WorldWideScience

Sample records for measured soil co2

  1. Quantitative comparison of in situ soil CO2 flux measurement methods

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose

    2002-01-01

    Development of reliable regional or global carbon budgets requires accurate measurement of soil CO2 flux. We conducted laboratory and field studies to determine the accuracy and comparability of methods commonly used to measure in situ soil CO2 fluxes. Methods compared included CO2...

  2. Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: Discrete surface chambers and continuous soil CO2 concentration probes

    Science.gov (United States)

    Diego A. Riveros-Iregui; Brian L. McGlynn; Howard E. Epstein; Daniel L. Welsch

    2008-01-01

    Soil CO2 efflux is a large respiratory flux from terrestrial ecosystems and a critical component of the global carbon (C) cycle. Lack of process understanding of the spatiotemporal controls on soil CO2 efflux limits our ability to extrapolate from fluxes measured at point scales to scales useful for corroboration with other ecosystem level measures of C exchange....

  3. Biases of chamber methods for measuring soil CO2 efflux demonstrated with a laboratory apparatus.

    Science.gov (United States)

    S. Mark Nay; Kim G. Mattson; Bernard T. Bormann

    1994-01-01

    Investigators have historically measured soil CO2 efflux as an indicator of soil microbial and root activity and more recently in calculations of carbon budgets. The most common methods estimate CO2 efflux by placing a chamber over the soil surface and quantifying the amount of CO2 entering the...

  4. Modeling soil CO2 production and transport to investigate the intra-day variability of surface efflux and soil CO2 concentration measurements in a scots pine forest (Pinus Sylvestris, L.)

    OpenAIRE

    Goffin, Stéphanie; Wylock, Christophe; Haut, Benoît; Maier, Martin; Longdoz, Bernard; Aubinet, Marc

    2015-01-01

    Aimed:The main aim of this study is to improve the mechanistic understanding of soil CO2 efflux (Fs), especially its temporal variation at short-time scales, by investigating, through modeling, which underlying process among CO2 production and its transport up to the atmosphere is responsible for observed intra-day variation of Fs and soil CO2 concentration [CO2].Methods:In this study, a measurement campaign of Fs and vertical soil [CO2] profiles was conducted in a Scots Pine Forest soil in H...

  5. Potentials and challenges associated with automated closed dynamic chamber measurements of soil CO2 fluxes

    Science.gov (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Ceulemans, Reinhart

    2015-04-01

    Soil respiration fluxes are influenced by natural factors such as climate and soil type, but also by anthropogenic activities in managed ecosystems. As a result, soil CO2 fluxes show a large intra- and interannual as well as intra- and intersite variability. Most of the available soil CO2 flux data giving insights into this variability have been measured with manually closed static chambers, but technological advances in the past 15 years have also led to an increased use of automated closed chamber systems. The great advantage of automated chambers in comparison to manually operated chambers is the higher temporal resolution of the flux data. This is especially important if we want to better understand the effects of short-term events, e.g. fertilization or heavy rainfall, on soil CO2 flux variability. However, the chamber method is an invasive measurement method which can potentially alter soil CO2 fluxes and lead to biased measurement results. In the peer-reviewed literature, many papers compare the field performance and results of different closed static chamber designs, or compare manual chambers with automated chamber systems, to identify potential biases in CO2 flux measurements, and thus help to reduce uncertainties in the flux data. However, inter-comparisons of different automated closed dynamic chamber systems are still lacking. Here we are going to present a field comparison of the most-cited automated chamber system, the LI-8100A Automated Soil Flux System, with the also commercially available Greenhouse Gas Monitoring System AGPS. Both measurement systems were installed side by side at a recently harvested poplar bioenergy plantation (POPFULL, http://uahost.uantwerpen.be/popfull/) from April 2014 until August 2014. The plantation provided optimal comparison conditions with a bare field situation after the harvest and a regrowing canopy resulting in a broad variety of microclimates. Furthermore, the plantation was planted in a double-row system with

  6. Soil surface CO2 fluxes on the Konza Prairie

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, Shoshi B.

    1990-01-01

    The utilization of a soil chamber to measure fluxes of soil-surface CO2 fluxes is described in terms of equipment, analytical methods, and estimate quality. A soil chamber attached to a gas-exchange system measures the fluxes every 5-15 min, and the data are compared to measurements of the CO2 fluxes from the canopy and from the soil + canopy. The soil chamber yields good measurements when operated in a closed system that is ported to the free atmosphere, and the CO2 flux is found to have a diurnal component.

  7. Continuous measurements of H2 and CO deposition onto soil: a laboratory soil chamber experiment

    Science.gov (United States)

    Ghosh, P.; Eiler, J.; Smith, N. V.; Thrift-Viveros, D. L.

    2004-12-01

    Hydrogen uptake in soil is the largest single component of the global budget of atmospheric H2, and is the most important parameter for predicting changes in atmospheric concentration with future changing sources (anthropogenic and otherwise). The rate of hydrogen uptake rate by soil is highly uncertain [1]. As a component of the global budget, it is simply estimated as the difference among estimates for other recognized sources and sinks, assuming the atmosphere is presently in steady state. Previous field chamber experiments [2] show that H2 deposition velocity varies complexly with soil moisture level, and possibly with soil organic content and temperature. We present here results of controlled soil chamber experiments on 3 different soil blocks (each ~20 x ~20 x ~21 cm) with a controlled range of moisture contents. All three soils are arid to semi arid, fine grained, and have organic contents of 10-15%. A positive air pressure (slightly higher than atmospheric pressure) and constant temperature and relative humidity was maintained inside the 10.7 liter, leak-tight plexiglass chamber, and a stream of synthetic air with known H2 concentration was continuously bled into the chamber through a needle valve and mass flow meter. H2, CO and CO2 concentrations were continuously analyzed in the stream of gas exiting the chamber, using a TA 3000 automated Hg-HgO reduced gas analyzer and a LI-820 CO2 gas analyzer. Our experimental protocol involved waiting until concentrations of analyte gases in the exiting gas stream reached a steady state, and documenting how that steady state varied with various soil properties and the rate at which gases were delivered to the chamber. The rate constants for H2 and CO consumption in the chamber were measured at several soil moisture contents. The calculated deposition velocities of H2 and CO into the soil are positively correlated with steady-state concentrations, with slopes and curvatures that vary with soil type and moisture level

  8. Determination of microbial versus root-produced CO2 in an agricultural ecosystem by means of δ13CO2 measurements in soil air

    NARCIS (Netherlands)

    Schüßler, Wolfram; Neubert, Rolf; Levin, Ingeborg; Fischer, Natalie; Sonntag, Christian

    2000-01-01

    The amounts of microbial and root-respired CO2 in a maize/winter wheat agricultural system in south western Germany were investigated by measurements of the CO2 mixing ratio and the 13C/12C ratio in soil air. CO2 fluxes at the soil surface for the period of investigation (1993–1995) were also

  9. Effect of measurement time of the day on the relationship between temperature and soil CO2 efflux

    Directory of Open Access Journals (Sweden)

    Eva Dařenová

    2011-01-01

    Full Text Available In this study we investigated effect of the time of the day when manual measurements of soil CO2 efflux are performed on estimates of seasonal sums of released carbon from the soil. We subsampled continuous measurement of soil CO2 efflux into six sets of data in accordance to the time of the day when the measurements were taken – 0 h, 4 h, 8 h, 12 h, 16 h and 20 h. To estimate seasonal carbon flux from the soil we used continuously measured soil temperature and parameters R10 (soil CO2 efflux normalized for temperature of 10 °C and Q10 (the proportional change in CO2 efflux caused by 10 °C increase in temperature calculated from continuous measurements and from measurements taken at individual hours. Values of Q10 calculated from 12 h and 16 h data were lower than Q10 calculated from continuous measurements. On the contrary, Q10 at 0 h, 4 h, 8 h and 20 h were higher. Seasonal carbon flux from the soil based on 0 h, 4 h and 8 h measurements was overestimated compare to the flux calculated from continuous measurements. On the contrary, measurements at 12 h, 16 h and 20 h measurements underestimated the carbon flux. The under- or overestimation was significant for 0 h, 4 h, 8 h and 20 h data sub-sets.

  10. An inverse analysis reveals limitations of the soil-CO2 profile method to calculate CO2 production and efflux for well-structured soils

    Directory of Open Access Journals (Sweden)

    M. D. Corre

    2010-08-01

    Full Text Available Soil respiration is the second largest flux in the global carbon cycle, yet the underlying below-ground process, carbon dioxide (CO2 production, is not well understood because it can not be measured in the field. CO2 production has frequently been calculated from the vertical CO2 diffusive flux divergence, known as "soil-CO2 profile method". This relatively simple model requires knowledge of soil CO2 concentration profiles and soil diffusive properties. Application of the method for a tropical lowland forest soil in Panama gave inconsistent results when using diffusion coefficients (D calculated based on relationships with soil porosity and moisture ("physically modeled" D. Our objective was to investigate whether these inconsistencies were related to (1 the applied interpolation and solution methods and/or (2 uncertainties in the physically modeled profile of D. First, we show that the calculated CO2 production strongly depends on the function used to interpolate between measured CO2 concentrations. Secondly, using an inverse analysis of the soil-CO2 profile method, we deduce which D would be required to explain the observed CO2 concentrations, assuming the model perception is valid. In the top soil, this inversely modeled D closely resembled the physically modeled D. In the deep soil, however, the inversely modeled D increased sharply while the physically modeled D did not. When imposing a constraint during the fit parameter optimization, a solution could be found where this deviation between the physically and inversely modeled D disappeared. A radon (Rn mass balance model, in which diffusion was calculated based on the physically modeled or constrained inversely modeled D, simulated observed Rn profiles reasonably well. However, the CO2 concentrations which corresponded to the constrained inversely modeled D were too small compared to the measurements. We suggest that, in well-structured soils, a missing description of steady state CO2

  11. Diffuse soil CO_2 degassing from Linosa island

    Directory of Open Access Journals (Sweden)

    Dario Cellura

    2014-06-01

    Full Text Available Normal 0 14 false false false MicrosoftInternetExplorer4 Normal 0 14 false false false IT X-NONE X-NONE MicrosoftInternetExplorer4 Herein, we present and discuss the result of 148 measurements of soil CO2 flux performed for the first time in Linosa island (Sicily Channel, Italy, a Plio-Pleistocene volcanic complex no longer active but still of interest owing to its location within a seismically active portion of the Sicily Channel rift system. The main purpose of this survey was to assess the occurrence of CO2 soil degassing, and compare flux estimations from this island with data of soil degassing from worldwide active volcanic as well as non-volcanic areas. To this aim soil CO2 fluxes were measured over a surface of about 4.2 km2 covering ~80% of the island. The soil CO2 degassing was observed to be mainly concentrated in the eastern part of the island likely due to volcano-tectonic lineaments, the presence of which is in good agreement with the known predominant regional faults system. Then, the collected data were interpreted using sequential Gaussian simulation that allowed estimating the total CO2 emissions of the island. Results show low levels of CO2 emissions from the soil of the island (~55 ton d-1 compared with CO2 emissions of currently active volcanic areas, such as Miyakejima (Japan and Vulcano (Italy. Results from this study suggest that soil degassing in Linosa is mainly fed by superficial organic activity with a moderate contribution of a deep CO2 likely driven by NW-SE trending active tectonic structures in the eastern part of the island.

  12. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    Science.gov (United States)

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  13. Effect of different fertilization measures on soil CO2 emissions of spring corn in Northeast China

    Science.gov (United States)

    Xu, Shicai; Qiao, Shaoqing

    2018-04-01

    To research the sustainability of efficient utilization approaches and modes of nitrogen in spring corns. Taking different fertilization measures to research the influence on soil respiration and microbial biomass carbon and nitrogen; the experiment takes the spring corns and black soil of Harbin in Northeast China as research objects. It researches the influence of 4 different fertilization measures by using field long-term located experiment on soil respiration of the spring corns and analyzes the yield. The four measures are as follows: farmer's fertilization practice FP; Tl mode of decreasing 20% of nitrogenous fertilizer on the basis of FP; T2 mode of 20% of Tl nitrogenous fertilizer replaced by organic fertilizer and other 20% replaced by slow-release nitrogen fertilizer; T3 mode of adding 2t/hm2 of corn stalk carbon on the basis of T2. There are significant differences of CO2 emission flux in spring corn soil with four fertilization measures (PTl>T2>FP and the yield rank of spring corns is: T3>T2>Tl>FP. (1) The rational nitrogen-decrease fertilization measure has no obvious influence on spring corn yield and the replacement of organic fertilizer and slow-release nitrogen fertilizer and the addition of active carbon can improve the spring corn yield. (2) Utilization of organic fertilizer can accelerate the emission of CO2 from the soil. (3) Addition of biological carbon can promote the emission of CO2 from soil during the growing period of spring corns.

  14. CO2 efflux from soils with seasonal water repellency

    Science.gov (United States)

    Urbanek, Emilia; Doerr, Stefan H.

    2017-10-01

    Soil carbon dioxide (CO2) emissions are strongly dependent on pore water distribution, which in turn can be modified by reduced wettability. Many soils around the world are affected by soil water repellency (SWR), which reduces infiltration and results in diverse moisture distribution. SWR is temporally variable and soils can change from wettable to water-repellent and vice versa throughout the year. Effects of SWR on soil carbon (C) dynamics, and specifically on CO2 efflux, have only been studied in a few laboratory experiments and hence remain poorly understood. Existing studies suggest soil respiration is reduced with increasing severity of SWR, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known.Here we report on the first field-based study that tests whether SWR indeed reduces soil CO2 efflux, based on in situ measurements carried out over three consecutive years at a grassland and pine forest sites under the humid temperate climate of the UK.Soil CO2 efflux was indeed very low on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. Low CO2 efflux was also observed when SWR was absent, in spring and late autumn when soil temperatures were low, but also in summer when SWR was reduced by frequent rainfall events. The highest CO2 efflux occurred not when soil was wettable, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. Patchiness of SWR is likely to have created zones with two different characteristics related to CO2 production and transport. Zones with wettable soil or low persistence of SWR with higher proportion of water-filled pores are expected to provide water with high nutrient concentration resulting in higher microbial activity and CO2 production. Soil zones with high SWR persistence, on the other hand, are dominated by air-filled pores with low microbial activity, but facilitating O2

  15. [Dynamic observation, simulation and application of soil CO2 concentration: a review].

    Science.gov (United States)

    Sheng, Hao; Luo, Sha; Zhou, Ping; Li, Teng-Yi; Wang, Juan; Li, Jie

    2012-10-01

    Soil CO2 concentration is the consequences of biological activities in above- and below-ground, and its fluctuation may significantly affect the future atmospheric CO2 concentration and the projected climate change. This paper reviewed the methodologies for measuring the soil CO2 concentration in situ as well as their advantages and disadvantages, analyzed the variation patterns and controlling factors of soil CO2 concentration across the temporal (diurnal, several days, seasonal and inter-annual) and spatial (soil profile, site and landscape) scales, introduced the primary empirical and mechanical models for estimating and predicting soil CO2 concentration, and summarized the applications and constraints of soil CO2 concentration gradient in determining soil respiration. Four research priorities were proposed, i. e., to develop new techniques for collecting and determining the soil CO2 in severe soil conditions (e. g., flooding, lithoso and others), to approach the responses of soil CO2 concentration to weather change and related regulation mechanisms, to strengthen the researches on the spatial heterogeneity of soil CO2 concentration, and to expand the applications of soil CO2 concentration gradient in the measurement of tropical-subtropical soil respiration.

  16. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content

    Science.gov (United States)

    Diego A. Riveros-Iregui; Ryan E. Emanuel; Daniel J. Muth; L. McGlynn Brian; Howard E. Epstein; Daniel L. Welsch; Vincent J. Pacific; Jon M. Wraith

    2007-01-01

    Recent years have seen a growing interest in measuring and modeling soil CO2 efflux, as this flux represents a large component of ecosystem respiration and is a key determinant of ecosystem carbon balance. Process-based models of soil CO2 production and efflux, commonly based on soil temperature, are limited by nonlinearities such as the observed diurnal hysteresis...

  17. Performance of solid-state sensors for continuous, real-time measurement of soil CO2 concentrations

    Science.gov (United States)

    Recent advances in sensor technology provide a robust capability for continuous measurement of soil gases. The performance of solid-state CO2 sensors (Model GMM220 series, Vaisala, Finland) was evaluated in laboratory, greenhouse, and irrigated wheat (Triticum aestivum L.). In ambient CO2 concentrat...

  18. [Effects of plastic film mulching on soil CO2 efflux and CO2 concentration in an oasis cotton field].

    Science.gov (United States)

    Yu, Yong-xiang; Zhao, Cheng-yi; Jia, Hong-tao; Yu, Bo; Zhou, Tian-he; Yang, Yu-guang; Zhao, Hua

    2015-01-01

    A field study was conducted to compare soil CO2 efflux and CO2 concentration between mulched and non-mulched cotton fields by using closed chamber method and diffusion chamber technique. Soil CO2 efflux and CO2 concentration exhibited a similar seasonal pattern, decreasing from July to October. Mulched field had a lower soil CO2 efflux but a higher CO2 concentration, compared to those of non-mulched fields. Over the measurement period, cumulative CO2 efflux was 1871.95 kg C . hm-2 for mulched field and 2032.81 kg C . hm-2 for non-mulched field. Soil CO2 concentration was higher in mulched field (ranging from 5137 to 25945 µL . L-1) than in non- mulched field (ranging from 2165 to 23986 µL . L-1). The correlation coefficients between soil CO2 concentrations at different depths and soil CO2 effluxes were 0.60 to 0.73 and 0.57 to 0.75 for the mulched and non-mulched fields, indicating that soil CO2 concentration played a crucial role in soil CO2 emission. The Q10 values were 2.77 and 2.48 for the mulched and non-mulched fields, respectively, suggesting that CO2 efflux in mulched field was more sensitive to the temperature.

  19. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils

    Science.gov (United States)

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A.; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An ‘anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems. PMID:23778238

  20. Soil surface CO2 fluxes and the carbon budget of a grassland

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, S. B.

    1992-01-01

    Measurements of soil surface CO2 fluxes are reported for three sites within the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area, and simple empirical equations are fit to the data to provide predictions of soil fluxes from environmental observations. A prototype soil chamber, used to make the flux measurements, is described and tested by comparing CO2 flux measurements to a 40-L chamber, a 1-m/cu chamber, and eddy correlation. Results suggest that flux measurements with the prototype chamber are consistent with measurements by other methods to within about 20 percent. A simple empirical equation based on 10-cm soil temperature, 0- to 10-cm soil volumetric water content, and leaf area index predicts the soil surface CO2 flux with a rms error of 1.2 micro-mol sq m/s for all three sites. Further evidence supports using this equation to evaluate soil surface CO2 during the 1987 FIFE experiment. The soil surface CO2 fluxes when averaged over 24 hours are comparable to daily gross canopy photosynthetic rates. For 6 days of data the net daily accumulation of carbon is about 0.6 g CO2 sq m/d; this is only a few percent of the daily gross accumulation of carbon by photosynthesis. As the soil became drier in 1989, the net accumulation of carbon by the prairie increased, suggesting that the soil flux is more sensitive to temperature and drought than the photosynthetic fluxes.

  1. Patterns and possible mechanisms of soil CO2 uptake in sandy soil.

    Science.gov (United States)

    Fa, Ke-Yu; Zhang, Yu-Qing; Wu, Bin; Qin, Shu-Gao; Liu, Zhen; She, Wei-Wei

    2016-02-15

    It has been reported that soils in drylands can absorb CO2, although the patterns and mechanisms of such a process remain under debate. To address this, we investigated the relationships between soil CO2 flux and meteorological factors and soil properties in Northwest China to reveal the reasons for "anomalous" soil CO2 flux in a desert ecosystem. Soil CO2 flux increased significantly and exponentially with surficial turbulence at the diel scale under dry conditions (Psoil CO2 flux demonstrated remarkable negative correlation with soil air pressure (Psoil water content was insufficient to dissolve the absorbed CO2 in dry conditions, but was sufficient in wet conditions. The concentration of soil HCO3(-) in the morning was higher than in the evening in dry conditions, but this pattern was reversed in wet conditions. These results imply that CO2 outgassing induced by turbulence, expansion of soil air, CO2 effusion from soil water, and carbonate precipitation during daytime can explain the abiotic diurnal CO2 release. Moreover, CO2 pumping from the atmosphere into the soil, caused mainly by carbonate dissolution, can account for nocturnal CO2 absorption in dry conditions. The abiotic soil CO2 flux pattern (CO2 absorption throughout the diel cycle) in wet conditions can be attributed to downward mass flow of soil CO2 and intensified soil air shrinkage, CO2 dissolving in soil water, and carbonate dissolution. These results provide a basis for determining the location of abiotic fixed carbon within soils in desert ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Intra-aggregate CO2 enrichment: a modelling approach for aerobic soils

    Science.gov (United States)

    Schlotter, D.; Schack-Kirchner, H.

    2013-02-01

    CO2 concentration gradients inside soil aggregates, caused by the respiration of soil microorganisms and fungal hyphae, might lead to variations in the soil solution chemistry on a mm-scale, and to an underestimation of the CO2 storage. But, up to now, there seems to be no feasible method for measuring CO2 inside natural aggregates with sufficient spatial resolution. We combined a one-dimensional model for gas diffusion in the inter-aggregate pore space with a cylinder diffusion model, simulating the consumption/production and diffusion of O2 and CO2 inside soil aggregates with air- and water-filled pores. Our model predicts that for aerobic respiration (respiratory quotient = 1) the intra-aggregate increase in the CO2 partial pressure can never be higher than 0.9 kPa for siliceous, and 0.1 kPa for calcaric aggregates, independent of the level of water-saturation. This suggests that only for siliceous aggregates CO2 produced by aerobic respiration might cause a high small-scale spatial variability in the soil solution chemistry. In calcaric aggregates, however, the contribution of carbonate species to the CO2 transport should lead to secondary carbonates on the aggregate surfaces. As regards the total CO2 storage in aerobic soils, both siliceous and calcaric, the effect of intra-aggregate CO2 gradients seems to be negligible. To assess the effect of anaerobic respiration on the intra-aggregate CO2 gradients, the development of a device for measuring CO2 on a mm-scale in soils is indispensable.

  3. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

    Science.gov (United States)

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram

    2014-04-01

    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  4. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    Science.gov (United States)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal

  5. Simple and fast technique to measure CO2 profiles in soil

    International Nuclear Information System (INIS)

    Fang, C.; Moncrieff, J.B.

    1998-01-01

    We describe a simple method for sampling soil gas at different profile depths and analyzing CO 2 concentration in the gas sample. Soil gas samples were taken on the soil surface from each chosen depth through a gas circulation system and analyzed in situ with an infrared gas analyzer. The method is suitable for quickly handling a large number of soil gas samples in the field. (author)

  6. Seasonal soil CO2 flux under big sagebrush (Artemisia tridentata Nutt.)

    Science.gov (United States)

    Michael C. Amacher; Cheryl L. Mackowiak

    2011-01-01

    Soil respiration is a major contributor to atmospheric CO2, but accurate landscape-scale estimates of soil CO2 flux for many ecosystems including shrublands have yet to be established. We began a project to measure, with high spatial and temporal resolution, soil CO2 flux in a stand (11 x 25 m area) of big sagebrush (Artemisia tridentata Nutt.) at the Logan, Utah,...

  7. Total (fumarolic?+?diffuse soil) CO2 output from Furnas volcano

    OpenAIRE

    Pedone, M.; Viveiros, F.; Aiuppa, A.; Giudice, G.; Grassa, F.; Gagliano, A. L.; Francofonte, V.; Ferreira, T.

    2015-01-01

    Furnas volcano, in S?o Miguel island (Azores), being the surface expression of rising hydrothermal steam, is the site of intense carbon dioxide (CO2) release by diffuse degassing and fumaroles. While the diffusive CO2 output has long (since the early 1990s) been characterized by soil CO2 surveys, no information is presently available on the fumarolic CO2 output. Here, we performed (in August 2014) a study in which soil CO2 degassing survey was combined for the first time with the measurement ...

  8. Land use and rainfall effect on soil CO2 fluxes in a Mediterranean agroforestry system

    Science.gov (United States)

    Quijano, Laura; Álvaro-Fuentes, Jorge; Lizaga, Iván; Navas, Ana

    2017-04-01

    Soils are the largest C reservoir of terrestrial ecosystems and play an important role in regulating the concentration of CO2 in the atmosphere. The exchange of CO2 between the atmosphere and soil controls the balance of C in soils. The CO2 fluxes may be influenced by climate conditions and land use and cover change especially in the upper soil organic layer. Understanding C dynamics is important for maintaining C stocks to sustain and improve soil quality and to enhance sink C capacity of soils. This study focuses on the response of the CO2 emitted to rainfall events from different land uses (i.e. forest, abandoned cultivated soils and winter cereal cultivated soils) in a representative Mediterranean agroforestry ecosystem in the central part of the Ebro basin, NE Spain (30T 4698723N 646424E). A total of 30 measurement points with the same soil type (classified as Calcisols) were selected. Soil CO2 flux was measured in situ using a portable EGM-4 CO2 analyzer PPSystems connected to a dynamic chamber system (model CFX-1, PPSystems) weekly during autumn 2016. Eleven different rainfall events were measured at least 24 hours before (n=7) and after the rainfall event (n=4). Soil water content and temperature were measured at each sampling point within the first 5 cm. Soil samples were taken at the beginning of the experiment to determine soil organic carbon (SOC) content using a LECO RC-612. The mean SOC for forest, abandoned and cultivated soils were 2.5, 2.7 and 0.6 %, respectively. The results indicated differences in soil CO2 fluxes between land uses. The field measurements of CO2 flux show that before cereal sowing the highest values were recorded in the abandoned soils varying from 56.1 to 171.9 mg CO2-C m-2 h-1 whereas after cereal sowing the highest values were recorded in cultivated soils ranged between 37.8 and 116.2 mg CO2-C m-2 h-1 indicating the agricultural impact on CO2 fluxes. In cultivated soils, lower mean CO2 fluxes were measured after direct seeding

  9. Soil CO2 efflux of a larch forest in northern Japan

    Directory of Open Access Journals (Sweden)

    Y. Fujinuma

    2010-11-01

    Full Text Available We had continuously measured soil CO2 efflux (Rs in a larch forest in northern Japan at hourly intervals for the snow-free period in 2003 with an automated chamber system and partitioned Rs into heterotrophic respiration (Rh and autotrophic respiration (Rr by using the trench method. In addition, we applied the soil CO2 concentration gradients method to continuously measure soil CO2 profiles under snowpack in the snowy period and to partition Rs into topsoil (Oa and A horizons CO2 efflux (Ft with a depth of 0.13 m and sub-soil (C horizon CO2 efflux (Fc. We found that soil CO2 effluxes were strongly affected by the seasonal variation of soil temperature but weakly correlated with soil moisture, probably because the volumetric soil moisture (30–40% at 95% confidence interval was within a plateau region for root and microbial activities. The soil CO2 effluxes changed seasonally in parallel with soil temperature in topsoil with the peak in late summer. On the other hand, the contribution of Rr to Rs was the largest at about 50% in early summer, when canopy photosynthesis and plant growth were more active. The temperature sensitivity (Q10 of Rr peaked in June. Under snowpack, Rs was stable until mid-March and then gradually increased with snow melting. Rs summed up to 79 gC m−2 during the snowy season for 4 months. The annual Rs was determined at 934 gC m−2 y−1 in 2003, which accounted for 63% of ecosystem respiration. The annual contributions of Rh and Rs to Rs were 57% and 43%, respectively. Based on the gradient approach, Rs was partitioned vertically into litter (Oi and Oe horizons with a depth of 0.01–0.02 m, topsoil and sub-soil respirations with proportions of 6, 72 and 22%, respectively, on an annual basis. The vertical distribution of CO2 efflux was consistent with those of soil carbon and root biomass.

  10. The concurrent use of novel soil surface microclimate measurements to evaluate CO2 pulses in biocrusted interspaces in a cool desert ecosystem

    Science.gov (United States)

    Tucker, Colin; McHugh, Theresa A.; Howell, Armin; Gill, Richard; Weber, Bettina; Belnap, Jayne; Grote, Ed; Reed, Sasha C.

    2017-01-01

    Carbon cycling associated with biological soil crusts, which occupy interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the ‘mantle of fertility’), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report a multi-sensor approach to simultaneously measuring temperature and moisture of this biocrust surface layer (0–2 mm), and the deeper soil profile, concurrent with automated measurement of surface soil CO2effluxes. Our results illuminate robust relationships between biocrust water content and field CO2 pulses that have previously been difficult to detect and explain. All observed CO2 pulses over the measurement period corresponded to surface wetting events, including when the wetting events did not penetrate into the soil below the biocrust layer (0–2 mm). The variability of temperature and moisture of the biocrust surface layer was much greater than even in the 0–5 cm layer of the soil beneath the biocrust, or deeper in the soil profile. We therefore suggest that coupling surface measurements of biocrust moisture and temperature to automated CO2flux measurements may greatly improve our understanding of the climatic sensitivity of carbon cycling in biocrusted interspaces in our study region, and that this method may be globally relevant and applicable.

  11. A dynamic soil chamber system coupled with a tunable diode laser for online measurements of delta-13C, delta-18O, and efflux rate of soil respired CO2

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Heath H [Los Alamos National Laboratory; Mcdowell, Nate [Los Alamos National Laboratory; Hanson, David [UNM; Hunt, John [LANDCARE RESEARCH

    2009-01-01

    High frequency observations of the stable isotopic composition of CO(2) effluxes from soil have been sparse due in part to measurement challenges. We have developed an open-system method that utilizes a flow-through chamber coupled to a tunable diode laser (TDL) to quantify the rate of soil CO(2) efflux and its delta(13)C and delta(18)O values (delta(13)C(R) and delta(18)O(R), respectively). We tested the method first in the laboratory using an artificial soil test column and then in a semi-arid woodland. We found that the CO(2) efflux rates of 1.2 to 7.3 micromol m(-2) s(-1) measured by the chamber-TDL system were similar to measurements made using the chamber and an infrared gas analyzer (IRGA) (R(2) = 0.99) and compared well with efflux rates generated from the soil test column (R(2) = 0.94). Measured delta(13)C and delta(18)O values of CO(2) efflux using the chamber-TDL system at 2 min intervals were not significantly different from source air values across all efflux rates after accounting for diffusive enrichment. Field measurements during drought demonstrated a strong dependency of CO(2) efflux and isotopic composition on soil water content. Addition of water to the soil beneath the chamber resulted in average changes of +6.9 micromol m(-2) s(-1), -5.0 per thousand, and -55.0 per thousand for soil CO(2) efflux, delta(13)C(R) and delta(18)O(R), respectively. All three variables initiated responses within 2 min of water addition, with peak responses observed within 10 min for isotopes and 20 min for efflux. The observed delta(18)O(R) was more enriched than predicted from temperature-dependent H(2)O-CO(2) equilibration theory, similar to other recent observations of delta(18)O(R) from dry soils (Wingate L, Seibt U, Maseyk K, Ogee J, Almeida P, Yakir D, Pereira JS, Mencuccini M. Global Change Biol. 2008; 14: 2178). The soil chamber coupled with the TDL was found to be an effective method for capturing soil CO(2) efflux and its stable isotope composition at high

  12. Soil [N] modulates soil C cycling in CO2-fumigated tree stands

    DEFF Research Database (Denmark)

    Dieleman, W. I. J.; Luyssaert, S.; Rey, A.

    2010-01-01

    Under elevated atmospheric CO2 concentrations, soil carbon (C) inputs are typically enhanced, suggesting larger soil C sequestration potential. However, soil C losses also increase and progressive nitrogen (N) limitation to plant growth may reduce the CO2 effect on soil C inputs with time. We...... compiled a data set from 131 manipulation experiments, and used meta-analysis to test the hypotheses that: (1) elevated atmospheric CO2 stimulates soil C inputs more than C losses, resulting in increasing soil C stocks; and (2) that these responses are modulated by N. Our results confirm that elevated CO2...... induces a C allocation shift towards below-ground biomass compartments. However, the increased soil C inputs were offset by increased heterotrophic respiration (Rh), such that soil C content was not affected by elevated CO2. Soil N concentration strongly interacted with CO2 fumigation: the effect...

  13. Mind the gap: non-biological processes contributing to soil CO2 efflux.

    Science.gov (United States)

    Rey, Ana

    2015-05-01

    Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. This study highlights some deficiencies for a proper understanding of soil CO2 efflux focusing on processes of soil CO2 production and transport that have not received enough attention in the current soil respiration literature. It has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration), but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. Besides the microbial decomposition of litter, solar radiation is responsible for photodegradation or photochemical degradation of litter. Diffusion is considered to be the main mechanism of CO2 transport in the soil, but changes in atmospheric pressure and thermal convection may also be important mechanisms driving soil CO2 efflux greater than diffusion under certain conditions. Lateral fluxes of carbon as dissolved organic and inorganic carbon occur and may cause an underestimation of soil CO2 efflux. Traditionally soil CO2 efflux has been measured with accumulation chambers assuming that the main transport mechanism is diffusion. New techniques are available such as improved automated chambers, CO2 concentration profiles and isotopic techniques that may help to elucidate the sources of carbon from soils. We need to develop specific and standardized methods for different CO2 sources to quantify this flux on a global scale. Biogeochemical models should include biological and non-biological CO2 production processes before we can predict the response of soil CO2 efflux to climate change. Improving our understanding of the processes involved in soil CO2 efflux should be a research priority given the importance of this flux in the global

  14. Spatial variability of soil CO2 emission in different topographic positions

    Directory of Open Access Journals (Sweden)

    Liziane de Figueiredo Brito

    2010-01-01

    Full Text Available The spatial variability of soil CO2 emission is controlled by several properties related to the production and transport of CO2 inside the soil. Considering that soil properties are also influenced by topography, the objective of this work was to investigate the spatial variability of soil CO2 emission in three different topographic positions in an area cultivated with sugarcane, just after mechanical harvest. One location was selected on a concave-shaped form and two others on linear-shaped form (in back-slope and foot-slope. Three grids were installed, one in each location, containing 69 points and measuring 90 x 90 m each. The spatial variability of soil CO2 emission was characterized by means of semivariance. Spatial variability models derived from soil CO2 emission were exponential in the concave location while spherical models fitted better in the linear shaped areas. The degree of spatial dependence was moderate in all cases and the range of spatial dependence for the CO2 emission in the concave area was 44.5 m, higher than the mean value obtained for the linear shaped areas (20.65 m. The spatial distribution maps of soil CO2 emission indicate a higher discontinuity of emission in the linear form when compared to the concave form.

  15. Characteristics of CO2 release from forest soil in the mountains near Beijing.

    Science.gov (United States)

    Sun, Xiang Yang; Gao, Cheng Da; Zhang, Lin; Li, Su Yan; Qiao, Yong

    2011-04-01

    CO2 release from forest soil is a key driver of carbon cycling between the soil and atmosphere ecosystem. The rate of CO2 released from soil was measured in three forest stands (in the mountainous region near Beijing, China) by the alkaline absorption method from 2004 to 2006. The rate of CO2 released did not differ among the three stands. The CO2 release rate ranged from - 341 to 1,193 mg m(-2) h(-1), and the mean value over all three forests and sampling times was 286 mg m(-2) h(-1). CO2 release was positively correlated with soil water content and the soil temperature. Diurnally, CO2 release was higher in the day than at night. Seasonally, CO2 release was highest in early autumn and lowest in winter; in winter, negative values of CO2 release suggested that CO2 was absorbed by soil.

  16. Stem girdling affects the quantity of CO2 transported in xylem as well as CO2 efflux from soil.

    Science.gov (United States)

    Bloemen, Jasper; Agneessens, Laura; Van Meulebroek, Lieven; Aubrey, Doug P; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2014-02-01

    There is recent clear evidence that an important fraction of root-respired CO2 is transported upward in the transpiration stream in tree stems rather than fluxing to the soil. In this study, we aimed to quantify the contribution of root-respired CO2 to both soil CO2 efflux and xylem CO2 transport by manipulating the autotrophic component of belowground respiration. We compared soil CO2 efflux and the flux of root-respired CO2 transported in the transpiration stream in girdled and nongirdled 9-yr-old oak trees (Quercus robur) to assess the impact of a change in the autotrophic component of belowground respiration on both CO2 fluxes. Stem girdling decreased xylem CO2 concentration, indicating that belowground respiration contributes to the aboveground transport of internal CO2 . Girdling also decreased soil CO2 efflux. These results confirmed that root respiration contributes to xylem CO2 transport and that failure to account for this flux results in inaccurate estimates of belowground respiration when efflux-based methods are used. This research adds to the growing body of evidence that efflux-based measurements of belowground respiration underestimate autotrophic contributions. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  17. Preliminary estimation of Vulcano of CO2 budget and continuous monitoring of summit soil CO2 flux

    OpenAIRE

    Inguaggiato, S.; Mazot, A.; Diliberto, I. S.; Rouwet, D.; Vita, F.; Capasso, G.; Bobrowski, N.; Inguaggiato, C.; Grassa, F.

    2008-01-01

    Total CO2 output from fumaroles, soil gases, bubbling and water dissolved gases were estimated at Vulcano Island, Italy. The fumaroles output has been estimated from SO2 plume flux, while soil flux emission has been carried out through 730 CO2 fluxes measured on the island surface, performed by means of accumulation chamber method. Vulcano Island, located in the Aeolian Archipelago, is an active volcano that has been in state of solphataric activity, since the last eru...

  18. Depth-Dependent Mineral Soil CO2 Production Processes: Sensitivity to Harvesting-Induced Changes in Soil Climate.

    Science.gov (United States)

    Kellman, Lisa; Myette, Amy; Beltrami, Hugo

    2015-01-01

    Forest harvesting induces a step change in the climatic variables (temperature and moisture), that control carbon dioxide (CO2) production arising from soil organic matter decomposition within soils. Efforts to examine these vertically complex relationships in situ within soil profiles are lacking. In this study we examined how the climatic controls on CO2 production change within vertically distinct layers of the soil profile in intact and clearcut forest soils of a humid temperate forest system of Atlantic Canada. We measured mineral soil temperature (0, 5, 10, 20, 50 and 100 cm depth) and moisture (0-15 cm and 30-60 cm depth), along with CO2 surface efflux and subsurface concentrations (0, 2.5, 5, 10, 20, 35, 50, 75 and 100 cm depth) in 1 m deep soil pits at 4 sites represented by two forest-clearcut pairs over a complete annual cycle. We examined relationships between surface efflux at each site, and soil heat, moisture, and mineral soil CO2 production. Following clearcut harvesting we observed increases in temperature through depth (1-2°C annually; often in excess of 4°C in summer and spring), alongside increases in soil moisture (30%). We observed a systematic breakdown in the expected exponential relationship between CO2 production and heat with mineral soil depth, consistent with an increase in the role moisture plays in constraining CO2 production. These findings should be considered in efforts to model and characterize mineral soil organic matter decomposition in harvested forest soils.

  19. The interaction of soil phototrophs and fungi with pH and their impact on soil CO2, CO18O and OCS exchange.

    Science.gov (United States)

    Sauze, Joana; Ogée, Jérôme; Maron, Pierre-Alain; Crouzet, Olivier; Nowak, Virginie; Wohl, Steven; Kaisermann, Aurore; Jones, Sam P; Wingate, Lisa

    2017-12-01

    The stable oxygen isotope composition of atmospheric CO 2 and the mixing ratio of carbonyl sulphide (OCS) are potential tracers of biospheric CO 2 fluxes at large scales. However, the use of these tracers hinges on our ability to understand and better predict the activity of the enzyme carbonic anhydrase (CA) in different soil microbial groups, including phototrophs. Because different classes of the CA family (α, β and γ) may have different affinities to CO 2 and OCS and their expression should also vary between different microbial groups, differences in the community structure could impact the 'community-integrated' CA activity differently for CO 2 and OCS. Four soils of different pH were incubated in the dark or with a diurnal cycle for forty days to vary the abundance of native phototrophs. Fluxes of CO 2 , CO 18 O and OCS were measured to estimate CA activity alongside the abundance of bacteria, fungi and phototrophs. The abundance of soil phototrophs increased most at higher soil pH. In the light, the strength of the soil CO 2 sink and the CA-driven CO 2 -H 2 O isotopic exchange rates correlated with phototrophs abundance. OCS uptake rates were attributed to fungi whose abundance was positively enhanced in alkaline soils but only in the presence of increased phototrophs. Our findings demonstrate that soil-atmosphere CO 2 , OCS and CO 18 O fluxes are strongly regulated by the microbial community structure in response to changes in soil pH and light availability and supports the idea that different members of the microbial community express different classes of CA, with different affinities to CO 2 and OCS.

  20. One strategy for estimating the potential soil carbon storage due to CO2 fertilization

    International Nuclear Information System (INIS)

    Harrison, K.G.; Bonani, G.

    1994-01-01

    Soil radiocarbon measurements can be used to estimate soil carbon turnover rates and inventories. A labile component of soil carbon has the potential to respond to perturbations such as CO 2 fertilization, changing climate, and changing land use. Soil carbon has influenced past and present atmospheric CO 2 levels and will influence future levels. A model is used to calculate the amount of additional carbon stored in soil because of CO 2 fertilization

  1. Automated online measurement of N2, N2O, NO, CO2, and CH4 emissions based on a gas-flow-soil-core technique.

    Science.gov (United States)

    Liao, Tingting; Wang, Rui; Zheng, Xunhua; Sun, Yang; Butterbach-Bahl, Klaus; Chen, Nuo

    2013-11-01

    The gas-flow-soil-core (GFSC) technique allows to directly measure emission rates of denitrification gases of incubated soil cores. However, the technique was still suffering some drawbacks such as inadequate accuracy due to asynchronous detection of dinitrogen (N2) and other gases and low measurement frequency. Furthermore, its application was limited due to intensive manual operation. To overcome these drawbacks, we updated the GFSC system as described by Wang et al. (2011) by (a) using both a chemiluminescent detector and a gas chromatograph detector to measure nitric oxide (NO), (b) synchronizing the measurements of N2, NO, nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), and (c) fully automating the sampling/analysis of all the gases. These technical modifications significantly reduced labor demands by at least a factor of two, increased the measurement frequency from 3 to 6 times per day and resulted in remarkable improvements in measurement accuracy (with detection limits of 0.5, 0.01, 0.05, 2.3 and 0.2μgN or Ch(-1)kg(-1)ds, or 17, 0.3, 1.8, 82, and 6μgN or Cm(-2)h(-1), for N2, N2O, NO, CO2, and CH4, respectively). In some circumstances, the modified system measured significantly more N2 and CO2 and less N2O and NO because of the enhanced measurement frequency. The modified system distinguished the differences in emissions of the denitrification gases and CO2 due to a 20% change in initial carbon supplies. It also remarkably recovered approximately 90% of consumed nitrate during incubation. These performances validate the technical improvement, and indicate that the improved GFSC system may provide a powerful research tool for obtaining deeper insights into the processes of soil carbon and nitrogen transformation during denitrification. Copyright © 2013. Published by Elsevier Ltd.

  2. Winter time burst of CO2 from the High Arctic soils of Svalbard

    DEFF Research Database (Denmark)

    Friborg, Thomas; Hansen, Birger; Elberling, Bo

    of relatively few measurements which appear to give small and constant emission rates. Further, most studies of the processes behind winter time emission of CO2 conclude that the flux during this time of year can be linked to the respiratory release of CO2 from soil micro organisms, which is temperature...... the winter at a high arctic location in Svalbard (78°N). Measurements were conducted in the field during the winter season of 2004-2005 and show reliable and continuous measurements of CO2 fluxes down to a level of 0.01 ìmol m-2 s-1 and good correspondence with other types of soil chambers. Our results...... indicate that a substantial part of the annual CO2 emission from the ecosystem occur during the freeze in period, where more CO2 is emitted from the soil over a few weeks than the accumulated flux for the rest of the winter. During the coldest part of the...

  3. Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment.

