental results of the simultaneous measurement of atmospheric temperature profiles and CO2 mixing ratio profiles are reported from 0.4 to 2.5 km altitude using the three-wavelength 1.6 μm DIAL system. Temperature profiles of CO2 DIAL measurement were sometimes different from those of objective analysis below 1.5 km altitude. These differences are considered to be due to regionality at the lidar site. The temperature difference of 5.0 °C corresponds to a CO2 mixing ratio difference of 8.0 ppm at 500 m altitude. This cannot be ignored in estimates of regional sources and sinks of CO2. This three-wavelength CO2 DIAL technique can estimate accurately temporal behavior of CO2 mixing ratio profiles in the lower atmosphere

  3. Near Real Time Vertical Profiles of Clouds and Aerosols from the Cloud-Aerosol Transport System (CATS) on the International Space Station

    Science.gov (United States)

    Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.

    2015-12-01

    Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data

  4. Spatial distribution and vertical variation of arsenic in Guangdong soil profiles, China

    International Nuclear Information System (INIS)

    Zhang, H.H.; Yuan, H.X.; Hu, Y.G.; Wu, Z.F.; Zhu, L.A.; Zhu, L.; Li, F.B.; LI, D.Q.

    2006-01-01

    Total of 260 soil profiles were reported to investigate the arsenic spatial distribution and vertical variation in Guangdong province. The arsenic concentration followed an approximately lognormal distribution. The arsenic geometric mean concentration of 10.4 mg/kg is higher than that of China. An upper baseline concentration of 23.4 mg/kg was estimated for surface soils. The influence of soil properties on arsenic concentration was not important. Arsenic spatial distributions presented similar patterns that high arsenic concentration mainly located in limestone, and sandshale areas, indicating that soil arsenic distribution was dependent on bedrock properties than anthropogenic inputs. Moreover, from A- to C-horizon arsenic geometric mean concentrations had an increasing tendency of 10.4, 10.7 to 11.3 mg/kg. This vertical variation may be related to the lower soil organic matter and soil degradation and erosion. Consequently, the soil arsenic export into surface and groundwaters would reach 1040 t year -1 in the study area. - Soil arsenic movement export is a potential threat to the water quality of the study area

  5. Temporal Variability in Vertical Groundwater Fluxes and the Effect of Solar Radiation on Streambed Temperatures Based on Vertical High Resolution Distributed Temperature Sensing

    Science.gov (United States)

    Sebok, E.; Karan, S.; Engesgaard, P. K.; Duque, C.

    2013-12-01

    Due to its large spatial and temporal variability, groundwater discharge to streams is difficult to quantify. Methods using vertical streambed temperature profiles to estimate vertical fluxes are often of coarse vertical spatial resolution and neglect to account for the natural heterogeneity in thermal conductivity of streambed sediments. Here we report on a field investigation in a stream, where air, stream water and streambed sediment temperatures were measured by Distributed Temperature Sensing (DTS) with high spatial resolution to; (i) detect spatial and temporal variability in groundwater discharge based on vertical streambed temperature profiles, (ii) study the thermal regime of streambed sediments exposed to different solar radiation influence, (iii) describe the effect of solar radiation on the measured streambed temperatures. The study was carried out at a field site located along Holtum stream, in Western Denmark. The 3 m wide stream has a sandy streambed with a cobbled armour layer, a mean discharge of 200 l/s and a mean depth of 0.3 m. Streambed temperatures were measured with a high-resolution DTS system (HR-DTS). By helically wrapping the fiber optic cable around two PVC pipes of 0.05 m and 0.075 m outer diameter over 1.5 m length, temperature measurements were recorded with 5.7 mm and 3.8 mm vertical spacing, respectively. The HR-DTS systems were installed 0.7 m deep in the streambed sediments, crossing both the sediment-water and the water-air interface, thus yielding high resolution water and air temperature data as well. One of the HR-DTS systems was installed in the open stream channel with only topographical shading, while the other HR-DTS system was placed 7 m upstream, under the canopy of a tree, thus representing the shaded conditions with reduced influence of solar radiation. Temperature measurements were taken with 30 min intervals between 16 April and 25 June 2013. The thermal conductivity of streambed sediments was calibrated in a 1D flow

  6. Comparison of RASS temperature profiles with other tropospheric soundings

    International Nuclear Information System (INIS)

    Bonino, G.; Lombardini, P.P.; Trivero, P.

    1980-01-01

    The vertical temperature profile of the lower troposphere can be measured with a radio-acoustic sounding system (RASS). A comparison of the thermal profiles measured with the RASS and with traditional methods shows a) RASS ability to produce vertical thermal profiles at an altitude range of 170 to 1000 m with temperature accuracy and height discrimination comparable with conventional soundings, b) advantages of remote sensing as offered by new sounder, c) applicability of RASS both in assessing evolution of thermodynamic conditions in PBL and in sensing conditions conducive to high concentrations of air pollutants at the ground level. (author)

  7. A COMPARITIVE STUDY USING GEOMETRIC AND VERTICAL PROFILE FEATURES DERIVED FROM AIRBORNE LIDAR FOR CLASSIFYING TREE GENERA

    Directory of Open Access Journals (Sweden)

    C. Ko

    2012-07-01

    Full Text Available We present a comparative study between two different approaches for tree genera classification using descriptors derived from tree geometry and those derived from the vertical profile analysis of LiDAR point data. The different methods provide two perspectives for processing LiDAR point clouds for tree genera identification. The geometric perspective analyzes individual tree crowns in relation to valuable information related to characteristics of clusters and line segments derived within crowns and overall tree shapes to highlight the spatial distribution of LiDAR points within the crown. Conversely, analyzing vertical profiles retrieves information about the point distributions with respect to height percentiles; this perspective emphasizes of the importance that point distributions at specific heights express, accommodating for the decreased point density with respect to depth of canopy penetration by LiDAR pulses. The targeted species include white birch, maple, oak, poplar, white pine and jack pine at a study site northeast of Sault Ste. Marie, Ontario, Canada.

  8. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the

  9. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Science.gov (United States)

    Caccia, J.; Guénard, V.; Benech, B.; Campistron, B.; Drobinski, P.

    2004-11-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program) in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the vertical motions are

  10. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Energy Technology Data Exchange (ETDEWEB)

    Caccia, J.L.; Guenard, V. [LSEET, CNRS/Univ. de Toulon, La Garde (France); Benech, B.; Campistron, B. [CRA/LA, CNRS/Obs. Midi-Pyrenees, Campistrous (France); Drobinski, P. [IPSL/SA, CNRS/Univ. de Paris VI, Paris (France)

    2004-07-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhone-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhone-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (mesoscale alpine program) in autumn 1999, and ESCOMPTE (Experience sur Site pour COntraindre les Modeles de Pollution atmospheriques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhone valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of ''flow around'' and ''flow over'' mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with

  11. Measuring atmospheric ammonia with remote sensing campaign: Part 1 - Characterisation of vertical ammonia concentration profile in the centre of The Netherlands

    Science.gov (United States)

    Dammers, E.; Schaap, M.; Haaima, M.; Palm, M.; Wichink Kruit, R. J.; Volten, H.; Hensen, A.; Swart, D.; Erisman, J. W.

    2017-11-01

    Ammonia (NH3) is difficult to monitor at atmospheric concentrations due its high solubility and reactivity and the strong spatial and temporal variations of its concentrations. Monitoring is mostly performed using passive samplers or filter packs with daily coverage at best. Only at a few sites ammonia is measured with more expensive wet chemical or spectroscopic measurement techniques. Instruments using an open path show the most potential as these avoid the use of inlets and thus the interactions of NH3 with tubing, filters, and inlets. Measurements on the vertical distribution of NH3 are even scarcer, with only a few available airborne and tower measurements. Satellite observations of NH3 show potential to be used for real-time monitoring as these have global coverage often with daily overpasses. Unfortunately, validation of satellite NH3 products representing the total atmospheric column with ground based instruments measuring in situ NH3 has been troublesome due to a lack of knowledge about the vertical distribution. Validation with FTIR instruments has shown potential but has been performed for only a limited number of stations. In this study we report on measurements performed during the Measuring atmospheric Ammonia with Remote Sensing (MARS) field campaign at Cabauw, the Netherlands. The aim of the campaign was to improve the general understanding of the vertical distribution of NH3. An approach was taken using four mini-DOAS instruments installed in the meteorological tower at Cabauw, supplemented by measurements with a MARGA and a mobile FTIR instrument. The measurements between May and October 2014 showed large variations in the concentrations and maximum concentrations reached up to 240 μg m-3. The lower three mini-DOAS and MARGA measurements showed large differences on an hourly basis, which were shown to originate from multiple measurement artefacts of the MARGA. The mini-DOAS concentrations varied sharply between the different levels with the lower

  12. Validation of mixing height determined from vertical profiles of wind and temperature from the DMI-HIRLAM NWP model in comparison with readiosoundings

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, A.; Soerensen, J.H.; Nielsen, N.W. [Danish Meteorological Inst., DMI, Copenhagen (Denmark)

    1997-10-01

    A sensitivity study is performed of vertical profiles from the numerical weather prediction model DMI-HIRLAM (DMI-HIgh Resolution Limited Area Model). The study involves profiles of horizontal wind, temperature and humidity in the lower troposphere up to 2500 meter. Detailed comparisons of analysed as well as forecast profiles are made with measured data from several radio-sonde stations throughout Europe. Methods for estimating the Mixing Height (MH) based on a bulk Richardson number method, the Vogelezang and Holtslag method and parcel methods are also studied. The methods are inter-compared, and MH based on data from DMI-HIRLAM are compared with the corresponding MH based on radiosonde data. For convective conditions the MH estimates are also compared with subjective estimates of the MH. In this paper preliminary results mainly based on data from Jaegersborg (Copenhagen) are presented. Results based on data from 1994-95 show that the resemblance between measured profiles and the DMI-HIRLAM profiles is fairly good in general. Also the estimates of the MH based on DMI-HIRLAM data is in general of nearly the same quality as estimations based on observed data. However, especially in convective conditions there is a tendency by DMI-HIRLAM to underestimate the strength of the mixing and thereby relatively large errors in the estimates of the MH can occur. (au)

  13. Tectonic, Climatic and Anthropogenic Vertical Land Movements in Western Europe by Repeated Absolute Gravity Measurements

    Science.gov (United States)

    van Camp, M. J.; de Viron, O.; Lecocq, T.; Hinzen, K. G.; Quinif, Y.; Williams, S. D.; Camelbeeck, T.

    2010-12-01

    In continental plate interiors, tectonic deformations are small and the associated ground surface movements remain close to or below the accuracy of current geodetic techniques, and at the limit of the noise level. An absolute gravimeter is an appropriate tool to quantify slow vertical movements, as this instrument, based on length and time standards, is drift free and does not depend on any terrestrial reference frame. Repeated absolute gravity (AG) measurements have been performed in Oostende (Belgian coastline) and at 8 stations along a southwest-northeast profile across the Belgian Ardennes and the Roer Valley Graben (Germany), in order to estimate the tectonic deformations in the area. After 7-13 years (depending on the station), we find evidence that the movements are no larger than a few millimeter per year and result from a combination of anthropogenic, climatic, tectonic, and Glacial Isostatic Adjustment (GIA) effects. This demonstrates the importance of precisely modeling the GIA effects in order to investigate intraplate tectonic deformations at the sub-millimeter level. This study also shows that AG measurements, repeated once or twice a year, can resolve vertical velocities at the 1.0 mm/yr level after 10 years, even in difficult conditions, provided that the gravimeter is carefully maintained.

  14. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  15. A large-scale intercomparison of stratospheric vertical distributions of NO2 and BrO retrieved from the SCIAMACHY limb measurements and ground-based twilight observations

    Science.gov (United States)

    Rozanov, Alexei; Hendrick, Francois; Lotz, Wolfhardt; van Roozendael, Michel; Bovensmann, Heinrich; Burrows, John P.

    This study is devoted to the intercomparison of NO2 and BrO vertical profiles obtained from the satellite and ground-based measurements. Although, the ground-based observations are performed only at selected locations, they have a great potential to be used for the validation of satellite measurements since continuous long-term measurement series performed with the same instruments are available. Thus, long-term trends in the observed species can be analyzed and intercompared. Previous intercomparisons of the vertical distributions of NO2 and BrO retrieved from SCIAMACHY limb measurements at the University of Bremen and obtained at IASB-BIRA by applying a profiling technique to ground-based zenith-sky DOAS observations have shown a good agreement between the results of completely different measurement techniques. However, only a relatively short time period of one year was analyzed so far which do not allow investigating seasonal variations and trends. Furthermore, some minor discrepancies are still to be analyzed. In the current study, several years datasets obtained at Observatoire de Haute-Provence (OHP) in France and in Harestua in Norway will be compared to the retrievals of SCIAMACHY limb measurements. Seasonal and annual variations will be analyzed and possible reasons for the remaining discrepancies will be discussed.

  16. Vertical nutrient fluxes, turbulence and the distribution of chlorophyll a in the north-eastern North Sea

    Science.gov (United States)

    Bendtsen, Jørgen; Richardson, Katherine

    2017-04-01

    During summer the northern North Sea is characterized by nutrient rich bottom water masses and nutrient poor surface layers. This explains the distribution of chlorophyll a in the water column where a subsurface maximum, referred to as the deep chlorophyll maximum (DCM), often is present during the growth season. Vertical transport of nutrients between bottom water masses and the well lit surface layer stimulates phytoplankton growth and this generally explains the location of the DCM. However, a more specific understanding of the interplay between vertical transports, nutrient fluxes and phytoplankton abundance is required for identifying the nature of the vertical transport processes, e.g the role of advection versus vertical turbulent diffusion or the role of localized mixing associated with mesoscale eddies. We present results from the VERMIX study in the north-eastern North Sea where nutrients, chlorophyll a and turbulence profiles were measured along five north-south directed transects in July 2016. A high-resolution sampling program, with horizontal distances of 1-10 km between CTD-stations, resolved the horizontal gradients of chlorophyll a across the steep bottom slope from the relatively shallow central North Sea ( 50-80 m) towards the deep Norwegian Trench (>700 m). Low oxygen concentrations in the bottom water masses above the slope indicated enhanced biological production where vertical mixing would stimulate phytoplankton growth around the DCM. Measurements of variable fluorescence (Fv/Fm) showed elevated values in the DCM which demonstrates a higher potential for electron transport in the Photosystem II in the phytoplankton cells, i.e. an indication of nutrient-rich conditions favorable for phytoplankton production. Profiles of the vertical shear and microstructure of temperature and salinity were measured by a VMP-250 turbulence profiler and the vertical diffusion of nutrients was calculated from the estimated vertical turbulent diffusivity and the

  17. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles

    Science.gov (United States)

    D'Amelio, M. T. S.; Gatti, L. V.; Miller, J. B.; Tans, P.

    2009-11-01

    Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N2O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rainforest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N2O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajós National Forest (SAN) and Cuieiras Biologic Reserve (MAN), and the estimation of N2O fluxes for regions upwind of these sites. To our knowledge, these regional scale N2O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. The fluxes upwind of MAN exhibited little seasonality, and the annual mean was 2.1±1.0 mg N2O m-2 day-1, higher than that for fluxes upwind of SAN, which averaged 1.5±1.6 mg N2O m-2 day-1. The higher rainfall around the MAN site could explain the higher N2O emissions, as a result of increased soil moisture accelerating microbial nitrification and denitrification processes. For fluxes from the coast to SAN seasonality is present for all years, with high fluxes in the months of March through May, and in November through December. The first peak of N2O flux is strongly associated with the wet season. The second peak of high N2O flux recorded at SAN occurs during the dry season and can not be easily explained. However, about half of the dry season profiles exhibit significant correlations with CO, indicating a larger than expected source of N2O from biomass burning. The average CO:N2O ratio for all profiles sampled during the dry season is 94±77 mol CO:mol N2O and suggests a larger biomass burning contribution to the global N2O budget than previously reported.

  18. Influence of Saharan dust outbreaks and atmospheric stability upon vertical profiles of size-segregated aerosols and water vapor

    Science.gov (United States)

    Giménez, Joaquín; Pastor, Carlos; Castañer, Ramón; Nicolás, José; Crespo, Javier; Carratalá, Adoración

    2010-01-01

    Vertical profiles of aerosols and meteorological parameters were obtained using a hot air balloon and motorized paraglider. They were studied under anticyclonic conditions in four different contexts. Three flights occurred near sunrise, and one took place in the central hours of the day. The effects of North African dust intrusions were analyzed, whose entrance to the study area took place above the Stable Boundary Layer (SBL) in flight 1 and below it in flight 2. These flights have been compared with a non-intrusion situation (flight 3). A fourth flight characterized the profiles in the central hours of the day with a well-formed Convective Boundary Layer (CBL). With respect to the particle number distribution, the results show that not all sizes increase within the presence of an intrusion; during the first flight the smallest particles were not affected. The particle sizes affected in the second flight fell within the 0.35-2.5 μm interval. Under situations of convective dynamics, the reduction percentage of the particle number concentration reduces with increasing altitude, independently of their size, with respect to stability conditions. The negative vertical gradient for aerosols and water vapor, characteristic of a highly stable SBL (flight 3) becomes a constant profile within a CBL (flight 4). There are two situations that seem to alter the negative vertical gradient of the water vapor mixing ratio within the SBL: the presence of an intrusion and the possible stratification of the SBL based on different degrees of stability.

  19. Investigation of the vertical nitrogen dioxide distribution above a frequented street

    Energy Technology Data Exchange (ETDEWEB)

    Malissa, H; Juette, W; Alidad, I

    1975-01-01

    Knowledge of the vertical nitrogen dioxide concentration profile in the atmosphere within a street canyon would enable the estimation of pollutant concentrations in street site living or working rooms and furthermore the calculation of pollutant concentrations at ground level from data measured at roof levels by means of long-line remote sensing methods. A formula was therefore derived under simplified conditions and examined by simultaneous measurements of the nitrogen dioxide concentration, wind velocity, and wind direction at roof level and ground level. The data thus obtained were average values for half an hour. The knowledge of the local vertical wind profile and the influence of the traffic density in neighboring urban areas is essential for the calculation. The verification of the derived model shows a correlation coefficient of r equals 0.88 between calculated and measured data.

  20. Inlet effects on vertical-downward air–water two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Shouxu; Mena, Daniel; Kim, Seungjin, E-mail: skim@psu.edu

    2017-02-15

    Highlights: • Inlet effects on two-phase flow parameters in vertical-downward flow are studied. • Flow regimes in the vertical-downward two-phase flow are defined. • Vertical-downward flow regime maps for three inlet configurations are developed. • Frictional pressure loss analysis for three different inlets is performed. • Database of local two-phase flow parameters for each inlet configuration. - Abstract: This paper focuses on investigating the geometric effects of inlets on global and local two-phase flow parameters in vertical-downward air–water two-phase flow. Flow visualization, frictional pressure loss analysis, and local experiments are performed in a test facility constructed from 50.8 mm inner diameter acrylic pipes. Three types of inlets of interest are studied: (1) two-phase flow injector without a flow straightener (Type A), (2) two-phase flow injector with a flow straightener (Type B), and (3) injection through a horizontal-to-vertical-downward 90° vertical elbow (Type C). A detailed flow visualization study is performed to characterize flow regimes including bubbly, slug, churn-turbulent, and annular flow. Flow regime maps for each inlet are developed and compared to identify the effects of each inlet. Frictional pressure loss analysis shows that the Lockhart–Martinelli method is capable of correlating the frictional loss data acquired for Type B and Type C inlets with a coefficient value of C = 25, but additional data may be needed to model the Type A inlet. Local two-phase flow parameters measured by a four-sensor conductivity probe in four bubbly and near bubbly flow conditions are analyzed. It is observed that vertical-downward two-phase flow has a characteristic center-peaked void profile as opposed to a wall-peaked profile as seen in vertical-upward flow. Furthermore, it is shown that the Type A inlet results in the most pronounced center-peaked void fraction profile, due to the coring phenomenon. Type B and Type C inlets

  1. Towards Selective Tidal-Stream Transport for Lagrangian profilers

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Zhou, Qiuyang; Zielinski, Oliver

    2011-01-01

    Autonomous Lagrangian profilers are widely used as measurement and monitoring platforms. In their current mode of operation, the profilers usually drift passively at their parking depth before making a vertical profile to go back to the surface. This paper presents a control strategy to actively...

  2. Vertical dispersion from surface and elevated releases: An investigation of a Non-Gaussian plume model

    International Nuclear Information System (INIS)

    Brown, M.J.; Arya, S.P.; Snyder, W.H.

    1993-01-01

    The vertical diffusion of a passive tracer released from surface and elevated sources in a neutrally stratified boundary layer has been studied by comparing field and laboratory experiments with a non-Gaussian K-theory model that assumes power-law profiles for the mean velocity and vertical eddy diffusivity. Several important differences between model predictions and experimental data were discovered: (1) the model overestimated ground-level concentrations from surface and elevated releases at distances beyond the peak concentration; (2) the model overpredicted vertical mixing near elevated sources, especially in the upward direction; (3) the model-predicted exponent α in the exponential vertical concentration profile for a surface release [bar C(z)∝ exp(-z α )] was smaller than the experimentally measured exponent. Model closure assumptions and experimental short-comings are discussed in relation to their probable effect on model predictions and experimental measurements. 42 refs., 13 figs., 3 tabs

  3. Application of vertical advection-diffusion model for studying CO2 and O2 profiles in central Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; Singbal, S.Y.S.

    The vertical advection-diffusion model proposed by Craig has been applied to the study of CO sub(2) and O sub(2) profiles in Central Arabian Sea. Distributions of total CO Sub(2) and O sub(2) are explained better by expressions involving exponential...

  4. Measuring dynamics of the subjective vertical and tilt using a joystick.

    NARCIS (Netherlands)

    Correia Gracio, B.J.; Bos, J.E.

    2012-01-01

    Humans are able to estimate the vertical direction of an Earth fixed reference frame, which estimate is known as the subjective vertical (SV). To identify the SV, a distinction must be made between accelerations due to self-motion and gravity. Previous studies on this topic measured the SV using a

  5. Tritium profiles in Kalahari sands as a measure of rain water recharge

    International Nuclear Information System (INIS)

    Verhagen, B.T.; Smith, P.E.; McGeorge, I.; Dziembowski, Z.

    1978-01-01

    This paper attempts to relate recharge measurements in the Kalahari by tritium profiles in the unsaturated zone to isotopic, hydrochemical and hydrologic data from an underlying, semi-confined aquifer. Auger holes into the sand cover were drilled along a line of experimental deeper holes penetrating the saturated zone. A further line of auger holes was drilled into the dune sand cover of a control area. Variable moisture contents, apparently indepent of grain size distribution and indicating transients are observed in the different profiles. 3 H and 18 O measurements on the moisture contents allow for the identification of the 1962/63 bomb tritium rise and successive drier and wetter periods. Infiltration, or potential recharge as percentage of infiltration was found to be strongly dependent on the annual rainfall. The distribution of 14 C, 13 C, 3 H and chemistry in the shallower of two underlying aquifers leads to the consideration of three possible mechanisms of recharge. Arguments favouring vertical recharge are presented, which lead to possible extrapolations into the sand covered areas of the Kalahari in general. (orig.) [de

  6. Analysis of Ozone And CO2 Profiles Measured At A Diary Facility

    Science.gov (United States)

    Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.

    2015-12-01

    Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the

  7. 1.6 μm DIAL Measurement and Back Trajectory Analysis of CO2 Concentration Profiles in the Lower-Atmosphere

    Science.gov (United States)

    Shibata, Y.; Nagasawa, C.; Abo, M.

    2016-12-01

    Carbon dioxide (CO2) is the primary greenhouse gas emitted through human activities. In addition to the ground level CO2 network, vertical CO2 concentration profiles also play an important role for the estimation of the carbon budget and global warming in the inversion method. Especially, for the detailed analysis of forest carbon dynamics and CO2 fluxes of urban area, vertical CO2 concentration profiles with high spatial and temporal resolution in the lower atmosphere have been conducted by a differential absorption lidar (DIAL). We have observed several vertical profiles of CO2 concentrations for nighttime and daytime from 0.25 to 2.5 km altitude with range resolution of 300 m and integration time of 1 hour. In order to extract information on the origin of the CO2 masses, one day back trajectories were calculated by using a three dimensional (3-D) atmospheric transport model. In many cases, CO2 low concentration layers of over 1.5km altitude were flown by westerly winds from the forest. In another case, high concentration layers of CO2 were flown from the urban areas. As the spectra of absorption lines of any molecules are influenced basically by the temperature in the atmosphere, laser beams of three wavelengths around a CO2 absorption spectrum are transmitted alternately to the atmosphere for simultaneous measurements of CO2 concentration and temperature profiles. Moreover, a few processing algorithms of CO2-DIAL are also performed for improvement of measurement accuracy. For computation of trajectories and drawing their figures, the JRA-25 data provided by the cooperative research project for the JRA-25 long-term reanalysis of the Japan Meteorological Agency (JMA) and the Central Research Institute of Electric Power Industry (CRIEPI) and the NIPR trajectory model (Tomikawa and Sato, 2005; http://firp-nitram.nipr.ac.jp) were used. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and

  8. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.

    Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.

    In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.

    Modeling of radial gas fraction profiles for bubble flow in vertical pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.; Krepper, E.; Prasser, H.-M. [Forschungszentrum Rossendorf e.V., Institute of Safety Research, Dresden (Germany)

    2001-07-01

    The paper presents a method for the prediction of radial gas fraction profiles from a given bubble size distribution. The method is based on the assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. Assuming a large number of bubble size classes radial distributions are calculated separately for all bubble classes. The sum of these distributions is the radial profile of the gas fraction. The results of the model are compared with experimental data for a number of gas and liquid volume flow rates. The experiments were performed at a vertical test loop (inner diameter 50 mm) in FZ-Rossendorf using a wire mesh sensor. The sensor enables the determination of void distributions in the cross section of the loop. A special evaluation procedure supplies bubble size distributions as well as local distributions of bubbles within a predefined interval of bubble sizes. There is a good agreement between experimental and calculated data. In particular the change from wall peaking to core peaking is well predicted. (authors)

  9. Modeling of radial gas fraction profiles for bubble flow in vertical pipes

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.-M.

    2001-01-01

    The paper presents a method for the prediction of radial gas fraction profiles from a given bubble size distribution. The method is based on the assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. Assuming a large number of bubble size classes radial distributions are calculated separately for all bubble classes. The sum of these distributions is the radial profile of the gas fraction. The results of the model are compared with experimental data for a number of gas and liquid volume flow rates. The experiments were performed at a vertical test loop (inner diameter 50 mm) in FZ-Rossendorf using a wire mesh sensor. The sensor enables the determination of void distributions in the cross section of the loop. A special evaluation procedure supplies bubble size distributions as well as local distributions of bubbles within a predefined interval of bubble sizes. There is a good agreement between experimental and calculated data. In particular the change from wall peaking to core peaking is well predicted. (authors)

  10. Retrieval of convective boundary layer wind field statistics from radar profiler measurements in conjunction with large eddy simulation

    Directory of Open Access Journals (Sweden)

    Danny Scipión

    2009-05-01

    Full Text Available The daytime convective boundary layer (CBL is characterized by strong turbulence that is primarily forced by buoyancy transport from the heated underlying surface. The present study focuses on an example of flow structure of the CBL as observed in the U.S. Great Plains on June 8, 2007. The considered CBL flow has been reproduced using a numerical large eddy simulation (LES, sampled with an LES-based virtual boundary layer radar (BLR, and probed with an actual operational radar profiler. The LES-generated CBL flow data are then ingested by the virtual BLR and treated as a proxy for prevailing atmospheric conditions. The mean flow and turbulence parameters retrieved via each technique (actual radar profiler, virtual BLR, and LES have been cross-analyzed and reasonable agreement was found between the CBL wind parameters obtained from the LES and those measured by the actual radar. Averaged vertical velocity variance estimates from the virtual and actual BLRs were compared with estimates calculated from the LES for different periods of time. There is good agreement in the estimates from all three sources. Also, values of the vertical velocity skewness retrieved by all three techniques have been inter-compared as a function of height for different stages of the CBL evolution, showing fair agreement with each other. All three retrievals contain positively skewed vertical velocity structure throughout the main portion of the CBL. Radar estimates of the turbulence kinetic energy (eddy dissipation rate (ε have been obtained based on the Doppler spectral width of the returned signal for the vertical radar beam. The radar estimates were averaged over time in the same fashion as the LES output data. The agreement between estimates was generally good, especially within the mixing layer. Discrepancies observed above the inversion layer may be explained by a weak turbulence signal in particular flow configurations. The virtual BLR produces voltage

  11. The TEXT upgrade vertical interferometer

    International Nuclear Information System (INIS)

    Hallock, G.A.; Gartman, M.L.; Li, W.; Chiang, K.; Shin, S.; Castles, R.L.; Chatterjee, R.; Rahman, A.S.

    1992-01-01

    A far-infrared interferometer has been installed on TEXT upgrade to obtain electron density profiles. The primary system views the plasma vertically through a set of large (60-cm radialx7.62-cm toroidal) diagnostic ports. A 1-cm channel spacing (59 channels total) and fast electronic time response is used, to provide high resolution for radial profiles and perturbation experiments. Initial operation of the vertical system was obtained late in 1991, with six operating channels

  12. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.

    Science.gov (United States)

    Zhang, Yuzhong; Deng, Shuxing; Liu, Yanan; Shen, Guofeng; Li, Xiqing; Cao, Jun; Wang, Xilong; Reid, Brian; Tao, Shu

    2011-03-01

    Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH(LMW4)) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH(LMW4) within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Quality controls for wind measurement of a 1290-MHz boundary layer profiler under strong wind conditions.

    Science.gov (United States)

    Liu, Zhao; Zheng, Chaorong; Wu, Yue

    2017-09-01

    Wind profilers have been widely adopted to observe the wind field information in the atmosphere for different purposes. But accuracy of its observation has limitations due to various noises or disturbances and hence need to be further improved. In this paper, the data measured under strong wind conditions, using a 1290-MHz boundary layer profiler (BLP), are quality controlled via a composite quality control (QC) procedure proposed by the authors. Then, through the comparison with the data measured by radiosonde flights (balloon observations), the critical thresholds in the composite QC procedure, including consensus average threshold T 1 and vertical shear threshold T 3 , are systematically discussed. And the performance of the BLP operated under precipitation is also evaluated. It is found that to ensure the high accuracy and high data collectable rate, the optimal range of subsets is determined to be 4 m/s. Although the number of data rejected by the combined algorithm of vertical shear examination and small median test is quite limited, it is proved that the algorithm is quite useful to recognize the outlier with a large discrepancy. And the optimal wind shear threshold T 3 can be recommended as 5 ms -1 /100m. During patchy precipitation, the quality of data measured by the four oblique beams (using the DBS measuring technique) can still be ensured. After the BLP data are quality controlled by the composite QC procedure, the output can show good agreement with the balloon observation.

  14. Application of Classical Land Surveying Measurement Methods for Determining the Vertical Displacement of Railway Bridges

    Science.gov (United States)

    Gawronek, Pelagia; Makuch, Maria

    2017-12-01

    The classical measurements of stability of railway bridge, in the context of determining the vertical displacements of the object, consisted on precise leveling of girders and trigonometric leveling of controlled points (fixed into girders' surface). The construction elements, which were measured in two ways, in real terms belonged to the same vertical planes. Altitude measurements of construction were carried out during periodic structural stability tests and during static load tests of bridge by train. The specificity of displacement measurements, the type of measured object and the rail land surveying measurement conditions were determinants to define methodology of altitude measurement. The article presents compatibility of vertical displacements of steel railway bridge, which were developed in two measurement methods. In conclusion, the authors proposed the optimum concept of determining the vertical displacements of girders by using precise and trigonometric leveling (in terms of accuracy, safety and economy of measurement).

  15. Application of Classical Land Surveying Measurement Methods for Determining the Vertical Displacement of Railway Bridges

    Directory of Open Access Journals (Sweden)

    Gawronek Pelagia

    2017-12-01

    Full Text Available The classical measurements of stability of railway bridge, in the context of determining the vertical displacements of the object, consisted on precise leveling of girders and trigonometric leveling of controlled points (fixed into girders' surface. The construction elements, which were measured in two ways, in real terms belonged to the same vertical planes. Altitude measurements of construction were carried out during periodic structural stability tests and during static load tests of bridge by train. The specificity of displacement measurements, the type of measured object and the rail land surveying measurement conditions were determinants to define methodology of altitude measurement. The article presents compatibility of vertical displacements of steel railway bridge, which were developed in two measurement methods. In conclusion, the authors proposed the optimum concept of determining the vertical displacements of girders by using precise and trigonometric leveling (in terms of accuracy, safety and economy of measurement.

  16. An innovative rotational Raman lidar to measure the temperature profile from the surface to 30 km altitude

    Science.gov (United States)

    Hauchecorne, Alain; Keckhut, Philippe; Mariscal, Jean-François; d'Almeida, Eric; Dahoo, Pierre-Richard; Porteneuve, Jacques

    2016-06-01

    A concept of innovative rotational Raman lidar with daylight measurement capability is proposed to measure the vertical profile of temperature from the ground to the middle stratosphere. The optical filtering is made using a Fabry-Pérot Interferometer with line spacing equal to the line spacing of the Raman spectrum. The detection is made using a linear PMT array operated in photon counting mode. We plan to build a prototype and to test it at the Haute-Provence Observatory lidar facility. to achieve a time resolution permitting the observation of small-scale atmospheric processes playing a role in the troposphere-stratosphere interaction as gravity waves. If successful, this project will open the possibility to consider a Raman space lidar for the global observation of atmospheric temperature profiles.

  17. Tropical cyclone cloud‐top height and vertical temperature structure detection using GPS radio occultation measurements

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Ho, Shu‐Peng; Randel, William

    2013-01-01

    The accurate determination of tropical cyclone (TC) cloud-top height and its vertical thermal structure using the GPS radio occultation (RO) technique is demonstrated in this study. Cloud-top heights are determined by using the bending angle anomaly and the temperature anomaly profiles during...

  18. Measurement of concentration profile during charging of Li battery anode materials in LiClO4-PC electrolyte

    International Nuclear Information System (INIS)

    Nishikawa, K.; Fukunaka, Y.; Sakka, T.; Ogata, Y.H.; Selman, J.R.

    2007-01-01

    Li metal was galvanostatically electrodeposited on a horizontally positioned, downward-facing Li metal cathode in 0.5 M LiClO 4 -PC electrolyte. The refractive index profile corresponding to the transient Li + ion concentration profile formed in the electrolyte solution upon applying a current step was measured in-situ by holographic interferometry. The configuration of the electrolytic cell was such that mass transfer was governed only by transient diffusion and migration, in the absence of convection. Between the moment of closing the current circuit and the time at which the interference fringes started to shift, an incubation period was observed. Such an incubation period had earlier been observed in lithium electrodeposition at a vertical planar Li metal cathode. The incubation period for the horizontal Li cathode was roughly half that for a vertical one. To study the effect of the electrode material on the incubation period, interferometry measurements were also made at an electrodeposited Ni-Sn alloy electrode. The concentration profile formed near the Ni-Sn alloy electrode during lithiation (alloying or intercalation of Li + into the electrode) agrees well with predictions made by means of the one-dimensional diffusion equation. Only very short incubation period was detected, but the magnitude was negligibly smaller than that of Li metal electrodeposition. The incubation period therefore appears to be characteristic for Li metal electrode only

  19. Measurements of a Fast Vertical Instability in the PEP-II HER

    International Nuclear Information System (INIS)

    Matter, Regina S.

    2000-01-01

    The HER beam current was limited to tens of mA by a strong vertical coupled bunch instability during PEP-II commissioning in July '98. In the absence of transverse feedback, vertical oscillations were seen to be unstable at currents as low as 5 mA. The instability has been observed by using the HER longitudinal feedback electronics to digitize and store the vertical beam signal used for transverse feedback. This note presents measurements of modal growth and damping rates at two different vacuum pressures for 291 bunch uniform fills as well as 100 and 150 bunch train measurements. In some cases the unstable modes maintain a constant residual amplitude when feedback is on, and exhibit nonlinear behavior when feedback is switched off. Knowledge of the shape, speed and spectral location of the modal transients should help in diagnosing the cause of instability

  1. Characteristics of aerosol vertical profiles in Tsukuba, Japan, and their impacts on the evolution of the atmospheric boundary layer

    Science.gov (United States)

    Kudo, Rei; Aoyagi, Toshinori; Nishizawa, Tomoaki

    2018-05-01

    Vertical profiles of the aerosol physical and optical properties, with a focus on seasonal means and on transport events, were investigated in Tsukuba, Japan, by a synergistic remote sensing method that uses lidar and sky radiometer data. The retrieved aerosol vertical profiles of the springtime mean and five transport events were input to our developed one-dimensional atmospheric model, and the impacts of the aerosol vertical profiles on the evolution of the atmospheric boundary layer (ABL) were studied by numerical sensitivity experiments. The characteristics of the aerosol vertical profiles in Tsukuba are as follows: (1) the retrieval results in the spring showed that aerosol optical thickness at 532 nm in the free atmosphere (FA) was 0.13, greater than 0.08 in the ABL owing to the frequent occurrence of transported aerosols in the FA. In other seasons, optical thickness in the FA was almost the same as that in the ABL. (2) The aerosol optical and physical properties in the ABL showed a dependency on the extinction coefficient. With an increase in the extinction coefficient from 0.00 to 0.24 km-1, the Ångström exponent increased from 0.0 to 2.0, the single-scattering albedo increased from 0.87 to 0.99, and the asymmetry factor decreased from 0.75 to 0.50. (3) The large variability in the physical and optical properties of aerosols in the FA were attributed to transport events, during which the transported aerosols consisted of varying amounts of dust and smoke particles depending on where they originated (China, Mongolia, or Russia). The results of the numerical sensitivity experiments using the aerosol vertical profiles of the springtime mean and five transport events in the FA are as follows: (1) numerical sensitivity experiments based on simulations conducted with and without aerosols showed that aerosols caused the net downward radiation and the sensible and latent heat fluxes at the surface to decrease. The decrease in temperature in the ABL (-0.2 to -0

  2. Programs to obtain vertical heights from mean sea level and for computing volume of sand/mineral along beaches:A case study with Kalbadevi beach profiling data and results.

    Digital Repository Service at National Institute of Oceanography (India)

    Ganesan, P.

    vertical heights along profiles from M.S.L.? is given below: The reduced level over the bench mark pillar (BP:1 in this case, from where the profile starts) should be added with the first staff reading taken over it, which forms the height... of collimation (H.C.) of the instrument. From this H.C., all the successive staff readings (taken at regular distance interval, along the profile) should be deducted to get the vertical heights (called reduced level (R.L.) in survey terms). i) R...

  3. Vertical and horizontal seismic profiling investigations at Olkiluoto, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Cosma, C.; Enescu, N.; Adam, E.; Balu, L. [Vibrometric Oy (Finland)

    2003-03-01

    Vertical Seismic Profiling (VSP) and Horizontal Seismic Profiling (HSP) surveys were conducted during 2001 at Olkiluoto site in Eurajoki, Finland. The VSP investigations were carried out in four boreholes with ten shot points for each borehole. Two HSP lines were measured with receivers laid on the bottom of an artificial pond and ten source points located around the pond. Different receiver types were used for the VSP and (HSP) a 3-component geophone chain for VSP and a hydrophone chain for HSP. All surveys have been carried out with a VIBSIST-1000 source - a time- distributed swept-impact source - instead of explosives. With this source, the seismic signals are produced as rapid series of impacts, the impact intervals being monotonically increased to achieve a non- repeatable sequence. The VIBSIST-1000 uses a tractor-mounted hydraulic rock-breaker, powered through a computer controlled servo- hydraulic flow regulator. Using standard construction equipment ensures that the VIBSIST sources are safe, nondestructive and environmentally friendly. This also makes the method reliable and cost effective. The new VIBSIST source produces signals with levels of energy comparable to explosives. The VIBSIST appears to be more stable, but its most significant advantages are the low cost of preparation of the shot points and the speed of the acquisition. The wide diversity of reflection angles, the local variations of reflectivity and, generally, the relatively weak seismic response of faults and fractured zones in crystalline rock demand intensive processing. The first stage of the processing sequence focuses on eliminating such wave-fields as the direct P, direct S, tube-waves and ground-roll, so that the weaker later events, e.g. reflections, become visible. The second stage of processing consists mainly of Image Point (IP) filtering techniques, aimed at enhancing the reflected wave fields and at separating events generated by reflectors with different orientations. Imaging

  4. CT false-profile view of the hip: a reproducible method of measuring anterior acetabular coverage using volume CT data

    International Nuclear Information System (INIS)

    Needell, Steven D.; Borzykowski, Ross M.; Carreira, Dominic S.; Kozy, John

    2014-01-01

    To devise a simple, reproducible method of using CT data to measure anterior acetabular coverage that results in values analogous to metrics derived from false-profile radiographs. Volume CT images were used to generate simulated false-profile radiographs and cross-sectional false-profile views by angling a multiplanar reformat 115 through the affected acetabulum relative to a line tangential to the posterior margin of the ischial tuberosities. The anterolateral margin of the acetabulum was localized on the CT false-profile view corresponding with the cranial opening of the acetabular roof. Anterior center edge angle (CEA) was measured between a vertical line passing through the center of the femoral head and a line connecting the center of the femoral head with the anterior edge of the condensed line of the acetabulum (sourcil). Anterior CEA values measured on CT false-profile views of 38 symptomatic hips were compared with values obtained on simulated and projection false-profile radiographs. The CT false-profile view produces a cross-sectional image in the same obliquity as false-profile radiographs. Anterior CEA measured on CT false-profile views were statistically similar to values obtained with false-profile radiographs. CT technologists quickly mastered the technique of generating this view. Inter-rater reliability indicated this method to be highly reproducible. The CT false-profile view is simple to generate and anterior CEA measurements derived from it are similar to those obtained using well-positioned false-profile radiographs. Utilization of CT to assess hip geometry enables precise control of pelvic inclination, eliminates projectional errors, and minimizes limitations of image quality inherent to radiography. (orig.)