    Science.gov (United States)

    Burkart, S; Manderscheid, R; Wittich, K-P; Löpmeier, F J; Weigel, H-J

    2011-03-01

    An arable crop rotation (winter barley-sugar beet-winter wheat) was exposed to elevated atmospheric CO(2) concentrations ([CO(2) ]) using a FACE facility (Free-Air CO(2) Enrichment) during two rotation periods. The atmospheric [CO(2) ] of the treatment plots was elevated to 550 ppm during daylight hours (T>5°C). Canopy transpiration (E(C) ) and conductance (G(C) ) were measured at selected intervals (>10% of total growing season) using a dynamic CO(2) /H(2) O chamber measuring system. Plant available soil water content (gravimetry and TDR probes) and canopy microclimate conditions were recorded in parallel. Averaged across both growing seasons, elevated [CO(2) ] reduced E(C) by 9%, 18% and 12%, and G(C) by 9%, 17% and 12% in barley, sugar beet and wheat, respectively. Both global radiation (Rg) and vapour pressure deficit (VPD) were the main driving forces of E(C) , whereas G(C) was mostly related to Rg. The responses of E(C) and especially G(C) to [CO(2) ] enrichment were insensitive to weather conditions and leaf area index. However, differences in LAI between plots counteracted the [CO(2) ] impact on E(C) and thus, at least in part, explained the variability of seasonal [CO(2) ] responses between crops and years. As a consequence of lower transpirational canopy water loss, [CO(2) ] enrichment increased plant available soil water content in the course of the season by ca. 15 mm. This was true for all crops and years. Lower transpirational cooling due to a [CO(2) ]-induced reduction of E(C) increased canopy surface and air temperature by up to 2 °C and 0.5 °C, respectively. This is the first study to address effects of FACE on both water fluxes at canopy scale and water status of a European crop rotation. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. CO2 response to rewetting of hydrophobic soils - Can soil water repellency inhibit the 'Birch effect'?

    Science.gov (United States)

    Sanchez-Garcia, Carmen; Urbanek, Emilia; Doerr, Stefan

    2017-04-01

    Rewetting of dry soils is known to cause a short-term CO2 pulse commonly known as the 'Birch effect'. The displacement of CO2 with water during the process of wetting has been recognised as one of the sources of this pulse. The 'Birch effect' has been extensively observed in many soils, but some studies report a lack of such phenomenon, suggesting soil water repellency (SWR) as a potential cause. Water infiltration in water repellent soils can be severely restricted, causing overland flow or increased preferential flow, resulting in only a small proportion of soil pores being filled with water and therefore small gas-water replacement during wetting. Despite the suggestions of a different response of CO2 fluxes to wetting under hydrophobic conditions, this theory has never been tested. The aim of this study is to test the hypothesis that CO2 pulse does not occur during rewetting of water repellent soils. Dry homogeneous soils at water-repellent and wettable status have been rewetted with different amounts of water. CO2 flux as a response to wetting has been continuously measured with the CO2 flux analyser. Delays in infiltration and non-uniform heterogeneous water flow were observed in water repellent soils, causing an altered response in the CO2 pulse in comparison to typically observed 'Birch effect' in wettable systems. The main conclusion from the study is that water repellency not only affects water relations in soil, but has also an impact on greenhouse gas production and transport and therefore should be included as an important parameter during the sites monitoring and modelling of gas fluxes.

  5. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions

    Science.gov (United States)

    Vincent Jerald. Pacific

    2007-01-01

    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  6. Seasonal dynamics of soil CO2 emission in the boreal forests in Central Siberia

    Science.gov (United States)

    Makhnykina, A. V.; Prokishkin, A. S.; Zyryanov, V.; Verkhovets, S. V.

    2016-12-01

    A large amount of carbon in soil is released to the atmosphere through soil respiration, which is the main pathway of transferring carbon from terrestrial ecosystems (Comstedt et al., 2011). Considering that boreal forests is a large terrestrial sink (Tans et al., 1990) and represent approximately 11 % of the Earth's total land area (Gower et al., 2001), even a small change in soil respiration could significantly intensify - or mitigate - current atmospheric increases of CO2, with potential feedbacks to climate change. The objectives of the present study are: (a) to study the dynamic of CO2emission from the soil surface during summer season (from May to October); (b) to identify the reaction of soil respiration to different amount of precipitation as the main limiting factor in the region. The research was carried out in the pine forests in Central Siberia (60°N, 90°E), Russia. Sample plots were represented by the lichen pine forest, moss pine forest, mixed forest and anthropogenic destroyed area. We used the automated soil CO2 flux system based on the infrared gas analyzer LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths 5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. The presence and type of ground cover substantially affects the value of soil respiration fluxes. The carbon dioxide emission from the soil surface averaged was 5.4 ±2.3 μmol CO2 m-2 s-1. The destroyed area without plant cover demonstrated the lowest soil respiration (0.1-5.6 μmol CO2 m-2 s-1). The lowest soil respiration among forested areas was observed in the feathermoss pine forest. The lichen pine forest soil respiration was characterized by averages values. The maximum soil respiration values and seasonal fluctuations were obtained in the mixed forest (2.3-29.3 μmol CO2 m-2 s-1). The analysis of relation between soil CO2 efflux and amount of precipitation showed that the site without any

  7. Lessons from simultaneous measurements of soil respiration and net ecosystem exchange of CO2 in temperate forests

    Science.gov (United States)

    Renchon, A.; Pendall, E.

    2017-12-01

    Land-surface exchanges of CO2 play a key role in ameliorating or exacerbating climate change. The eddy-covariance method allows direct measurement of net ecosystem-atmosphere exchange of CO2 (NEE), but partitioning daytime NEE into its components - gross primary productivity (GPP) and ecosystem respiration (RE) - remains challenging. Continuous measurements of soil respiration (RS), along with flux towers, have the potential to better constrain data and models of RE and GPP. We use simultaneous half-hourly NEE and RS data to: (1) compare the short-term (fortnightly) apparent temperature sensitivity (Q10) of nighttime RS and RE; (2) assess whether daytime RS can be estimated using nighttime response functions; and (3) compare the long-term (annual) responses of nighttime RS and nighttime RE to interacting soil moisture and soil temperature. We found that nighttime RS has a lower short-term Q10 than nighttime RE. This suggests that the Q10 of nighttime RE is strongly influenced by the Q10 of nighttime above-ground respiration, or possibly by a bias in RE measurements. The short-term Q10 of RS and RE decreased with increasing temperature. In general, daytime RS could be estimated using nighttime RS temperature and soil moisture (r2 = 0.9). However, this results from little to no diurnal variation in RS, and estimating daytime RS as the average of nighttime RS gave similar results (r2 = 0.9). Furthermore, we observed a day-night hysteresis of RS response to temperature, especially when using air temperature and sometimes when using soil temperature at 5cm depth. In fact, during some months, soil respiration observations were lower during daytime compared to nighttime, despite higher temperature in daytime. Therefore, daytime RS modelled from nighttime RS temperature response was overestimated during these periods. RS and RE responses to the combination of soil moisture and soil temperature were similar, and consistent with the DAMM model of soil-C decomposition. These

  8. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    Science.gov (United States)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2003-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  9. SOIL 222Rn CONCENTRATION, CO2 AND CH4 FLUX MEASUREMENTS AROUND THE JWALAMUKHI AREA OF NORTH-WEST HIMALAYAS, INDIA.

    Science.gov (United States)

    Kumar, Arvind; Walia, Vivek; Yang, Tsanyao Frank; Fu, Ching-Chou; Singh, Surinder; Bajwa, Bikramjit Singh; Arora, Vishal

    2016-10-01

    Soil 222 Rn concentration, CO 2 and CH 4 flux measurements were conducted around the Jwalamukhi area of North-West Himalayas, India. During this study, around 37 soil gas points and flux measurements were taken with the aim to assure the suitability of this method in the study of fault zones. For this purpose, RAD 7 (Durridge, USA) was used to monitor radon concentrations, whereas portable diffuse flux meter (West Systems, Italy) was used for the CO 2 and CH 4 flux measurements. The recorded radon concentration varies from 6.1 to 34.5 kBq m -3 with an average value of 16.5 kBq m -3 The anomalous value of radon concentrations was recorded between Jwalamukhi thrust and Barsar thrust. The recorded average of CO 2 and CH 4 flux were 11.8 and 2.7 g m -2 day -1 , respectively. The good correlation between anomalous CO 2 flux and radon concentrations has been observed along the fault zone in the study area, suggesting that radon migration is dependent on CO 2 . © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Transport and transformation of soil-derived CO2, CH4 and DOC sustain CO2 supersaturation in small boreal streams.

    Science.gov (United States)

    Rasilo, Terhi; Hutchins, Ryan H S; Ruiz-González, Clara; Del Giorgio, Paul A

    2017-02-01

    Streams are typically supersaturated in carbon dioxide (CO 2 ) and methane (CH 4 ), and are recognized as important components of regional carbon (C) emissions in northern landscapes. Whereas there is consensus that in most of the systems the CO 2 emitted by streams represents C fixed in the terrestrial ecosystem, the pathways delivering this C to streams are still not well understood. We assessed the contribution of direct soil CO 2 injection versus the oxidation of soil-derived dissolved organic C (DOC) and CH 4 in supporting CO 2 supersaturation in boreal streams in Québec. We measured the concentrations of CO 2 , CH 4 and DOC in 43 streams and adjacent soil waters during summer base-flow period. A mass balance approach revealed that all three pathways are significant, and that the mineralization of soil-derived DOC and CH 4 accounted for most of the estimated stream CO 2 emissions (average 75% and 10%, respectively), and that these estimated contributions did not change significantly between the studied low order (≤3) streams. Whereas some of these transformations take place in the channel proper, our results suggest that they mainly occur in the hyporheic zones of the streams. Our results further show that stream CH 4 emissions can be fully explained by soil CH 4 inputs. This study confirms that these boreal streams, and in particular their hyporheic zones, are extremely active processors of soil derived DOC and CH 4 , not just vents for soil produced CO 2 . Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Soil respiration in relation to photosynthesis of Quercus mongolica trees at elevated CO2.

    Science.gov (United States)

    Zhou, Yumei; Li, Mai-He; Cheng, Xu-Bing; Wang, Cun-Guo; Fan, A-Nan; Shi, Lian-Xuan; Wang, Xiu-Xiu; Han, Shijie

    2010-12-06

    Knowledge of soil respiration and photosynthesis under elevated CO(2) is crucial for exactly understanding and predicting the carbon balance in forest ecosystems in a rapid CO(2)-enriched world. Quercus mongolica Fischer ex Ledebour seedlings were planted in open-top chambers exposed to elevated CO(2) (EC = 500 µmol mol(-1)) and ambient CO(2) (AC = 370 µmol mol(-1)) from 2005 to 2008. Daily, seasonal and inter-annual variations in soil respiration and photosynthetic assimilation were measured during 2007 and 2008 growing seasons. EC significantly stimulated the daytime soil respiration by 24.5% (322.4 at EC vs. 259.0 mg CO(2) m(-2) hr(-1) at AC) in 2007 and 21.0% (281.2 at EC vs. 232.6 mg CO(2) m(-2) hr(-1) at AC) in 2008, and increased the daytime CO(2) assimilation by 28.8% (624.1 at EC vs. 484.6 mg CO(2) m(-2) hr(-1) at AC) across the two growing seasons. The temporal variation in soil respiration was positively correlated with the aboveground photosynthesis, soil temperature, and soil water content at both EC and AC. EC did not affect the temperature sensitivity of soil respiration. The increased daytime soil respiration at EC resulted mainly from the increased aboveground photosynthesis. The present study indicates that increases in CO(2) fixation of plants in a CO(2)-rich world will rapidly return to the atmosphere by increased soil respiration.

  12. Soil CO2 flux baseline in an urban monogenetic volcanic field: the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Mazot, Agnès; Smid, Elaine R.; Schwendenmann, Luitgard; Delgado-Granados, Hugo; Lindsay, Jan

    2013-11-01

    The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m-2 day-1, with an average of 27.1 g m-2 day-1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.

  13. Shallow soil CO2 flow along the San Andreas and Calaveras Faults, California

    Science.gov (United States)

    Lewicki, J.L.; Evans, William C.; Hilley, G.E.; Sorey, M.L.; Rogie, J.D.; Brantley, S.L.

    2003-01-01

    We evaluate a comprehensive soil CO2 survey along the San Andreas fault (SAF) in Parkfield, and the Calaveras fault (CF) in Hollister, California, in the context of spatial and temporal variability, origin, and transport of CO2 in fractured terrain. CO2 efflux was measured within grids with portable instrumentation and continously with meteorological parameters at a fixed station, in both faulted and unfaulted areas. Spatial and temporal variability of surface CO2 effluxes was observed to be higher at faulted SAF and CF sites, relative to comparable background areas. However, ??13C (-23.3 to - 16.4???) and ??14C (75.5 to 94.4???) values of soil CO2 in both faulted and unfaulted areas are indicative of biogenic CO2, even though CO2 effluxes in faulted areas reached values as high as 428 g m-2 d-1. Profiles of soil CO2 concentration as a function of depth were measured at multiple sites within SAF and CF grids and repeatedly at two locations at the SAF grid. Many of these profiles suggest a surprisingly high component of advective CO2 flow. Spectral and correlation analysis of SAF CO2 efflux and meteorological parameter time series indicates that effects of wind speed variations on atmospheric air flow though fractures modulate surface efflux of biogenic CO2. The resulting areal patterns in CO2 effluxes could be erroneously attributed to a deep gas source in the absence of isotopic data, a problem that must be addressed in fault zone soil gas studies.

  14. Soil CO2 efflux among four coniferous forest types of Kashmir Himalaya, India.

    Science.gov (United States)

    Dar, Javid Ahmad; Ganie, Khursheed Ahmad; Sundarapandian, Somaiah

    2015-11-01

    Soil CO2 efflux was measured in four different coniferous forest types (Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), and Abies pindrow (AP)) for a period of 2 years (April 2012 to December 2013). The monthly soil CO2 efflux ranged from 0.8 to 4.1 μmoles CO2 m(-2) s(-1) in 2012 and 1.01 to 5.48 μmoles CO2 m(-2) s(-1) in 2013. The soil CO2 efflux rate was highest in PW forest type in both the years, while it was lowest in MC and CD forest types during 2012 and 2013, respectively. Soil temperature (TS) at a depth of 10 cm ranged from 3.8 to 19.4 °C in 2012 and 3.5 to 19.1 °C in 2013 in all the four forest types. Soil moisture (MS) ranged from 19.8 to 58.6% in 2012 and 18.5 to 58.6% in 2013. Soil CO2 efflux rate was found to be significantly higher in summer than the other seasons and least during winter. Soil CO2 efflux showed a significant positive relationship with TS (R2=0.52 to 0.74), SOC% (R2=0.67), pH (R2=0.68), and shrub biomass (R2=0.51), whereas, only a weak positive relationship was found with soil moisture (R2=0.16 to 0.41), tree density (R2=0.25), tree basal area (R2=0.01), tree biomass (R2=0.07), herb biomass (R2=0.01), and forest floor litter (R2=0.02). Thus, the study indicates that soil CO2 efflux in high mountainous areas is greatly influenced by seasons, soil temperature, and other environmental factors.

  15. Soil pCO2, soil respiration, and root activity in CO2 - fumigated and nitrogen-fertilized ponderosa pine

    Science.gov (United States)

    Dale Johnson; Donn Geisinger; Roger Walker; John Newman; James Vose; Katherine Elliott; Timothy Ball

    1994-01-01

    The purpose of this paper is to describe the effects of C02 and N treatments on soil pC02, calculated CO2 efflux, root biomass and soil carbon in open-top chambers planted with Pinus ponderosa seedlings. Based upon the literature, it was hypothesized that both elevated CO...

  16. Soil CO2 flux in response to wheel traffic in a no-till system

    Science.gov (United States)

    Measurements of soil CO2 flux in the absence of living plants can be used to evaluate the effectiveness of soil management practices for C sequestration, but field CO2 flux is spatially variable and may be affected by soil compaction and percentage of total pore space filled with water (%WFPS). The ...

  17. Sources of CO2 efflux from soil and review of partitioning methods

    International Nuclear Information System (INIS)

    Kuzyakov, Y.

    2006-01-01

    Five main biogenic sources of CO 2 efflux from soils have been distinguished and described according to their turnover rates and the mean residence time of carbon. They are root respiration, rhizomicrobial respiration, decomposition of plant residues, the priming effect induced by root exudation or by addition of plant residues, and basal respiration by microbial decomposition of soil organic matter (SOM). These sources can be grouped in several combinations to summarize CO 2 efflux from the soil including: root-derived CO 2 , plant-derived CO 2 , SOM-derived CO 2 , rhizosphere respiration, heterotrophic microbial respiration (respiration by heterotrophs), and respiration by autotrophs. These distinctions are important because without separation of SOM-derived CO 2 from plant-derived CO 2 , measurements of total soil respiration have very limited value for evaluation of the soil as a source or sink of atmospheric CO 2 and for interpreting the sources of CO 2 and the fate of carbon within soils and ecosystems. Additionally, the processes linked to the five sources of CO 2 efflux from soil have various responses to environmental variables and consequently to global warming. This review describes the basic principles and assumptions of the following methods which allow SOM-derived and root-derived CO 2 efflux to be separated under laboratory and field conditions: root exclusion techniques, shading and clipping, tree girdling, regression, component integration, excised roots and in situ root respiration; continuous and pulse labeling, 13 C natural abundance and FACE, and radiocarbon dating and bomb- 14 C. A short sections cover the separation of the respiration of autotrophs and that of heterotrophs, i.e. the separation of actual root respiration from microbial respiration, as well as methods allowing the amount of CO 2 evolved by decomposition of plant residues and by priming effects to be estimated. All these methods have been evaluated according to their inherent

  18. Inferring 222Rn soil fluxes from ambient 222Rn activity and eddy covariance measurements of CO2

    Directory of Open Access Journals (Sweden)

    S. van der Laan

    2016-11-01

    Full Text Available We present a new methodology, which we call Single Pair of Observations Technique with Eddy Covariance (SPOT-EC, to estimate regional-scale surface fluxes of 222Rn from tower-based observations of 222Rn activity concentration, CO2 mole fractions and direct CO2 flux measurements from eddy covariance. For specific events, the regional (222Rn surface flux is calculated from short-term changes in ambient (222Rn activity concentration scaled by the ratio of the mean CO2 surface flux for the specific event to the change in its observed mole fraction. The resulting 222Rn surface emissions are integrated in time (between the moment of observation and the last prior background levels and space (i.e. over the footprint of the observations. The measurement uncertainty obtained is about ±15 % for diurnal events and about ±10 % for longer-term (e.g. seasonal or annual means. The method does not provide continuous observations, but reliable daily averages can be obtained. We applied our method to in situ observations from two sites in the Netherlands: Cabauw station (CBW and Lutjewad station (LUT. For LUT, which is an intensive agricultural site, we estimated a mean 222Rn surface flux of (0.29 ± 0.02 atoms cm−2 s−1 with values  > 0.5 atoms cm−2 s−1 to the south and south-east. For CBW we estimated a mean 222Rn surface flux of (0.63 ± 0.04 atoms cm−2 s−1. The highest values were observed to the south-west, where the soil type is mainly river clay. For both stations good agreement was found between our results and those from measurements with soil chambers and two recently published 222Rn soil flux maps for Europe. At both sites, large spatial and temporal variability of 222Rn surface fluxes were observed which would be impractical to measure with a soil chamber. SPOT-EC, therefore, offers an important new tool for estimating regional-scale 222Rn surface fluxes. Practical applications furthermore include

  19. LBA-ECO TG-07 Soil CO2 Flux by Automated Chamber, Para, Brazil: 2001-2003

    Science.gov (United States)

    R.K. Varner; M.M. Keller

    2009-01-01

    Measurements of the soil-atmosphere flux of CO2 were made at the km 67 flux tower site in the Tapajos National Forest, Santarem, Para, Brazil. Eight chambers were set up to measure trace gas exchange between the soil and atmosphere about 5 times a day (during daylight and night) at this undisturbed forest site from April 2001 to April 2003. CO2 soil efflux data are...

  20. Soil gas (222Rn, CO2, 4He) behaviour over a natural CO2 accumulation, Montmiral area (Drome, France): geographical, geological and temporal relationships

    International Nuclear Information System (INIS)

    Gal, Frederick; Joublin, Franck; Haas, Hubert; Jean-prost, Veronique; Ruffier, Veronique

    2011-01-01

    The south east basin of France shelters deep CO 2 reservoirs often studied with the aim of better constraining geological CO 2 storage operations. Here we present new soil gas data, completing an existing dataset (CO 2 , 222 Rn, 4 He), together with mineralogical and physical characterisations of soil columns, in an attempt to better understand the spatial distribution of gas concentrations in the soils and to rule on the sealed character of the CO 2 reservoir at present time. Anomalous gas concentrations were found but did not appear to be clearly related to geological structures that may drain deep gases up to the surface, implying a dominant influence of near surface processes as indicated by carbon isotope ratios. Coarse grained, quartz-rich soils favoured the existence of high CO 2 concentrations. Fine grained clayey soils preferentially favoured the existence of 222 Rn but not CO 2 . Soil formations did not act as barriers preventing gas migrations in soils, either due to water content or due to mineralogical composition. No abundant leakage from the Montmiral reservoir can be highlighted by the measurements, even near the exploitation well. As good correlation between CO 2 and 222 Rn concentrations still exist, it is suggested that 222 Rn migration is also CO 2 dependent in non-leaking areas - diffusion dominated systems.

  1. CO2, CH4 and N2O fluxes from soil of a burned grassland in Central Africa

    Directory of Open Access Journals (Sweden)

    R. Valentini

    2010-11-01

    Full Text Available The impact of fire on soil fluxes of CO2, CH4 and N2O was investigated in a tropical grassland in Congo Brazzaville during two field campaigns in 2007–2008. The first campaign was conducted in the middle of the dry season and the second at the end of the growing season, respectively one and eight months after burning. Gas fluxes and several soil parameters were measured in each campaign from burned plots and from a close-by control area preserved from fire. Rain events were simulated at each campaign to evaluate the magnitude and duration of the generated gas flux pulses. In laboratory experiments, soil samples from field plots were analysed for microbial biomass, net N mineralization, net nitrification, N2O, NO and CO2 emissions under different water and temperature soil regimes. One month after burning, field CO2 emissions were significantly lower in burned plots than in the control plots, the average daily CH4 flux shifted from net emission in the unburned area to net consumption in burned plots, no significant effect of fire was observed on soil N2O fluxes. Eight months after burning, the average daily fluxes of CO2, CH4 and N2O measured in control and burned plots were not significantly different. In laboratory, N2O fluxes from soil of burned plots were significantly higher than fluxes from soil of unburned plots only above 70% of maximum soil water holding capacity; this was never attained in the field even after rain simulation. Higher NO emissions were measured in the lab in soil from burned plots at both 10% and 50% of maximum soil water holding capacity. Increasing the incubation temperature from 25 °C to 37 °C negatively affected microbial growth, mineralization and nitrification activities but enhanced N2O and CO2 production. Results indicate that fire did not increase post-burning soil GHG emissions in this tropical grasslands characterized by acidic, well drained and nutrient-poor soil.

  2. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Melling, Lulie; Hatano, Ryusuke

    2005-01-01

    Soil CO 2 flux was measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The soil CO 2 flux ranged from 100 to 533 mg C/m 2 /h for the forest ecosystem, 63 to 245 mg C/m 2 /h for the sago and 46 to 335 mg C/m 2 /h for the oil palm. Based on principal component analysis (PCA), the environmental variables over all sites could be classified into three components, namely, climate, soil moisture and soil bulk density, which accounted for 86% of the seasonal variability. A regression tree approach showed that CO 2 flux in each ecosystem was related to different underlying environmental factors. They were relative humidity for forest, soil temperature at 5 cm for sago and water-filled pore space for oil palm. On an annual basis, the soil CO 2 flux was highest in the forest ecosystem with an estimated production of 2.1 kg C/m 2 /yr followed by oil palm at 1.5 kg C/m 2 /yr and sago at 1.1 kg C/m 2 /yr. The different dominant controlling factors in CO 2 flux among the studied ecosystems suggested that land use affected the exchange of CO 2 between tropical peatland and the atmosphere

  3. Exchange of carbonyl sulfide (OCS) between soils and atmosphere under various CO2 concentrations

    Science.gov (United States)

    Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Andreae, Meinrat O.; Kesselmeier, Jürgen

    2017-06-01

    A new continuous integrated cavity output spectroscopy analyzer and an automated soil chamber system were used to investigate the exchange processes of carbonyl sulfide (OCS) between soils and the atmosphere under laboratory conditions. The exchange patterns of OCS between soils and the atmosphere were found to be highly dependent on soil moisture and ambient CO2 concentration. With increasing soil moisture, OCS exchange ranged from emission under dry conditions to an uptake within an optimum moisture range, followed again by emission at high soil moisture. Elevated CO2 was found to have a significant impact on the exchange rate and direction as tested with several soils. There is a clear tendency toward a release of OCS at higher CO2 levels (up to 7600 ppm), which are typical for the upper few centimeters within soils. At high soil moisture, the release of OCS increased sharply. Measurements after chloroform vapor application show that there is a biotic component to the observed OCS exchange. Furthermore, soil treatment with the fungi inhibitor nystatin showed that fungi might be the dominant OCS consumers in the soils we examined. We discuss the influence of soil moisture and elevated CO2 on the OCS exchange as a change in the activity of microbial communities. Physical factors such as diffusivity that are governed by soil moisture also play a role. Comparing KM values of the enzymes to projected soil water CO2 concentrations showed that competitive inhibition is unlikely for carbonic anhydrase and PEPCO but might occur for RubisCO at higher CO2 concentrations.

  4. Effect of soil compaction and biomass removal on soil CO2 efflux in a Missouri forest

    Science.gov (United States)

    Felix, Jr. Ponder

    2005-01-01

    Forest disturbances associated with harvesting activities can affect soil properties and soil respiration. A soda-lime technique was used to measure soil carbon dioxide (CO2) efflux rates in clearcut plots of a Missouri oak-hickory (Quercus spp. L.-Carya spp. Nutt.) forest 4 years after being treated with two levels of forest...

  5. Elevated CO2 and temperature increase soil C losses from a soybean-maize ecosystem.

    Science.gov (United States)

    Black, Christopher K; Davis, Sarah C; Hudiburg, Tara W; Bernacchi, Carl J; DeLucia, Evan H

    2017-01-01

    Warming temperatures and increasing CO 2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for 3 years within the 9th-11th years of an elevated CO 2 (+200 ppm) experiment on a maize-soybean agroecosystem, measured respiration by roots and soil microbes, and then used a process-based ecosystem model (DayCent) to simulate the decadal effects of warming and CO 2 enrichment on soil C. Both heating and elevated CO 2 increased respiration from soil microbes by ~20%, but heating reduced respiration from roots and rhizosphere by ~25%. The effects were additive, with no heat × CO 2 interactions. Particulate organic matter and total soil C declined over time in all treatments and were lower in elevated CO 2 plots than in ambient plots, but did not differ between heat treatments. We speculate that these declines indicate a priming effect, with increased C inputs under elevated CO 2 fueling a loss of old soil carbon. Model simulations of heated plots agreed with our observations and predicted loss of ~15% of soil organic C after 100 years of heating, but simulations of elevated CO 2 failed to predict the observed C losses and instead predicted a ~4% gain in soil organic C under any heating conditions. Despite model uncertainty, our empirical results suggest that combined, elevated CO 2 and temperature will lead to long-term declines in the amount of carbon stored in agricultural soils. © 2016 John Wiley & Sons Ltd.

  6. Effects of atmospheric CO2 enrichment on soil CO2 efflux in a young longleaf pine system

    Science.gov (United States)

    Elevated atmospheric carbon dioxide (CO2) can affect the quantity and quality of plant tissues which will impact carbon (C) cycling and storage in plant/soil systems and the release of CO2 back to the atmosphere. Research is needed to quantify the effects of elevated CO2 on soil CO2 efflux to predi...

  7. CO2 leakage-induced vegetation decline is primarily driven by decreased soil O2.

    Science.gov (United States)

    Zhang, Xueyan; Ma, Xin; Zhao, Zhi; Wu, Yang; Li, Yue

    2016-04-15

    To assess the potential risks of carbon capture and storage (CCS), studies have focused on vegetation decline caused by leaking CO2. Excess soil CO2 caused by leakage can affect soil O2 concentrations and soil pH, but how these two factors affect plant development remains poorly understood. This hinders the selection of appropriate species to mitigate potential negative consequences of CCS. Through pot experiments, we simulated CO2 leakage to examine its effects on soil pH and soil O2 concentrations. We subsequently assessed how maize growth responded to these changes in soil pH and O2. Decreased soil O2 concentrations significantly reduced maize biomass, and explained 69% of the biomass variation under CO2 leakage conditions. In contrast, although leaked CO2 changed soil pH significantly (from 7.32 to 6.75), it remained within the optimum soil pH range for maize growth. This suggests that soil O2 concentration, not soil pH, influences plant growth in these conditions. Therefore, in case of potential CO2 leakage risks, hypoxia-tolerant species should be chosen to improve plant survival, growth, and yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Grazing exclusion increases soil CO2 emission during the growing season in alpine meadows on the Tibetan Plateau

    Science.gov (United States)

    Guo, Na; Wang, Aidong; Allan Degen, A.; Deng, Bin; Shang, Zhanhuan; Ding, Luming; Long, Ruijun

    2018-02-01

    Soil CO2 emission is a key part of the terrestrial carbon cycle. Grazing exclusion by fencing is often considered a beneficial grassland management option to restore degraded grassland, but its effect on soil CO2 emission on the northeastern Tibetan Plateau is equivocal and is the subject of this study. Using a closed static chamber, we measured diurnal soil CO2 flux weekly from July, 2008, to April, 2009, in response to grazing and grazing exclusion in the alpine meadow and alpine shrub meadow. Concomitantly, soil temperature was measured at depths of 5 cm, 10 cm, 15 cm and 20 cm with digital temperature sensors. It emerged that: 1) non-grazed grasslands emitted more soil CO2 than grazed grasslands over the growing season; 2) the alpine shrub meadow emitted more soil CO2 than the alpine meadow; the annual cumulative soil CO2 emissions of alpine meadow and alpine shrub meadow were 241.5-326.5 g C/m2 and 429.0-512.5 g C/m2, respectively; 3) seasonal patterns were evident with more soil CO2 flux in the growing than in the non-growing season; and 4) the diurnal soil CO2 flux exhibited a single peak across all sampling sites. In addition, soil CO2 flux was correlated positively with soil temperature at 5 cm, but not at the other depths. We concluded that grazing exclusion enhanced soil CO2 emission over the growing season, and decreased carbon sequestration of alpine meadow and alpine shrub meadow on the northeastern Tibetan Plateau. Since an increase in soil temperature increased soil CO2 flux, global warming could have an effect on soil CO2 emission in the future.

  9. Joint interpretation of geoelectrical and soil-gas measurements for monitoring CO2 releases at a natural analogue

    DEFF Research Database (Denmark)

    Sauer, U.; Watanabe, N.; Singh, Ashok

    2014-01-01

    the complex behaviour of temporal variations for the flow patterns. In particular, coupled migration of gas and water plays an important influencing role in this process. Site-specific, near surface geological features and meteorological conditions seem to exert great influence on the degassing pattern...... and flux measurements, self-potential (SP) and geoelectrical surveys) showed that the combination of geophysical methods with soil-gas analysis for mesoscale monitoring of the shallow subsurface above geologic CO2 storages can be a valuable tool for mapping and monitoring potential CO2 spread...... in the subsurface. Three measurement campaigns were undertaken - May 2011, July 2011 and April 2012 - at an analogue site in the Cheb Basin, Czech Republic, with the aim of studying CO2 leakages and their temporal and spatial behaviour. Results of geoelectrical investigations give an insight into the structural...

  10. Measurements of CO2 exchange with an automated chamber system throughout the year: challenges in measuring nighttime respiration on porous peat soil

    Science.gov (United States)

    Koskinen, M.; Minkkinen, K.; Ojanen, P.; Kämäräinen, M.; Laurila, T.; Lohila, A.

    2013-08-01

    We built an automatic chamber system to measure greehouse gas (GHG) exchange in forested peatland ecosystems. We aimed to build a system robust enough which would work throughout the year and could measure through a changing snowpackin addition to producing annual GHG fluxes by integrating the measurements without the need of using models. The system worked rather well throughout the year, but it was not service free. Gap filling of data was still necessary. We observed problems in carbon dioxide (CO2) flux estimation during calm summer nights, when a CO2 concentration gradient from soil/moss system to atmosphere builds up. Chambers greatly overestimated the nighttime respiration. This was due to the disturbance caused by the chamber to the soil-moss CO2 gradient and consequent initial pulse of CO2 to the chamber headspace. We tested different flux calculation and measurement methods to solve this problem. The estimated flux was strongly dependent on (1) the type of the fit (linear and polynomial), (2) the starting point of the fit after closing the chamber, (3) the length of the fit, (4) the speed of the fan mixing the air inside the chamber, and (5) atmospheric turbulence (friction velocity, u*). The best fitting method (the most robust, least random variation) was linear fitting with the period of 120-240 s after chamber closure. Furthermore, the fan should be adjusted to spin at minimum speed to avoid the pulse-effect, but it should be kept on to ensure mixing. If nighttime problems cannot be solved, emissions can be estimated using daytime data from opaque chambers.

  11. Remote Sensing of CO2 Absorption by Saline-Alkali Soils: Potentials and Constraints

    Directory of Open Access Journals (Sweden)

    Wenfeng Wang

    2014-01-01

    Full Text Available CO2 absorption by saline-alkali soils was recently demonstrated in the measurements of soil respiration fluxes in arid and semiarid ecosystems and hypothetically contributed to the long-thought “missing carbon sink.” This paper is aimed to develop the preliminary theory and methodology for the quantitative analysis of CO2 absorption by saline-alkali soils on regional and global scales. Both the technological progress of multispectral remote sensing over the past decades and the conjectures of mechanisms and controls of CO2 absorption by saline-alkali soils are advantageous for remote sensing of such absorption. At the end of this paper, the scheme for remote sensing is presented and some unresolved issues related to the scheme are also proposed for further investigations.

  12. Root colonization with arbuscular mycorrhizal fungi and glomalin-related soil protein (GRSP concentration in hypoxic soils in natural CO2 springs

    Directory of Open Access Journals (Sweden)

    Irena Maček

    2012-03-01

    Full Text Available Changed ratios of soil gases that lead to hypoxia are most often present in waterlogged soils, but can also appear in soils not saturated with water. In natural CO2 springs (mofettes, gases in soil air differ from those in typical soils. In this study, plant roots from the mofette area Stavešinci (Slovenia were sampled in a spatial scale and investigated for AM fungal colonization. AM fungi were found in roots from areas with high geological CO2 concentration, however mycorrhizal intensity was relatively low and no correlation between AM fungal colonization and soil pattern of CO2/O2 concentrations (up to 37% CO2 was found. The relatively high abundance of arbuscules in root cortex indicated existence of functional symbiosis at much higher CO2 concentrations than normally found in soils. In addition, concentration of two different glomalin-related soil protein fractions – EE-GRSP and TG-GRSP – was measured. No significant correlation between any of the fractions and soil gases was found, however the concentration of both fractions was significantly higher in the upper 0–5 cm, compared to the 5–10 cm layer of the soil.

  13. Effects of a holiday week on urban soil CO2 flux: an intensive study in Xiamen, southeastern China

    Science.gov (United States)

    Ye, H.; Wang, K.; Chen, F.

    2012-12-01

    To study the effects of a holiday period on urban soil CO2 flux, CO2 efflux from grassland soil in a traditional park in the city of Xiamen was measured hourly from 28th Sep to 11th Oct, a period that included China's National Day holiday week in 2009. The results of this study revealed that: a) The urban soil CO2 emissions were higher before and after the holiday week and lower during the National Day holiday reflecting changes in the traffic cycles; b) A diurnal cycle where the soil CO2 flux decreased from early morning to noon was associated with CO2 uptake by vegetation which strongly offset vehicle CO2 emissions. The soil CO2 flux increased from night to early morning, associated with reduced CO2 uptake by vegetation; c) During the National Day holiday week in 2009, lower rates of soil respiration were measured after Mid-Autumn Day than earlier in the week, and this was related to a reduced level of human activities and vehicle traffic, reducing the CO2 concentration in the air. Urban holidays have a clear effect on soil CO2 flux through the interactions between vehicle, visitor and vegetation CO2 emissions which indirectly control the use of carbon by plant roots, the rhizosphere and soil microorganisms. Consequently, appropriate traffic controls and tourism travel plans can have positive effects on the soil carbon store and may improve local air quality.

  14. Role of Biotic and Abiotic Processes on Soil CO2 Dynamics in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Risk, D. A.; Macintyre, C. M.; Lee, C.; Cary, C.; Shanhun, F.; Almond, P. C.

    2016-12-01

    In the harsh conditions of the Antarctic Dry Valleys, microbial activity has been recorded via measurements of soil carbon dioxide (CO2) concentration and surface efflux. However, high temporal resolution studies in the Dry Valleys have also shown that abiotic solubility-driven processes can strongly influence (and perhaps even dominate) the CO2 dynamics in these low flux environments and suggests that biological activity may be lower than previously thought. In this study, we aim to improve our understanding of CO2 dynamics (biotic and abiotic) in Antarctic Dry Valley soils using long-term automated measurements of soil CO2 surface flux and soil profile concentration at several sites, often at sub-diel frequency. We hypothesize that soil CO2 variations are driven primarily by environmental factors affecting CO2 solubility in soil solution, mainly temperature, and that these processes may even overprint biologic production in representative Dry Valley soils. Monitoring of all sites revealed only one likely biotic CO2 production event, lasting three weeks during the Austral summer and reaching fluxes of 0.4 µmol/m2/s. Under more typical low flux conditions (sampling campaigns. Subsurface CO2 monitoring and a lab-controlled Antarctic soil simulation experiment confirmed that abiotic processes are capable of dominating soil CO2 variability. Diel temperature cycles crossing the freezing boundary revealed a dual abiotic cycle of solubility cycling and gas exclusion from ice formation observed only by high temporal frequency measurements (30 min). This work demonstrates a need for a numerical model to partition the dynamic abiotic processes underlying any biotic CO2 production in order to understand potential climate-change induced increases in microbial productivity in terrestrial Antarctica.

  15. [Effects of biological soil crust at different succession stages in hilly region of Loess Plateau on soil CO2 flux].

    Science.gov (United States)

    Wang, Ai-Guo; Zhao, Yun-Ge; Xu, Ming-Xiang; Yang, Li-Na; Ming, Jiao

    2013-03-01

    Biological soil crust (biocrust) is a compact complex layer of soil, which has photosynthetic activity and is one of the factors affecting the CO2flux of soil-atmosphere interface. In this paper, the soil CO, flux under the effects of biocrust at different succession stages on the re-vegetated grassland in the hilly region of Loess Plateau was measured by a modified LI-8100 automated CO, flux system. Under light condition, the soil CO2 flux under effects of cyanobacteria crust and moss crust was significantly decreased by 92% and 305%, respectively, as compared with the flux without the effects of the biocrusts. The decrement of the soil CO, flux by the biocrusts was related to the biocrusts components and their biomass. Under the effects of dark colored cyanobacteria crust and moss crust, the soil CO2 flux was decreased by 141% and 484%, respectively, as compared with that in bare land. The diurnal curve of soil CO2 flux under effects of biocrusts presented a trend of 'drop-rise-drop' , with the maximum carbon uptake under effects of cyanobacteria crust and moss crust being 0.13 and -1.02 micromol CO2.m-2.s-1 and occurred at about 8:00 and 9:00 am, respectively, while that in bare land was unimodal. In a day (24 h) , the total CO2 flux under effects of cyanobacteria crust was increased by 7.7% , while that under effects of moss crust was decreased by 29.6%, as compared with the total CO2 flux in bare land. This study suggested that in the hilly region of Loess Plateau, biocrust had significant effects on soil CO2 flux, which should be taken into consideration when assessing the carbon budget of the 'Grain for Green' eco-project.

  16. Soil methane and CO2 fluxes in rainforest and rubber plantations

    Science.gov (United States)

    Lang, Rong; Blagodatsky, Sergey; Goldberg, Stefanie; Xu, Jianchu

    2017-04-01

    Expansion of rubber plantations in South-East Asia has been a land use transformation trend leading to losses of natural forest cover in the region. Besides impact on ecosystem carbon stocks, this conversion influences the dynamics of greenhouse gas fluxes from soil driven by microbial activity, which has been insufficiently studied. Aimed to understand how land use change affects the soil CO2 and CH4 fluxes, we measured surface gas fluxes, gas concentration gradient, and 13C signature in CH4 and soil organic matter in profiles in a transect in Xishuangbanna, including a rainforest site and three rubber plantation sites with age gradient. Gas fluxes were measured by static chamber method and open chamber respiration system. Soil gases were sampled from installed gas samplers at 5, 10, 30, and 75cm depth at representative time in dry and rainy season. The soil CO2 flux was comparable in rainforest and old rubber plantations, while young rubber plantation had the lowest rate. Total carbon content in the surface soil well explained the difference of soil CO2 flux between sites. All sites were CH4 sinks in dry season and uptake decreased in the order of rainforest, old rubber plantations and young rubber plantation. From dry season to rainy season, CH4 consumption decreased with increasing CH4 concentration in the soil profile at all depths. The enrichment of methane by 13CH4 shifted towards to lowerδ13C, being the evidence of enhanced CH4 production process while net surface methane flux reflected the consumption in wet condition. Increment of CH4 concentration in the profile from dry to rainy season was higher in old rubber plantation compared to rainforest, while the shifting of δ13CH4 was larger in rainforest than rubber sites. Turnover rates of soil CO2 and CH4 suggested that the 0-5 cm surface soil was the most active layer for gaseous carbon exchange. δ13C in soil organic matter and soil moisture increased from rainforest, young rubber plantation to old

  17. An examination of the spatial variability of CO2 in the profile of managed forest soils

    International Nuclear Information System (INIS)

    Black, M.; Kellman, L.; Beltrami, H.

    2005-01-01

    Soil carbon dioxide (CO 2 ) profiles are typically used in soil-gas exchange studies. Although surface flux measuring methods may be more efficient for deriving surface soil CO 2 exchange budgets, they do not provide enough information about the generation of gas through depth. This poses a challenge in quantifying the CO 2 generated from different zones and soil carbon pools through time. The combination of subsurface concentration profiles and estimates of soil diffusivity reveal where CO 2 is being generated in the soil. This combined approach offers greater awareness into processes controlling CO 2 production in soils through depth, and clarifies how soil CO 2 exchange processes in these ecosystems can be changed by management regimes and climate change. Although information about spatial variability in subsurface concentrations within forested soils is limited, it is assumed to be high because of the high spatial variability in soil CO 2 flux estimates and the large variation in vegetation distribution and topography within sites. In this study, the soil CO 2 profile was monitored during the fall of 2004 at depths of 0, 5, 20 and 35 cm at 10 microsites of a clear-cut and an 80 year old intact mixed forest in Atlantic Canada. Microsites were about 10 meters apart and represented a range of microtopographical conditions that typically encompass extremes in soil CO 2 profile patterns. Preliminary results reveal predictable patterns in concentration profiles through depth, and increasing CO 2 concentration with depth, consistent with a large soil source of CO 2 . The significant variability in the soil carbon profile between microsites in the clear-cut and intact forest sites will be investigated to determine if distinct microsite patterns can be identified. The feasibility of using this method for providing process-based versus soil C exchange budgeting information at forested sites will also be examined

  18. Dissolved organic carbon and nitrogen mineralization strongly affect co2 emissions following lime application to acidic soil

    International Nuclear Information System (INIS)

    Shaaban, M.; Peng, Q.; Lin, S.; Wu, Y.

    2014-01-01

    Emission of greenhouse gases from agricultural soils has main contribution to the climatic change and global warming. Dynamics of dissolved organic carbon (DOC) and nitrogen mineralization can affect CO/sub 2/ emission from soils. Influence of DOC and nitrogen mineralization on CO/sub 2/ emissions following lime application to acidic soil was investigated in current study. Laboratory experiment was conducted under aerobic conditions with 25% moisture contents (66% water-filled pore space) at 25 degree C in the dark conditions. Different treatments of lime were applied to acidic soil as follows: CK (control), L (low rate of lime: 0.2g lime / 100 g soil) and H (high rate of lime: 0.5g lime /100g soil). CO/sub 2/ emissions were measured by gas chromatography and dissolved organic carbon, NH4 +-N, NO/sub 3/ --N and soil pH were measured during incubation study. Addition of lime to acidic soil significantly increased the concentration of DOC and N mineralization rate. Higher concentrations of DOC and N mineralization, consequently, increased the CO/sub 2/ emissions from lime treated soils. Cumulative CO/sub 2/ emission was 75% and 71% higher from L and H treatments as compared to CK. The results of current study suggest that DOC and N mineralization are critical in controlling gaseous emissions of CO/sub 2/ from acidic soils following lime application. (author)

  19. Measurements of CO2 exchange with an automated chamber system throughout the year: challenges in measuring night-time respiration on porous peat soil

    Directory of Open Access Journals (Sweden)

    M. Koskinen

    2014-01-01

    Full Text Available We built an automatic chamber system to measure greenhouse gas (GHG exchange in forested peatland ecosystems. We aimed to build a system robust enough which would work throughout the year and could measure through a changing snowpack in addition to producing annual GHG fluxes by integrating the measurements without the need of using models. The system worked rather well throughout the year, but it was not service free. Gap filling of data was still necessary. We observed problems in carbon dioxide (CO2 respiration flux estimation during calm summer nights, when a CO2 concentration gradient from soil/moss system to atmosphere builds up. Chambers greatly overestimated the night-time respiration. This was due to the disturbance caused by the chamber to the soil-moss CO2 gradient and consequent initial pulse of CO2 to the chamber headspace. We tested different flux calculation and measurement methods to solve this problem. The estimated flux was strongly dependent on (1 the starting point of the fit after closing the chamber, (2 the length of the fit, (3 the type of the fit (linear and polynomial, (4 the speed of the fan mixing the air inside the chamber, and (5 atmospheric turbulence (friction velocity, u*. The best fitting method (the most robust, least random variation for respiration measurements on our sites was linear fitting with the period of 120–240 s after chamber closure. Furthermore, the fan should be adjusted to spin at minimum speed to avoid the pulse-effect, but it should be kept on to ensure mixing. If night-time problems cannot be solved, emissions can be estimated using daytime data from opaque chambers.

  20. Measurements of CO2 exchange with an automated chamber system throughout the year: challenges in measuring night-time respiration on porous peat soil

    Science.gov (United States)

    Koskinen, M.; Minkkinen, K.; Ojanen, P.; Kämäräinen, M.; Laurila, T.; Lohila, A.

    2014-01-01

    We built an automatic chamber system to measure greenhouse gas (GHG) exchange in forested peatland ecosystems. We aimed to build a system robust enough which would work throughout the year and could measure through a changing snowpack in addition to producing annual GHG fluxes by integrating the measurements without the need of using models. The system worked rather well throughout the year, but it was not service free. Gap filling of data was still necessary. We observed problems in carbon dioxide (CO2) respiration flux estimation during calm summer nights, when a CO2 concentration gradient from soil/moss system to atmosphere builds up. Chambers greatly overestimated the night-time respiration. This was due to the disturbance caused by the chamber to the soil-moss CO2 gradient and consequent initial pulse of CO2 to the chamber headspace. We tested different flux calculation and measurement methods to solve this problem. The estimated flux was strongly dependent on (1) the starting point of the fit after closing the chamber, (2) the length of the fit, (3) the type of the fit (linear and polynomial), (4) the speed of the fan mixing the air inside the chamber, and (5) atmospheric turbulence (friction velocity, u*). The best fitting method (the most robust, least random variation) for respiration measurements on our sites was linear fitting with the period of 120-240 s after chamber closure. Furthermore, the fan should be adjusted to spin at minimum speed to avoid the pulse-effect, but it should be kept on to ensure mixing. If night-time problems cannot be solved, emissions can be estimated using daytime data from opaque chambers.

  1. Soil organic carbon and nitrogen pools drive soil C-CO2 emissions from selected soils in Maritime Antarctica.

    Science.gov (United States)

    Pires, C V; Schaefer, C E R G; Hashigushi, A K; Thomazini, A; Filho, E I F; Mendonça, E S

    2017-10-15

    The ongoing trend of increasing air temperatures will potentially affect soil organic matter (SOM) turnover and soil C-CO 2 emissions in terrestrial ecosystems of Maritime Antarctica. The effects of SOM quality on this process remain little explored. We evaluated (i) the quantity and quality of soil organic matter and (ii) the potential of C release through CO 2 emissions in lab conditions in different soil types from Maritime Antarctica. Soil samples (0-10 and 10-20cm) were collected in Keller Peninsula and the vicinity of Arctowski station, to determine the quantity and quality of organic matter and the potential to emit CO 2 under different temperature scenarios (2, 5, 8 and 11°C) in lab. Soil organic matter mineralization is low, especially in soils with low organic C and N contents. Recalcitrant C form is predominant, especially in the passive pool, which is correlated with humic substances. Ornithogenic soils had greater C and N contents (reaching to 43.15gkg -1 and 5.22gkg -1 for total organic carbon and nitrogen, respectively). C and N were more present in the humic acid fraction. Lowest C mineralization was recorded from shallow soils on basaltic/andesites. C mineralization rates at 2°C were significant lower than at higher temperatures. Ornithogenic soils presented the lowest values of C-CO 2 mineralized by g of C. On the other hand, shallow soils on basaltic/andesites were the most sensitive sites to emit C-CO 2 by g of C. With permafrost degradation, soils on basaltic/andesites and sulfates are expected to release more C-CO 2 than ornithogenic soils. With greater clay contents, more protection was afforded to soil organic matter, with lower microbial activity and mineralization. The trend of soil temperature increases will favor C-CO 2 emissions, especially in the reduced pool of C stored and protected on permafrost, or in occasional Histosols. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    Science.gov (United States)

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.

  3. Unexpected results in Chernozem soil respiration while measuring the effect of a bio-fertilizer on soil microbial activity [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gabriela Bautista

    2017-12-01

    Full Text Available The number of studies investigating the effect of bio-fertilizers is increasing because of their importance in sustainable agriculture and environmental quality. In our experiments, we measured the effect of different fertilizers on soil respiration. In the present study, we were looking for the cause of unexpected changes in CO2 values while examining Chernozem soil samples. We concluded that CO2 oxidizing microbes or methanotrophs may be present in the soil that periodically consume CO2 . This is unusual for a sample taken from the upper layer of well-ventilated Chernozem soil with optimal moisture content.

  4. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux

    Science.gov (United States)

    A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram. Oren

    2014-01-01

    Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...

  5. Soil CO 2 fluxes from direct seeding rice fields under two tillage practices in central China

    Science.gov (United States)

    Li, Cheng-fang; Kou, Zhi-kui; Yang, Jin-hua; Cai, Ming-li; Wang, Jin-ping; Cao, Cou-gui

    2010-07-01

    Agricultural practices affect the production and emission of carbon dioxide (CO 2) from paddy soils. It is crucial to understand the effects of tillage and N fertilization on soil CO 2 flux and its influencing factors for a better comprehension of carbon dynamics in subtropical paddy ecosystems. A 2-yr field study was conducted to assess the effects of tillage (conventional tillage [CT] and no-tillage [NT]) and N fertilization (0 and 210 kg N ha -1) on soil CO 2 fluxes during the 2008 and 2009 rice growing seasons in central China. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the split-plot treatment. The soil CO 2 fluxes were measured 24 times in 2008 and 17 times in 2009. N fertilization did not affect soil CO 2 emissions while tillage affected soil CO 2 emissions, where NT had similar soil CO 2 emissions to CT in 2008, but in 2009, NT significantly increased soil CO 2 emissions. Cumulative CO 2 emissions were 2079-2245 kg CO 2-C ha -1 from NT treatments, and 2084-2141 kg CO 2-C ha -1 from CT treatments in 2008, and were 1257-1401 kg CO 2-C ha -1 from NT treatments, and 1003-1034 kg CO 2-C ha -1 from CT treatments in 2009, respectively. Cumulative CO 2 emissions were significantly related to aboveground biomass and soil organic C. Before drainage of paddy fields, soil CO 2 fluxes were significantly related to soil temperature with correlation coefficients ( R) of 0.67-0.87 in 2008 and 0.69-0.85 in 2009; moreover, the Q 10 values ranged from 1.28 to 1.55 and from 2.10 to 5.21 in 2009, respectively. Our results suggested that NT rice production system appeared to be ineffective in decreasing carbon emission, which suggested that CO 2 emissions from integrated rice-based system should be taken into account to assess effects of tillage.

  6. [Effects of enhanced CO2 fertilization on phytoremediation of DEHP-polluted soil].

    Science.gov (United States)

    Diao, Xiao-Jun; Wang, Shu-Guang; Mu, Nan

    2013-03-01

    Low efficiency of remediation is one of the key issues to be solved in phytoremediation technology. Based on the necessity of reducing CO2 emission in China and the significance of CO2 in plant photosynthesis, this paper studied the effects of enhanced CO2 fertilization on the phytoremediation of polluted soil, selecting the C3 plant mung bean (Vigna radiate) and the C4 plant maize (Zea mays) as test plants for phytoremediation and the DEHP as the target pollutant. DEHP pollution had negative effects on the growth and rhizosphere micro-environment of the two plants. After enhanced CO2 fertilization, the aboveground dry mass of the two plants and the alkaline phosphatase activity in the rhizosphere soils of the two plants increased, the COD activity in the leaves of the two plants decreased, the microbial community in the rhizosphere soils shifted, and the numbers of the microbes with DEHP-tolerance in the rhizosphere soils increased. These changes indicated that enhanced CO2 fertilization could promote the plant growth and the plant tolerance to DEHP stress, and improve the rhizosphere micro-environment. Enhanced CO2 fertilization also increased the DEHP uptake by the two plants, especially their underground parts. All these effects induced the residual DEHP concentration in the rhizospheres of the two plants, especially that of mung bean, decreased obviously, and the phytoremediation efficiency increased. Overall, enhanced CO2 fertilization produced greater effects on C3 plant than on C4 plant. It was suggested that enhanced CO2 fertilization could be a useful measure to enhance the efficiency of phytoremediation.

  7. Do plant species influence soil CO2 and N2O fluxes in a diverse tropical forest?

    Science.gov (United States)

    J.L.M. van Haren; R.C. de Oliveira; N. Restrepo-Coupe; L. Hutyra; P. B. de Camargo; Michael Keller; S.R. Saleska

    2010-01-01

    [1] To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO2 and N2O fluxes close to 300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay‐rich forest sites in central Amazonia. We found that soil CO2 fluxes were 38% higher near large trees than at control sites >10...

  8. Multivariate regulation of soil CO2 and N2 O pulse emissions from agricultural soils.

    Science.gov (United States)

    Liang, Liyin L; Grantz, David A; Jenerette, G Darrel

    2016-03-01

    Climate and land-use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2 ) and nitrous oxide (N2 O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2 ) and six (N2 O) orders of magnitude. Maximal CO2 and N2 O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2 O fluxes and altered their temperature sensitivities (Q10 ) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2 O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2 O flux, while significantly depressing the Q10 for CO2 , and having no effect on the Q10 for N2 O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions. © 2015 John Wiley & Sons Ltd.

  9. Responses of soil microbial activity to cadmium pollution and elevated CO2.

    Science.gov (United States)

    Chen, Yi Ping; Liu, Qiang; Liu, Yong Jun; Jia, Feng An; He, Xin Hua

    2014-03-06

    To address the combined effects of cadmium (Cd) and elevated CO2 on soil microbial communities, DGGE (denaturing gradient gel electrophoresis) profiles, respiration, carbon (C) and nitrogen (N) concentrations, loessial soils were exposed to four levels of Cd, i.e., 0 (Cd0), 1.5 (Cd1.5), 3.0 (Cd3.0) and 6.0 (Cd6.0) mg Cd kg(-1) soil, and two levels of CO2, i.e., 360 (aCO2) and 480 (eCO2) ppm. Compared to Cd0, Cd1.5 increased fungal abundance but decreased bacterial abundance under both CO2 levels, whilst Cd3.0 and Cd6.0 decreased both fungal and bacterial abundance. Profiles of DGGE revealed alteration of soil microbial communities under eCO2. Soil respiration decreased with Cd concentrations and was greater under eCO2 than under aCO2. Soil total C and N were greater under higher Cd. These results suggest eCO2 could stimulate, while Cd pollution could restrain microbial reproduction and C decomposition with the restraint effect alleviated by eCO2.

  10. Extreme CO2 disturbance and the resilience of soil microbial communities

    Science.gov (United States)

    McFarland, Jack W.; Waldrop, Mark P.; Haw, Monica

    2013-01-01

    Carbon capture and storage (CSS) technology has the potential to inadvertently release large quantities of CO2 through geologic substrates and into surrounding soils and ecosystems. Such a disturbance has the potential to not only alter the structure and function of plant and animal communities, but also soils, soil microbial communities, and the biogeochemical processes they mediate. At Mammoth Mountain, we assessed the soil microbial community response to CO2 disturbance (derived from volcanic ‘cold’ CO2) that resulted in localized tree kill; soil CO2 concentrations in our study area ranged from 0.6% to 60%. Our objectives were to examine how microbial communities and their activities are restructured by extreme CO2 disturbance, and assess the response of major microbial taxa to the reintroduction of limited plant communities following an extensive period (15–20 years) with no plants. We found that CO2-induced tree kill reduced soil carbon (C) availability along our sampling transect. In response, soil microbial biomass decreased by an order of magnitude from healthy forest to impacted areas. Soil microorganisms were most sensitive to changes in soil organic C, which explained almost 60% of the variation for microbial biomass C (MBC) along the CO2gradient. We employed phospholipid fatty acid analysis and quantitative PCR (qPCR) to determine compositional changes among microbial communities in affected areas and found substantial reductions in microbial biomass linked to the loss of soil fungi. In contrast, archaeal populations responded positively to the CO2 disturbance, presumably due to reduced competition of bacteria and fungi, and perhaps unique adaptations to energy stress. Enzyme activities important in the cycling of soil C, nitrogen (N), and phosphorus (P) declined with increasing CO2, though specific activities (per unit MBC) remained stable or increased suggesting functional redundancy among restructured communities. We conclude that both the

  11. Sources of CO{sub 2} efflux from soil and review of partitioning methods

    Energy Technology Data Exchange (ETDEWEB)

    Kuzyakov, Y. [University of Hohenheim, Stuttgart (Germany). Institute of Soil Science and Land Evaluation

    2006-03-15

    Five main biogenic sources of CO{sub 2} efflux from soils have been distinguished and described according to their turnover rates and the mean residence time of carbon. They are root respiration, rhizomicrobial respiration, decomposition of plant residues, the priming effect induced by root exudation or by addition of plant residues, and basal respiration by microbial decomposition of soil organic matter (SOM). These sources can be grouped in several combinations to summarize CO{sub 2} efflux from the soil including: root-derived CO{sub 2}, plant-derived CO{sub 2}, SOM-derived CO{sub 2}, rhizosphere respiration, heterotrophic microbial respiration (respiration by heterotrophs), and respiration by autotrophs. These distinctions are important because without separation of SOM-derived CO{sub 2} from plant-derived CO{sub 2}, measurements of total soil respiration have very limited value for evaluation of the soil as a source or sink of atmospheric CO{sub 2} and for interpreting the sources of CO{sub 2} and the fate of carbon within soils and ecosystems. Additionally, the processes linked to the five sources of CO{sub 2} efflux from soil have various responses to environmental variables and consequently to global warming. This review describes the basic principles and assumptions of the following methods which allow SOM-derived and root-derived CO{sub 2} efflux to be separated under laboratory and field conditions: root exclusion techniques, shading and clipping, tree girdling, regression, component integration, excised roots and in situ root respiration; continuous and pulse labeling, {sup 13}C natural abundance and FACE, and radiocarbon dating and bomb-{sup 14}C. A short sections cover the separation of the respiration of autotrophs and that of heterotrophs, i.e. the separation of actual root respiration from microbial respiration, as well as methods allowing the amount of CO{sub 2} evolved by decomposition of plant residues and by priming effects to be estimated. All

  12. Effects of tillage practice and atmospheric CO2 level on soil CO2 efflux

    Science.gov (United States)

    Elevated atmospheric carbon dioxide (CO2) affects both the quantity and quality of plant tissues, which impacts the cycling and storage of carbon (C) within plant/soil systems and thus the rate of CO2 release back to the atmosphere. Research to accurately quantify the effects of elevated CO2 and as...

  13. The Impact of Diesel Oil Pollution on the Hydrophobicity and CO2 Efflux of Forest Soils.

    Science.gov (United States)

    Hewelke, Edyta; Szatyłowicz, Jan; Hewelke, Piotr; Gnatowski, Tomasz; Aghalarov, Rufat

    2018-01-01

    The contamination of soil with petroleum products is a major environmental problem. Petroleum products are common soil contaminants as a result of human activities, and they are causing substantial changes in the biological (particularly microbiological) processes, chemical composition, structure and physical properties of soil. The main objective of this study was to assess the impact of soil moisture on CO 2 efflux from diesel-contaminated albic podzol soils. Two contamination treatments (3000 and 9000 mg of diesel oil per kg of soil) were prepared for four horizons from two forest study sites with different initial levels of soil water repellency. CO 2 emissions were measured using a portable infrared gas analyser (LCpro+, ADC BioScientific, UK) while the soil samples were drying under laboratory conditions (from saturation to air-dry). The assessment of soil water repellency was performed using the water drop penetration time test. An analysis of variance (ANVOA) was conducted for the CO 2 efflux data. The obtained results show that CO 2 efflux from diesel-contaminated soils is higher than efflux from uncontaminated soils. The initially water-repellent soils were found to have a bigger CO 2 efflux. The non-linear relationship between soil moisture content and CO 2 efflux only existed for the upper soil horizons, while for deeper soil horizons, the efflux is practically independent of soil moisture content. The contamination of soil by diesel leads to increased soil water repellency.

  14. Soil CO2, CH4 and N2O effluxes and concentrations in soil profiles down to 15.5m depth in eucalypt plantations under contrasted rainfall regimes

    Science.gov (United States)

    Germon, A.; Nouvellon, Y.; Christophe, J.; Chapuis-Lardy, L.; Robin, A.; Rosolem, C. A.; Gonçalves, J. L. D. M.; Guerrini, I. A.; Laclau, J. P.

    2017-12-01

    Silvicultural practices in planted forests affect the fluxes of greenhouse gases at the soil surface and the major factors driving greenhouse gas production in forest soils (substrate supply, temperature, water content,…) vary with soil depth. Our study aimed to assess the consequences of drought on the temporal variability of CO2, CH4 and N2O fluxes throughout very deep soil profiles in Eucalyptus grandis plantations 3 months before the harvest then in coppice, the first 18 months after clear-cutting. Two treatments were compared: one with 37% of throughfall excluded by plastic sheets (TE), and one without rainfall exclusion (WE). Measurements of soil CO2 efflux were made every two weeks for 30 months using a closed-path Li8100 system in both treatment. Every two weeks for 21 months, CO2, CH4 and N2O surface effluxes were measured using the closed-chamber method and concentrations in the soil were measured at 7 depths down to 15.5 m in both TE and WE. At most measurement dates, soil CO2 efflux were significantly higher in TE than in WE. Across the two treatments and the measurement dates, CO2 concentrations increased from 4446 ± 2188 ppm at 10 cm deep to 15622 ± 3523 ppm at 15.5 m, CH4 concentrations increased from 0.41 ± 0.17 ppm at 10 cm deep to 0.77 ± 0.24 ppm at 15.5 m and N2O concentrations remained roughly constant and were on average 478 ± 55 ppb between soil surface and 15.5 m deep. CO2 and N2O concentrations were on average 20.7 and 7.6% lower in TE than in WE, respectively, across the sampling depths. However, CH4 concentrations in TE were on average 44.4% higher than in WE, throughout the soil profile. Those results suggest that extended drought periods might reduce the production of CO2 and N2O but increase the accumulation of CH4 in eucalypt plantations established in deep tropical soils. Very deep tropical soils cover huge areas worldwide and improving our understanding of the spatiotemporal dynamics of gas concentrations in deep soil layers

  15. Soil CO2 concentrations and efflux dynamics of a tree island in the Pantanal wetland

    Science.gov (United States)

    Lathuillière, Michael J.; Pinto, Osvaldo B.; Johnson, Mark S.; Jassal, Rachhpal S.; Dalmagro, Higo J.; Leite, Nei K.; Speratti, Alicia B.; Krampe, Daniela; Couto, Eduardo G.

    2017-08-01

    The Pantanal is the largest tropical wetland on the planet, and yet little information is available on the biome's carbon cycle. We used an automatic station to measure soil CO2 concentrations and oxidation-reduction potential over the 2014 and 2015 flood cycles of a tree island in the Pantanal that is immune to inundation during the wetland's annual flooding. The soil CO2 concentration profile was then used to estimate soil CO2 efflux over the two periods. In 2014, subsurface soil saturation at 0.30 m depth created conditions in that layer that led to CO2 buildup close to 200,000 ppm and soil oxidation-reduction potential below -300 mV, conditions that were not repeated in 2015 due to annual variability in soil saturation at the site. Mean CO2 efflux over the 2015 flood cycle was 0.023 ± 0.103 mg CO2-C m-2 s-1 representing a total annual efflux of 593 ± 2690 mg CO2-C m-2 y-1. Unlike a nearby tree island site that experiences full inundation during the wet season, here the soil dried quickly following repeated rain events throughout the year, which led to the release of CO2 pulses from the soil. This study highlights not only the complexity and heterogeneity in the Pantanal's carbon balance based on differences in topography, flood cycles, and vegetation but also the challenges of applying the gradient method in the Pantanal due to deviations from steady state conditions.

  16. Effect of elevated CO2 on chlorpyriphos degradation and soil microbial activities in tropical rice soil.

    Science.gov (United States)

    Adak, Totan; Munda, Sushmita; Kumar, Upendra; Berliner, J; Pokhare, Somnath S; Jambhulkar, N N; Jena, M

    2016-02-01

    Impact of elevated CO2 on chlorpyriphos degradation, microbial biomass carbon, and enzymatic activities in rice soil was investigated. Rice (variety Naveen, Indica type) was grown under four conditions, namely, chambered control, elevated CO2 (550 ppm), elevated CO2 (700 ppm) in open-top chambers and open field. Chlorpyriphos was sprayed at 500 g a.i. ha(-1) at maximum tillering stage. Chlorpyriphos degraded rapidly from rice soils, and 88.4% of initially applied chlorpyriphos was lost from the rice soil maintained under elevated CO2 (700 ppm) by day 5 of spray, whereas the loss was 80.7% from open field rice soil. Half-life values of chlorpyriphos under different conditions ranged from 2.4 to 1.7 days with minimum half-life recorded with two elevated CO2 treatments. Increased CO2 concentration led to increase in temperature (1.2 to 1.8 °C) that played a critical role in chlorpyriphos persistence. Microbial biomass carbon and soil enzymatic activities specifically, dehydrogenase, fluorescien diacetate hydrolase, urease, acid phosphatase, and alkaline phosphatase responded positively to elevated CO2 concentrations. Generally, the enzyme activities were highly correlated with each other. Irrespective of the level of CO2, short-term negative influence of chlorpyriphos was observed on soil enzymes till day 7 of spray. Knowledge obtained from this study highlights that the elevated CO2 may negatively influence persistence of pesticide but will have positive effects on soil enzyme activities.

  17. Influence of soil erosion on CO2 exchange within the CarboZALF manipulation experiment

    Science.gov (United States)

    Hoffmann, Mathias; Augustin, Jürgen; Sommer, Michael

    2014-05-01

    Agriculture in the hummocky ground moraine landscape of NE-Germany is characterized by an increase in energy crop cultivation, like maize or sorghum. Both enhance lateral C fluxes by erosion and induce feedbacks on C dynamics of agroecosystems as a result of the time limited land cover and the vigorous crop growth. However, the actual impact of these phenomena on the CO2-sink/-source function of agricultural landscapes, is still not clear. Therefore we established the interdisciplinary project 'CarboZALF' in 2009. In our field experiment CarboZALF-D we are monitoring CO2 fluxes for soil-plant systems, which cover all landscape relevant soil states in respect to erosion and deposition, like Albic Cutanic Luvisol, Calcic Cutanic Luvisol, Calcaric Regosol and Endogleyic Colluvic Regosol. Furthermore, we induced erosion / deposition in a manipulation experiment. Automated chamber systems (2.5 m, basal area 1 m2, transparent) are placed at the manipulated sites as well as at one site neither influenced by erosion, nor by deposition. CO2 flux modelling of high temporal resolution includes ecosystem respiration (Reco), gross primary productivity (GPP) and net ecosystem exchange (NEE) based on parallel and continuous measurements of the CO2 exchange, soil and air temperatures as well as photosynthetic active radiation (PAR). Modelling includes gap filling which is needed in case of chamber malfunctions and abrupt disturbances by farming practice. In our presentation we would like to show results of the CO2 exchange measurements for one year. Differences are most pronounced between the non-eroded and the colluvial soil: The Endogleyic Colluvic Regosol showed higher flux rates for Reco and NEE compared to the Albic Cutanic Luvisol. The eroded soil (Calcic Cutanic Luvisol) demonstrated CO2fluxes intermediate between the non-affected and depositional site. Site-specific consequences for the soil C stocks will be also discussed in the presentation.

  18. [Effects of fertilization on soil CO2 flux in Castanea mollissima stand].

    Science.gov (United States)

    Zhang, Jiao-Jiao; Li, Yong-Fu; Jiang, Pei-Kun; Zhou, Guo-Mo; Shen, Zhen-Ming; Liu, Juan; Wang, Zhan-Lei

    2013-09-01

    In June 2011-June 2012, a fertilization experiment was conducted in a typical Castanea mollissima stand in Lin' an of Zhejiang Province, East China to study the effects of inorganic and organic fertilization on the soil CO2 flux and the relationships between the soil CO2 flux and environmental factors. Four treatments were installed, i. e., no fertilization (CK), inorganic fertilization (IF), organic fertilization (OF), half organic plus half inorganic fertilization (OIF). The soil CO2 emission rate was determined by the method of static closed chamber/GC technique, and the soil temperature, soil moisture content, and soil water-soluble organic carbon (WSOC) concentration were determined by routine methods. The soil CO2 emission exhibited a strong seasonal pattern, with the highest rate in July or August and the lowest rate in February. The annual accumulative soil CO2 emission in CK was 27.7 t CO2 x hm(-2) x a(-1), and that in treatments IF, OF, and OIF was 29.5%, 47.0%, and 50.7% higher than the CK, respectively. The soil WSOC concentration in treatment IF (105.1 mg kg(-1)) was significantly higher than that in CK (76.6 mg x kg(-1)), but was obviously lower than that in treatments OF (133.0 mg x kg(-1)) and OIF (121.2 mg x kg(-1)). The temperature sensitivity of respiration (Q10) in treatments CK, IF, OF, and OIF was 1.47, 1.75, 1.49, and 1.57, respectively. The soil CO2 emission rate had significant positive correlations with the soil temperature at the depth of 5 cm and the soil WSOC concentration, but no significant correlation with soil moisture content. The increase of the soil WSOC concentration caused by fertilization was probably one of the reasons for the increase of soil CO2 emission from the C. mollissima stand.

  19. CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.

    Science.gov (United States)

    Fleischer, Siegfried

    2003-02-01

    Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the gradient increases into the closed forest. Over the last three decades the capacity of the forest soil to maintain the internal sink process has been limited to a cumulative supply of approximately 1000 and 1500 kg N ha(-1). Beyond this limit the internal soil CO2 sink becomes an additional CO2 source, together with nitrogen leaching. This stage of "nitrogen saturation" is still uncommon in closed forests in southern Scandinavia, however, it occurs in exposed forest edges which receive high atmospheric N-deposition. The soil CO2 gradient, which originally increases from the edge towards the closed forest, becomes reversed.

  20. CO and H2 uptake and emissions by soil: variability of fluxes and their isotopic signatures

    Science.gov (United States)

    Popa, Maria Elena; Chen, Qianjie; Ferrero Lopez, Noelia; Röckmann, Thomas

    2017-04-01

    In order to study the uptake and release of H2 and CO by soil, we performed long term, high frequency measurements with an automatic soil chamber at two sites in the Netherlands (Cabauw - grassland, and Speuld - forest). The measurements were performed over different seasons and cover in total a cumulated interval of about one year. These measurements allow determining separately, for each species, the two distinct fluxes i.e. uptake and release, and investigating their temporal variability and dependencies on environmental variables. Additional experiments were performed for determining the isotopic signatures of the H2 and CO uptake and release by soil. Flask samples were filled from the soil chamber, and then analyzed in the laboratory for the stable isotopic composition of H2 (δD) and CO (δ13C and δ18O). We find that both uptake and release are present at all times, regardless of the direction of the net flux. The emissions are significant for both species and at Cabauw, there are times and places where emissions outweigh the soil uptake. For each species, the two fluxes have different behavior and dependence on external variables, which indicates that they have different origins. The isotope results also support that, for both H2 and CO, uptake and emission occur simultaneously. We were able to determine separately the isotopic effects of the two fluxes. For both H2 and CO, soil uptake is associated with a small positive fractionation (the lighter molecule is taken up faster). The soil uptake fractionation (α = kheavy/klight) was 0.945 ± 0.004 for H2; for CO, the fractionation was 0.992 for 13C and 0.985 for 18O. The isotopic composition of the H2 emitted from the grassland was -530 ± 40 ‰, less depleted that what is expected from the isotopic equilibrium of H2 with water. For CO, the isotopic composition of the soil emission is depleted in 13C compared to atmospheric CO, and lower than the average isotopic composition of plant or soil organic matter.

  1. Soil and Root Respiration Under Elevated CO2 Concentrations During Seedling Growth of Pinus sylvestris var. sylvestriformis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil respiration during seedling growth of Pinus sylvestris var. sylvestriformis. During the four growing seasons (May-October) from 1999 to 2003, the seedlings were exposed to elevated concentrations of CO2 in open-top chambers. The total soil respiration and contribution of root respiration were measured using an LI-6400-09 soil CO2 flux chamber on June 15 and October 8, 2003. To separate root respiration from total soil respiration, three PVC cylinders were inserted approximately 30 cm deep into the soil in each chamber. There were marked diurnal changes in air and soil temperatures on June 15. Both the total soil respiration and the soil respiration without roots showed a strong diurnal pattern, increasing from before sunrise to about 14:00in the afternoon and then decreasing before the next sunrise. No increase in the mean total soil respiration and mean soil respiration with roots severed was observed under the elevated CO2 treatments on June 15, 2003, as compared to the open field and control chamber with ambient CO2. However, on October 8, 2003, the total soil respiration and soil respiration with roots severed in the open field were lower than those in the control and elevated CO2 chambers. The mean contribution of root respiration measured on June 15, 2003, ranged from 8.3% to 30.5% and on October 8, 2003,from 20.6% to 48.6%.

  2. Effect of crustose lichen on soil CO2 efflux in sphagnum moss regime of tundra, west Alaska

    Science.gov (United States)

    Kim, Y.; Park, S. J.; Suzuki, R.; Lee, B. Y.

    2017-12-01

    Increasing ambient temperatures across the Arctic have induced changes in plant extent and phenology, degradation of permafrost, snow depth and covered extent, decomposition of soil organic matter, and subsequently, soil carbon emission to the atmosphere. However, there is fully not understood on the effect of crustose lichen on soil CO2 emission to the atmosphere. Although the spores of lichen are spread by wind and animals, the crustose lichen is infected to the only sphagnum moss widely distributed in the Arctic, and is terminally killed the moss. Here, we report the research findings on the soil CO2 efflux-measurement with forced diffusion (FD) chamber system that is continuously monitored in sphagnum moss regime of west Alaska for the growing season of 2016. The environmental parameters (e.g., soil temperature and moisture) were measured at intact and infected sphagnum moss regime. The FD chamber is measured at an interval of 10-min and 30-min, which is not significant difference between both intervals (R2 = 0.94; n = 1360; RMSE = 0.043; p sphagnum moss, and 0.27(0.47), 0.45(0.17), 0.50(0.22), and 0.31(0.49) in intact sphagnum moss, respectively. This finding demonstrates that 1) soil CO2 in infected sphagnum moss is one of atmospheric CO2 source in June and July, and 2) soil CO2 efflux is not significant difference between both regimes for August and September of 2016.

  3. Divergent Responses of Forest Soil Microbial Communities under Elevated CO2 in Different Depths of Upper Soil Layers.

    Science.gov (United States)

    Yu, Hao; He, Zhili; Wang, Aijie; Xie, Jianping; Wu, Liyou; Van Nostrand, Joy D; Jin, Decai; Shao, Zhimin; Schadt, Christopher W; Zhou, Jizhong; Deng, Ye

    2018-01-01

    Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2 ) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3 -N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. IMPORTANCE The concentration of atmospheric carbon dioxide (CO 2 ) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2 ) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial

  4. Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, LA Selva, Costa Rica

    Science.gov (United States)

    Luitgard Schwendenmann; Edzo Veldkamp; Tania Brenes; Joseph J. O' Brien; Jens Mackensen

    2003-01-01

    Our objectives were to quantify and compare soil CO2, efflux of two doininant soil types in an old-growth neotropical rain forest in the Atlantic zone of Costa Rica, and to evaluate the control of environmental Factors on CO2, release. We measured soil CO2 efflux from eight permanent soil chamhers on...

  5. Atmosphere-soil-vegetation model including CO2 exchange processes: SOLVEG2

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2004-11-01

    A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO 2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO 2 exchanges among the atmosphere, soil, and vegetation. Although the model usually simulates only vertical variation of variables in the surface-layer atmosphere, soil, and vegetation canopy by using meteorological data as top boundary conditions, it can be used by coupling with a three-dimensional atmosphere model. In this paper, details of SOLVEG2, which includes the function of coupling with atmosphere model MM5, are described. (author)

  6. A simple approach to estimate soil organic carbon and soil co/sub 2/ emission

    International Nuclear Information System (INIS)

    Abbas, F.

    2013-01-01

    SOC (Soil Organic Carbon) and soil CO/sub 2/ (Carbon Dioxide) emission are among the indicator of carbon sequestration and hence global climate change. Researchers in developed countries benefit from advance technologies to estimate C (Carbon) sequestration. However, access to the latest technologies has always been challenging in developing countries to conduct such estimates. This paper presents a simple and comprehensive approach for estimating SOC and soil CO/sub 2/ emission from arable- and forest soils. The approach includes various protocols that can be followed in laboratories of the research organizations or academic institutions equipped with basic research instruments and technology. The protocols involve soil sampling, sample analysis for selected properties, and the use of a worldwide tested Rothamsted carbon turnover model. With this approach, it is possible to quantify SOC and soil CO/sub 2/ emission over short- and long-term basis for global climate change assessment studies. (author)

  7. Soil gas ({sup 222}Rn, CO{sub 2}, {sup 4}He) behaviour over a natural CO{sub 2} accumulation, Montmiral area (Drome, France): geographical, geological and temporal relationships

    Energy Technology Data Exchange (ETDEWEB)

    Gal, Frederick, E-mail: f.gal@brgm.f [BRGM, Metrology Monitoring Analysis Department, 3 Avenue Claude-Guillemin, B.P. 36009, 45060 Orleans cedex 2 (France); Joublin, Franck, E-mail: f.joublin@brgm.f [BRGM, Regional Geological Survey, 6 ter, Rue Pierre et Marie Curie, 59260 Lezennes (France); Haas, Hubert, E-mail: h.haas@brgm.f [BRGM, Metrology Monitoring Analysis Department, 3 Avenue Claude-Guillemin, B.P. 36009, 45060 Orleans cedex 2 (France); Jean-prost, Veronique, E-mail: v.jean-prost@brgm.f [BRGM, Metrology Monitoring Analysis Department, 3 Avenue Claude-Guillemin, B.P. 36009, 45060 Orleans cedex 2 (France); Ruffier, Veronique, E-mail: v.ruffier@brgm.f [BRGM, Metrology Monitoring Analysis Department, 3 Avenue Claude-Guillemin, B.P. 36009, 45060 Orleans cedex 2 (France)

    2011-02-15

    The south east basin of France shelters deep CO{sub 2} reservoirs often studied with the aim of better constraining geological CO{sub 2} storage operations. Here we present new soil gas data, completing an existing dataset (CO{sub 2}, {sup 222}Rn, {sup 4}He), together with mineralogical and physical characterisations of soil columns, in an attempt to better understand the spatial distribution of gas concentrations in the soils and to rule on the sealed character of the CO{sub 2} reservoir at present time. Anomalous gas concentrations were found but did not appear to be clearly related to geological structures that may drain deep gases up to the surface, implying a dominant influence of near surface processes as indicated by carbon isotope ratios. Coarse grained, quartz-rich soils favoured the existence of high CO{sub 2} concentrations. Fine grained clayey soils preferentially favoured the existence of {sup 222}Rn but not CO{sub 2}. Soil formations did not act as barriers preventing gas migrations in soils, either due to water content or due to mineralogical composition. No abundant leakage from the Montmiral reservoir can be highlighted by the measurements, even near the exploitation well. As good correlation between CO{sub 2} and {sup 222}Rn concentrations still exist, it is suggested that {sup 222}Rn migration is also CO{sub 2} dependent in non-leaking areas - diffusion dominated systems.

  8. SOIL RESPIRATION RESPONSE TO THREE YEARS OF ELEVATED CO-2 AND N FERTILIZATION IN PONDEROSA PINE (PINUS PONDEROSA DOUG. EX LAWS.)

    Science.gov (United States)

    We measured growing season soil CO-2 evolution under elevated atmospheric (CO-2) and soil nitrogen (N) additions. Our objectives were to determine treatment effects, quantify seasonal variation, and compare two measurement techniques. Elevated (CO-2) treatments were applied in op...

  9. Automated CO2, CH4 and N2O Fluxes from Tree Stems and Soils: Magnitudes, Temporal Patterns and Drivers

    Science.gov (United States)

    Barba, J.; Poyatos, R.; Vargas, R.

    2017-12-01

    The emissions of the main greenhouse gases (GHG; CO2, CH4 and N2O) through tree stems are still an uncertain component of the total GHG balance of forests. Despite that stem CO2 emissions have been studied for several decades, it is still unclear the drivers and spatiotemporal patterns of CH4 and N2O stem emissions. Additionally, it is unknown how stem emissions could be related to soil physiological processes or environmental conditions. We measured CO2, CH4 and N2O emissions hourly from April to July 2017 at two different heights (75 [LStem] and 150cm [HStem]) of bitternut hickory (Carya cordiformis) trees and adjacent soil locations in a forested area in the Mid Atlantic of the USA. We designed an automated system to continuously measure the three greenhouse gases (GHG) in stems and soils. Stem and soil CO2 emissions showed similar seasonal patterns with an average of 6.56±0.09 (soil), 3.72±0.05 (LStem) and 2.47±0.04 µmols m-2 s-1 (HStem) (mean±95% CI). Soil temperature controlled CO2 fluxes at both daily and seasonal scales (R2>0.5 for all cases), but there was no clear effect of soil moisture. The stems were a clear CH4 source with emissions decreasing with height (0.35±0.02 and 0.25±0.01 nmols m-2 s-1 for LStem and HStem, respectively) with no apparent seasonal pattern, and no clear relationship with environmental drivers (e.g., temperature, moisture). In contrast, soil was a CH4 sink throughout the experiment (-0.55±0.02 nmols m-2 s-1) and its seasonal pattern responded to moisture changes. Despite soil and stem N2O emissions did not show a seasonal pattern or apparent dependency on temperature or moisture, they showed net N2O emissions with a decrease in emissions with stem height (0.29±0.05 for soil, 0.38±0.06 for LStem and 0.28±0.05 nmols m-2 s-1 for HStem). The three GHG emissions decreased with stem height at similar rates (33%, 28% and 27% for CO2, CH4 and N2O, respectively). These results suggest that the gases were not produced in the stem

  10. Soil CO 2 Flux in Hövsgöl National Park, Northern Mongolia

    Directory of Open Access Journals (Sweden)

    Avirmed Otgonsuren

    2008-06-01

    Full Text Available We investigated soil CO 2 fl ux and bare soil respiration in grasslands that are located at the southern edge of the Siberian boreal forest in Northern Mongolia. The study area has warmed by almost 1.8 o C over the last 40 years, and the soil and vegetation covers have been changed due to intense nomadic grazing pressure. Bare soil respiration is decreased with increasing grazing pressure, but there was no consistent pattern of total soil CO 2 fl ux under three distinct grazing levels. Bare soil respiration and soil CO 2 fl ux were higher on north-facing slopes than on south-facing slopes, due to high organic matter accumulation and the presence of permafrost. Both bare soil respiration and soil CO 2 fl ux were signi fi cantly higher in riparian areas compared with the lower and upper portions of the south-facing slope. Topography has a stronger effect on variability of soil CO 2 fl ux and bare soil respiration than variability induced by grazing. Inter-annual variability in soil CO 2 fl ux and bare soil respiration was very high, because of high variability in climate conditions.

  11. Soil CO2 evolution: Response from arginine additions

    Science.gov (United States)

    Short-term response of soil C mineralization following drying/rewetting has been proposed as an indicator of soil microbial activity. Houston Black clay was amended with four rates of arginine to vary microbial response and keep other soil properties constant. The evolution of CO2 during one and thr...

  12. Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen

    Science.gov (United States)

    Wunderlich, S.; Borken, W.

    2012-08-01

    Peatlands store large amounts of organic carbon, but the carbon stock is sensitive to changes in precipitation or water table manipulations. Restoration of drained peatlands by drain blocking and flooding is a common measure to conserve and augment the carbon stock of peatland soils. Here, we report to what extent flooding affected the contribution of heterotrophic and rhizosphere respiration to soil CO2 efflux in a grass-dominated mountain fen in Germany. Soil CO2 efflux was measured in three un-manipulated control plots and three flooded plots in two consecutive years. Flooding was achieved by permanent irrigation during the growing seasons. Radiocarbon signatures of CO2 from different sources including soil CO2 efflux, incubated peat cores and live grass roots were repeatedly analyzed for partitioning of soil CO2 efflux. Additionally, heterotrophic respiration and its radiocarbon signature were determined by eliminating rhizosphere respiration in trenched subplots (only control). In the control plots, rhizosphere respiration determined by 14C signatures contributed between 47 and 61% during the growing season, but was small (4 ± 8%) immediately before budding. Trenching revealed a smaller rhizosphere contribution of 33 ± 8% (2009) and 22 ± 9% (2010) during growing seasons. Flooding reduced annual soil CO2 efflux of the fen by 42% in 2009 and by 30% in 2010. The reduction was smaller in 2010 mainly through naturally elevated water level in the control plots. A one-week interruption of irrigation caused a strong short-lived increase in soil CO2 efflux, demonstrating the sensitivity of the fen to water table drawdown near the peat surface. The reduction in soil CO2 efflux in the flooded plots diminished the relative proportion of rhizosphere respiration from 56 to 46%, suggesting that rhizosphere respiration was slightly more sensitive to flooding than heterotrophic respiration.

  13. Soil respiration response to three years of elevated CO2 and N fertilization in ponderosa pine (Pinus ponderosa Doug. ex Laws.)

    Science.gov (United States)

    James M. Vose; Katherine J. Elliott; Dale W. Johnson; David T. Tingey; Mark G. Johnson

    1997-01-01

    We measured growing season soil CO2 evolution under elevated atmospheric [CO2 and soil nitrogen (N) additions. Our objectives were to determine treatment effects, quantify seasonal variation, and compare two measurement techniques. Elevated [CO2] treatments were applied in open-top chambers...

  14. Effect of elevated CO2, O3, and UV radiation on soils.

    Science.gov (United States)

    Formánek, Pavel; Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil N t content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.

  15. Simulating soil N2O emissions and heterotrophic CO2 respiration in arabe systems using FASSET and MoBiLE-DNDC

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Kracher, Daniele; Lægdsmand, Mette

    2011-01-01

    Modelling of soil emissions of nitrous oxide (N2O) and carbon dioxide (CO2) is complicated by complex interactions between processes and factors influencing their production, consumption and transport. In this study N2O emissions and heterotrophic CO2 respiration were simulated from soils under w...... mineral nitrogen, which seemed to originate from deficiencies in simulating degradation of soil organic matter, incorporated residues of catch crops and organic fertilizers. To improve the performance of the models, organic matter decomposition parameters need to be revised.......Modelling of soil emissions of nitrous oxide (N2O) and carbon dioxide (CO2) is complicated by complex interactions between processes and factors influencing their production, consumption and transport. In this study N2O emissions and heterotrophic CO2 respiration were simulated from soils under...... winter wheat grown in three different organic and one inorganic fertilizer-based cropping system using two different models, i.e., MoBiLE-DNDC and FASSET. The two models were generally capable of simulating most seasonal trends of measured soil heterotrophic CO2 respiration and N2O emissions. Annual soil...