  5. CT false-profile view of the hip: a reproducible method of measuring anterior acetabular coverage using volume CT data

    Energy Technology Data Exchange (ETDEWEB)

    Needell, Steven D.; Borzykowski, Ross M. [Boca Radiology Group, Boca Raton, FL (United States); Carreira, Dominic S.; Kozy, John [Broward Health Orthopedics and Sports Medicine, Fort Lauderdale, FL (United States)

    2014-11-15

    To devise a simple, reproducible method of using CT data to measure anterior acetabular coverage that results in values analogous to metrics derived from false-profile radiographs. Volume CT images were used to generate simulated false-profile radiographs and cross-sectional false-profile views by angling a multiplanar reformat 115 through the affected acetabulum relative to a line tangential to the posterior margin of the ischial tuberosities. The anterolateral margin of the acetabulum was localized on the CT false-profile view corresponding with the cranial opening of the acetabular roof. Anterior center edge angle (CEA) was measured between a vertical line passing through the center of the femoral head and a line connecting the center of the femoral head with the anterior edge of the condensed line of the acetabulum (sourcil). Anterior CEA values measured on CT false-profile views of 38 symptomatic hips were compared with values obtained on simulated and projection false-profile radiographs. The CT false-profile view produces a cross-sectional image in the same obliquity as false-profile radiographs. Anterior CEA measured on CT false-profile views were statistically similar to values obtained with false-profile radiographs. CT technologists quickly mastered the technique of generating this view. Inter-rater reliability indicated this method to be highly reproducible. The CT false-profile view is simple to generate and anterior CEA measurements derived from it are similar to those obtained using well-positioned false-profile radiographs. Utilization of CT to assess hip geometry enables precise control of pelvic inclination, eliminates projectional errors, and minimizes limitations of image quality inherent to radiography. (orig.)

  6. Deconvolution of H-alpha profiles measured by Thompson scattering collecting optics

    International Nuclear Information System (INIS)

    LeBlanc, B.; Grek, B.

    1986-01-01

    This paper discusses that optically fast multichannel Thomson scattering optics that can be used for H-alpha emission profile measurement. A technique based on the fact that a particular volume element of the overall field of view can be seen by many channels, depending on its location, is discussed. It is applied to measurement made on PDX with the vertically viewing TVTS collecting optics (56 channels). The authors found that for this case, about 28 Fourier modes are optimum to represent the spatial behavior of the plasma emissivity. The coefficients for these modes are obtained by doing a least-square-fit to the data subjet to certain constraints. The important constraints are non-negative emissivity, the assumed up and down symmetry and zero emissivity beyond the liners. H-alpha deconvolutions are presented for diverted and circular discharges

  7. Vertical distribution of microphysical properties in radiation fogs - A case study

    Science.gov (United States)

    Egli, S.; Maier, F.; Bendix, J.; Thies, B.

    2015-01-01

    The present study investigates the validity of a theoretical liquid water content (LWC) profile in fog layers currently used for satellite based ground fog detection, with a special focus on the temporal dynamics during fog life cycle. For this purpose, LWC profiles recorded during two different fog events by means of a tethered balloon borne measurement system are presented and discussed. The results indicate a good agreement in trend and gradient between measured and theoretical LWC profiles during the mature stage of the fog life cycle. The profile obtained during the dissipation stage shows less accordance with the theoretical profile. To improve the agreement between theoretical and measured LWC profiles, the evolutionary stages during the fog life cycle should be incorporated. However, the variability within the prenoted measurements points out that more LWC profiles during a great variety of different fog events have to be collected for a well-justified adaptation of the theoretical LWC profile, considering fog life cycle phases in the future. In general, this underlines the existing knowledge gap regarding the vertical distribution of microphysical properties in natural fogs.

  8. SOMPROF: A vertically explicit soil organic matter model

    NARCIS (Netherlands)

    Braakhekke, M.C.; Beer, M.; Hoosbeek, M.R.; Kruijt, B.; Kabat, P.

    2011-01-01

    Most current soil organic matter (SOM) models represent the soil as a bulk without specification of the vertical distribution of SOM in the soil profile. However, the vertical SOM profile may be of great importance for soil carbon cycling, both on short (hours to years) time scale, due to

  9. Measurement of the vertical infiltration parameters and water redistribution in LRd and LEa soils by gamma-ray transmission technique

    International Nuclear Information System (INIS)

    Souza, A.D.B. de; Saito, H.; Appoloni, C.R.; Coimbra, M.M.; Parreira, P.S.

    1991-01-01

    The properties of soil water diffusivity and soil hydraulic conductivity of two horizons (0-20 cm and 20-40 cm) from Latossolo Roxo distrofico (LRd) and Latossolo Vermelho escuro (LEa) soil samples, have been measured in laboratory through the vertical infiltration and redistribution of water in soil columns. The moisture profile as a function of time for each position in the soil column were obtained with the gamma-ray transmission technique, using a sup(241)Am gamma-ray source, a Na (I) T1 scintillation detector and gamma spectrometry standard electronic. (author)

  10. Measurement of an electron-beam size with a beam profile monitor using Fresnel zone plates

    International Nuclear Information System (INIS)

    Iida, K.; Nakamura, N.; Sakai, H.; Shinoe, K.; Takaki, H.; Fujisawa, M.; Hayano, H.; Nomura, M.; Kamiya, Y.; Koseki, T.; Amemiya, Y.; Aoki, N.; Nakayama, K.

    2003-01-01

    We present a non-destructive and real-time beam profile monitor using Fresnel zone plates (FZPs) and the measurement of an electron-beam size with this monitor in the KEK-Accelerator Test Facility (ATF) damping ring. The monitor system has the structure of a long-distance X-ray microscope, where two FZPs constitute an X-ray imaging optics. The synchrotron radiation from the electron beam at the bending magnet is monochromatized by a crystal monochromator and the transverse electron beam image is twenty times magnified by the two FZPs and detected on an X-ray CCD camera. The expected spatial resolution for the selected photon energy of 3.235 keV is sufficiently high to measure the horizontal and vertical beam sizes of the ATF damping ring. With the beam profile monitor, we succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 μm. The measured magnification of the X-ray imaging optics in the monitor system was in good agreement with the design value

  11. Total solar eclipse of 16 February 1980 and the vertical profiles of atmospheric parameters in the lowest 200M

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Sastry, J.S.

    Vertical profiles of air temperature, wind and humidity at Raichur (16 degrees 12'N and 77 degrees 21'E) in the lowest 200m of the atmosphere are presented for the period 15-18 February 1980. The effect of the total solar eclipse, on 16 February...

  12. A look inside the San Andreas Fault at Parkfield through vertical seismic profiling.

    Science.gov (United States)

    Chavarria, J Andres; Malin, Peter; Catchings, Rufus D; Shalev, Eylon

    2003-12-05

    The San Andreas Fault Observatory at Depth pilot hole is located on the southwestern side of the Parkfield San Andreas fault. This observatory includes a vertical seismic profiling (VSP) array. VSP seismograms from nearby microearthquakes contain signals between the P and S waves. These signals may be P and S waves scattered by the local geologic structure. The collected scattering points form planar surfaces that we interpret as the San Andreas fault and four other secondary faults. The scattering process includes conversions between P and S waves, the strengths of which suggest large contrasts in material properties, possibly indicating the presence of cracks or fluids.

  13. A relaxed eddy accumulation system for measuring vertical fluxes of nitrous acid

    Directory of Open Access Journals (Sweden)

    X. Ren

    2011-10-01

    Full Text Available A relaxed eddy accumulation (REA system combined with a nitrous acid (HONO analyzer was developed to measure atmospheric HONO vertical fluxes. The system consists of three major components: (1 a fast-response sonic anemometer measuring both vertical wind velocity and air temperature, (2 a fast-response controlling unit separating air motions into updraft and downdraft samplers by the sign of vertical wind velocity, and (3 a highly sensitive HONO analyzer based on aqueous long path absorption photometry that measures HONO concentrations in the updrafts and downdrafts. A dynamic velocity threshold (±0.5σw, where σw is a standard deviation of the vertical wind velocity was used for valve switching determined by the running means and standard deviations of the vertical wind velocity. Using measured temperature as a tracer and the average values from two field deployments, the flux proportionality coefficient, β, was determined to be 0.42 ± 0.02, in good agreement with the theoretical estimation. The REA system was deployed in two ground-based field studies. In the California Research at the Nexus of Air Quality and Climate Change (CalNex study in Bakersfield, California in summer 2010, measured HONO fluxes appeared to be upward during the day and were close to zero at night. The upward HONO flux was highly correlated to the product of NO2 and solar radiation. During the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX 2009 at Blodgett Forest, California in July 2009, the overall HONO fluxes were small in magnitude and were close to zero. Causes for the different HONO fluxes in the two different environments are briefly discussed.

  14. Retrieval of tropospheric NO2 vertical column densities and aerosol optical properties form MAXDOAS measurements in Yangtze River Delta, China

    Science.gov (United States)

    Hao, Nan; Van. Roozendael, Michel; Ding, Aijun; Zhou, Bin; Hendrick, François; Shen, Yicheng; Wang, Tin; Valks, Pieter

    2014-05-01

    Air pollution is one of the most important environmental problems in developing Asian countries like China. Due to huge consumption of fossil fuels and rapid increase of traffic emissions in the past decades, many regions in China have been experiencing heavy air pollution. The Yangtze River Delta (YRD) region includes the mega-city Shanghai and the well-industrialized and urbanized areas of Zhejiang Province and Jiangsu Province, with over ten large cities, such as Hangzhou, Suzhou and Nanjing. Covering only 2% land area, this region produces over 20% of China's Gross Domestic Product (GDP) which makes it the most densely populated region and one of the most polluted regions in China. For instance, there more than 60% of a year was haze days with poor visibility in Shanghai over the last few years. In the YRD region, knowledge gaps still exist in the understanding of the source and transport of air pollutants because only few measurement studies have been conducted. MAX-DOAS measurements were performed in Shanghai city center and Wujiang (border of Shanghai and Jiangsu Province) from 2010 to 2012 and in Nanjing (capital of Jiangsu Province) from April 2013. A retrieval algorithm, based on an on-line implementation of the radiative transfer code LIDORT and the optimal estimation technique, has been used to provide information on aerosol extinction vertical profiles. The total aerosol optical depths (AODs) calculated from the retrieved profiles were compared to MODIS, AERONET and local PM measurements. The aerosol information was input to LIDORT to calculate NO2 air mass factors. The retrieved tropospheric NO2 vertical column densities (VCDs) were compared to in-situ and satellite NO2 measurements.

  15. Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Rozanov

    2011-05-01

    Full Text Available This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS altitude range from space-borne observations of the scattered solar light made in limb viewing geometry. First results using measurements from SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY aboard ENVISAT (Environmental Satellite are presented here. In previous publications, the retrieval of water vapor vertical distributions has been achieved exploiting either the emitted radiance leaving the atmosphere or the transmitted solar radiation. In this study, the scattered solar radiation is used as a new source of information on the water vapor content in the UTLS region. A recently developed retrieval algorithm utilizes the differential absorption structure of the water vapor in 1353–1410 nm spectral range and yields the water vapor content in the 11–25 km altitude range. In this study, the retrieval algorithm is successfully applied to SCIAMACHY limb measurements and the resulting water vapor profiles are compared to in situ balloon-borne observations. The results from both satellite and balloon-borne instruments are found to agree typically within 10 %.

  16. Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma

    Directory of Open Access Journals (Sweden)

    E. Andrews

    2011-10-01

    Full Text Available A small airplane made 597 aerosol optical property (light absorption and light scattering vertical profile measurements over a rural Oklahoma site between March 2000 and December 2007. The aerosol profiles obtained during these 8 yr of measurements suggest significant seasonal differences in aerosol loading (scattering and absorption. The highest amounts of scattering and absorbing aerosol are observed during the summer and the lowest loading occurs during the winter. The relative contribution of aerosol absorption is highest in the winter (i.e., single scattering albedo is lowest in winter, particularly aloft. Aerosol absorption generally decreased with altitude below ~1.5 km and then was relatively constant or decreased more gradually above that. Aerosol scattering decreased sharply with altitude below ~1.5 km but, unlike absorption, also decreased at higher altitudes, albeit less sharply. Scattering Ångström exponents suggest that the aerosol was dominated by sub-micron aerosol during the summer at all altitudes, but that larger particles were present, especially in the spring and winter above 1 km. The seasonal variability observed for aerosol loading is consistent with AERONET aerosol optical depth (AOD although the AOD values calculated from in situ adjusted to ambient conditions and matching wavelengths are up to a factor of two lower than AERONET AOD values depending on season. The column averaged single scattering albedo derived from in situ airplane measurements are similar in value to the AERONET single scattering albedo inversion product but the seasonal patterns are different – possibly a consequence of the strict constraints on obtaining single scattering albedo from AERONET data. A comparison of extinction Ångström exponent and asymmetry parameter from the airplane and AERONET platforms suggests similar seasonal variability with smaller particles observed in the summer and fall and larger particles observed in spring and

  17. Derivation of the radial profile of ion temperature from the measured energy spectra of charge-exchanged neutrals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K; Hiraki, N; Toi, K; Itoh, S

    1980-01-01

    In the TRIAM-1 tokamak the energy spectra of charge-exchanged neutrals are observed by scanning the neutral energy analyzer vertically. The measured ion temperature obtained from the only energy spectrum observed in the peripheral region is much higher than that predicted by the neoclassical transport theory because of reflection (backscattering) of neutrals at the wall. The actual ion temperature profile is derived from all observed energy spectra by the numerical code in which a wall-reflection effect of neutrals and an impermeability of plasma are taken into account. The reflection coefficient is adjusted so that the calculated ion temperature profile should be the best fit for the ion temperatures measured by the Doppler broadening of the visible lines He II 4686 A and H-alpha at the relevant radial positions.

  18. An innovative rotational Raman lidar to measure the temperature profile from the surface to 30 km altitude

    Directory of Open Access Journals (Sweden)

    Hauchecorne Alain

    2016-01-01

    Full Text Available A concept of innovative rotational Raman lidar with daylight measurement capability is proposed to measure the vertical profile of temperature from the ground to the middle stratosphere. The optical filtering is made using a Fabry-Pérot Interferometer with line spacing equal to the line spacing of the Raman spectrum. The detection is made using a linear PMT array operated in photon counting mode. We plan to build a prototype and to test it at the Haute-Provence Observatory lidar facility. to achieve a time resolution permitting the observation of small-scale atmospheric processes playing a role in the troposphere-stratosphere interaction as gravity waves. If successful, this project will open the possibility to consider a Raman space lidar for the global observation of atmospheric temperature profiles.

  19. Technical Note: Regularization performances with the error consistency method in the case of retrieved atmospheric profiles

    Directory of Open Access Journals (Sweden)

    S. Ceccherini

    2007-01-01

    Full Text Available The retrieval of concentration vertical profiles of atmospheric constituents from spectroscopic measurements is often an ill-conditioned problem and regularization methods are frequently used to improve its stability. Recently a new method, that provides a good compromise between precision and vertical resolution, was proposed to determine analytically the value of the regularization parameter. This method is applied for the first time to real measurements with its implementation in the operational retrieval code of the satellite limb-emission measurements of the MIPAS instrument and its performances are quantitatively analyzed. The adopted regularization improves the stability of the retrieval providing smooth profiles without major degradation of the vertical resolution. In the analyzed measurements the retrieval procedure provides a vertical resolution that, in the troposphere and low stratosphere, is smaller than the vertical field of view of the instrument.

  20. Measurement of Cabbibo-suppressed {tau} lepton decays and the determination of vertical stroke V{sub us} vertical stroke

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, Stefan

    2008-07-07

    This work presents simultaneous branching fraction measurements of the decay modes {tau}{sup -}{yields}K{sup -}n{pi}{sup 0}{nu}{sub {tau}} with n=0,1,2,3 and {tau}{sup -}{yields}{pi}{sup -}n{pi}{sup 0}{nu}{sub {tau}} with n=3,4. The analysis is based on a data sample of 427 x 10{sup 6}{tau}{sup +}{tau}{sup -} pairs recorded with the BABAR detector, which corresponds to an integrated luminosity of 464.4 fb{sup -1}. The measured values are B({tau}{sup -}{yields}K{sup -}{nu}{sub {tau}})=(6.57{+-}0.03{+-}0.11) x 10{sup -3}, B({tau}{sup -}{yields}K{sup -}{pi}{sup 0}{nu}{sub {tau}})=(4.61{+-}0.03{+-}0.11) x 10{sup -3}, B({tau}{sup -}{yields}K{sup -}{pi}{sup 0}{pi}{sup 0}{nu}{sub {tau}})=(5.05{+-}0.17{+-}0.44) x 10{sup -4}, B({tau}{sup -}{yields}K{sup -}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0}{nu}{sub {tau}})=(1.31{+-}0.43{+-}0.40) x 10{sup -4}, B({tau}{sup -}{yields}{pi}{sup -}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0}{nu}{sub {tau}})=(1.263{+-}0.008{+-}0.078) x 10{sup -2} and B({tau}{sup -}{yields}{pi}{sup -}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0}{nu}{sub {tau}})=(9.6{+-}0.5{+-}1.2) x 10{sup -4}, where the uncertainties are statistical and systematic, respectively. All measurements are compatible with the current world averages whereas the uncertainties are significantly smaller by a factor of up to five. The determination of B({tau}{sup -}{yields}{pi}{sup -}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0}{pi}{sup 0}{nu}{sub {tau}}) is the first measurement of this branching fraction. The measured branching fractions are combined with the current world averages. Using the new averages, an updated determination of vertical stroke V{sub us} vertical stroke from hadronic {tau} decays yields vertical stroke V{sub us} vertical stroke =0.2146{+-}0.0025, which improves previous measurements by 19%. Its uncertainty is comparable to the one of the current world average from semileptonic kaon decays. (orig.)

  1. Data driven modelling of vertical atmospheric radiation

    International Nuclear Information System (INIS)

    Antoch, Jaromir; Hlubinka, Daniel

    2011-01-01

    In the Czech Hydrometeorological Institute (CHMI) there exists a unique set of meteorological measurements consisting of the values of vertical atmospheric levels of beta and gamma radiation. In this paper a stochastic data-driven model based on nonlinear regression and on nonhomogeneous Poisson process is suggested. In the first part of the paper, growth curves were used to establish an appropriate nonlinear regression model. For comparison we considered a nonhomogeneous Poisson process with its intensity based on growth curves. In the second part both approaches were applied to the real data and compared. Computational aspects are briefly discussed as well. The primary goal of this paper is to present an improved understanding of the distribution of environmental radiation as obtained from the measurements of the vertical radioactivity profiles by the radioactivity sonde system. - Highlights: → We model vertical atmospheric levels of beta and gamma radiation. → We suggest appropriate nonlinear regression model based on growth curves. → We compare nonlinear regression modelling with Poisson process based modeling. → We apply both models to the real data.

  2. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2015-01-01

    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  3. Biomass estimation as a function of vertical forest structure and forest height: potential and limitations for radar remote sensing

    OpenAIRE

    Torano Caicoya, Astor; Kugler, Florian; Papathanassiou, Kostas; Biber, Peter; Pretzsch, Hans

    2010-01-01

    One common method to estimate biomass is measuring forest height and applying allometric equations to get forest biomass. Conditions like changing forest density or changing forest structure bias the allometric relations or biomass estimation fails completely. Remote sensing systems like SAR or LIDAR allow to measure vertical structure of forests. In this paper it is investigated whether vertical structure is sensitive to biomass. For this purpose vertical biomass profiles were calculated usi...

  4. Vertical Land Movements Constrained by Absolute Gravity Measurements

    Science.gov (United States)

    van Camp, M.; Williams, S. D.; Hinzen, K.; Camelbeeck, T.

    2009-05-01

    Repeated absolute gravity (AG) measurements have been performed across the tectonically active intraplate regions in Northwest Europe: the Ardenne and the Roer Graben. At most of the stations measurements were undertaken in 2000 and repeated twice a year. Analysis of these measurements, performed in Belgium and Germany, show that at all stations except Jülich, there is no detectable gravity variation higher than 10 nm s-2 at the 95% confidence level. This is equivalent to vertical movements of 5 mm/yr. Although not yet significant, the observed rates do not contradict the subsidence predicted by glacial isostatic adjustment models and provide an upper limit on the possible uplift of the Ardennes. In Jülich, a gravity rate of change of 36 nm -2/year, equivalent to 18 mm/yr, is at least in parts due to anthropogenic subsidence. The amplitudes of the seasonal variations range from 18±0.8 nm s-2 to 43±29 nm s-2, depending on the location. These variations should have a negligible effect on the long-term trend, but at the Membach reference station, were a longer time series is available, differences in the rates observed since 1996 and 1999 indicate that long-term environmental effects may influence the inferred trend. The observed seasonal effects also demonstrate the repeatability of AG measurements. This study indicates that, even in difficult conditions, AG measurements repeated once a year can resolve vertical land movements at a few mm level after 5 years. This also confirms the need to measure for decades, using accurate and stable geodetic techniques like AG, in order to constrain slow deformation processes.

  5. Capillary holdup between vertical spheres

    Directory of Open Access Journals (Sweden)

    S. Zeinali Heris

    2009-12-01

    Full Text Available The maximum volume of liquid bridge left between two vertically mounted spherical particles has been theoretically determined and experimentally measured. As the gravitational effect has not been neglected in the theoretical model, the liquid interface profile is nonsymmetrical around the X-axis. Symmetry in the interface profile only occurs when either the particle size ratio or the gravitational force becomes zero. In this paper, some equations are derived as a function of the spheres' sizes, gap width, liquid density, surface tension and body force (gravity/centrifugal to estimate the maximum amount of liquid that can be held between the two solid spheres. Then a comparison is made between the result based on these equations and several experimental results.

  6. Geological affinity of reflecting boundaries in the intermediate structural stage of the Chu Sarysuyskiy depression based on results of vertical seismic profilling

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, N.G.; Kiselevskiy, Yu.N.

    1983-01-01

    A computer (EVM) and an ASOI-VSP-SK program complex are used to analyze data from seismic exploration and acoustical logging with interval by interval calculation of the velocity every four meters. Vertical seismic profilling (VSP) results are used to identify all the upper layers as reference layers. The basic reference level, the third, which corresponds to the floor of the carbonate middle to upper Visean series, is not sustained due to the thin layered state of the terrigeneous section. Based on data from vertical seismic profilling, the reflected wave method (MOV) and the common depth point method (MOGT), the reference 3-a and 6-a levels are identified. Deep reflections of the seventh, 7-a and Rf, approximately confined to the roof and floor of the lower Paleozoic deposits and the upper part of the upper reef series, are noted in the series of the Caledonian cap of the Prebaykal massifs based on vertical seismic profilling. Collector levels are noted on the basis of the frequency of the wave spectra and from the absorption coefficient in the Testas structure and in other low amplitude structures. The insufficiency of the depth capability of the common depth point method and the poor knowledge level of seismic exploration of the section of the lower Paleozoa and the upper Proterozoa of the Chu Sarysuyskiy depresion are noted.

  7. Electron shower transverse profile measurement

    International Nuclear Information System (INIS)

    Lednev, A.A.

    1993-01-01

    A method to measure the shower transverse profile is described. Calibration data of the lead-glass spectrometer GAMS collected in a wide electron beam without any additional coordinate detector are used. The method may be used for the measurements in both cellular- and projective-type spectrometers. The results of measuring the 10 GeV electron shower profile in the GAMS spectrometer, without optical grease between the lead-glass radiators and photomultipliers, are approximated with an analytical function. The estimate of the coordinate accuracy is obtained. 5 refs., 8 figs

  8. A self-decoupling piezoresistive sensor for measuring microforce in horizontal and vertical directions

    International Nuclear Information System (INIS)

    Zhou, Jie; Rong, Weibin; Wang, Lefeng; Gao, Peng; Sun, Lining

    2016-01-01

    This paper presents the design, fabrication and calibration of a novel two-dimension microforce sensor with nano-Newton resolution. The sensor, mainly composed of a clamped–clamped beam (horizontal detecting beam), an overhanging beam (vertical detecting beam) and a half-folded beam, is highly sensitive to microforces in the horizontal (parallel to the probe of the designed sensor) and vertical (perpendicular to the wafer surface) directions. The four vertical sidewall surface piezoresistors (horizontal piezoresistors) and two surface piezoresistors (vertical piezoresistors) were fabricated to achieve the requirements of two-dimension microforce measurements. Combining the sensor structure with Wheatstone bridge configurations, the microforce decoupling among the x , y , and z direction can be realized. Accordingly, the sensor is capable of detecting microforces in the horizontal and vertical directions independently. The calibration results verified that the sensor sensitivities at room temperature are 210.58 V N −1 and 159.2 V N −1 in the horizontal and vertical directions, respectively. Additionally, the sensor’s corresponding force resolutions are estimated at 2 nN and 3 nN in theory, respectively. The sensor can be used to measure the contact force between manipulating tools and micro-objects, in fields such as microassembly and biological assays. (paper)

  9. The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds.

    Science.gov (United States)

    Miller, Daniel J; Zhang, Zhibo; Ackerman, Andrew S; Platnick, Steven; Baum, Bryan A

    2016-04-27

    Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness ( τ ) and effective radius ( r e ) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5-10 g/m 2 . In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic r e profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques.

  10. The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds

    Science.gov (United States)

    Miller, Daniel J.; Zhang, Zhibo; Ackerman, Andrew S.; Platnick, Steven; Baum, Bryan A.

    2018-01-01

    Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness (τ) and effective radius (re) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5–10 g/m2. In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic re profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques. PMID:29637042

  11. Vertical eddy diffusion as a key mechanism for removing perfluorooctanoic acid (PFOA) from the global surface oceans

    NARCIS (Netherlands)

    Lohmann, R.; Jurado Cojo, E.|info:eu-repo/dai/nl/325788227; Dijkstra, H.A.|info:eu-repo/dai/nl/073504467; Dachs, J.

    2013-01-01

    Here we estimate the importance of vertical eddy diffusion in removing perfluorooctanoic acid (PFOA) from the surface Ocean and assess its importance as a global sink. Measured water column profiles of PFOA were reproduced by assuming that vertical eddy diffusion in a 3-layer ocean model is the sole

  12. Measurement of whole tire profile

    Science.gov (United States)

    Yang, Yongyue; Jiao, Wenguang

    2010-08-01

    In this paper, a precision measuring device is developed for obtaining characteristic curve of tire profile and its geometric parameters. It consists of a laser displacement measurement unit, a closed-loop precision two-dimensional coordinate table, a step motor control system and a fast data acquisition and analysis system. Based on the laser trigonometry, a data map of tire profile and coordinate values of all points can be obtained through corresponding data transformation. This device has a compact structure, a convenient control, a simple hardware circuit design and a high measurement precision. Experimental results indicate that measurement precision can meet the customer accuracy requirement of +/-0.02 mm.

  13. Fitting the IRI F2-profile function to measured profiles

    International Nuclear Information System (INIS)

    Reinisch, B.W.; Huang Xueqin

    1997-01-01

    Comparison with profile data from ionosondes shows that the IRI bottomside F2-profiles can be improved by using better B0 and B1 parameters. The best parameters (in a least-squares sense) can be easily calculated in a numerical procedure from measured profiles presented as a sum of Chebyshev polynomials. 7 refs, 5 figs, 1 tab

  14. Measurement of vertical track deflection from a moving rail car.

    Science.gov (United States)

    2013-02-01

    The University of Nebraska has been conducting research sponsored by the Federal Railroad Administrations Office of Research and Development to develop a system that measures vertical track deflection/modulus from a moving rail car. Previous work ...

  15. LIMS/Nimbus-7 Level 2 Vertical Profiles of O3, NO2, H2O, HNO3, Geopotential Height, and Temperature V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The Limb Infrared Monitor of the Stratosphere (LIMS) version 6 Level-2 data product consists of daily, geolocated, vertical profiles of temperature, geopotential...

  16. Minimalistic models of the vertical distribution of roots under stochastic hydrological forcing

    Science.gov (United States)

    Laio, Francesco

    2014-05-01

    The assessment of the vertical root profile can be useful for multiple purposes: the partition of water fluxes between evaporation and transpiration, the evaluation of root soil reinforcement for bioengineering applications, the influence of roots on biogeochemical and microbial processes in the soil, etc. In water-controlled ecosystems the shape of the root profile is mainly determined by the soil moisture availability at different depths. The long term soil water balance in the root zone can be assessed by modeling the stochastic incoming and outgoing water fluxes, influenced by the stochastic rainfall pulses and/or by the water table fluctuations. Through an ecohydrological analysis one obtains that in water-controlled ecosystems the vertical root distribution is a decreasing function with depth, whose parameters depend on pedologic and climatic factors. The model can be extended to suitably account for the influence of the water table fluctuations, when the water table is shallow enough to exert an influence on root development, in which case the vertical root distribution tends to assume a non-monotonic form. In order to evaluate the validity of the ecohydrological estimation of the root profile we have tested it on a case study in the north of Tuscany (Italy). We have analyzed data from 17 landslide-prone sites: in each of these sites we have assessed the pedologic and climatic descriptors necessary to apply the model, and we have measured the mean rooting depth. The results show a quite good matching between observed and modeled mean root depths. The merit of this minimalistic approach to the modeling of the vertical root distribution relies on the fact that it allows a quantitative estimation of the main features of the vertical root distribution without resorting to time- and money-demanding measuring surveys.

  17. Derivation of the radial profile of ion temperature from the 'measured' energy spectra of charge-exchanged neutrals

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo; Itoh, Satoshi

    1980-01-01

    In the TRIAM-1 tokamak the energy spectra of charge-exchanged neutrals are observed by scanning the neutral energy analyzer vertically. The ''measured'' ion temperature obtained from only energy spectrum observed in the peripheral region is much higher than that predicted by the neoclassical transport theory because of reflection (backscattering) of neutrals at the wall. The ''actual'' ion temperature profile is derived from all observed energy spectra by using the numerical code in which a wall-reflection effect of neutrals and an impermeability of plasma are taken into account. In this numerical analysis, the reflection coefficient is adjusted so that the above calculated ion temperature profile should be best fit for the ion temperatures measured by the Doppler broadening of the visible lines HeII 4686 A and H sub(α) at the relevant radial positions. (author)

  18. Derivation of the radial profile of ion temperature from the 'measured' energy spectra of charge-exchanged neutrals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K; Hiraki, N; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-07-01

    In the TRIAM-1 tokamak the energy spectra of charge-exchanged neutrals are observed by scanning the neutral energy analyzer vertically. The ''measured'' ion temperature obtained from only energy spectrum observed in the peripheral region is much higher than that predicted by the neoclassical transport theory because of reflection (backscattering) of neutrals at the wall. The ''actual'' ion temperature profile is derived from all observed energy spectra by using the numerical code in which a wall-reflection effect of neutrals and an impermeability of plasma are taken into account. In this numerical analysis, the reflection coefficient is adjusted so that the above calculated ion temperature profile should be best fit for the ion temperatures measured by the Doppler broadening of the visible lines HeII 4686 A and H sub(..cap alpha..) at the relevant radial positions.

  19. Measurements of the vertical correlation in turbulence under broken waves

    DEFF Research Database (Denmark)

    Pedersen, Claus; Deigaard, Rolf; Sutherland, James

    1998-01-01

    Turbulence measurements have been carried out in the surf zone of a wave flume. The purpose of the measurements is to determine the length scale of the turbulence generated by the wave breaking. The length scale of the turbulence is estimated on basis of the correlation between simultaneous measu...... measurements of the vertical turbulent fluctuations, taken at different levels above the bed, (C) 1998 Elsevier Science B.V. All rights reserved....

  20. Dynamic vertical profiles of peat porewater chemistry in a northern peatland

    Science.gov (United States)

    Natalie A. Griffiths; Stephen D. Sebestyen

    2016-01-01

    We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large...

  1. On the vertical structure of wind gusts

    DEFF Research Database (Denmark)

    Suomi, I.; Gryning, Sven-Erik; Floors, Rogier Ralph

    2015-01-01

    The increasing size of wind turbines, their height and the area swept by their blades have revised the need for understanding the vertical structure of wind gusts. Information is needed for the whole profile. In this study, we analyzed turbulence measurements from a 100m high meteorological mast...... and the turbulence intensity, of which the turbulence intensity was found to dominate over the peak factor in determining the effects of stability and height above the surface on the gust factor. The peak factor only explained 15% or less of the vertical decrease of the gust factor, but determined the effect of gust...... duration on the gust factor. The statistical method to estimate the peak factor did not reproduce the observed vertical decrease in near-neutral and stable conditions and near-constant situation in unstable conditions. Despite this inconsistency, the theoretical method provides estimates for the peak...

  2. The Profile Envision and Splicing Tool (PRESTO): Developing an Atmospheric Wind Analysis Tool for Space Launch Vehicles Using Python

    Science.gov (United States)

    Orcutt, John M.; Barbre, Robert E., Jr.; Brenton, James C.; Decker, Ryan K.

    2017-01-01

    Launch vehicle programs require vertically complete atmospheric profiles. Many systems at the ER to make the necessary measurements, but all have different EVR, vertical coverage, and temporal coverage. MSFC Natural Environments Branch developed a tool to create a vertically complete profile from multiple inputs using Python. Forward work: Finish Formal Testing Acceptance Testing, End-to-End Testing. Formal Release

  3. Modeling direction discrimination thresholds for yaw rotations around an earth-vertical axis for arbitrary motion profiles.

    Science.gov (United States)

    Soyka, Florian; Giordano, Paolo Robuffo; Barnett-Cowan, Michael; Bülthoff, Heinrich H

    2012-07-01

    Understanding the dynamics of vestibular perception is important, for example, for improving the realism of motion simulation and virtual reality environments or for diagnosing patients suffering from vestibular problems. Previous research has found a dependence of direction discrimination thresholds for rotational motions on the period length (inverse frequency) of a transient (single cycle) sinusoidal acceleration stimulus. However, self-motion is seldom purely sinusoidal, and up to now, no models have been proposed that take into account non-sinusoidal stimuli for rotational motions. In this work, the influence of both the period length and the specific time course of an inertial stimulus is investigated. Thresholds for three acceleration profile shapes (triangular, sinusoidal, and trapezoidal) were measured for three period lengths (0.3, 1.4, and 6.7 s) in ten participants. A two-alternative forced-choice discrimination task was used where participants had to judge if a yaw rotation around an earth-vertical axis was leftward or rightward. The peak velocity of the stimulus was varied, and the threshold was defined as the stimulus yielding 75 % correct answers. In accordance with previous research, thresholds decreased with shortening period length (from ~2 deg/s for 6.7 s to ~0.8 deg/s for 0.3 s). The peak velocity was the determining factor for discrimination: Different profiles with the same period length have similar velocity thresholds. These measurements were used to fit a novel model based on a description of the firing rate of semi-circular canal neurons. In accordance with previous research, the estimates of the model parameters suggest that velocity storage does not influence perceptual thresholds.

  4. Evaluating vertical concentration profile of carbon source released from slow-releasing carbon source tablets and in situ biological nitrate denitrification activity

    Science.gov (United States)

    Yeum, Y.; HAN, K.; Yoon, J.; Lee, J. H.; Song, K.; Kang, J. H.; Park, C. W.; Kwon, S.; Kim, Y.

    2017-12-01

    Slow-releasing carbon source tablets were manufactured during the design of a small-scale in situ biological denitrification system to reduce high-strength nitrate (> 30 mg N/L) from a point source such as livestock complexes. Two types of slow-releasing tablets, precipitating tablet (PT, apparent density of 2.0 g/mL) and floating tablet (FT), were prepared to achieve a vertically even distribution of carbon source (CS) in a well and an aquifer. Hydroxypropyl methylcellulose (HPMC) was used to control the release rate, and microcrystalline cellulose pH 101 (MCC 101) was added as a binder. The #8 sand was used as a precipitation agent for the PTs, and the floating agents for the FTs were calcium carbonate and citric acid. FTs floated within 30 min. and remained in water because of the buoyance from carbon dioxide, which formed during the acid-base reaction between citric acid and calcium carbonate. The longevities of PTs with 300 mg of HPMC and FTs with 400 mg of HPMC were 25.4 days and 37.3 days, respectively. We assessed vertical CS profile in a continuous flowing physical aquifer model (release test, RT) and its efficiency on biological nitrate denitrification (denitrification test, DT). During the RT, PTs, FTs and a tracer (as 1 mg rhodamine B/L) were initially injected into a well of physical aquifer model (PAM). Concentrations of CS and the tracer were monitored along the streamline in the PAM to evaluate vertical profile of CS. During the DT, the same experiment was performed as RT, except continuous injection of solution containing 30 mg N/L into the PAM to evaluate biological denitrification activity. As a result of RT, temporal profiles of CS were similar at 3 different depths of monitoring wells. These results suggest that simultaneous addition of PT and FT be suitable for achieving a vertically even distribution of the CS in the injection well and an aquifer. In DT, similar profile of CS was detected in the injection well, and nitrate was biologically

  5. Using Smartphone Pressure Sensors to Measure Vertical Velocities of Elevators, Stairways, and Drones

    Science.gov (United States)

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are…

  6. Validity of a Simple Method for Measuring Force-Velocity-Power Profile in Countermovement Jump.

    Science.gov (United States)

    Jiménez-Reyes, Pedro; Samozino, Pierre; Pareja-Blanco, Fernando; Conceição, Filipe; Cuadrado-Peñafiel, Víctor; González-Badillo, Juan José; Morin, Jean-Benoît

    2017-01-01

    To analyze the reliability and validity of a simple computation method to evaluate force (F), velocity (v), and power (P) output during a countermovement jump (CMJ) suitable for use in field conditions and to verify the validity of this computation method to compute the CMJ force-velocity (F-v) profile (including unloaded and loaded jumps) in trained athletes. Sixteen high-level male sprinters and jumpers performed maximal CMJs under 6 different load conditions (0-87 kg). A force plate sampling at 1000 Hz was used to record vertical ground-reaction force and derive vertical-displacement data during CMJ trials. For each condition, mean F, v, and P of the push-off phase were determined from both force-plate data (reference method) and simple computation measures based on body mass, jump height (from flight time), and push-off distance and used to establish the linear F-v relationship for each individual. Mean absolute bias values were 0.9% (± 1.6%), 4.7% (± 6.2%), 3.7% (± 4.8%), and 5% (± 6.8%) for F, v, P, and slope of the F-v relationship (S Fv ), respectively. Both methods showed high correlations for F-v-profile-related variables (r = .985-.991). Finally, all variables computed from the simple method showed high reliability, with ICC >.980 and CV push-off distance, and jump height are known.

  7. AGS vertical beta function measurements for Run 15

    Energy Technology Data Exchange (ETDEWEB)

    Harper, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ahrens, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-10-07

    One key parameter for running the AGS efficiently is by maintaining a low emittance. To measure emittance, one needs to measure the beta function throughout the cycle. This can be done by measuring the beta function at the ionization profile monitors (IPM) in the AGS. This tech note delves into the motivation, the measurement, and some strides that were made throughout Run15.