  16. Changes in plants and soil microorganisms in an artificial CO2 leakage experiment

    Science.gov (United States)

    Ko, D.; Kim, Y.; Yoo, G.; Chung, H.

    2017-12-01

    Carbon capture and storage (CCS) technology is considered to be a promising technology that can mitigate global climate change by greatly reducing anthropogenic CO2 emissions. Despite the advantage, potential risks of leakage of CO2 from CO2 storage site exists, which may negatively affect organisms in the soil ecosystems. To investigate the short- term impacts of geological CO2 leakage on soil ecosystem, we conducted an artificial CO2 leakage experiment in a greenhouse where plants and soils were exposed to high levels of CO2. Corn was grown in a 1:1 (v/v) mixture of potting and field soil, and 99.99% CO2 gas was injected at a flow rate of 0.1l min-1 for 30 days whereas no gas was injected to control pots. Changes in plant growth, soil characteristics, and bacterial community composition were determined. Mean soil CO2 and O2 concentrations were 31.6% and 15.6%, respectively, in CO2-injected pots, while they were at ambient levels in control pots. The shoot and root length, and chlorophyll contents decreased in CO2-injected pots by 19.4%, 9.7%, and 11.9%, respectively. In addition, the concentration of available N such as NH4+-N and NO3-N was 83.3 to 90.8% higher in CO2-injected pots than in control pots likely due to inhibited plant growth. The results of bacterial 16S rRNA gene pyrosequencing showed that the major phyla in the soils were Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Saccharibacteria_TM7. Among these, the relative abundance of Proteobacteria was lower in CO2-injected than in control pots (28.8% vs. 34.1%) likely due to decreased C availability. On the other hand, the abundance of Saccharibacteria_TM7 was significantly higher in CO2-injected than in control pots (6.0% vs. 1.3%). The changes in soil mineral N and microorganisms in response to injected CO2 was likely due to inhibited plant growth under high soil CO2 conditions, and further studies are needed to determine if belowground CO2 leakage from CO2 storage sites can directly

  17. Carbon sequestration in soybean crop soils: the role of hydrogen-coupled CO2 fixation

    Science.gov (United States)

    Graham, A.; Layzell, D. B.; Scott, N. A.; Cen, Y.; Kyser, T. K.

    2011-12-01

    Conversion of native vegetation to agricultural land in order to support the world's growing population is a key factor contributing to global climate change. However, the extent to which agricultural activities contribute to greenhouse gas emissions compared to carbon storage is difficult to ascertain, especially for legume crops, such as soybeans. Soybean establishment often leads to an increase in N2O emissions because N-fixation leads to increased soil available N during decomposition of the low C:N legume biomass. However, soybean establishment may also reduce net greenhouse gas emissions by increasing soil fertility, plant growth, and soil carbon storage. The mechanism behind increased carbon storage, however, remains unclear. One explanation points to hydrogen coupled CO2 fixation; the process by which nitrogen fixation releases H2 into the soil system, thereby promoting chemoautotrophic carbon fixation by soil microbes. We used 13CO2 as a tracer to track the amount and fate of carbon fixed by hydrogen coupled CO2 fixation during one-year field and laboratory incubations. The objectives of the research are to 1) quantify rates of 13CO2 fixation in soil collected from a field used for long-term soybean production 2) examine the impact of H2 gas concentration on rates of 13CO2 fixation, and 3) measure changes in δ13C signature over time in 3 soil fractions: microbial biomass, light fraction, and acid stable fraction. If this newly-fixed carbon is incorporated into the acid-stable soil C fraction, it has a good chance of contributing to long-term soil C sequestration under soybean production. Soil was collected in the field both adjacent to root nodules (nodule soil) and >3cm away (root soil) and labelled with 13CO2 (1% v/v) in the presence and absence of H2 gas. After a two week labelling period, δ13C signatures already revealed differences in the four treatments of bulk soil: -17.1 for root, -17.6 for nodule, -14.2 for root + H2, and -6.1 for nodule + H2

  18. Frozen cropland soil in northeast China as source of N2O and CO2 emissions.

    Science.gov (United States)

    Miao, Shujie; Qiao, Yunfa; Han, Xiaozeng; Brancher Franco, Roberta; Burger, Martin

    2014-01-01

    Agricultural soils are important sources of atmospheric N2O and CO2. However, in boreal agro-ecosystems the contribution of the winter season to annual emissions of these gases has rarely been determined. In this study, soil N2O and CO2 fluxes were measured for 6 years in a corn-soybean-wheat rotation in northeast China to quantify the contribution of wintertime N2O and CO2 fluxes to annual emissions. The treatments were chemical fertilizer (NPK), chemical fertilizer plus composted pig manure (NPKOM), and control (Cont.). Mean soil N2O fluxes among all three treatments in the winter (November-March), when soil temperatures are below -7°C for extended periods, were 0.89-3.01 µg N m(-2) h(-1), and in between the growing season and winter (October and April), when freeze-thaw events occur, 1.73-5.48 µg N m(-2) h(-1). The cumulative N2O emissions were on average 0.27-1.39, 0.03-0.08 and 0.03-0.11 kg N2O_N ha(-1) during the growing season, October and April, and winter, respectively. The average contributions of winter N2O efflux to annual emissions were 6.3-12.1%. In all three seasons, the highest N2O emissions occurred in NPKOM, while NPK and Cont. emissions were similar. Cumulative CO2 emissions were 2.73-4.94, 0.13-0.20 and 0.07-0.11 Mg CO2-C ha(-1) during growing season, October and April, and winter, respectively. The contribution of winter CO2 to total annual emissions was 2.0-2.4%. Our results indicate that in boreal agricultural systems in northeast China, CO2 and N2O emissions continue throughout the winter.

  19. Plants increase laccase activity in soil with long-term elevated CO2 legacy

    DEFF Research Database (Denmark)

    Partavian, Asrin; Mikkelsen, Teis Nørgaard; Vestergård, Mette

    2015-01-01

    [CO2] stimulate laccase activity. We incubated soil exposed to seven years of elevated or ambient field [CO2] in ambient or elevated [CO2] chambers for six months either with or without plants (Deschampsia flexuosa). Elevated chamber [CO2] increased D. flexuosa production and belowground respiration....... Interestingly, plants also grew larger in soil with an elevated [CO2] legacy. Plants stimulated soil microbial biomass, belowground respiration and laccase activity, and the plant-induced laccase stimulation was particularly apparent in soil exposed to long-term elevated [CO2] in the field, whereas laccase......Actively growing plants can stimulate mineralization of recalcitrant soil organic matter (SOM), and increased atmospheric [CO2] can further enhance such plant-mediated SOM degradation. Laccases are central for recalcitrant SOM decomposition, and we therefore hypothesized that plants and elevated...

  20. Monitoring the bio-stimulation of hydrocarbon-contaminated soils by measurements of soil electrical properties, and CO2 content and its 13C/12C isotopic signature

    Science.gov (United States)

    Noel, C.; Gourry, J.; Ignatiadis, I.; Colombano, S.; Dictor, M.; Guimbaud, C.; Chartier, M.; Dumestre, A.; Dehez, S.; Naudet, V.

    2013-12-01

    IP surveys are performed regularly to monitor the stimulated biodegradation and progress of remediation until soil cleanup. Microbial activity is characterized by CO2 production increase and δ13C isotopic deviation, in the produced CO2 measured by infrared laser spectroscopy, and by an evolution of electrical conductivity and IP responses in correlation with microbiological and chemical analyses.

  1. The effect to the water stress to soil CO2 efflux in the Siberian boreal forest

    Science.gov (United States)

    Makhnykina, A. V.; Prokishkin, A. S.; Verkhovets, S. V.; Koshurnikova, N. N.

    2017-12-01

    The boreal forests in Siberia covered more than 70% area of this region. Due to the climate change this ecosystems represent a very sensitive and significant source of carbon. In forests, total ecosystem respiration tends to be dominated by soil respiration, which accounts for approximately 69% of this large flux (Janssens et al., 2001). Dynamic global vegetation models predict that soil respiration will increase more than total net primary productivity in response to warmer temperatures and increase in precipitation, the terrestrial carbon sink is expected to decline significantly (Bonan et al., 2003). The aim of the present study was to identify the response of the soil CO2 efflux to the different amount of water input for two highly differentiated years by the precipitation conditions in the middle taiga forests in Central Siberia. The study was conducted in the pine forests in Central Siberia (60°N, 90°E), Russia. We used the automated soil CO2 flux system LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths 5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. We constructed the field experiment based on the addition of different amount of water (0%, 25%, 50% and 100% sites) after each rain event during the growing season. We found that the amount of precipitation have a huge impact to the value of soil CO2 efflux. For the more precipitated year (2015) the fluxes were almost twice higher compared to less precipitated year (2016). The max fluxes during the season in 2015 observed at the site without any water input there and the min one - for the 100% precipitation site (natural rain conditions). In 2016 we identified the opposite response: the max soil efflux demonstrated the site with 100% precipitation conditions (Fig. 1). We also detected the high dependence between the soil temperature and soil CO2 efflux for the site with 0% additional water input in more

  2. Effect of Elevated CO2, O3, and UV Radiation on Soils

    Directory of Open Access Journals (Sweden)

    Pavel Formánek

    2014-01-01

    Full Text Available In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.

  3. Effect of Elevated CO2, O3, and UV Radiation on Soils

    Science.gov (United States)

    Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research. PMID:24688424

  4. CO{sub 2} and N{sub 2}O emissions in a soil chronosequence at a glacier retreat zone in Maritime Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Thomazini, A., E-mail: andre.thz@gmail.com [Department of Plant Production, Federal University of Espírito Santo, 29500-000 Alegre, Espírito Santo (Brazil); Mendonça, E.S., E-mail: eduardo.mendonca@ufes.br [Department of Plant Production, Federal University of Espírito Santo, 29500-000 Alegre, Espírito Santo (Brazil); Teixeira, D.B., E-mail: daniel.dbt@hotmail.com [FCAV/UNESP, Via de Acesso, Prof. Paulo Donato Castellane s/n, 14884-900 Jaboticabal, SP (Brazil); Almeida, I.C.C., E-mail: ivancarreiro@yahoo.com.br [Instituto Federal do Norte de Minas Gerais, Fazenda São Geraldo, s/n km. 06, 39480-000 Januária, Minas Gerais (Brazil); La Scala, N., E-mail: lascala@fcav.unesp.br [FCAV/UNESP, Via de Acesso, Prof. Paulo Donato Castellane s/n, 14884-900 Jaboticabal, SP (Brazil); Canellas, L.P., E-mail: lucianocanellas@gmail.com [UENF — Universidade Estadual do Norte Fluminense Darcy Ribeiro, Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Av. Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, Rio de Janeiro (Brazil); Spokas, K.A., E-mail: kurt.Spokas@ars.usda.gov [USDA-ARS, Soil and Water Management Unit, University of Minnesota — St. Paul, MN 55108 (United States); Milori, D.M.B.P., E-mail: debora.milori@embrapa.br [Embrapa Instrumentation Brazilian Agricultural Research Corporation, São Carlos, SP (Brazil); Turbay, C.V.G., E-mail: cturbay@gmail.com [Department of Geology, Federal University of Espírito Santo, 29500-000 Alegre, Espírito Santo (Brazil); and others

    2015-07-15

    Studies of C cycle alterations are extremely important to identify changes due to climate change, especially in the polar ecosystem. The objectives of this study were to (i) examine patterns of soil CO{sub 2}-C and N{sub 2}O-N emissions, and (ii) evaluate the quantity and quality of soil organic matter across a glacier retreat chronosequence in the Maritime Antarctica. Field measurements were carried out during January and February 2010 (summer season) along a retreating zone of the White Eagle Glacier, at King George Island, Maritime Antarctica. Soil samples (0–10 cm) were collected along a 500-m transect at regular intervals to determine changes in soil organic matter. Field CO{sub 2}-C emission measurements and soil temperature were carried out at regular intervals. In addition, greenhouse gas production potentials were assessed through 100 days laboratory incubations. Soils exposed for a longer time tended to have greater concentrations of soluble salts and possess sandier textures. Total organic C (3.59 g kg{sup −1}), total N (2.31 g kg{sup −1}) and labile C (1.83 g kg{sup −1}) tended to be lower near the glacier front compared with sites away from it, which is correlated with decreasing degree of humification of the soil organic matter with exposure time. Soil CO{sub 2}-C emissions tended to increase with distance from the glacier front. On average, the presence of vegetation increased CO{sub 2}-C emissions by 440%, or the equivalent of 0.633 g of CO{sub 2}-C m{sup −2} h{sup −1}. Results suggest that newly exposed landsurfaces undergo soil formation with increasing labile C input from vegetation, accompanied by increasing soil CO{sub 2}-C emissions. Despite the importance of exposure time on CO{sub 2}-C production and emissions, there was no similar trend in soil N{sub 2}O-N production potentials as a function of glacial retreat. For N{sub 2}O, instead, the maximum production occurred in sites with the first stages of vegetation growth

  5. Using eddy covariance of CO2, 13CO2 and CH4, continuous soil respiration measurements, and PhenoCams to constrain a process-based biogeochemical model for carbon market-funded wetland restoration

    Science.gov (United States)

    Oikawa, P. Y.; Baldocchi, D. D.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Dronova, I.; Jenerette, D.; Poindexter, C.; Huang, Y. W.

    2015-12-01

    We use multiple data streams in a model-data fusion approach to reduce uncertainty in predicting CO2 and CH4 exchange in drained and flooded peatlands. Drained peatlands in the Sacramento-San Joaquin River Delta, California are a strong source of CO2 to the atmosphere and flooded peatlands or wetlands are a strong CO2 sink. However, wetlands are also large sources of CH4 that can offset the greenhouse gas mitigation potential of wetland restoration. Reducing uncertainty in model predictions of annual CO2 and CH4 budgets is critical for including wetland restoration in Cap-and-Trade programs. We have developed and parameterized the Peatland Ecosystem Photosynthesis, Respiration, and Methane Transport model (PEPRMT) in a drained agricultural peatland and a restored wetland. Both ecosystem respiration (Reco) and CH4 production are a function of 2 soil carbon (C) pools (i.e. recently-fixed C and soil organic C), temperature, and water table height. Photosynthesis is predicted using a light use efficiency model. To estimate parameters we use a Markov Chain Monte Carlo approach with an adaptive Metropolis-Hastings algorithm. Multiple data streams are used to constrain model parameters including eddy covariance of CO2, 13CO2 and CH4, continuous soil respiration measurements and digital photography. Digital photography is used to estimate leaf area index, an important input variable for the photosynthesis model. Soil respiration and 13CO2 fluxes allow partitioning of eddy covariance data between Reco and photosynthesis. Partitioned fluxes of CO2 with associated uncertainty are used to parametrize the Reco and photosynthesis models within PEPRMT. Overall, PEPRMT model performance is high. For example, we observe high data-model agreement between modeled and observed partitioned Reco (r2 = 0.68; slope = 1; RMSE = 0.59 g C-CO2 m-2 d-1). Model validation demonstrated the model's ability to accurately predict annual budgets of CO2 and CH4 in a wetland system (within 14% and 1

  6. Response of soil CO2 efflux to precipitation manipulation in a semiarid grassland.

    Science.gov (United States)

    Wei, Xiaorong; Zhang, Yanjiang; Liu, Jian; Gao, Hailong; Fan, Jun; Jia, Xiaoxu; Cheng, Jimin; Shao, Mingan; Zhang, Xingchang

    2016-07-01

    Soil CO2 efflux (SCE) is an important component of ecosystem CO2 exchange and is largely temperature and moisture dependent, providing feedback between C cycling and the climate system. We used a precipitation manipulation experiment to examine the effects of precipitation treatment on SCE and its dependences on soil temperature and moisture in a semiarid grassland. Precipitation manipulation included ambient precipitation, decreased precipitation (-43%), or increased precipitation (+17%). The SCE was measured from July 2013 to December 2014, and CO2 emission during the experimental period was assessed. The response curves of SCE to soil temperature and moisture were analyzed to determine whether the dependence of SCE on soil temperature or moisture varied with precipitation manipulation. The SCE significantly varied seasonally but was not affected by precipitation treatments regardless of season. Increasing precipitation resulted in an upward shift of SCE-temperature response curves and rightward shift of SCE-moisture response curves, while decreasing precipitation resulted in opposite shifts of such response curves. These shifts in the SCE response curves suggested that increasing precipitation strengthened the dependence of SCE on temperature or moisture, and decreasing precipitation weakened such dependences. Such shifts affected the predictions in soil CO2 emissions for different precipitation treatments. When considering such shifts, decreasing or increasing precipitation resulted in 43 or 75% less change, respectively, in CO2 emission compared with changes in emissions predicted without considering such shifts. Furthermore, the effects of shifts in SCE response curves on CO2 emission prediction were greater during the growing than the non-growing season. Copyright © 2016. Published by Elsevier B.V.

  7. Soil Conditions Rather Than Long-Term Exposure to Elevated CO2 Affect Soil Microbial Communities Associated with N-Cycling

    Directory of Open Access Journals (Sweden)

    Kristof Brenzinger

    2017-10-01

    Full Text Available Continuously rising atmospheric CO2 concentrations may lead to an increased transfer of organic C from plants to the soil through rhizodeposition and may affect the interaction between the C- and N-cycle. For instance, fumigation of soils with elevated CO2 (eCO2 concentrations (20% higher compared to current atmospheric concentrations at the Giessen Free-Air Carbon Dioxide Enrichment (GiFACE sites resulted in a more than 2-fold increase of long-term N2O emissions and an increase in dissimilatory reduction of nitrate compared to ambient CO2 (aCO2. We hypothesized that the observed differences in soil functioning were based on differences in the abundance and composition of microbial communities in general and especially of those which are responsible for N-transformations in soil. We also expected eCO2 effects on soil parameters, such as on nitrate as previously reported. To explore the impact of long-term eCO2 on soil microbial communities, we applied a molecular approach (qPCR, T-RFLP, and 454 pyrosequencing. Microbial groups were analyzed in soil of three sets of two FACE plots (three replicate samples from each plot, which were fumigated with eCO2 and aCO2, respectively. N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, and dissimilatory nitrate reducers producing ammonia were targeted by analysis of functional marker genes, and the overall archaeal community by 16S rRNA genes. Remarkably, soil parameters as well as the abundance and composition of microbial communities in the top soil under eCO2 differed only slightly from soil under aCO2. Wherever differences in microbial community abundance and composition were detected, they were not linked to CO2 level but rather determined by differences in soil parameters (e.g., soil moisture content due to the localization of the GiFACE sets in the experimental field. We concluded that +20% eCO2 had little to no effect on the overall microbial community involved in N-cycling in the

  8. Soil Conditions Rather Than Long-Term Exposure to Elevated CO2 Affect Soil Microbial Communities Associated with N-Cycling.

    Science.gov (United States)

    Brenzinger, Kristof; Kujala, Katharina; Horn, Marcus A; Moser, Gerald; Guillet, Cécile; Kammann, Claudia; Müller, Christoph; Braker, Gesche

    2017-01-01

    Continuously rising atmospheric CO 2 concentrations may lead to an increased transfer of organic C from plants to the soil through rhizodeposition and may affect the interaction between the C- and N-cycle. For instance, fumigation of soils with elevated CO 2 ( e CO 2 ) concentrations (20% higher compared to current atmospheric concentrations) at the Giessen Free-Air Carbon Dioxide Enrichment (GiFACE) sites resulted in a more than 2-fold increase of long-term N 2 O emissions and an increase in dissimilatory reduction of nitrate compared to ambient CO 2 ( a CO 2 ). We hypothesized that the observed differences in soil functioning were based on differences in the abundance and composition of microbial communities in general and especially of those which are responsible for N-transformations in soil. We also expected e CO 2 effects on soil parameters, such as on nitrate as previously reported. To explore the impact of long-term e CO 2 on soil microbial communities, we applied a molecular approach (qPCR, T-RFLP, and 454 pyrosequencing). Microbial groups were analyzed in soil of three sets of two FACE plots (three replicate samples from each plot), which were fumigated with e CO 2 and a CO 2 , respectively. N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, and dissimilatory nitrate reducers producing ammonia were targeted by analysis of functional marker genes, and the overall archaeal community by 16S rRNA genes. Remarkably, soil parameters as well as the abundance and composition of microbial communities in the top soil under e CO 2 differed only slightly from soil under a CO 2 . Wherever differences in microbial community abundance and composition were detected, they were not linked to CO 2 level but rather determined by differences in soil parameters (e.g., soil moisture content) due to the localization of the GiFACE sets in the experimental field. We concluded that +20% e CO 2 had little to no effect on the overall microbial community involved in N

  9. Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide

    Science.gov (United States)

    Dubrovskaya, Ekaterina; Turkovskaya, Olga

    2010-05-01

    Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide E. Dubrovskaya1, O. Turkovskaya1, A. Tiunov2, N. Pozdnyakova1, A. Muratova1 1 - Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, 2 - A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russian Federation Hydrocarbon mineralization in soil undergoing phytoremediation was investigated in a laboratory experiment by estimating the variation in the 13С/12С ratio in the respired СО2. Hexadecane (HD) was used as a model hydrocarbon pollutant. The polluted soil was planted with winter rye (Secale cereale) inoculated with Azospirillum brasilense strain SR80, which combines the abilities to promote plant growth and to degrade oil hydrocarbon. Each vegetated treatment was accompanied with a corresponding nonvegetated one, and uncontaminated treatments were used as controls. Emission of carbon dioxide, its isotopic composition, and the residual concentration of HD in the soil were examined after two and four weeks. At the beginning of the experiment, the CO2-emission level was higher in the uncontaminated than in the contaminated soil. After two weeks, the quantity of emitted carbon dioxide decreased by about three times and did not change significantly in all uncontaminated treatments. The presence of HD in the soil initially increased CO2 emission, but later the respiration was reduced. During the first two weeks, nonvegetated soil had the highest CO2-emission level. Subsequently, the maximum increase in respiration was recorded in the vegetated contaminated treatments. The isotope composition of plant material determines the isotope composition of soil. The soil used in our experiment had an isotopic signature typical of soils formed by C3 plants (δ13C,-22.4‰). Generally, there was no significant fractionation of the carbon isotopes of the substrates metabolized by the

  10. BOREAS TGB-1 Soil CH4 and CO2 Profile Data from NSA Tower Sites

    Science.gov (United States)

    Crill, Patrick; Varner, Ruth K.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-1 team made numerous measurements of trace gas concentrations and fluxes at various NSA sites. This data set contains methane (CH4) and carbon dioxide (CO2) concentrations in soil profiles from the NSA-OJP, NSA-OBS, NSA-YJP, and NSA-BP sites during the period of 23-May to 20-Sep-1994. The soil gas sampling profiles of CH 4 and CO 2 were completed to quantify controls on CO2 and CH4 fluxes in the boreal forest. The data are provided in tabular ASCII files.

  11. Faster turnover of new soil carbon inputs under increased atmospheric CO2.

    Science.gov (United States)

    van Groenigen, Kees Jan; Osenberg, Craig W; Terrer, César; Carrillo, Yolima; Dijkstra, Feike A; Heath, James; Nie, Ming; Pendall, Elise; Phillips, Richard P; Hungate, Bruce A

    2017-10-01

    Rising levels of atmospheric CO 2 frequently stimulate plant inputs to soil, but the consequences of these changes for soil carbon (C) dynamics are poorly understood. Plant-derived inputs can accumulate in the soil and become part of the soil C pool ("new soil C"), or accelerate losses of pre-existing ("old") soil C. The dynamics of the new and old pools will likely differ and alter the long-term fate of soil C, but these separate pools, which can be distinguished through isotopic labeling, have not been considered in past syntheses. Using meta-analysis, we found that while elevated CO 2 (ranging from 550 to 800 parts per million by volume) stimulates the accumulation of new soil C in the short term (soil C pool over either temporal scale. Our results are inconsistent with predictions of conventional soil C models and suggest that elevated CO 2 might increase turnover rates of new soil C. Because increased turnover rates of new soil C limit the potential for additional soil C sequestration, the capacity of land ecosystems to slow the rise in atmospheric CO 2 concentrations may be smaller than previously assumed. © 2017 John Wiley & Sons Ltd.

  12. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    Science.gov (United States)

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  13. Regulated deficit irrigation can decrease soil CO2 emissions in fruit orchards

    Science.gov (United States)

    Zornoza, Raul; Acosta, José Alberto; Martínez-Martínez, Silvia; De la Rosa, Jose M.°; Faz, Angel; Pérez-Pastor, Alejandro

    2016-04-01

    Irrigation water restrictions in the Mediterranean area have created a growing interest in water conservation. Apart from environmental and economic benefits by water savings, regulated deficit irrigation (RDI) may contribute to reduce soil CO2 emissions and enhance C sequestration in soils, by decreasing microbial and root activity in response to decreased soil moisture levels. An experiment was established in four orchards (peach, apricot, Saturn peach and grape) to investigate the effects of regulated deficit irrigation (RDI) on soil CO2 emissions. Two irrigation treatments were assayed: full irrigation (FI), and RDI, irrigated as FI except for postharvest period (peach, apricot, Saturn peach) or post-veraison period (grape) were 50% of FI was applied. The application of deficit caused a significant decrease in CO2 emission rates, with rates in average of 90 mg CO2-C m-2 h-1, 120 mg CO2-C m-2 h-1, 60 mg CO2-C m-2 h-1 and 60 mg CO2-C m-2 h-1 lower than FI during the period when deficit was applied for peach, apricot, Saturn peach and grape. This confirms the high effectiveness of the RDI strategies not only to save water consumption but also to decrease soil CO2 emissions. However, monitoring during longer periods is needed to verify that this trend is long-term maintained, and assess if soil carbon stocks are increase or most CO2 emissions derive from root respiration. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  14. [Periodic characteristics of soil CO2 flux in mangrove wetland of Quanzhou Bay, China].

    Science.gov (United States)

    Wang, Zong-Lin; Wu, Yan-You; Xing, De-Ke; Liu, Rong-Cheng; Zhou Gui-Yao; Zhao, Kuan

    2014-09-01

    Mangrove wetland ecosystem in Quanzhou Bay in Fujian Province is newly restored with a regular semidiurnal tide. Soil CO2 concentration in the mangrove soil was determined by Li-840 portable gas analyzer, and periodic characteristics of soil CO2 emission was investigated. The soil CO2 flux in the wetland soil was relatively small because the mangrove was young. The change trends of soil CO2 concentration and flux with time were consistent in Kandelia obovate and Aegiceras corniculatum communities in the intertidal periods. The CO2 concentration and flux in the wetland soil were 557.08-2211.50 μmol · mol(-1) and -0.21-0.40 μmol · m(-2) · s(-1), respectively. The average CO2 flux in the wetland soil was 0.26 μmol · mol(-1) · s(-1) in the intertidal of morning and evening tides (early intertidal) and -0.01 μmol · m(-2) · s(-1) in the intertidal of evening and morning tides (late intertidal), respectively. At the same time after the tide, the concentration and flux of CO2 in the mangrove soil in early intertidal was higher than that in late intertidal. In early intertidal, the relationship between the flux and instantaneous concentration of CO2 in the wetland soil was expressed as a bell-shaped curve, and CO2 flux increased first and then decreased with the increasing CO2 concentration, which was in conformity with Gaussian distribution.

  15. Climatic sensitivity of dryland soil CO2 fluxes differs dramatically with biological soil crust successional state

    Science.gov (United States)

    Tucker, Colin; Ferrenberg, Scott; Reed, Sasha C.

    2018-01-01

    Arid and semiarid ecosystems make up approximately 41% of Earth’s terrestrial surface and are suggested to regulate the trend and interannual variability of the global terrestrial carbon (C) sink. Biological soil crusts (biocrusts) are common dryland soil surface communities of bryophytes, lichens, and/or cyanobacteria that bind the soil surface together and that may play an important role in regulating the climatic sensitivity of the dryland C cycle. Major uncertainties exist in our understanding of the interacting effects of changing temperature and moisture on CO2 uptake (photosynthesis) and loss (respiration) from biocrust and sub-crust soil, particularly as related to biocrust successional state. Here, we used a mesocosm approach to assess how biocrust successional states related to climate treatments. We subjected bare soil (Bare), early successional lightly pigmented cyanobacterial biocrust (Early), and late successional darkly pigmented moss-lichen biocrust (Late) to either ambient or + 5°C above ambient soil temperature for 84 days. Under ambient temperatures, Late biocrust mesocosms showed frequent net uptake of CO2, whereas Bare soil, Early biocrust, and warmed Late biocrust mesocosms mostly lost CO2 to the atmosphere. The inhibiting effect of warming on CO2 exchange was a result of accelerated drying of biocrust and soil. We used these data to parameterize, via Bayesian methods, a model of ecosystem CO2 fluxes, and evaluated the model with data from an autochamber CO2 system at our field site on the Colorado Plateau in SE Utah. In the context of the field experiment, the data underscore the negative effect of warming on fluxes both biocrust CO2 uptake and loss—which, because biocrusts are a dominant land cover type in this ecosystem, may extend to ecosystem-scale C cycling.

  16. Annual and seasonal CO2 fluxes from Russian southern taiga soils

    International Nuclear Information System (INIS)

    Kurganova, I.; Lopes De Gerenyu, V.; Rozanova, L.; Sapronov, D.; Myakshina, T.; Kudeyarov, V.

    2003-01-01

    Annual and seasonal characteristics of CO 2 emission from five different ecosystems were studied in situ (Russia, Moscow Region) from November 1997 through October 2000. The annual behaviour of the soil respiration rate is influenced by weather conditions during a particular year. Annual CO 2 fluxes from the soils depend on land use of the soils and averaged 684 and 906 g C/m 2 from sandy Albeluvisols (sod-podzolic soils) under forest and grassland, respectively. Annual emission from clay Phaeozems (grey forest soils) was lower and ranged from 422 to 660 g C/m 2 ; the order of precedence was arable 2 fluxes caused by weather conditions ranged from 18% (forest ecosystem on Phaeozems) to 31% (agro-ecosystem). The contribution from the cold period (with snow, November-April) to the annual CO 2 flux was substantial and averaged 21% and 14% for natural and agricultural ecosystems, respectively. The CO 2 fluxes comprised approximately 48-51% in summer, 23-24% in autumn, 18-20% in spring and 7-10% in winter of the total annual carbon dioxide flux

  17. Spatial and temporal effects of drought on soil CO2 efflux in a cacao agroforestry system in Sulawesi, Indonesia

    Science.gov (United States)

    van Straaten, O.; Veldkamp, E.; Köhler, M.; Anas, I.

    2010-04-01

    Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao) - Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month experiment, we compared soil surface CO2 efflux (soil respiration) from three roof plots with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture conditions and decreased under increasingly dry conditions (drought induced), or increasingly wet conditions (as evidenced in control plots). The roof plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease). The strength of the drought effect was spatially variable - while some measurement chamber sites reacted strongly (responsive) to the decrease in soil water content (up to R2=0.70) (n=11), others did not react at all (non-responsive) (n=7). A significant correlation was measured between responsive soil respiration chamber sites and sap flux density ratios of cacao (R=0.61) and Gliricidia (R=0.65). Leaf litter CO2 respiration decreased as conditions became drier. The litter layer contributed approximately 3-4% of the total CO2 efflux during dry periods and up to 40% during wet periods. Within days of roof opening soil CO2 efflux rose to control plot levels. Thereafter, CO2 efflux remained comparable between roof and control plots. The cumulative effect on soil CO2 emissions over the duration of the experiment was not significantly different: the control plots respired 11.1±0.5 Mg C ha-1 yr-1, while roof plots respired 10.5±0.5 Mg C ha-1 yr-1. The relatively mild decrease measured in soil CO2 efflux indicates that this agroforestry ecosystem is capable of mitigating droughts with only minor stress symptoms.

  18. Spatial and temporal effects of drought on soil CO2 efflux in a cacao agroforestry system in Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    I. Anas

    2010-04-01

    Full Text Available Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao – Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month experiment, we compared soil surface CO2 efflux (soil respiration from three roof plots with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture conditions and decreased under increasingly dry conditions (drought induced, or increasingly wet conditions (as evidenced in control plots. The roof plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease. The strength of the drought effect was spatially variable – while some measurement chamber sites reacted strongly (responsive to the decrease in soil water content (up to R2=0.70 (n=11, others did not react at all (non-responsive (n=7. A significant correlation was measured between responsive soil respiration chamber sites and sap flux density ratios of cacao (R=0.61 and Gliricidia (R=0.65. Leaf litter CO2 respiration decreased as conditions became drier. The litter layer contributed approximately 3–4% of the total CO2 efflux during dry periods and up to 40% during wet periods. Within days of roof opening soil CO2 efflux rose to control plot levels. Thereafter, CO2 efflux remained comparable between roof and control plots. The cumulative effect on soil CO2 emissions over the duration of the experiment was not significantly different: the control plots respired 11.1±0.5 Mg C ha−1 yr−1, while roof plots respired 10.5±0.5 Mg C ha−1 yr−1. The relatively mild decrease measured in soil CO2 efflux indicates that this agroforestry ecosystem is capable of mitigating droughts with only minor stress symptoms.

  19. Day and Night Variability of CO2 Fluxes and Priming Effects under zea Mays Measured in High Resolution

    Science.gov (United States)

    Splettstoesser, Thomas; Pausch, Johanna

    2017-04-01

    Plant induced increase of soil organic matter turnover rates contribute to carbon emissions in agricultural land use systems. In order to better understand these rhizosphere priming effects, we conducted an experiment which enabled us to monitor CO2 fluxes under Zea mays plants in high resolution. The experiment was conducted in a climate chamber where the plants were grown in tightly sealed boxes for 40 days and CO2 efflux from soil was measured twice a day. Continuous 13C-CO2 label was used to allow differentiation between plant- and soil-derived CO2.This enabled us to monitor root respiration and soil organic matter turnover in the early stages of plant growth and to highlight changes in soil CO2 emissions and priming effects between day and night. The measurements were conducted with a PICARRO G2131-I C high-precision isotopic CO2 Analyzer (PICARRO INC.) utilizing an automated valve system governed by a CR1000 data logger (Campbell Scientific). After harvest roots and shoots were analyzed for 13C content. Microbial biomass, root length density and enzymatic activities in soil were measured and linked to soil organic matter turnover rates. Results show an increased soil CO2 efflux at day time periods and an overall increase with increasing plant biomass. No difference in chloroform fumigation extractable microbial biomass has been found but a strong negative priming effect was measured in the short experimental period, suggesting that the microbes shifted to the utilization of plant exudates without actual microbial growth triggered by the new labile C input. This is coherent with the observed shift in enzyme kinetics. With this experimental setup we show that measurement of priming effects in high resolution can be achieved.

  20. Abundance and diversity of CO2-fixing bacteria in grassland soils close to natural carbon dioxide springs.

    Science.gov (United States)

    Videmsek, Urska; Hagn, Alexandra; Suhadolc, Marjetka; Radl, Viviane; Knicker, Heike; Schloter, Michael; Vodnik, Dominik

    2009-07-01

    Gaseous conditions at natural CO2 springs (mofettes) affect many processes in these unique ecosystems. While the response of plants to extreme and fluctuating CO2 concentrations ([CO2]) is relatively well documented, little is known on microbial life in mofette soil. Therefore, it was the aim of this study to investigate the abundance and diversity of CO2-fixing bacteria in grassland soils in different distances to a natural carbon dioxide spring. Samples of the same soil type were collected from the Stavesinci mofette, a natural CO2 spring which is known for very pure CO2 emissions, at different distances from the CO2 releasing vents, at locations that clearly differed in soil CO2 efflux (from 12.5 to over 200 micromol CO2 m(-2) s(-1) yearly average). Bulk and rhizospheric soil samples were included into analyses. The microbial response was followed by a molecular analysis of cbbL genes, encoding for the large subunit of RubisCO, a carboxylase which is of crucial importance for C assimilation in chemolitoautotrophic microbes. In all samples analyzed, the "red-like" type of cbbL genes could be detected. In contrast, the "green-like" type of cbbL could not be measured by the applied technique. Surprisingly, a reduction of "red-like" cbbL genes copies was observed in bulk soil and rhizosphere samples from the sites with the highest CO2 concentrations. Furthermore, the diversity pattern of "red-like" cbbL genes changed depending on the CO(2) regime. This indicates that only a part of the autotrophic CO2-fixing microbes could adapt to the very high CO2 concentrations and adverse life conditions that are governed by mofette gaseous regime.

  1. Dynamics of soil CO 2 efflux under varying atmospheric CO 2 concentrations reveal dominance of slow processes

    Science.gov (United States)

    Dohyoung Kim; Ram Oren; James S. Clark; Sari Palmroth; A. Christopher Oishi; Heather R. McCarthy; Chris A. Maier; Kurt Johnsen

    2017-01-01

    We evaluated the effect on soil CO2 efflux (FCO2) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO2 (eCO2) ranging 1.0–1.8 times ambient did not affect FCO2. FCO2 did not decrease until 4 months after termination of the long-term eCO2 treatment, longer...

  2. Human Effects and Soil Surface CO2 fluxes in Tropical Urban Green Areas, Singapore

    Science.gov (United States)

    Ng, Bernard; Gandois, Laure; Kai, Fuu Ming; Chua, Amy; Cobb, Alex; Harvey, Charles; Hutyra, Lucy

    2013-04-01

    Urban green spaces are appreciated for their amenity value, with increasing interest in the ecosystem services they could provide (e.g. climate amelioration and increasingly as possible sites for carbon sequestration). In Singapore, turfgrass occupies approximately 20% of the total land area and is readily found on both planned and residual spaces. This project aims at understanding carbon fluxes in tropical urban green areas, including controls of soil environmental factors and the effect of urban management techniques. Given the large pool of potentially labile carbon, management regimes are recognised to have an influence on soil environmental factors (temperature and moisture), this would affect soil respiration and feedbacks to the greenhouse effect. A modified closed dynamic chamber method was employed to measure total soil respiration fluxes. In addition to soil respiration rates, environmental factors such as soil moisture and temperature, and ambient air temperature were monitored for the site in an attempt to evaluate their control on the observed fluxes. Measurements of soil-atmosphere CO2 exchanges are reported for four experimental plots within the Singtel-Kranji Radio Transmission Station (103o43'49E, 1o25'53N), an area dominated by Axonopus compressus. Different treatments such as the removal of turf, and application of clippings were effected as a means to determine the fluxes from the various components (respiration of soil and turf, and decomposition of clippings), and to explore the effects of human intervention on observed effluxes. The soil surface CO2 fluxes observed during the daylight hours ranges from 2.835 + 0.772 umol m-2 s-1 for the bare plot as compared to 6.654 + 1.134 umol m-2 s-1 for the turfed plot; this could be attributed to both autotrophic and heterotrophic respiration. Strong controls of both soil temperature and soil moisture are observed on measured soil fluxes. On the base soils, fluxes were positively correlated to soil

  3. High Resolution Measurement of Rhizosphere Priming Effects and Temporal Variability of CO2 Fluxes under Zea Mays

    Science.gov (United States)

    Splettstößer, T.; Pausch, J.

    2016-12-01

    Plant induced increase of soil organic matter turnover rates contribute to carbon emissions in agricultural land use systems. In order to better understand these rhizosphere priming effects, we conducted an experiment, which enabled us to monitor CO2 fluxes under zea mays plants with high resolution. The experiment was conducted in a climate chamber where the plants were grown in thin, tightly sealed boxes for 40 days and CO2 efflux from soil was measured twice a day. 13C-CO2 was introduced to allow differentiation between plant and soil derived CO2.This enabled us to monitor root respiration and soil organic matter turnover in the early stages of plant growth and to highlight changes in soil CO2 emissions and priming effects between day and night. The measurements were conducted with a PICARRO G2131-I δ13C high-precision isotopic CO2 Analyzer (PICARRO INC.) utilizing an automated valve system governed by a CR1000 data logger (Campbell Scientific). After harvest roots and shoots were analyzed for 13C content. Microbial biomass, root length density and enzymatic activities in soil were measured and linked to soil organic matter turnover rates. In order to visualize the spatial distribution of carbon allocation to the root system a few plants were additionally labeled with 14C and 14C distribution was monitored by 14C imaging of the root systems over 4 days. Based on the 14C distribution a grid was chosen and the soil was sampled from each square of the grid to investigate the impact of carbon allocation hotspots on enzymatic activities and microbial biomass. First initial results show an increase of soil CO2 efflux in the night periods, whereby the contribution of priming is not fully analyzed yet. Additionally, root tips were identified as hotspots of short term carbon allocation via 14C imaging and an in increase in microbial biomass could be measured in this regions. The full results will be shown at AGU 2016.

  4. Estimation of nocturnal CO2 and N2O soil emissions from changes in surface boundary layer mass storage

    Science.gov (United States)

    Grant, Richard H.; Omonode, Rex A.

    2018-04-01

    Annual budgets of greenhouse and other trace gases require knowledge of the emissions throughout the year. Unfortunately, emissions into the surface boundary layer during stable, calm nocturnal periods are not measurable using most micrometeorological methods due to non-stationarity and uncoupled flow. However, during nocturnal periods with very light winds, carbon dioxide (CO2) and nitrous oxide (N2O) frequently accumulate near the surface and this mass accumulation can be used to determine emissions. Gas concentrations were measured at four heights (one within and three above canopy) and turbulence was measured at three heights above a mature 2.5 m maize canopy from 23 July to 10 September 2015. Nocturnal CO2 and N2O fluxes from the canopy were determined using the accumulation of mass within a 6.3 m control volume and out the top of the control volume within the nocturnal surface boundary layer. Diffusive fluxes were estimated by flux gradient method. The total accumulative and diffusive fluxes during near-calm nights (friction velocities CO2 and 0.53 nmol m-2 s-1 N2O. Fluxes were also measured using chambers. Daily mean CO2 fluxes determined by the accumulation method were 90 to 130 % of those determined using soil chambers. Daily mean N2O fluxes determined by the accumulation method were 60 to 80 % of that determined using soil chambers. The better signal-to-noise ratios of the chamber method for CO2 over N2O, non-stationary flow, assumed Schmidt numbers, and anemometer tilt were likely contributing reasons for the differences in chambers versus accumulated nocturnal mass flux estimates. Near-surface N2O accumulative flux measurements in more homogeneous regions and with greater depth are needed to confirm the conclusion that mass accumulation can be effectively used to estimate soil emissions during nearly calm nights.

  5. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations

    Science.gov (United States)

    Treat, C.C.; Natali, Susan M.; Ernakovich, Jessica; Iverson, Colleen M.; Lupasco, Massimo; McGuire, A. David; Norby, Richard J.; Roy Chowdhury, Taniya; Richter, Andreas; Šantrůčková, Hana; Schädel, C.; Schuur, Edward A.G.; Sloan, Victoria L.; Turetsky, Merritt R.; Waldrop, Mark P.

    2015-01-01

    Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH4) and carbon dioxide (CO2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large-scale controls of anaerobic CO2 and CH4 production and compare the relative importance of landscape-level factors (e.g., vegetation type and landscape position), soil properties (e.g., pH, depth, and soil type), and soil environmental conditions (e.g., temperature and relative water table position). We found fivefold higher maximum CH4 production per gram soil carbon from organic soils than mineral soils. Maximum CH4 production from soils in the active layer (ground that thaws and refreezes annually) was nearly four times that of permafrost per gram soil carbon, and CH4 production per gram soil carbon was two times greater from sites without permafrost than sites with permafrost. Maximum CH4 and median anaerobic CO2 production decreased with depth, while CO2:CH4 production increased with depth. Maximum CH4 production was highest in soils with herbaceous vegetation and soils that were either consistently or periodically inundated. This synthesis identifies the need to consider biome, landscape position, and vascular/moss vegetation types when modeling CH4 production in permafrost ecosystems and suggests the need for longer-term anaerobic incubations to fully capture CH4 dynamics. Our results demonstrate that as climate warms in arctic and boreal regions, rates of anaerobic CO2 and CH4 production will increase, not only as a result of increased temperature, but also from shifts in vegetation and increased

  6. Effects of Atmospheric CO2 Enrichment on Soil CO2 Efflux in a Young Longleaf Pine System

    OpenAIRE

    Runion, G. Brett; Butnor, J. R.; Prior, S. A.; Mitchell, R. J.; Rogers, H. H.