  8. Surface profile measurement by using the integrated Linnik WLSI and confocal microscope system

    Science.gov (United States)

    Wang, Wei-Chung; Shen, Ming-Hsing; Hwang, Chi-Hung; Yu, Yun-Ting; Wang, Tzu-Fong

    2017-06-01

    The white-light scanning interferometer (WLSI) and confocal microscope (CM) are the two major optical inspection systems for measuring three-dimensional (3D) surface profile (SP) of micro specimens. Nevertheless, in practical applications, WLSI is more suitable for measuring smooth and low-slope surfaces. On the other hand, CM is more suitable for measuring uneven-reflective and low-reflective surfaces. As for aspect of surface profiles to be measured, the characteristics of WLSI and CM are also different. WLSI is generally used in semiconductor industry while CM is more popular in printed circuit board industry. In this paper, a self-assembled multi-function optical system was integrated to perform Linnik white-light scanning interferometer (Linnik WLSI) and CM. A connecting part composed of tubes, lenses and interferometer was used to conjunct finite and infinite optical systems for Linnik WLSI and CM in the self-assembled optical system. By adopting the flexibility of tubes and lenses, switching to perform two different optical measurements can be easily achieved. Furthermore, based on the shape from focus method with energy of Laplacian filter, the CM was developed to enhance the on focal information of each pixel so that the CM can provide all-in-focus image for performing the 3D SP measurement and analysis simultaneously. As for Linnik WLSI, eleven-step phase shifting algorithm was used to analyze vertical scanning signals and determine the 3D SP.

  9. TFTR vertically viewing electron cyclotron emission diagnostic

    International Nuclear Information System (INIS)

    Taylor, G.

    1990-01-01

    The Tokamak Fusion Test Reactor (TFTR) Michelson interferometer has a spectral coverage of 75--540 GHz, allowing measurement of the first four electron cyclotron harmonics. Until recently the instrument has been configured to view the TFTR plasma on the horizontal midplane, primarily in order to measure the electron temperature profile. Electron cyclotron emission (ECE) extraordinary mode spectra from TFTR Supershot plasmas exhibit a pronounced, spectrally narrow feature below the second harmonic. A similar feature is seen with the ECE radiometer diagnostic below the electron cyclotron fundamental frequency in the ordinary mode. Analysis of the ECE spectra indicates the possibility of a non-Maxwellian 40--80 keV tail on the electron distribution in or near the core. During 1990 three vertical views with silicon carbide viewing targets will be installed to provide a direct measurement of the electron energy distribution at major radii of 2.54, 2.78, and 3.09 m with an energy resolution of approximately 20% at 100 keV. To provide the maximum flexibility, the optical components for the vertical views will be remotely controlled to allow the Michelson interferometer to be reconfigured to either the midplane horizontal view or one of the three vertical views between plasma shots

  10. Oxygen profile and clogging in vertical flow sand filters for on-site wastewater treatment.

    Science.gov (United States)

    Petitjean, A; Forquet, N; Boutin, C

    2016-04-01

    13 million people (about 20% of the population) use on-site wastewater treatment in France. Buried vertical sand filters are often built, especially when the soil permeability is not sufficient for septic tank effluent infiltration in undisturbed soil. Clogging is one of the main problems deteriorating the operation of vertical flow filters for wastewater treatment. The extent of clogging is not easily assessed, especially in buried vertical flow sand filters. We suggest examining two possible ways of detecting early clogging: (1) NH4-N/NO3-N outlet concentration ratio, and (2) oxygen measurement within the porous media. Two pilot-scale filters were equipped with probes for oxygen concentration measurements and samples were taken at different depths for pollutant characterization. Influent and effluent grab-samples were taken three times a week. The systems were operated using batch-feeding of septic tank effluent. Qualitative description of oxygen transfer processes under unclogged and clogged conditions is presented. NH4-N outlet concentration appears to be useless for early clogging detection. However, NO3-N outlet concentration and oxygen content allows us to diagnose the early clogging of the system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Active Low-frequency Vertical Vibration Isolation System for Precision Measurements

    Institute of Scientific and Technical Information of China (English)

    WU Kang; LI Gang; HU Hua; WANG Lijun

    2017-01-01

    Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise.Several types of active vibration isolation systems have been developed.However,few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility.An active low-frequency vertical vibration isolation system based on an earlier instrument,the Super Spring,is designed and implemented.The system,which is simple and compact,consists of two stages:a parallelogram-shaped linkage to ensure vertical motion,and a simple spring-mass system.The theoretical analysis of the vibration isolation system is presented,including terms erroneously ignored before.By carefully choosing the mechanical parameters according to the above analysis and using feedback control,the resonance frequency of the system is reduced from 2.3 to 0.03 Hz,a reduction by a factor of more than 75.The vibration isolation system is installed as an inertial reference in an absolute gravimeter,where it improved the scatter of the absolute gravity values by a factor of 5.The experimental results verifies the improved performance of the isolation system,making it particularly suitable for precision experiments.The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems.An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed,providing fundamental guidelines for vibration isolator design and assembling.

  12. Vertical distribution of the particle phase in tropical deep convective clouds as derived from cloud-side reflected solar radiation measurements

    Directory of Open Access Journals (Sweden)

    E. Jäkel

    2017-07-01

    Full Text Available Vertical profiles of cloud particle phase in tropical deep convective clouds (DCCs were investigated using airborne solar spectral radiation data collected by the German High Altitude and Long Range Research Aircraft (HALO during the ACRIDICON-CHUVA campaign, which was conducted over the Brazilian rainforest in September 2014. A phase discrimination retrieval based on imaging spectroradiometer measurements of DCC side spectral reflectivity was applied to clouds formed in different aerosol conditions. From the retrieval results the height of the mixed-phase layer of the DCCs was determined. The retrieved profiles were compared with in situ measurements and satellite observations. It was found that the depth and vertical position of the mixed-phase layer can vary up to 900 m for one single cloud scene. This variability is attributed to the different stages of cloud development in a scene. Clouds of mature or decaying stage are affected by falling ice particles resulting in lower levels of fully glaciated cloud layers compared to growing clouds. Comparing polluted and moderate aerosol conditions revealed a shift of the lower boundary of the mixed-phase layer from 5.6 ± 0.2 km (269 K; moderate to 6.2 ± 0.3 km (267 K; polluted, and of the upper boundary from 6.8 ± 0.2 km (263 K; moderate to 7.4 ± 0.4 km (259 K; polluted, as would be expected from theory.

  13. High Resolution Vertical Seismic Profile from the Chicxulub IODP/ICDP Expedition 364 Borehole: Wave Speeds and Seismic Reflectivity.

    Science.gov (United States)

    Nixon, C.; Kofman, R.; Schmitt, D. R.; Lofi, J.; Gulick, S. P. S.; Christeson, G. L.; Saustrup, S., Sr.; Morgan, J. V.

    2017-12-01

    We acquired a closely-spaced vertical seismic profile (VSP) in the Chicxulub K-Pg Impact Crater drilling program borehole to calibrate the existing surface seismic profiles and provide complementary measurements of in situ seismic wave speeds. Downhole seismic records were obtained at spacings ranging from 1.25 m to 5 m along the borehole from 47.5 m to 1325 mwsf (meters wireline below sea floor) (Fig 1a) using a Sercel SlimwaveTM geophone chain (University of Alberta). The seismic source was a 30/30ci Sercel Mini GI airgun (University of Texas), fired a minimum of 5 times per station. Seismic data processing used a combination of a commercial processing package (Schlumberger's VISTA) and MatlabTM codes. The VSP displays detailed reflectivity (Fig. 1a) with the strongest reflection seen at 600 mwsf (280 ms one-way time), geologically corresponding to the sharp contact between the post-impact sediments and the target peak ring rock, thus confirming the pre-drilling interpretations of the seismic profiles. A two-way time trace extracted from the separated up-going wavefield matches the major reflection both in travel time and character. In the granitic rocks that form the peak ring of the Chicxulub impact crater, we observe P-wave velocities of 4000-4500 m/s which are significantly less than the expected values of granitoids ( 6000 m/s) (Fig. 1b). The VSP measured wave speeds are confirmed against downhole sonic logging and in laboratory velocimetry measurements; these data provide additional evidence that the crustal material displaced by the impact experienced a significant amount of damage. Samples and data provided by IODP. Samples can be requested at http://web.iodp.tamu.edu/sdrm after 19 October 2017. Expedition 364 was jointly funded by ECORD, ICDP, and IODP with contributions and logistical support from the Yucatan State Government and UNAM. The downhole seismic chain and wireline system is funded by grants to DRS from the Canada Foundation for Innovation and

  14. Lidar for Wind and Optical Turbulence Profiling

    Directory of Open Access Journals (Sweden)

    Fastig Shlomo

    2018-01-01

    Full Text Available A field campaign for the comparison investigation of systems to measure wind and optical turbulence profiles was conducted in northern Germany. The experimental effort was to compare the performance of the LIDAR, SODAR-RASS and ultrasonic anemometers for the measurement of the above mentioned atmospheric parameters. Soreq's LIDAR is a fiber laser based system demonstrator for the vertical profiling of the wind and turbulence, based on the correlation of aerosol density variations. It provides measurements up to 350m with 20m resolution.

  15. Measurements of fusion product emission profiles in tokamaks

    International Nuclear Information System (INIS)

    Strachan, J.D.; Heidbrink, W.W.; Hendel, H.W.; Lovberg, J.; Murphy, T.J.; Nieschmidt, E.B.; Tait, G.D.; Zweben, S.J.

    1986-11-01

    The techniques and results of fusion product emission profile measurements are reviewed. While neutron source strength profile measurements have been attempted by several methods, neutron scattering is a limitation to the results. Profile measurements using charged fusion products have recently provided an alternative since collimation is much easier for the charged particles

  16. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit. 2. Flow characteristics of bubbly countercurrent flow

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu.

    1997-01-01

    The authors have developed a measurement system which is composed of an ultrasonic velocity profile monitor and a video data processing unit in order to clarify its multi-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system was applied for bubbly countercurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. Next, turbulence intensity in a continuous liquid phase was defined as a standard deviation of velocity fluctuation, and the two-phase multiplier profile of turbulence intensity in the channel was clarified as a ratio of the standard deviation of flow fluctuation in a bubbly countercurrent flow to that in a water single phase flow. Finally, the distribution parameter and drift velocity used in the drift flux model for bubbly countercurrent flows were calculated from the obtained velocity profiles of both phases and void fraction profile, and were compared with the correlation proposed for bubbly countercurrent flows. (author)

  17. High-Latitude Topside Ionospheric Vertical Electron Density Profile Changes in Response to Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2016-01-01

    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst -100nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial andor temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  18. Impact of Vertical Canopy Position on Leaf Spectral Properties and Traits across Multiple Species

    Directory of Open Access Journals (Sweden)

    Tawanda W. Gara

    2018-02-01

    Full Text Available Understanding the vertical pattern of leaf traits across plant canopies provide critical information on plant physiology, ecosystem functioning and structure and vegetation response to climate change. However, the impact of vertical canopy position on leaf spectral properties and subsequently leaf traits across the entire spectrum for multiple species is poorly understood. In this study, we examined the ability of leaf optical properties to track variability in leaf traits across the vertical canopy profile using Partial Least Square Discriminatory Analysis (PLS-DA. Leaf spectral measurements together with leaf traits (nitrogen, carbon, chlorophyll, equivalent water thickness and specific leaf area were studied at three vertical canopy positions along the plant stem: lower, middle and upper. We observed that foliar nitrogen (N, chlorophyll (Cab, carbon (C, and equivalent water thickness (EWT were higher in the upper canopy leaves compared with lower shaded leaves, while specific leaf area (SLA increased from upper to lower canopy leaves. We found that leaf spectral reflectance significantly (P ≤ 0.05 shifted to longer wavelengths in the ‘red edge’ spectrum (685–701 nm in the order of lower > middle > upper for the pooled dataset. We report that spectral bands that are influential in the discrimination of leaf samples into the three groups of canopy position, based on the PLS-DA variable importance projection (VIP score, match with wavelength regions of foliar traits observed to vary across the canopy vertical profile. This observation demonstrated that both leaf traits and leaf reflectance co-vary across the vertical canopy profile in multiple species. We conclude that canopy vertical position has a significant impact on leaf spectral properties of an individual plant’s traits, and this finding holds for multiple species. These findings have important implications on field sampling protocols, upscaling leaf traits to canopy level

  19. The hydraulic diffusivity and conductivity determination of structured purple soil and purple latosol by vertical infiltration

    International Nuclear Information System (INIS)

    Appoloni, C.R.; Souza, A.D.B. de; Fante Junior, L.; Oliveira Junior, J.M. de; Oliveira, J.C.M. de.

    1990-01-01

    The hydraulic diffusivity and conductivity functions of LR (purple latosol) and TE (structured purple soil) (levels A and B) soil samples from the Londrina-PR region were calculated by means of the moisture profile and data from the time evolution of the wet front, taken through measurements of the water infiltration in a soil column and a variational of the vertical flow. The wet front data were taken in a acrylic column coupled in bits base with a porous plate that permitted the water flow against the gravitational field with a suitable velocity of 0.12 cm/min. The moisture profile data were obtained by the gamma ray attenuation method, with a 60 Co source and a Na I (TL) scintillation detector. With a vertical and horizontal measurement table the moisture profile data θ (z,t) were taken in many points of the soil column. (author)

  20. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    Science.gov (United States)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  1. Interpretation of ozone vertical profiles and their variations in the Northern hemisphere on the basis of GOME satellite data. Final report; Interpretation von Ozon-Vertikalprofilen und deren Variationen in der noerdlichen Hemisphaere unter Benutzung von GOME Satellitendaten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Eichmann, K.U.; Bramstedt, K.; Weber, M.; Rozanov, V.; Debeek, R.; Hoogen, R.; Burrows, J.P.

    2000-07-04

    Semiglobal ozone vertical profiles based on GOME measurements were established and evaluated systematically. GOME (Global Ozone Monitoring Experiment), carried by the ERS-2 satellite, is the first European passive optical sensor for long-term monitoring of ozone, other trace elements, and aerosols. Especially the vertical distribution of ozone in the Arctic region was measured and interpreted with a view to enhanced ozone degradation in the Arctic winter and spring seasons. Apart from the regional variations, also the time variations of the profiles are to provide further information on the dynamics and chemical processes in the polar vortex. The retrieval algorithm used for assessing the ozone vertical profiles, FURM (FUll Retrieval Method), is based on the GOMETRAN radiation transport model developed at Bremen university especially for evaluation of the GOME data. The GOME ozone profiles were validated with ozone probes and other satellite experiments. [German] Ziel des Projektes war eine systematische Bestimmung und Auswertung von semiglobalen Ozonvertikalprofilen aus den Messdaten von GOME. Das auf dem Satelliten ERS-2 fliegende Spektrometer GOME (Global Ozone Monitoring Experiment) ist der erste europaeische, passive, optische Sensor, der fuer Langzeitmessungen von Ozon, anderen Spurenstoffen und Aerosolen konzipiert wurde. Im Projekt wurde insbesondere die vertikale Verteilung von Ozon in der Arktis bestimmt und interpretiert hinsichtlich des verstaerkten Ozonabbaus im arktischen Winter und Fruehjahr. Neben der raeumlichen Variation sollen auch die zeitlichen Ablaeufe und Veraenderungen der Profile weitere Erkenntnise hinsichtlich der Dynamik und der chemischen Prozesse im Polarwirbel liefern. Der Retrievalalgorithmus zur Bestimmung des Ozonhoehenprofils, FURM (Full Retrieval Method) genannt, basiert auf dem Strahlungstransportmodell GOMETRAN, das an der Universitaet Bremen speziell fuer die Auswertung der Daten des GOME Instrumentes entwickelt wurde

  2. Vertical Profiles and Chemical Properties of Aerosol Particles upon Ny-Ålesund (Svalbard Islands

    Directory of Open Access Journals (Sweden)

    B. Moroni

    2015-01-01

    Full Text Available Size-segregated particle samples were collected in the Arctic (Ny-Ålesund, Svalbard in April 2011 both at ground level and in the free atmosphere exploiting a tethered balloon equipped also with an optical particle counter (OPC and meteorological sensors. Individual particle properties were investigated by scanning electron microscopy coupled with energy dispersive microanalysis (SEM-EDS. Results of the SEM-EDS were integrated with particle size and optical measurements of the aerosols properties at ground level and along the vertical profiles. Detailed analysis of two case studies reveals significant differences in composition despite the similar structure (layering and the comparable texture (grain size distribution of particles in the air column. Differences in the mineral chemistry of samples point at both local (plutonic/metamorphic complexes in Svalbard and remote (basic/ultrabasic magmatic complexes in Greenland and/or Iceland geological source regions for dust. Differences in the particle size and shape are put into relationship with the mechanism of particle formation, that is, primary (well sorted, small or secondary (idiomorphic, fine to coarse grained origin for chloride and sulfate crystals and transport/settling for soil (silicate, carbonate and metal oxide particles. The influence of size, shape, and mixing state of particles on ice nucleation and radiative properties is also discussed.

  3. Measurement of position and profile of undulator radiation in Indus-2 using scanning wire monitor

    International Nuclear Information System (INIS)

    Kant, Chander; Lal, Sohan; Raghuwanshi, V.K.; Prasad, Vijendra

    2015-01-01

    Two planar undulators (U1 and U2) for Atomic Molecular Spectroscopy (AMOS) beamline and Angle Resolved Photoelectron Spectroscopy (ARPES) beamline have been installed in Indus-2. The U1 undulator is designed to produce photons in the energy range of 6 eV to 250 eV and U2 undulator is designed to produce photons in the energy range of 30 eV to 600 eV. In order to measure the position and vertical profile of photon beams emitted from these undulators, one scanning wire monitor has been installed in each beamline front end. In these scanning wire monitors, a gold coated tungsten wire of 100 μm thickness, stretched between a fork shaped alumina ceramic holder, is scanned vertically perpendicular to the direction of propagation of photon beam by using a precisely controlled stepper motor. The photo-electron current generated in the wire is measured by an electrometer. A graphical user interface has been developed which facilitates the scanning as per the given range, plots the graphs and stores the scanned data in Excel file. This paper describes our experience and usefulness of these wire monitors during commissioning of planar undulators in Indus-2. (author)

  4. In-Situ Observation of Undisturbed Surface Layer Scaler Profiles for Characterizing Evaporative Duct Properties

    Science.gov (United States)

    2016-06-01

    9 Figure 4. Prototype RHIB-based tethered balloon MAPS used in CASPER Pilot. The...profile measurements over the ocean. The system is designed to make profiling measurements with multiple up/downs using an instrumented tethered balloon ...temperature profiles with high vertical resolution. With the ultimate goal of improving evaporative duct prediction, we use a tethered 2 balloon

  5. Vertically-resolved particle size distribution within and above the mixing layer over the Milan metropolitan area

    Directory of Open Access Journals (Sweden)

    L. Ferrero

    2010-04-01

    Full Text Available Vertical aerosol profiles were directly measured over the city of Milan during three years (2005–2008 of field campaigns. An optical particle counter, a portable meteorological station and a miniaturized cascade impactor were deployed on a tethered balloon. More than 300 vertical profiles were measured, both in winter and summer, mainly in conditions of clear, dry skies.

    The mixing height was determined from the observed vertical aerosol concentration gradient, and from potential temperature and relative humidity profiles. Results show that inter-consistent mixing heights can be retrieved highlighting good correlations between particle dispersion in the atmosphere and meteorological parameters. Mixing height growth speed was calculated for both winter and summer showing the low potential atmospheric dispersion in winter.

    Aerosol number size distribution and chemical composition profiles allowed us to investigate particle behaviour along height. Aerosol measurements showed changes in size distribution according to mixing height. Coarse particle profiles (dp>1.6 μm were distributed differently than the fine ones (dp<1.6 μm were, at different heights of the mixing layer. The sedimentation process influenced the coarse particle profiles, and led to a reduction in mean particle diameter for those particles observed by comparing data above the mixing height with ground data (−14.9±0.6% in winter and −10.7±1.0% in summer. Conversely, the mean particle diameter of fine particles increased above the mixing height under stable atmospheric conditions; the average increase, observed by comparing data above the mixing height with ground data, was +2.1±0.1% in winter and +3.9±0.3% in summer. A hierarchical statistical model was created to describe the changes in the size distribution of fine particles along height. The proposed model can be used to estimate the typical vertical

  6. Extraction of Vertical Profiles of Atmospheric Variables from Gridded Binary, Edition 2 (GRIB2) Model Output Files

    Science.gov (United States)

    2018-01-18

    new_grid will generate a smaller grid interpolated from the fields of the parent grid (http://www.cpc.ncep.noaa.gov/ products/wesley/wgrib2/new_grid.html...the grid or undefined. “latlon” for –new_grid results in a new grid interpolated from the parent (old) grid, where the listed latitude and longitude...by-2 horizontal grid 0.0001° apart, which translates to about a 10-m separation . 2.2 Extract the Vertical Profile Data The second step is to

  7. Intraplate Vertical Land Movements Constrained by Absolute Gravity Measurements

    Science.gov (United States)

    van Camp, M.; Williams, S. D.; Hinzen, K. G.; Camelbeeck, T.

    2007-12-01

    We have conducted repeated absolute gravity (AG) measurements across the tectonically active intraplate regions in Northwest Europe: the Ardenne and the Roer Graben. At most of the stations measurements were undertaken since 2000 and repeated twice a year. Our analysis of these measurements, performed in Belgium and Germany, show that at all stations except Jülich, there is no detectable gravity variation higher than 10 nm s-2 at the 95% confidence level. This is equivalent to vertical movements of 5 mm/yr. Although not yet significant, the observed rates do not contradict the subsidence predicted by glacial isostatic adjustment models and provide an upper limit on the possible uplift of the Ardennes. In Jülich, a gravity rate of change of 36.7 nm s-2/year equivalent to 18.4 mm/yr is due to anthropogenic subsidence. The amplitudes of the seasonal variations range from 18±0.8 nms-2 to 43±29 nms-2, depending on the location. These variations should have a negligible effect on the long-term trend, but at the Membach reference station, were a longer time series is available, differences in the rates observed since 1996 and 1999 indicate that long-term environmental effects may influence the inferred trend. The observed seasonal effects also demonstrate the repeatability of AG measurements. In Ostend, the AG time series agrees with tide gauge data, global mean sea level and altimeter measurements but disagrees with the CGPS. This study indicates that, even in difficult conditions, AG measurements repeated once a year can resolve vertical land movements at a few mm level after 5 years. This also confirms the need to measure for decades, using accurate and stable geodetic techniques like AG, in order to constrain slow deformation processes in an intraplate context.

  8. Hot-film anemometer measurements in adiabatic two-phase flow through a vertical duct

    International Nuclear Information System (INIS)

    Trabold, T.A.; Moore, W.E.; Morris, W.O.

    1997-06-01

    A hot-film anemometer (HFA) probe was used to obtain local measurements of void fraction and bubble frequency in a vertically oriented, high aspect ratio duct containing R-134a under selected adiabatic two-phase flow conditions. Data were obtained along a narrow dimension scan over the range 0.03 ≤ bar Z ≤ 0.80, where bar Z is the distance from the wall normalized with the duct spacing dimension. The void fraction profiles displayed large gradients in the near-wall regions and broad maxima near the duct centerline. The trends in the bubble frequency data generally follow those for the local void fraction data. However, the relatively large number of bubbles at higher pressure implies a larger magnitude of the interfacial area concentration, for the same cross-sectional average void fraction. For the two annular flow conditions tested, analysis of the HFA output voltage signal enabled identification of three distinct regions of the flow field; liquid film with dispersed bubbles, interfacial waves, and continuous vapor with dispersed droplets

  9. Low profile, high load vertical rolling positioning stage

    Science.gov (United States)

    Shu, Deming; Barraza, Juan

    1996-01-01

    A stage or support platform assembly for use in a synchrotron accurately positions equipment to be used in the beam line of the synchrotron. The support platform assembly includes an outer housing in which is disposed a lifting mechanism having a lifting platform or stage at its upper extremity on which the equipment is mounted. A worm gear assembly is located in the housing and is adapted to raise and lower a lifting shaft that is fixed to the lifting platform by an anti-binding connection. The lifting platform is moved vertically as the lifting shaft is moved vertically. The anti-binding connection prevents the shaft from rotating with respect to the platform, but does permit slight canting of the shaft with respect to the lifting platform so as to eliminate binding and wear due to possible tolerance mismatches. In order to ensure that the lifting mechanism does not move in a horizontal direction as it is moved vertically, at least three linear roller bearing assemblies are arranged around the outer-periphery of the lifting mechanism. One of the linear roller bearing assemblies can be adjusted so that the roller bearings apply a loading force against the lifting mechanism. Alternatively, a cam mechanism can be used to provide such a loading force.

  10. Autonomous vertical profiler data management

    Digital Repository Service at National Institute of Oceanography (India)

    Afzulpurkar, S.; Navelkar, G.S.; Desa, E.S.; Madhan, R.; Dabholkar, N.; Prabhudesai, S.P.; Mascarenhas, A.A.M.Q.

    the data management. It is expected that there would be multiple profilers operating at various locations, such as coastal seas, dams and other water bodies. Data would be relayed for archival, processing and be made available to the communities who...

  11. Vertical migration of 85Sr, 137Cs and 131I in various arable and undisturbed soils

    International Nuclear Information System (INIS)

    Palagyi, S.; Palagyiova, J.

    2002-01-01

    Vertical migration of 85 Sr, 137 Cs and 131 I in some arable and undisturbed single-contaminated soils was studied by gamma-spectrometry measurements in lysimetric laboratory conditions applying irrigation of the soil profiles with wet atmospheric precipitation for about one year (except radioiodine). A new simple exponential compartment (box) model was derived, allowing us to calculate the migration rate constants and migration rates in the individual soil layers (vertical sections) as well as the total vertical migration rate constants and total vertical migration rates of radionuclides in the bulk soil horizon. The data from the time dependence of the depth activity distribution (radionuclide concentration along the vertical soil profile) were used to test the model. The migration rate constants and migration rates were found to be affected by the contaminating radionuclides as well as by the site, type and depth of the soil. The relaxation times of the radionuclides in the soil horizons were calculated. The effects on the rate parameters of the permanent grass cover and the zeolite applied onto the arable soil surfaces were also investigated

  12. Balloon-borne stratospheric BrO measurements: comparison with Envisat/SCIAMACHY BrO limb profiles

    Directory of Open Access Journals (Sweden)

    M. Dorf

    2006-01-01

    Full Text Available For the first time, results of four stratospheric BrO profiling instruments, are presented and compared with reference to the SLIMCAT 3-dimensional chemical transport model (3-D CTM. Model calculations are used to infer a BrO profile validation set, measured by 3 different balloon sensors, for the new Envisat/SCIAMACHY (ENVIronment SATellite/SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY satellite instrument. The balloon observations include (a balloon-borne in situ resonance fluorescence detection of BrO (Triple, (b balloon-borne solar occultation DOAS measurements (Differential Optical Absorption Spectroscopy of BrO in the UV, and (c BrO profiling from the solar occultation SAOZ (Systeme d'Analyse par Observation Zenithale balloon instrument. Since stratospheric BrO is subject to considerable diurnal variation and none of the measurements are performed close enough in time and space for a direct comparison, all balloon observations are considered with reference to outputs from the 3-D CTM. The referencing is performed by forward and backward air mass trajectory calculations to match the balloon with the satellite observations. The diurnal variation of BrO is considered by 1-D photochemical model calculation along the trajectories. The 1-D photochemical model is initialised with output data of the 3-D model with additional constraints on the vertical transport, the total amount and photochemistry of stratospheric bromine as given by the various balloon observations. Total [Bry]=(20.1±2.5 pptv obtained from DOAS BrO observations at mid-latitudes in 2003, serves as an upper limit of the comparison. Most of the balloon observations agree with the photochemical model predictions within their given error estimates. First retrieval exercises of BrO limb profiling from the SCIAMACHY satellite instrument on average agree to around 20% with the photochemically-corrected balloon observations of the remote sensing instruments (SAOZ

  13. A retrieval algorithm of hydrometer profile for submillimeter-wave radiometer

    Science.gov (United States)

    Liu, Yuli; Buehler, Stefan; Liu, Heguang

    2017-04-01

    Vertical profiles of particle microphysics perform vital functions for the estimation of climatic feedback. This paper proposes a new algorithm to retrieve the profile of the parameters of the hydrometeor(i.e., ice, snow, rain, liquid cloud, graupel) based on passive submillimeter-wave measurements. These parameters include water content and particle size. The first part of the algorithm builds the database and retrieves the integrated quantities. Database is built up by Atmospheric Radiative Transfer Simulator(ARTS), which uses atmosphere data to simulate the corresponding brightness temperature. Neural network, trained by the precalculated database, is developed to retrieve the water path for each type of particles. The second part of the algorithm analyses the statistical relationship between water path and vertical parameters profiles. Based on the strong dependence existing between vertical layers in the profiles, Principal Component Analysis(PCA) technique is applied. The third part of the algorithm uses the forward model explicitly to retrieve the hydrometeor profiles. Cost function is calculated in each iteration, and Differential Evolution(DE) algorithm is used to adjust the parameter values during the evolutionary process. The performance of this algorithm is planning to be verified for both simulation database and measurement data, by retrieving profiles in comparison with the initial one. Results show that this algorithm has the ability to retrieve the hydrometeor profiles efficiently. The combination of ARTS and optimization algorithm can get much better results than the commonly used database approach. Meanwhile, the concept that ARTS can be used explicitly in the retrieval process shows great potential in providing solution to other retrieval problems.

  14. Depth-kymography of vocal fold vibrations: part II. Simulations and direct comparisons with 3D profile measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mul, Frits F M de; George, Nibu A; Qiu Qingjun; Rakhorst, Gerhard; Schutte, Harm K [Department of Biomedical Engineering BMSA, Faculty of Medicine, University Medical Center Groningen UMCG, University of Groningen, PO Box 196, 9700 AD Groningen (Netherlands)], E-mail: ffm@demul.net

    2009-07-07

    We report novel direct quantitative comparisons between 3D profiling measurements and simulations of human vocal fold vibrations. Until now, in human vocal folds research, only imaging in a horizontal plane was possible. However, for the investigation of several diseases, depth information is needed, especially when the two folds act differently, e.g. in the case of tumour growth. Recently, with our novel depth-kymographic laryngoscope, we obtained calibrated data about the horizontal and vertical positions of the visible surface of the vibrating vocal folds. In order to find relations with physical parameters such as elasticity and damping constants, we numerically simulated the horizontal and vertical positions and movements of the human vocal folds while vibrating and investigated the effect of varying several parameters on the characteristics of the phonation: the masses and their dimensions, the respective forces and pressures, and the details of the vocal tract compartments. Direct one-to-one comparison with measured 3D positions presents-for the first time-a direct means of validation of these calculations. This may start a new field in vocal folds research.

  15. Depth-kymography of vocal fold vibrations: part II. Simulations and direct comparisons with 3D profile measurements

    International Nuclear Information System (INIS)

    Mul, Frits F M de; George, Nibu A; Qiu Qingjun; Rakhorst, Gerhard; Schutte, Harm K

    2009-01-01

    We report novel direct quantitative comparisons between 3D profiling measurements and simulations of human vocal fold vibrations. Until now, in human vocal folds research, only imaging in a horizontal plane was possible. However, for the investigation of several diseases, depth information is needed, especially when the two folds act differently, e.g. in the case of tumour growth. Recently, with our novel depth-kymographic laryngoscope, we obtained calibrated data about the horizontal and vertical positions of the visible surface of the vibrating vocal folds. In order to find relations with physical parameters such as elasticity and damping constants, we numerically simulated the horizontal and vertical positions and movements of the human vocal folds while vibrating and investigated the effect of varying several parameters on the characteristics of the phonation: the masses and their dimensions, the respective forces and pressures, and the details of the vocal tract compartments. Direct one-to-one comparison with measured 3D positions presents-for the first time-a direct means of validation of these calculations. This may start a new field in vocal folds research.

  16. 915-MHz Radar Wind Profiler (915RWP) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, R

    2005-01-01

    The 915 MHz radar wind profiler/radio acoustic sounding system (RWP/RASS) measures wind profiles and backscattered signal strength between (nominally) 0.1 km and 5 km and virtual temperature profiles between 0.1 km and 2.5 km. It operates by transmitting electromagnetic energy into the atmosphere and measuring the strength and frequency of backscattered energy. Virtual temperatures are recovered by transmitting an acoustic signal vertically and measuring the electromagnetic energy scattered from the acoustic wavefront. Because the propagation speed of the acoustic wave is proportional to the square root of the virtual temperature of the air, the virtual temperature can be recovered by measuring the Doppler shift of the scattered electromagnetic wave.

  17. An alternative method for the measurement of the mechanical impulse of a vertically directed blast

    CSIR Research Space (South Africa)

    Turner, GR

    2008-01-01

    Full Text Available An alternative method for the measurement of the total mechanical impulse of a vertically directed blast due to an explosive charge is presented. The method differs from apparatus that employ a vertically displaced mass (similar in principle...

  18. A multi-offset vertical profiling (VSP) experiment for anisotropy analysis and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grech, G. K.; Lawton, D. [Calgary Univ., AB (Canada)

    2000-09-01

    Vertical seismic profiling (VSP) and surface seismic data are used to image and locate hydrocarbon targets in the subsurface, hence the importance of assessing which formations exhibit seismic velocity anisotropy and quantify their parameters for use during seismic imaging. The purpose of the experiments described in this paper was to determine whether the multiple dipping thin shale beds overlying the target area in the Rocky Mountain Foothills in southern Alberta exhibit seismic velocity anisotropy and if so, how this phenomenon affects the image of the underlying target. Traveltime inversion of the first arrival data from the multi-offset VSP in the study area has revealed that the Cretaceous shales exhibit velocity anisotropy of about 10 degrees. For a target depth of 3000 m and moderate dips of 30 to 50 degrees in the anisotropic overburden, it would be reasonable to expect a lateral shift in the imaged location of the target of up to 300 m in the up-direction of overlying bedding. 8 refs., 9 figs.

  19. Geometric effects of 90-degree vertical elbows on local two-phase flow parameters

    International Nuclear Information System (INIS)

    Yadav, M.; Worosz, T.; Kim, S.

    2011-01-01

    This study presents the geometric effects of 90-degree vertical elbows on the development of the local two-phase flow parameters. A multi-sensor conductivity probe is used to measure local two-phase flow parameters. It is found that immediately downstream of the vertical-upward elbow, the bubbles have a bimodal distribution along the horizontal radius of the pipe cross-section causing a dual-peak in the profiles of local void fraction and local interfacial area concentration. Immediately downstream of the vertical-downward elbow it is observed that the bubbles tend to migrate towards the inside of the elbow's curvature. The axial transport of void fraction and interfacial area concentration indicates that the elbows promote bubble disintegration. Preliminary predictions are obtained from group-one interfacial area transport equation (IATE) model for vertical-upward and vertical-downward two-phase flow. (author)

  20. Estimating Mixing Heights Using Microwave Temperature Profiler

    Science.gov (United States)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  1. Vertical and horizontal differences of soil parameters and radiocaesium contents in soil profiles (dystric cambisol) under spruce

    International Nuclear Information System (INIS)

    Strebl, F.; Gerzabek, M.

    1997-05-01

    In a spruce forest stand 9 pooled soil profiles (ten auger cores each, 4 layers) were collected within a homogeneous area of 200 ha. This sampling technique provides sufficient accuracy for the determination of most physico-chemical soil characteristics as well as for the assessment of vertical gradients and horizontal variability within the investigation area. The results reveal the soils' tendency for podsolization and acidification processes. In spite of the small sample sizes cation wash-out (Ca, Mg) due to differences in the orographic situation was determined with high significance. 86 % of 137 Cs-contamination derived from the Chernobyl-fallout in 1986 are still found in the top-soil (10 cm). Nutrient-cycling and the high binding capacity of soil organic matter retard vertical migration of 137 Cs in forest soils effectively. From the present data sets for different soil parameters the minimum number of soil samples ensuring maximum admissible errors of 10 and 20 % were calculated. (author)

  2. Numerical and experimental analysis of vertical spray control patternators

    Directory of Open Access Journals (Sweden)

    F. Sarghini

    2013-09-01

    Full Text Available The experimental vertical spray control walls have the purpose of picking up the liquid delivered by trained sprayer for providing the liquid distribution profile in height. Theoretically this should correspond to the ideal profile, which consists in a uniform distribution on the vegetation. If the profile is different from the ideal, a parameter setup is required on the sprayer. Nonetheless, some problems are hidden in the aforementioned statements: i no wall measures exactly the distribution profile (i.e. the flow through the sections in the vertical plane, parallel to the direction of advancement of the sprayer. Compared to real profile, sensitive errors are introduced: the evaporation of the drops, the deviation of the air flows caused by the sensors panel themselves; by the possibility that the drops bounce on the wall panels, also due to the current of air that can push the liquid veil laterally or upwards, Moreover, everything varies depending on the geometry of the sensors, air velocity, air humidity; ii no one knows what exactly is the optimal distribution profile. It is often considered as optimal a profile that reflects the amount of leaf area subtended by each section absorber: however, it is evident that the path of the droplets changes according to the sprayer typology (eg. radial-flow or horizontal flows. In this work a combined numerical-experimental approach is adopted, in order to assess some of the aforementioned issues: numerical data obtained by using computational fluid dynamics models are compared and validated with experimental data, in order to assess the reliability of numerical simulations in configurations which are difficult to analyze using an experimental setup.

  3. Vertical migration of 85Sr, 137Cs and 131I in various arable and undisturbed soils

    International Nuclear Information System (INIS)

    Palagyi, S.; Palagyiova, J.

    2003-01-01

    The vertical migration of 85 Sr, 137 Cs and 131 I in some arable and undisturbed single-contaminated soils was studied by gamma-spectrometry measurements under lysimetric laboratory conditions during irrigation of the soil profiles with wet atmospheric precipitation for about one year, except 131 I. A new simple exponential compartment (box) model was derived, which makes it possible to calculate the migration rate constants and migration rates in the individual soil layers (vertical sections) as well as the total vertical migration rate constants and total vertical migration rates of radionuclides in the bulk soil horizon. The relaxation times of radionuclides in respective soil horizons can also be evaluated. (author)

  4. Building CX peanut-shaped disk galaxy profiles. The relative importance of the 3D families of periodic orbits bifurcating at the vertical 2:1 resonance

    Science.gov (United States)

    Patsis, P. A.; Harsoula, M.

    2018-05-01

    Context. We present and discuss the orbital content of a rather unusual rotating barred galaxy model, in which the three-dimensional (3D) family, bifurcating from x1 at the 2:1 vertical resonance with the known "frown-smile" side-on morphology, is unstable. Aims: Our goal is to study the differences that occur in the phase space structure at the vertical 2:1 resonance region in this case, with respect to the known, well studied, standard case, in which the families with the frown-smile profiles are stable and support an X-shaped morphology. Methods: The potential used in the study originates in a frozen snapshot of an N-body simulation in which a fast bar has evolved. We follow the evolution of the vertical stability of the central family of periodic orbits as a function of the energy (Jacobi constant) and we investigate the phase space content by means of spaces of section. Results: The two bifurcating families at the vertical 2:1 resonance region of the new model change their stability with respect to that of most studied analytic potentials. The structure in the side-on view that is directly supported by the trapping of quasi-periodic orbits around 3D stable periodic orbits has now an infinity symbol (i.e. ∞-type) profile. However, the available sticky orbits can reinforce other types of side-on morphologies as well. Conclusions: In the new model, the dynamical mechanism of trapping quasi-periodic orbits around the 3D stable periodic orbits that build the peanut, supports the ∞-type profile. The same mechanism in the standard case supports the X shape with the frown-smile orbits. Nevertheless, in both cases (i.e. in the new and in the standard model) a combination of 3D quasi-periodic orbits around the stable x1 family with sticky orbits can support a profile reminiscent of the shape of the orbits of the 3D unstable family existing in each model.

  5. Simulation-Based Optimization of a Vector Showerhead System for the Control of Flow Field Profile in a Vertical Reactor Chamber

    Directory of Open Access Journals (Sweden)

    Huanxiong Xia

    2014-03-01

    Full Text Available Optimization of a vector showerhead in a vertical reactor involves thousands of holes on the showerhead face plate and the spatial distribution of physical fields, so parameterizing the geometry configuration of the holes in high resolution is very difficult, which makes the conventional optimization methods hard to deal with. To solve this problem, a profile error feedback (PEF optimization solution was proposed to optimize a vector showerhead gas delivery system for the control of mass transport. The gas velocity profile in the reactor and the continuous-feature impedance distribution profile on the showerhead face plate are defined as design objective and variables, respectively. A cyclic iterative approximation idea was implemented in this solution. The algorithm was started from a guessed initial design model and then cyclically adjusted the design variables by the constructed PEF iterative formula to generate a better model and to make the gas velocity profile in the critical domain of the new model continually approximate to the expected profile, until it could be accepted. Finally, the optimized impedance profile was mapped to the holes geometry configuration through the established equivalent impedance model for the showerhead face plate.

  6. Local measurements in two-phase flow using a double-sensor conductivity probes and laser doppler anemometry in a vertical pipe

    International Nuclear Information System (INIS)

    Chiva, S.; Julia, E.; Hernandez, L.; Mendez, S.; Munoz-Cobo, J.L.

    2007-01-01

    An upward isothermal co-current air-water flow in a vertical pipe (50.2 mm inner diameter) has been experimental investigated. Local measurements of void fraction, interfacial area concentration (IAC), and interfacial velocity and Sauter mean diameter were measured using a double sensor conductivity probe. Liquid velocity and turbulence intensity were measured using laser Doppler anemometry. Different air-water flow configurations was investigated for a liquid flow rate ranged from 0.29 m/s to 2 m/s and a void fraction up to 15%. For each two-phase flow configuration 15 radial position and three axial positions was measured by the conductivity probe methodology, and several radial profiles was measured with LDA at different axial positions. Two theoretical calibration factors have been defined to relate the mean measurable parameter to the interfacial area concentrations obtained and the measured bubbles, including the missed bubbles. Those factors include the effects of bubble motions, and probe spacing. These calibration factors were obtained through new analytical and numerical method, using a Monte Carlo approach. (author)

  7. Development of dynamic 3-D surface profilometry using stroboscopic interferometric measurement and vertical scanning techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K-C [Department of Mechanical Engineering, National Taiwan University, 1, Sec. 4 Roosevelt Rd, Taipei, Taiwan (China); Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd, Taipei, 106, Taiwan (China); Lin, C-D [Department of Mechanical Engineering, National Taiwan University, 1, Sec. 4 Roosevelt Rd, Taipei, Taiwan (China); Chang, Calvin C [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China); Kuo, C-F [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China); Chou, J-T [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China)

    2005-01-01

    The main objective of this technical advance is to provide a single optical interferometric framework and methodology to be capable of delivering both nano-scale static and dynamic surface profilometry. Microscopic interferometry is a powerful technique for static and dynamic characterization of micro (opto) electromechanical systems (M (O) EMS). In view of this need, a microscopic prototype based on white-light stroboscopic interferometry and the white light vertical scanning principle, was developed to achieve dynamic full-field profilometry and characterization of MEMS devices. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterization of dynamic behaviours of the device. The full-field second-mode vibration at a vibratory frequency of 68.60 kHz can be fully characterized and 3-5 nm of vertical measurement resolution as well as tens of micrometers of vertical measurement range can be easily achieved.

  8. Measurement of vertical bar Vub vertical bar in semi-inclusive charmless B → πX decays

    International Nuclear Information System (INIS)

    Kim, C.S.; Lee, Jake; Oha, Sechul

    2002-01-01

    We study semi-inclusive charmless decays B → πX, where X does not contain a charm (anti)quark. The mode B-bar 0 → π - X turns out to be be particularly useful for determination of the CKM matrix element vertical bar V ub vertical bar. We present the branching ratio (BR) of B-bar 0 → π - X as a function of vertical bar V ub vertical bar, with an estimation of possible uncertainty. The BR is expected to be an order of 10 -4

  9. The Naval Ocean Vertical Aerosol Model : Progress Report

    NARCIS (Netherlands)

    Leeuw, G. de; Gathman, S.G.; Davidson, K.L.; Jensen, D.R.

    1990-01-01

    The Naval Oceanic Vertical Aerosol Model (NOVAM) has been formulated to estimate the vertical structure of the optical and infrared extinction coefficients in the marine atmospheric boundary layer (MABL). NOVAM was designed to predict the non-uniform and non-logarithmic extinction profiles which are

  10. Trajectory optimization for lunar rover performing vertical takeoff vertical landing maneuvers in the presence of terrain

    Science.gov (United States)

    Ma, Lin; Wang, Kexin; Xu, Zuhua; Shao, Zhijiang; Song, Zhengyu; Biegler, Lorenz T.

    2018-05-01

    This study presents a trajectory optimization framework for lunar rover performing vertical takeoff vertical landing (VTVL) maneuvers in the presence of terrain using variable-thrust propulsion. First, a VTVL trajectory optimization problem with three-dimensional kinematics and dynamics model, boundary conditions, and path constraints is formulated. Then, a finite-element approach transcribes the formulated trajectory optimization problem into a nonlinear programming (NLP) problem solved by a highly efficient NLP solver. A homotopy-based backtracking strategy is applied to enhance the convergence in solving the formulated VTVL trajectory optimization problem. The optimal thrust solution typically has a "bang-bang" profile considering that bounds are imposed on the magnitude of engine thrust. An adaptive mesh refinement strategy based on a constant Hamiltonian profile is designed to address the difficulty in locating the breakpoints in the thrust profile. Four scenarios are simulated. Simulation results indicate that the proposed trajectory optimization framework has sufficient adaptability to handle VTVL missions efficiently.

  11. CFD simulations of a bubbly flow in a vertical pipe

    International Nuclear Information System (INIS)

    Krepper, E.

    2000-01-01

    Even at the very simple conditions of two phase flow in a vertical pipe, strong 3D effects are observed. The distribution of the gas phase over the cross section varies significantly between the different flow patterns, which are known for the vertical two-phase flow. The air water flow in a vertical tube having a diameter of 50 mm and a length of about 3 m was investigated in steady state tests for different liquid and gas superficial velocities. Several two phase flow measuring techniques were used. Applying a wire mesh sensor, developed in FZR, the void fraction could be determined over the whole cross section of the pipe. The working principle is based on the measurement of the local instantaneous conductivity of the two-phase mixture. At the investigated flow velocities, the rate of the image acquisition is sufficient to record the same bubble several times. This enables to determine bubble diameter distributions. Applying two similar wire mesh sensors with a distance of 50 mm one above the other, the influence of the wire mesh to the flow could be investigated. No essential disturbances of the two-phase flow by the mesh could be found for the investigated flow regimes. Performing an auto correlation between the signals of both sensors, also profiles of the gas velocity were determined. In the CFD code CFX-4.2 several two-phase flow models were available. Using the code, volume fraction profiles were calculated and compared to the measured results for bubble flow regimes, to investigate the capability of these models (see also Krepper and Prasser [4] (1999)). (orig.)

  12. Long-term post-Chernobyl 90Sr and 137Cs profiles as the indicators of the large scale vertical water mixing in the Black Sea

    International Nuclear Information System (INIS)

    Egorov, V.N.; Stokozov, N.A.; Mirzoyeva, N.Y.

    2002-01-01

    The radioactive and chemical pollutions, eutrophic elements come to the surface water layer of the Black Sea from the territory of 22 countries. The self-purification of the surface water layer essentially depends from the vertical water mixing. The atmospheric fallout in the May 1986 after Chernobyl NPP accident were main source of the 137 Cs input in the Black Sea. The 90 Sr input to the Black Sea was caused by atmospheric fallout as well as the Dnieper River and Danube River runoff during of consequent years. 90 Sr and 137 Cs are conservative elements in a marine environment and could be used as tracers of the hydrological processes, including vertical water mixing. The aim of our investigations was an assessment of the large-scale vertical water exchange in the Black Sea on base of analysis time-series 90 Sr and 137 Cs vertical profiles

  13. Mini MAX-DOAS Measurements of Air Pollutants over China

    Science.gov (United States)

    Staadt, Steffen; Hao, Nan; Trautmann, Thomas

    2016-08-01

    This study continues the work of Clémer et al., (2010) and is aimed to improve trace gas retrievals with mini MAX-DOAS measurements in Nanjing. Based on that work, aerosol extinction vertical profiles are retrieved using the bePRO inversion algorithm developed by the Royal Belgian Institute for Space Aeronomy (BIRA- IASB). Afterwards, the tropospheric trace gas vertical profiles and vertical column densities (VCDs) are retrieved by applying the optimal estimation method to the O4 MAX-DOAS measurements. The Profiles for N O2 , S O2 , glyoxal, formaldehyde and nitrous acid are obtained with different results and different settings for the DOAS measurement. The AODs show small positive correlation against the AERONET values. For NO2, the retrieval shows reasonable concentrations in winter as opposed to summer and has small positive correlations with GOME-2 data. The SO2 VCDs are not correlated with the GOME-2 data, due to high uncertainties from MAX-DOAS and satellite retrievals, while the vertical mixing ratios (VMR) show good agreement with in-situ data (SORPES) at Nanjing. Nitrous acid shows a maximum in winter and a minimum in summer, while glyoxal has its maximum in August and September.

  14. Photometric analysis of esthetically pleasant and unpleasant facial profile.

    Science.gov (United States)

    Fortes, Helena Nunes da Rocha; Guimarães, Thamirys Correia; Belo, Ivana Mara Lira; da Matta, Edgard Norões Rodrigues

    2014-01-01

    To identify which linear, angular and proportionality measures could influence a profile to be considered esthetically pleasant or unpleasant, and to assess sexual dimorphism. 150 standardized facial profile photographs of dental students of both sexes were obtained and printed on photographic paper. Ten plastic surgeons, ten orthodontists and ten layperson answered a questionnaire characterizing each profile as pleasant, acceptable or unpleasant. With the use of a score system, the 15 most pleasant and unpleasant profiles of each sex were selected. The photographs were scanned into AutoCAD computer software. Linear, angular and proportion measurements were obtained using the software tools. The average values between groups were compared by the Student's t-test and the Mann-Whitney test at a significance level of 5%. The linear measures LL-S, LL-H, LL-E, LL-B and Pn-H showed statistically significant differences (p < 0.05). Statistical differences were also found in the angular measures G'.Pn.Pg', G'.Sn.Pg' and Sn.Me'.C and in the proportions G'-Sn:Sn-Me' and Sn-Gn':Gn'-C (p < 0.05). Differences between sexes were found for the linear measure Ala-Pn, angles G'-Pg'.N-Pn, Sn.Me'.C, and proportions Gn'-Sn:Sn-Me' and Ala-Pn:N'-Sn. (p < 0.05). The anteroposterior position of the lower lip, the amount of nose that influences the profile, facial convexity, total vertical proportion and lip-chin proportion appear to influence pleasantness of facial profile. Sexual dimorphism was identified in nasal length, nasofacial and lower third of the face angles, total vertical and nasal height/length proportions.

  15. Characterization of vertical mixing in oscillatory vegetated flows

    Science.gov (United States)

    Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.

    2016-02-01

    Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy

  16. Discharge measurements at gaging stations

    Science.gov (United States)

    Turnipseed, D. Phil; Sauer, Vernon B.

    2010-01-01

    The techniques and standards for making discharge measurements at streamflow gaging stations are described in this publication. The vertical axis rotating-element current meter, principally the Price current meter, has been traditionally used for most measurements of discharge; however, advancements in acoustic technology have led to important developments in the use of acoustic Doppler current profilers, acoustic Doppler velocimeters, and other emerging technologies for the measurement of discharge. These new instruments, based on acoustic Doppler theory, have the advantage of no moving parts, and in the case of the acoustic Doppler current profiler, quickly and easily provide three-dimensional stream-velocity profile data through much of the vertical water column. For much of the discussion of acoustic Doppler current profiler moving-boat methodology, the reader is referred to U.S. Geological Survey Techniques and Methods 3-A22 (Mueller and Wagner, 2009). Personal digital assistants (PDAs), electronic field notebooks, and other personal computers provide fast and efficient data-collection methods that are more error-free than traditional hand methods. The use of portable weirs and flumes, floats, volumetric tanks, indirect methods, and tracers in measuring discharge are briefly described.

  17. Generalization of some results of a vertical radionuclide migration study in soils of 30-km zone

    International Nuclear Information System (INIS)

    Ziborov, A.M.; Sadol'ko, I.V.; Sushchik, Yu.Ya.; Tikhanov, Eh.K.; Proskuryakov, A.G.; Kuz'michev, V.N.; Shcheglov, A.I.

    1992-01-01

    Results of radionuclide distribution study in a vertical profile of soils are presented under different landscape geochemical conditions in 1989-1991. It is ascertained that radionuclide migration process in geochemical profile of soils of 30-km zone is in early stage of development. More than 90% of radioactivity concentrates in the upper 5-10 cm layer whereas measurable radioactivity fixes at a depth up to 1 m. The process of deepening of radioactivity reserve center takes place in the surface soil layer. Now it equals 1,5-3 cm. Peculiarities of the vertical radionuclide distribution haven't brightly pronounced character depending on soil types and are at the formation stage. 12 figs.; 2 tabs

  18. How Informative are the Vertical Buoyancy and the Prone Gliding Tests to Assess Young Swimmers’ Hydrostatic and Hydrodynamic Profiles?

    Science.gov (United States)

    Barbosa, Tiago M.; Costa, Mário J.; Morais, Jorge E; Moreira, Marc; Silva, António J.; Marinho, Daniel A.

    2012-01-01

    The aim of this research was to develop a path-flow analysis model to highlight the relationships between buoyancy and prone gliding tests and some selected anthropometrical and biomechanical variables. Thirty-eight young male swimmers (12.97 ± 1.05 years old) with several competitive levels were evaluated. It were assessed the body mass, height, fat mass, body surface area, vertical buoyancy, prone gliding after wall push-off, stroke length, stroke frequency and velocity after a maximal 25 [m] swim. The confirmatory model included the body mass, height, fat mass, prone gliding test, stroke length, stroke frequency and velocity. All theoretical paths were verified except for the vertical buoyancy test that did not present any relationship with anthropometrical and biomechanical variables nor with the prone gliding test. The good-of-fit from the confirmatory path-flow model, assessed with the standardized root mean square residuals (SRMR), is considered as being close to the cut-off value, but even so not suitable of the theory (SRMR = 0.11). As a conclusion, vertical buoyancy and prone gliding tests are not the best techniques to assess the swimmer’s hydrostatic and hydrodynamic profile, respectively. PMID:23486528

  19. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Gottschall, Julia

    2011-01-01

    The current IEC standard for wind turbine power performance measurement only requires measurement of the wind speed at hub height assuming this wind speed to be representative for the whole rotor swept area. However, the power output of a wind turbine depends on the kinetic energy flux, which...... itself depends on the wind speed profile, especially for large turbines. Therefore, it is important to characterize the wind profile in front of the turbine, and this should be preferably achieved by measuring the wind speed over the vertical range between lower and higher rotor tips. In this paper, we...... describe an experiment in which wind speed profiles were measured in front of a multimegawatt turbine using a ground–based pulsed lidar. Ignoring the vertical shear was shown to overestimate the kinetic energy flux of these profiles, in particular for those deviating significantly from a power law profile...

  20. Implications of sensor configuration and topography on vertical plant profiles derived from terrestrial LiDAR

    NARCIS (Netherlands)

    Calders, K.; Armston, J.; Newnham, G.; Herold, M.; Goodwin, N.

    2014-01-01

    The vertical distribution of plant constituents is a key parameter to describe vegetation structure and influences several processes, such as radiation interception, growth and habitat. Terrestrial laser scanning (TLS), also referred to as terrestrial LiDAR, has the potential to measure the canopy

  1. Variation of vertical atmospheric stability by means of radon measurements and of sodar monitoring

    International Nuclear Information System (INIS)

    Guedalia, D.; Druilhet, A.; Fontan, J.; N'tsila, A.

    1980-01-01

    Continuous measurements of radon at ground level are used to infer variations in equivalent mixing height and atmospheric vertical stability. Simultaneous determinations of the height of the inversion layer, when present, permit, with the use of sodar techniques, the estimation of radon flux from the ground and of the vertical diffusion coefficient. The two sets of data often indicate similar variations in mixing height

  2. Optimal interpolation method for intercomparison of atmospheric measurements.

    Science.gov (United States)

    Ridolfi, Marco; Ceccherini, Simone; Carli, Bruno

    2006-04-01

    Intercomparison of atmospheric measurements is often a difficult task because of the different spatial response functions of the experiments considered. We propose a new method for comparison of two atmospheric profiles characterized by averaging kernels with different vertical resolutions. The method minimizes the smoothing error induced by the differences in the averaging kernels by exploiting an optimal interpolation rule to map one profile into the retrieval grid of the other. Compared with the techniques published so far, this method permits one to retain the vertical resolution of the less-resolved profile involved in the intercomparison.

  3. The prediction of BRDFs from surface profile measurements

    International Nuclear Information System (INIS)

    Church, E.L.; Takacs, P.Z.; Leonard, T.A.

    1989-01-01

    This paper discusses methods of predicting the BRDF of smooth surfaces from profile measurements of their surface finish. The conversion of optical profile data to the BRDF at the same wavelength is essentially independent of scattering models, while the conversion of mechanical measurements, and wavelength scaling in general, are model dependent. Procedures are illustrated for several surfaces, including two from the recent HeNe BRDF round robin, and results are compared with measured data. Reasonable agreement is found except for surfaces which involve significant scattering from isolated surface defects which are poorly sampled in the profile data

  4. Comparison of Large Eddy Simulations of a convective boundary layer with wind LIDAR measurements

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Kelly, Mark C.; Gryning, Sven-Erik

    2012-01-01

    Vertical profiles of the horizontal wind speed and of the standard deviation of vertical wind speed from Large Eddy Simulations of a convective atmospheric boundary layer are compared to wind LIDAR measurements up to 1400 m. Fair agreement regarding both types of profiles is observed only when...

  5. A STUDY OF DISPLACEMENT-LEVEL DEPENDENCY OF VERTICAL STIFFNESS OF PILE - COMPARISONS BETWEEN STATIC LOADING TEST AND MEASUREMENTS DURING TRAIN PASSING -

    Science.gov (United States)

    Nihei, Tatsuya; Nishioka, Hidetoshi; Kawamura, Chikara; Nishimura, Masahiro; Edamatsu, Masayuki; Koda, Masayuki

    In order to introduce the performance based design of pile foundation, vertical stiffness of pile is one of the important design factors. Although it had been es timated the vertical stiffness of pile had the displacement-level dependency, it had been not clarified. We compared the vertical stiffness of pile measured by two loading conditions at pile foundation of the railway viaduct. Firstly, we measured the vertical stiffness at static loading test under construction of the viaduct. Secondly, we measured the vertical stiffness at the time of train passing. So, we recognized that the extrapolation of the displacement level dependency in static loading test could evaluate the vertical stiffness of pile during train passing.

  6. Determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke from baryonic Λ{sub b} decays

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Y.K. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Geng, C.Q. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha (China)

    2017-10-15

    We present the first attempt to extract vertical stroke V{sub cb} vertical stroke from the Λ{sub b} → Λ{sub c}{sup +}l anti ν{sub l} decay without relying on vertical stroke V{sub ub} vertical stroke inputs from the B meson decays. Meanwhile, the hadronic Λ{sub b} → Λ{sub c}M{sub (c)} decays with M = (π{sup -},K{sup -}) and M{sub c} =(D{sup -},D{sup -}{sub s}) measured with high precisions are involved in the extraction. Explicitly, we find that vertical stroke V{sub cb} vertical stroke =(44.6 ± 3.2) x 10{sup -3}, agreeing with the value of (42.11 ± 0.74) x 10{sup -3} from the inclusive B → X{sub c}l anti ν{sub l} decays. Furthermore, based on the most recent ratio of vertical stroke V{sub ub} vertical stroke / vertical stroke V{sub cb} vertical stroke from the exclusive modes, we obtain vertical stroke V{sub ub} vertical stroke = (4.3 ± 0.4) x 10{sup -3}, which is close to the value of (4.49 ± 0.24) x 10{sup -3} from the inclusive B → X{sub u}l anti ν{sub l} decays. We conclude that our determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke favor the corresponding inclusive extractions in the B decays. (orig.)

  7. A simple method to minimize orientation effects in a profiling radiometer

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Desa, E.; Matondkar, S.G.P.; SrinivasaKumar, T.; Lotlikar, A.

    -fall radiometer is found to be a better option for measuring underwater light parameters as it avoids the effects of ship shadow and is easy to operate, the measurements demand profiling the radiometer vertical in water with minimum tilt. Here we present...

  8. A New Inversion Routine to Produce Vertical Electron-Density Profiles from Ionospheric Topside-Sounder Data

    Science.gov (United States)

    Wang, Yongli; Benson, Robert F.

    2011-01-01

    Two software applications have been produced specifically for the analysis of some million digital topside ionograms produced by a recent analog-to-digital conversion effort of selected analog telemetry tapes from the Alouette-2, ISIS-1 and ISIS-2 satellites. One, TOPIST (TOPside Ionogram Scalar with True-height algorithm) from the University of Massachusetts Lowell, is designed for the automatic identification of the topside-ionogram ionospheric-reflection traces and their inversion into vertical electron-density profiles Ne(h). TOPIST also has the capability of manual intervention. The other application, from the Goddard Space Flight Center based on the FORTRAN code of John E. Jackson from the 1960s, is designed as an IDL-based interactive program for the scaling of selected digital topside-sounder ionograms. The Jackson code has also been modified, with some effort, so as to run on modern computers. This modification was motivated by the need to scale selected ionograms from the millions of Alouette/ISIS topside-sounder ionograms that only exist on 35-mm film. During this modification, it became evident that it would be more efficient to design a new code, based on the capabilities of present-day computers, than to continue to modify the old code. Such a new code has been produced and here we will describe its capabilities and compare Ne(h) profiles produced from it with those produced by the Jackson code. The concept of the new code is to assume an initial Ne(h) and derive a final Ne(h) through an iteration process that makes the resulting apparent-height profile fir the scaled values within a certain error range. The new code can be used on the X-, O-, and Z-mode traces. It does not assume any predefined profile shape between two contiguous points, like the exponential rule used in Jackson s program. Instead, Monotone Piecewise Cubic Interpolation is applied in the global profile to keep the monotone nature of the profile, which also ensures better smoothness

  9. Vertical distribution and fluxes of ammonia at Great Dun Fell

    Science.gov (United States)

    Sutton, M. A.; Perthue, E.; Fowler, D.; Storeton-West, R. L.; Cape, J. N.; Arends, B. G.; Möls, J. J.

    As part of the study of the ammonia budget over Great Dun Fell, measurements of fluxes of gaseous ammonia (NH 3) with the hill surface (grass moorland and blanket bog) were made using micrometeorological techniques, to provide information on NH 3 removal by the hill surface and on vertical concentration gradients. Measurements of vertical concentration, χ, profiles of NH 3 concentration were coupled with turbulent diffusivities to determine fluxes, Fg deposition velocities, and canopy resistances, Rc to uptake by the ground. Consistent with published measurements for this site, NH 3 was generally found to deposit efficiently to the vegetation canopy, with mean Rc of 5 and 27 s m - for example days shown. However, short periods of NH 3 emission from the moorland were also observed at small χ (cloud processing: depletion of χ by in-cloud reaction would be expected to favour NH 3 emission from down-wind agricultural land and moorland, though emission from the hill itself during immersion in cloud is unlikely. Comparison of two measurement techniques to determine air concentrations (batch wet rotating denuder, inlet 0.5 m height; continuous wet denuder, inlets 0.3, 2 m heights) showed acceptable agreement, although because vertical concentration gradients were large (small Rc) the height of sampling had a substantial effect. Vertical gradients are also relevant to the use of the measured concentrations as estimates of NH 3 in the air mass passing over the hill, for modelling atmospheric budgets. Where NH 3 deposition occurs at the maximum rate, concentrations measured at 1 m require a 35% correction in neutral conditions when scaling to a reference height of 10 m.

  10. Vertical impedance measurements on concrete bridge decks for assessing susceptibility of reinforcing steel to corrosion

    Science.gov (United States)

    Bartholomew, Paul D.; Guthrie, W. Spencer; Mazzeo, Brian A.

    2012-08-01

    Corrosion is a pressing problem for aging concrete infrastructure, especially bridge decks. Because of its sensitivity to factors that affect corrosion of reinforcing steel in concrete, resistivity is an important structural health indicator for reinforced concrete structures. In this research, an instrument was developed to measure vertical impedance on concrete bridge decks. Measurements of vertical impedance on slabs prepared in the laboratory, on slabs removed from decommissioned bridge decks, and on an in-service bridge deck in the field demonstrate the utility of the new apparatus.

  11. Investigation for vertical, two-phase steam-water flow of three turbine models

    International Nuclear Information System (INIS)

    Silverman, S.; Goodrich, L.D.

    1977-01-01

    One of the basic quantities of interest during a loss-of-coolant experiment (LOCE) is the primary system mass flow rate. Presently, there are no transducers commercially available which continuously measure this parameter. Therefore, a transducer was designed at EG and G Idaho, Inc. which combines a drag-disc and turbine into a single unit. The basis for the design was that the drag-disc would measure momentum flux (rhoV 2 ), the turbine would measure velocity and the mass flow rate could then be calculated from the two quantities by assuming a flow profile. For two-phase flow, the outputs are approximately proportional to the desired parameter, but rather large errors can be expected under those assumptions. Preliminary evaluation of the experimental two- and single-phase calibration data has resulted in uncertainty estimates of +-8% of range for the turbine and +-20% of range for the drag-disc. In an effort to reduce the errors, further investigations were made to determine what the drag-disc and turbine really measure. In the present paper, three turbine models for vertical, two-phase, steam/water flow are investigated; the Aya Model, the Rouhani Model, and a volumetric flow model. Theoretical predictions are compared with experimental data for vertical, two-phase steam/water flow. For the purposes of the mass flow calculation, velocity profiles were assumed to be flat for the free-field condition. It is appreciated that this may not be true for all cases investigated, but for an initial inspection, flat profiles were assumed

  12. Measurement system of bubbly flow using Ultrasonic Velocity Profile Monitor and Video Data Processing Unit. 3. Comparison of flow characteristics between bubbly cocurrent and countercurrent flows

    International Nuclear Information System (INIS)

    Zhou, Shirong; Suzuki, Yumiko; Aritomi, Masanori; Matsuzaki, Mitsuo; Takeda, Yasushi; Mori, Michitsugu

    1998-01-01

    The authors have developed a new measurement system which consisted of an Ultrasonic Velocity Profile Monitor (UVP) and a Video Data Processing Unit (VDP) in order to clarify the two-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for two-dimensional two-phase flow. In the present paper, the proposed measurement system is applied to fully developed bubbly cocurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. In addition, the two-phase multiplier profile of turbulence intensity, which was defined as a ratio of the standard deviation of velocity fluctuation in a bubbly flow to that in a water single phase flow, were examined. Next, these flow characteristics were compared with those in bubbly countercurrent flows reported in our previous paper. Finally, concerning the drift flux model, the distribution parameter and drift velocity were obtained directly from both bubble and water velocity profiles and void fraction profiles, and their results were compared with those in bubbly countercurrent flows. (author)

  13. Measurements of the Effects of Spacers on the Burnout Conditions for Flow of Boiling Water in a Vertical Annulus and a Vertical 7-Rod Cluster

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Hernborg, G.

    1964-11-01

    The present report deals with measurements of the effects of spacers on the burnout conditions in a vertical annulus and a vertical 7-rod cluster. The following ranges of variables were studied and 162 burnout measurements were obtained. Pressure p = 31 kg/cm; Inlet sub-cooling 35 sub 2 ; Mass velocity 94 2 /s; Burnout steam quality 0.10 BO < 0.56. The experimental results showed that the type of spacers employed during the present investigation had negligible effects on the burnout conditions and that the measured burnout heat fluxes could be predicted within ± 5 per cent by means of the correlation by Becker et al for flow in smooth channels

  14. Doping profile measurement on textured silicon surface

    Science.gov (United States)

    Essa, Zahi; Taleb, Nadjib; Sermage, Bernard; Broussillou, Cédric; Bazer-Bachi, Barbara; Quillec, Maurice

    2018-04-01

    In crystalline silicon solar cells, the front surface is textured in order to lower the reflection of the incident light and increase the efficiency of the cell. This texturing whose dimensions are a few micrometers wide and high, often makes it difficult to determine the doping profile measurement. We have measured by secondary ion mass spectrometry (SIMS) and electrochemical capacitance voltage profiling the doping profile of implanted phosphorus in alkaline textured and in polished monocrystalline silicon wafers. The paper shows that SIMS gives accurate results provided the primary ion impact angle is small enough. Moreover, the comparison between these two techniques gives an estimation of the concentration of electrically inactive phosphorus atoms.

  15. Mixing height measurements from UHF wind profiling radar

    Energy Technology Data Exchange (ETDEWEB)

    Angevine, W.M.; Grimsdell, A.W. [CIRES, Univ. of Colorado, and NOAA Aeronomy Lab., Boulder, Colorado (United States)

    1997-10-01

    Mixing height in convective boundary layers can be detected by wind profiling radars (profilers) operating at or near 915 MHZ. We have made such measurements in a variety of settings including Alabama in 1992; Nova Scotia, Canada, during the North Atlantic Regional Experiment (NARE) 1993; Tennessee during the Southern Oxidant Study (SOS) 1994; near a 450 m tower in Wisconsin in 1995; and extensively in Illinois during the Flatland95, `96, and `97 experiments, as well as continuous operations at the Flatland Atmospheric Observatory. Profiler mixing height measurements, like all measurements, are subject to some limitations. The most important of these are due to rainfall, minimum height, and height resolution. Profilers are very sensitive to rain, which dominates the reflectivity and prevents the mixing height from being detected. Because the best height resolution is currently 60 m and the minimum height is 120-150 m AGL, the profiler is not suited for detecting mixing height in stable or nocturnal boundary layers. Problems may also arise in very dry or cold environments. (au) 12 refs.

  16. Techniques for intense-proton-beam profile measurements

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.

    1998-01-01

    In a collaborative effort with industry and several national laboratories, the Accelerator Production of Tritium (APT) facility and the Spallation Neutron Source (SNS) linac are presently being designed and developed at Los Alamos National Laboratory (LANL). The APT facility is planned to accelerate a 100-mA H + cw beam to 1.7 GeV and the SNS linac is planned to accelerate a 1- to 4-mA-average, H - , pulsed-beam to 1 GeV. With typical rms beam widths of 1- to 3-mm throughout much of these accelerators, the maximum average-power densities of these beams are expected to be approximately 30- and 1-MW-per-square millimeter, respectively. Such power densities are too large to use standard interceptive techniques typically used for acquisition of beam profile information. This paper summarizes the specific requirements for the beam profile measurements to be used in the APT, SNS, and the Low Energy Development Accelerator (LEDA)--a facility to verify the operation of the first 20-MeV section of APT. This paper also discusses the variety of profile measurement choices discussed at a recent high-average-current beam profile workshop held in Santa Fe, NM, and will present the present state of the design for the beam profile measurements planned for APT, SNS, and LEDA

  17. MPL-Net Measurements of Aerosol and Cloud Vertical Distributions at Co-Located AERONET Sites

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Tsay, Si-Chee; Holben, Brent; Starr, David OC. (Technical Monitor)

    2002-01-01

    In the early 1990s, the first small, eye-safe, and autonomous lidar system was developed, the Micropulse Lidar (MPL). The MPL acquires signal profiles of backscattered laser light from aerosols and clouds. The signals are analyzed to yield multiple layer heights, optical depths of each layer, average extinction-to-backscatter ratios for each layer, and profiles of extinction in each layer. In 2000, several MPL sites were organized into a coordinated network, called MPL-Net, by the Cloud and Aerosol Lidar Group at NASA Goddard Space Flight Center (GSFC) using funding provided by the NASA Earth Observing System. tn addition to the funding provided by NASA EOS, the NASA CERES Ground Validation Group supplied four MPL systems to the project, and the NASA TOMS group contributed their MPL for work at GSFC. The Atmospheric Radiation Measurement Program (ARM) also agreed to make their data available to the MPL-Net project for processing. In addition to the initial NASA and ARM operated sites, several other independent research groups have also expressed interest in joining the network using their own instruments. Finally, a limited amount of EOS funding was set aside to participate in various field experiments each year. The NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project also provides funds to deploy their MPL during ocean research cruises. All together, the MPL-Net project has participated in four major field experiments since 2000. Most MPL-Net sites and field experiment locations are also co-located with sunphotometers in the NASA Aerosol Robotic Network. (AERONET). Therefore, at these locations data is collected on both aerosol and cloud vertical structure as well as column optical depth and sky radiance. Real-time data products are now available from most MPL-Net sites. Our real-time products are generated at times of AERONET aerosol optical depth (AOD) measurements. The AERONET AOD is used as input to our

  18. Measurement of τ decays into a charged hadron accompanied by neutral π-mesons and determination of the CKM matrix element vertical stroke V{sub us} vertical stroke

    Energy Technology Data Exchange (ETDEWEB)

    Adametz, Aleksandra

    2011-07-06

    This thesis presents the branching fraction measurement of the τ{sup -}→K{sup -}(nπ{sup 0})ν{sub τ} (n=0,1,2,3) and τ{sup -}→π{sup -}(nπ{sup 0})ν{sub τ} (n=3,4) decays. The measurement is based on a data sample of 435 million τ pairs produced in e{sup +}e{sup -} collisions and collected with the BABAR detector in 1999-2008. The analysis is validated using precisely known τ decays as control modes. The measured branching fractions are B(τ{sup -}→K{sup -}ν{sub τ})=(7.100±0.033±0.156) x 10{sup -3}, B(τ{sup -}→K{sup -}π{sup 0}ν{sub τ})=(5.000±0.020±0.139) x 10{sup -3}, B(τ{sup -}→K{sup -}(2π{sup 0})ν{sub τ})=(5.654±0.144±0.323) x 10{sup -4}, B(τ{sup -}→K{sup -}(3π{sup 0})ν{sub τ})=(1.642±0.279±0.375) x 10{sup -4}, B(τ{sup -}→π{sup -}(3π{sup 0})ν{sub τ})=(1.216±0.010±0.047) x 10{sup -2}, B(τ{sup -}→π{sup -}(4π{sup 0})ν{sub τ})=(1.041±0.067±0.090) x 10{sup -3}, where the first uncertainty is statistical and the second systematic. The branching fraction B(τ{sup -}→π{sup -}(4π{sup 0})ν{sub τ}) is measured for the first time. The precision of the results is comparable or significantly improved with respect to previous measurements. The branching fraction B(τ{sup -}→K{sup -}ν{sub τ}) is combined with a lattice QCD calculation of the kaon decay constant to obtain the Cabibbo-Kobayashi-Maskawa matrix element vertical stroke V{sub us} vertical stroke =0.2224±0.0025(exp)±0.0029(theo). The branching fractions of the τ decays into a kaon are combined with the current world averages. The resulting averages are used in the determination of the total τ branching fraction, B{sub s}, into strangeness vertical stroke S vertical stroke =1 final states. B{sub s} is used in conjunction with vertical stroke V{sub ud} vertical stroke and a small SU(3)-symmetry breaking correction to compute vertical stroke V{sub us} vertical stroke =0.2176±0.0025(exp)±0.0010(theo).

  19. Innovative measurement within the atmosphere of Venus.

    Science.gov (United States)

    Ekonomov, Alexey; Linkin, Vyacheslav; Manukin, Anatoly; Makarov, Vladislav; Lipatov, Alexander

    The results of Vega project experiments with two balloons flew in the cloud layer of the atmosphere of Venus are analyzed as to the superrotation nature and local dynamic and thermodynamic characteristics of the atmosphere. These balloons in conjunction with measurements of temperature profiles defined by the Fourier spectrometer measurements from the spacecraft Venera 15 allow us to offer a mechanism accelerating the atmosphere to high zonal velocities and supporting these speeds, the atmosphere superrotation in general. Spectral measurements with balloons confirm the possibility of imaging the planet's surface from a height of not more than 55 km. Promising experiments with balloons in the atmosphere of Venus are considered. In particular, we discuss the possibility of measuring the geopotential height, as Venus no seas and oceans to vertical positioning of the temperature profiles. As an innovative research facilities within the atmosphere overpressure balloon with a lifetime longer than 14 Earth days and vertical profile microprobes are considered.

  20. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M.; Hussain, Z. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.

  1. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    Science.gov (United States)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    derive vertical profiles of aerosol backscatter ratio and aerosol extinction at 355 nm. Set of Stokes and anti-Stokes PRR lines are separated by the polychromator to derive temperature profiles. The humidity profiles have vertical resolution from 15 m (within the boundary layer) to 100-450 m (within the free troposphere), time resolution of 30 min and 5 km vertical range at daytime and 10 km at night-time. The aerosol backscatter ratio and extinction profiles have similar resolution with vertical range of approximately 10 km. The temperature profiles are derived from PRR lidar signals, simultaneously recorded in analog and photon counting mode, allowing vertical range of approximately 10 km. Vaisala RS-92 and Snow-White chilled mirror hygrometer radiosondes were used for calibration of the water vapor and temperature channels. Continuous temperature profiles were obtained and were coupled with the available water vapor mixing ratio profiles to obtain relative humidity time series. Lidar derived aerosol backscatter ratio profiles will be used for estimation of the boundary layer height and validation of NWP model results. Optical thickness time series are currently compared to independent measurements from a collocated sun photometer to assess the performance of the aerosol channel.

  2. The measurement of the vertical component of hydraulic conductivity in single-cased and uncased boreholes

    International Nuclear Information System (INIS)

    Black, J.H.; Noy, D.J.; Brightman, M.A.

    1987-01-01

    The project aimed to assess the different existing methods of measuring vertical hydraulic conductivity in single boreholes by carrying out some actual field testing. A review of existing techniques for both field practice and analysis of the results is reported. After consideration of the various techniques a combination method of testing is proposed. A set of equipment to carry out this combination of tests was designed and built. The uncased testing revealed that it was possible to derive a value for vertical hydraulic conductivity. The doublet method, however, was not particularly successful and numerical simulation was cumbersome. The type-curve approach of appraising whether or not analysis concepts were appropriate proved the most robust method. It is clear that reconnaissance measurements of environmental pressure are very useful in defining where detailed testing should take place. The second phase of testing through perforations proved very difficult. There were many problems associated with location both of the wireline testing system within the borehole and especially of the previous measurements. However, analysis of the results in terms of skin indicated that the perforations produced a negative skin. The measurement of vertical hydraulic conductivity cannot at the moment be regarded as routine

  3. Compressive and Shear Wave Velocity Profiles using Seismic Refraction Technique

    International Nuclear Information System (INIS)

    Aziman, M; Hazreek, Z A M; Azhar, A T S; Haimi, D S

    2016-01-01

    Seismic refraction measurement is one of the geophysics exploration techniques to determine soil profile. Meanwhile, the borehole technique is an established way to identify the changes of soil layer based on number of blows penetrating the soil. Both techniques are commonly adopted for subsurface investigation. The seismic refraction test is a non-destructive and relatively fast assessment compared to borehole technique. The soil velocities of compressive wave and shear wave derived from the seismic refraction measurements can be directly utilised to calculate soil parameters such as soil modulus and Poisson’s ratio. This study investigates the seismic refraction techniques to obtain compressive and shear wave velocity profile. Using the vertical and horizontal geophones as well as vertical and horizontal strike directions of the transient seismic source, the propagation of compressive wave and shear wave can be examined, respectively. The study was conducted at Sejagung Sri Medan. The seismic velocity profile was obtained at a depth of 20 m. The velocity of the shear wave is about half of the velocity of the compression wave. The soil profiles of compressive and shear wave velocities were verified using the borehole data and showed good agreement with the borehole data. (paper)

  4. Optimized Estimation of Surface Layer Characteristics from Profiling Measurements

    Directory of Open Access Journals (Sweden)

    Doreene Kang

    2016-01-01

    Full Text Available New sampling techniques such as tethered-balloon-based measurements or small unmanned aerial vehicles are capable of providing multiple profiles of the Marine Atmospheric Surface Layer (MASL in a short time period. It is desirable to obtain surface fluxes from these measurements, especially when direct flux measurements are difficult to obtain. The profiling data is different from the traditional mean profiles obtained at two or more fixed levels in the surface layer from which surface fluxes of momentum, sensible heat, and latent heat are derived based on Monin-Obukhov Similarity Theory (MOST. This research develops an improved method to derive surface fluxes and the corresponding MASL mean profiles of wind, temperature, and humidity with a least-squares optimization method using the profiling measurements. This approach allows the use of all available independent data. We use a weighted cost function based on the framework of MOST with the cost being optimized using a quasi-Newton method. This approach was applied to seven sets of data collected from the Monterey Bay. The derived fluxes and mean profiles show reasonable results. An empirical bias analysis is conducted using 1000 synthetic datasets to evaluate the robustness of the method.