    2012-01-01

    The southeastern landscape is composed of agricultural and forest systems that can store carbon (C) in standing biomass and soil. Research is needed to quantify the effects of elevated atmospheric carbon dioxide (CO2) on terrestrial C dynamics including CO2 release back to the atmosphere and soil sequestration. Longleaf pine savannahs are an ecologically and economically important, yet understudied, component of the southeastern landscape. We investigated the effects of ambient and elevated C...

  7. Calibrating soil respiration measures with a dynamic flux apparatus using artificial soil media of varying porosity

    Science.gov (United States)

    John R. Butnor; Kurt H. Johnsen

    2004-01-01

    Measurement of soil respiration to quantify ecosystem carbon cyclingrequires absolute, not relative, estimates of soil CO2 efflux. We describe a novel, automated efflux apparatus that can be used to test the accuracy of chamber-based soil respiration measurements by generating known CO2 fluxes. Artificial soil is supported...

  8. The Effect of Organic and Conventional Cropping Systems on CO2 Emission from Agricultural Soils: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Stefano Grego

    2011-02-01

    Full Text Available The effects of different agricultural systems on soil organic carbon content and CO2 emission are investigated in this work. In a long-term experiment a conventional system, characterized by traditional agricultural practices (as deep tillage and chemical inputs was compared with an organic one, including green manure and organic fertilizers. Both systems have a three-year crop rotation including pea – durum wheat – tomato; the organic system is implemented with the introduction of common vetch (Vicia sativa L. and sorghum (Sorghum vulgare bicolor as cover crops. In the year 2006 (5 years after the experimentation beginning was determined the soil C content and was measured the CO2 emissions from soil. The first results showed a trend of CO2 production higher in organic soils in comparison with conventional one. Among the two compared cropping systems the higher differences of CO2 emission were observed in tomato soil respect to the durum wheat and pea soils, probably due to the vetch green manuring before the tomato transplanting. These results are in agreement with the total organic carbon content and water soluble carbon (WSC, which showed the highest values in organic soil. The first observations suggest a higher biological activity and CO2 emission in organic soil than conventional one, likely due to a higher total carbon soil content.

  9. Soil carbon dioxide (CO 2 ) efflux of two shrubs in response to plant ...

    African Journals Online (AJOL)

    Although plant density should affect soil carbon dioxide (CO2) efflux and carbon cycling in semi-arid regions, the effects of plant density on soil CO2 efflux are not well known. This study was performed to investigate the responses of soil CO2 efflux of two dominant shrubs (Caragana korshinkii and Salix psammophila) to ...

  10. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    Science.gov (United States)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumyeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. This indicates the increased activity of microorganisms, which leads to accelerated C turnover in soil under elevated CO2. Our results clearly showed that the functional characteristics of the soil microbial community (i.e. specific growth rates and enzymes activity) rather than total microbial biomass

  11. Soil water content drives spatiotemporal patterns of CO2 and N2O emissions from a Mediterranean riparian forest soil

    Directory of Open Access Journals (Sweden)

    S. Poblador

    2017-09-01

    Full Text Available Riparian zones play a fundamental role in regulating the amount of carbon (C and nitrogen (N that is exported from catchments. However, C and N removal via soil gaseous pathways can influence local budgets of greenhouse gas (GHG emissions and contribute to climate change. Over a year, we quantified soil effluxes of carbon dioxide (CO2 and nitrous oxide (N2O from a Mediterranean riparian forest in order to understand the role of these ecosystems on catchment GHG emissions. In addition, we evaluated the main soil microbial processes that produce GHG (mineralization, nitrification, and denitrification and how changes in soil properties can modify the GHG production over time and space. Riparian soils emitted larger amounts of CO2 (1.2–10 g C m−2 d−1 than N2O (0.001–0.2 mg N m−2 d−1 to the atmosphere attributed to high respiration and low denitrification rates. Both CO2 and N2O emissions showed a marked (but antagonistic spatial gradient as a result of variations in soil water content across the riparian zone. Deep groundwater tables fueled large soil CO2 effluxes near the hillslope, while N2O emissions were higher in the wet zones adjacent to the stream channel. However, both CO2 and N2O emissions peaked after spring rewetting events, when optimal conditions of soil water content, temperature, and N availability favor microbial respiration, nitrification, and denitrification. Overall, our results highlight the role of water availability on riparian soil biogeochemistry and GHG emissions and suggest that climate change alterations in hydrologic regimes can affect the microbial processes that produce GHG as well as the contribution of these systems to regional and global biogeochemical cycles.

  12. An unknown oxidative metabolism substantially contributes to soil CO2 emissions

    Directory of Open Access Journals (Sweden)

    T. Shahzad

    2013-02-01

    Full Text Available The respiratory release of CO2 from soils is a major determinant of the global carbon cycle. It is traditionally considered that this respiration is an intracellular metabolism consisting of complex biochemical reactions carried out by numerous enzymes and co-factors. Here we show that the endoenzymes released from dead organisms are stabilised in soils and have access to suitable substrates and co-factors to permit function. These enzymes reconstitute an extracellular oxidative metabolism (EXOMET that may substantially contribute to soil respiration (16 to 48% of CO2 released from soils in the present study. EXOMET and respiration from living organisms should be considered separately when studying effects of environmental factors on the C cycle because EXOMET shows specific properties such as resistance to high temperature and toxic compounds.

  13. Effects of CO(sub 2) and nitrogen fertilization on soils planted with ponderosa pine; FINAL

    International Nuclear Information System (INIS)

    Johnson, D.W.

    1996-01-01

    The effects of elevated CO(sub 2) (ambient, 525, and 700(micro)l l(sup -1))and N fertilization (0, 10, and 20 g N m(sup 2) yr(sup -1)) on soil pCO(sub 2), CO(sub 2) efflux, soil solution chemistry, and soil C and nutrients in an open-top chamber study with Pinus ponderosa are described. Soil pCO(sub 2) and CO(sub 2) efflux were significantly greater with elevated CO(sub 2), at first (second growing season) in the 525(micro)l l(sup -1) and later (fourth and fifth growing seasons) in the 700(micro)l l(sup -1) CO(sub 2) treatments. Soil solution HCO(sub 3)(sup -) concentrations were temporarily elevated in the 525(micro)l l(sup -1) CO(sub 2) treatment during the second growing season, consistent with the elevated pCO(sub 2). Nitrogen fertilization had no consistent effect on soil pCO(sub 2) or CO(sub 2) efflux, but did have the expected negative effect on exchangeable Ca(sup 2+), K(sup+), and Mg(sup 2+), presumed to be caused by increased nitrate leaching. Elevated CO(sub 2) had no consistent effects on exchangeable Ca(sup 2+), K(sup+), and Mg(sup 2+), but did cause temporary reductions in soil NO(sup 3(sup -)) (second growing season). Statistically significant negative effects of elevated CO(sub 2) on soil extractable P were noted in the third and sixth growing seasons. However, these patterns in extractable P reflected pre-treatment differences, which, while not statistically significant, followed the same pattern. Statistically significant effects of elevated CO(sub 2) on total C and N in soils were noted in the third and sixth growing seasons, but these effects were inconsistent among N treatments and years. The clearest effect of elevated CO(sub 2) was in the case of C/N ratio in year 6, where there was a consistent, positive effect. The increases in C/N ratio with elevated CO(sub 2) in year six were largely a result of reductions in soil N rather than increases in soil C. Future papers will assess whether this apparent reduction in soil N could have been

  14. Hierarchical saturation of soil carbon pools near a natural CO2 spring

    NARCIS (Netherlands)

    Kool, D.M.; Chung, H.; Tate, K.R.; Ross, D.J.; Newton, P.C.D.; Six, J.

    2007-01-01

    Soil has been identified as a possible carbon (C) sink to mitigate increasing atmospheric CO2 concentration. However, several recent studies have suggested that the potential of soil to sequester C is limited and that soil may become saturated with C under increasing CO2 levels. To test this concept

  15. Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach

    Directory of Open Access Journals (Sweden)

    Rose Luiza Moraes Tavares

    Full Text Available ABSTRACT: The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of São Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R2 = 0.80 for predicted and observed values.

  16. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China

    Science.gov (United States)

    Tang, X.; Liu, S.; Zhou, G.; Zhang, Dongxiao; Zhou, C.

    2006-01-01

    The magnitude, temporal, and spatial patterns of soil-atmospheric greenhouse gas (hereafter referred to as GHG) exchanges in forests near the Tropic of Cancer are still highly uncertain. To contribute towards an improvement of actual estimates, soil-atmospheric CO2, CH4, and N2O fluxes were measured in three successional subtropical forests at the Dinghushan Nature Reserve (hereafter referred to as DNR) in southern China. Soils in DNR forests behaved as N2O sources and CH4 sinks. Annual mean CO2, N2O, and CH4 fluxes (mean ?? SD) were 7.7 ?? 4.6MgCO2-Cha-1 yr-1, 3.2 ?? 1.2 kg N2ONha-1 yr-1, and 3.4 ?? 0.9 kgCH4-Cha-1 yr-1, respectively. The climate was warm and wet from April through September 2003 (the hot-humid season) and became cool and dry from October 2003 through March 2004 (the cool-dry season). The seasonality of soil CO2 emission coincided with the seasonal climate pattern, with high CO2 emission rates in the hot-humid season and low rates in the cool-dry season. In contrast, seasonal patterns of CH4 and N2O fluxes were not clear, although higher CH4 uptake rates were often observed in the cool-dry season and higher N2O emission rates were often observed in the hot-humid season. GHG fluxes measured at these three sites showed a clear increasing trend with the progressive succession. If this trend is representative at the regional scale, CO2 and N2O emissions and CH4 uptake in southern China may increase in the future in light of the projected change in forest age structure. Removal of surface litter reduced soil CO2 effluxes by 17-44% in the three forests but had no significant effect on CH4 absorption and N2O emission rates. This suggests that microbial CH4 uptake and N2O production was mainly related to the mineral soil rather than in the surface litter layer. ?? 2006 Blackwell Publishing Ltd.

  17. A MIXED MODEL ANALYSIS OF SOIL CO2 EFFLUX AND NIGHT-TIME RESPIRATION RESPONSES TO ELEVATED CO2 AND TEMPERATURE

    Science.gov (United States)

    Abstract: We investigated the effects of elevated soil temperature and atmospheric CO2 on soil CO2 efflux and system respiration responses. The study was conducted in sun-lit controlled-environment chambers using two-year-old Douglas-fir seedlings grown in reconstructed litter-so...

  18. Soil microbial metabolic quotient (qCO2) of twelve ecosystems of Mt. Kilimanjaro

    Science.gov (United States)

    Pabst, Holger; Gerschlauer, Friederike; Kiese, Ralf; Kuzyakov, Yakov

    2014-05-01

    Soil organic carbon, microbial biomass carbon (MBC) and the metabolic quotient qCO2 - as sensitive and important parameters for soil fertility and C turnover - are strongly affected by land-use changes all over the world. These effects are particularly distinct upon conversion of natural to agricultural ecosystems due to very fast carbon (C) and nutrient cycles and high vulnerability, especially in the tropics. In this study, we used an elevational gradient on Mt. Kilimanjaro to investigate the effects of land-use change and elevation on Corg, MBC and qCO2. Down to a soil depth of 18 cm we compared 4 natural (Helichrysum, Erica forest, Podocarpus forest, Ocotea forest), 5 seminatural (disturbed Podocarpus forest, disturbed Ocotea forest, lower montane forest, grassland, savannah), 1 sustainably used (homegarden) and 2 intensively used ecosystems (coffee plantation, maize field) on an elevation gradient from 950 to 3880 m a.s.l.. Using an incubation device, soil CO2-efflux of 18 cm deep soil cores was measured under field moist conditions and mean annual temperature. MBC to Corg ratios varied between 0.7 and 2.3%. qCO2 increased with magnitude of the disturbance, albeit this effect decreased with elevation. Following the annual precipitation of the ecosystems, both, Corg and MBC showed a hum-shaped distribution with elevation, whereas their maxima were between 2500 and 3000 m a.s.l.. Additionaly, Corg and MBC contents were significantly reduced in intensively used agricultural systems. We conclude that the soil microbial biomass and its activity in Mt. Kilimanjaro ecosystems are strongly altered by land-use. This effect is more distinct in lower than in higher elevated ecosystems and strongly dependent on the magnitude of disturbance.

  19. Seasonal variability of soil CO2 flux and its carbon isotope composition in Krakow urban area, Southern Poland.

    Science.gov (United States)

    Jasek, Alina; Zimnoch, Miroslaw; Gorczyca, Zbigniew; Smula, Ewa; Rozanski, Kazimierz

    2014-06-01

    As urban atmosphere is depleted of (13)CO2, its imprint should be detectable in the local vegetation and therefore in its CO2 respiratory emissions. This work was aimed at characterising strength and isotope signature of CO2 fluxes from soil in urban areas with varying distances from anthropogenic CO2 emissions. The soil CO2 flux and its δ(13)C isotope signature were measured using a chamber method on a monthly basis from July 2009 to May 2012 within the metropolitan area of Krakow, Southern Poland, at two locations representing different levels of anthropogenic influence: a lawn adjacent to a busy street (A) and an urban meadow (B). The small-scale spatial variability of the soil CO2 flux was also investigated at site B. Site B revealed significantly higher summer CO2 fluxes (by approximately 46 %) than site A, but no significant differences were found between their δ(13)CO2 signatures.

  20. Influence of ameliorating soil acidity with dolomite on the priming of soil C content and CO2 emission.

    Science.gov (United States)

    Shaaban, Muhammad; Wu, Lei; Peng, Qi-An; van Zwieten, Lukas; Chhajro, Muhammad Afzal; Wu, Yupeng; Lin, Shan; Ahmed, Muhammad Mahmood; Khalid, Muhammad Salman; Abid, Muhammad; Hu, Ronggui

    2017-04-01

    Lime or dolomite is commonly implemented to ameliorate soil acidity. However, the impact of dolomite on CO 2 emissions from acidic soils is largely unknown. A 53-day laboratory study was carried out to investigate CO 2 emissions by applying dolomite to an acidic Acrisol (rice-rapeseed rotation [RR soil]) and a Ferralsol (rice-fallow/flooded rotation [RF soil]). Dolomite was dosed at 0, 0.5, and 1.5 g 100 g -1 soil, herein referred to as CK, L, and H, respectively. The soil pH (H2O) increased from 5.25 to 7.03 and 7.62 in L and H treatments of the RR soil and from 5.52 to 7.27 and 7.77 in L and H treatments of the RF soil, respectively. Dolomite application significantly (p ≤ 0.001) increased CO 2 emissions in both RR and RF soils, with higher emissions in H as compared to L dose of dolomite. The cumulative CO 2 emissions with H dose of dolomite were greater 136% in the RR soil and 149% in the RF soil as compared to CK, respectively. Dissolved organic carbon (DOC) and microbial biomass carbon (MBC) increased and reached at 193 and 431 mg kg -1 in the RR soil and 244 and 481 mg kg -1 in the RF soil by H treatments. The NH 4 - -N and NO 3 - -N were also increased by dolomite application. The increase in C and N contents stimulated microbial activities and therefore higher respiration in dolomite-treated soil as compared to untreated. The results suggest that CO 2 release in dolomite-treated soils was due to the priming of soil C content rather than chemical reactions.

  1. Reduced tillage and cover crops as a strategy for mitigating atmospheric CO2 increase through soil organic carbon sequestration in dry Mediterranean agroecosystems.

    Science.gov (United States)

    Almagro, María; Garcia-Franco, Noelia; de Vente, Joris; Boix-Fayos, Carolina; Díaz-Pereira, Elvira; Martínez-Mena, María

    2016-04-01

    The implementation of sustainable land management (SLM) practices in semiarid Mediterranean agroecosystems can be beneficial to maintain or enhance levels of soil organic carbon and mitigate current atmospheric CO2 increase. In this study, we assess the effects of different tillage treatments (conventional tillage (CT), reduced tillage (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil CO2 efflux, aggregation and organic carbon stabilization in two semiarid organic rainfed almond (Prunus dulcis Mill., var. Ferragnes) orchards located in SE Spain Soil CO2 efflux, temperature and moisture were measured monthly between May 2012 and December 2014 (site 1), and between February 2013 and December 2014 (site 2). In site 1, soil CO2 efflux rates were also measured immediately following winter and spring tillage operations. Aboveground biomass inputs were estimated at the end of the growing season in each tillage treatment. Soil samples (0-15 cm) were collected in the rows between the trees (n=4) in October 2012. Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. Soil CO2efflux rates in all tillage treatments varied significantly during the year, following changes during the autumn, winter and early spring, or changes in soil moisture during late spring and summer. Repeated measures analyses of variance revealed that there were no significant differences in soil CO2 efflux between tillage treatments throughout the study period at both sites. Average annual values of C lost by soil respiration were slightly but not significantly higher under RT and RTG treatments (492 g C-CO2 m-2 yr-1) than under NT treatment (405 g C-CO2 m-2 yr-1) in site 1, while slightly but not significantly lower values were observed under RT and RTG treatments (468 and 439 g C-CO2 m-2 yr-1

  2. Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette.

    Science.gov (United States)

    Beulig, Felix; Heuer, Verena B; Akob, Denise M; Viehweger, Bernhard; Elvert, Marcus; Herrmann, Martina; Hinrichs, Kai-Uwe; Küsel, Kirsten

    2015-03-01

    Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because the pore gas phase was largely hypoxic. Compared with a reference soil, the mofette was more acidic (ΔpH ∼0.8), strongly enriched in organic carbon (up to 10 times), and exhibited lower prokaryotic diversity. It was dominated by methanogens and subdivision 1 Acidobacteria, which likely thrived under stable hypoxia and acidic pH. Anoxic incubations revealed enhanced formation of acetate and methane (CH4) from hydrogen (H2) and CO2 consistent with elevated CH4 and acetate levels in the mofette soil. (13)CO2 mofette soil incubations showed high label incorporations with ∼512 ng (13)C g (dry weight (dw)) soil(-1) d(-1) into the bulk soil and up to 10.7 ng (13)C g (dw) soil(-1) d(-1) into almost all analyzed bacterial lipids. Incorporation of CO2-derived carbon into archaeal lipids was much lower and restricted to the first 10 cm of the soil. DNA-SIP analysis revealed that acidophilic methanogens affiliated with Methanoregulaceae and hitherto unknown acetogens appeared to be involved in the chemolithoautotrophic utilization of (13)CO2. Subdivision 1 Acidobacteriaceae assimilated (13)CO2 likely via anaplerotic reactions because Acidobacteriaceae are not known to harbor enzymatic pathways for autotrophic CO2 assimilation. We conclude that CO2-induced geochemical changes promoted anaerobic and acidophilic organisms and altered carbon turnover in affected soils.

  3. Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of

  4. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site.

    Science.gov (United States)

    Kim, You Jin; He, Wenmei; Ko, Daegeun; Chung, Haegeun; Yoo, Gayoung

    2017-12-31

    Atmospheric carbon dioxide (CO 2 ) concentrations is continuing to increase due to anthropogenic activity, and geological CO 2 storage via carbon capture and storage (CCS) technology can be an effective way to mitigate global warming due to CO 2 emission. However, the possibility of CO 2 leakage from reservoirs and pipelines exists, and such leakage could negatively affect organisms in the soil environment. Therefore, to determine the impacts of geological CO 2 leakage on plant and soil processes, we conducted a greenhouse study in which plants and soils were exposed to high levels of soil CO 2 . Cabbage, which has been reported to be vulnerable to high soil CO 2 , was grown under BI (no injection), NI (99.99% N 2 injection), and CI (99.99% CO 2 injection). Mean soil CO 2 concentration for CI was 66.8-76.9% and the mean O 2 concentrations in NI and CI were 6.6-12.7%, which could be observed in the CO 2 leaked soil from the pipelines connected to the CCS sites. The soil N 2 O emission was increased by 286% in the CI, where NO 3 - -N concentration was 160% higher compared to that in the control. This indicates that higher N 2 O emission from CO 2 leakage could be due to enhanced nitrification process. Higher NO 3 - -N content in soil was related to inhibited plant metabolism. In the CI treatment, chlorophyll content decreased and chlorosis appeared after 8th day of injection. Due to the inhibited root growth, leaf water and nitrogen contents were consistently lowered by 15% under CI treatment. Our results imply that N 2 O emission could be increased by the secondary effects of CO 2 leakage on plant metabolism. Hence, monitoring the environmental changes in rhizosphere would be very useful for impact assessment of CCS technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Heterotrophic fixation of CO2 in soil

    Czech Academy of Sciences Publication Activity Database

    Šantrůčková, Hana; Bird, M. I.; Elhottová, Dana; Novák, Jaroslav; Picek, T.; Šimek, Miloslav; Tykva, Richard

    2005-01-01

    Roč. 49, č. 2 (2005), s. 218-225 ISSN 0095-3628 R&D Projects: GA ČR(CZ) GA206/02/1036; GA AV ČR(CZ) IAA6066901 Institutional research plan: CEZ:AV0Z60660521 Keywords : heterotrophic fixation * CO2 * soil Subject RIV: EH - Ecology, Behaviour Impact factor: 2.674, year: 2005

  6. Inversely estimating the vertical profile of the soil CO2 production rate in a deciduous broadleaf forest using a particle filtering method.

    Science.gov (United States)

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki

    2015-01-01

    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the "actual" values by decreasing the variance of the posterior distribution of the values.

  7. Soil and crop residue CO2-C emission under tillage systems in sugarcane-producing areas of southern Brazil

    Directory of Open Access Journals (Sweden)

    Luís Gustavo Teixeira

    2013-10-01

    Full Text Available Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp. residues to the short-term CO2-C loss, we studied the influence of several tillage systems: heavy offset disk harrow (HO, chisel plow (CP, rotary tiller (RT, and sugarcane mill tiller (SM in 2008, and CP, RT, SM, moldboard (MP, and subsoiler (SUB in 2009, with and without sugarcane residues relative to no-till (NT in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47 % and 41 %, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.

  8. Elevated atmospheric CO2 in a semi-natural grassland: Root dynamics, decomposition and soil C balances

    International Nuclear Information System (INIS)

    Sindhoej, Erik

    2001-01-01

    This thesis focuses on how elevated atmospheric CO 2 affects a semi-natural grassland, with emphasis on root growth, decomposition and the subsequent long-term effects on soil C balances. Parts of a semi-natural grassland in Central Sweden were enclosed in open-top chambers and exposed to ambient and elevated levels of CO 2 (+350 μmol mol -1 ) from 1995 to 2000, while chamberless rings were used for controls. Root dynamics were observed with minirhizotrons while root biomass and production were studied with soil cores and ingrowth cores. Roots collected from ingrowth cores were incubated under controlled conditions for 160 days to measure root decomposition rates. Treatment-induced differences in microclimate, C input and root decomposability were entered into the ICBM soil C balance model for 30-year projections of soil C balances for the three treatments. Elevated CO 2 chambers had higher biomass production both above and below ground compared to ambient, however the root response increased over the years while the shoot response decreased. Plants grown under elevated CO 2 had greater water-use efficiency compared to ambient, which was shown in higher soil moisture and greater biomass production during slightly dry years. Elevated CO 2 chambers showed higher root appearance rates in spring and higher disappearance rates during autumn and winter. Roots from plants grown under elevated CO 2 decomposed more rapidly. The decreased input and the drier conditions in the ambient chambers were projected to lead to a 1.7% decrease in soil C over 30 years. Under elevated CO 2 , however, the increased input compensated for the higher root decomposability and moister soil conditions and lead only to a projected 1.3% decrease in soil C. This work shows that six years of elevated CO 2 exposure had extensive effects on this semi-natural grassland. The CO 2 response of the grassland was dependent on weather conditions and production increased most when under slight water stress

  9. Fungal inoculation and elevated CO2 mediate growth of Lolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability in metal-contaminated soil: evidence from DGT measurement.

    Science.gov (United States)

    Song, Ningning; Wang, Fangli; Zhang, Changbo; Tang, Shirong; Guo, Junkang; Ju, Xuehai; Smith, Donald L

    2013-01-01

    Fungal inoculation and elevated CO2 may mediate plant growth and uptake of heavy metals, but little evidence from Diffusive Gradients in Thin-films (DGT) measurement has been obtained to characterize the process. Lolium mutiforum and Phytolacca americana were grown at ambient and elevated CO2 on naturally Cd and Pb contaminated soils inoculated with and without Trichoderma asperellum strain C3 or Penicillium chrysogenum strain D4, to investigate plant growth, metal uptake, and metal bioavailability responses. Fungal inoculation increased plant biomass and shoot/root Cd and Pb concentrations. Elevated CO2 significantly increased plants biomass, but decreased Cd and Pb concentrations in shoot/root to various extents, leading to a metal dilution phenomenon. Total Cd and Pb uptake by plants, and DGT-measured Cd and Pb concentrations in rhizosphere soils, were higher in all fungal inoculation and elevated CO2 treatments than control treatments, with the combined treatments having more influence than either treatment alone. Metal dilution phenomenon occurred because the increase in DGT-measured bioavailable metal pools in plant rhizosphere due to elevated CO2 was unable to match the increase in requirement for plant uptake of metals due to plant biomass increase.

  10. Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India.

    Science.gov (United States)

    Ahirwal, Jitendra; Maiti, Subodh Kumar; Singh, Ashok Kumar

    2017-04-01

    Open strip mining of coal results in loss of natural carbon (C) sink and increased emission of CO 2 into the atmosphere. A field study was carried out at five revegetated coal mine lands (7, 8, 9, 10 and 11years) to assess the impact of the reclamation on soil properties, accretion of soil organic C (SOC) and nitrogen (N) stock, changes in ecosystem C pool and soil CO 2 flux. We estimated the presence of C in the tree biomass, soils, litter and microbial biomass to determine the total C sequestration potential of the post mining reclaimed land. To determine the C sequestration of the reclaimed ecosystem, soil CO 2 flux was measured along with the CO 2 sequestration. Reclaimed mine soil (RMS) fertility increased along the age of reclamation and decreases with the soil depths that may be attributed to the change in mine soils characteristics and plant growth. After 7 to 11years of reclamation, SOC and N stocks increased two times. SOC sequestration (1.71MgCha -1 year -1 ) and total ecosystem C pool (3.72MgCha -1 year -1 ) increased with the age of reclamation (CO 2 equivalent: 13.63MgCO 2 ha -1 year -1 ). After 11years of reclamation, soil CO 2 flux (2.36±0.95μmolm -2 s -1 ) was found four times higher than the natural forest soils (Shorea robusta Gaertn. F). The study shows that reclaimed mine land can act as a source/sink of CO 2 in the terrestrial ecosystem and plays an important role to offset increased emission of CO 2 in the atmosphere. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts

    Science.gov (United States)

    Wertin, Timothy M.; Phillips, Susan L.; Reed, Sasha C.; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts) are critical components of arid and semi-arid ecosystems that contribute significantly to carbon (C) and nitrogen (N) fixation, water retention, soil stability, and seedling recruitment. While dry-land ecosystems face a number of environmental changes, our understanding of how biocrusts may respond to such perturbation remains notably poor. To determine the effect that elevated CO2 may have on biocrust composition, cover, and function, we measured percent soil surface cover, effective quantum yield, and pigment concentrations of naturally occurring biocrusts growing in ambient and elevated CO2 at the desert study site in Nevada, USA, from spring 2005 through spring 2007. During the experiment, a year-long drought allowed us to explore the interacting effects that elevated CO2 and water availability may have on biocrust cover and function. We found that, regardless of CO2 treatment, precipitation was the major regulator of biocrust cover. Drought reduced moss and lichen cover to near-zero in both ambient and elevated CO2 plots, suggesting that elevated CO2 did not alleviate water stress or increase C fixation to levels sufficient to mitigate drought-induced reduction in cover. In line with this result, lichen quantum yield and soil cyanobacteria pigment concentrations appeared more strongly dependent upon recent precipitation than CO2 treatment, although we did find evidence that, when hydrated, elevated CO2 increased lichen C fixation potential. Thus, an increase in atmospheric CO2 may only benefit biocrusts if overall climate patterns shift to create a wetter soil environment.

  12. Application of a two-pool model to soil carbon dynamics under elevated CO2.

    Science.gov (United States)

    van Groenigen, Kees Jan; Xia, Jianyang; Osenberg, Craig W; Luo, Yiqi; Hungate, Bruce A

    2015-12-01

    Elevated atmospheric CO2 concentrations increase plant productivity and affect soil microbial communities, with possible consequences for the turnover rate of soil carbon (C) pools and feedbacks to the atmosphere. In a previous analysis (Van Groenigen et al., 2014), we used experimental data to inform a one-pool model and showed that elevated CO2 increases the decomposition rate of soil organic C, negating the storage potential of soil. However, a two-pool soil model can potentially explain patterns of soil C dynamics without invoking effects of CO2 on decomposition rates. To address this issue, we refit our data to a two-pool soil C model. We found that CO2 enrichment increases decomposition rates of both fast and slow C pools. In addition, elevated CO2 decreased the carbon use efficiency of soil microbes (CUE), thereby further reducing soil C storage. These findings are consistent with numerous empirical studies and corroborate the results from our previous analysis. To facilitate understanding of C dynamics, we suggest that empirical and theoretical studies incorporate multiple soil C pools with potentially variable decomposition rates. © 2015 John Wiley & Sons Ltd.

  13. Long-term CO2 injection and its impact on near-surface soil microbiology.

    Science.gov (United States)

    Gwosdz, Simone; West, Julia M; Jones, David; Rakoczy, Jana; Green, Kay; Barlow, Tom; Blöthe, Marco; Smith, Karon; Steven, Michael; Krüger, Martin

    2016-12-01

    Impacts of long-term CO 2 exposure on environmental processes and microbial populations of near-surface soils are poorly understood. This near-surface long-term CO 2 injection study demonstrated that soil microbiology and geochemistry is influenced more by seasonal parameters than elevated CO 2 Soil samples were taken during a 3-year field experiment including sampling campaigns before, during and after 24 months of continuous CO 2 injection. CO 2 concentrations within CO 2 -injected plots increased up to 23% during the injection period. No CO 2 impacts on geochemistry were detected over time. In addition, CO 2 -exposed samples did not show significant changes in microbial CO 2 and CH 4 turnover rates compared to reference samples. Likewise, no significant CO 2 -induced variations were detected for the abundance of Bacteria, Archaea (16S rDNA) and gene copy numbers of the mcrA gene, Crenarchaeota and amoA gene. The majority (75%-95%) of the bacterial sequences were assigned to five phyla: Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes The majority of the archaeal sequences (85%-100%) were assigned to the thaumarchaeotal cluster I.1b (soil group). Univariate and multivariate statistical as well as principal component analyses showed no significant CO 2 -induced variation. Instead, seasonal impacts especially temperature and precipitation were detected. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. EMISI CO2 TANAH AKIBAT ALIH FUNGSI LAHAN HUTAN RAWA GAMBUT DI KALIMANTAN BARAT (Soil Emissions of CO2 Due to Land Use Change of Peat Swamp Forest at West Kalimantan

    Directory of Open Access Journals (Sweden)

    Rossie Wiedya Nusantara

    2015-01-01

    Full Text Available ABSTRAK Penelitian ini bertujuan untuk menganalisis alih fungsi lahan gambut yang menyebabkan perubahan emisi CO2 tanah pada hutan rawa gambut primer (HP, hutan gambut sekunder (HS, semak belukar (SB, kebun sawit (KS, dan kebun jagung (KJ dan menganalisis pengaruh suhu dan jeluk muka air tanah (water-table depth terhadap emisi CO2 tanah. Sampel dari tiap tipe lahan diambil sebanyak lima ulangan, total sampel 25. Saat pengukuran respirasi CO2 tanah gambut dilakukan pengukuran suhu tanah dan muka air tanah. Pengukuran di lapangan dilaksanakan dua kali yaitu awal musim kemarau dan musim hujan. Hasil penelitian menunjukkan bahwa emisi CO2 tanah tertinggi dan terendah pada dua waktu pengukuran tersebut adalah pada tipe lahan KJ (6,512 ton ha-1 th-1 dan SB (1,698  ton ha-1 th-1 serta pada tipe lahan KS (6,701 ton ha-1 th-1 dan SB (3,169 ton ha-1 th-1 berturut-turut. Suhu tanah gambut tertinggi dan terendah pada dua waktu pengukuran tersebut berturut-turut adalah pada tipe lahan SB (27,78 oC dan HP (22,78 oC, dan pada tipe lahan KS (29,08 oC dan HP (26,56 oC serta jeluk muka air tanah gambut berturut-turut pada tipe lahan KJ (56,2 cm dan  SB (32,1 cm. Faktor-faktor yang menyebabkan perubahan emisi CO2 tanah gambut adalah suhu tanah, jeluk muka air tanah dan pengelolaan lahan yang menyebabkan perubahan sifat tanah gambut, seperti ketersediaan C-organik (jumlah dan kualitas bahan organik, pH tanah dan kematangan gambut. ABSTRACT This study aims to analyze peatland use change that caused changes soil emissions of CO2 at primary peat swamp forest (HP, secondary peat forest (HS, shrub (SB, oil palm plantations (KS and corn field (KJ, and to analyze the influence of temperature and water-table depth to soil emission of CO2. Soil samples were taken from each five replications that accunt for 25 samples. Simultaneously with measurement of soil respiration measuremnts soil temperature. Field measurement is carried out twice at the beginning of dry season and

  15. Soil CO2 emissions as a proxy for heat and mass flow assessment, Taupō Volcanic Zone, New Zealand

    Science.gov (United States)

    Bloomberg, S.; Werner, Cynthia A.; Rissmann, C.F.; Mazot, A.; Horton, Travis B.; Gravley, D; Kennedy, B.; Oze, C

    2014-01-01

    The quantification of heat and mass flow between deep reservoirs and the surface is important for understanding magmatic and hydrothermal systems. Here, we use high-resolution measurement of carbon dioxide flux (φCO2) and heat flow at the surface to characterize the mass (CO2 and steam) and heat released to the atmosphere from two magma-hydrothermal systems. Our soil gas and heat flow surveys at Rotokawa and White Island in the Taupō Volcanic Zone, New Zealand, include over 3000 direct measurements of φCO2 and soil temperature and 60 carbon isotopic values on soil gases. Carbon dioxide flux was separated into background and magmatic/hydrothermal populations based on the measured values and isotopic characterization. Total CO2 emission rates (ΣCO2) of 441 ± 84 t d−1 and 124 ± 18 t d−1were calculated for Rotokawa (2.9 km2) and for the crater floor at White Island (0.3 km2), respectively. The total CO2 emissions differ from previously published values by +386 t d−1 at Rotokawa and +25 t d−1 at White Island, demonstrating that earlier research underestimated emissions by 700% (Rotokawa) and 25% (White Island). These differences suggest that soil CO2 emissions facilitate more robust estimates of the thermal energy and mass flux in geothermal systems than traditional approaches. Combining the magmatic/hydrothermal-sourced CO2 emission (constrained using stable isotopes) with reservoir H2O:CO2mass ratios and the enthalpy of evaporation, the surface expression of thermal energy release for the Rotokawa hydrothermal system (226 MWt) is 10 times greater than the White Island crater floor (22.5 MWt).

  16. [Effects of conservation tillage on soil CO2 and N2O emission during the following winter-wheat season].

    Science.gov (United States)

    Pan, Ying; Hu, Zheng-Hu; Wu, Yang-Zhou; Sun, Yin-Yin; Sheng, Lu; Chen, Shu-Tao; Xiao, Qi-Tao

    2014-07-01

    In order to study the effect of conservation tillage on soil CO2 and N2O emissions in the following crop-growing season, field experiments were conducted in the winter wheat-growing season. Four treatments were conventional tillage (T), no-tillage with no straw cover (NT), no-tillage with straw cover (NTS), and conventional tillage with straw incorporation (TS), respectively. The CO2 and N2O fluxes were measured using a static chamber-gas chromatograph technique. The results showed that in the following winter wheat-growing season, conservation tillage did not change the seasonal pattern of CO2 and N2O emission fluxes from soil, and had no significant effect on crop biomass. Conservation tillage significantly reduced the accumulative amount of CO2 and N2O. Compared with the T treatment, the accumulative amount of CO2 under TS, NT, and NTS treatments were reduced by 5.95% (P = 0.132), 12.94% (P = 0.007), and 13.91% (P = 0.004), respectively, and the accumulative amount of N2O were significantly reduced by 31.23% (P = 0.000), 61.29% (P = 0.000), and 33.08% (P = 0.000), respectively. Our findings suggest that conservation tillage significantly reduced CO2 and N2O emission from soil in the following winter wheat-growing season.

  17. The CO2 emission in urbanic soils in the conditions of intensive technogenic pollution

    Science.gov (United States)

    Deviatova, Tatiana; Alaeva, Liliia; Negrobova, Elena; Kramareva, Tatiana

    2017-04-01

    Massive industrial pollution of the environment including soils leads to drastic changes in the vital activity of microorganisms, plants and animals. As objects of research was selected soils of the industrial and residential zones, farmland soils, forest soils. Comparative analysis showed that the emission of CO2 urbanizable increase compared to the suburban soils in recreational areas is 1.5 times, in the residential and industrial zones - in 3-5 times. In addition, identified a local point located in the vicinity of chemical plants, where soil CO2 emission increased up to 40 times compared to the suburban soils. Air technogenic pollution of soils by industrial emissions and transport enhances the mineralization of soil organic matter, increases its lability. These trends are associated with nonspecific adaptive reactions of the soil microbial complex in terms of pollution. Strengthening of the processes of mineralization may be due to the increase in the proportion of fungi in the microbial community. According to numerous reports they are more resistant to pollution compared to bacteria and actinomycetes. Admission to the soil organic matter of anthropogenic origin also increases the process of mineralization. According to the findings, low concentrations of petroleum products lead to increased "breathing" of the soil. Strengthening of the processes of mineralization and, consequently, of CO2 emissions, in the conditions of technogenic pollution of the soils identified in our studies, confirmed by numerous studies by other authors. According to reports in Russia the emission of CO2 from soils is 4.5 times higher than the industrial receipt of its atmosphere. The contribution of local anthropogenic CO2 emissions is not so significant compared to the indirect influence of soil pollution on increased CO2 emissions. Consequently, the expansion of technogenic contaminated soil is becoming a more significant factor adversely affecting the state of the atmosphere

  18. Soil sorption of two nitramines derived from amine-based CO2 capture.

    Science.gov (United States)

    Gundersen, Cathrine Brecke; Breedveld, Gijs D; Foseid, Lena; Vogt, Rolf D

    2017-06-21

    Nitramines are potentially carcinogens that form from the amines used in post-combustion CO 2 capture (PCCC). The soil sorption characteristics of monoethanol (MEA)- and dimethyl (DMA)-nitramines have been assessed using a batch experimental setup, and defined indirectly by measuring loss of nitramine (LC-MS/MS) from the aqueous phase (0.01 M CaCl 2 and 0.1% NaN 3 ) after equilibrium had been established with the soil (24 h). Nitramine soil sorption was found to be strongly dependent on the content of organic matter in the soil (r 2 = 0.72 and 0.95, p Soil sorption of MEA-nitramine was further influenced by the quality of the organic matter (Abs 254 nm , r 2 = 0.93, p soil organic matter. Estimated organic carbon normalized soil-water distribution coefficients (K OC ) are relatively low, and within the same range as for simple amines. Nevertheless, considering the high content of organic matter commonly found in the top layer of a forest soil, this is where most of the nitramines will be retained. Presented data can be used to estimate final concentrations of nitramines in the environment following emissions from amine-based PCCC plants.

  19. Soil CO2 efflux measurement network by means of closed static chambers to monitor volcanic activity at Tenerife, Canary Islands

    Science.gov (United States)

    Amonte, Cecilia; García-Merino, Marta; Asensio-Ramos, María; Melián, Gladys; García-Hernández, Rubén; Pérez, Aaron; Hernández, Pedro A.; Pérez, Nemesio M.

    2017-04-01

    Tenerife (2304 km2) is the largest of the Canary Islands and has developed a central volcanic complex (Cañadas edifice), that started to grow about 3.5 My ago. Coeval with the construction of the Cañadas edifice, shield basaltic volcanism continued until the present along three rift zones oriented NW-SE, NE-SW and NS (hereinafter referred as NW, NE and NS respectively). Main volcanic historical activity has occurred along de NW and NE rift-zones, although summit cone of Teide volcano, in central volcanic complex, is the only area of the island where surface geothermal manifestations are visible. Uprising of deep-seated gases occurs along the aforementioned volcanic structures causing diffuse emissions at the surface environment of the rift-zones. In the last 20 years, there has been considerable interest in the study of diffuse degassing as a powerful tool in volcano monitoring programs. Diffuse degassing studies are even more important volcanic surveillance tool at those volcanic areas where visible manifestations of volcanic gases are absent. Historically, soil gas and diffuse degassing surveys in volcanic environments have focused mainly on CO2 because it is, after water vapor, the most abundant gas dissolved in magma. One of the most popular methods used to determine CO2 fluxes in soil sciences is based on the absorption of CO2 through an alkaline medium, in its solid or liquid form, followed by gravimetric, conductivity, or titration analyses. In the summer of 2016, a network of 31 closed static chambers was installed, covering the three main structural zones of Tenerife (NE, NW and NS) as well as Cañadas Caldera with volcanic surveillance porpoises. 50 cc of 0.1N KOH solution is placed inside the chamber to absorb the CO2 released from the soil. The solution is replaced weekly and the trapped CO2 is then analyzed at the laboratory by titration. The are expressed as weekly integrated CO2 efflux values. The CO2 efflux values ranged from 3.2 to 12.9 gṡm-2

  20. Temperature versus plant effects on diel dynamics of soil CO2 production and efflux: a controlled environment study

    Science.gov (United States)

    Reinthaler, David; Roy, Jacques; Landais, Damien; Piel, Clement; Resco de Dios, Victor; Bahn, Michael

    2015-04-01

    Soil respiration (Rs) is the biggest source of CO2 emitted from terrestrial ecosystems to the atmosphere. Therefore the understanding of its drivers is of major importance for models of carbon cycling. Next to temperature as a major abiotic factor, photosynthesis has been suggested as an important driver influencing diel patterns in Rs. Under natural conditions it is difficult to disentangle abiotic and biotic effects on soil CO2 production, as fluctuating light intensity affects both photosynthetic activity and soil temperature. To analyse individual and combined effects of soil temperature and light on the dynamics of soil CO2 production and efflux, we performed a controlled environment study at the ECOTRON facility in Montpellier. The study manipulated temperature and photosynthetically active radiation independently and was carried out in large macrocosms, hosting canopies of either a woody (cotton) or a herbaceous (bean) crop. In each macrocosm membrane tubes had been installed across the soil profile for continuous measurement of soil CO2 concentrations. In addition, an automated soil respiration system was installed in each macrocosm, whose data were also used for validating a model of soil CO2 production and transport based on the concentration profiles. Both for cotton and for bean canopies, under conditions of naturally fluctuating temperature and light conditions, soil CO2 production and efflux followed a clear diel pattern. Under constantly dark conditions (excluding immediate effects of photosynthesis) and constant temperature, no significant diel changes in Rs could be observed. Furthermore, soil CO2 production and efflux did not increase significantly upon exposure of previously darkened macrocosms to light. Under constant temperature and fluctuating light conditions, we observed a dampened diel pattern of Rs, which did not match diurnal solar cycles. A detailed residual analysis accounting for temporal trends in soil moisture suggested a significant

  1. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    Science.gov (United States)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results indicate that models of global

  2. Biogeochemical modeling of CO2 and CH4 production in anoxic Arctic soil microcosms

    Science.gov (United States)

    Tang, Guoping; Zheng, Jianqiu; Xu, Xiaofeng; Yang, Ziming; Graham, David E.; Gu, Baohua; Painter, Scott L.; Thornton, Peter E.