  5. The Vertical Profile of Ocean Mixing

    Science.gov (United States)

    Ferrari, R. M.; Nikurashin, M.; McDougall, T. J.; Mashayek, A.

    2014-12-01

    The upwelling of bottom waters through density surfaces in the deep ocean is not possible unless the sloping nature of the sea floor is taken into account. The bottom--intensified mixing arising from interaction of internal tides and geostrophic motions with bottom topography implies that mixing is a decreasing function of height in the deep ocean. This would further imply that the diapycnal motion in the deep ocean is downward, not upwards as is required by continuity. This conundrum regarding ocean mixing and upwelling in the deep ocean will be resolved by appealing to the fact that the ocean does not have vertical side walls. Implications of the conundrum for the representation of ocean mixing in climate models will be discussed.

  6. Soil Temperature and Moisture Profile (STAMP) System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.

  7. On-current modeling of short-channel double-gate (DG) MOSFETs with a vertical Gaussian-like doping profile

    International Nuclear Information System (INIS)

    Dubey, Sarvesh; Jit, S.; Tiwari Pramod Kumar

    2013-01-01

    An analytic drain current model is presented for doped short-channel double-gate MOSFETs with a Gaussian-like doping profile in the vertical direction of the channel. The present model is valid in linear and saturation regions of device operation. The drain current variation with various device parameters has been demonstrated. The model is made more physical by incorporating the channel length modulation effect. Parameters like transconductance and drain conductance that are important in assessing the analog performance of the device have also been formulated. The model results are validated by numerical simulation results obtained by using the commercially available ATLAS™, a two dimensional device simulator from SILVACO. (semiconductor devices)

  8. Relaxation Dynamics of a Granular Pile on a Vertically Vibrating Plate

    Science.gov (United States)

    Tsuji, Daisuke; Otsuki, Michio; Katsuragi, Hiroaki

    2018-03-01

    Nonlinear relaxation dynamics of a vertically vibrated granular pile is experimentally studied. In the experiment, the flux and slope on the relaxing pile are measured by using a high-speed laser profiler. The relation of these quantities can be modeled by the nonlinear transport law assuming the uniform vibrofluidization of an entire pile. The fitting parameter in this model is only the relaxation efficiency, which characterizes the energy conversion rate from vertical vibration into horizontal transport. We demonstrate that this value is a constant independent of experimental conditions. The actual relaxation is successfully reproduced by the continuity equation with the proposed model. Finally, its specific applicability toward an astrophysical phenomenon is shown.

  9. Bio-mixing due to Diel Vertical Migration of Daphnia spp. in a Small Lake

    Science.gov (United States)

    Simoncelli, Stefano; Wain, Danielle; Thackeray, Stephen

    2016-04-01

    Bio-turbulence or bio-mixing refers to the contribution of living organisms towards the mixing of waters in oceans and lakes. Experimental measurements in an unstratified tank by Wilhelmus & Dabiri (2014) show that zooplankton can trigger fluid instabilities through collective motions and that energy is imparted to scales bigger than organism's size of few mm. Length scales analysis, for low-Reynolds-number organisms in stratified water by Leshansky & Pismen (2010) and Kunze (2011), estimate eddy diffusivity up two orders of magnitude larger than the molecular thermal diffusivity. Very recently, Wand & Ardekani (2015) showed a maximum diffusivity of 10-5 m2/s for millimetre-sized organisms from numerical simulations in the intermediate Reynolds number regime. Here we focus our attention on turbulence generated by the vertical migration of zooplankton in a small lake, mostly populated by Daphnia spp. This very common species, belonging to Cladocera order, is engaged in a vertical migration (DVM) at sunset, with many organisms crossing the thermocline despite the density stratification. During the ascension they may create hydrodynamic disturbances in the lake interior where the stratification usually suppresses the vertical diffusion. We have conducted five turbulence experiments in Vobster Quay, a small (area ˜ 59,000 m2), deep (40m) man-made basin with small wind fetch and steep sides, located in the South West UK. Turbulence was measured with a temperature microstructure profiler. To asses the zooplankton vertical concentration we used a 100 μm mesh net, by collecting and analyzing samples in 8 layers of the lake. A bottom-mounted acoustic Doppler current profiler was also employed to track their concentration and migration with the measured backscatter strength. Measured dissipation rates ɛ during the day showed low turbulence level (<= 10-8 W/Kg) in the thermocline and in the zooplankton layer. Turbulence, during the DVM in two different days, is highest on

  10. Plutonium and americium concentrations and vertical profiles in some Italian mosses used as bioindicators

    International Nuclear Information System (INIS)

    Testa, C.; Desideri, D.; Meli, M.A.; Guerra, F.; Degetto, S.; Jia, G.; Gerdol, R.

    1998-01-01

    We have examined the uptake of actinide elements Am and Pu by different species of lichen and moss collected in two locations (Urbino, Central Italy; Alps region, North-east Italy). Plutonium and americium were separated and determined by extraction chromatography, electrodeposition and alpha-spectrometry. This paper summarizes our results with a special emphasis on the vertical profiles of these actinides in two different species of mosses. Several 1-2 cm depth sections were obtained and dated by 210 Pb method. A typical peak for 239,240 Pu and 241 Am was found in the very old moss species ('Sphagnum Compactum') at a depth corresponding to the period 1960-1970 which was the period characterized by the maximum nuclear weapon tests. In a younger moss species ('Neckeria Crispa') no peak was observed and the regression curves showed that Am is more mobile than 239,240 Pu and 238 Pu. (author)

  11. Measurements of density profile evolution during the stably-stratified filling of an open enclosure

    International Nuclear Information System (INIS)

    Tarawneh, Constantine M.; Homan, K.O.

    2008-01-01

    The stably-stratified filling of an open enclosure produces an interfacial gradient layer which is transported through the enclosure with the bulk flow. The evolution of this interfacial layer is strongly time-dependent and is driven by the nature of the interaction between the internal gravity waves and the inlet-driven interfacial shear. Measurements of density profile evolution have been completed for a rectangular enclosure with a single corner inlet and density variation produced by saline concentration. This system serves as a mass transfer analog to large-scale, thermally-stratified energy storage devices, preserving dynamic similitude in a laboratory-scale system. The experiments covered jet Reynolds numbers of 200-2200 and Froude numbers of 0.06-0.6 in an enclosure with a width 23 times the jet inlet height. The density profiles are seen to be strongly asymmetric and exhibit growth rates significantly different than due to simple one-dimensional molecular diffusion. In addition, shadowgraph and hydrogen bubble visualizations of the density and velocity fields in the gradient layer show the persistence of complex multi-dimensional flow structure even at relatively late stages of the filling process when the gradient layer has been transported well away from the enclosure inlet. The evolution of the vertical density profile has been compared quantitatively to a quasi one-dimensional model based upon empirical diffusivity coefficients

  12. LIDAR Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    Science.gov (United States)

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...

  13. Characterization of a traceable profiler instrument for areal roughness measurement

    International Nuclear Information System (INIS)

    Thomsen-Schmidt, P

    2011-01-01

    A two-dimensional profiler instrument was designed and realized at the PTB (Physikalisch-Technische Bundesanstalt). The main function of the instrument is to provide traceable results in the field of roughness measurement. It is equipped with a linear moving stylus which is guided by precision air bearings. The moving part of the stylus has weight around 1 g and is carried by a magnetic field. The contacting force of the tip onto the surface under test is controlled by a small voice coil actuator in a closed control loop. Vertical movements of the stylus are captured by two different, completely independent measurement systems, covering a range of 100 µm. The first one is an interferometer, which provides a traceable signal, and the second one is an inductive measurement system. The signal from the inductive measurement system is calibrated by the interferometer. The sample under test is carried within the x–y-plane by a linear guided table with low noise air bearings. These air bearings are preloaded by vacuum and a constant gap is achieved by gas pressure controllers. Both axes of the table are driven by linear voice coil actuators and their movement in the plane is measured by linear encoders. The sample carrier is equipped with two axes tilt compensation, by which the sample under test can be levelled automatically using the measurement system of the stylus. Real-time data acquisition, manual handling and automated procedures are managed by a programmable controller and proprietary software written in LabVIEW. After measurement, data from the system can be directly transferred into the smd- or sdf-format. Results of measurements on different samples to characterize the metrological behaviour of the instrument will be reported. To characterize the uncertainty of the instrument, a model is applied, which is in accordance with approved rules for contact stylus instruments

  14. Comparison of Vertical Drifts of ISR and Magnetometer Data Measurements at the Magnetic Equator

    Science.gov (United States)

    Condor P, P. J.

    2014-12-01

    We compare vertical drifts measured with the Jicamarca incoherent scatter radar (ISR) and drifts estimated from magnetometer data applying a Neural Network data processing technique. For the application of the Neural Network (NN) method, we use the magnitude of the horizontal (H) component of the magnetic field measured with magnetometers at Jicamarca and Piura (Peru). The data was collected between the years 2002 and 2013. In training the NN we use the difference between the magnitudes of the horizontal components (dH) measured at JRO (placed at the magnetic equator) and Piura (displaced 5° away). Additional parameters used are F10.7 and Ap indexes. The estimates obtained with the NN procedure are very good. We have an RMS error of 3.7 m/s using dH as an input of the NN while the error is 3.9 m/s when we use the component H of JRO as an input. The results are validated using the set of vertical drifts observations collected with the Jicamarca incoherent scatter radar. The estimated drifts can be accessed using the following website: http://jro.igp.gob.pe/driftnn. In the poster, we show the comparison of vertical drifts from 2002 to 2013 where we discuss the agreement between magnetometer and ISR data.

  15. Twilight vertical migrations of zooplankton in a Chilean fjord

    Science.gov (United States)

    Valle-Levinson, Arnoldo; Castro, Leonardo; Cáceres, Mario; Pizarro, Oscar

    2014-12-01

    Time series of acoustic backscatter and vertical velocity profiles were obtained at three sites along a Chilean fjord with the purpose of determining dominant structures of vertical migrations of the sound scattering layer. Ancillary data obtained with stratified net samples indicated that the sound scattering layer may have been dominated by euphausiids and decapods. Therefore, distributions of acoustic backscatter anomalies and vertical velocities were attributed to vertical migrations of predominantly these organisms. Migration patterns were dominated by twilight excursions in which organisms swam toward the water surface at sunset, spent 100 m). This migration strategy can also be termed 'semidiel migration' as two double excursions were linked to light levels. The reasons for this twilight migration remain uncertain. But it is possible that the up and down motion around sunset was related to predation avoidance, hunger-satiation state, ontogeny, seaward transport evasion, or reaction to the environmental shock from the pycnocline, or a combination of all or some of them. In contrast, the sunrise double excursion was probably linked to feeding requirements by organisms that need to spend the day at great depth with no food available. This study demonstrated the existence of semidiel patterns throughout the fjord and through prolonged periods. In addition, identification of this pattern by acoustic backscatter was complemented by direct vertical velocity measurements. It is proposed that twilight vertical migration is a common strategy in Chilean fjords.

  16. Measurement of the average B hadron lifetime in Z0 decays using reconstructed vertices

    International Nuclear Information System (INIS)

    Abe, K.; Abt, I.; Ahn, C.J.; Akagi, T.; Allen, N.J.; Ash, W.W.; Aston, D.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D'Oliveira, A.; Damerell, C.J.S.; Daoudi, M.; De Sangro, R.; De Simone, P.; Dell'Orso, R.; Dima, M.; Du, P.Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Falciai, D.; Fan, C.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jackson, D.J.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kang, H.J.; Karliner, I.; Kawahara, H.; Kendall, H.W.; Kim, Y.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.S.; Liu, M.X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Reidy, J.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; Russell, J.J.

    1995-01-01

    We report a measurement of the average B hadron lifetime using data collected with the SLD detector at the SLAC Linear Collider in 1993. An inclusive analysis selected three-dimensional vertices with B hadron lifetime information in a sample of 50x10 3 Z 0 decays. A lifetime of 1.564±0.030(stat)±0.036(syst) ps was extracted from the decay length distribution of these vertices using a binned maximum likelihood method. copyright 1995 The American Physical Society

  17. The OMPS Limb Profiler Instrument: Two-Dimensional Retrieval Algorithm

    Science.gov (United States)

    Rault, Didier F.

    2010-01-01

    The upcoming Ozone Mapper and Profiler Suite (OMPS), which will be launched on the NPOESS Preparatory Project (NPP) platform in early 2011, will continue monitoring the global distribution of the Earth's middle atmosphere ozone and aerosol. OMPS is composed of three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The ultimate goal of the mission is to better understand and quantify the rate of stratospheric ozone recovery. The focus of the paper will be on the Limb Profiler (LP) instrument. The LP instrument will measure the Earth's limb radiance (which is due to the scattering of solar photons by air molecules, aerosol and Earth surface) in the ultra-violet (UV), visible and near infrared, from 285 to 1000 nm. The LP simultaneously images the whole vertical extent of the Earth's limb through three vertical slits, each covering a vertical tangent height range of 100 km and each horizontally spaced by 250 km in the cross-track direction. Measurements are made every 19 seconds along the orbit track, which corresponds to a distance of about 150km. Several data analysis tools are presently being constructed and tested to retrieve ozone and aerosol vertical distribution from limb radiance measurements. The primary NASA algorithm is based on earlier algorithms developed for the SOLSE/LORE and SAGE III limb scatter missions. All the existing retrieval algorithms rely on a spherical symmetry assumption for the atmosphere structure. While this assumption is reasonable in most of the stratosphere, it is no longer valid in regions of prime scientific interest, such as polar vortex and UTLS regions. The paper will describe a two-dimensional retrieval algorithm whereby the ozone distribution is simultaneously retrieved vertically and horizontally for a whole orbit. The retrieval code relies on (1) a forward 2D Radiative Transfer code (to model limb

  18. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile.

    Science.gov (United States)

    Höfferle, Špela; Nicol, Graeme W; Pal, Levin; Hacin, Janez; Prosser, James I; Mandić-Mulec, Ines

    2010-11-01

    Oxidation of ammonia, the first step in nitrification, is carried out in soil by bacterial and archaeal ammonia oxidizers and recent studies suggest possible selection for the latter in low-ammonium environments. In this study, we investigated the selection of ammonia-oxidizing archaea and bacteria in wetland soil vertical profiles at two sites differing in terms of the ammonium supply rate, but not significantly in terms of the groundwater level. One site received ammonium through decomposition of organic matter, while the second, polluted site received a greater supply, through constant leakage of an underground septic tank. Soil nitrification potential was significantly greater at the polluted site. Quantification of amoA genes demonstrated greater abundance of bacterial than archaeal amoA genes throughout the soil profile at the polluted site, whereas bacterial amoA genes at the unpolluted site were below the detection limit. At both sites, archaeal, but not the bacterial community structure was clearly stratified with depth, with regard to the soil redox potential imposed by groundwater level. However, depth-related changes in the archaeal community structure may also be associated with physiological functions other than ammonia oxidation. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Vertical distribution and inventories of 137Cs in the Syrian soils of the eastern Mediterranean region

    International Nuclear Information System (INIS)

    Al-Masri, M.S.

    2006-01-01

    Vertical distribution and inventories of 137 Cs have been determined using radiocesium distributions in presumably undistributed soil profiles, collected from 36 sites distributed all over Syria (eastern Mediterranean region). Vertical distributions of 137 Cs in the collected profiles were found to be strongly correlated with soil type and five groups were identified. Based on these profiles, total 137 Cs inventory (bomb test and Chernobyl) varied between 320 Bq m -2 and 9647 Bq m -2 . Geographical mapping of 137 Cs inventories showed that the highest values were found in the coastal, middle and north-east regions of Syria indicating that Chernobyl atmospheric contribution to the total 137 Cs deposition in the region is predominant. In contrast, the lowest values were found in the south-east region (Syrian Badia), where a relatively uniform distribution was observed, which may only be attributed to the past global nuclear bomb test. The measured inventories were also compared with a mathematical model for estimating bomb derived 137 Cs reference inventories

  20. Analysis of cesium-137 vertical distribution in the profile of plowed chernozems at different schemes of their assaying

    International Nuclear Information System (INIS)

    Paramonova, T.A.; Komissarova, O.L.; Belyaev, V.R.; Ivanov, M.M.

    2016-01-01

    In 2011-2015 the assessment of profile cesium-137 distribution in agrocenosis of chernozem zone on the territory of the Plavsk radioactive spot in Tula region formed after the Chernobyl accident has been carried out. It is shown that up until now non-uniformity of cesium-137 vertical distribution over the plowed chernozems profile may be occurred, it should be taken into account at radioecological survey of post-Chernobyl landscapes. For correct evaluation of radioecological state of plowed soils their systematic monitoring on the base of preliminary analysis of cesium-137 distribution and also with the account of agrotechnical peculiarities of various crops cultivation is recommended. On the Plavsk radioactive spot territory the most adequate assessments of cesium-137 stores in plowed chernozems one can obtain on the base of assaying the upper 30-cm soil depth, including not only current topsoil, but also old-arable horizon formed by deep rehabilitation plowing [ru

  1. Measurements of the Effects of Spacers on the Burnout Conditions for Flow of Boiling Water in a Vertical Annulus and a Vertical 7-Rod Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, G

    1964-11-15

    The present report deals with measurements of the effects of spacers on the burnout conditions in a vertical annulus and a vertical 7-rod cluster. The following ranges of variables were studied and 162 burnout measurements were obtained. Pressure p = 31 kg/cm; Inlet sub-cooling 35 < {delta}t{sub sub} < 174 deg C; Surface heat flux 89 < q/A < 305 W/cm{sup 2}; Mass velocity 94 < m'/F < 900 kg/m{sup 2}/s; Burnout steam quality 0.10 < x{sub BO} < 0.56. The experimental results showed that the type of spacers employed during the present investigation had negligible effects on the burnout conditions and that the measured burnout heat fluxes could be predicted within {+-} 5 per cent by means of the correlation by Becker et al for flow in smooth channels.

  2. Quantitative tomographic measurements of opaque multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O' HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  3. Space potential, temperature, and density profile measurements on RENTOR

    International Nuclear Information System (INIS)

    Schoch, P.M.

    1983-05-01

    Radial profiles of the space potential, electron temperature, and density have been measured on RENTOR with a heavy-ion-beam probe. The potential profile has been compared to predictions from a stochastic magnetic field fluctuation theory, using the measured temperature and density profiles. The comparison shows strong qualitative agreement in that the potential is positive and the order of T/sub e//e. There is some quantitative disagreement in that the measured radial electric fields are somewhat smaller than the theoretical predictions. To facilitate this comparison, a detailed analysis of the possible errors has been completed

  4. On Active Current Selection for Lagrangian Profilers

    Directory of Open Access Journals (Sweden)

    J. Jouffroy

    2013-01-01

    Full Text Available Autonomous Lagrangian profilers are now widely used as measurement and monitoring platforms, notably in observation programs as Argo. In a typical mode of operation, the profilers drift passively at their parking depthbefore making a vertical profile to go back to the surface. This paperpresents simple and computationally-efficient control strategies to activelyselect and use ocean currents so that a profiler can autonomously reach adesired destination. After briefly presenting a typical profiler andpossible mechanical modifications for a coastal environment, we introducesimple mathematical models for the profiler and the currents it will use. Wethen present simple feedback controllers that, using the direction of thecurrents and taking into account the configuration of the environment(coastal or deep-sea, is able to steer the profiler to any desiredhorizontal location. To illustrate the approach, a few results are presentedusing both simulated currents and real current velocity profiles from theNorth Sea.

  5. Technical Note: A new global database of trace gases and aerosols from multiple sources of high vertical resolution measurements

    Directory of Open Access Journals (Sweden)

    G. E. Bodeker

    2008-09-01

    Full Text Available A new database of trace gases and aerosols with global coverage, derived from high vertical resolution profile measurements, has been assembled as a collection of binary data files; hereafter referred to as the "Binary DataBase of Profiles" (BDBP. Version 1.0 of the BDBP, described here, includes measurements from different satellite- (HALOE, POAM II and III, SAGE I and II and ground-based measurement systems (ozonesondes. In addition to the primary product of ozone, secondary measurements of other trace gases, aerosol extinction, and temperature are included. All data are subjected to very strict quality control and for every measurement a percentage error on the measurement is included. To facilitate analyses, each measurement is added to 3 different instances (3 different grids of the database where measurements are indexed by: (1 geographic latitude, longitude, altitude (in 1 km steps and time, (2 geographic latitude, longitude, pressure (at levels ~1 km apart and time, (3 equivalent latitude, potential temperature (8 levels from 300 K to 650 K and time.

    In contrast to existing zonal mean databases, by including a wider range of measurement sources (both satellite and ozonesondes, the BDBP is sufficiently dense to permit calculation of changes in ozone by latitude, longitude and altitude. In addition, by including other trace gases such as water vapour, this database can be used for comprehensive radiative transfer calculations. By providing the original measurements rather than derived monthly means, the BDBP is applicable to a wider range of applications than databases containing only monthly mean data. Monthly mean zonal mean ozone concentrations calculated from the BDBP are compared with the database of Randel and Wu, which has been used in many earlier analyses. As opposed to that database which is generated from regression model fits, the BDBP uses the original (quality controlled measurements with no smoothing applied in any

  6. The measurement of the vertical component of hydraulic conductivity in single cased and uncased boreholes

    International Nuclear Information System (INIS)

    Black, J.H.; Noy, D.J.; Brightman, M.A.

    1986-11-01

    The project summarised in the paper aimed to assess the different existing methods of measuring vertical hydraulic conductivity in single boreholes by carrying out some actual field testing. The measurements are relevant to the disposal of radioactive waste into argillaceous rocks, where the primary geological barrier to potential leachate migration is the mudrock. Also the prime parameter of interest in the assessment of mudrocks is the vertical component of hydraulic conductivity. A description of the methods of test analysis and interpretation is given. The experimental programme for open borehole testing and cased borehole testing is described, along with the practical and theoretical considerations. (U.K.)

  7. Turbulence measurements in a Short Take-Off Vertical-Landing fountain

    OpenAIRE

    Saddington, Alistair J.; Knowles, K.

    2013-01-01

    THE wall jets created by the impingement on the ground of the individual jet flows from a jet-lift short take-off and vertical landing (STOVL) aircraft with two nozzles meet at a stagnation line and form an upward-flowing fountain that interacts with the airframe (Fig. 1). While it is evident that the fountain upwash flow is unsteady, only limited data on the transient characteristics of this flow region are available. Early experiments relied on intrusive measurement techniques to provide me...

  8. Impact of fugitive sources and meteorological parameters on vertical distribution of particulate matter over the industrial agglomeration.

    Science.gov (United States)

    Štrbová, Kristína; Raclavská, Helena; Bílek, Jiří

    2017-12-01

    The aim of the study was to characterize vertical distribution of particulate matter, in an area well known by highest air pollution levels in Europe. A balloon filled with helium with measuring instrumentation was used for vertical observation of air pollution over the fugitive sources in Moravian-Silesian metropolitan area during spring and summer. Synchronously, selected meteorological parameters were recorded together with particulate matter for exploration its relationship with particulate matter. Concentrations of particulate matter in the vertical profile were significantly higher in the spring than in the summer. Significant effect of fugitive sources was observed up to the altitude ∼255 m (∼45 m above ground) in both seasons. The presence of inversion layer was observed at the altitude ∼350 m (120-135 m above ground) at locations with major source traffic load. Both particulate matter concentrations and number of particles for the selected particle sizes decreased with increasing height. Strong correlation of particulate matter with meteorological parameters was not observed. The study represents the first attempt to assess the vertical profile over the fugitive emission sources - old environmental burdens in industrial region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Directory of Open Access Journals (Sweden)

    Sharf Abdusalam M.

    2014-03-01

    Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  10. A method for measuring the inductive electric field profile and noninductive current profiles on DIII-D

    International Nuclear Information System (INIS)

    Forest, C.B.; Luce, T.C.; Politzer, P.A.; Lao, L.L.; Kupfer, K.; Wroblewski, D.

    1994-07-01

    A new technique for determining the parallel electric field profile and noninductive current profile in tokamak plasmas has been developed and applied to two DIII-D tokamak discharges. Central to this technique is the determination of the current density profile, J(ρ), and poloidal flux, ψ(ρ), from equilibrium reconstructions. From time sequences of the reconstructions, the flux surface averaged, parallel electric field can be estimated from appropriate derivatives of the poloidal flux. With a model for the conductivity and measurements of T e and Z eff , the noninductive fraction of the current can be determined. Such a technique gives the possibility of measuring directly the bootstrap current profile and the noninductively driven current from auxiliary heating such as neutral beam injection or fast wave current drive. Furthermore, if the noninductively driven current is small or if the noninductive current profile is assumed to be known, this measurement provides a local test of the conductivity model under various conditions

  11. Calibration of a TCCON FTS at Armstrong Flight Research Center (AFRC) Using Multiple Airborne Profiles

    Science.gov (United States)

    Hillyard, P. W.; Iraci, L. T.; Podolske, J. R.; Tanaka, T.; Yates, E. L.; Roehl, C. M.; Wunch, D.; Wennberg, P. O.; Albertson, R. T.; Blake, D. R.; Meinardi, S.; Marrero, J. E.; Yang, M. M.; Beyersdorf, A. J.; Wofsy, S. C.; Pittman, J. V.; Daube, B. C.

    2014-12-01

    Satellite missions including GOSAT, OCO-2 and ASCENDS measure column abundances of greenhouse gases. It is crucial to have calibrated ground-based measurements to which these satellite measurements can compare and refine their retrieval algorithms. To this end, a Fourier Transform Spectrometer has been deployed to the Armstrong Flight Research Center (AFRC) in Edwards, CA as a member of the Total Carbon Column Observing Network (TCCON). This location was selected due to its proximity to a highly reflective lakebed. Such surfaces have proven to be difficult for accurate satellite retrievals. This facility has been in operation since July 2013. The data collected to date at this site will be presented. In order to ensure the validity of the measurements made at this site, multiple vertical profiles have been performed using the Alpha jet, DC-8, and ER-2 as part of the AJAX (ongoing), SEAC4RS (August 2013), and SARP (July 2014) field campaigns. The integrated in-situ vertical profiles for CO2 and CH4 have been analyzed and compared with the TCCON FTS measurements, where good agreement between TCCON data and vertically-integrated aircraft in-situ data has been found.

  12. Measurements with vertically viewing charge exchange analyzers during ion cyclotron range of frequencies heating in TFTR

    International Nuclear Information System (INIS)

    Kaita, R.; Hammett, G.W.; Gammel, G.; Goldston, R.J.; Medley, S.S.; Scott, S.D.; Young, K.M.

    1988-01-01

    The utility of charge exchange neutral particle analyzers for studying energetic ion distributions in high-temperature plasmas has been demonstrated in a variety of tokamak experiments. Power deposition profiles have been estimated in the Princeton large torus (PLT) from particle measurements as a function of energy and angle during heating in the ion cyclotron range of frequencies (ICRF) and extensive studies of this heating mode are planned for the upcoming operational period in the tokamak fusion test reactor (TFTR). Unlike the horizontally scanning analyzer on PLT, the TFTR system consists of vertical sightlines intersecting a poloidal cross section of the plasma. A bounce-averaged Fokker--Planck program, which includes a quasilinear operator to calculate ICRF-generated energetic ions, is used to simulate the charge exchange flux expected during fundamental hydrogen heating. These sightlines also cross the trajectory of a diagnostic neutral beam (DNB), and it may be possible to observe the fast ion tail during 3 He minority heating, if the DNB is operated in helium for double charge exchange neutralization

  13. Transmission of vertical stress in a real soil profile. Part II

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    2011-01-01

    used rated tyre inflation pressures for traffic in the field (≤10 km h−1 driving speed). Seven load cells were inserted horizontally from a pit with minimal disturbance of soil at each of three depths (0.3, 0.6 and 0.9 m), covering the width of the wheeled area. The position of the wheel relative...... to the transducers was recorded using a laser sensor. Finally, the vertical stresses near the tyre–soil interface were measured in separate tests by 17 stress transducers across the width of the tyres. The level of maximum stress at 0.3 m depth was related to the surface-related stress expressions like the mean...... ground pressure and the tyre inflation pressure. The maximum stresses measured at 0.9 m depth were correlated with the wheel load (57 and 60 kPa at 60 kN load; 27 and 25 kPa at 30 kN load) and did not reflect the surface-related stress expressions. Our results show that the use of wide, low pressure...

  14. Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye

    Science.gov (United States)

    Roorda, Austin; Campbell, Melanie C. W.; Bobier, W. R.

    1995-08-01

    In eccentric photorefraction, light returning from the retina of the eye is photographed by a camera focused on the eye's pupil. We use a geometrical model of eccentric photorefraction to generate intensity profiles across the pupil image. The intensity profiles for three different monochromatic aberration functions induced in a single eye are predicted and show good agreement with the measured eccentric photorefraction intensity profiles. A directional reflection from the retina is incorporated into the calculation. Intensity profiles for symmetric and asymmetric aberrations are generated and measured. The latter profile shows a dependency on the source position and the meridian. The magnitude of the effect of thresholding on measured pattern extents is predicted. Monochromatic aberrations in human eyes will cause deviations in the eccentric photorefraction measurements from traditional crescents caused by defocus and may cause misdiagnoses of ametropia or anisometropia. Our results suggest that measuring refraction along the vertical meridian is preferred for screening studies with the eccentric photorefractor.

  15. Development of two-phase flow along a large vertical pipe

    International Nuclear Information System (INIS)

    Dirk Lucas; Prasser, H.M.

    2005-01-01

    Full text of publication follows: To qualify CFD codes for two-phase flow simulations, closure laws describing the interaction between the phases are needed. Vertical pipe flow is a suitable object for studying the corresponding phenomena in case of dispersed bubbly flow. Here, the bubbles move under clear boundary conditions, resulting in a shear field of nearly constant structure where the bubbles rise for a comparatively long time. This allows to study the lateral motion of the bubbles in a shear flow as well as bubble coalescence and break-up by comparing gas volume fraction distributions and bubble size distributions at different heights. Very detailed data were obtained at the TOPFLOW facility of the Forschungszentrum Rossendorf using an advanced wire-mesh sensor. This sensor measures the instantaneous conductivity distribution over the pipe cross section. The high frequency of the measurement (2500 frames/s) allows the detection of single bubbles by a special evaluation procedure. Bubble size distributions, gas volume fraction distributions and also gas fraction distributions decomposed according to the bubble size are delivered as result of the evaluation procedure. The use of two sensors allows to measure the profile of the gas velocity. In previous works similar data for pipe of 51.2 mm inner diameter were used for the validation of non-drag bubble forces [1] and the evaluation of the influence of radial profiles on the development of the flow pattern [2]. First investigations on scaling effects were done using data obtained at a pipe with an inner diameter of 194 mm [3]. A constant distance between gas injection and measuring plane of L/D ∼ 40 was used. From a new test series now measurements are available for varying distances between the injection device and the wire-mesh sensor. This allows the evaluation of the development of the flow along the pipe. The data are used for the development and validation of mesoscale models for the forces acting on

  16. Spectropolarimetric Measurements of Scattered Sunlight in the Huggins Bands: Retrieval of Tropospheric Ozone Profiles

    Science.gov (United States)

    Fu, D.; Sander, S. P.; Stutz, J.; Pongetti, T. J.; Yung, Y. L.; Wong, M.; Natraj, V.; Li, K.; Shia, R.

    2009-12-01

    Ozone concentrations in the troposphere have increased over the past century as a result of anthropogenic emissions of NOx and volatile organic compounds. In addition to being harmful to human health and plant life, ozone is an important greenhouse gas, especially in the middle and upper troposphere. Therefore, accurate monitoring of tropospheric ozone vertical distributions is crucial for a better understanding of air quality and climate change. Simulations of vector radiative transfer in the near ultraviolet region have shown that tropospheric ozone profiles can be retrieved using polarization measurements. However, to date there has been no experimental test of this method. A new compact, portable spectropolarimeter has been built for atmospheric remote sensing. The first comprehensive description of the configuration and performance of this instrument for ground-based operation is provided and sample atmospheric scattered sunlight spectra are shown. Using optimal estimation retrieval theory we study the information content of polarization spectra in the Huggins band and uncertainties in the retrieval associated with the measurement parameters, such as aerosol scattering.

  17. Measurement of LBE flow velocity profile by UDVP

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Takeda, Yasushi; Obayashi, Hiroo; Tezuka, Masao; Sato, Hiroshi

    2006-01-01

    Measurements of liquid metal lead-bismuth eutectic (LBE), flow velocity profile were realized in the spallation neutron source target model by the ultrasonic Doppler velocity profiler (UVDP) technique. So far, it has not been done well, because both of poor wetting property of LBE with stainless steels and poor performance of supersonic probes at high temperatures. The measurement was made for a return flow in the target model, which has coaxially arranged annular and tube channels, in the JAEA Lead Bismuth Loop-2 (JLBL-2). The surface treatment of LBE container was examined. It was found that the solder coating was effective to enhance an intensity of reflected ultrasonic wave. This treatment has been applied to the LBE loop, which was operated up to 150 deg. C. The electro magnetic pump generates LBE flow and the flow rate was measured by the electro magnetic flow meter. By changing the flow rate of LBE, velocity profiles in the target were measured. It was confirmed that the maximum velocity in the time-averaged velocity distribution on the target axis was proportional to the flow rate measured by the electro magnetic flow meter

  18. Methods and Systems for Use of an Acoustic Doppler Current Profiler for Measurement of Compact Jets

    National Research Council Canada - National Science Library

    Hendricks, Peter J

    2007-01-01

    ... an Acoustic Doppler Current Profiler (ADCP). The ADCP is a four-beam, Janus-type ADCP having beams aligned so that each of the beams is at an angle of about 200 to 300 to vertical and at 450 to the fore and aft axis of the vessel, such that two...

  19. Programs to obtain vertical heights from mean sea level and for computing volume of sand/mineral along beaches: A case study with Kalbadevi beach profiling data and results

    Digital Repository Service at National Institute of Oceanography (India)

    Ganesan, P.

    Two programs have been developed to process profile data, for obtaining vertical heights with respect to mean sea level (M.S.L.) and for computation of volume of heavy mineral / sand accumulation or erosion along the beaches. The final output...

  20. Offshore vertical wind shear: Final report on NORSEWInD’s work task 3.1

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Mikkelsen, Torben; Gryning, Sven-Erik

    of power outputs. Background related to the parametrization of the vertical wind speed profile and the behavior of the vertical wind shear in and beyond the atmospheric surface layer is presented together with the application of the long-term atmospheric stability parameters for the analysis of the long......This document reports on the analysis performed by the work task 3.1 of the EU NORSEWInD project and includes the following deliverables: 3.2 Calculated vertical wind shears 3.3 Multi-variational correlation analysis 3.4 NWP data for wind shear model 3.5 Vertical extrapolation methodology 3.......6 Results input into satellite maps The nature of the offshore vertical wind shear is investigated using acquired data from the NORSEWInD network of mast and wind lidar stations. The importance of the knowledge of the vertical wind speed profile and wind shear is first illustrated for the evaluation...

  1. 3D elastic inversion of vertical seismic profiles in horizontally stratified media; Inversion elastique 3D de profils sismiques verticaux en milieux stratifies horizontalement

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J.L.

    1997-07-21

    This thesis is devoted to the inversion of VSP (vertical seismic profile) seismic data in order to determine the elastic properties of horizontally stratified media. The VSP records are computed using the full wave elastic modelling in isotropic and transversely isotropic media using Hankel transform, a finite difference scheme and an inverse Hankel transform algorithm, and the propagation equations are determined and numerically solved; the importance of considering a 3D wave propagation model instead of a 1 D one is emphasized. The theoretical VSP inverse problem is then considered, with the seismic waveform inversion set as a least-squares problem, consisting in recovering the distribution of physical parameters which minimize the misfit between calculated and observed VSP. The corresponding problem requires the knowledge of the source function

  2. A Prototype Ionization Profile Monitor for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cameron, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ryan, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shea, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sikora, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1997-03-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab will accelerate and store beams of ions ranging from protons to gold nuclei. Transverse beam profiles will be obtained by measuring the distribution of free electrons formed by beam ionization of the residual gas. The electrons are swept from the beamline by a transverse electric field, amplified by a microchannel plate (MCP), and collected on a circuit board with strip anodes oriented parallel to the beam axis. A uniform magnetic field,parallel to the sweep electric field, counters the defocusing effects of space charge and recoil momentum. A single-plane prototype ionization profile montor (IPM) was installed near the end of the AGS-to-RHIC transfer line (ATR) and tested during the sextant commissioning rung. It measured vertical profiles of single bunches of Au nuclei with intensities of 0.6-1.0 x 108 particles. These profiles are compared to profiles on a fluorescent screen (WF3) located 2m downstream from the IPM. This paper describes the detector and gives results from the beam test.

  3. Vertical distribution of ozone at the terminator on Mars

    Science.gov (United States)

    Maattanen, Anni; Lefevre, Franck; Guilbon, Sabrina; Listowski, Constantino; Montmessin, Franck

    2016-10-01

    The SPICAM/Mars Express UV solar occultation dataset gives access to the ozone vertical distribution via the ozone absorption in the Hartley band (220-280 nm). We present the retrieved ozone profiles and compare them to the LMD Mars Global Climate Model (LMD-MGCM) results.Due to the photochemical reactivity of ozone, a classical comparison of local density profiles is not appropriate for solar occultations that are acquired at the terminator, and we present here a method often used in the Earth community. The principal comparison is made via the slant profiles (integrated ozone concentration on the line-of-sight), since the spherical symmetry hypothesis made in the onion-peeling vertical inversion method is not valid for photochemically active species (e.g., ozone) around terminator. For each occultation, we model the ozone vertical and horizontal distribution with high solar zenith angle (or local time) resolution around the terminator and then integrate the model results following the lines-of-sight of the occultation to construct the modeled slant profile. We will also discuss the difference of results between the above comparison method and a comparison using the local density profiles, i.e., the observed ones inverted by using the spherical symmetry hypothesis and the modeled ones extracted from the LMD-MGCM exactly at the terminator. The method and the results will be presented together with the full dataset.SPICAM is funded by the French Space Agency CNES and this work has received funding from the European Union's Horizon 2020 Programme (H2020-Compet-08-2014) under grant agreement UPWARDS-633127.

  4. Assessment of vertically-resolved PM10 from mobile lidar observations

    Directory of Open Access Journals (Sweden)

    J.-C. Raut

    2009-11-01

    Full Text Available We investigate in this study the vertical PM10 distributions from mobile measurements carried out from locations along the Paris Peripherique (highly trafficked beltway around Paris, examine distinctions in terms of aerosol concentrations between the outlying regions of Paris and the inner city and eventually discuss the influence of aerosol sources, meteorology, and dynamics on the retrieved PM10 distributions. To achieve these purposes, we combine in situ surface measurements with active remote sensing observations obtained from a great number of research programs in Paris area since 1999. Two approaches, devoted to the conversion of vertical profiles of lidar-derived extinction coefficients into PM10, have been set up. A very good agreement is found between the theoretical and empirical methods with a discrepancy of 3%. Hence, specific extinction cross-sections at 355 nm are provided with a reasonable relative uncertainty lower than 12% for urban (4.5 m2 g−1 and periurban (5.9 m2 g−1 aersols, lower than 26% for rural (7.1 m2 g−1 aerosols, biomass burning (2.6 m2 g−1 and dust (1.1 m2 g−1 aerosols The high spatial and temporal resolutions of the mobile lidar (respectively 1.5 m and 1 min enable to follow the spatiotemporal variability of various layers trapping aerosols in the troposphere. Appropriate specific extinction cross-sections are applied in each layer detected in the vertical heterogeneities from the lidar profiles. The standard deviation (rms between lidar-derived PM10 at 200 m above ground and surface network stations measurements was ~14μg m−3. This difference is particularly ascribed to a decorrelation of mass concentrations in the first meters of the boundary layer, as highlighted through multiangular lidar observations. Lidar signals can be used to follow mass concentrations with an uncertainty lower than 25% above urban areas and provide useful information on PM10 peak forecasting that affect air quality.

  5. Vertical profile of tropospheric ozone derived from synergetic retrieval using three different wavelength ranges, UV, IR, and microwave: sensitivity study for satellite observation

    Directory of Open Access Journals (Sweden)

    T. O. Sato

    2018-03-01

    Full Text Available We performed a feasibility study of constraining the vertical profile of the tropospheric ozone by using a synergetic retrieval method on multiple spectra, i.e., ultraviolet (UV, thermal infrared (TIR, and microwave (MW ranges, measured from space. This work provides, for the first time, a quantitative evaluation of the retrieval sensitivity of the tropospheric ozone by adding the MW measurement to the UV and TIR measurements. Two observation points in East Asia (one in an urban area and one in an ocean area and two observation times (one during summer and one during winter were assumed. Geometry of line of sight was nadir down-looking for the UV and TIR measurements, and limb sounding for the MW measurement. The retrieval sensitivities of the ozone profiles in the upper troposphere (UT, middle troposphere (MT, and lowermost troposphere (LMT were estimated using the degree of freedom for signal (DFS, the pressure of maximum sensitivity, reduction rate of error from the a priori error, and the averaging kernel matrix, derived based on the optimal estimation method. The measurement noise levels were assumed to be the same as those for currently available instruments. The weighting functions for the UV, TIR, and MW ranges were calculated using the SCIATRAN radiative transfer model, the Line-By-Line Radiative Transfer Model (LBLRTM, and the Advanced Model for Atmospheric Terahertz Radiation Analysis and Simulation (AMATERASU, respectively. The DFS value was increased by approximately 96, 23, and 30 % by adding the MW measurements to the combination of UV and TIR measurements in the UT, MT, and LMT regions, respectively. The MW measurement increased the DFS value of the LMT ozone; nevertheless, the MW measurement alone has no sensitivity to the LMT ozone. The pressure of maximum sensitivity value for the LMT ozone was also increased by adding the MW measurement. These findings indicate that better information on LMT ozone can be obtained by adding

  6. Vertical profile of tropospheric ozone derived from synergetic retrieval using three different wavelength ranges, UV, IR, and microwave: sensitivity study for satellite observation

    Science.gov (United States)

    Sato, Tomohiro O.; Sato, Takao M.; Sagawa, Hideo; Noguchi, Katsuyuki; Saitoh, Naoko; Irie, Hitoshi; Kita, Kazuyuki; Mahani, Mona E.; Zettsu, Koji; Imasu, Ryoichi; Hayashida, Sachiko; Kasai, Yasuko

    2018-03-01

    We performed a feasibility study of constraining the vertical profile of the tropospheric ozone by using a synergetic retrieval method on multiple spectra, i.e., ultraviolet (UV), thermal infrared (TIR), and microwave (MW) ranges, measured from space. This work provides, for the first time, a quantitative evaluation of the retrieval sensitivity of the tropospheric ozone by adding the MW measurement to the UV and TIR measurements. Two observation points in East Asia (one in an urban area and one in an ocean area) and two observation times (one during summer and one during winter) were assumed. Geometry of line of sight was nadir down-looking for the UV and TIR measurements, and limb sounding for the MW measurement. The retrieval sensitivities of the ozone profiles in the upper troposphere (UT), middle troposphere (MT), and lowermost troposphere (LMT) were estimated using the degree of freedom for signal (DFS), the pressure of maximum sensitivity, reduction rate of error from the a priori error, and the averaging kernel matrix, derived based on the optimal estimation method. The measurement noise levels were assumed to be the same as those for currently available instruments. The weighting functions for the UV, TIR, and MW ranges were calculated using the SCIATRAN radiative transfer model, the Line-By-Line Radiative Transfer Model (LBLRTM), and the Advanced Model for Atmospheric Terahertz Radiation Analysis and Simulation (AMATERASU), respectively. The DFS value was increased by approximately 96, 23, and 30 % by adding the MW measurements to the combination of UV and TIR measurements in the UT, MT, and LMT regions, respectively. The MW measurement increased the DFS value of the LMT ozone; nevertheless, the MW measurement alone has no sensitivity to the LMT ozone. The pressure of maximum sensitivity value for the LMT ozone was also increased by adding the MW measurement. These findings indicate that better information on LMT ozone can be obtained by adding constraints

  7. Topside ionospheric vertical electron density profile reconstruction using GPS and ionosonde data: possibilities for South Africa

    Directory of Open Access Journals (Sweden)

    P. Sibanda

    2011-02-01

    Full Text Available Successful empirical modeling of the topside ionosphere relies on the availability of good quality measured data. The Alouette, ISIS and Intercosmos-19 satellite missions provided large amounts of topside sounder data, but with limited coverage of relevant geophysical conditions (e.g., geographic location, diurnal, seasonal and solar activity by each individual mission. Recently, methods for inferring the electron density distribution in the topside ionosphere from Global Positioning System (GPS-based total electron content (TEC measurements have been developed. This study is focused on the modeling efforts in South Africa and presents the implementation of a technique for reconstructing the topside ionospheric electron density (Ne using a combination of GPS-TEC and ionosonde measurements and empirically obtained Upper Transition Height (UTH. The technique produces reasonable profiles as determined by the global models already in operation. With the added advantage that the constructed profiles are tied to reliable measured GPS-TEC and the empirically determined upper transition height, the technique offers a higher level of confidence in the resulting Ne profiles.

  8. Tropospheric profiles of wet refractivity and humidity from the combination of remote sensing data sets and measurements on the ground

    Directory of Open Access Journals (Sweden)

    F. Hurter

    2013-11-01

    Full Text Available We reconstruct atmospheric wet refractivity profiles for the western part of Switzerland with a least-squares collocation approach from data sets of (a zenith path delays that are a byproduct of the GPS (global positioning system processing, (b ground meteorological measurements, (c wet refractivity profiles from radio occultations whose tangent points lie within the study area, and (d radiosonde measurements. Wet refractivity is a parameter partly describing the propagation of electromagnetic waves and depends on the atmospheric parameters temperature and water vapour pressure. In addition, we have measurements of a lower V-band microwave radiometer at Payerne. It delivers temperature profiles at high temporal resolution, especially in the range from ground to 3000 m a.g.l., though vertical information content decreases with height. The temperature profiles together with the collocated wet refractivity profiles provide near-continuous dew point temperature or relative humidity profiles at Payerne for the study period from 2009 to 2011. In the validation of the humidity profiles, we adopt a two-step procedure. We first investigate the reconstruction quality of the wet refractivity profiles at the location of Payerne by comparing them to wet refractivity profiles computed from radiosonde profiles available for that location. We also assess the individual contributions of the data sets to the reconstruction quality and demonstrate a clear benefit from the data combination. Secondly, the accuracy of the conversion from wet refractivity to dew point temperature and relative humidity profiles with the radiometer temperature profiles is examined, comparing them also to radiosonde profiles. For the least-squares collocation solution combining GPS and ground meteorological measurements, we achieve the following error figures with respect to the radiosonde reference: maximum median offset of relative refractivity error is −16% and quartiles are 5% to

  9. Radon 222 and tropospheric vertical transport

    International Nuclear Information System (INIS)

    Liu, S.C.; McAfee, J.R.; Cicerone, R.J.

    1984-01-01

    Radon 222 is an inert gas whose loss is due only to radioactive decay with a half life of 3.83 days (5.51-day ''exponential'' lifetime). It is a very useful tracer of continental air because only ground level continental sources are significant. Thus it is similar in several ways to many air pollutants (e.g., NO/sub x/) (NO+NO 2 ), SO 2 , and certain hydrocarbons. Previously published measured 222 Rn profiles are analyzed here by averaging for the summer, winter, and spring-fall seasons. The analysis shows that in summer, about 55% of the 222 Rn is transported above the planetary boundary layer, considerably more than during the other seasons. Similarly, in summer, about 20% rises to over 5.5 km (500 mbar). The average profiles have been used to derive vertical eddy diffusion coefficients with maximum values of 5-7 x 10 5 cm 2 s -1 in the midtroposphere and 8 x 10 3 to 5 x 10 4 cm 2 s -1 near the surface

  10. Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model

    Directory of Open Access Journals (Sweden)

    C. L. Heald

    2011-12-01

    Full Text Available The global organic aerosol (OA budget is highly uncertain and past studies suggest that models substantially underestimate observed concentrations. Few of these studies have examined the vertical distribution of OA. Furthermore, many model-measurement comparisons have been performed with different models for single field campaigns. We synthesize organic aerosol measurements from 17 aircraft campaigns from 2001–2009 and use these observations to consistently evaluate a GEOS-Chem model simulation. Remote, polluted and fire-influenced conditions are all represented in this extensive dataset. Mean observed OA concentrations range from 0.2–8.2 μg sm−3 and make up 15 to 70% of non-refractory aerosol. The standard GEOS-Chem simulation reproduces the observed vertical profile, although observations are underestimated in 13 of the 17 field campaigns (the median observed to simulated ratio ranges from 0.4 to 4.2, with the largest model bias in anthropogenic regions. However, the model is best able to capture the observed variability in these anthropogenically-influenced regions (R2=0.18−0.57, but has little skill in remote or fire-influenced regions. The model bias increases as a function of relative humidity for 11 of the campaigns, possibly indicative of missing aqueous phase SOA production. However, model simulations of aqueous phase SOA suggest a pronounced signature in the mid-troposphere (2–6 km which is not supported in the observations examined here. Spracklen et al. (2011 suggest adding ~100 Tg yr−1 source of anthropogenically-controlled SOA to close the measurement-model gap, which we add as anthropogenic SOA. This eliminates the model underestimate near source, but leads to overestimates aloft in a few regions and in remote regions, suggesting either additional sinks of OA or higher volatility aerosol at colder temperatures. Sensitivity simulations indicate that fragmentation of organics upon

  11. Vertical Cloud Climatology During TC4 Derived from High-Altitude Aircraft Merged Lidar and Radar Profiles

    Science.gov (United States)

    Hlavka, Dennis; Tian, Lin; Hart, William; Li, Lihua; McGill, Matthew; Heymsfield, Gerald

    2009-01-01

    Aircraft lidar works by shooting laser pulses toward the earth and recording the return time and intensity of any of the light returning to the aircraft after scattering off atmospheric particles and/or the Earth s surface. The scattered light signatures can be analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few optical assumptions, can be analyzed to retrieve estimates of optical properties such as atmospheric transparency. Radar works in a similar fashion except it sends pulses toward earth at a much larger wavelength than lidar. Radar records the return time and intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter from optically thin cirrus and aerosol layers whose particles are too small for the radar to detect. Radar can provide reflection profiles through thick cloud layers of larger particles that lidar cannot penetrate. Only after merging the two instrument products can accurate measurements of the locations of all layers in the full atmospheric column be achieved. Accurate knowledge of the vertical distribution of clouds is important information for understanding the Earth/atmosphere radiative balance and for improving weather/climate forecast models. This paper describes one such merged data set developed from the Tropical Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed concerning cloud probability through the atmospheric column and frequency of the number of cloud layers. These statistics were calculated for the full study area, four sub-regions, and over land compared to over ocean across all available flights. The results are valid for the TC4 experiment only, as preferred cloud patterns took priority during mission planning. The TC4 Study Area was a very cloudy region, with cloudy

  12. Long-trace profiler for neutron focusing mirrors

    International Nuclear Information System (INIS)

    Puzyrev, Yevgeniy S.; Ice, Gene E.; Takacs, Peter Z.

    2009-01-01

    A long-trace profiler (LTP) optimized for measuring the shape of large neutron supermirrors has been designed and built. This LTP can measure 1.6 m long mirrors in both vertically and horizontally deflecting geometries, which is essential to achieve best performance from bendable mirrors. The LTP suppresses the influence of angular deviations of the linear-stage carriage during translation with a pentaprism and a cylindrical lens. The stationary optical head and the carriage-mounted pentaprism are precisely aligned to rotate about the optical axis between the two components. This feature allows measurements to be made on mirrors mounted vertically, horizontally or at any angle in between. The LTP software allows for rapid optimization of parameters for dynamically bent elliptical mirrors. Here we describe the motivation for the LTP, the design, and a first application of the LTP to study the effect of gravity on a bent microfocusing neutron supermirror.

  13. Inventory and vertical migration of 137Cs in Spanish mainland soils

    International Nuclear Information System (INIS)

    Legarda, F.; Romero, L.M.; Herranz, M.; Barrera, M.; Idoeta, R.; Valino, F.; Olondo, C.; Caro, A.

    2011-01-01

    In this study the total activity of 137 Cs deposited per unit area over the Spanish peninsular territory was analysed using a 150 x 150 km 2 mesh grid, with samples taken from 29 points. The deposited activities ranged between 251 and 6074 Bq/m 2 . A linear relationship was obtained between these values and the mean annual rainfall at each sampling point which allowed a map to be drawn, using GIS software, which shows the distribution of total deposited 137 Cs activity across the Spanish mainland. At twelve of these sampling points the vertical migration profile of 137 Cs was obtained. These profiles are separated into two groups with different behaviour, one of which includes clay and loam soils and the other containing sandy soils. For both groups of profiles the parameters of the convective-diffusive model, which describes the vertical migration of 137 Cs in the soil, v (apparent convection velocity) and D (apparent diffusion coefficient) were calculated. - Highlights: → Measured the 137 Cs activity in Spanish mainland, being within a range of [251, 6074] Bq/m 2 , with a mean value of 1726 Bq/m 2 . → Establishment of the 137 Cs background by means of a 137 Cs inventory map showing its distribution in the Spanish mainland. → 137 Cs shows two different behaviour tendencies in soil depending on it. → The parameters which govern the applied model have been obtained for the analysed profiles. → Analysed those parameters, the two tendencies have been reflected in the obtained values.

  14. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Daniel [Hebrew Univ. of Jerusalem (Israel)

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  15. Retrieval of ozone profiles from OMPS limb scattering observations

    Science.gov (United States)

    Arosio, Carlo; Rozanov, Alexei; Malinina, Elizaveta; Eichmann, Kai-Uwe; von Clarmann, Thomas; Burrows, John P.

    2018-04-01

    This study describes a retrieval algorithm developed at the University of Bremen to obtain vertical profiles of ozone from limb observations performed by the Ozone Mapper and Profiler Suite (OMPS). This algorithm is based on the technique originally developed for use with data from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument. As both instruments make limb measurements of the scattered solar radiation in the ultraviolet (UV) and visible (Vis) spectral ranges, an underlying objective of the study is to obtain consolidated and consistent ozone profiles from the two satellites and to produce a combined data set. The retrieval algorithm uses radiances in the UV and Vis wavelength ranges normalized to the radiance at an upper tangent height to obtain ozone concentrations in the altitude range of 12-60 km. Measurements at altitudes contaminated by clouds in the instrument field of view are identified and filtered out. An independent aerosol retrieval is performed beforehand and its results are used to account for the stratospheric aerosol load in the ozone inversion. The typical vertical resolution of the retrieved profiles varies from ˜ 2.5 km at lower altitudes ( passive satellite observations or measured in situ by balloon-borne sondes. Between 20 and 60 km, OMPS ozone profiles typically agree with data from the Microwave Limb Sounder (MLS) v4.2 within 5-10 %, whereas in the lower altitude range the bias becomes larger, especially in the tropics. The comparison of OMPS profiles with ozonesonde measurements shows differences within ±5 % between 13 and 30 km at northern middle and high latitudes. At southern middle and high latitudes, an agreement within 5-7 % is also achieved in the same altitude range. An unexpected bias of approximately 10-20 % is detected in the lower tropical stratosphere. The processing of the 2013 data set using the same retrieval settings and its validation against ozonesondes reveals a much

  16. Improvement of OMI Ozone Profile Retrievals in the Troposphere and Lower Troposphere by the Use of the Tropopause-Based Ozone Profile Climatology

    Science.gov (United States)

    Bak, Juseon; Liu, X.; Wei, J.; Kim, J. H.; Chance, K.; Barnet, C.

    2011-01-01

    An advance algorithm based on the optimal estimation technique has beeen developed to derive ozone profile from GOME UV radiances and have adapted it to OMI UV radiances. OMI vertical resolution : 7-11 km in the troposphere and 10-14 km in the stratosphere. Satellite ultraviolet measurements (GOME, OMI) contain little vertical information for the small scale of ozone, especially in the upper troposphere (UT) and lower stratosphere (LS) where the sharp O3 gradient across the tropopause and large ozone variability are observed. Therefore, retrievals depend greatly on the a-priori knowledge in the UTLS

  17. Study on profile measurement of extruding tire tread by laser

    Science.gov (United States)

    Wang, LiangCai; Zhang, Wanping; Zhu, Weihu

    1996-10-01

    This paper presents a new 2D measuring system-profile measurement of extruding tire tread by laser. It includes the thickness measurement of extruding tire tread by laser and the width measurement of extruding tire tread using Moire Fringe. The system has been applied to process line of extruding tire tread. Two measuring results have been obtained. One is a standard profile picture of extruding tire tread including seven measuring values. Another one is a series of thickness and width values. When the scanning speed thickness range is thickness < +/- 0.1mm.

  18. Vertical distribution of ectomycorrhizal fungal taxa in a podzol profile

    NARCIS (Netherlands)

    Rosling, A.; Landeweert, R.; Lindahl, B.D.; Larsson, K.H.; Kuyper, T.W.; Taylor, A.F.S.; Finlay, R.F.

    2003-01-01

    Studies of ectomycorrhizal fungal communities in forest soils are usually restricted to the uppermost organic horizons. Boreal forest podzols are highly stratified and little is known about the vertical distribution of ectomycorrhizal communities in the underlying mineral horizons. Ectomycorrhizal

  19. Retrieval of Vertical Aerosol and Trace Gas Distributions from Polarization Sensitive Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    Science.gov (United States)

    Tirpitz, Jan-Lukas; Friess, Udo; Platt, Ulrich

    2017-04-01

    An accurate knowledge of the vertical distribution of trace gases and aerosols is crucial for our understanding of the chemical and dynamical processes in the lower troposphere. Their accurate determination is typically only possible by means of laborious and expensive airborne in-situ measurements but in the recent decades, numerous promising ground-based remote sensing approaches have been developed. One of them is to infer vertical distributions from "Differential Optical Absorption Spectroscopy" (DOAS) measurements. DOAS is a technique to analyze UV- and visible radiation spectra of direct or scattered sunlight, which delivers information on different atmospheric parameters, integrated over the light path from space to the instrument. An appropriate set of DOAS measurements, recorded under different viewing directions (Multi-Axis DOAS) and thus different light path geometries, provides information on the atmospheric state. The vertical profiles of aerosol properties and trace gas concentrations can be retrieved from such a set by numerical inversion techniques, incorporating radiative transfer models. The information content of measured data is rarely sufficient for a well-constrained retrieval, particularly for atmospheric layers above 1 km. We showed in first simulations that, apart from spectral properties, the polarization state of skylight is likely to provide a significant amount of additional information on the atmospheric state and thus to enhance retrieval quality. We present first simulations, expectations and ideas on how to implement and characterize a polarization sensitive Multi-Axis DOAS instrument and a corresponding profile retrieval algorithm.

  20. Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM)

    Science.gov (United States)

    Halliwell, George R.

    Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.

  1. CFD simulations of a bubbly flow in a vertical pipe

    International Nuclear Information System (INIS)

    Krepper, E.

    1999-01-01

    Even at the very simple conditions of two phase flow in a vertical pipe, strong 3D effects are observed. The distribution of the gas phase over the cross section varies significantly between the different flow patterns, which are known for the vertical two-phase flow. The air water flow in a vertical tube having a diameter of 50 mm and a length of about 3 m was investigated in steady state tests for different liquid and gas superficial velocities. Several two phase flow measuring techniques were used. Applying a wire mesh sensor, developed in FZR, the void fraction could be determined over the whole cross section of the pipe. The working principle is based on the measurement of the local instantaneous conductivity of the two-phase mixture. At the investigated flow velocities, the rate of the image acquisition is sufficient to record the same bubble several times. This enables to determine bubble diameter distributions. Applying two similar wire mesh sensors with a distance of 50 mm one above the other, the influence of the wire mesh to the flow could be investigated. No essential disturbances of the two-phase flow by the mesh could be found for the investigated flow regimes. Performing an auto correlation between the signals of both sensors, also profiles of the gas velocity were determined. (orig.)

  2. Measurement and inference of profile soil-water dynamics at different hillslope positions in a semiarid agricultural watershed

    Science.gov (United States)

    Green, Timothy R.; Erskine, Robert H.

    2011-12-01

    Dynamics of profile soil water vary with terrain, soil, and plant characteristics. The objectives addressed here are to quantify dynamic soil water content over a range of slope positions, infer soil profile water fluxes, and identify locations most likely influenced by multidimensional flow. The instrumented 56 ha watershed lies mostly within a dryland (rainfed) wheat field in semiarid eastern Colorado. Dielectric capacitance sensors were used to infer hourly soil water content for approximately 8 years (minus missing data) at 18 hillslope positions and four or more depths. Based on previous research and a new algorithm, sensor measurements (resonant frequency) were rescaled to estimate soil permittivity, then corrected for temperature effects on bulk electrical conductivity before inferring soil water content. Using a mass-conservation method, we analyzed multitemporal changes in soil water content at each sensor to infer the dynamics of water flux at different depths and landscape positions. At summit positions vertical processes appear to control profile soil water dynamics. At downslope positions infrequent overland flow and unsaturated subsurface lateral flow appear to influence soil water dynamics. Crop water use accounts for much of the variability in soil water between transects that are either cropped or fallow in alternating years, while soil hydraulic properties and near-surface hydrology affect soil water variability across landscape positions within each management zone. The observed spatiotemporal patterns exhibit the joint effects of short-term hydrology and long-term soil development. Quantitative methods of analyzing soil water patterns in space and time improve our understanding of dominant soil hydrological processes and provide alternative measures of model performance.

  3. Impact of the layout of the ITER Radial Neutron Camera in-port system on the measurement of the neutron emissivity profile

    International Nuclear Information System (INIS)

    Marocco, D.; Moro, F.; Esposito, B.; Brolatti, G.; Villari, R.; Salasca, S.; Cantone, B.

    2013-01-01

    Highlights: ► MCNP ITER model ‘Alite-4′ has been updated with the new Port Plug structure (three vertical drawers). ► Two different layouts for the Radial Neutron Camera (RNC) in-vessel system have been considered. ► The impact of both layouts on the RNC diagnostic performance has been assessed. ► The analysis provides useful information for a proper integration of the RNC in the EPP1. -- Abstract: The Radial Neutron Camera (RNC), located in the ITER Equatorial Port Plug 1 (EPP1), is designed to provide the neutron emissivity profile through the measurement of the neutron flux along several collimated channels. The present design of the RNC is based on collimating structures: an ex-port system viewing the plasma core and an in-port system composed by two detector cassettes viewing the upper and lower plasma edges. A design of the EPP1 in which the diagnostics are installed in three completely independent vertical drawers is under study. In this frame, space optimization and integration issues suggest two possible solutions for the layout of the in-port RNC cassettes: the first one in which both cassettes are located in a side drawer; the second one in which the two cassettes lie in the central drawer, on opposite sides of the ex-port RNC cut-out. This paper describes the work performed to assess the impact of the two different in-port system layouts on the capability of the RNC to measure the neutron emissivity profile by means of MCNP and diagnostic performance calculations. The results of the analysis provide guidelines for the integration of the RNC into the EPP1 showing that the proximity of the in-port cassettes to the ex-port cut-out strongly increases the amount of uncollimated and scattered neutrons at the detector positions, thus reducing the diagnostic measurement capability

  4. Whole-body profile scanner for in vivo quantitative activity measurement

    International Nuclear Information System (INIS)

    Bergmann, H.

    1978-01-01

    A whole-body profile scanner has been developed by fitting parallel slit collimators to a shadow shield whole-body counter. Sensitivity, uniformity and resolution measurements were performed using a number of different counting conditions. It is shown that improved accuracy of activity measurements is obtained by using a wide window counting technique for low and medium energy gamma emitters (99m Tc, 131 I), whereas a photopeak window should be used for high energy gamma emitters (47 Ca). Due to the finite spatial resolution of the system a systematic error in evaluating regional activities from the counting rate profile occurs which is characterized by a spatial spillover factor. The spatial spillover factor is measured and is subsequently used to calculate the error on basis of a simple model. It is shown that only small errors are caused by spatial spillover when the length of a region is at least three times the full width half maximum of the point spread function. Applying the above mentioned simple rules it is concluded that profile scanning is a sensitive and accurate technique for activity measurements in vivo. Two examples of clinical applications (measurement of bone accretion rates of calcium and Tc-pyrophosphate, regional radioiodine retention in patients with thyroid carcinoma) and a review of the papers on profile scanning demonstrate the types of investigations in which profile scanning is superior to alternative techniques. (author)

  5. Evolution of Metallic Trace Elements in Contaminated River Sediments: Geochemical Variation Along River Linear and Vertical Profile

    Science.gov (United States)

    Kanbar, Hussein; Montarges-Pelletier, Emmanuelle; Mansuy-Huault, Laurence; Losson, Benoit; Manceau, Luc; Bauer, Allan; Bihannic, Isabelle; Gley, Renaud; El Samrani, Antoine; Kobaissi, Ahmad; Kazpard, Veronique; Villieras, Frédéric

    2015-04-01

    Metal pollution in riverine systems poses a serious threat that jeopardizes water and sediment quality, and hence river dwelling biota. Since those metallic pollutants can be transported for long distances via river flow, river management has become a great necessity, especially in times where industrial activities and global climate change are causing metal release and spreading (by flooding events). These changes are able to modify river hydrodynamics, and as a consequence natural physico-chemical status of different aquatic system compartments, which in turn alter metal mobility, availability and speciation. Vertical profiles of sediments hold the archive of what has been deposited for several tenths of years, thus they are used as a tool to study what had been deposited in rivers beds. The studied area lies in the Orne river, northeastern France. This river had been strongly modified physically and affected by steelmaking industrial activities that had boosted in the middle of the last century. This study focuses on several sites along the linear of the Orne river, as well as vertical profiles of sediments. Sediment cores were collected at sites where sedimentation is favoured, and in particular upstream two dams, built in the second half of the XXth century for industrial purposes. Sediment cores were sliced into 2-5cm layers, according to suitability, and analysed for physical and physico-chemical properties, elemental content and mineralogy. Data of the vertical profile in a sediment core is important to show the evolution of sediments as a function of depth, and hence age, in terms of nature, size and constituents. The physical properties include particle size distribution (PSD) and water content. In addition, the physico-chemical properties, such as pH and oxido-reduction potential (ORP) of interstitial water from undisturbed cores were also detected. Total elemental content of sediment and available ones of extracted interstitial waters was detected using

  6. Chloride ingress profiles measured by electron probe micro analysis

    DEFF Research Database (Denmark)

    Jensen, Ole mejlhede; Coats, Alison M.; Glasser, Fred P.

    1996-01-01

    Traditional techniques for measuring chloride ingress profiles do not apply well to high performance cement paste systems; the geometric resolution of the traditional measuring techniques is too low. In this paper measurements by Electron Probe Micro Analysis (EPMA) are presented. EPMA is demonst......Traditional techniques for measuring chloride ingress profiles do not apply well to high performance cement paste systems; the geometric resolution of the traditional measuring techniques is too low. In this paper measurements by Electron Probe Micro Analysis (EPMA) are presented. EPMA...... is demonstated to determine chloride ingress in cement paste on a micrometer scale. Potential chloride ingress routes such as cracks or the paste-aggregate interface may also be characterized by EPMA. Copyright (C) 1996 Elsevier Science Ltd...

  7. Vertical profile of peroxyacetyl nitrate (PAN from MIPAS-STR measurements over Brazil in February 2005 and its contribution to tropical UT NOy partitioning

    Directory of Open Access Journals (Sweden)

    A. Roiger

    2008-08-01

    Full Text Available We report on the retrieval of PAN (CH3C(OOONO2 in the upper tropical troposphere from limb measurements by the remote-sensor MIPAS-STR on board the Russian high altitude research aircraft M55-Geophysica. The measurements were performed close to Araçatuba, Brazil, on 17 February 2005. The retrieval was made in the spectral range 775–820 cm−1 where PAN exhibits its strongest feature but also more than 10 species interfere. Especially trace gases such as CH3CCl3, CFC-113, CFC-11, and CFC-22, emitting also in spectrally broad not-resolved branches, make the processing of PAN prone to errors. Therefore, the selection of appropriate spectral windows, the separate retrieval of several interfering species and the careful handling of the water vapour profile are part of the study presented. The retrieved profile of PAN has a maximum of about 0.14 ppbv at 10 km altitude, slightly larger than the lowest reported values (<0.1 ppbv and much lower than the highest reported in the literature (0.65 ppbv. Besides the NOy constituents measured by MIPAS-STR (HNO3, ClONO2, HO2NO2, PAN, the in situ instruments aboard the Geophysica provide simultaneous measurements of NO, NO2, and the sum NOy. Comparing the sum of in-situ and remotely derived NO+NO2+HNO3+ClONO2+HO2NO2+PAN with total NOy a deficit of 30–40% (0.2–0.3 ppbv in the troposphere remains unexplained whereas the values fit well in the stratosphere.

  8. Crack-induced anisotropy and its effect on vertical seismic profiling

    NARCIS (Netherlands)

    Douma, J.

    1988-01-01

    Media containing aligned rotationally symmetrical inclusions show transverse isotropy with respect to elastic wave propagation. The characteristics of this type of anisotropy have been investigated in the first part of this thesis (chapters 2, 3, and 4) while its implications on Vertical Seismic

  9. Atmospheric profiles from active space-based radio measurements

    Science.gov (United States)

    Hardy, Kenneth R.; Hinson, David P.; Tyler, G. L.; Kursinski, E. R.

    1992-01-01

    The paper describes determinations of atmospheric profiles from space-based radio measurements and the retrieval methodology used, with special attention given to the measurement procedure and the characteristics of the soundings. It is speculated that reliable profiles of the terrestrial atmosphere can be obtained by the occultation technique from the surface to a height of about 60 km. With the full complement of 21 the Global Positioning System (GPS) satellites and one GPS receiver in sun synchronous polar orbit, a maximum of 42 soundings could be obtained for each complete orbit or about 670 per day, providing almost uniform global coverage.

  10. High variability of the subjective visual vertical test of vertical perception, in some people with neck pain - Should this be a standard measure of cervical proprioception?

    Science.gov (United States)

    Treleaven, Julia; Takasaki, Hiroshi

    2015-02-01

    Subjective visual vertical (SVV) assesses visual dependence for spacial orientation, via vertical perception testing. Using the computerized rod-and-frame test (CRFT), SVV is thought to be an important measure of cervical proprioception and might be greater in those with whiplash associated disorder (WAD), but to date research findings are inconsistent. The aim of this study was to investigate the most sensitive SVV error measurement to detect group differences between no neck pain control, idiopathic neck pain (INP) and WAD subjects. Cross sectional study. Neck Disability Index (NDI), Dizziness Handicap Inventory short form (DHIsf) and the average constant error (CE), absolute error (AE), root mean square error (RMSE), and variable error (VE) of the SVV were obtained from 142 subjects (48 asymptomatic, 36 INP, 42 WAD). The INP group had significantly (p pain or dizziness handicap. These findings are inconsistent with other measures of cervical proprioception in neck pain and more research is required before the SVV can be considered an important measure and utilized clinically. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  11. Analysis of conditions favourable for small vertical axis wind turbines between building passages in urban areas of Sweden

    Science.gov (United States)

    Awan, Muhammad Rizwan; Riaz, Fahid; Nabi, Zahid

    2017-05-01

    This paper presents the analysis of installing the vertical axis wind turbines between the building passages on an island in Stockholm, Sweden. Based on the idea of wind speed amplification due to the venture effect in passages, practical measurements were carried out to study the wind profile for a range of passage widths in parallel building passages. Highest increment in wind speed was observed in building passages located on the periphery of sland as wind enters from free field. Wind mapping was performed in the island to choose the most favourable location to install the vertical axis wind turbines (VAWT). Using the annual wind speed data for location and measured amplification factor, energy potential of the street was calculated. This analysis verified that small vertical axis wind turbines can be installed in the passage centre line provided that enough space is provided for traffic and passengers.

  12. Strategy for the detection of vertical movements in historical environments from fast high-precision GPS measurements

    International Nuclear Information System (INIS)

    Pesci, Arianna; Casula, Giuseppe; Teza, Giordano; Bonali, Elena; Boschi, Enzo

    2012-01-01

    A continuous global positioning system station (CGPS) provides accurate coordinate time series, while episodic GPS stations (EGPSs), which operate throughout short measurement sessions, are generally used to improve the monitoring spatial density. In an urban environment, EGPSs are typically equipped with removable mounts (topographical tripod or bipod). In this paper, a method is proposed to evaluate vertical surface motions by means of differential measurements of removable mount EGPSs with respect to a nearby reference CGPS. For each day, the correct position of this CGPS is used as reference for the quick differential EGPS measurements to allow the correction of their positions. The method is applied to evaluate subsidence in the centre of Bologna, which is characterized by significant vertical movements, probably related to seasonal climatic effects, and where these movements differ significantly even among closely spaced locations. (paper)

  13. Vortex shedding induced by a solitary wave propagating over a submerged vertical plate

    International Nuclear Information System (INIS)

    Lin Chang; Ho, T.-C.; Chang, S.-C.; Hsieh, S.-C.; Chang, K.-A.

    2005-01-01

    Experimental study was conducted on the vortex shedding process induced by the interaction between a solitary wave and a submerged vertical plate. Particle image velocimetry (PIV) was used for quantitative velocity measurement while a particle tracing technique was used for qualitative flow visualization. Vortices are generated at the tip of each side of the plate. The largest vortices at each side of the plate eventually grow to the size of the water depth. Although the fluid motion under the solitary wave is only translatory, vortices are shed in both the upstream and downstream directions due to the interaction of the generated vortices as well as the vortices with the plate and the bottom. The process can be divided into four phases: the formation of a separated shear layer, the generation and shedding of vortices, the formation of a vertical jet, and the impingement of the jet onto the free surface. Similarity velocity profiles were found both in the separated shear layer and in the vertical jet

  14. AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2

    Directory of Open Access Journals (Sweden)

    O. Membrive

    2017-06-01

    good agreement is found in terms of vertical structure, the comparison between the various AirCores yields a large and variable bias (up to almost 3 ppm in some parts of the profiles. The reasons of this bias, possibly related to the drying agent used to dry the air, are still being investigated. Finally, the uncertainties associated with the measurements are assessed, yielding an average uncertainty below 3 ppb for CH4 and 0.25 ppm for CO2 with the major source of uncertainty coming from the potential loss of air sample on the ground and the choice of the starting and ending point of the collected air sample inside the tube. In an ideal case where the sample would be fully retained, it would be possible to know precisely the pressure at which air was sampled last and thus to improve the overall uncertainty to about 0.1 ppm for CO2 and 2 ppb for CH4.

  15. Remote sensing of water vapour profiles in the framework of the Total Carbon Column Observing Network (TCCON

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2010-12-01

    Full Text Available We show that the near infrared solar absorption spectra recorded in the framework of the Total Carbon Column Observing Network (TCCON can be used to derive the vertical distribution of tropospheric water vapour. The resolution of the TCCON spectra of 0.02 cm−1 is sufficient for retrieving lower and middle/upper tropospheric water vapour concentrations with a vertical resolution of about 3 and 8 km, respectively. We document the good quality of the remotely-sensed profiles by comparisons with coincident in-situ Vaisala RS92 radiosonde measurements. Due to the high measurement frequency, the TCCON water vapour profile data offer novel opportunities for estimating the water vapour variability at different timescales and altitudes.

  16. LBA-ECO CD-10 H2O Profiles at km 67 Tower Site, Tapajos National Forest

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains a single text file which reports vertical profiles of H2O vapor concentrations measured at the Para Western (Santarem) - km 67,...

  17. Vertical distribution of Saharan dust over Rome (Italy): Comparison between 3-year model predictions and lidar soundings

    Science.gov (United States)

    Kishcha, P.; Barnaba, F.; Gobbi, G. P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.

    2005-03-01

    Mineral dust particles loaded into the atmosphere from the Sahara desert represent one major factor affecting the Earth's radiative budget. Regular model-based forecasts of 3-D dust fields can be used in order to determine the dust radiative effect in climate models, in spite of the large gaps in observations of dust vertical profiles. In this study, dust forecasts by the Tel Aviv University (TAU) dust prediction system were compared to lidar observations to better evaluate the model's capabilities. The TAU dust model was initially developed at the University of Athens and later modified at Tel Aviv University. Dust forecasts are initialized with the aid of the Total Ozone Mapping Spectrometer aerosol index (TOMS AI) measurements. The lidar soundings employed were collected at the outskirts of Rome, Italy (41.84°N, 12.64°E) during the high-dust activity season from March to June of the years 2001, 2002, and 2003. The lidar vertical profiles collected in the presence of dust were used for obtaining statistically significant reference parameters of dust layers over Rome and for model versus lidar comparison. The Barnaba and Gobbi (2001) approach was used in the current study to derive height-resolved dust volumes from lidar measurements of backscatter. Close inspection of the juxtaposed vertical profiles, obtained from lidar and model data near Rome, indicates that the majority (67%) of the cases under investigation can be classified as good or acceptable forecasts of the dust vertical distribution. A more quantitative comparison shows that the model predictions are mainly accurate in the middle part of dust layers. This is supported by high correlation (0.85) between lidar and model data for forecast dust volumes greater than the threshold of 1 × 10-12 cm3/cm3. In general, however, the model tends to underestimate the lidar-derived dust volume profiles. The effect of clouds in the TOMS detection of AI is supposed to be the main factor responsible for this effect

  18. Current profile reconstruction using electron temperature imaging diagnostics

    International Nuclear Information System (INIS)

    Tritz, K.; Stutman, D.; Delgado-Aparicio, L.F.; Finkenthal, M.; Pacella, D.; Kaita, R.; Stratton, B.; Sabbagh, S.

    2004-01-01

    Flux surface shape information can be used to constrain the current profile for reconstruction of the plasma equilibrium. One method of inferring flux surface shape relies on plasma x-ray emission; however, deviations from the flux surfaces due to impurity and density asymmetries complicate the interpretation. Electron isotherm surfaces should correspond well to the plasma flux surfaces, and equilibrium constraint modeling using this isotherm information constrains the current profile. The KFIT code is used to assess the profile uncertainty and to optimize the number, location and SNR required for the Te detectors. As Te imaging detectors we consider tangentially viewing, vertically spaced, linear gas electron multiplier arrays operated in pulse height analysis (PHA) mode and multifoil soft x-ray arrays. Isoflux coordinate sets provided by T e measurements offer a strong constraint on the equilibrium reconstruction in both a stacked horizontal array configuration and a crossed horizontal and vertical beam system, with q 0 determined to within ±4%. The required SNR can be provided with either PHA or multicolor diagnostic techniques, though the multicolor system requires ∼x4 better statistics for comparable final errors

  19. Magnetic Measurement System for the NSLS Superconducting Undulator Vertical Test Facility

    CERN Document Server

    Harder, David; Skaritka, John

    2005-01-01

    One of the challenges of small-gap superconducting undulators is measurement of magnetic fields within the cold bore to characterize the device performance and to determine magnetic field errors for correction or shimming, as is done for room-temperature undulators. Both detailed field maps and integrated field measurements are required. This paper describes a 6-element, cryogenic Hall probe field mapper for the NSLS Superconducting Undulator Vertical Test Facility (VTF). The probe is designed to work in an aperture only 3 mm high. A pulsed-wire insert is also being developed, for visualization of the trajectory, for locating steering errors and for determining integrated multi-pole errors. The pulsed-wire insert will be interchangeable with the Hall probe mapper. The VTF and the magnetic measurement systems can accommodate undulators up to 0.4 m in length.

  20. Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations

    Science.gov (United States)

    Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.

    2013-01-01

    [1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.

  1. SELF-DIAGNOSIS METHOD FOR CHECKING THE WAYSIDE SYSTEMS FOR WHEEL-RAIL VERTICAL LOAD MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Daniele CORTIS

    2017-12-01

    Full Text Available Nowadays, wayside measurement systems of wheel-rail contact forces have acquired great relevance for the monitoring of rolling stock, especially for freight trains. Thanks to these solutions, infrastructure managers can check and monitor the status of rolling stock and, when necessary, impose corrective actions for the railway companies. On the other hand, the evaluation of contact forces is part of the rolling stock authorisation process [1] and a mainstone for the study of the running stability. The data provided by these measurements could give useful information to correlate the wear of the track with the frequency of applied loads, helping in the development of a better maintenance strategy of railway networks [2]. In this paper, the monitoring of vertical forces is based on the SMCV (Vertical Loads Monitoring System method, where shear strains of the rail web are measured with a simple combination of four electrical strain gauges, placed on both sides of the rail web along each span. The research has identified self-diagnosis methods for the SMCV system to ensure the reliability and the quality of the measurements and to extend the knowledge of the system. The recorded signals have been processed and converted into easily interpretable physical quantities by means of MATLAB® algorithm.