    2016-09-01

    Soil organic carbon turnover to CO2 and CH4 is sensitive to soil redox potential and pH conditions. However, land surface models do not consider redox and pH in the aqueous phase explicitly, thereby limiting their use for making predictions in anoxic environments. Using recent data from incubations of Arctic soils, we extend the Community Land Model with coupled carbon and nitrogen (CLM-CN) decomposition cascade to include simple organic substrate turnover, fermentation, Fe(III) reduction, and methanogenesis reactions, and assess the efficacy of various temperature and pH response functions. Incorporating the Windermere Humic Aqueous Model (WHAM) enables us to approximately describe the observed pH evolution without additional parameterization. Although Fe(III) reduction is normally assumed to compete with methanogenesis, the model predicts that Fe(III) reduction raises the pH from acidic to neutral, thereby reducing environmental stress to methanogens and accelerating methane production when substrates are not limiting. The equilibrium speciation predicts a substantial increase in CO2 solubility as pH increases, and taking into account CO2 adsorption to surface sites of metal oxides further decreases the predicted headspace gas-phase fraction at low pH. Without adequate representation of these speciation reactions, as well as the impacts of pH, temperature, and pressure, the CO2 production from closed microcosms can be substantially underestimated based on headspace CO2 measurements only. Our results demonstrate the efficacy of geochemical models for simulating soil biogeochemistry and provide predictive understanding and mechanistic representations that can be incorporated into land surface models to improve climate predictions.

  3. Production of CO2 in crude oil bioremediation in clay soil

    Directory of Open Access Journals (Sweden)

    Sandro José Baptista

    2005-06-01

    Full Text Available The aim of the present work was to evaluate the biodegradation of petroleum hydrocarbons in clay soil a 45-days experiment. The experiment was conducted using an aerobic fixed bed reactor, containing 300g of contaminated soil at room temperature with an air rate of 6 L/h. The growth medium was supplemented with 2.5% (w/w (NH42SO4 and 0.035% (w/w KH2PO4. Biodegradation of the crude oil in the contaminated clay soil was monitored by measuring CO2 production and removal of organic matter (OM, oil and grease (OandG, and total petroleum hydrocarbons (TPH, measured before and after the 45-days experiment, together with total heterotrophic and hydrocarbon-degrading bacterial count. The best removals of OM (50%, OandG (37% and TPH (45% were obtained in the bioreactors in which the highest CO2 production was achieved.O objetivo do trabalho foi avaliar a biodegradação de petróleo em solo argiloso durante 45 dias de ensaios. Os ensaios de biodegradação foram conduzidos em biorreatores aeróbios de leito fixo, com 300 g de solo contaminado, à temperatura ambiente e com uma vazão de ar de 6 L/h. As deficiências nutricionais foram corrigidas com 2,5% (p/p (NH42SO4 e com 0,035% (p/p KH2PO4. O monitoramento foi realizado em função da produção de CO2, da remoção de matéria orgânica (OM, de óleos e graxas (OandG e de hidrocarbonetos totais de petróleo (TPH, além bactérias heterotróficas totais (BHT e hidrocarbonoclásticas (BHc, no início e após 45 dias. Nos biorreatores onde houve maior crescimento de bactérias hidrocarbonoclásticas e maior produção de CO2, obteve-se os melhores percentuais de remoções de MO (50%, OandG (37% e TPH (45%.

  4. Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

    Science.gov (United States)

    Cheng, Lei; Booker, Fitzgerald L.; Burkey, Kent O.; Tu, Cong; Shew, H. David; Rufty, Thomas W.; Fiscus, Edwin L.; Deforest, Jared L.; Hu, Shuijin

    2011-01-01

    Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios. PMID:21731722

  5. No influence of CO2 on stable isotope analyses of soil waters with off-axis integrated cavity output spectroscopy (OA-ICOS).

    Science.gov (United States)

    Sprenger, Matthias; Tetzlaff, Doerthe; Soulsby, Chris

    2017-03-15

    It was recently shown that the presence of CO 2 affects the stable isotope (δ 2 H and δ 18 O values) analysis of water vapor via Wavelength-Scanned Cavity Ring-Down Spectroscopy. Here, we test how much CO 2 is emitted from soil samples and if the CO 2 in the headspace influences the isotope analysis with the direct equilibration method by Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS). The headspace above different amounts of sparkling water was sampled, and its stable isotopic composition (δ 2 H and δ 18 O values) and CO 2 concentration were measured by direct equilibration and by gas chromatography, respectively. In addition, the headspace above soil samples was analyzed in the same way. Furthermore, the gravimetric water content and the loss on ignition were measured for the soil samples. The experiment with the sparkling water showed that CO 2 does not influence the stable isotope analysis by OA-ICOS. CO 2 was emitted from the soil samples and correlated with the isotopic fractionation signal, but no causal relationship between the two was determined. Instead, the fractionation signal in pore water isotopes can be explained by soil evaporation and the CO 2 can be related to soil moisture and organic matter which both enhance microbial activity. We found, despite the high CO 2 emissions from soil samples, no need for a post-correction of the pore water stable isotope analysis results, since there is no relation between CO 2 concentrations and the stable isotope results of vapor samples obtained with OA-ICOS. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.

  6. Soil respiration is stimulated by elevated CO2 and reduced by summer drought: three years of measurements in a multifactor ecosystem manipulation experiment in a temperate heathland (CLIMAITE)

    DEFF Research Database (Denmark)

    Selsted, Merete Bang; van der Linden, Leon; Ibrom, Andreas

    2012-01-01

    This study investigated the impact of predicted future climatic and atmospheric conditions on soil respiration (RS) in a Danish Calluna‐Deschampsia‐heathland. A fully factorial in situ experiment with treatments of elevated atmospheric CO2 (+130 ppm), raised soil temperature (+0.4 °C) and extended...... summer drought (5–8% precipitation exclusion) was established in 2005. The average RS, observed in the control over 3 years of measurements (1.7 μmol CO2 m−2 sec−1), increased 38% under elevated CO2, irrespective of combination with the drought or temperature treatments. In contrast, extended summer...... due to reduced plant growth or changes in soil water holding capacity. An empirical model that predicts RS from soil temperature, soil moisture and plant biomass was developed and accounted for 55% of the observed variability in RS. The model predicted annual sums of RS in 2006 and 2007...

  7. Effects of increased temperature and CO{sub 2} on soil quality

    Energy Technology Data Exchange (ETDEWEB)

    Ogner, G.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. The Norwegian Forest Research Institute has studied the effects of increased CO{sub 2} and temperature on forest soil, soil leachate and plants in an open top chamber experiment. The purpose was to analyze the changes in soil parameters and the leaching of elements. Nitrate and aluminium received special attention. The growth of Norway spruce and birch was followed, and its impact on the soil parameters. Preliminary results indicate that the temperature increase of the soil and consequently an increased turnover of soil organic matter had the major effect on the quality of soil leachates. CO{sub 2} was less important. Leaching of NO{sub 3}{sup -} was high from control lysimeters with moss cover. Lysimeters with birch hardly leached NO{sub 3}{sup -} at all. Spruce is in an intermediate position. Increased leaching of Al{sup n+} is found for moss lysimeters. Leachates from birch lysimeters have high concentrations of Al{sup n+} only at the end of the growth seasons. Plant growth is to some extent increased by the CO{sub 2} treatment. Birch grew well in all lysimeters and all treatments, spruce developed clear symptoms of stress. This result does not fit with the increased availability of nutrients in soil solution

  8. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation.

    Science.gov (United States)

    Dawes, Melissa A; Philipson, Christopher D; Fonti, Patrick; Bebi, Peter; Hättenschwiler, Stephan; Hagedorn, Frank; Rixen, Christian

    2015-05-01

    Responses of alpine tree line ecosystems to increasing atmospheric CO2 concentrations and global warming are poorly understood. We used an experiment at the Swiss tree line to investigate changes in vegetation biomass after 9 years of free air CO2 enrichment (+200 ppm; 2001-2009) and 6 years of soil warming (+4 °C; 2007-2012). The study contained two key tree line species, Larix decidua and Pinus uncinata, both approximately 40 years old, growing in heath vegetation dominated by dwarf shrubs. In 2012, we harvested and measured biomass of all trees (including root systems), above-ground understorey vegetation and fine roots. Overall, soil warming had clearer effects on plant biomass than CO2 enrichment, and there were no interactive effects between treatments. Total plant biomass increased in warmed plots containing Pinus but not in those with Larix. This response was driven by changes in tree mass (+50%), which contributed an average of 84% (5.7 kg m(-2) ) of total plant mass. Pinus coarse root mass was especially enhanced by warming (+100%), yielding an increased root mass fraction. Elevated CO2 led to an increased relative growth rate of Larix stem basal area but no change in the final biomass of either tree species. Total understorey above-ground mass was not altered by soil warming or elevated CO2 . However, Vaccinium myrtillus mass increased with both treatments, graminoid mass declined with warming, and forb and nonvascular plant (moss and lichen) mass decreased with both treatments. Fine roots showed a substantial reduction under soil warming (-40% for all roots soil depth) but no change with CO2 enrichment. Our findings suggest that enhanced overall productivity and shifts in biomass allocation will occur at the tree line, particularly with global warming. However, individual species and functional groups will respond differently to these environmental changes, with consequences for ecosystem structure and functioning. © 2014 John Wiley & Sons Ltd.

  9. Simultaneous Measurements of Soil CO2 and CH4 Fluxes Using Laser Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Rachhpal S. Jassal

    2016-04-01

    Full Text Available We present a method of simultaneously measuring soil CO and CH fluxes using a laser-based cavity ring-down spectrometer (CRDS coupled to an automated non-steady-state chamber system. The differential equation describing the change in the greenhouse gas (GHG mixing ratio in the chamber headspace following lid closure is solved for the condition when a small flow rate of chamber headspace air is pulled through the CRDS by an external pump and exhausted to the atmosphere. The small flow rate allows calculation of fluxes assuming linear relationships between the GHG mixing ratios and chamber lid closure times of a few minutes. We also calibrated the chambers for effective volume ( and show that adsorption of the GHGs on the walls of the chamber caused to be 7% higher than the geometric volume, with the near-surface soil porosity causing another 4% increase in .

  10. Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette

    Science.gov (United States)

    Beulig, Felix; Heuer, Verena B.; Akob, Denise M.; Viehweger, Bernhard; Elvert, Marcus; Herrmann, Martina; Hinrichs, Kai-Uwe; Küsel, Kirsten

    2015-01-01

    Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because the pore gas phase was largely hypoxic. Compared with a reference soil, the mofette was more acidic (ΔpH ~0.8), strongly enriched in organic carbon (up to 10 times), and exhibited lower prokaryotic diversity. It was dominated by methanogens and subdivision 1Acidobacteria, which likely thrived under stable hypoxia and acidic pH. Anoxic incubations revealed enhanced formation of acetate and methane (CH4) from hydrogen (H2) and CO2 consistent with elevated CH4 and acetate levels in the mofette soil. 13CO2 mofette soil incubations showed high label incorporations with ~512 ng13C g (dry weight (dw)) soil−1 d−1 into the bulk soil and up to 10.7 ng 13C g (dw) soil−1 d−1 into almost all analyzed bacterial lipids. Incorporation of CO2-derived carbon into archaeal lipids was much lower and restricted to the first 10 cm of the soil. DNA-SIP analysis revealed that acidophilic methanogens affiliated withMethanoregulaceae and hitherto unknown acetogens appeared to be involved in the chemolithoautotrophic utilization of 13CO2. Subdivision 1 Acidobacteriaceae assimilated 13CO2 likely via anaplerotic reactions because Acidobacteriaceae are not known to harbor enzymatic pathways for autotrophic CO2 assimilation. We conclude that CO2-induced geochemical changes promoted anaerobic and acidophilic organisms and altered carbon turnover in affected soils.

  11. Soil CO2 production in upland tundra where permafrost is thawing

    Science.gov (United States)

    Hanna Lee; Edward A.G. Schuur; Jason G. Vogel

    2010-01-01

    Permafrost soils store nearly half of global soil carbon (C), and therefore permafrost thawing could lead to large amounts of greenhouse gas emissions via decomposition of soil organic matter. When ice-rich permafrost thaws, it creates a localized surface subsidence called thermokarst terrain, which changes the soil microenvironment. We used soil profile CO2...

  12. Elevated tropospheric CO2 and O3 concentrations impair organic pollutant removal from grassland soil.

    Science.gov (United States)

    Ai, Fuxun; Eisenhauer, Nico; Jousset, Alexandre; Butenschoen, Olaf; Ji, Rong; Guo, Hongyan

    2018-04-03

    The concentrations of tropospheric CO 2 and O 3 have been rising due to human activities. These rising concentrations may have strong impacts on soil functions as changes in plant physiology may lead to altered plant-soil interactions. Here, the effects of eCO 2 and eO 3 on the removal of polycyclic aromatic hydrocarbon (PAH) pollutants in grassland soil were studied. Both elevated CO 2 and O 3 concentrations decreased PAH removal with lowest removal rates at elevated CO 2 and elevated O 3 concentrations. This effect was linked to a shift in soil microbial community structure by structural equation modeling. Elevated CO 2 and O 3 concentrations reduced the abundance of gram-positive bacteria, which were tightly linked to soil enzyme production and PAH degradation. Although plant diversity did not buffer CO 2 and O 3 effects, certain soil microbial communities and functions were affected by plant communities, indicating the potential for longer-term phytoremediation approaches. Results of this study show that elevated CO 2 and O 3 concentrations may compromise the ability of soils to degrade organic pollutants. On the other hand, the present study also indicates that the targeted assembly of plant communities may be a promising tool to shape soil microbial communities for the degradation of organic pollutants in a changing world.

  13. Responses of soil CO2 fluxes to short-term experimental warming in alpine steppe ecosystem, Northern Tibet.

    Science.gov (United States)

    Lu, Xuyang; Fan, Jihui; Yan, Yan; Wang, Xiaodan

    2013-01-01

    Soil carbon dioxide (CO2) emission is one of the largest fluxes in the global carbon cycle. Therefore small changes in the size of this flux can have a large effect on atmospheric CO2 concentrations and potentially constitute a powerful positive feedback to the climate system. Soil CO2 fluxes in the alpine steppe ecosystem of Northern Tibet and their responses to short-term experimental warming were investigated during the growing season in 2011. The results showed that the total soil CO2 emission fluxes during the entire growing season were 55.82 and 104.31 g C m(-2) for the control and warming plots, respectively. Thus, the soil CO2 emission fluxes increased 86.86% with the air temperature increasing 3.74°C. Moreover, the temperature sensitivity coefficient (Q 10) of the control and warming plots were 2.10 and 1.41, respectively. The soil temperature and soil moisture could partially explain the temporal variations of soil CO2 fluxes. The relationship between the temporal variation of soil CO2 fluxes and the soil temperature can be described by exponential equation. These results suggest that warming significantly promoted soil CO2 emission in the alpine steppe ecosystem of Northern Tibet and indicate that this alpine ecosystem is very vulnerable to climate change. In addition, soil temperature and soil moisture are the key factors that controls soil organic matter decomposition and soil CO2 emission, but temperature sensitivity significantly decreases due to the rise in temperature.

  14. Dynamics of Soil CO2 Profiles of Pinus sylvestris var. sylvestriformis Seedlings Under CO2 Concentration Doubled%CO2倍增条件下长白赤松幼苗土壤CO2廓线的动态

    Institute of Scientific and Technical Information of China (English)

    韩士杰; 张军辉; 周玉梅; 邹春静

    2002-01-01

    The gas-well system permanently installed in the soil was adopted for studying the dynamic relationship between CO2 profiles and seedling root growth of Pinus sylvestris var. sylvestriformis (Takenouchi) Cheng et C. D. Chu. The study was conducted in the Open Research Station of Changbai Mountain Forest Ecological System, The Chinese Academy of Sciences from 1999 to 2001. Four treatments were arranged in the rectangular open-top chambers (OTCs): ambient CO2+no-seedling, 700 μmol/mol CO2+no-seedling, ambient CO2 +seedlings, 700 μmol/mol CO2+seedlings. By collecting and analyzing soil gas synchronously, it was found that the dynamics of CO2 profiles were related to the biological activity of seedlings. There were more roots distributed in the top soil and the boundary layer across soil and sand, which made more contributions to the CO2 profiles due to respiration root. Compared with the ambient CO2, elevated CO2 led to the peak of CO2 concentration distribution shifted from soil surface layer to the boundary layer as seasonally growing of seedling roots. It is suggested the gas-well system is an inexpensive, non-destructive and relatively sensitive method for study of soil CO2 concentration profiles.%采用固定在土壤中的气井系统,监测土壤剖面的CO2动态及其与长白赤松 (Pinus sylvestris var. sylvestriformis (Takenouchi) Cheng et C. D. Chu) 幼苗根系发展之间的关系.实验研究共设4种CO2处理,分别是环境CO2浓度,无苗;CO2为700 μmol/mol,无苗;环境CO2浓度,有苗;CO2为700 μmol/mol,有苗.通过对土壤剖面CO2气体的同步采集与分析表明:土壤CO2廓线与幼苗根系的生物活性密切相关.在土壤表面及壤土和沙土的边界层中,根系分布密集,根系的呼吸作用对那两个土层CO2贡献大;随着幼苗的季节生长,与环境CO2浓度比较,CO2倍增将导致土壤剖面上CO2

  15. Seasonal and Daily Dynamics of the CO2 Emission from Soils of Pinus koraiensis Forests in the South of the Sikhote-Alin Range

    Science.gov (United States)

    Ivanov, A. V.; Braun, M.; Tataurov, V. A.

    2018-03-01

    The presented study shows the results of measuring soil respiration in typical burozems (Dystric Cambisols) under mixed Korean pine-broadleaved forests in the southern part of the Primorskii (Far East) region of Russia growing under conditions of monsoon climate. The measurements were performed in 2014-2016 by the chamber method with the use of a portable infrared gas analyzer. Relative and total values of the CO2 efflux from the soil surface on four model plots were determined. The intensity of summer emission varied from 2.25 to 10.97 μmol/(m2 s), and the total CO2 efflux from the soils of four plots varied from 18.84 to 25.56 mol/m2. It is shown that a larger part of seasonal variability in the soil respiration is controlled by the soil temperature ( R 2 = 0.5-0.7); the soil water content also has a significant influence on the CO2 emission determining about 10% of its temporal variability. The daily dynamics of soil respiration under the old-age (200 yrs) forest have a significant relationship with the soil temperature ( R 2 = 0.51). The pyrogenic transformation of Pinus koraiensis forests into low-value oak forests is accompanied by an increase in the CO2 efflux from the soil.

  16. Effects of long-term elevated CO2 on N2-fixing, denitrifying and nitrifying enzyme activities in forest soils under Pinus sylvestriformis in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jun-Qiang; HAN Shi-Jie; REN Fei-Rong; ZHOU Yu-Mei; ZHANG Yan

    2008-01-01

    A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province,northeastern China (42o24'N,128o06'E,and 738 m elevation).A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999.Changpai Scotch pine (Pinus sylvestris var.sylvestriformis seeds were sowed in May,1999 and CO2 fumigation treatments began after seeds germination.In each year,the exposure started at the end of April and stopped at the end of October.Soil samples were collected in June and August 2006 and in June 2007,and soil nitrifying,denitrifying and N2-fixing enzyme activities were measured.Results show that soil nitrifying enzyme activities (NEA) in the 5-10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006,by 30.9% in August 2006 and by 11.3% in June 2007.Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P < 0.012) and August 2006 (P < 0.005) samplings in our study; no significant difference was detected in June 2007,and no significant changes in N2-fixing enzyme activity were found.This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities.

  17. Soil CO2 Degassing Path along Volcano-Tectonic Structures in the Pico-Faial-São Jorge Islands (Azores Archipelago, Portugal

    Directory of Open Access Journals (Sweden)

    Fátima Viveiros

    2017-06-01

    Full Text Available The Azores archipelago is composed of nine volcanic islands located at the triple junction between the North American, Eurasian, and Nubian plates. Nowadays the volcanic activity in the archipelago is characterized by the presence of secondary manifestations of volcanism, such as hydrothermal fumaroles, thermal and cold CO2-rich springs as well as soil diffuse degassing areas, and low magnitude seismicity. Soil CO2 degassing (concentration and flux surveys have been performed at Pico, Faial, and São Jorge islands to identify possible diffuse degassing structures. Since the settlement of the Azores in the fifteenth Century these three islands were affected by seven onshore volcanic eruptions and at least six destructive earthquakes. These islands are crossed by numerous active tectonic structures with dominant WNW-ESE direction, and less abundant conjugate NNW-SSE trending faults. A total of 2,855 soil CO2 concentration measurements have been carried out with values varying from 0 to 20.7 vol.%. Soil CO2 flux measurements, using the accumulation chamber method, have also been performed at Pico and Faial islands in the summer of 2011 and values varied from absence of CO2 to 339 g m−2 d−1. The highest CO2 emissions were recorded at Faial Island and were associated with the Pedro Miguel graben faults, which seem to control the CO2 diffuse degassing and were interpreted as the pathways for the CO2 ascending from deep reservoirs to the surface. At São Jorge Island, four main degassing zones have been identified at the intersection of faults or associated to WNW-ESE tectonic structures. Four diffuse degassing structures were identified at Pico Island essentially where different faults intersect. Pico geomorphology is dominated by a 2,351 m high central volcano that presents several steam emissions at its summit. These emissions are located along a NW-SE fault and the highest measured soil CO2 concentration reached 7.6 vol.% with a maximum

  18. Experimental analysis of CO2 emissions from agricultural soils subjected to five different tillage systems in Lithuania

    International Nuclear Information System (INIS)

    Buragienė, Sidona; Šarauskis, Egidijus; Romaneckas, Kęstutis; Sasnauskienė, Jurgita; Masilionytė, Laura; Kriaučiūnienė, Zita

    2015-01-01

    Intensive agricultural production strongly influences the global processes that determine climate change. Thus, tillage can play a very important role in climate change. The intensity of soil carbon dioxide (CO 2 ) emissions, which contribute to the greenhouse effect, can vary depending on the following factors: the tillage system used, meteorological conditions (which vary in different regions of the world), soil properties, plant residue characteristics and other factors. The main purpose of this research was to analyse and assess the effects of autumn tillage systems with different intensities on CO 2 emissions from soils during different seasons and under the climatic conditions of Central Lithuania. The research was conducted at the Experimental Station of Aleksandras Stulginskis University from 2009 to2012; and in 2014. The soils at the experimental site were classified as Eutric Endogleyic Planosol (Drainic). The investigations were conducted using five tillage systems with different intensities, typical of the Baltic Region. Deep conventional ploughing was performed at a depth of 230–250 mm, shallow ploughing was conducted at a depth of 120–150 mm, deep loosening was conducted at depths of 250–270 mm, and shallow loosening was conducted at depths of 120–150 mm. The fifth system was a no-tillage system. Overall, autumn tillage resulted in greater CO 2 emissions from the soil over both short- and long-term periods under the climatic conditions of Central Lithuania, regardless of the tillage system applied. The highest soil CO 2 emissions were observed for the conventional deep ploughing tillage system, and the lowest emissions were observed for the no-tillage system. The meteorological conditions greatly influenced the CO 2 emissions from the soil during the spring. Soil CO 2 emissions were enhanced as precipitation and the air and soil temperatures increased. Long-term investigations regarding the dynamics of CO 2 emissions from soils during the

  19. Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil.

    Science.gov (United States)

    Yang, Fang; Lee, Xinqing; Theng, Benny K G; Wang, Bing; Cheng, Jianzhong; Wang, Qian

    2017-06-01

    Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO 2 and N 2 O emissions. Under both drying-wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO 2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N 2 O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.

  20. Subsurface watering resulted in reduced soil N2O and CO2 emissions and their global warming potentials than surface watering

    Science.gov (United States)

    Wei, Qi; Xu, Junzeng; Yang, Shihong; Liao, Linxian; Jin, Guangqiu; Li, Yawei; Hameed, Fazli

    2018-01-01

    Water management is an important practice with significant effect on greenhouse gases (GHG) emission from soils. Nitrous oxide (N2O) and carbon dioxide (CO2) emissions and their global warming potentials (GWPs) from subsurface watering soil (SUW) were investigated, with surface watering (SW) as a control. Results indicated that the N2O and CO2 emissions from SUW soils were somewhat different to those from SW soil, with the peak N2O and CO2 fluxes from SUW soil reduced by 28.9% and 19.4%, and appeared 72 h and 168 h later compared with SW. The fluxes of N2O and CO2 from SUW soils were lower than those from SW soil in both pulse and post-pulse periods, and the reduction was significantly (p0.1) lower that from SW soil. Moreover, N2O and CO2 fluxes from both watering treatments increased exponentially with increase of soil water-filled pore space (WFPS) and temperature. Our results suggest that watering soil from subsurface could significantly reduce the integrative greenhouse effect caused by N2O and CO2 and is a promising strategy for soil greenhouse gases (GHGs) mitigation. And the pulse period, contributed most to the reduction in emissions of N2O and CO2 from soils between SW and SUW, should be a key period for mitigating GHGs emissions. Response of N2O and CO2 emissions to soil WFPS and temperature illustrated that moisture was the dominant parameters that triggering GHG pulse emissions (especially for N2O), and temperature had a greater effect on the soil microorganism activity than moisture in drier soil. Avoiding moisture and temperature are appropriate for GHG emission at the same time is essential for GHGs mitigation, because peak N2O and CO2 emission were observed only when moisture and temperature are both appropriate.

  1. Response to elevated CO2 in the temperate C3 grass Festuca arundinaceae across ten soil orders

    Directory of Open Access Journals (Sweden)

    Eric A Nord

    2015-02-01

    Full Text Available Soils vary widely in mineral nutrient availability and physical characteristics, but the influence of this variability on plant responses to elevated CO2 remains poorly understood. As a first approximation of the effect of global soil variability on plant growth response to CO2, we evaluated the effect of CO2 on tall fescue (Festuca arundinacea grown in soils representing 10 of the 12 global soil orders plus a high-fertility control. Plants were grown in small pots in continuously stirred reactor tanks in a greenhouse. Elevated CO2 (800 ppm increased plant biomass in the high-fertility control and in two of the more fertile soils. Elevated CO2 had variable effects on foliar mineral concentration - nitrogen was not altered by elevated CO2, and phosphorus and potassium were only affected by CO2 in a small number of soils. While leaf photosynthesis was stimulated by elevated CO2 in six soils, canopy photosynthesis was not stimulated. Four principle components were identified; the first was associated with foliar minerals and soil clay, and the second with soil acidity and foliar manganese concentration. The third principle component was associated with gas exchange, and the fourth with plant biomass and soil minerals. Soils in which tall fescue did not respond to elevated CO2 account for 83% of global land area. These results show that variation in soil physical and chemical properties have important implications for plant responses to global change, and highlight the need to consider soil variability in models of vegetation response to global change.

  2. Soil CO2 flux in response to elevated atmospheric CO2 and nitrogen fertilization: patterns and methods

    Science.gov (United States)

    James M. Vose; Katherine J. Elliott; D.W. Johnson

    1995-01-01

    The evolution of carbon dioxide (CO2) from soils is due to the metabolic activity of roots, mycorrhizae, and soil micro- and macro-organisms. Although precise estimates of carbon (C) recycled to the atmosphere from belowground sources are unavailable, Musselman and Fox (1991) propose that the belowground contribution exceeds 100 Pg y-1...

  3. Influences of soil volume and an elevated CO[sub 2] level on growth and CO[sub 2] exchange for the crassulacean acid metabolism plant Opuntia ficus-indica

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.; Cui, M.; Miller, P.M.; Luo, Y. (UCLA-DOE Lab., Univ. of California, Los Angeles, CA (United States))

    1994-01-01

    Effects of the current (38 Pa) and an elevated (74 Pa) CO[sub 2] partial pressure on root and shoot areas, biomass accumulation and daily net CO[sub 2] exchange were determined for opuntia ficus-indica (L.) Miller, a highly productive Crassulacean acid metabolism species cultivated worldwide. Plants were grown in environmentally controlled rooms for 18 weeks in pots of three soil volumes (2600, 6500 and 26000 cm[sup 3]), the smallest of which was intended to restrict root growth. For plants in the medium-sized soil volume, basal cladodes tended to be thicker and areas of main and lateral roots tended to be greater as the CO[sub 2] level was doubled. Daughter cladodes tended to be initiated sooner at the current compared with the elevated CO[sub 2] level but total areas were similar by 10 weeks. At 10 weeks, daily net CO[sub 2] uptake for the three soil volumes averaged 24% higher for plants growing under elevated compared with current CO-2 levels, but at 18 weeks only 3% enhancement in uptake occurred. Dry weight gain was enhanced 24% by elevated CO[sub 2] during the first 10 weeks but only 8% over 18 weeks. Increasing the soil volume 10-fold led to a greater stimulation of daily net CO[sub 2] uptake and biomass production than did doubling the CO[sub 2] level. At 18 weeks, root biomass doubled and shoot biomass nearly doubled as the soil volume was increased 10-fold; the effects of soil volume tended to be greater for elevated CO[sub 2]. The amount of cladode nitrogen per unit dry weight decreased as the CO[sub 2] level was raised and increased as soil volume increased, the latter suggesting that the effects of soil volume could be due to nitrogen limitations. (au) (30 refs.)

  4. Elevated CO2 increases glomalin-related soil protein (GRSP) in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils.

    Science.gov (United States)

    Jia, Xia; Zhao, Yonghua; Liu, Tuo; Huang, Shuping; Chang, Yafei

    2016-11-01

    Glomalin-related soil protein (GRSP), which contains glycoproteins produced by arbuscular mycorrhizal fungi (AMF), as well as non-mycorrhizal-related heat-stable proteins, lipids, and humic materials, is generally categorized into two fractions: easily extractable GRSP (EE-GRSP) and total GRSP (T-GRSP). GRSP plays an important role in soil carbon (C) sequestration and can stabilize heavy metals such as lead (Pb), cadmium (Cd), and manganese (Mn). Soil contamination by heavy metals is occurring in conjunction with rising atmospheric CO 2 in natural ecosystems due to human activities. However, the response of GRSP to elevated CO 2 combined with heavy metal contamination has not been widely reported. Here, we investigated the response of GRSP to elevated CO 2 in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils. Elevated CO 2 (700 μmol mol -1 ) significantly increased T- and EE- GRSP concentrations in soils contaminated with Cd, Pb or Cd + Pb. GRSP contributed more carbon to the rhizosphere soil organic carbon pool under elevated CO 2  + heavy metals than under ambient CO 2 . The amount of Cd and Pb bound to GRSP was significantly higher under elevated (compared to ambient) CO 2 ; and elevated CO 2 increased the ratio of GRSP-bound Cd and Pb to total Cd and Pb. However, available Cd and Pb in rhizosphere soil under increased elevated CO 2 compared to ambient CO 2 . The combination of both metals and elevated CO 2 led to a significant increase in available Pb in rhizosphere soil compared to the Pb treatment alone. In conclusion, increased GRSP produced under elevated CO 2 could contribute to sequestration of soil pollutants by adsorption of Cd and Pb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effects of elevated atmospheric CO2 on dissolution of geological fluorapatite in water and soil.

    Science.gov (United States)

    Li, Zhen; Su, Mu; Tian, Da; Tang, Lingyi; Zhang, Lin; Zheng, Yangfan; Hu, Shuijin

    2017-12-01

    Most of phosphorus (P) is present as insoluble phosphorus-bearing minerals or organic forms in soil. Geological fluorapatite (FAp) is the dominant mineral-weathering source of P. In this study, FAp was added into water and soil under elevated CO 2 to investigate the pathway of P release. Two types of soils (an acidic soil from subtropical China and a saline-alkali soil from Tibet Plateau, China) with similar total P content were studied. In the solution, increased CO 2 in air enhanced the dissolution of FAp, i.e., from 0.04 to 1.18ppm for P and from 2.48 to 13.61ppm for Ca. In addition, release of Ca and P from FAp reached the maximum (2.14ppm for P and 13.84ppm for Ca) under the combination of elevated CO 2 and NaCl due to the increasing ion exchange. Consistent with the results from the solution, CO 2 elevation promoted P release more significantly (triple) in the saline-alkali soil than in the acidic soil. Therefore, saline-alkali soils in Tibet Plateau would be an important reservoir of available P under the global CO 2 rise. This study sheds the light on understanding the geological cycle of phosphorus. Copyright © 2017. Published by Elsevier B.V.

  6. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    Science.gov (United States)

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  7. Soil CO2 concentration does not affect growth or root respiration in bean or citrus

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Contrasting effects of soil CO2 concentration on root respiration rates during short-term CO2 exposure, and on plant growth during long-term CO2 exposure, have been reported, Here we examine the effects of both short-and long-term exposure to soil CO2 on the root respiration of intact plants and on

  8. Rain-induced changes in soil CO2 flux and microbial community composition in a tropical forest of China.

    Science.gov (United States)

    Deng, Qi; Hui, Dafeng; Chu, Guowei; Han, Xi; Zhang, Quanfa

    2017-07-17

    Rain-induced soil CO 2 pulse, a rapid excitation in soil CO 2 flux after rain, is ubiquitously observed in terrestrial ecosystems, yet the underlying mechanisms in tropical forests are still not clear. We conducted a rain simulation experiment to quantify rain-induced changes in soil CO 2 flux and microbial community composition in a tropical forest. Soil CO 2 flux rapidly increased by ~83% after rains, accompanied by increases in both bacterial (~51%) and fungal (~58%) Phospholipid Fatty Acids (PLFA) biomass. However, soil CO 2 flux and microbial community in the plots without litters showed limited response to rains. Direct releases of CO 2 from litter layer only accounted for ~19% increases in soil CO 2 flux, suggesting that the leaching of dissolved organic carbon (DOC) from litter layer to the topsoil is the major cause of rain-induced soil CO 2 pulse. In addition, rain-induced changes in soil CO 2 flux and microbial PLFA biomass decreased with increasing rain sizes, but they were positively correlated with litter-leached DOC concentration rather than total DOC flux. Our findings reveal an important role of litter-leached DOC input in regulating rain-induced soil CO 2 pulses and microbial community composition, and may have significant implications for CO 2 losses from tropical forest soils under future rainfall changes.

  9. Explaining CO2 fluctuations observed in snowpacks

    Science.gov (United States)

    Graham, Laura; Risk, David

    2018-02-01

    Winter soil carbon dioxide (CO2) respiration is a significant and understudied component of the global carbon (C) cycle. Winter soil CO2 fluxes can be surprisingly variable, owing to physical factors such as snowpack properties and wind. This study aimed to quantify the effects of advective transport of CO2 in soil-snow systems on the subdiurnal to diurnal (hours to days) timescale, use an enhanced diffusion model to replicate the effects of CO2 concentration depletions from persistent winds, and use a model-measure pairing to effectively explore what is happening in the field. We took continuous measurements of CO2 concentration gradients and meteorological data at a site in the Cape Breton Highlands of Nova Scotia, Canada, to determine the relationship between wind speeds and CO2 levels in snowpacks. We adapted a soil CO2 diffusion model for the soil-snow system and simulated stepwise changes in transport rate over a broad range of plausible synthetic cases. The goal was to mimic the changes we observed in CO2 snowpack concentration to help elucidate the mechanisms (diffusion, advection) responsible for observed variations. On subdiurnal to diurnal timescales with varying winds and constant snow levels, a strong negative relationship between wind speed and CO2 concentration within the snowpack was often identified. Modelling clearly demonstrated that diffusion alone was unable to replicate the high-frequency CO2 fluctuations, but simulations using above-atmospheric snowpack diffusivities (simulating advective transport within the snowpack) reproduced snow CO2 changes of the observed magnitude and speed. This confirmed that wind-induced ventilation contributed to episodic pulsed emissions from the snow surface and to suppressed snowpack concentrations. This study improves our understanding of winter CO2 dynamics to aid in continued quantification of the annual global C cycle and demonstrates a preference for continuous wintertime CO2 flux measurement systems.

  10. Abiotic and seasonal control of soil-produced CO2 efflux in karstic ecosystems located in Oceanic and Mediterranean climates

    Science.gov (United States)

    Garcia-Anton, Elena; Cuezva, Soledad; Fernandez-Cortes, Angel; Alvarez-Gallego, Miriam; Pla, Concepcion; Benavente, David; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio

    2017-09-01

    This study characterizes the processes involved in seasonal CO2 exchange between soils and shallow underground systems and explores the contribution of the different biotic and abiotic sources as a function of changing weather conditions. We spatially and temporally investigated five karstic caves across the Iberian Peninsula, which presented different microclimatic, geologic and geomorphologic features. The locations present Mediterranean and Oceanic climates. Spot air sampling of CO2 (g) and δ13CO2 in the caves, soils and outside atmospheric air was periodically conducted. The isotopic ratio of the source contribution enhancing the CO2 concentration was calculated using the Keeling model. We compared the isotopic ratio of the source in the soil (δ13Cs-soil) with that in the soil-underground system (δ13Cs-system). Although the studied field sites have different features, we found common seasonal trends in their values, which suggests a climatic control over the soil air CO2 and the δ13CO2 of the sources of CO2 in the soil (δ13Cs-soil) and the system (δ13Cs-system). The roots respiration and soil organic matter degradation are the main source of CO2 in underground environments, and the inlet of the gas is mainly driven by diffusion and advection. Drier and warmer conditions enhance soil-exterior CO2 interchange, reducing the CO2 concentration and increasing the δ13CO2 of the soil air. Moreover, the isotopic ratio of the source of CO2 in both the soil and the system tends to heavier values throughout the dry and warm season. We conclude that seasonal variations of soil CO2 concentration and its 13C/12C isotopic ratio are mainly regulated by thermo-hygrometric conditions. In cold and wet seasons, the increase of soil moisture reduces soil diffusivity and allows the storage of CO2 in the subsoil. During dry and warm seasons, the evaporation of soil water favours diffusive and advective transport of soil-derived CO2 to the atmosphere. The soil CO2 diffusion is

  11. Ecosystem Warming Affects CO2 Flux in an Agricultural Soil

    Science.gov (United States)

    Global warming seems likely based on present-day climate predictions. Our objective was to characterize and quantify the interactive effects of ecosystem warming (i.e., canopy temperature, TS), soil moisture content ('S) and microbial biomass (BM: bacteria, fungi) on the intra-row soil CO2 flux (FS)...

  12. Elevated CO2 and nitrogen effects on soil CO2 flux from a pasture upon return to cultivation

    Science.gov (United States)

    Soil CO2 efflux patterns associated with converting pastures back to row crop production remain understudied in the Southeastern U.S. A 10-year study of bahiagrass (Paspalum notatum Flüggé) response to elevated CO2 was conducted using open top field chambers on a Blanton loamy sand (loamy siliceous,...

  13. Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands

    Directory of Open Access Journals (Sweden)

    D. Imer

    2013-09-01

    Full Text Available A profound understanding of temporal and spatial variabilities of soil carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O fluxes between terrestrial ecosystems and the atmosphere is needed to reliably quantify these fluxes and to develop future mitigation strategies. For managed grassland ecosystems, temporal and spatial variabilities of these three soil greenhouse gas (GHG fluxes occur due to changes in environmental drivers as well as fertilizer applications, harvests and grazing. To assess how such changes affect soil GHG fluxes at Swiss grassland sites, we studied three sites along an altitudinal gradient that corresponds to a management gradient: from 400 m a.s.l. (intensively managed to 1000 m a.s.l. (moderately intensive managed to 2000 m a.s.l. (extensively managed. The alpine grassland was included to study both effects of extensive management on CH4 and N2O fluxes and the different climate regime occurring at this altitude. Temporal and spatial variabilities of soil GHG fluxes and environmental drivers on various timescales were determined along transects of 16 static soil chambers at each site. All three grasslands were N2O sources, with mean annual soil fluxes ranging from 0.15 to 1.28 nmol m−2 s−1. Contrastingly, all sites were weak CH4 sinks, with soil uptake rates ranging from −0.56 to −0.15 nmol m−2 s−1. Mean annual soil and plant respiration losses of CO2, measured with opaque chambers, ranged from 5.2 to 6.5 μmol m−2 s−1. While the environmental drivers and their respective explanatory power for soil N2O emissions differed considerably among the three grasslands (adjusted r2 ranging from 0.19 to 0.42, CH4 and CO2 soil fluxes were much better constrained (adjusted r2 ranging from 0.46 to 0.80 by soil water content and air temperature, respectively. Throughout the year, spatial heterogeneity was particularly high for soil N2O and CH4 fluxes. We found permanent hot spots for soil N2O emissions as well as

  14. Effect of measurement time of the day on the relationship between temperature and soil CO2 Efflux

    Czech Academy of Sciences Publication Activity Database

    Dařenová, Eva; Pavelka, Marian; Janouš, Dalibor

    2011-01-01

    Roč. 59, č. 6 (2011), s. 127-133 ISSN 1211-8516 R&D Projects: GA MŽP(CZ) SP/2D1/70/08 Institutional research plan: CEZ:AV0Z60870520 Keywords : soil CO2 efflux * R10 * Q10 * Picea abies * seasonal carbon flux Subject RIV: EH - Ecology, Behaviour

  15. Influence of natural and anthropogenic factors on the dynamics of CO2 emissions from chernozems soil

    Science.gov (United States)

    Syabruk, Olesia

    2017-04-01

    5 to 15 % of the average level. The influence of the crop on the allocation dynamics of CO2 was also investigates during the research. Due to root respiration, total CO2 flux from soil increases by an average of 12-32 % when growing grain crops. The mathematical models of dependency between the CO2 emissions intensity and hydrothermal conditions were developed. These models will allow to predict the volume of CO2 emissions from automorphic chernozems under different scenarios of weather conditions during warm period, based on generalizing models with the corrections depending on the method of cultivation, fertilization system and agricultural culture. As a result of the research, it was proved that there is a necessity to conduct periodic direct measurements of CO2 emission losses from the soil surface and to summarize the results in an annual cycle, which allows estimating the probable emission losses of carbon already in the first years of the introduction of new agricultural technologies.

  16. Effects of Recent Regional Soil Moisture Variability on Global Net Ecosystem CO2 Exchange

    Science.gov (United States)

    Jones, L. A.; Madani, N.; Kimball, J. S.; Reichle, R. H.; Colliander, A.

    2017-12-01

    Soil moisture exerts a major regional control on the inter-annual variability of the global land sink for atmospheric CO2. In semi-arid regions, annual biomass production is closely coupled to variability in soil moisture availability, while in cold-season-affected regions, summer drought offsets the effects of advancing spring phenology. Availability of satellite solar-induced fluorescence (SIF) observations and improvements in atmospheric inversions has led to unprecedented ability to monitor atmospheric sink strength. However, discrepancies still exist between such top-down estimates as atmospheric inversion and bottom-up process and satellite driven models, indicating that relative strength, mechanisms, and interaction of driving factors remain poorly understood. We use soil moisture fields informed by Soil Moisture Active Passive Mission (SMAP) observations to compare recent (2015-2017) and historic (2000-2014) variability in net ecosystem land-atmosphere CO2 exchange (NEE). The operational SMAP Level 4 Carbon (L4C) product relates ground-based flux tower measurements to other bottom-up and global top-down estimates to underlying soil moisture and other driving conditions using data-assimilation-based SMAP Level 4 Soil Moisture (L4SM). Droughts in coastal Brazil, South Africa, Eastern Africa, and an anomalous wet period in Eastern Australia were observed by L4C. A seasonal seesaw pattern of below-normal sink strength at high latitudes relative to slightly above-normal sink strength for mid-latitudes was also observed. Whereas SMAP-based soil moisture is relatively informative for short-term temporal variability, soil moisture biases that vary in space and with season constrain the ability of the L4C estimates to accurately resolve NEE. Such biases might be caused by irrigation and plant-accessible ground-water. Nevertheless, SMAP L4C daily NEE estimates connect top-down estimates to variability of effective driving factors for accurate estimates of regional

  17. DOES SOIL CO2 EFFLUX ACCLIMATIZETO ELEVATED TEMPERATURE AND CO2 DURING LONG-TERM TREATMENT OF DOUGLAS-FIR SEEDLINGS?

    Science.gov (United States)

    We investigated the effects of elevated soil temperature and atmospheric CO2 efflux (SCE) during the third an fourth years of study. We hypothesized that elevated temperature would stimulate SCE, and elevated CO2 would also stimulate SCE with the stimulation being greater at hig...

  18. Study on adsorption of 60Co in soils and minerals and transportation of 60Co in bean-soil system

    International Nuclear Information System (INIS)

    Feng Yonghong; Chen Chuanqun; Wang Shouxiang; Zhang Yongxi; Sun Zhiming

    1998-02-01

    The adsorption and desorption of 60 Co in soils and minerals, and the transportation, accumulation, distribution in bean-soil system are studied. The results are as follows: (1) 60 Co was adsorbed rapidly and desorbed difficultly by soils and minerals. The order of the saturated adsorption rate and K d (distribution coefficient) of 60 Co at the balance value was: kieselguhr>paddy soil (loamy clay)>yellowish red soil>kaoline>perlite>silt-loamy soil. The order of D f (desorption factor) value was: yellowish red soil>silt-loamy soil>kaoline>perlite>paddy soil (loamy clay)>kieselguhr. The dynamic behavior of 60 Co in the soils and minerals could be described as a closed two--compartment model. (2) After 60 Co was introduced to the bean-soil system, the concentration of 60 Co in the root is about 10.4∼23.3 times of that in the stalk, and 30 times of that in the bean pod. The negative correlation between the concentration of 60 Co in the soil and depth was detected, over 90 per cent of 60 Co was retained within 6 centimeters of the surface layer, the half residual depth was 2 centimeters. An opened two-compartment model was applied to describe the behavior of 60 Co in the bean-soil system

  19. Elevated CO2 benefits the soil microenvironment in the rhizosphere of Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils.

    Science.gov (United States)

    Huang, Shuping; Jia, Xia; Zhao, Yonghua; Bai, Bo; Chang, Yafei

    2017-02-01

    Soil contamination by heavy metals in combination with elevated atmospheric CO 2 has important effects on the rhizosphere microenvironment by influencing plant growth. Here, we investigated the response of the R. pseudoacacia rhizosphere microenvironment to elevated CO 2 in combination with cadmium (Cd)- and lead (Pb)-contamination. Organic compounds (total soluble sugars, soluble phenolic acids, free amino acids, and organic acids), microbial abundance and activity, and enzyme activity (urease, dehydrogenase, invertase, and β-glucosidase) in rhizosphere soils increased significantly (p soil microbial community in the rhizosphere. Heavy metals alone resulted in an increase in total soluble sugars, free amino acids, and organic acids, a decrease in phenolic acids, microbial populations and biomass, and enzyme activity, and a change in microbial community in rhizosphere soils. Elevated CO 2 led to an increase in organic compounds, microbial populations, biomass, and activity, and enzyme activity (except for l-asparaginase), and changes in microbial community under Cd, Pb, or Cd + Pb treatments relative to ambient CO 2 . In addition, elevated CO 2 significantly (p soils. Overall, elevated CO 2 benefited the rhizosphere microenvironment of R. pseudoacacia seedlings under heavy metal stress, which suggests that increased atmospheric CO 2 concentrations could have positive effects on soil fertility and rhizosphere microenvironment under heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Eddy Covariance measurements of stable CO2 and H2O isotopologues

    Science.gov (United States)

    Braden-Behrens, Jelka; Knohl, Alexander

    2015-04-01

    The analysis of the stable isotope composition of CO2 and H2O fluxes (such as 13C, 18O and 2H in H2O and CO2) has provided valuable insights into ecosystem gas exchange. The approach builds on differences in the isotope signature of different ecosystem components that are primarily caused by the preference for or the discrimination against respective isotope species by important processes within the ecosystem (e.g. photosynthesis or leaf water diffusion). With the ongoing development of laser spectrometric methods, fast and precise measurements of isotopologue mixing ratios became possible, hence also enabling Eddy Covariance (EC) based approaches to directly measure the isotopic composition of CO2 and H2Ov net fluxes on ecosystem scale. During an eight month long measurement campaign in 2015, we plan to simultaneously measure CO2 and H2Ov isotopologue fluxes using an EC approach in a managed beech forest in Thuringia, Germany. For this purpose, we will use two different laser spectrometers for high frequency measurements of isotopic compositions: For H2Ov measurements, we will use an off axis cavity output water vapour isotope analyser (WVIA, Los Gatos Research Inc.) with 5 Hz response; and for CO2 measurements, we will use a quantum cascade laser-based system (QCLAS, Aerodyne Research Inc.) with thermoelectrically cooled detectors and up to 10 Hz measurement capability. The resulting continuous isotopologue flux measurements will be accompanied by intensive sampling campaigns on the leaf scale: Water from leaf, twig, soil and precipitation samples will be analysed in the lab using isotope ratio mass spectrometry. During data analysis we will put a focus on (i) the influence of carbon and oxygen discrimination on the isotopic signature of respective net ecosystem exchange, (ii) on the relationship between evapotranspiration and leaf water enrichment, and (iii) on the 18O exchange between carbon dioxide and water. At present, we already carried out extensive

  1. Overestimation of closed-chamber soil CO2 effluxes at low atmospheric turbulence

    DEFF Research Database (Denmark)

    Brændholt, Andreas; Larsen, Klaus Steenberg; Ibrom, Andreas

    2017-01-01

    Soil respiration (R-s) is an important component of ecosystem carbon balance, and accurate quantification of the diurnal and seasonal variation of R-s is crucial for a correct interpretation of the response of R-s to biotic and abiotic factors, as well as for estimating annual soil CO2 efflux rates...... be eliminated if proper mixing of air is ensured, and indeed the use of fans removed the overestimation of R-s rates during low u(*). Artificial turbulent air mixing may thus provide a method to overcome the problems of using closed-chamber gas-exchange measurement techniques during naturally occurring low...

  2. Optimal CO2 Enrichment Considering Emission from Soil for Cucumber Greenhouses

    International Nuclear Information System (INIS)

    Lee, D.H.; Lee, K.S.; Cho, Y.J.; Kim, H.J.; Choi, J.M.; Chung, S.O.

    2012-01-01

    Reducing carbon dioxide (CO2) exhaust has become a major issue for society in the last few years, especially since the initial release of the Kyoto Protocol in 1997 that strictly limited the emissions of greenhouse gas for each country. One of the primary sectors affecting the levels of atmospheric greenhouse gases is agriculture where CO2 is not only consumed by plants but also produced from various types of soil and agricultural ecosystems including greenhouses. In greenhouse cultivation, CO2 concentration plays an essential role in the photosynthesis process of crops. Optimum control of greenhouse CO2 enrichment based on accurate monitoring of the added CO2 can improve profitability through efficient crop production and reduce environmental impact, compared to traditional management practices. In this study, a sensor-based control system that could estimate the required CO2 concentration considering emission from soil for cucumber greenhouses was developed and evaluated. The relative profitability index (RPI) was defined by the ratio of growth rate to supplied CO2. RPI for a greenhouse controlled at lower set point of CO2 concentration (500 μmol * mol -1 ) was greater than that of greenhouse at higher set point (800 μmol * mol -1 ). Evaluation tests to optimize CO2 enrichment concluded that the developed control system would be applicable not only to minimize over-exhaust of CO2 but also to maintain the crop profitability

  3. Defoliation reduces soil biota - and modifies stimulating effects of elevated CO2

    DEFF Research Database (Denmark)

    Dam, Marie; Christensen, Søren

    2015-01-01

    defoliation increased activity and biomass of soil biota and more so at elevated CO2. Based on soil biota responses, plants defoliated in active growth therefore conserve resources, whereas defoliation after termination of growth results in release of resources. This result challenges the idea that plants via...... was needed to reduce nematodes. We found positive effects of CO2 on root density and microbial biomass. Defoliation affected soil biota negatively, whereas elevated CO2 stimulated the plant-soil system. This effect seen in June is contrasted by the effects seen in September at the same site. Late season...... assessed in the rhizosphere of manually defoliated patches of Deschampsia flexuosa in June in a full-factorial FACE experiment with the treatments: increased atmospheric CO2, increased nighttime temperatures, summer droughts, and all of their combinations. We found a negative effect of defoliation...

  4. Model analysis of the influence of gas diffusivity in soil on CO and H2 uptake

    International Nuclear Information System (INIS)

    Yonemura, S.; Yokozawa, M.; Kawashima, S.; Tsuruta, H.

    2000-01-01

    CO and H 2 uptake by soil was studied as a diffusion process. A diffusion model was used to determine how the surface fluxes (net deposition velocities) were controlled by in-situ microbial uptake rates and soil gas diffusivity calculated from the 3-phase system (solid, liquid, gas) in the soil. Analytical solutions of the diffusion model assuming vertical uniformity of soil properties showed that physical properties such as air-filled porosity and soil gas diffusivity were more important in the uptake process than in the emission process. To incorporate the distribution of in-situ microbial uptake, we used a 2-layer model incorporating 'a microbiologically inactive layer and an active layer' as suggested from experimental results. By numerical simulation using the 2-layer model, we estimated the effect of several factors on deposition velocities. The variations in soil gas diffusivity due to physical properties, i.e., soil moisture and air-filled porosity, as well as to the depth of the inactive layer and in-situ microbial uptake, were found to be important in controlling deposition velocities. This result shows that the diffusion process in soil is critically important for CO and H 2 uptake by soil, at least in soils with higher in-situ uptake rates and/or with large variation in soil moisture. Similar uptake rates and the difference in deposition velocity between CO and H 2 may be attributable to differences in CO and H 2 molecular diffusivity. The inactive layer is resistant to diffusion and creates uptake limits in CO and H 2 by soil. The coupling of high temperature and a thick inactive layer, common in arid soils, markedly lowers net CO deposition velocity. The temperature for maximum uptake of CO changes with depth of the inactive layer

  5. [Temperature sensitivity of CO2 fluxes from rhizosphere soil mineralization and root decomposition in Pinus massoniana and Castanopsis sclerophylla forests].

    Science.gov (United States)

    Liu, Yu; Hu, Xiao-Fei; Chen, Fu-Sheng; Yuan, Ping-Cheng

    2013-06-01

    Rhizospheric and non-rhizospheric soils and the absorption, transition, and storage roots were sampled from the mid-subtropical Pinus massoniana and Castanopsis sclerophylla forests to study the CO2 fluxes from soil mineralization and root decomposition in the forests. The samples were incubated in closed jars at 15 degrees C, 25 degrees C, 35 degrees C, and 45 degrees C, respectively, and alkali absorption method was applied to measure the CO2 fluxes during 53 days incubation. For the two forests, the rhizospheric effect (ratio of rhizospheric to non-rhizospheric soil) on the CO2 flux from soil mineralization across all incubation temperature ranged from 1.12 to 3.09, with a decreasing trend along incubation days. There was no significant difference in the CO2 flux from soil mineralization between the two forests at 15 degrees C, but the CO2 flux was significantly higher in P. massoniana forest than in C. sclerophylla forest at 25 degrees C and 35 degrees C, and in an opposite pattern at 45 degrees C. At all incubation temperature, the CO2 release from the absorption root decomposition was higher than that from the transition and storage roots decomposition, and was smaller in P. massoniana than in C. sclerophylla forest for all the root functional types. The Q10 values of the CO2 fluxes from the two forests were higher for soils (1.21-1.83) than for roots (0.96-1.36). No significant differences were observed in the Q10 values of the CO2 flux from soil mineralization between the two forests, but the Q10 value of the CO2 flux from root decomposition was significantly higher in P. massoniana than in C. sclerophylla forest. It was suggested that the increment of CO2 flux from soil mineralization under global warming was far higher than that from root decomposition, and for P. massoniana than for C. sclerophylla forest. In subtropics of China, the adaptability of zonal climax community to global warming would be stronger than that of pioneer community.

  6. Nitrogen-mediated effects of elevated CO2 on intra-aggregate soil pore structure.

    Science.gov (United States)

    Caplan, Joshua S; Giménez, Daniel; Subroy, Vandana; Heck, Richard J; Prior, Stephen A; Runion, G Brett; Torbert, H Allen

    2017-04-01

    Soil pore structure has a strong influence on water retention, and is itself influenced by plant and microbial dynamics such as root proliferation and microbial exudation. Although increased nitrogen (N) availability and elevated atmospheric CO 2 concentrations (eCO 2 ) often have interacting effects on root and microbial dynamics, it is unclear whether these biotic effects can translate into altered soil pore structure and water retention. This study was based on a long-term experiment (7 yr at the time of sampling) in which a C 4 pasture grass (Paspalum notatum) was grown on a sandy loam soil while provided factorial additions of N and CO 2 . Through an analysis of soil aggregate fractal properties supported by 3D microtomographic imagery, we found that N fertilization induced an increase in intra-aggregate porosity and a simultaneous shift toward greater accumulation of pore space in larger aggregates. These effects were enhanced by eCO 2 and yielded an increase in water retention at pressure potentials near the wilting point of plants. However, eCO 2 alone induced changes in the opposite direction, with larger aggregates containing less pore space than under control conditions, and water retention decreasing accordingly. Results on biotic factors further suggested that organic matter gains or losses induced the observed structural changes. Based on our results, we postulate that the pore structure of many mineral soils could undergo N-dependent changes as atmospheric CO 2 concentrations rise, having global-scale implications for water balance, carbon storage, and related rhizosphere functions. © 2016 John Wiley & Sons Ltd.

  7. Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2015-01-01

    Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because ......2-induced geochemical changes promoted anaerobic and acidophilic organisms and altered carbon turnover in affected soils.......Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because...... the pore gas phase was largely hypoxic. Compared with a reference soil, the mofette was more acidic (ΔpH ~0.8), strongly enriched in organic carbon (up to 10 times), and exhibited lower prokaryotic diversity. It was dominated by methanogens and subdivision 1 Acidobacteria, which likely thrived under stable...

  8. Dynamics of soil CO2 efflux under varying atmospheric CO2 concentrations reveal dominance of slow processes.

    Science.gov (United States)

    Kim, Dohyoung; Oren, Ram; Clark, James S; Palmroth, Sari; Oishi, A Christopher; McCarthy, Heather R; Maier, Chris A; Johnsen, Kurt

    2017-09-01

    We evaluated the effect on soil CO 2 efflux (F CO 2 ) of sudden changes in photosynthetic rates by altering CO 2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO 2 (eCO 2 ) ranging 1.0-1.8 times ambient did not affect F CO 2 . F CO 2 did not decrease until 4 months after termination of the long-term eCO 2 treatment, longer than the 10 days observed for decrease of F CO 2 after experimental blocking of C flow to belowground, but shorter than the ~13 months it took for increase of F CO 2 following the initiation of eCO 2 . The reduction of F CO 2 upon termination of enrichment (~35%) cannot be explained by the reduction of leaf area (~15%) and associated carbohydrate production and allocation, suggesting a disproportionate contraction of the belowground ecosystem components; this was consistent with the reductions in base respiration and F CO 2 -temperature sensitivity. These asymmetric responses pose a tractable challenge to process-based models attempting to isolate the effect of individual processes on F CO2 . © 2017 John Wiley & Sons Ltd.

  9. One year of continuous measurements of soil CH4 and CO2 fluxes in a Japanese cypress forest: Temporal and spatial variations associated with Asian monsoon rainfall

    OpenAIRE

    Sakabe, Ayaka; Kosugi, Yoshiko; Takahashi, Kenshi; Itoh, Masayuki; Kanazawa, Akito; Makita, Naoki; Ataka, Mioko

    2015-01-01

    We examined the effects of Asian monsoon rainfall on CH[4] absorption of water-unsaturated forest soil. We conducted a 1 year continuous measurement of soil CH[4] and CO[2] fluxes with automated chamber systems in three plots with different soil characteristics and water content to investigate how temporal variations in CH[4] fluxes vary with the soil environment. CH[4] absorption was reduced by the “Baiu” summer rainfall event and peaked during the subsequent hot, dry period. Although CH[4] ...

  10. Modelling the diurnal and seasonal dynamics of soil CO2 exchange in a semiarid ecosystem with high plant-interspace heterogeneity

    Science.gov (United States)

    Gong, Jinnan; Wang, Ben; Jia, Xin; Feng, Wei; Zha, Tianshan; Kellomäki, Seppo; Peltola, Heli

    2018-01-01

    We used process-based modelling to investigate the roles of carbon-flux (C-flux) components and plant-interspace heterogeneities in regulating soil CO2 exchanges (FS) in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of FS, the modelling considered simultaneously the CO2 production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation). The model was parameterized and validated with multivariate data measured during the years 2013-2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO2 dissolution and delay the emission of CO2 produced from rooting zone. In addition, an ineligible fraction of respired CO2 might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO2 source to sink due to the activated photosynthesis of biocrust but the restricted CO2 emissions from subsoil. The presence of plant cover could decrease the root-zone CO2 production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant-interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO2 efflux dynamics in dryland ecosystems.

  11. CO2 efflux from cleared mangrove peat.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available CO(2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils.We measured CO(2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2 efflux. CO(2 efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2 year(-1 in the first year to 3000 tonnes km(2 year(-1 after 20 years since clearing. Disturbing peat leads to short term increases in CO(2 efflux (27 umol m(-2 s(-1, but this had returned to baseline levels within 2 days.Deforesting mangroves that grow on peat soils results in CO(2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.

  12. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils

    Science.gov (United States)

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A. S.; Wu, Jinshui

    2016-01-01

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation (14C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management. PMID:26795428

  13. Soil warming enhances the hidden shift of elemental stoichiometry by elevated CO2 in wheat

    DEFF Research Database (Denmark)

    Li, Xiangnan; Jiang, Dong; Liu, Fulai

    2016-01-01

    sap and their partitioning in different organs of wheat plant during grain filling were investigated. Results showed that the combination of elevated [CO2] and soil warming improved wheat grain yield, but decreased plant K, Ca and Mg accumulation and their concentrations in the leaves, stems, roots......Increase in atmospheric CO2 concentration ([CO2]) and associated soil warming along with global climate change are expected to have large impacts on grain mineral nutrition in wheat. The effects of CO2 elevation (700 μmol l(-1)) and soil warming (+2.4 °C) on K, Ca and Mg concentrations in the xylem...... and grains. The reduced grain mineral concentration was attributed to the lowered mineral uptake as exemplified by both the decreased stomatal conductance and mineral concentration in the xylem sap. These findings suggest that future higher atmospheric [CO2] and warmer soil conditions may decrease...

  14. Diffuse CO2 flux emissions from the soil in Las Cañadas caldera (Tenerife, Canary Islands)

    Science.gov (United States)

    Luengo-Oroz, Natividad; Torres, Pedro A.; Moure, David; D'Alessandro, Walter; Liuzzo, Marco; Longo, Manfredi; Pecoraino, Giovannella

    2014-05-01

    Starting in April 2004, unusual seismic activity was observed in the interior of the island of Tenerife (Canary Islands, Spain) with much evidence pointing to a reawakening of volcanic activity. During this seismic crisis, several events were felt by the population. Since then, a dense multiparametric monitoring network has been deployed all over the island by Instituto Geográfico Nacional (IGN). In the framework of this volcanic surveillance project, several geochemical studies have been accomplished. Measurements of diffuse CO2 flux from the soil have been carried out in some zones inside Las Cañadas caldera. This study has been performed during three different field campaigns in November 2012 and June and November 2013. The studied area includes two different zones known as Roques de García and Los Azulejos. Since several authors have reported the existence of fractures and faults all along both structures, the objectives of this work were to find anomalous CO2 fluxes from the soil and preferential degassing areas, identify possible hidden faults and study the origin of gas emanations in order to detect the presence of magmatic sources. More than 600 sampling sites have been measured with the accumulation chamber method in an area of about 1 km2. Soil gas has been sampled in points where high CO2 fluxes were detected for the determination of chemical and isotopic composition. The results of the gas prospection confirm the existence of CO2 degassing in the area. Some anomalous fluxes have been measured along previously inferred volcano-tectonic structures. The highest anomalies were found in Los Azulejos with values up to 1774 g/m2.d. Chemical analysis did not reveal significant concentrations of magmatic or geothermal gases except CO2. The latter showed concentrations at 50 cm depth within the soils up to 48% and a C-isotopic composition between -4.72 and -3.67 o indicating a prevailing magmatic origin.

  15. Short-term effects of CO2 leakage on the soil bacterial community in a simulated gas leakage scenario.

    Science.gov (United States)

    Ma, Jing; Zhang, Wangyuan; Zhang, Shaoliang; Zhu, Qianlin; Feng, Qiyan; Chen, Fu

    2017-01-01

    The technology of carbon dioxide (CO 2 ) capture and storage (CCS) has provided a new option for mitigating global anthropogenic emissions with unique advantages. However, the potential risk of gas leakage from CO 2 sequestration and utilization processes has attracted considerable attention. Moreover, leakage might threaten soil ecosystems and thus cannot be ignored. In this study, a simulation experiment of leakage from CO 2 geological storage was designed to investigate the short-term effects of different CO 2 leakage concentration (from 400 g m -2 day -1 to 2,000 g m -2 day -1 ) on soil bacterial communities. A shunt device and adjustable flow meter were used to control the amount of CO 2 injected into the soil. Comparisons were made between soil physicochemical properties, soil enzyme activities, and microbial community diversity before and after injecting different CO 2 concentrations. Increasing CO 2 concentration decreased the soil pH, and the largest variation ranged from 8.15 to 7.29 ( p soil CO 2 concentration increased. The dominant phylum in the soil samples was Proteobacteria , whose proportion rose rapidly from 28.85% to 67.93%. In addition, the proportion of Acidobacteria decreased from 19.64% to 9.29% ( p soil ecosystems.

  16. Small scale soil carbon and moisture gradients in a drained peat bog grassland and their influence on CO2, CH4 and N2O fluxes

    Science.gov (United States)

    Leiber-Sauheitl, K.; Fuß, R.; Freibauer, A.

    2012-04-01

    Due to the UNFCCC report requirements of each country on the emissions of greenhouse gases from key sources the joint research project "Organic Soils" was established in Germany. The project's objective is to improve the data set on greenhousegas emissions from organic soils in Germany. Within 12 German Project Catchments emissions from different types of organic soils, e.g. under different land uses and hydrological conditions, are measured. At the location "Großes Moor" near Gifhorn (Lower Saxony) the effects of small-scale soil organic carbon and groundwater level gradients on the GHG fluxes (CO2, CH4 and N2O) are quantified. The study area is located within a former peat bog altered by drainage and peat cutting, which is currently grassland under extensive agricultural use. The focus of the study is on the acquisition of CO2, CH4 and N2O fluxes on six sites via manual closed chambers. In order to calculate the annual CO2 exchange rate, values are interpolated on a 0.5 hour scale between measurement campaigns. In combination with continually logged meteorological parameters, such as the photosynthetic active radiation as well as air and soil temperatures, we calculate the daily CO2 ecosystem exchange of the different sites. During the 2011 campaign, CO2 was determined as the most important greenhouse gas. The groundwater table was the dominant variable influencing gas emissions. Another important factor was the vegetation composition. In detail, highest CO2 emissions occurred with a water table of 40-50 cm below ground level, temperatures above 10°C and low plant biomass amounts. Due to the more complex formation of N2O by a number of processes, each being promoted by different soil conditions, the measurement of N2O fluxes in the field was complemented by a laboratory experiment. In this, the use of stable isotope tracer techniques enabled us to quantify the contribution of single biochemical pathways to the overall formation of N2O under controlled

  17. [Effect of elevated atmospheric CO2 on soil urease and phosphatase activities].

    Science.gov (United States)

    Chen, Lijun; Wu, Zhijie; Huang, Guohong; Zhou, Likai

    2002-10-01

    The response of soil urease and phosphatase activities at different rice growth stages to free air CO2 enrichment (FACE) was studied. The results showed that comparing with the ambient atmospheric CO2 concentration (370 mumol.mol-1), FACE (570 mumol.mol-1) significantly increased the urease activity of 0-5 cm soil layer at the vigorous growth stage of rice, whole that of 5-10 cm layer had no significant change during the whole growing season. Phosphatase activity of 0-5 cm and 5-10 cm soil layers significantly increased, and the peak increment was at the vigorous growth stage of rice.

  18. SOIL FLUXES OF CO2, CO, NO AND N2O FROM AN OLD-PASTURE AND FROM NATIVE SAVANNA IN BRAZIL

    Science.gov (United States)

    We compared fluxes of CO2, CO, NO and N2O, soil microbial biomass, and N-mineralization rates in a 20-year old Brachiaria pasture and a native cerrado area (savanna in Central Brazil). In order to assess the spatial variability of CO2 fluxes, we tested the relation between elect...

  19. A mobile automatic gas chromatograph system to measure CO2, CH4 and N2O fluxes from soil in the field

    International Nuclear Information System (INIS)

    Silvola, J.; Martikainen, P.; Nykaenen, H.

    1992-01-01

    A caravan has been converted into mobile laboratory for measuring fluxes of CO 2 , CH 4 and N 2 O from the soil in the field. The caravan was equipped with a gas chromatograph fitted with TC-, FI- and EC-detectors, and a PC controlled data logger. The gas collecting chambers can be used up to 50 m from the caravan. The closing and opening of the chambers, as well as the flows of sample gases from chambers to the gas chromatograph. is pneumatically regulated. Simultaneous recordings of temperature, light intensity and the depth of water table are made. The system has been used for two months in 1992, and some preliminary results are presented

  20. Does Short-term Litter Input Manipulation Affect Soil Respiration and the Carbon-isotopic Signature of Soil Respired CO2

    Science.gov (United States)

    Cheng, X.; Wu, J.

    2016-12-01

    Global change greatly alters the quality and quantity of plant litter inputs to soils, and further impacts soil organic matter (SOM) dynamics and soil respiration. However, the process-based understanding of how soil respiration may change with future shift in litter input is not fully understood. The Detritus Input and Removal Treatment (DIRT) experiment was conducted in coniferous forest (Platycladus orientalis (Linn.) Franco) ecosystem of central China to investigate the impact of above- and belowground litter input on soil respiration and the carbon-isotopic signature of soil respired CO2. Short-term (1-2 years) litter input manipulation significantly affected soil respiration, based on annual flux values, soil respiration was 31.9%, 20.5% and 37.2% lower in no litter (NL), no root (NR) and no input (NRNL), respectively, compared to control (CK). Whereas double litter (DL) treatment increased soil respiration by 9.1% compared to CK. The recalcitrance index of carbon (RIC) and the relative abundance of fungi increased under litter removal or root exclusion treatment (NL, NR and NRNL) compared to CK. Basal soil respiration was positively related to liable C and microbial biomass and negatively related to RIC and fungi to bacteria (F: B) ratio. The carbon-isotopic signature of soil respired CO2 enriched under litter removal and no input treatment, and slightly depleted under litter addition treatment compared to CK. Our results suggest that short-term litter input manipulation can affect the soil respiration by altering substrate availability and microbial community structure, and also impact the carbon-isotopic signature of soil respired CO2 possibly duo to change in the component of soil respiration and soil microclimate.

  1. Experimental analysis of CO{sub 2} emissions from agricultural soils subjected to five different tillage systems in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Buragienė, Sidona [Institute of Agricultural Engineering and Safety, Aleksandras Stulginskis University, Studentu str. 15A, LT-53361 Akademija, Kaunas distr. (Lithuania); Šarauskis, Egidijus, E-mail: egidijus.sarauskis@asu.lt [Institute of Agricultural Engineering and Safety, Aleksandras Stulginskis University, Studentu str. 15A, LT-53361 Akademija, Kaunas distr. (Lithuania); Romaneckas, Kęstutis, E-mail: kestas.romaneckas@asu.lt [Institute of Agroecosystems and Soil Science, Aleksandras Stulginskis University, Studentu str. 11, Akademija LT-53361, Kaunas dist. (Lithuania); Sasnauskienė, Jurgita, E-mail: jurgita.sasnauskiene@asu.lt [Institute of Environment and Ecology, Aleksandras Stulginskis University, Studentu str. 11, Akademija LT-53361, Kaunas dist. (Lithuania); Masilionytė, Laura, E-mail: laura.masilionyte@gmail.com [Joniskelis Experimental Station, Lithuanian Research Centre for Agriculture and Forestry, Joniskelis, LT-39301 Pasvalys distr. (Lithuania); Kriaučiūnienė, Zita, E-mail: zita.kriauciuniene@asu.lt [Experimental Station, Aleksandras Stulginskis University, Rapsu str. 7, LT-53363 Noreikiskes, Kaunas distr. (Lithuania)

    2015-05-01

    Intensive agricultural production strongly influences the global processes that determine climate change. Thus, tillage can play a very important role in climate change. The intensity of soil carbon dioxide (CO{sub 2}) emissions, which contribute to the greenhouse effect, can vary depending on the following factors: the tillage system used, meteorological conditions (which vary in different regions of the world), soil properties, plant residue characteristics and other factors. The main purpose of this research was to analyse and assess the effects of autumn tillage systems with different intensities on CO{sub 2} emissions from soils during different seasons and under the climatic conditions of Central Lithuania. The research was conducted at the Experimental Station of Aleksandras Stulginskis University from 2009 to2012; and in 2014. The soils at the experimental site were classified as Eutric Endogleyic Planosol (Drainic). The investigations were conducted using five tillage systems with different intensities, typical of the Baltic Region. Deep conventional ploughing was performed at a depth of 230–250 mm, shallow ploughing was conducted at a depth of 120–150 mm, deep loosening was conducted at depths of 250–270 mm, and shallow loosening was conducted at depths of 120–150 mm. The fifth system was a no-tillage system. Overall, autumn tillage resulted in greater CO{sub 2} emissions from the soil over both short- and long-term periods under the climatic conditions of Central Lithuania, regardless of the tillage system applied. The highest soil CO{sub 2} emissions were observed for the conventional deep ploughing tillage system, and the lowest emissions were observed for the no-tillage system. The meteorological conditions greatly influenced the CO{sub 2} emissions from the soil during the spring. Soil CO{sub 2} emissions were enhanced as precipitation and the air and soil temperatures increased. Long-term investigations regarding the dynamics of CO{sub 2

  2. [Effects of corn and soybean straws returning on CO2 efflux at initial stage in black soil].

    Science.gov (United States)

    Liu, Si-yi; Zhang, Xiao-ping; Liang, Ai-zhen; Jia, Shu-xia; Zhang, Shi-xiu; Sun, Bing-jie; Chen, Sheng-long; Yang, Xue-ming

    2015-08-01

    In this study, the CO2 emission characteristics and its relationships with C and N concentration in soil amended with different types of residues were studied by thermostatic incubation method to investigate the decomposition characteristics of different types of residues after adding to the soil and the effect of C, N concentration in residues on carbon sequestration. The results showed that during 61 days incubation, the CO2 efflux rates in the soils added with the different residues changed over time and exhibited an initial decrease, followed by a stable low plateau, and then an increase to a high plateau and finally followed by a decrease. The characteristics of CO2 emissions varied with residues, with the differences mainly occurring in the starting and duration of the high plateau CO2 emission period. The cumulative CO2-C emission was significantly affected by residue type. The cumulative CO2-C emissions from soils amended with corn roots, bottom corn stalks, corn leaves, and soybean leaves (about 160 µmol · g(-1) of soil and residue) were significantly greater than those from soils amended with other residues for the initial 21 days. Except for soybean leaves, the cumulative soil CO2 emissions over the 61 day incubation period from soils amended with soybean residues were higher than that from soil amended with corn residues. There were significant linear relationships between the ratio of cumulative CO2-C emission to residue carbon concentration (CR), and both C/N and nitrogen concentration of residues in the initial 21 days incubation, but not for the entire 61 days incubation. Our study suggested that soil CO2 emission was closely dependent upon the type of residue. Soybean residues decomposed more easily than corn residues. However, the decay rate of soybean residues was slower than that of corn residues at the initial stage of incubation. Soil CO2 emission was significantly affected by the C/N ratios and nitrogen concentrations of crop residues only

  3. Microbial community changes at a terrestrial volcanic CO2 vent induced by soil acidification and anaerobic microhabitats within the soil column.

    Science.gov (United States)

    Frerichs, Janin; Oppermann, Birte I; Gwosdz, Simone; Möller, Ingo; Herrmann, Martina; Krüger, Martin

    2013-04-01

    CO2 capture and storage (CCS) in deep geological formations is one option currently evaluated to reduce greenhouse gas emissions. Consequently, the impact of a possible CO2 leakage from a storage site into surface environments has to be evaluated. During such a hypothetical leakage event, the CO2 migrates upwards along fractures entering surface soils, a scenario similar to naturally occurring CO2 vents. Therefore, such a natural analogue site at the Laacher See was chosen for an ecosystem study on the effects of high CO2 concentrations on soil chemistry and microbiology. The microbial activities revealed differences in their spatial distribution and temporal variability for CO2 -rich and reference soils. Furthermore, the abundance of several functional and group-specific gene markers revealed further differences, for example, a decrease in Geobacteraceae and an increase in sulphate-reducing prokaryotes in the vent centre. Molecular-biological fingerprinting of the microbial communities with DGGE indicated a shift in the environmental conditions within the Laacher See soil column leading to anaerobic and potentially acidic microenvironments. Furthermore, the distribution and phylogenetic affiliation of the archaeal 16S rRNA genes, the presence of ammonia-oxidizing Archaea and the biomarker analysis revealed a predominance of Thaumarchaeota as possible indicator organisms for elevated CO2 concentrations in soils. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Modelling the diurnal and seasonal dynamics of soil CO2 exchange in a semiarid ecosystem with high plant–interspace heterogeneity

    Directory of Open Access Journals (Sweden)

    J. Gong

    2018-01-01

    Full Text Available We used process-based modelling to investigate the roles of carbon-flux (C-flux components and plant–interspace heterogeneities in regulating soil CO2 exchanges (FS in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of FS, the modelling considered simultaneously the CO2 production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation. The model was parameterized and validated with multivariate data measured during the years 2013–2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO2 dissolution and delay the emission of CO2 produced from rooting zone. In addition, an ineligible fraction of respired CO2 might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO2 source to sink due to the activated photosynthesis of biocrust but the restricted CO2 emissions from subsoil. The presence of plant cover could decrease the root-zone CO2 production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant–interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO2 efflux dynamics in dryland ecosystems.

  5. Maximum temperature accounts for annual soil CO2 efflux in temperate forests of Northern China

    Science.gov (United States)

    Zhou, Zhiyong; Xu, Meili; Kang, Fengfeng; Jianxin Sun, Osbert

    2015-01-01

    It will help understand the representation legality of soil temperature to explore the correlations of soil respiration with variant properties of soil temperature. Soil temperature at 10 cm depth was hourly logged through twelve months. Basing on the measured soil temperature, soil respiration at different temporal scales were calculated using empirical functions for temperate forests. On monthly scale, soil respiration significantly correlated with maximum, minimum, mean and accumulated effective soil temperatures. Annual soil respiration varied from 409 g C m−2 in coniferous forest to 570 g C m−2 in mixed forest and to 692 g C m−2 in broadleaved forest, and was markedly explained by mean soil temperatures of the warmest day, July and summer, separately. These three soil temperatures reflected the maximum values on diurnal, monthly and annual scales. In accordance with their higher temperatures, summer soil respiration accounted for 51% of annual soil respiration across forest types, and broadleaved forest also had higher soil organic carbon content (SOC) and soil microbial biomass carbon content (SMBC), but a lower contribution of SMBC to SOC. This added proof to the findings that maximum soil temperature may accelerate the transformation of SOC to CO2-C via stimulating activities of soil microorganisms. PMID:26179467

  6. On-line stable isotope measurements during plant and soil gas exchange

    International Nuclear Information System (INIS)

    Yakir, D.

    2001-01-01

    Recent techniques for on-line stable isotope measurements during plant and soil exchange of CO 2 and/or water vapor are briefly reviewed. For CO 2 , these techniques provide means for on-line measurements of isotopic discrimination during CO 2 exchange by leaves in the laboratory and in the field, of isotopic discrimination during soil respiration and during soil-atmosphere CO 2 exchange, and of isotopic discrimination in O 2 during plant respiration. For water vapor, these techniques provide means to measure oxygen isotopic composition of water vapor during leaf transpiration and for the analysis of sub microliter condensed water vapor samples. Most of these techniques involve on-line sampling of CO 2 and water vapor from a dynamic, intact soil or plant system. In the laboratory, these systems also allow on-line isotopic analysis by continuous-flow isotope ratio mass spectrometry. The information obtained with these on-line techniques is becoming increasingly valuable, and often critical, for ecophysiologial research and in the study of biosphere-atmosphere interactions. (author)

  7. Influx of CO2 from Soil Incubated Organic Residues at Constant Temperature

    Directory of Open Access Journals (Sweden)

    Shoukat Ali Abro

    2016-06-01

    Full Text Available Temperature induced CO2 from genotypic residue substances is still less understood. Two types of organic residues (wheat- maize were incubated at a constant temperature (25°C to determine the rate and cumulative influx of CO2 in laboratory experiment for 40 days. Further, the effect of surface and incorporated crop residues with and without phosphorus addition was also studied. Results revealed that mixing of crop residues increased CO2-C evolution significantly & emission rare was 37% higher than that of control. At constant temperature, soil mixed residues, had higher emission rates CO2-C than the residues superimposed. There was linear correlation of CO2-C influxed for phosphorus levels and residue application ways with entire incubation at constant temperature. The mixing of organic residues to soil enhanced SOC levels and biomass of microbially bound N; however to little degree ammonium (NH4-N and nitrate NO3-N nitrogen were decreased.

  8. In situ Determination of CO2 and N2O Emissions and Isotopic Composition in Agricultural Soils Following a Precipitation Pulse - The Use of Real-Time CO2 and N2O Isotope Analysers

    International Nuclear Information System (INIS)

    Chen, Janet; Resch, Christian; Mayr, Leopold; Heiling, Maria; Dercon, Gerd

    2016-01-01

    Agricultural soils cover 12.6% of the Earth's surface and are essential in food production. Agricultural land can either serve as a reservoir of greenhouse gases (GHGs) in the soil, or release them into the atmosphere. Accurately estimating GHG fluxes from agricultural soils is difficult, however, due to the dynamic pattern of emissions that are largely driven by environmental factors such as water availability. Farming practices, such as mulch application, also influence soil GHG emissions. We measured effects of mulch application on emissions and isotopic composition of two GHGs, CO 2 and N 2 O, in agricultural soils by using greenhouse “mesocosms” (soil sample columns 70 cm deep and 50 cm diameter that have been subjected to a soybean-maize crop rotation since 2012).

  9. Comparison of soil CO2 fluxes by eddy-covariance and chamber methods in fallow periods of a corn-soybean rotation

    Science.gov (United States)

    Soil carbon dioxide (CO2) fluxes are typically measured by eddy-covariance (EC) or chamber (Ch) methods, but a long-term comparison has not been undertaken. This study was conducted to assess the agreement between EC and Ch techniques when measuring CO2 flux during fallow periods of a corn-soybean r...

  10. Measurement and modeling of CO2 exchange over forested landscapes in India: an overview

    Science.gov (United States)

    Kushwaha, S.; Dadhwal, V.

    2009-04-01

    The increasing atmospheric CO2 concentration and its potential impact on global climate change is the subject of worldwide studies, political debates and international discussions. The concern led to the establishment of the Kyoto Protocol to curtail emissions and mitigate the possible global warming. The studies so far suggest that terrestrial biological sinks might be the low cost options for carbon sequestration, which can be used to partially offset the industrial CO2 emissions globally. In past, the effectiveness of terrestrial sink and the quantitative estimates of their sink strengths have relied mainly on the measurements of changes in carbon stocks across the world. Recent developments in flux tower based measurement techniques such as Eddy Covariance for assessing the CO2, H2O and energy fluxes provide tools for quantifying the net ecosystem exchange (NEE) of CO2 on a continuous basis. These near real time measurements, when integrated with remote sensing, enable the up-scaling of the carbon fluxes to regional scale. More than 470 towers exist worldwide as of now. Indian subcontinent was not having any tower-based CO2 flux measurement system so far. The Indian Space Research Organization under its Geosphere Biosphere Programme is funding five eddy covariance towers for terrestrial CO2 flux measurements in different ecological regions of the country. The tower sites already planned are: (i) a mixed forest plantation (Dalbergia sissoo, Acacia catechu, Holoptelia integrifolia) at Haldwani in collaboration with DISAFRI, University of Tuscia, Italy and the Indian Council for Forestry Research and Education (ICFRE), Dehradun, (ii) a sal (Shorea robusta) forest in Doon valley Himalayan state of Uttarakhand in northern India, (ii) a teak (Tectona grandis) mixed forest at Betul in Madhya Pradesh in central India, (iv) an old teak plantation at Dandeli, and (v) a semi-evergreen forest at Nagarhole in Karnataka state in southern India. The three towers have been

  11. Testing CO2 Sequestration in an Alkaline Soil Treated with Flue Gas Desulfurization Gypsum (FGDG)

    Science.gov (United States)

    Han, Y.; Tokunaga, T. K.

    2012-12-01

    Identifying effective and economical methods for increasing carbon storage in soils is of interest for reducing soil CO2 fluxes to the atmosphere in order to partially offset anthropogenic CO2 contributions to climate change This study investigates an alternative strategy for increasing carbon retention in soils by accelerating calcite (CaCO3) precipitation and promoting soil organic carbon (SOC) complexation on mineral surfaces. The addition of calcium ion to soils with pH > 8, often found in arid and semi-arid regions, may accelerate the slow process of calcite precipitation. Increased ionic strength from addition of a soluble Ca source also suppresses microbial activity which oxidizes SOC to gaseous CO2. Through obtaining C mass balances in soil profiles, this study is quantifying the efficiency of gypsum amendments for mitigating C losses to the atmosphere. The objective of this study is to identify conditions in which inorganic and organic C sequestration is practical in semi-arid and arid soils by gypsum treatment. As an inexpensive calcium source, we proposed to use flue gas desulfurization gypsum (FGDG), a byproduct of fossil fuel burning electric power plants. To test the hypothesis, laboratory column experiments have been conducted in calcite-buffered soil with addition of gypsum and FGDG. The results of several months of column monitoring are demonstrating that gypsum-treated soil have lowered amounts of soil organic carbon loss and increased inorganic carbon (calcite) production. The excess generation of FGDG relative to industrial and agricultural needs, FGDG, is currently regarded as waste. Thus application of FGDG application in some soils may be an effective and economical means for fixing CO2 in soil organic and inorganic carbon forms.Soil carbon cycle, with proposed increased C retention by calcite precipitation and by SOC binding onto soil mineral surfaces, with both processes driven by calcium released from gypsum dissolution.

  12. CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland

    International Nuclear Information System (INIS)

    Fridriksson, Thrainn; Kristjansson, Bjarni Reyr; Armannsson, Halldor; Margretardottir, Eygerour; Olafsdottir, Snjolaug; Chiodini, Giovanni

    2006-01-01

    Carbon dioxide emissions and heat flow through soil, steam vents and fractures, and steam heated mud pools were determined in the Reykjanes geothermal area, SW Iceland. Soil diffuse degassing of CO 2 was quantified by soil flux measurements on a 600 m by 375 m rectangular grid using a portable closed chamber soil flux meter and the resulting data were analyzed by both a graphical statistical method and sequential Gaussian simulations. The soil temperature was measured in each node of the grid and used to evaluate the heat flow. The heat flow data were also analyzed by sequential Gaussian simulations. Heat flow from steam vents and fractures was determined by quantifying the amount of steam emitted from the vents by direct measurements of steam flow rate. The heat loss from the steam heated mud pools was determined by quantifying the rate of heat loss from the pools by evaporation, convection, and radiation. The steam flow rate into the pools was calculated from the observed heat loss from the pools, assuming that steam flow was the only mechanism of heat transport into the pool. The CO 2 emissions from the steam vents and mud pools were determined by multiplying the steam flow rate from the respective sources by the representative CO 2 concentration of steam in the Reykjanes area. The observed rates of CO 2 emissions through soil, steam vents, and steam heated mud pools amounted to 13.5 ± 1.7, 0.23 ± 0.05, and 0.13 ± 0.03 tons per day, respectively. The heat flow through soil, steam vents, and mud pools was 16.9 ± 1.4, 2.2 ± 0.4, and 1.2 ± 0.1 MW, respectively. Heat loss from the geothermal reservoir, inferred from the CO 2 emissions through the soil amounts to 130 ± 16 MW of thermal energy. The discrepancy between the observed heat loss and the heat loss inferred from the CO 2 emissions is attributed to steam condensation in the subsurface due to interactions with cold ground water. These results demonstrate that soil diffuse degassing can be a more

  13. SOIL CO2 EFFLUX IN FOUR DIFFERENT LAND USE SYSTEMS IN RIO POMBA, MINAS GERAIS/BRAZIL

    Directory of Open Access Journals (Sweden)

    Joel Marques de Oliveira

    2014-07-01

    Full Text Available Functioning and sustainability of agricultural systems depend directly on the soil biological activity. Soil respiration, or CO2 efflux, is a sensible indicator of biological activity, revealing fast and accurately whether changes in environment affect soil community. In this context, soil respiration can be used to evaluate soil organisms behavior after an environmental change revealing the capacity of a soil in it normal functioning after a disturb event. The objective of this work was to study seasonal variation in soil CO 2 efflux in Rio Pomba/MG and its relation with typical land uses of Zona da Mata region of Minas Gerais. Fluctuation on soil CO2 efflux was observed in all areas throughout the period of the study, from September 2010 to August 2011, as a result of climatic variation. We have also reported specific patterns on CO 2 efflux that can be associated with land use. It was observed that the area under annual crops presented the highest amplitude of changes in respiratory rates, while forest and guava plantation presented the lowest. The principal component analysis revealed that the area cultivated with guava presented pattern of CO 2 efflux similar to forest, and the area intensively cultivated with annual crops showed behavior opposite to the forest. We conclude that variation in soil respiration rates is higher in intensive cropped areas. Additionally, total soil respiration can be used as a methodology to assess the interference of cropping on soil biota.