  2. Tethered balloon-based measurements of meteorological variables and aerosols

    Science.gov (United States)

    Sentell, R. J.; Storey, R. W.; Chang, J. J. C.; Jacobsen, S. J.

    1976-01-01

    Tethered balloon based measurements of the vertical distributions of temperature, humidity, wind speed, and aerosol concentrations were taken over a 4-hour period beginning at sunrise on June 29, 1976, at Wallops Island, Virginia. Twelve consecutive profiles of each variable were obtained from ground to about 500 meters. These measurements were in conjuction with a noise propagation study on remotely arrayed acoustic range (ROMAAR) at Wallops Flight Center. An organized listing of these vertical soundings is presented. The tethered balloon system configuration utilized for these measurements is described.

  3. Inventory and vertical migration of {sup 137}Cs in Spanish mainland soils

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F. [Dept. Nuclear Engineering and Fluid Mechanics, University of the Basque Country, Alda Urquijo, s/n, E-48013 Bilbao (Spain); Romero, L.M. [CIEMAT, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense 22, 28040 Madrid (Spain); Herranz, M. [Dept. Nuclear Engineering and Fluid Mechanics, University of the Basque Country, Alda Urquijo, s/n, E-48013 Bilbao (Spain); Barrera, M. [CIEMAT, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense 22, 28040 Madrid (Spain); Idoeta, R. [Dept. Nuclear Engineering and Fluid Mechanics, University of the Basque Country, Alda Urquijo, s/n, E-48013 Bilbao (Spain); Valino, F. [CIEMAT, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense 22, 28040 Madrid (Spain); Olondo, C., E-mail: kontxi.olondo@ehu.es [Dept. Nuclear Engineering and Fluid Mechanics, University of the Basque Country, Alda Urquijo, s/n, E-48013 Bilbao (Spain); Caro, A. [CIEMAT, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense 22, 28040 Madrid (Spain)

    2011-06-15

    In this study the total activity of {sup 137}Cs deposited per unit area over the Spanish peninsular territory was analysed using a 150 x 150 km{sup 2} mesh grid, with samples taken from 29 points. The deposited activities ranged between 251 and 6074 Bq/m{sup 2}. A linear relationship was obtained between these values and the mean annual rainfall at each sampling point which allowed a map to be drawn, using GIS software, which shows the distribution of total deposited {sup 137}Cs activity across the Spanish mainland. At twelve of these sampling points the vertical migration profile of {sup 137}Cs was obtained. These profiles are separated into two groups with different behaviour, one of which includes clay and loam soils and the other containing sandy soils. For both groups of profiles the parameters of the convective-diffusive model, which describes the vertical migration of {sup 137}Cs in the soil, v (apparent convection velocity) and D (apparent diffusion coefficient) were calculated. - Highlights: > Measured the {sup 137}Cs activity in Spanish mainland, being within a range of [251, 6074] Bq/m{sup 2}, with a mean value of 1726 Bq/m{sup 2}. > Establishment of the {sup 137}Cs background by means of a {sup 137}Cs inventory map showing its distribution in the Spanish mainland. > {sup 137}Cs shows two different behaviour tendencies in soil depending on it. > The parameters which govern the applied model have been obtained for the analysed profiles. > Analysed those parameters, the two tendencies have been reflected in the obtained values.

  4. Fatty acid profile in vertical strata of elephant grass subjected to intermittent stocking

    Directory of Open Access Journals (Sweden)

    KAMILA M. DIAS

    2017-08-01

    Full Text Available ABSTRACT The milk and meat from animals with a pasture-based diet have higher proportions of CLA and C18:3 and lower omega-6:omega-3 ratios than products from animals with diets based on corn silage and concentrate. However, most of the published studies have evaluated fatty acid profiles in temperate climate grasses and the literature with tropical grasses is scarce. Thus, the aim of this study was to evaluate the morphological and fatty acid compositions in the vertical strata of elephant grass (Pennisetum purpureum Schum. swards subjected to grazing heights (90 or 120 cm pre-grazing heights and levels of defoliation (50% or 70% removal of the initial pre-grazing height. There were no interactions among pre-grazing height, the level of defoliation and grazing stratum. However, higher proportion of C18:3 (58% and 63% was found in the 90-cm swards and in the half upper stratum. A higher proportion of C18:3 was associated with a higher leaf proportion and crude protein content. Thus, the upper stratum of sward or a grazing management scheme (e.g. first-last stocking resulting in a higher proportion of leaves and crude protein both provide higher proportions of C18:3 to animals grazing in elephant grass swards.

  5. LBA-ECO CD-10 H2O Profiles at km 67 Tower Site, Tapajos National Forest

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains a single text file which reports vertical profiles of H2O vapor concentrations measured at the Para Western (Santarem) - km 67, Primary Forest...

  6. Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site

    Science.gov (United States)

    Schmid, B.; Arnott, P.; Bucholtz, A.; Colarco, P.; Covert, D.; Eilers, J.; Elleman, R.; Ferrare, R.; Flagan, R.; Jonsson, H.

    2003-01-01

    In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. One of the objectives of the Aerosol Intensive Operational Period (TOP) conducted by ARM in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma was to examine and hopefully reduce these differences. The IOP involved airborne measurements from two airplanes over the heavily instrumented SGP site. We give an overview of airborne results obtained aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The Twin Otter performed 16 research flights over the SGP site. The aircraft carried instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size. This included such novel techniques as the photoacoustic and cavity ring-down methods for in-situ absorption (675 nm) and extinction (675 and 1550 nm) and a new multiwavelength, filter-based absorption photometer (467, 530, 660 nm). A newly developed instrument measured cloud condensation nucleus concentration (CCN) concentrations at two supersaturation levels. Aerosol optical depth and extinction (354-2139 nm) were measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore, up-and downwelling solar (broadband and spectral) and infrared radiation were measured using seven individual radiometers. Three up-looking radiometers werer mounted on a newly developed stabilized platform, keeping the instruments level up to aircraft pitch and roll angles of approximately 10(exp 0). This resulted in unprecedented continuous vertical profiles

  7. The impact of aerosol vertical distribution on aerosol optical depth retrieval using CALIPSO and MODIS data: Case study over dust and smoke regions

    Science.gov (United States)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2017-08-01

    Global quantitative aerosol information has been derived from MODerate Resolution Imaging SpectroRadiometer (MODIS) observations for decades since early 2000 and widely used for air quality and climate change research. However, the operational MODIS Aerosol Optical Depth (AOD) products Collection 6 (C6) can still be biased, because of uncertainty in assumed aerosol optical properties and aerosol vertical distribution. This study investigates the impact of aerosol vertical distribution on the AOD retrieval. We developed a new algorithm by considering dynamic vertical profiles, which is an adaptation of MODIS C6 Dark Target (C6_DT) algorithm over land. The new algorithm makes use of the aerosol vertical profile extracted from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements to generate an accurate top of the atmosphere (TOA) reflectance for the AOD retrieval, where the profile is assumed to be a single layer and represented as a Gaussian function with the mean height as single variable. To test the impact, a comparison was made between MODIS DT and Aerosol Robotic Network (AERONET) AOD, over dust and smoke regions. The results show that the aerosol vertical distribution has a strong impact on the AOD retrieval. The assumed aerosol layers close to the ground can negatively bias the retrievals in C6_DT. Regarding the evaluated smoke and dust layers, the new algorithm can improve the retrieval by reducing the negative biases by 3-5%.

  8. Axisymmetric stability of vertically asymmetric Tokamaks at large beta poloidal

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, K.; Fishman, H.; Okabayashi, M. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Todd, A.M.M. (Grumman Aerospace Corp., Princeton, NJ (USA))

    1983-11-01

    The rigid-mode stability of high-..beta.. vertically asymmetric Tokamak equilibria with quasi-uniform current profile is investigated analytically using toroidicity-shaping double expansion method. It is found that vertical stability at large beta poloidal is mainly determined by a coupling between the shape of the plasma surface and the Shafranov shift of the magnetic axis. To the lowest order, symmetric components of the plasma surface shape are found to be the critical destabilizing elements. Asymmetric components have little effect. The inclusion of higher order terms in the high-..beta.. Tokamak expansion leads to further destabilization. These analytic insights are qualitatively confirmed by numerical stability calculations using the PEST code with parabolic safety-factor profile.

  9. Vertical muon intensity measured with MACRO at the Gran Sasso laboratory

    International Nuclear Information System (INIS)

    Ambrosio, M.; Antolini, R.; Auriemma, G.; Baker, R.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Castellano, M.; Cecchini, S.; Cei, F.; Celio, P.; Chiarella, V.; Corona, A.; Coutu, S.; De Cataldo, G.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; De Vincenzi, M.; Di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Grassi, M.; Grillo, A.; Guarino, F.; Guarnaccia, P.; Gustavino, C.; Habig, A.; Hanson, K.; Hawthorne, A.; Heinz, R.; Hong, J.T.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D.S.; Lipari, P.; Liu, R.; Longley, N.P.; Longo, M.J.; Lu, Y.; Ludlam, G.; Mancarella, G.; Mandrioli, G.; Margiotta-Neri, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M.N.; Michael, D.G.; Mikheyev, S.; Miller, L.; Mittelbrunn, M.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolo, D.; Nolty, R.; Okada, C.; Orth, C.; Osteria, G.; Palamara, O.; Parlati, S.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C.W.; Petrera, S.; Pignatano, N.D.; Pistilli, P.; Popa, V.; Raino, A.; Reynoldson, J.; Ronga, F.; Sanzgiri, A.; Sartogo, F.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra-Lugaresi, P.; Severi, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J.L.; Sulak, L.R.; Surdo, A.; Tarle, G.; Tassoni, F.; Togo, V.; Valente, V.; Walter, C.W.; Webb, R.

    1995-01-01

    The vertical underground muon intensity has been measured in the slant depth range 3200--7000 hg cm -2 (standard rock) with the completed lower part of the MACRO detector at the Gran Sasso laboratory, using a large sample of data. These observations are used to compute the surface muon flux and the primary ''all-nucleon'' spectrum. An analysis of systematic uncertainties introduced by the interaction models in the atmosphere and the underground propagation of muons is presented. A comparison of our results with published data is also presented

  10. Proposta de medição da posição vertical da laringe em repouso Proposal of measurement of vertical larynx position at rest

    Directory of Open Access Journals (Sweden)

    Osiris de Oliveira Camponês do Brasil

    2005-06-01

    Full Text Available OBJETIVO: Esta pesquisa tem como objetivo propor uma forma de medir a posição vertical da laringe (PVL no pescoço, em repouso, de adultos jovens sem queixas vocais. FORMA DE ESTUDO: Estudo de coorte transversal. MATERIAL E MÉTODO: Participaram da pesquisa 68 sujeitos, faixa etária de 18 a 44 anos de idade, sendo 33 do sexo feminino e 35 do sexo masculino. Os pontos de referência utilizados para a pesquisa foram os ângulos da mandíbula direito e esquerdo (AMD e AME, o centro do arco da cartilagem cricóidea (CC e o centro da fúrcula esternal (FE. Para a obtenção das medidas, os sujeitos foram orientados a permanecerem sentados com a cabeça em hiperextensão máxima. Os materiais utilizados foram um compasso e uma régua de 20cm. RESULTADOS: A obtenção das medidas se mostrou ser de fácil realização e não apresentou qualquer tipo de desconforto aos participantes. Houve diferença estatisticamente significante entre os sexos feminino e masculino quanto à posição vertical da laringe, sendo que as mulheres apresentaram a laringe em posição mais alta que os homens. A posição vertical da laringe foi de fácil obtenção e parece ser um parâmetro muito interessante no acompanhamento clínico intra-sujeitos.AIM: The purpose of this research is to propose a procedure to measure the vertical larynx position in the neck at rest in young adults without vocal complaint. STUDY DESIGN: Transversal cohort study. MATERIAL AND METHOD: There were 68 subjects, aged between 18 to 44 years, 33 female and 35 male. The anatomical landmarks used for this research study were the right and left jaw angle (RJA and LJA, the centre of the cricoid arch cartilage (CC and the centre of the sternal furculum (SF. In order to obtain the measures, the subjects were asked to be sitting still with their heads stretched up to the highest possible position. The devices used were a drawing compass and a 20-centimeter ruler. RESULTS: The measurement procedure

  11. Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements

    Science.gov (United States)

    Kramarova, Natalya A.; Bhartia, Pawan K.; Jaross, Glen; Moy, Leslie; Xu, Philippe; Chen, Zhong; DeLand, Matthew; Froidevaux, Lucien; Livesey, Nathaniel; Degenstein, Douglas; Bourassa, Adam; Walker, Kaley A.; Sheese, Patrick

    2018-05-01

    The Limb Profiler (LP) is a part of the Ozone Mapping and Profiler Suite launched on board of the Suomi NPP satellite in October 2011. The LP measures solar radiation scattered from the atmospheric limb in ultraviolet and visible spectral ranges between the surface and 80 km. These measurements of scattered solar radiances allow for the retrieval of ozone profiles from cloud tops up to 55 km. The LP started operational observations in April 2012. In this study we evaluate more than 5.5 years of ozone profile measurements from the OMPS LP processed with the new NASA GSFC version 2.5 retrieval algorithm. We provide a brief description of the key changes that had been implemented in this new algorithm, including a pointing correction, new cloud height detection, explicit aerosol correction and a reduction of the number of wavelengths used in the retrievals. The OMPS LP ozone retrievals have been compared with independent satellite profile measurements obtained from the Aura Microwave Limb Sounder (MLS), Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) and Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS). We document observed biases and seasonal differences and evaluate the stability of the version 2.5 ozone record over 5.5 years. Our analysis indicates that the mean differences between LP and correlative measurements are well within required ±10 % between 18 and 42 km. In the upper stratosphere and lower mesosphere (> 43 km) LP tends to have a negative bias. We find larger biases in the lower stratosphere and upper troposphere, but LP ozone retrievals have significantly improved in version 2.5 compared to version 2 due to the implemented aerosol correction. In the northern high latitudes we observe larger biases between 20 and 32 km due to the remaining thermal sensitivity issue. Our analysis shows that LP ozone retrievals agree well with the correlative satellite observations in characterizing vertical, spatial and temporal

  12. Effective solidity in vertical axis wind turbines

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-11-01

    The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.

  13. Vertical structure of Antarctic tropospheric ozone depletion events: characteristics and broader implications

    Directory of Open Access Journals (Sweden)

    A. E. Jones

    2010-08-01

    Full Text Available The majority of tropospheric ozone depletion event (ODE studies have focussed on time-series measurements, with comparatively few studies of the vertical component. Those that exist have almost exclusively used free-flying balloon-borne ozonesondes and almost all have been conducted in the Arctic. Here we use measurements from two separate Antarctic field experiments to examine the vertical profile of ozone during Antarctic ODEs. We use tethersonde data to probe details in the lowest few hundred meters and find considerable structure in the profiles associated with complex atmospheric layering. The profiles were all measured at wind speeds less than 7 ms−1, and on each occasion the lowest inversion height lay between 10 m and 40 m. We also use data from a free-flying ozonesonde study to select events where ozone depletion was recorded at altitudes >1 km above ground level. Using ERA-40 meteorological charts, we find that on every occasion the high altitude depletion was preceded by an atmospheric low pressure system. An examination of limited published ozonesonde data from other Antarctic stations shows this to be a consistent feature. Given the link between BrO and ODEs, we also examine ground-based and satellite BrO measurements and find a strong association between atmospheric low pressure systems and enhanced BrO that must arise in the troposphere. The results suggest that, in Antarctica, such depressions are responsible for driving high altitude ODEs and for generating the large-scale BrO clouds observed from satellites. In the Arctic, the prevailing meteorology differs from that in Antarctica, but, while a less common effect, major low pressure systems in the Arctic can also generate BrO clouds. Such depressions thus appear to be fundamental when considering the broader influence of ODEs, certainly in Antarctica, such as halogen export and the radiative influence of ozone-depleted air masses.

  14. Utilizing the Vertical Variability of Precipitation to Improve Radar QPE

    Science.gov (United States)

    Gatlin, Patrick N.; Petersen, Walter A.

    2016-01-01

    Characteristics of the melting layer and raindrop size distribution can be exploited to further improve radar quantitative precipitation estimation (QPE). Using dual-polarimetric radar and disdrometers, we found that the characteristic size of raindrops reaching the ground in stratiform precipitation often varies linearly with the depth of the melting layer. As a result, a radar rainfall estimator was formulated using D(sub m) that can be employed by polarimetric as well as dual-frequency radars (e.g., space-based radars such as the GPM DPR), to lower the bias and uncertainty of conventional single radar parameter rainfall estimates by as much as 20%. Polarimetric radar also suffers from issues associated with sampling the vertical distribution of precipitation. Hence, we characterized the vertical profile of polarimetric parameters (VP3)-a radar manifestation of the evolving size and shape of hydrometeors as they fall to the ground-on dual-polarimetric rainfall estimation. The VP3 revealed that the profile of ZDR in stratiform rainfall can bias dual-polarimetric rainfall estimators by as much as 50%, even after correction for the vertical profile of reflectivity (VPR). The VP3 correction technique that we developed can improve operational dual-polarimetric rainfall estimates by 13% beyond that offered by a VPR correction alone.

  15. NOAA JPSS Ozone Mapping and Profiler Suite (OMPS) Nadir Profile Science Sensor Data Record (SDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ozone Mapping and Profiler Suite (OMPS) onboard the Suomi-NPP satellite monitors ozone from space. OMPS will collect total column and vertical profile ozone data...

  16. Full area covered 3D profile measurement of special-shaped optics based on a new prototype non-contact profiler.

    Science.gov (United States)

    Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu

    2017-06-01

    A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.

  17. A comparison between using distance sensors for measuring the pantograph vertically movement

    Science.gov (United States)

    Rob, R.; Panoiu, C.; Rusu-Anghel, S.; Panoiu, M.

    2018-01-01

    In railway transportation the most important problem to solve consists in assuring the safety traffic of people and freight. In this scope some of the geometrical parameters regarding the contact line must be measured. One of this parameter is the pantograph vertically movement, so it must use distance sensors. Present paper studies the performance of two kinds of distance sensors, an ultrasonic distance sensor and an infrared sensor. The performances are studied from the point of view of error distance measurement and the possibility of using a real time acquisition system. The researches were made on a laboratory model for the pantograph realized at the scale 1:2.

  18. Errors in Viking Lander Atmospheric Profiles Discovered Using MOLA Topography

    Science.gov (United States)

    Withers, Paul; Lorenz, R. D.; Neumann, G. A.

    2002-01-01

    Each Viking lander measured a topographic profile during entry. Comparing to MOLA (Mars Orbiter Laser Altimeter), we find a vertical error of 1-2 km in the Viking trajectory. This introduces a systematic error of 10-20% in the Viking densities and pressures at a given altitude. Additional information is contained in the original extended abstract.

  19. Application of a novel prenatal vertical cranial biometric measurement can improve accuracy of microcephaly diagnosis in utero.

    Science.gov (United States)

    Leibovitz, Z; Shiran, C; Haratz, K; Tamarkin, M; Gindes, L; Schreiber, L; Malinger, G; Ben-Sira, L; Lev, D; Shapiro, I; Bakry, H; Weizman, B; Zreik, A; Kidron, D; Egenburg, S; Arad, A; Lerman-Sagie, T

    2016-05-01

    To construct a reference range for a new vertical measurement of the fetal head and to assess whether its combination with fetal head circumference (HC) can prevent the misdiagnosis of microcephaly in fetuses with an acrocephalic-like head deformation. A new vertical cranial biometric measurement was defined: the foramen magnum-to-cranium distance (FCD), measured between the foramen magnum and the upper inner cranial border along the posterior wall of the brainstem. The measurement was performed in a precise mid-sagittal plane using a three-dimensional multiplanar display of a sagittally acquired sonographic volume of the fetal head. The normal reference range was developed by measuring 396 healthy fetuses of low-risk singleton pregnancies between 15 and 40 gestational weeks. This reference was applied to 25 fetuses with microcephaly diagnosed prenatally (Fmic) based on HC ≥ 3 SD below the mean for gestational age. We determined an optimal FCD cut-off for combination with HC to detect all cases found with microcephaly at birth (micB), while excluding the fetuses with normal head circumference at birth (NHCB), who were described postnatally as having an acrocephalic-like cranial deformation. In the healthy singleton fetuses, FCD increased with gestational age, with a quadratic equation providing an optimal fit to the data (adjusted R(2) = 0.934). The measurement could be assessed in 95.2% of cases. Of the 25 cases diagnosed with Fmic prenatally, on the basis of HC alone, 14 were micB and 11 were NHCB. We observed FCD below the mean - 2SD for gestational age in all 14 micB cases, but in only four of the 11 NHCB cases (P biometric assessment in the mid-sagittal plane is feasible and correlates well with gestational age. In our series, a vertical cranial deformation was a frequent cause of a false Fmic diagnosis made on the basis of HC alone. Combination of the new vertical cranial biometric measurement with HC measurement can exclude these cases and thus improve

  20. Slug Flow Analysis in Vertical Large Diameter Pipes

    Science.gov (United States)

    Roullier, David

    The existence of slug flow in vertical co-current two-phase flow is studied experimentally and theoretically. The existence of slug flow in vertical direction implies the presence of Taylor bubbles separated by hydraulically sealed liquid slugs. Previous experimental studies such as Ombere-Ayari and Azzopardi (2007) showed the evidence of the non-existence of Taylor bubbles for extensive experimental conditions. Models developed to predict experimental behavior [Kocamustafaogullari et al. (1984), Jayanti and Hewitt. (1990) and Kjoolas et al. (2017)] suggest that Taylor bubbles may disappear at large diameters and high velocities. A 73-ft tall and 101.6-mm internal diameter test facility was used to conduct the experiments allowing holdup and pressure drop measurements at large L/D. Superficial liquid and gas velocities varied from 0.05-m/s to 0.2 m/s and 0.07 m/s to 7.5 m/s, respectively. Test section pressure varied from 38 psia to 84 psia. Gas compressibility effect was greatly reduced at 84 psia. The experimental program allowed to observe the flow patterns for flowing conditions near critical conditions predicted by previous models (air-water, 1016 mm ID, low mixture velocities). Flow patterns were observed in detail using wire-mesh sensor measurements. Slug-flow was observed for a narrow range of experimental conditions at low velocities. Churn-slug and churn-annular flows were observed for most of the experimental data-points. Cap-bubble flow was observed instead of bubbly flow at low vSg. Wire-mesh measurements showed that the liquid has a tendency to remain near to the walls. The standard deviation of radial holdup profile correlates to the flow pattern observed. For churn-slug flow, the profile is convex with a single maximum near the pipe center while it exhibits a concave shape with two symmetric maxima close to the wall for churn-annular flow. The translational velocity was measured by two consecutive wire-mesh sensor crosscorrelation. The results show

  1. Validation of six years of SCIAMACHY carbon monoxide observations using MOZAIC CO profile measurements

    Directory of Open Access Journals (Sweden)

    A. T. J. de Laat

    2012-09-01

    Full Text Available This paper presents a validation study of SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY carbon monoxide (CO total column measurements from the Iterative Maximum Likelihood Method (IMLM algorithm using vertically integrated profile aircraft measurements obtained within the MOZAIC project for the six year time period of 2003–2008.

    Overall we find a good agreement between SCIAMACHY and airborne measurements for both mean values – also on a year-to-year basis – as well as seasonal variations. Several locations show large biases that are attributed to local effects like orography and proximity of large emission sources. Differences were detected for individual years: 2003, 2004 and 2006 have larger biases than 2005, 2007 and 2008, which appear to be related to SCIAMACHY instrumental issues but require more research. Results from this study are consistent with, and complementary to, findings from a previous validation study using ground-based measurements (de Laat et al., 2010b. According to this study, the SCIAMACHY data, if individual measurements are of sufficient quality – good signal-to-noise, can be used to determine the spatial distribution and seasonal cycles of CO total columns over clean areas. Biases found over areas with strong emissions (Africa, China could be explained by low sensitivity of the instrument in the boundary layer and users are recommended to avoid using the SCIAMACHY data while trying to quantify CO burden and/or retrieve CO emissions in such areas.

  2. Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurements

    OpenAIRE

    Rozanov, A.; Weigel, K.; Bovensmann, H.; Dhomse, S.; Eichmann, K.-U.; Kivi, R.; Rozanov, V.; Vömel, H.; Weber, M.; Burrows, J. P.

    2011-01-01

    This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS) altitude range from space-borne observations of the scattered solar light made in limb viewing geometry. First results using measurements from SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY) aboard ENVISAT (Environmental Satellite) are presented here. In previous publications, the retrieval of water vapor vertical ...

  3. New dynamic NNORSY ozone profile climatology

    Science.gov (United States)

    Kaifel, A. K.; Felder, M.; Declercq, C.; Lambert, J.-C.

    2012-01-01

    Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology. The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY) widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors) and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile). The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes) and satellite based (SAGE II, HALOE, and POAM-III) measurements over the years 1995-2007. In total, four different combinations (modes) for input parameters (date, geolocation, total ozone column and temperature profile) are available. The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS) for individual and time series comparisons as well as for analysing the vertical and meridian structure of different modes of

  4. Wire Scanner Beam Profile Measurements for the LANSCE Facility

    International Nuclear Information System (INIS)

    Gilpatrick, John D.; Gruchalla, Michael E.; Martinez, Derwin; Pillai, Chandra; Rodriguez Esparza, Sergio; Sedillo, James Daniel; Smith, Brian G.

    2012-01-01

    The Los Alamos Neutron Science Center (LANSCE) is replacing beam profile measurement systems, commonly known as Wire Scanners (WS). Using the principal of secondary electron emission, the WS measurement system moves a wire or fiber across an impinging particle beam, sampling a projected transverse-beam distribution. Because existing WS actuators and electronic components are either no longer manufactured or home-built with antiquated parts, a new WS beam profile measurement is being designed, fabricated, and tested. The goals for these new WS's include using off-the-shelf components while eliminating antiquated components, providing quick operation while allowing for easy maintainability, and tolerating external radioactivation. The WS measurement system consists of beam line actuators, a cable plant, an electronics processor chassis, and software located both in the electronics chassis (National Instruments LabVIEW) and in the Central Control Room (EPICS-based client software). This WS measurement system will measure Hand H + LANSCE-facility beams and will also measure less common beams. This paper describes these WS measurement systems.

  5. Numerical calculation of 'actual' radial profile of ion temperature from 'measured' energy spectra of charge-exchanged neutrals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo; Itoh, Satoshi

    1984-10-01

    The energy spectra of charge-exchanged neutrals are observed in the TRIAM-1 tokamak by vertical scanning of the neutral energy analyzer. The ''apparent'' ion temperature obtained directly from the energy spectrum observed in the peripheral region is much higher than that predicted by neoclassical transport theory. The ''actual'' ion temperature profile is derived numerically from the energy spectra observed at various positions taking into account the wall-reflection effect of neutrals and the impermeability of the plasma. As a result, the ''actual'' ion temperature profile is found to agree well with that predicted by neoclassical transport theory.

  6. Numerical calculation of 'actual' radial profile of ion temperature from 'measured' energy spectra of charge-exchanged neutrals

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo; Itoh, Satoshi

    1984-01-01

    The energy spectra of charge-exchanged neutrals are observed in the TRIAM-1 tokamak by vertical scanning of the neutral energy analyzer. The ''apparent'' ion temperature obtained directly from the energy spectrum observed in the peripheral region is much higher than that predicted by neoclassical transport theory. The ''actual'' ion temperature profile is derived numerically from the energy spectra observed at various positions taking into account the wall-reflection effect of neutrals and the impermeability of the plasma. As a result, the ''actual'' ion temperature profile is found to agree well with that predicted by neoclassical transport theory. (author)

  7. Measuring the vertical electrical field above an oceanic convection system using a meteorological sounding balloon

    Science.gov (United States)

    Chen, A. B.; Chiu, C.; Lai, S.; Chen, C.; Kuo, C.; Su, H.; Hsu, R.

    2012-12-01

    The vertical electric field above thundercloud plays an important role in the generation and modeling of transient luminous events. For example, Pasko [1995] proposed that the high quasi-static E-field following the positive cloud-to-ground lightning could accelerate and input energy to ambient electrons; as they collide and excite nitrogen and oxygen molecules in upper atmosphere, sprites may be induced. A series of balloon experiments led by Holzworth have investigated the temporal and spatial fluctuations of the electric field and conductivity in the upper atmosphere at different sites [Holzworth 2005, and references in]. But the strength and variation of the vertical electric field above thundercloud, especially oceanic ones, are not well documented so far. A lightweight, low-cost measurement system including an electric field meter and the associated aviation electronics are developed to carry out the in-situ measurement of the vertical electric field and the inter-cloud charge distribution. Our measuring system was first deployed using a meteorological sounding balloon from Taitung, Taiwan in May 2012. The measured electric field below 3km height shows an exponential decay and it is consistent with the expected potential gradient variation between ionosphere and the Earth surface. But the background strength of the measured E-field grows up exponentially and a violent fluctuations is also observed when the balloon flew over a developing oceanic convection cell. The preliminary results from this flight will be reported and discussed. This low-cost electric field meter is developed within one year. In the coming months, more flights will be performed with the aim to measure the rapid variation of the electric field above thundercloud as well as the E-field that may induce transient luminous events. Our ground campaigns show that the occurrence rates of blue and gigantic jet are relatively high in the vicinity of Taiwan. Our experiment can be used to diagnose

  8. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements

    Science.gov (United States)

    Schaub, D.; Boersma, K. F.; Kaiser, J. W.; Weiss, A. K.; Folini, D.; Eskes, H. J.; Buchmann, B.

    2006-08-01

    Nitrogen dioxide (NO2) vertical tropospheric column densities (VTCs) retrieved from the Global Ozone Monitoring Experiment (GOME) are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute) and BIRA/IASB (Belgian Institute for Space Aeronomy) with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK) of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration) and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively). The mean relative difference (with respect to the ground-based columns) is -7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a priori and

  9. DISCOVER-AQ: an innovative approach to study the vertical distribution of air quality constituents in the Earth's atmosphere

    Science.gov (United States)

    Wisthaler, Armin; Crawford, James H.; Müller, Markus; Mikoviny, Tomas; Cady-Pereira, Karen E.

    2014-05-01

    DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) is a multi-year NASA research project to improve remote sensing of air quality from space. Satellite-based measurements of air pollutants typically provide information integrated over the total atmospheric column while it is the lowermost part of the atmosphere that is of interest from a public health perspective. DISCOVER-AQ has implemented a new field observation strategy to collect a comprehensive dataset on the vertical distribution of air pollutants in the atmosphere. In situ measurements from the NASA P-3B Airborne Science Laboratory generate profile information of air quality constituents over a set of selected ground monitoring sites. Ground and profile information is tied to column information collected by active and passive remote sensors looking downward from a second King Air aircraft flying higher in the atmosphere above the P-3B. Vertical profiles of air pollutants are measured repetitively during different times of the day and under different meteorological conditions occurring in the timeframe of 1-month field campaigns. Targeted regions in the U.S. affected by poor air quality include the Washington/Baltimore metropolitan area (June/July 2011), the San Joaquin Valley in California (January/February 2013), the Houston metropolitan area (September 2013) and the Northern Front Range area in Colorado (June/July 2014). Herein, we will present the DISCOVER-AQ project to the European community and show preliminary analyses of the obtained data. The latter will focus on non-methane hydrocarbons and ammonia, being the species measured by our newly developed airborne PTR-ToF-MS instrument (see session AS4.17). In situ ammonia data collected over the San Joaquin Valley are in promising agreement with satellite data obtained from the Tropospheric Emission Spectrometer (TES). Web site: http://discover-aq.larc.nasa.gov/ Funding

  10. Transmission of vertical soil stress under agricultural tyres

    DEFF Research Database (Denmark)

    Keller, Thomas; Berli, M.; Ruiz, S.

    2014-01-01

    and simulate soil stress under defined loads. Stress in the soil profile at 0.3, 0.5 and 0.7 m depth was measured during wheeling at a water content close to field capacity on five soils (13–66% clay). Stress transmission was then simulated with a semi-analytical model, using vertical stress at 0.1 m depth......The transmission of stress induced by agricultural machinery within an agricultural soil is typically modelled on the basis of the theory of stress transmission in elastic media, usually in the semi-empirical form that includes the “concentration factor” (v). The aim of this paper was to measure...... estimated from tyre characteristics as the upper boundary condition, and v was obtained at minimum deviation between measurements and simulations. For the five soils, we obtained an average v of 3.5 (for stress transmitting from 0.1 to 0.7 m depth). This was only slightly different from v = 3 for which...

  11. Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement

    Science.gov (United States)

    Arubi, Tesi I. M.; Yeung, Hoi

    2012-03-01

    The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.

  12. Electron density profile measurements by microwave reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Paume, M.; Chareau, J.M.

    1995-01-01

    A proposal is presented developing reflectometry diagnostic for electron density profile measurements as routine diagnostic without manual intervention as achieved at JET. Since density fluctuations seriously perturb the reflected signal and the measurement of the group delay, a method is described to overcome the irrelevant results with the help of an adaptive filtering technique. Accurate profiles are estimated for about 70% of the shots. (author) 3 refs.; 6 figs

  13. Vertical specialization and industrial upgrading: a preliminary note

    OpenAIRE

    Xiao Jiang; William Milberg

    2012-01-01

    Abstract Vertical specialization is a measure of the import content of exports. Given the widely recognized importance of trade in tasks and global production networks, vertical specialization has recently gained the attention of international trade researchers and policy makers. In this note, we use measured changes in the within-country pattern of vertical specialization to gauge the relevance of task trade for industrial upgrading and economic development. We first calculate vertical speci...

  14. A simple way of characterizing X-ray downwards-deflecting mirror-bender assemblies using the long trace profiler

    International Nuclear Information System (INIS)

    Assoufid, L.; Her, P.

    1999-01-01

    A simple device composed of a modular double-pentaprism system that enables the long trace profiler (LTP) to measure mirrors in nonconventional ways, i.e., in the vertical-downward and sideways positions, has been devised and implemented in the Advanced Photon Source (APS) long trace profiler (LTP II). The systems is very useful in calibrating mirror-bender assemblies. This paper describes the system and gives results of measurements performed with it on a mirror used at the APS

  15. What Controls the Vertical Distribution of Aerosol? Relationships Between Process Sensitivity in HadGEM3-UKCA and Inter-Model Variation from AeroCom Phase II

    Science.gov (United States)

    Kipling, Zak; Stier, Philip; Johnson, Colin E.; Mann, Graham W.; Bellouin, Nicolas; Bauer, Susanne E.; Bergman, Tommi; Chin, Mian; Diehl, Thomas; Ghan, Steven J.; hide

    2016-01-01

    The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3-UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3-UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN >3 nm), while the profiles of larger particles (e.g. CN>100 nm) are controlled by the

  16. High quality-factor quartz tuning fork glass probe used in tapping mode atomic force microscopy for surface profile measurement

    Science.gov (United States)

    Chen, Yuan-Liu; Xu, Yanhao; Shimizu, Yuki; Matsukuma, Hiraku; Gao, Wei

    2018-06-01

    This paper presents a high quality-factor (Q-factor) quartz tuning fork (QTF) with a glass probe attached, used in frequency modulation tapping mode atomic force microscopy (AFM) for the surface profile metrology of micro and nanostructures. Unlike conventionally used QTFs, which have tungsten or platinum probes for tapping mode AFM, and suffer from a low Q-factor influenced by the relatively large mass of the probe, the glass probe, which has a lower density, increases the Q-factor of the QTF probe unit allowing it to obtain better measurement sensitivity. In addition, the process of attaching the probe to the QTF with epoxy resin, which is necessary for tapping mode AFM, is also optimized to further improve the Q-factor of the QTF glass probe. The Q-factor of the optimized QTF glass probe unit is demonstrated to be very close to that of a bare QTF without a probe attached. To verify the effectiveness and the advantages of the optimized QTF glass probe unit, the probe unit is integrated into a home-built tapping mode AFM for conducting surface profile measurements of micro and nanostructures. A blazed grating with fine tool marks of 100 nm, a microprism sheet with a vertical amplitude of 25 µm and a Fresnel lens with a steep slope of 90 degrees are used as measurement specimens. From the measurement results, it is demonstrated that the optimized QTF glass probe unit can achieve higher sensitivity as well as better stability than conventional probes in the measurement of micro and nanostructures.

  17. The JET neutron emission profile monitor

    International Nuclear Information System (INIS)

    Adams, J.M.; Syme, D.B.; Watkins, N.; Jarvis, O.N.; Sadler, G.J.

    1993-01-01

    This paper provides a technical description of the neutron emission profile monitor as used routinely at the Joint European Torus (JET), and includes representative examples of its operational capabilities. The primary function of this instrument is to measure the neutron emission as a function of both position and time in a poloidal (vertical along major radius) section through the torus. For the first time the spatially localised effects of sawteeth (magnetic relaxation phenomena) have been observed using a neutron diagnostic. The total (global) neutron emission can be obtained from the profile monitor data by performing a volume integral over the plasma; the absolute neutron emission rates agree with those obtained from the JET time-resolved neutron monitor to within ±15%. This was the first such instrument routinely in use on any tokamak. It provides unique data which are independent of all other diagnostic measurements. (orig.)

  18. Some measurement possibilities for the improvement of IRI

    International Nuclear Information System (INIS)

    Serafimov, K.B.

    1984-01-01

    Some methodological assumptions behind the development of improved measurements for use in the International Reference Ionosphere (IRI) are presented. Attention is given to improving the IRI-representation of electron density in the D-region by comparing data from vertical rocket soundings and absorption measurements on multifrequencies ionosondes; by the application of absorption measurements for the specification of density profile structure; and by the use of combined rocket and ground-based measurements. The methodological possibilities, for improving the IRI-distribution of electron densities in the bottomside and topside ionosphere, and for the specification of Te(h) profiles are also discussed

  19. Impact of instrumental response on observed ozonesonde profiles: First-order estimates and implications for measures of variability

    Science.gov (United States)

    Clifton, G. T.; Merrill, J. T.; Johnson, B. J.; Oltmans, S. J.

    2009-12-01

    Ozonesondes provide information on the ozone distribution up to the middle stratosphere. Ozone profiles often feature layers, with vertically discrete maxima and minima in the mixing ratio. Layers are especially common in the UT/LS regions and originate from wave breaking, shearing and other transport processes. ECC sondes, however, have a moderate response time to significant changes in ozone. A sonde can ascend over 350 meters before it responds fully to a step change in ozone. This results in an overestimate of the altitude assigned to layers and an underestimate of the underlying variability in the amount of ozone. An estimate of the response time is made for each instrument during the preparation for flight, but the profile data are typically not processed to account for the response. Here we present a method of categorizing the response time of ECC instruments and an analysis of a low-pass filter approximation to the effects on profile data. Exponential functions were fit to the step-up and step-down responses using laboratory data. The resulting response time estimates were consistent with results from standard procedures, with the up-step response time exceeding the down-step value somewhat. A single-pole Butterworth filter that approximates the instrumental effect was used with synthetic layered profiles to make first-order estimates of the impact of the finite response time. Using a layer analysis program previously applied to observed profiles we find that instrumental effects can attenuate ozone variability by 20-45% in individual layers, but that the vertical offset in layer altitudes is moderate, up to about 150 meters. We will present results obtained using this approach, coupled with data on the distribution of layer characteristics found using the layer analysis procedure on profiles from Narragansett, Rhode Island and other US sites to quantify the impact on overall variability estimates given ambient distributions of layer occurrence, thickness

  20. Neutral Probe Beam q-profile measurements in PDX and PBX-M

    International Nuclear Information System (INIS)

    Kugel, H.W.; Gammel, G.M.; Kaita, R.; Reusch, M.F.; Roberts, D.W.

    1988-06-01

    Using the Fast Ion Diagnostic Experiment (FIDE) technique, a Neutral Probe Beam (NPB) can be aimed to inject tangentially to a magnetic surface. The resultant ion orbit shifts, due to conservation of canonical toroidal angular momentum, can be measured with a multi-sightline charge-exchange analyzer to yield direct measurements of radial magnetic flux profiles, current density profiles, the radial position of the magnetic axis, flux surface inner and outer edges, q-profiles, and central-q time dependencies. An extensive error analysis was performed on previous PDX q-measurements in circular plasmas and the resulting estimated contributions of various systematic effects are discussed. Preliminary results of fast ion orbit shift measurements at early times in indented PBX-M plasmas are given. Methods for increasing the absolute experimental precision of similar measurements in progress on PBX-M are discussed. 4 refs., 3 figs

  1. A novel non-contact profiler design for measuring synchrotron radiation mirrors

    International Nuclear Information System (INIS)

    Lin, Yao; Takacs, P.Z.; Furenlid, K.; DeBiasse, R.A.; Wang, Run-Wen

    1990-08-01

    A novel optical profiler is described in this paper for measurement of surface profiles of synchrotron radiation (SR) mirrors. The measurement is based on a combination of an optical heterodyne technique and a precise phase measurement procedure without a reference surface. A Zeeman two-frequency He-Ne laser is employed as the light source. The common-path optical system, which uses a birefringent lens as the beam splitter, minimizes the effects of air turbulence, sample vibration and temperature variation. A special autofocus system allows the profiler to measure the roughness and shape of a sample surface. The optical system is mounted on a large linear air-bearing slide, and is capable of scanning over distances covering the spatial period range from several microns to nearly one meter with a high measurement accuracy. 9 refs., 5 figs

  2. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    Science.gov (United States)

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  3. Binary similarity measures for fingerprint analysis of qualitative metabolomic profiles.

    Science.gov (United States)

    Rácz, Anita; Andrić, Filip; Bajusz, Dávid; Héberger, Károly

    2018-01-01

    Contemporary metabolomic fingerprinting is based on multiple spectrometric and chromatographic signals, used either alone or combined with structural and chemical information of metabolic markers at the qualitative and semiquantitative level. However, signal shifting, convolution, and matrix effects may compromise metabolomic patterns. Recent increase in the use of qualitative metabolomic data, described by the presence (1) or absence (0) of particular metabolites, demonstrates great potential in the field of metabolomic profiling and fingerprint analysis. The aim of this study is a comprehensive evaluation of binary similarity measures for the elucidation of patterns among samples of different botanical origin and various metabolomic profiles. Nine qualitative metabolomic data sets covering a wide range of natural products and metabolomic profiles were applied to assess 44 binary similarity measures for the fingerprinting of plant extracts and natural products. The measures were analyzed by the novel sum of ranking differences method (SRD), searching for the most promising candidates. Baroni-Urbani-Buser (BUB) and Hawkins-Dotson (HD) similarity coefficients were selected as the best measures by SRD and analysis of variance (ANOVA), while Dice (Di1), Yule, Russel-Rao, and Consonni-Todeschini 3 ranked the worst. ANOVA revealed that concordantly and intermediately symmetric similarity coefficients are better candidates for metabolomic fingerprinting than the asymmetric and correlation based ones. The fingerprint analysis based on the BUB and HD coefficients and qualitative metabolomic data performed equally well as the quantitative metabolomic profile analysis. Fingerprint analysis based on the qualitative metabolomic profiles and binary similarity measures proved to be a reliable way in finding the same/similar patterns in metabolomic data as that extracted from quantitative data.

  4. An overview af SAGE I and II ozone measurements

    Science.gov (United States)

    Mccormick, M. P.; Zawodny, J. M.; Veiga, R. E.; Larsen, J. C.; Wang, P. H.

    1989-01-01

    The stratospheric Aerosol and Gas Experiments (SAGE) I and II measure Mie, Rayleigh, and gaseous extinction profiles using the solar occultation technique. These global measurements yield ozone profiles with a vertical resolution of 1 km which have been routinely obtained for the periods from February 1979 to November 1981 (SAGE I) and October 1984 to the present (SAGE II). The long-term periodic behavior of the measured ozone is presented as well as case studies of the observed short-term spatial and temporal variability. A linear regression shows annual, semiannual, and quasi-biennial oscillation features at various altitudes and latitudes which, in general, agree with past work. Also, ozone, aerosol, and water vapor data are described for the Antarctic springtime, showing large variation relative to the vortex. Cross-sections in latitude and altitude and polar plots at various altitudes clearly delineate the ozone hole vertically and areally.

  5. Intercomparison of Vertical Structure of Storms Revealed by Ground-Based (NMQ and Spaceborne Radars (CloudSat-CPR and TRMM-PR

    Directory of Open Access Journals (Sweden)

    Veronica M. Fall

    2013-01-01

    Full Text Available Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR and Ku-band Precipitation Radar (PR, which are onboard NASA’s CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE. This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors’ type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.

  6. Retrieving Temperature and Moisture Profiles from AERI Radiance Observations. AERIPROF Value-Added Product Technical Description

    Energy Technology Data Exchange (ETDEWEB)

    Feltz, W. F. [Univ. of Wisconsin, Madison, WI (United States); Howell, H. B. [Univ. of Wisconsin, Madison, WI (United; Knuteson, R. O. [Univ. of Wisconsin, Madison, WI (United States); Comstock, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mahon, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Turner, D. D. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Smith, W. L. [NASA Langley Research Center, Hampton, VA (United States); Woolf, H. M. [Univ. of Wisconsin, Madison, WI (United; Sivaraman, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halter, T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-04-01

    One of the goals of the Atmospheric Radiation Measurement (ARM) Program is to collect a long-term series of radiative and atmospheric state observations to improve the parameterization of these processes in global climate models. The ARM Program intended to move away from the traditional approach of directly measuring profiles of temperature and moisture using radiosondes, which is expensive in terms of expendables and manpower, and develop methods to retrieve these profiles with ground-based remote sensors. The atmospheric emitted radiance interferometer (AERI), whose radiance data contains information on the vertical distribution of water vapor and temperature, is an integral part of the ARM profiling plan.

  7. Measurements of air entrainment by vertical plunging liquid jets

    Science.gov (United States)

    El Hammoumi, M.; Achard, J. L.; Davoust, L.

    2002-06-01

    This paper addresses the issue of the air-entrainment process by a vertical plunging liquid jet. A non-dimensional physical analysis, inspired by the literature on the stability of free jets submitted to an aerodynamic interaction, was developed and yielded two correlation equations for the laminar and the turbulent plunging jets. These correlation equations allow the volumetric flow rate of the air carryunder represented by the Weber number of entrainment We n to be predicted. The plunging jets under consideration issued from circular tubes long enough to achieve a fully developed flow at the outlet. A sensitive technique based on a rising soap meniscus was developed to measure directly the volumetric flow rate of the air carryunder. Our data are compared with other experimental data available in the literature; they also stand as a possible database for future theoretical modelling.

  8. Measurements of air entrainment by vertical plunging liquid jets

    Energy Technology Data Exchange (ETDEWEB)

    El Hammoumi, M. [Faculte des Sciences et Techniques, Departement de Physique, Laboratoire de Mecanique Appliquee, Fes (Morocco); Achard, J.L.; Davoust, L. [Laboratoire des Ecoulements Geophysiques et Industriels (LEGI), Grenoble (France)

    2002-06-01

    This paper addresses the issue of the air-entrainment process by a vertical plunging liquid jet. A non-dimensional physical analysis, inspired by the literature on the stability of free jets submitted to an aerodynamic interaction, was developed and yielded two correlation equations for the laminar and the turbulent plunging jets. These correlation equations allow the volumetric flow rate of the air carryunder represented by the Weber number of entrainment We{sub n} to be predicted. The plunging jets under consideration issued from circular tubes long enough to achieve a fully developed flow at the outlet. A sensitive technique based on a rising soap meniscus was developed to measure directly the volumetric flow rate of the air carryunder. Our data are compared with other experimental data available in the literature; they also stand as a possible database for future theoretical modelling. (orig.)

  9. Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles

    Science.gov (United States)

    Nehrir, Amin R.; Kiemle, Christoph; Lebsock, Mathew D.; Kirchengast, Gottfried; Buehler, Stefan A.; Löhnert, Ulrich; Liu, Cong-Liang; Hargrave, Peter C.; Barrera-Verdejo, Maria; Winker, David M.

    2017-11-01

    A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.

  10. Atmospheric QBO and ENSO indices with high vertical resolution from GNSS radio occultation temperature measurements

    Science.gov (United States)

    Wilhelmsen, Hallgeir; Ladstädter, Florian; Scherllin-Pirscher, Barbara; Steiner, Andrea K.

    2018-03-01

    We provide atmospheric temperature variability indices for the tropical troposphere and stratosphere based on global navigation satellite system (GNSS) radio occultation (RO) temperature measurements. By exploiting the high vertical resolution and the uniform distribution of the GNSS RO temperature soundings we introduce two approaches, both based on an empirical orthogonal function (EOF) analysis. The first method utilizes the whole vertical and horizontal RO temperature field from 30° S to 30° N and from 2 to 35 km altitude. The resulting indices, the leading principal components, resemble the well-known patterns of the Quasi-Biennial Oscillation (QBO) and the El Niño-Southern Oscillation (ENSO) in the tropics. They provide some information on the vertical structure; however, they are not vertically resolved. The second method applies the EOF analysis on each altitude level separately and the resulting indices contain information on the horizontal variability at each densely available altitude level. They capture more variability than the indices from the first method and present a mixture of all variability modes contributing at the respective altitude level, including the QBO and ENSO. Compared to commonly used variability indices from QBO winds or ENSO sea surface temperature, these new indices cover the vertical details of the atmospheric variability. Using them as proxies for temperature variability is also of advantage because there is no further need to account for response time lags. Atmospheric variability indices as novel products from RO are expected to be of great benefit for studies on atmospheric dynamics and variability, for climate trend analysis, as well as for climate model evaluation.

  11. Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer

    Science.gov (United States)

    Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III

    2018-05-01

    For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector.OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09° N, 11.28° E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30° N, 13.02° E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar.In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.

  12. A test of vertical economies for non-vertically integrated firms: The case of rural electric cooperatives

    International Nuclear Information System (INIS)

    Greer, Monica L.

    2008-01-01

    This paper seeks to evaluate unrealized economies of vertical integration for rural electric cooperatives. Given the well-established network economies that are inherent in the generation, transmission, and distribution of electricity, the coops long-standing choice of market structure is questionable (especially if their strategy is welfare maximization). Organized as either generation-and-transmission or distribution-only, the traditional measures of vertical economies will not work. Thus, I have devised an alternative method by which to measure such economies and find that, on average, cost savings in excess of 39% could have been realized had the coops adopted a vertically integrated structure. (author)

  13. Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements

    Directory of Open Access Journals (Sweden)

    N. A. Kramarova

    2018-05-01

    Full Text Available The Limb Profiler (LP is a part of the Ozone Mapping and Profiler Suite launched on board of the Suomi NPP satellite in October 2011. The LP measures solar radiation scattered from the atmospheric limb in ultraviolet and visible spectral ranges between the surface and 80 km. These measurements of scattered solar radiances allow for the retrieval of ozone profiles from cloud tops up to 55 km. The LP started operational observations in April 2012. In this study we evaluate more than 5.5 years of ozone profile measurements from the OMPS LP processed with the new NASA GSFC version 2.5 retrieval algorithm. We provide a brief description of the key changes that had been implemented in this new algorithm, including a pointing correction, new cloud height detection, explicit aerosol correction and a reduction of the number of wavelengths used in the retrievals. The OMPS LP ozone retrievals have been compared with independent satellite profile measurements obtained from the Aura Microwave Limb Sounder (MLS, Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS and Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS. We document observed biases and seasonal differences and evaluate the stability of the version 2.5 ozone record over 5.5 years. Our analysis indicates that the mean differences between LP and correlative measurements are well within required ±10 % between 18 and 42 km. In the upper stratosphere and lower mesosphere (> 43 km LP tends to have a negative bias. We find larger biases in the lower stratosphere and upper troposphere, but LP ozone retrievals have significantly improved in version 2.5 compared to version 2 due to the implemented aerosol correction. In the northern high latitudes we observe larger biases between 20 and 32 km due to the remaining thermal sensitivity issue. Our analysis shows that LP ozone retrievals agree well with the correlative satellite observations in characterizing

  14. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O N; Marcus, F B; Sadler, G; Van Belle, P [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Howarth, P J.A. [Birmingham Univ. (United Kingdom); Adams, J M; Bond, D S [UKAEA Harwell Lab. (United Kingdom). Energy Technology Div.

    1994-07-01

    Gamma-ray emission from plasma-impurity reactions caused by minority ICRH accelerating fuel ions to MeV energies has been measured using the JET neutron profile monitor. A successful data analysis technique has been used to isolate the RF-induced gamma-ray emission that was detected, enabling profiles of gamma-ray emission to be obtained. The 2-d gamma-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. 6 refs., 4 figs.

  15. Vertical stability, high elongation, and the consequences of loss of vertical control on DIII-D

    International Nuclear Information System (INIS)

    Kellman, A.G.; Ferron, J.R.; Jensen, T.H.; Lao, L.L.; Luxon, J.L.; Skinner, D.G.; Strait, E.J.; Reis, E.; Taylor, T.S.; Turnbull, A.D.; Lazarus, E.A.; Lister, J.B.

    1990-09-01

    Recent modifications to the vertical control system for DIII-D has enabled operation of discharges with vertical elongation κ, up to 2.5. When vertical stability is lost, a disruption follows and a large vertical force on the vacuum vessel is observed. The loss of plasma energy begins when the edge safety factor q is 2 but the current decay does not begin until q ∼1.3. Current flow on the open field lines in the plasma scrapeoff layer has been measured and the magnitude and distribution of these currents can explain the observed force on the vessel. Equilibrium calculations and simulation of this vertical displacement episode are presented. 7 refs., 4 figs

  16. Illumination Profile & Dispersion Variation Effects on Radial Velocity Measurements

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil B.; Ma, Bo; Li, Rui; SDSS-III

    2015-01-01

    The Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) measures radial velocities using a fiber-fed dispersed fixed-delay interferometer (DFDI) with a moderate dispersion spectrograph. This setup allows a unique insight into the 2D illumination profile from the fiber on to the dispersion grating. Illumination profile investigations show large changes in the profile over time and fiber location. These profile changes are correlated with dispersion changes and long-term radial velocity offsets, a major problem within the MARVELS radial velocity data. Characterizing illumination profiles creates a method to both detect and correct radial velocity offsets, allowing for better planet detection. Here we report our early results from this study including improvement of radial velocity data points from detected giant planet candidates. We also report an illumination profile experiment conducted at the Kitt Peak National Observatory using the EXPERT instrument, which has a DFDI mode similar to MARVELS. Using profile controlling octagonal-shaped fibers, long term offsets over a 3 month time period were reduced from ~50 m/s to within the photon limit of ~4 m/s.

  17. High resolution measurements and modeling of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    Full Text Available Measurements in the visible wavelength range at high spectral resolution (1.3 Å have been made at Longyearbyen, Svalbard (15.8 E,78.2 N during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wave-length of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms.

    Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (auroral phenomena

  18. High resolution measurements and modeling of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    2003-07-01

    Full Text Available Measurements in the visible wavelength range at high spectral resolution (1.3 Å have been made at Longyearbyen, Svalbard (15.8 E,78.2 N during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wave-length of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms.Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (auroral phenomena

  19. From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications

    Directory of Open Access Journals (Sweden)

    A. Cherkasheva

    2013-04-01

    Full Text Available Current estimates of global marine primary production range over a factor of two. Improving these estimates requires an accurate knowledge of the chlorophyll vertical profiles, since they are the basis for most primary production models. At high latitudes, the uncertainty in primary production estimates is larger than globally, because here phytoplankton absorption shows specific characteristics due to the low-light adaptation, and in situ data and ocean colour observations are scarce. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer have not included the Arctic region, or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved profiles. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the regions in the Arctic where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S. Merian cruises combined with data from the ARCSS-PP database (Arctic primary production in situ database for the years 1957–2010. The profiles were categorized according to their mean concentration in the surface layer, and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll (CHL exceeding 0.7 mg C m−3 showed values gradually decreasing from April to August. A similar seasonal pattern was observed when monthly profiles were averaged over all the surface CHL concentrations. The maxima of all chlorophyll profiles moved from the greater depths to the surface from spring to late summer respectively. The profiles with the smallest surface values always showed a subsurface chlorophyll

  20. Mt. Graham: optical turbulence vertical distribution with standard and high resolution

    Science.gov (United States)

    Masciadri, Elena; Stoesz, Jeff; Hagelin, Susanna; Lascaux, Franck

    2010-07-01

    A characterization of the optical turbulence vertical distribution and all the main integrated astroclimatic parameters derived from the C2N and the wind speed profiles above Mt. Graham is presented. The statistic includes measurements related to 43 nights done with a Generalized Scidar (GS) used in standard configuration with a vertical resolution of ~1 km on the whole 20-22 km and with the new technique (HVR-GS) in the first kilometer. The latter achieves a resolution of ~ 20-30 m in this region of the atmosphere. Measurements done in different periods of the year permit us to provide a seasonal variation analysis of the C2N. A discretized distribution of the typical C2N profiles useful for the Ground Layer Adaptive Optics (GLAO) simulations is provided and a specific analysis for the LBT Laser Guide Star system ARGOS case is done including the calculation of the 'gray zones' for J, H and K bands. Mt. Graham confirms to be an excellent site with median values of the seeing without dome contribution equal to 0.72", the isoplanatic angle equal to 2.5" and the wavefront coherence time equal to 4.8 msec. We provide a cumulative distribution of the percentage of turbulence developed below H* where H* is included in the (0,1 km) range. We find that 50% of the whole turbulence develops in the first 80 m from the ground. The turbulence decreasing rate is very similar to what has been observed above Mauna Kea.

  1. Wire Scanner Beam Profile Measurements for the LANSCE Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing beam profile measurement systems, commonly known as Wire Scanners (WS). Using the principal of secondary electron emission, the WS measurement system moves a wire or fiber across an impinging particle beam, sampling a projected transverse-beam distribution. Because existing WS actuators and electronic components are either no longer manufactured or home-built with antiquated parts, a new WS beam profile measurement is being designed, fabricated, and tested. The goals for these new WS's include using off-the-shelf components while eliminating antiquated components, providing quick operation while allowing for easy maintainability, and tolerating external radioactivation. The WS measurement system consists of beam line actuators, a cable plant, an electronics processor chassis, and software located both in the electronics chassis (National Instruments LabVIEW) and in the Central Control Room (EPICS-based client software). This WS measurement system will measure Hand H{sup +} LANSCE-facility beams and will also measure less common beams. This paper describes these WS measurement systems.

  2. Temperature profiles by ground-based remote sensing and in situ measurements

    Energy Technology Data Exchange (ETDEWEB)

    Argentini, S; Pietroni, I; Conidi, A; Mastrantonio, G; Petenko, I; Viola, A [ISAC-CNR, Via del Fosso del Cavaliere, 100, 00133 Roma (Italy); Gariazzo, C; Pelliccioni, A; Amicarelli, A [ISPESL Dipartimento Insediamenti Produttivi e Interazione con l' Ambiente, Via Fontana Candida, 1, 00040 Monteporzio Catone (RM) (Italy)], E-mail: s.argentini@isac.cnr.it

    2008-05-01

    This study focuses on the accuracy of the temperature profiles measured with a Doppler Radio-Acoustic Sounding System and a Microwave Temperature Profiler during a period of about 3 months in winter 2007-2008. The experiment was carried on at the experimental facility of the Institute of Atmospheric Sciences and Climate (ISAC) of the Italian National Research Council (CNR). The temperature data measured with remote sensors were verified with in situ measurements on a mast as well as with tethered balloon data. The facsimile echograms obtained with the ISAC Doppler SODAR were analysed to understand to which extent the RASS and Radiometer temperature profiles behaviour can represent the real thermal structure of the atmosphere.

  3. Temperature profiles by ground-based remote sensing and in situ measurements

    International Nuclear Information System (INIS)

    Argentini, S; Pietroni, I; Conidi, A; Mastrantonio, G; Petenko, I; Viola, A; Gariazzo, C; Pelliccioni, A; Amicarelli, A

    2008-01-01

    This study focuses on the accuracy of the temperature profiles measured with a Doppler Radio-Acoustic Sounding System and a Microwave Temperature Profiler during a period of about 3 months in winter 2007-2008. The experiment was carried on at the experimental facility of the Institute of Atmospheric Sciences and Climate (ISAC) of the Italian National Research Council (CNR). The temperature data measured with remote sensors were verified with in situ measurements on a mast as well as with tethered balloon data. The facsimile echograms obtained with the ISAC Doppler SODAR were analysed to understand to which extent the RASS and Radiometer temperature profiles behaviour can represent the real thermal structure of the atmosphere

  4. Vertical profiles of atmospheric fluorescent aerosols observed by a mutil-channel lidar spectrometer system

    Science.gov (United States)

    Huang, Z.; Huang, J.; Zhou, T.; Sugimoto, N.; Bi, J.

    2015-12-01

    Zhongwei Huang1*, Jianping Huang1, Tian Zhou1, Nobuo Sugimoto2, Jianrong Bi1 and Jinsen Shi11Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China. 2Atmospheric Environment Division, National Institutes for Environmental Studies, Tsukuba, Japan Email: huangzhongwei@lzu.edu.cn Abstract Atmospheric aerosols have a significant impact on regional and globe climate. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol concentrations, compositions, sizes, shape and optical properties (IPCC, 2007). Lidar offers some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. To investigate the characterization of atmospheric aerosols (especially bioaerosols) with high spatial and temporal resolution, we developed a Raman/fluorescence/polarization lidar system employed a multi-channel spectrometer, with capabilities of providing measurements of Raman scattering and laser-induced fluorescence excitation at 355 nm from atmospheric aerosols. Meanwhile, the lidar system operated polarization measurements both at 355nm and 532nm wavelengths, aiming to obtain more information of aerosols. It employs a high power pulsed laser and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum about 178 nm with spectral resolution 5.7 nm, mainly including an F/3.7 Crossed Czerny-Turner spectrograph, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at four sites across northwest China, during 2014 spring field observation that conducted by Lanzhou University. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and

  5. Calculation of Vertical Temperature Gradients in Heated Rooms

    DEFF Research Database (Denmark)

    Overby, H.; Steen-Thøde, Mogens

    This paper deals with a simple model which predicts the vertical temperature gradient in a heated room. The gradient is calculated from a dimensionless temperature profile which is determined by two room air temperatures only, the mean temperature in the occupied zone and the mean temperature...

  6. The biological pump: Profiles of plankton production and consumption in the upper ocean

    Science.gov (United States)

    Longhurst, Alan R.; Glen Harrison, W.

    The ‘biological pump’ mediates flux of carbon to the interior of the ocean by interctions between the components of the vertically-structured pelagic ecosystem of the photic zone. Chlorophyll profiles are not a simple indicator of autotrophic biomass or production, because of non-linearities in the physiology of cells and preferential vertical distribution of taxa. Profiles of numbers or biomass of heterotrophs do not correspond with profiles of consumption, because of depth-selection (taxa, seasons) for reasons unconnected with feeding. Depths of highest plant biomass, chlorophyll and growth rate coincide when these depths are shallow, but become progressively separated in profiles where they are deeper - so that highest growth rate lies progressively shallower than the chloropyll maximum. It is still uncertain how plant biomass is distributed in deep profiles. Depths of greatest heterotroph biomass (mesozooplankton) are usually close to depths of fastest plant growth rate, and thus lie shallower than the chlorophyll maximum in profiles where this itself is deep. This correlation is functional, and relates to the role of heterotrophs in excreting metabolic wastes (especially ammonia), which may fuel a significant component of integrated algal production, especially in the oligotrophic ocean. Some, but not all faecal material from mesozooplankton of the photic zone appears in vertical flux below the pycnocine, depending on the size of the source organisms, and the degree of vertical mixing above the pycnocline. Diel, but probably not seasonal, vertical migration is significant in the vertical flux of dissolved nitrogen. Regional generalisations of the vertical relations of the main components of the ‘biological pump’ now appear within reach, and an approach is suggested.

  7. Bias in mean velocities and noise in variances and covariances measured using a multistatic acoustic profiler: the Nortek Vectrino Profiler

    Science.gov (United States)

    Thomas, R. E.; Schindfessel, L.; McLelland, S. J.; Creëlle, S.; De Mulder, T.

    2017-07-01

    This paper compiles the technical characteristics and operating principles of the Nortek Vectrino Profiler and reviews previously reported user experiences. A series of experiments are then presented that investigate instrument behaviour and performance, with a particular focus on variations within the profile. First, controlled tests investigate the sensitivity of acoustic amplitude (and Signal-to-Noise Ratio, SNR) and pulse-to-pulse correlation coefficient, R 2, to seeding concentration and cell geometry. Second, a novel methodology that systematically shifts profiling cells through a single absolute vertical position investigates the sensitivity of mean velocities, SNR and noise to: (a) emitted sound intensity and the presence (or absence) of acoustic seeding; and (b) varying flow rates under ideal acoustic seeding conditions. A new solution is derived to quantify the noise affecting the two perpendicular tristatic systems of the Vectrino Profiler and its contribution to components of the Reynolds stress tensor. Results suggest that for the Vectrino Profiler: 1. optimum acoustic seeding concentrations are ~3000 to 6000 mg L-1 2. mean velocity magnitudes are biased by variable amounts in proximal cells but are consistently underestimated in distal cells; 3. noise varies parabolically with a minimum around the ‘sweet spot’, 50 mm below the transceiver; 4. the receiver beams only intersect at the sweet spot and diverge nearer to and further from the transceiver. This divergence significantly reduces the size of the sampled area away from the sweet spot, reducing data quality; 5. the most reliable velocity data will normally be collected in the region between approximately 43 and 61 mm below the transceiver.

  8. Bias in mean velocities and noise in variances and covariances measured using a multistatic acoustic profiler: the Nortek Vectrino Profiler

    International Nuclear Information System (INIS)

    Thomas, R E; Schindfessel, L; Creëlle, S; De Mulder, T; McLelland, S J

    2017-01-01

    This paper compiles the technical characteristics and operating principles of the Nortek Vectrino Profiler and reviews previously reported user experiences. A series of experiments are then presented that investigate instrument behaviour and performance, with a particular focus on variations within the profile. First, controlled tests investigate the sensitivity of acoustic amplitude (and Signal-to-Noise Ratio, SNR) and pulse-to-pulse correlation coefficient, R 2 , to seeding concentration and cell geometry. Second, a novel methodology that systematically shifts profiling cells through a single absolute vertical position investigates the sensitivity of mean velocities, SNR and noise to: (a) emitted sound intensity and the presence (or absence) of acoustic seeding; and (b) varying flow rates under ideal acoustic seeding conditions. A new solution is derived to quantify the noise affecting the two perpendicular tristatic systems of the Vectrino Profiler and its contribution to components of the Reynolds stress tensor. Results suggest that for the Vectrino Profiler: 1. optimum acoustic seeding concentrations are ∼3000 to 6000 mg L −1 ; 2. mean velocity magnitudes are biased by variable amounts in proximal cells but are consistently underestimated in distal cells; 3. noise varies parabolically with a minimum around the ‘sweet spot’, 50 mm below the transceiver; 4. the receiver beams only intersect at the sweet spot and diverge nearer to and further from the transceiver. This divergence significantly reduces the size of the sampled area away from the sweet spot, reducing data quality; 5. the most reliable velocity data will normally be collected in the region between approximately 43 and 61 mm below the transceiver. (paper)

  9. Explicit wave action conservation for water waves on vertically sheared flows

    Science.gov (United States)

    Quinn, Brenda; Toledo, Yaron; Shrira, Victor

    2016-04-01

    Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical

  10. Island based radar and microwave radiometer measurements of stratus cloud parameters during the Atlantic Stratocumulus Transition Experiment (ASTEX)

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, A.S. [Colorado State Univ., Fort Collins, CO (United States); Fairall, C.W.; Snider, J.B. [NOAA Environmental Technology Lab., Boulder, CO (United States); Lenshow, D.H.; Mayer, S.D. [National Center for Atmospheric Research, Boulder, CO (United States)

    1996-04-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, simultaneous measurements were made with a vertically pointing cloud sensing radar and a microwave radiometer. The radar measurements are used to estimate stratus cloud drizzle and turbulence parameters. In addition, with the microwave radiometer measurements of reflectivity, we estimated the profiles of cloud liquid water and effective radius. We used radar data for computation of vertical profiles of various drizzle parameters such as droplet concentration, modal radius, and spread. A sample of these results is shown in Figure 1. In addition, in non-drizzle clouds, with the radar and radiometer we can estimate the verticle profiles of stratus cloud parameters such as liquid water concentration and effective radius. This is accomplished by assuming a droplet distribution with droplet number concentration and width constant with height.

  11. Profile measurements and data from the 2011 Optics, Acoustics, and Stress In Situ (OASIS) project at the Martha's Vineyard Coastal Observatory

    Science.gov (United States)

    Sherwood, Christopher R.; Dickhudt, Patrick J.; Martini, Marinna A.; Montgomery, Ellyn T.; Boss, Emmanuel S.

    2012-01-01

    This report documents data collected by the U.S. Geological Survey (USGS) for the Coastal Model Applications and Field Measurements project under the auspices of the U.S. Navy Office of Naval Research Optics, Acoustics, and Stress In Situ (OASIS) Project. The objective of the measurements was to relate optical and acoustic properties of suspended particles to changes in particle size, concentration, and vertical distribution in the bottom boundary layer near the seafloor caused by wave- and current-induced stresses. This information on the physics of particle resuspension and aggregation and light penetration and water clarity will help improve models of sediment transport, benthic primary productivity, and underwater visibility. There is well-established technology for acoustic profiling, but optical profiles are more difficult to obtain because of the rapid attenuation of light in water. A specially modified tripod with a moving arm was designed to solve this problem by moving instruments vertically in the bottom boundary layer, between the bottom and about 2 meters above the seafloor. The profiling arm was designed, built, and tested during spring and summer 2011 by a team of USGS scientists, engineers, and technicians. To accommodate power requirements and the large data files recorded by some of the optical instruments, the tripod was connected via underwater cable to the Martha's Vineyard Coastal Observatory, operated by the Woods Hole Oceanographic Institution (WHOI). This afforded real-time Internet communication with the embedded computers aboard the tripod. Instruments were mounted on the profiling arm, and additional instruments were mounted elsewhere on the tripod and nearby on the seafloor. The tripod and a small mooring for a profiling current meter were deployed on September 17, 2011, at the Martha's Vineyard Coastal Observatory 12-meter-deep underwater node about 2 kilometers south of Martha's Vineyard, Massachusetts. Divers assisted in the

  12. Wind lidar profile measurements in the coastal boundary layer: comparison with WRF modelling

    DEFF Research Database (Denmark)

    Floors, Rogier; Pena Diaz, Alfredo; Vincent, Claire Louise

    2012-01-01

    the sensitivity of PBL schemes of mesoscale models to both lower and upper boundary conditions. We therefore run the mesoscale weather research and forecasting (WRF) model using two different roughness descriptions, two different synoptic forcings and two different PBL schemes at two vertical resolutions. When...... in the amount of observed low level jet. The wind speed predicted by WRF does not improve when a higher resolution is used. Therefore, both the inhomogeneous (westerly) and homogeneous (easterly) flow contribute to a large negative bias in the mean wind speed profile at heights between 100 and 200 m....

  13. Application of Electromagnetic Induction to Monitor Changes in Soil Electrical Conductivity Profiles in Arid Agriculture

    KAUST Repository

    Jadoon, K.Z.

    2015-09-06

    In this research, multi-configuration electromagnetic induction (EMI) measurements were conducted in a corn field to estimate variation in soil electrical conductivity profiles in the roots zone. Electromagnetic forward model based on the full solution of Maxwell\\'s equation was used to simulate the apparent electrical conductivity measured with EMI system (the CMD mini-Explorer). Joint inversion of multi-configuration EMI measurements were performed to estimate the vertical soil electrical conductivity profiles. The inversion minimizes the misfit between the measured and modeled soil apparent electrical conductivity by DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, which is based on Bayesain approach. Results indicate that soil electrical conductivity profiles have low values close to the corn plants, which indicates loss of soil moisture due to the root water uptake. These results offer valuable insights into future potential and emerging challenges in the development of joint analysis of multi-configuration EMI measurements to retrieve effective soil electrical conductivity profiles.

  14. Internal tides and vertical mixing over the Kerguelen Plateau

    Science.gov (United States)

    Park, Young-Hyang; Fuda, Jean-Luc; Durand, Isabelle; Naveira Garabato, Alberto C.

    2008-03-01

    Within the context of the natural iron-fertilization study KEOPS, time series measurements of CTD and LADCP profiles at a site (50.6°S, 72°E; 528 m) coinciding with an annual phytoplankton bloom over the Kerguelen Plateau were made during the January-February 2005 KEOPS cruise. An important activity of highly nonlinear semidiurnal internal tides having peak-to-peak isopycnal displacements of up to 80 m is identified. These internal tides appear to be a principal agent for promoting elevated vertical mixing indispensable for upward transfer of iron within the seasonal thermocline. We estimate local vertical eddy diffusivities of the order of 4×10 -4 m 2 s -1 using a Thorpe scale analysis. Although this estimate is higher by an order of magnitude than the canonical value O (0.1×10 -4 m 2 s -1) in the open ocean away from boundaries, it is consistent with nonlinear internal wave/wave interaction theories, as verified by independent diffusivity estimates using the vertical wavenumber spectral methods for shear and strain. It is also suggested that the general ocean circulation may play an important role in preconditioning the bloom in that the relatively sluggish circulation over the shallow plateau (compared to the much more dynamic neighbouring deep ocean) may foster the bloom's observed annual recurrence over the plateau.

  15. Vertically Integrated Models for Carbon Storage Modeling in Heterogeneous Domains

    Science.gov (United States)

    Bandilla, K.; Celia, M. A.

    2017-12-01

    Numerical modeling is an essential tool for studying the impacts of geologic carbon storage (GCS). Injection of carbon dioxide (CO2) into deep saline aquifers leads to multi-phase flow (injected CO2 and resident brine), which can be described by a set of three-dimensional governing equations, including mass-balance equation, volumetric flux equations (modified Darcy), and constitutive equations. This is the modeling approach on which commonly used reservoir simulators such as TOUGH2 are based. Due to the large density difference between CO2 and brine, GCS models can often be simplified by assuming buoyant segregation and integrating the three-dimensional governing equations in the vertical direction. The integration leads to a set of two-dimensional equations coupled with reconstruction operators for vertical profiles of saturation and pressure. Vertically-integrated approaches have been shown to give results of comparable quality as three-dimensional reservoir simulators when applied to realistic CO2 injection sites such as the upper sand wedge at the Sleipner site. However, vertically-integrated approaches usually rely on homogeneous properties over the thickness of a geologic layer. Here, we investigate the impact of general (vertical and horizontal) heterogeneity in intrinsic permeability, relative permeability functions, and capillary pressure functions. We consider formations involving complex fluvial deposition environments and compare the performance of vertically-integrated models to full three-dimensional models for a set of hypothetical test cases consisting of high permeability channels (streams) embedded in a low permeability background (floodplains). The domains are randomly generated assuming that stream channels can be represented by sinusoidal waves in the plan-view and by parabolas for the streams' cross-sections. Stream parameters such as width, thickness and wavelength are based on values found at the Ketzin site in Germany. Results from the

  16. Improving the Automatic Inversion of Digital ISIS-2 Ionogram Reflection Traces into Topside Vertical Electron-Density Profiles

    Science.gov (United States)

    Benson, R. F.; Truhlik, V.; Huang, X.; Wang, Y.; Bilitza, D.

    2011-01-01

    The topside-sounders on the four satellites of the International Satellites for Ionospheric Studies (ISIS) program were designed as analog systems. The resulting ionograms were displayed on 35-mm film for analysis by visual inspection. Each of these satellites, launched between 1962 and 1971, produced data for 10 to 20 years. A number of the original telemetry tapes from this large data set have been converted directly into digital records. Software, known as the TOPside Ionogram Scalar with True-height (TOPIST) algorithm has been produced that enables the automatic inversion of ISIS-2 ionogram reflection traces into topside vertical electron-density profiles Ne(h). More than million digital Alouette/ISIS topside ionograms have been produced and over 300,000 are from ISIS 2. Many of these ISIS-2 ionograms correspond to a passive mode of operation for the detection of natural radio emissions and thus do not contain ionospheric reflection traces. TOPIST, however, is not able to produce Ne(h) profiles from all of the ISIS-2 ionograms with reflection traces because some of them did not contain frequency information. This information was missing due to difficulties encountered during the analog-to-digital conversion process in the detection of the ionogram frame-sync pulse and/or the frequency markers. Of the many digital topside ionograms that TOPIST was able to process, over 200 were found where direct comparisons could be made with Ne(h) profiles that were produced by manual scaling in the early days of the ISIS program. While many of these comparisons indicated excellent agreement (inversion process: (1) improve the quality of the digital ionogram database by remedying the missing frequency-information problem when possible, and (2) using the above-mentioned comparisons as teaching examples of how to improve the original TOPIST software.

  17. MEASURING PROTOPLANETARY DISK GAS SURFACE DENSITY PROFILES WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jonathan P.; McPartland, Conor, E-mail: jpw@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-10-10

    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams and Best to show that gas surface density profiles can be measured from high fidelity {sup 13}CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, M {sub gas} = 0.048 M {sub ⊙}, and accretion disk characteristic size R {sub c} = 213 au and gradient γ = 0.39. The same parameters match the C{sup 18}O 2–1 image and indicate an abundance ratio [{sup 12}CO]/[C{sup 18}O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large {sup 13}CO 2–1 image library and fit simulated data. For disks with gas masses 3–10 M {sub Jup} at 150 pc, ALMA observations with a resolution of 0.″2–0.″3 and integration times of ∼20 minutes allow reliable estimates of R {sub c} to within about 10 au and γ to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.

  18. Genetic Algorithm for Opto-thermal Skin Hydration Depth Profiling Measurements

    Science.gov (United States)

    Cui, Y.; Xiao, Perry; Imhof, R. E.

    2013-09-01

    Stratum corneum is the outermost skin layer, and the water content in stratum corneum plays a key role in skin cosmetic properties as well as skin barrier functions. However, to measure the water content, especially the water concentration depth profile, within stratum corneum is very difficult. Opto-thermal emission radiometry, or OTTER, is a promising technique that can be used for such measurements. In this paper, a study on stratum corneum hydration depth profiling by using a genetic algorithm (GA) is presented. The pros and cons of a GA compared against other inverse algorithms such as neural networks, maximum entropy, conjugate gradient, and singular value decomposition will be discussed first. Then, it will be shown how to use existing knowledge to optimize a GA for analyzing the opto-thermal signals. Finally, these latest GA results on hydration depth profiling of stratum corneum under different conditions, as well as on the penetration profiles of externally applied solvents, will be shown.

  19. Wind profiler mixing depth and entrainment measurements with chemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Angevine, W.M.; Trainer, M.; Parrish, D.D.; Buhr, M.P.; Fehsenfeld, F.C. [NOAA Aeronomy Lab., Boulder, CO (United States); Kok, G.L. [NCAR Research Aviation Facility, Boulder, CO (United States)

    1994-12-31

    Wind profiling radars operating at 915 MHz have been present at a number of regional air quality studies. The profilers can provide a continuous, accurate record of the depth of the convective mixed layer with good time resolution. Profilers also provide information about entrainment at the boundary layer top. Mixing depth data from several days of the Rural Oxidants in the Southern Environment II (ROSE II) study in Alabama in June, 1992 are presented. For several cases, chemical measurements from aircraft and ground-based instruments are shown to correspond to mixing depth and entrainment zone behavior observed by the profiler.

  20. Optical bi-sensorial measurement system for production control of extruded profiles

    Science.gov (United States)

    Weckenmann, A.; Bernstein, J.

    2008-09-01

    Extruded profiles are semi-finished products (made out of steel, brass, aluminum, synthetics...) which are appointed for wide applications in manufacturing of technical products. As yet used optical sensors in process control working to the shading technology detect the object's shadow orthographically to the axis of illumination. As a consequence they record it unattached by the profiles coat in measurement range at any point of the measured profile with high precision. As a matter of fact, concave zones cannot be captured. Alternatively the measurement of concave zones can be arranged by light-section systems. These do not comply with the required accuracy, are comparatively slow and moreover affected by dislocations of the section of the profile. A measurement system including a light-section and a shading system combines the advantages of both optical systems. It is to serve with a reliable conception for the assembly of a bi-sensorial measurement system consisting of both systems as well as suitable methods of analysis for the in-line inspection of concave profiles. As a result it contains conclusions concerning requirements of the light source, the arrangement of this source and the cameras, obtainable precision and sampling rate as well as the essential synchronization of both systems. After designing an appropriate prototype, the selected light-section system and the shading system will be synchronized and aligned. Therefore, the metered geometrical data will be merged for the evaluation of form deviation. So, developed and adapted software supports and contains proposals to the uncertainty after successful tests. The system and a calibration method will be proved in production where robustness will be a most critical despite of heat, dust and vibrations. The target uncertainty of less than 0.1 mm at every section of the profiles coat has to be met.