  14. Reducing CH{sub 4} and CO{sub 2} emissions from waterlogged paddy soil with biochar

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuxue; Yang, Min; Chen, Yingxu; Wu, Weixiang [Zhejiang Univ., Hangzhou (China). Inst. of Environmental Science and Technology; Wu, Yimin [Hangzhou No. 2 High School, Hangzhou (China); Wang, Hailong [Scion, Rotorua (New Zealand)

    2011-09-15

    Purpose: A potential means to diminish increasing levels of CO{sub 2} in the atmosphere is the use of pyrolysis to convert biomass into biochar, which stabilizes the carbon (C) that is then applied to soil. Before biochar can be used on a large scale, especially in agricultural soils, its effects on the soil system need to be assessed. This is especially important in rice paddy soils that release large amounts of greenhouse gases to the atmosphere. Materials and methods: In this study, the effects of biochar on CH{sub 4} and CO{sub 2} emissions from paddy soil with and without rice straw added as an additional C source were investigated. The biochars tested were prepared from bamboo chips or rice straw which yielded bamboo char (BC) and straw char (SC), respectively. BC and SC were applied to paddy soil to achieve low, medium, and high rates, based on C contents of the biochars. The biochar-amended soils were incubated under waterlogged conditions in the laboratory. Results and discussion: Adding rice straw significantly increased CH{sub 4} and CO{sub 2} emissions from the paddy soil. However, when soils were amended with biochar, CH{sub 4} emissions were reduced. CH{sub 4} emissions from the paddy soil amended with BC and SC at high rate were reduced by 51.1% and 91.2%, respectively, compared with those without biochar. Methanogenic activity in the paddy soil decreased with increasing rates of biochar, whereas no differences in denaturing gradient gel electrophoresis patterns were observed. CO{sub 2} emission from the waterlogged paddy soil was also reduced in the biochar treatments. Conclusions: Our results showed that SC was more effective than BC in reducing CH{sub 4} and CO{sub 2} emissions from paddy soils. The reduction of CH{sub 4} emissions from paddy soil with biochar amendment may result from the inhibition of methanogenic activity or a stimulation of methylotrophic activity during the incubation period. (orig.)

  15. Impact of drought and increasing temperatures on soil CO2 emissions in a Mediterranean shrubland (gariga)

    DEFF Research Database (Denmark)

    de Dato, Giovanbattista Domenico; De Angelis, Paolo; Sirca, Costantino

    2010-01-01

    the soil and air night-time temperatures and to reduce water input from precipitation. The objective was to analyze the extent to which higher temperatures and a drier climate influence soil CO2 emissions in the short term and on an annual basis. The microclimate was manipulated in field plots (about 25 m2...... temperature probe. The seasonal pattern of soil CO2 efflux was characterized by higher rates during the wet vegetative season and lower rates during the dry non-vegetative season (summer). The Warming treatment did not change SR fluxes at any sampling date. The Drought treatment decreased soil CO2 emissions...... on only three of 10 occasions during 2004. The variation of soil respiration with temperature and soil water content did not differ significantly among the treatments, but was affected by the season. The annual CO2 emissions were not significantly affected by the treatments. In the semi-arid Mediterranean...

  16. The Effect of Thermal Convection on Earth-Atmosphere CO2 Gas Exchange in Aggregated Soil

    Science.gov (United States)

    Ganot, Y.; Weisbrod, N.; Dragila, M. I.

    2011-12-01

    Gas transport in soils and surface-atmosphere gas exchange are important processes that affect different aspects of soil science such as soil aeration, nutrient bio-availability, sorption kinetics, soil and groundwater pollution and soil remediation. Diffusion and convection are the two main mechanisms that affect gas transport, fate and emissions in the soils and in the upper vadose zone. In this work we studied CO2 soil-atmosphere gas exchange under both day-time and night-time conditions, focusing on the impact of thermal convection (TCV) during the night. Experiments were performed in a climate-controlled laboratory. One meter long columns were packed with matrix of different grain size (sand, gravel and soil aggregates). Air with 2000 ppm CO2 was injected into the bottom of the columns and CO2 concentration within the columns was continuously monitored by an Infra Red Gas Analyzer. Two scenarios were compared for each soil: (1) isothermal conditions, representing day time conditions; and (2) thermal gradient conditions, i.e., atmosphere colder than the soil, representing night time conditions. Our results show that under isothermal conditions, diffusion is the major mechanism for surface-atmosphere gas exchange for all grain sizes; while under night time conditions the prevailing mechanism is dependent on the air permeability of the matrix: for sand and gravel it is diffusion, and for soil aggregates it is TCV. Calculated CO2 flux for the soil aggregates column shows that the TCV flux was three orders of magnitude higher than the diffusive flux.

  17. Soil organic carbon redistribution by water erosion--the role of CO2 emissions for the carbon budget.

    Science.gov (United States)

    Wang, Xiang; Cammeraat, Erik L H; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m(-2) yr(-1)) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m(-2). Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems.

  18. Surface geothermal exploration in the Canary Islands by means of soil CO_{2} degassing surveys

    Science.gov (United States)

    García-Merino, Marta; Rodríguez, Fátima; Padrón, Eleazar; Melián, Gladys; Asensio-Ramos, María; Barrancos, José; Hernández, Pedro A.; Pérez, Nemesio M.

    2017-04-01

    With the exception of the Teide fumaroles, there is not any evidence of hydrothermal fluid discharges in the surficial environment of the Canary Islands, the only Spanish territory with potential high enthalpy geothermal resources. Here we show the results of several diffuse CO2 degassing surveys carried out at five mining licenses in Tenerife and Gran Canaria with the aim of sorting the possible geothermal potential of these five mining licenses. The primary objective of the study was to reduce the uncertainty inherent to the selection of the areas with highest geothermal potential for future exploration works. The yardstick used to classify the different areas was the contribution of volcano-hydrothermal CO2 in the diffuse CO2 degassing at each study area. Several hundreds of measurements of diffuse CO2 emission, soil CO2 concentration and isotopic composition were performed at each mining license. Based in three different endmembers (biogenic, atmospheric and deep-seated CO2) with different CO2 concentrations (100, 0.04 and 100%, respectively) and isotopic compositions (-24, -8 and -3 per mil vs. VPDB respectively) a mass balance to distinguish the different contribution of each endmember in the soil CO2 at each sampling site was made. The percentage of the volcano-hydrothermal contribution in the current diffuse CO2 degassing was in the range 0-19%. The Abeque mining license, that comprises part of the north-west volcanic rift of Tenerife, seemed to show the highest geothermal potential, with an average of 19% of CO2 being released from deep sources, followed by Atidama (south east of Gran Canaria) and Garehagua (southern volcanic rift of Tenerife), with 17% and 12% respectively.

  19. [Research on soil bacteria under the impact of sealed CO2 leakage by high-throughput sequencing technology].

    Science.gov (United States)

    Tian, Di; Ma, Xin; Li, Yu-E; Zha, Liang-Song; Wu, Yang; Zou, Xiao-Xia; Liu, Shuang

    2013-10-01

    Carbon dioxide Capture and Storage has provided a new option for mitigating global anthropogenic CO2 emission with its unique advantages. However, there is a risk of the sealed CO2 leakage, bringing a serious threat to the ecology system. It is widely known that soil microorganisms are closely related to soil health, while the study on the impact of sequestered CO2 leakage on soil microorganisms is quite deficient. In this study, the leakage scenarios of sealed CO2 were constructed and the 16S rRNA genes of soil bacteria were sequenced by Illumina high-throughput sequencing technology on Miseq platform, and related biological analysis was conducted to explore the changes of soil bacterial abundance, diversity and structure. There were 486,645 reads for 43,017 OTUs of 15 soil samples and the results of biological analysis showed that there were differences in the abundance, diversity and community structure of soil bacterial community under different CO, leakage scenarios while the abundance and diversity of the bacterial community declined with the amplification of CO2 leakage quantity and leakage time, and some bacteria species became the dominant bacteria species in the bacteria community, therefore the increase of Acidobacteria species would be a biological indicator for the impact of sealed CO2 leakage on soil ecology system.

  20. Photosynthetic Water Use Efficiency in it Sorghastrum nutans (C4) and it Solidago canadensis (C3) in Three Soils Along a CO2 Concentration Gradient

    Science.gov (United States)

    Fay, P. A.; Hui, D.; Procter, A.; Johnson, H. B.; Polley, H. W.; Jackson, R. B.

    2006-12-01

    The water use efficiency (WUE) of leaf photosynthetic carbon uptake is a key regulator of ecosystem carbon cycles and is strongly sensitive to atmospheric carbon dioxide concentrations [CO2]. However WUE responses to [CO2] typically differ between C3 and C4 species and may differ on varying soil types because of differences in soil moisture retention and plant uptake efficiency. We measured leaf-level photosynthesis (ACO2), stomatal conductance (gS), and transpiration (E) with an infrared gas analyzer to estimate WUE for the C4 grass Sorghastrum nutans and the C3 forb Solidago canadensis in constructed grassland species assemblages growing in three soils arrayed along a 200 560 ppm [CO2] gradient in the LYCOG Experiment, in central Texas, USA. LYCOG consists of eighty intact soil monoliths (1 m X 1 m X 1.5 m) representing 3 soil series, Austin (Udorthentic Haplustolls, a mollisol), Bastrop (Udic Paleustalfs, a sandy loam alfisol) and Houston Black (Udic Haplusterts, a vertisol). The monoliths were vegetated by transplanting 8 native perennial prairie species (5 grasses and 3 forbs), including S. nutans and S. canadensis. Both are abundant and widespread; S. nutans is a dominant species throughout much of North American tallgrass prairie, and S. canadensis is one of the most abundant and widespread forbs in North America. ACO2, gS, and E were measured three times during the growing season. Dark-adapted chlorophyll fluorescence (FvFm) was measured concurrently to assess photosynthetic capacity, and leaf water potential (Ψ leaf) and soil water content were measured to assess plant water status and soil moisture availability. WUE increased strongly (p< 0.0001) at higher [CO2], due to a combination of decreasing E due to decreased gS (p ≤ 0.0005) and increasing ACO2 (p = 0.0055). This pattern was the same in both species (species x [CO2] ns). There was a corresponding increase in Ψ leaf (p = 0.01) at higher [CO2], but no [CO2] effect on FvFm. E and gS were lower on

  1. Use of Co speciation and soil properties to explain variation in Co toxicity to root growth of barley (Hordeum vulgare L.) in different soils

    International Nuclear Information System (INIS)

    Mico, C.; Li, H.F.; Zhao, F.J.; McGrath, S.P.

    2008-01-01

    The influence of soil properties on the bioavailability and toxicity of Co to barley (Hordeum vulgare L.) root elongation was investigated. Ten soils varying widely in soil properties were amended with seven doses of CoCl 2 . Soil properties greatly influenced the expression of Co toxicity. The effective concentration of added Co causing 50% inhibition (EC 50 ) ranged from 45 to 863 mg kg -1 , representing almost 20-fold variation among soils. Furthermore, we investigated Co toxicity in relation to Co concentrations and free Co 2+ activity in soil solution. The EC 50 values showed variation among soils of 17- and 29-fold, based on the Co concentration in soil solution and free Co 2+ activity, respectively. Single regressions were carried out between Co toxicity threshold values and selected soil properties. Models obtained showed that soil effective cation exchange capacity (eCEC) and exchangeable calcium were the most consistent single predictors of the EC 50 values based on soil added Co. - Soil eCEC and exchangeable Ca were found to be the best predictors of the toxicity threshold values of Co to barley root growth on different soils

  2. A Portable FTIR Analyser for Field Measurements of Trace Gases and their Isotopologues: CO2, CH4, N2O, CO, del13C in CO2 and delD in water vapour

    Science.gov (United States)

    Griffith, D. W.; Bryant, G. R.; Deutscher, N. M.; Wilson, S. R.; Kettlewell, G.; Riggenbach, M.

    2007-12-01

    We describe a portable Fourier Transform InfraRed (FTIR) analyser capable of simultaneous high precision analysis of CO2, CH4, N2O and CO in air, as well as δ13C in CO2 and δD in water vapour. The instrument is based on a commercial 1 cm-1 resolution FTIR spectrometer fitted with a mid-IR globar source, 26 m multipass White cell and thermoelectrically-cooled MCT detector operating between 2000 and 7500 cm-1. Air is passed through the cell and analysed in real time without any pre-treatment except for (optional) drying. An inlet selection manifold allows automated sequential analysis of samples from one or more inlet lines, with typical measurement times of 1-10 minutes per sample. The spectrometer, inlet sampling sequence, real-time quantitative spectrum analysis, data logging and display are all under the control of a single program running on a laptop PC, and can be left unattended for continuous measurements over periods of weeks to months. Selected spectral regions of typically 100-200 cm-1 width are analysed by a least squares fitting technique to retrieve concentrations of trace gases, 13CO2 and HDO. Typical precision is better than 0.1% without the need for calibration gases. Accuracy is similar if measurements are referenced to calibration standard gases. δ13C precision is typically around 0.1‰, and for δD it is 1‰. Applications of the analyser include clean and polluted air monitoring, tower-based flux measurements such as flux gradient or integrated horizontal flux measurements, automated soil chambers, and field-based measurements of isotopic fractionation in soil-plant-atmosphere systems. The simultaneous multi-component advantages can be exploited in tracer-type emission measurements, for example of CH4 from livestock using a co-released tracer gas and downwind measurement. We have also developed an open path variant especially suited to tracer release studies and measurements of NH3 emissions from agricultural sources. An illustrative

  3. Soil warming enhances the hidden shift of elemental stoichiometry by elevated CO2 in wheat.

    Science.gov (United States)

    Li, Xiangnan; Jiang, Dong; Liu, Fulai

    2016-03-22

    Increase in atmospheric CO2 concentration ([CO2]) and associated soil warming along with global climate change are expected to have large impacts on grain mineral nutrition in wheat. The effects of CO2 elevation (700 μmol l(-1)) and soil warming (+2.4 °C) on K, Ca and Mg concentrations in the xylem sap and their partitioning in different organs of wheat plant during grain filling were investigated. Results showed that the combination of elevated [CO2] and soil warming improved wheat grain yield, but decreased plant K, Ca and Mg accumulation and their concentrations in the leaves, stems, roots and grains. The reduced grain mineral concentration was attributed to the lowered mineral uptake as exemplified by both the decreased stomatal conductance and mineral concentration in the xylem sap. These findings suggest that future higher atmospheric [CO2] and warmer soil conditions may decrease the dietary availability of minerals from wheat crops. Breeding wheat cultivars possessing higher ability of mineral uptake at reduced xylem flux in exposure to climate change should be a target.

  4. Seasonal dynamics of CO2 efflux in soils amended with composted and thermally-dried sludge as affected by soil tillage systems in a semi-arid agroecosystem

    Science.gov (United States)

    García-Gil, Juan Carlos; Soler-Rovira, Pedro; López-de-Sa, Esther G.; Polo, Alfredo

    2014-05-01

    In semi-arid agricultural soils, seasonal dynamic of soil CO2 efflux (SCE) is highly variable. Based on soil respiration measurements the effects of different management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) was investigated in a long-term field experiment (28 years) conducted on a sandy-loam soil at the experimental station 'La Higueruela' (40o 03'N, 4o 24'W). Both organic amendments were applied at a rate of 30 Mg ha-1 prior to tillage practices. Unamended soils were used as control for each tillage system. SCE was moderate in late spring (2.2-11.8 μmol CO2 m-2 s-1) when amendments were applied and tillage was performed, markedly decreased in summer (0.4-3.2 μmol CO2 m-2 s-1), following a moderate increase in autumn (3.4-14.1 μmol CO2 m-2 s-1), rising sharply in October (5.6-39.8 μmol CO2 m-2 s-1 ). In winter, SCE was low (0.6-6.5 μmol CO2 m-2 s-1). In general, SCE was greater in chisel and moldboard tilled soils, and in CS and particularly TSS-amended soils, due to the addition of labile C with these amendments, meanwhile no-tillage soils exhibited smaller increases in C efflux throughout the seasons. Soil temperature controlled the seasonal variations of SCE. In summer, when drought occurs, a general decrease of SCE was observed due to a deficit in soil water content. After drought period SCE jumped to high values in response to rain events ('Birch effect') that changed soil moisture conditions. Soil drying in summer and rewetting in autumn may promotes some changes on the structure of soil microbial community, affecting associated metabolic processes, and enhancing a rapid mineralization of water-soluble organic C compounds and/or dead microbial biomass that acts as an energy source for soil microorganisms. To assess the effects of tillage and amendments on SCE, Q10 values were calculated. Data were grouped into three groups according to soil moisture (0

  5. Greenhouse Gas (CO2 AND N2O Emissions from Soils: A Review Emisión de Gases invernadero (CO2 y N2O desde Suelos

    Directory of Open Access Journals (Sweden)

    Cristina Muñoz

    2010-09-01

    Full Text Available In agricultural activities, the main greenhouse gases (GHG are those related to C and N global cycles. The impact of agriculture on GHG emissions has become a key issue, especially when considering that natural C and N cycles are influenced by agricultural development. This review focuses on CO2 and N2O soil emissions in terrestrial ecosystems, with emphasis in Chilean and similar agro-ecosystems around the world. The influence of land use and crop management practices on CO2 and N2O emissions is analyzed; some mitigation measures to reduce such emissions are also discussed here. More knowledge on the biological processes that promote of GHG emissions from soil will allow creating opportunities for agricultural development under friendly-environmental conditions, where soil can act as a reservoir and/or emitter of GHG, depending on the balance of inputs and outputs.En actividades agrícolas los principales gases de efecto invernadero (GHG son los relacionados con los ciclos globales de C y N. El impacto de la agricultura sobre las emisiones GHG se ha convertido en una cuestión clave, especialmente si se considera que los ciclos naturales C y N se ven influidos por el desarrollo agrícola. Esta revisión se centra en emisiones de CO2 y N2O del suelo en los ecosistemas terrestres, con énfasis en agro-ecosistemas de Chile y similares alrededor del mundo. Se analiza la influencia del uso del suelo y las prácticas de manejo del cultivo sobre emisiones de CO2 y N2O, se discuten medidas de mitigación para reducir estas emisiones. Un mayor conocimiento sobre los procesos biológicos que promueven las emisiones GHG del suelo permitirá la creación de oportunidades para el desarrollo agrícola en condiciones ambientalmente amigables, donde el suelo puede actuar como un reservorio y/o emisor de GHG, dependiendo del balance de entradas y salidas.

  6. SOIL RESPIRED D13C SIGNATURES REFLECT ROOT EXUDATE OR ROOT TURNOVER SIGNATURES IN AN ELEVATED CO2 AND OZONE MESOCOSM EXPERIMENT

    Science.gov (United States)

    Bulk tissue and root and soil respired d13C signatures were measured throughout the soil profile in a Ponderosa Pine mesocosm experiment exposed to ambient and elevated CO2 concentrations. For the ambient treatment, root (0-1mm, 1-2mm, and >2mm) and soil d13C signatures were ?24...

  7. Wheat genotypes differing in aluminum tolerance differ in their growth response to CO2 enrichment in acid soils

    OpenAIRE

    Tian, Qiuying; Zhang, Xinxin; Gao, Yan; Bai, Wenming; Ge, Feng; Ma, Yibing; Zhang, Wen-Hao

    2013-01-01

    Aluminum (Al) toxicity is a major factor limiting plant growth in acid soils. Elevated atmospheric CO2 [CO2] enhances plant growth. However, there is no report on the effect of elevated [CO2] on growth of plant genotypes differing in Al tolerance grown in acid soils. We investigated the effect of short-term elevated [CO2] on growth of Al-tolerant (ET8) and Al-sensitive (ES8) wheat plants and malate exudation from root apices by growing them in acid soils under ambient [CO2] and elevated [CO2]...

  8. Development of a Method for Measuring Carbon Balance in Chemical Sequestration of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Zhongxian; Pan, Wei-Ping; Riley, John T.

    2006-09-09

    Anthropogenic CO2 released from fossil fuel combustion is a primary greenhouse gas which contributes to “global warming.” It is estimated that stationary power generation contributes over one-third of total CO2 emissions. Reducing CO2 in the atmosphere can be accomplished either by decreasing the rate at which CO2 is emitted into the atmosphere or by increasing the rate at which it is removed from it. Extensive research has been conducted on determining a fast and inexpensive method to sequester carbon dioxide. These methods can be classified into two categories, CO2 fixation by natural sink process for CO2, or direct CO2 sequestration by artificial processes. In direct sequestration, CO2 produced from sources such as coal-fired power plants, would be captured from the exhausted gases. CO2 from a combustion exhaust gas is absorbed with an aqueous ammonia solution through scrubbing. The captured CO2 is then used to synthesize ammonium bicarbonate (ABC or NH4HCO3), an economical source of nitrogen fertilizer. In this work, we studied the carbon distribution after fertilizer is synthesized from CO2. The synthesized fertilizer in laboratory is used as a “CO2 carrier” to “transport” CO2 from the atmosphere to crops. After biological assimilation and metabolism in crops treated with ABC, a considerable amount of the carbon source is absorbed by the plants with increased biomass production. The majority of the unused carbon source percolates into the soil as carbonates, such as calcium carbonate (CaCO3) and magnesium carbonate (MgCO3). These carbonates are environmentally benign. As insoluble salts, they are found in normal rocks and can be stored safely and permanently in soil. This investigation mainly focuses on the carbon distribution after the synthesized fertilizer is applied to soil. Quantitative examination of carbon distribution in an ecosystem is a challenging task since the carbon in the soil may come from various sources. Therefore synthesized 14C

  9. CO2 emission from soil after reforestation and application of sewage sludge

    Directory of Open Access Journals (Sweden)

    Janaina Braga Carmo

    2014-09-01

    Full Text Available This study aimed to quantify the carbon dioxide emissions from an Oxisol under degraded pasture located in Sorocaba, São Paulo State, Brazil. The treatments were: sewage sludge (LE, sewage sludge compost (CLE, mineral fertilizer (AM and no fertilization (T0. The experiment was conducted in a completely randomized block design with analysis of the effect of the four treatments (CLE, LE, and AM T0 with four replications. The application of sewage sludge, sewage sludge compost, mineral fertilizer and no fertilizer was statistically significant for the variables of height increase and stem height of Guanandi seedlings (Calophyllum brasiliense Cambessèdes - Calophyllaceae. Treatments showed significant differences in terms of CO2 emissions from soil. The CLE exhibited the highest CO2 fluxes, reaching a peak of 9.33±0.96 g C m- 2 day- 1 (p<0.0001, as well as the LE with a maximum CO2 flux of 6.35±1.17 C m- 2 day- 1 (p<0.005. The AM treatment (4.96±1.61 g C m- 2 day- 1 had the same statistical effect as T0 (5.33±0.49 g C m- 2 day- 1. CO2 fluxes were correlated with soil temperature in all treatments. However, considering the period of 172 days of evaluation, the total loss of C as CO2 was 2.7% for sewage sludge and 0.7% for the sewage sludge compost of the total C added with the application on soil.

  10. Elevated Atmospheric CO2 and Drought Affect Soil Microbial Community and Functional Diversity Associated with Glycine max

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2017-12-01

    Full Text Available Abstract Under the background of climate change, the increase of atmospheric CO2 and drought frequency have been considered as significant influencers on the soil microbial communities and the yield and quality of crop. In this study, impacts of increased ambient CO2 and drought on soil microbial structure and functional diversity of a Stagnic Anthrosol were investigated in phytotron growth chambers, by testing two representative CO2 levels, three soil moisture levels, and two soil cover types (with or without Glycine max. The 16S rDNA and 18S rDNA fragments were amplified to analyze the functional diversity of fungi and bacteria. Results showed that rhizosphere microbial biomass and community structure were significantly affected by drought, but effects differed between fungi and bacteria. Drought adaptation of fungi was found to be easier than that of bacteria. The diversity of fungi was less affected by drought than that of bacteria, evidenced by their higher diversity. Severe drought reduced soil microbial functional diversity and restrained the metabolic activity. Elevated CO2 alone, in the absence of crops (bare soil, did not enhance the metabolic activity of soil microorganisms. Generally, due to the co-functioning of plant and soil microorganisms in water and nutrient use, plants have major impacts on the soil microbial community, leading to atmospheric CO2 enrichment, but cannot significantly reduce the impacts of drought on soil microorganisms.

  11. Termites as a factor of spatial differentiation of CO2 fluxes from the soils of monsoon tropical forests in Southern Vietnam

    Science.gov (United States)

    Lopes de Gerenyu, Valentin; Anichkin, Alexander

    2016-04-01

    Termites play the key role in biogeochemical transformation of organic matter acting as "moderators" of fluxes of carbon and other nutrients. They destroy not only leave litter but also coarse woody debris. Termites translocate considerable masses of dead organic materials into their houses, which leads to significant accumulations of organic matter in termite mounds. We studied the impact of termite mounds on redistribution of CO2 fluxes from soils in semi-deciduous monsoon tropical forests of southern Vietnam. Field study was performed in the Cat Tien National Park (11°21'-11°48'N, 107°10'-107°34'E). The spatial and temporary dynamics of CO2 fluxes from soils (Andosols) populated by termites were studied in plain lagerstroemia (Lagerstroemia calyculata Kurz) monsoon tropical forests. The rate of CO2 emission from the soil surface was measured by closed chamber method two-three times per month from November 2010 to December 2011. Permanent cylindrical PVC chambers (9 cm in diameter and 15 cm in height) were installed beyond the areas occupied by termite mounds (5 replications). Litter was not removed from the soil surface before the measurements. To estimate the spatial heterogeneity of the CO2 emission fluxes from soils populated by termites, a special 'termite' plot (TerPl) was equipped. It was 10×10 m in size and included three termite mounds: one mound built up by Globitermes sulphureus and two mounds populated by termites of the Odontotermes genus. Overall, 52 PVC chambers were installed permanently on the 'termite' plot (ca. 1 m apart from one another). The CO2 emission rate from TerPl was also measured by chamber closed method once in the dry season (April) and twice through the wet season (July and August). The average rate of CO2 emission from termite mounds was two times higher than that from the surrounding area (SurAr). In the dry season, it comprised 91±7 mg C/m2/h from the surrounding soils and 196±16 mg C/m2/h from the termite mounds. In the

  12. Plant-soil distribution of potentially toxic elements in response to elevated atmospheric CO2.

    Science.gov (United States)

    Duval, Benjamin D; Dijkstra, Paul; Natali, Susan M; Megonigal, J Patrick; Ketterer, Michael E; Drake, Bert G; Lerdau, Manuel T; Gordon, Gwyneth; Anbar, Ariel D; Hungate, Bruce A

    2011-04-01

    The distribution of contaminant elements within ecosystems is an environmental concern because of these elements' potential toxicity to animals and plants and their ability to hinder microbial ecosystem services. As with nutrients, contaminants are cycled within and through ecosystems. Elevated atmospheric CO2 generally increases plant productivity and alters nutrient element cycling, but whether CO2 causes similar effects on the cycling of contaminant elements is unknown. Here we show that 11 years of experimental CO2 enrichment in a sandy soil with low organic matter content causes plants to accumulate contaminants in plant biomass, with declines in the extractable contaminant element pools in surface soils. These results indicate that CO2 alters the distribution of contaminant elements in ecosystems, with plant element accumulation and declining soil availability both likely explained by the CO2 stimulation of plant biomass. Our results highlight the interdependence of element cycles and the importance of taking a broad view of the periodic table when the effects of global environmental change on ecosystem biogeochemistry are considered.

  13. Effects of Biochar Addition on CO2 and N2O Emissions following Fertilizer Application to a Cultivated Grassland Soil.

    Science.gov (United States)

    Chen, Jingjing; Kim, Hyunjin; Yoo, Gayoung

    2015-01-01

    Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (COMPOST, UREA, NO FERT). The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea.

  14. Modeling the impacts of temperature and precipitation changes on soil CO2 fluxes from a Switchgrass stand recently converted from cropland.

    Science.gov (United States)

    Lai, Liming; Kumar, Sandeep; Chintala, Rajesh; Owens, Vance N; Clay, David; Schumacher, Joseph; Nizami, Abdul-Sattar; Lee, Sang Soo; Rafique, Rashad

    2016-05-01

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America and successfully adapted to diverse environmental conditions. It offers the potential to reduce soil surface carbon dioxide (CO2) fluxes and mitigate climate change. However, information on how these CO2 fluxes respond to changing climate is still lacking. In this study, CO2 fluxes were monitored continuously from 2011 through 2014 using high frequency measurements from Switchgrass land seeded in 2008 on an experimental site that has been previously used for soybean (Glycine max L.) in South Dakota, USA. DAYCENT, a process-based model, was used to simulate CO2 fluxes. An improved methodology CPTE [Combining Parameter estimation (PEST) with "Trial and Error" method] was used to calibrate DAYCENT. The calibrated DAYCENT model was used for simulating future CO2 emissions based on different climate change scenarios. This study showed that: (i) the measured soil CO2 fluxes from Switchgrass land were higher for 2012 which was a drought year, and these fluxes when simulated using DAYCENT for long-term (2015-2070) provided a pattern of polynomial curve; (ii) the simulated CO2 fluxes provided different patterns with temperature and precipitation changes in a long-term, (iii) the future CO2 fluxes from Switchgrass land under different changing climate scenarios were not significantly different, therefore, it can be concluded that Switchgrass grown for longer durations could reduce changes in CO2 fluxes from soil as a result of temperature and precipitation changes to some extent. Copyright © 2015. Published by Elsevier B.V.

  15. Liming induces carbon dioxide (CO2) emission in PSB inoculated alkaline soil supplemented with different phosphorus sources.

    Science.gov (United States)

    Adnan, Muhammad; Shah, Zahir; Sharif, Muhammad; Rahman, Hidayatur

    2018-04-01

    Agricultural land is a major sink of global organic carbon (C). Its suitable management is crucial for improving C sequestration and reducing soil CO 2 emission. Incubation experiments were performed to assess the impact of phosphate solubilizing bacterial (PSB) inoculation (inoculated and uninoculated) and soil calcification (4.78, 10, 15, and 20% crushed CaCO 3 ) with phosphorus (P) sources [single superphosphate (SSP), rock phosphate (RP), farm yard manure (FYM), and poultry manure (PM)] in experiment 1 and with various rates of PM (4, 8, and 12 kg ha -1 ) in experiment 2 on cumulative soil respiration. These experiments were arranged in three factorial, complete randomize design (CRD) with three replications. Interactively, lime with P sources (at day 1 and 3) and lime with PSB (at day 1) significantly expedited soil respiration. Mainly, PSB inoculation, liming, PM fertilization, and its various rates significantly enhanced soil respiration with time over control/minimum in alkaline soil at all incubation periods. Higher CO 2 emission was detected in soil supplemented with organic P sources (PM and FYM) than mineral sources (SSP and RP). CO 2 emission was noted to increase with increasing PM content. Since liming intensified CO 2 discharge from soil, therefore addition of lime to an alkaline soil should be avoided; instead, integrated approaches must be adopted for P management in alkaline calcareous soils for climate-smart agriculture.

  16. Stocks of C in soils and emissions of CO2 from agricultural soils in the Netherlands

    NARCIS (Netherlands)

    Kuikman, P.J.; Groot, de W.J.M.; Hendriks, R.F.A.; Verhagen, J.; Vries, de F.

    2003-01-01

    This report presents considerations for the choice of options to calculate and monitor stocks of carbon in all soils and emissions of CO2 from agricultural soils in the Netherlands for the Kyoto 1990 baseline and following years. The objective of the study was to prepare data for a national

  17. Effects of Long-Term CO2 Enrichment on Soil-Atmosphere CH4 Fluxes and the Spatial Micro-Distribution of Methanotrophic Bacteria.

    Science.gov (United States)

    Karbin, Saeed; Guillet, Cécile; Kammann, Claudia I; Niklaus, Pascal A

    2015-01-01

    Effects of elevated atmospheric CO2 concentrations on plant growth and associated C cycling have intensively been studied, but less is known about effects on the fluxes of radiatively active trace gases other than CO2. Net soil-atmosphere CH4 fluxes are determined by the balance of soil microbially-driven methane (CH4) oxidation and methanogenesis, and both might change under elevated CO2. Here, we studied CH4 dynamics in a permanent grassland exposed to elevated CO2 for 14 years. Soil-atmosphere fluxes of CH4 were measured using large static chambers, over a period of four years. The ecosystem was a net sink for atmospheric CH4 for most of the time except summer to fall when net CH4 emissions occurred. We did not detect any elevated CO2 effects on CH4 fluxes, but emissions were difficult to quantify due to their discontinuous nature, most likely because of ebullition from the saturated zone. Potential methanotrophic activity, determined by incubation of fresh sieved soil under standardized conditions, also did not reveal any effect of the CO2 treatment. Finally, we determined the spatial micro-distribution of methanotrophic activity at less than 5× atmospheric (10 ppm) and elevated (10000 ppm) CH4 concentrations, using a novel auto-radiographic technique. These analyses indicated that domains of net CH4 assimilation were distributed throughout the analyzed top 15 cm of soils, with no dependence on CH4 concentration or CO2 treatment. Our investigations suggest that elevated CO2 exerts no or only minor effects on CH4 fluxes in the type of ecosystem we studied, at least as long as soil moisture differences are small or absent as was the case here. The autoradiographic analyses further indicate that the spatial niche of CH4 oxidation does not shift in response to CO2 enrichment or CH4 concentration, and that the same type of methanotrophs may oxidize CH4 from atmospheric and soil-internal sources.

  18. [CO2 response process and its simulation of Prunus sibirica photosynthesis under different soil moisture conditions].

    Science.gov (United States)

    Wu, Qin; Zhang, Guang-Can; Pei, Bin; Xu, Zhi-Qiang; Zhao, Yu; Fang, Li-Dong

    2013-06-01

    Taking the two-year old potted Prunus sibirica seedlings as test materials, and using CIRAS-2 photosynthetic system, this paper studied the CO2 response process of P. sibirica photosynthesis in semi-arid loess hilly region under eight soil moisture conditions. The CO2 response data of P. sibirica were fitted and analyzed by rectangular hyperbola model, exponential equation, and modified rectangular hyperbola model. Meanwhile, the quantitative relationships between the photosynthesis and the soil moisture were discussed. The results showed that the CO2 response process of P. sibirica photosynthesis had obvious response characteristics to the soil moisture threshold. The relative soil water content (RWC) required to maintain the higher photosynthetic rate (P(n)) and carboxylation efficiency (CE) of P. sibirica was in the range of 46.3%-81.9%. In this RWC range, the photosynthesis did not appear obvious CO2 saturated inhibition phenomenon. When the RWC exceeded this range, the photosynthetic capacity (P(n max)), CE, and CO2 saturation point (CSP) decreased evidently. Under different soil moisture conditions, there existed obvious differences among the three models in simulating the CO2 response data of P. sibirica. When the RWC was in the range of 46.3%-81.9%, the CO2 response process and the characteristic parameters such as CE, CO2 compensation point (see symbol), and photorespiration rate (R(p)) could be well fitted by the three models, and the accuracy was in the order of modified rectangular hyperbola model > exponential equation > rectangular hyperbola model. When the RWC was too high or too low, namely, the RWC was > 81.9% or CO2 response process and the characteristic parameters. It was suggested that when the RWC was from 46.3% to 81.9%, the photosynthetic efficiency of P. sibirica was higher, and, as compared with rectangular hyperbola model and exponential equation, modified rectangular hyperbola model had more applicability to fit the CO2 response data of

  19. Intensive management modifies soil CO2 efflux in 6-year-old Pinus taeda L. stands

    Science.gov (United States)

    Lisa J. Samuelson; Kurt Johnsen; Tom Stokes; Weinlang Lu

    2004-01-01

    Intensive forestry may reduce net CO2 emission into atmosphere by storing carbon in living biomass, dead organic matter and soil, and durable wood products. Because quantification of belowground carbon dynamics is important for reliable estimation of the carbon sequestered by intensively managed plantations, we examined soil CO2...

  20. Unexpected results in Chernozem soil respiration while measuring the effect of a bio-fertilizer on soil microbial activity.

    Science.gov (United States)

    Bautista, Gabriela; Mátyás, Bence; Carpio, Isabel; Vilches, Richard; Pazmino, Karina

    2017-01-01

    The number of studies investigating the effect of bio-fertilizers is increasing because of their importance in sustainable agriculture and environmental quality. In our experiments, we measured the effect of different fertilizers on soil respiration. In the present study, we were looking for the cause of unexpected changes in CO2 values while examining Chernozem soil samples. We concluded that CO2 oxidizing microbes or methanotrophs may be present in the soil that periodically consume CO2 . This is unusual for a sample taken from the upper layer of well-ventilated Chernozem soil with optimal moisture content.

  1. Maize and prairie root contributions to soil CO2 emissions in the field

    Science.gov (United States)

    Background and aims: A major hurdle in closing carbon budgets is partitioning soil-surface CO2 fluxes by source. This study aims to estimate CO2 resulting from root growth (RG) in the field. Methods: We used periodic 48-hour shading over two seasons to estimate and compare RG-derived CO2 in one annu...

  2. Effects of Soil Fertility and Atmospheric CO2 Enrichment on Leaf,Stem and Root Dark Respiration of Populus tremuloides

    Institute of Scientific and Technical Information of China (English)

    X.Z.WANG; P.S.CURTIS; 等

    2001-01-01

    An open-top chamber experiment was conducted at the University of Michigan Biological Station near Pellston,Michigan,USA,to study the effects of soil fertility and CO2 on leaf,sdtem and root dark respiration (Rd) of Populus tremuloides.Overall,area-based daytime leaf Rd(Rda) was significantly greater at elevated than at ambient CO2 in high-fertility soil,but not in low-fertility soil.Mass-based leaf Rd(Rdm) was overall greater for high-than for low-fertility soil grown trees at elevated,but not at ambient CO2 .Nighttime leaf Rda and Rdm were unaffected by soil fertility or CO2,nor was stem Rda ,which ranged from 1.0 to 1.4μmol m-2s-1 in the spring and 3.5 to 4.5μmol m-2s-1 in the summer.Root Rda was significantly higher in high-than in low-fertiliy soil,but was unaffected by CO2.Since biomass production of P.tremuloides will be significantly greater at elevated CO2 while specific Rd will either increase or remain unchanged,we predict that carbon loss to the atmosphere through respiration from this ecologically important species would increase at higher CO2.Soil fertility would also interact with elevated CO2 in affecting the carbon flow in the plant-soil-air system.

  3. Effects of Soil Fertility and Atmospheric CO2 Enrichment on Leaf, Stem and Root Dark Respiration of Populus tremuloides

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An open-top chamber experiment was conducted at the University of Michigan Biological Station near Pellston, Michigan, USA, to study the effects of soil fertility and CO2 on leaf, stem and root dark respiration (Rd) of Populus tremuloides. Overall, area-based daytime leaf Rd (Rda) was significantly greater at elevated than at ambient CO2 in high-fertility soil, but not in low-fertility soil. Mass-based leaf Rd (Rdm) was overall greater for high- than for low-fertility soil grown trees at elevated, but not at ambient CO2. Nighttime leaf Rda and Rdm were unaffected by soil fertility or CO2, nor was stem Rda, which ranged from 1.0 to 1.4 μmol m-2 s-1 in the spring and 3.5 to 4.5 μmol m-2 s-1 in the summer. Root Rda was significantly higher in high- than in low-fertility soil, but was unaffected by CO2. Since biomass production of P. tremuloides will be significantly greater at elevated CO2 while specific Rd will either increase or remain unchanged, we predict that carbon loss to the atmosphere through respiration from this ecologically important species would increase at higher CO2. Soil fertility would also interact with elevated CO2 in affecting the carbon flow in the plant-soil-air system.

  4. Soil Organic Carbon Redistribution by Water Erosion – The Role of CO2 Emissions for the Carbon Budget

    Science.gov (United States)

    Wang, Xiang; Cammeraat, Erik L. H.; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m−2 yr−1) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m−2. Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems. PMID:24802350

  5. Surface CO2 leakage during the first shallow subsurface CO2 release experiment

    OpenAIRE

    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

    2008-01-01

    A new field facility was used to study CO2 migration processes and test techniques to detect and quantify potential CO2 leakage from geologic storage sites. For 10 days starting 9 July 2007, and for seven days starting 5 August 2007, 0.1 and 0.3 t CO2 d-1, respectively, were released from a ~;100-m long, sub-water table (~;2.5-m depth) horizontal well. The spatio-temporal evolution of leakage was mapped through repeated grid measurements of soil CO2 flux (FCO2). The surface leakage onset...

  6. [Characteristics of N2, N2O, NO, CO2 and CH4 Emissions in Anaerobic Condition from Sandy Loam Paddy Soil].

    Science.gov (United States)

    Cao, Na; Wang, Rui; Liao, Ting-ting; Chen, Nuo; Zheng, Xun-hua; Yao, Zhi-sheng; Zhang, Hai; Butterbach-Bahl, Klaus

    2015-09-01

    Understanding the characteristics of the production of nitrogen gases (N2, N2O and NO), CO2 and CH4 in anaerobic paddy soils is not only a prerequisite for an improved mechanistic understanding of key microbial processes involved in the production of atmospheric greenhouse gases (GHG), but might also provide the basis for designing greenhouse gas mitigation strategies. Moreover, quantifying the composition fractions of denitrification gaseous products is of key importance for improving parameterization schemes of microbial processes in process-oriented models which are increasingly used for assessing soil GHG emissions at site and national scales. In our experiments we investigated two sandy loam soils from two paddy fields. The initial concentrations of soil nitrate and dissolved organic carbon (DOC) were set at approximately 50 mg.kg-1 and mg.kg-1, respectively, by adding a mixture solution of KNO3 and glucose. The emissions of N2, N2O NO, CO2 and CH4, as well as concentrations of carbon and nitrogen substrates for each soil sample were measured simultaneously, using a gas-flow-soil-core technique and a paralleling substrate monitoring system. The results showed that the accumulative emissions of N2, N2O and NO of the two soil samples for the entire incubation period were 6 - 8, 20, and 15 - 18 mg.kg-1, respectively. By measuring the cumulative emissions of denitrification gases (N, = N2 + N2O + NO) we were able to explain 95% to 98% of observed changes in s1ifr nilrate concentrations. The mass fractions of N2, N2O and NO emissions to Nt were approximately 15% -19%, 47% -49%, and 34% -36%, respectively. Thus, in our experiments N2O and NO were the main products of denitrification for the entire incubation period. However, as the temporal courses of hourly or daily production of the denitrification gases showed, NO production dominated and peaked firstly, and then N2O, before finally N2 became the dominant product. Our results show the high temporal dynamic of

  7. The effect of heat waves, elevated [CO2 ] and low soil water availability on northern red oak (Quercus rubra L.) seedlings.

    Science.gov (United States)

    Bauweraerts, Ingvar; Wertin, Timothy M; Ameye, Maarten; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2013-02-01

    The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO2 ] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO2 ] (380 or 700 μmol CO2 mol(-1) ) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4-week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO2 ] and well-watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO2 ]. Low soil moisture significantly decreased net photosynthesis (Anet ) and biomass in all [CO2 ] and temperature treatments. The +12 °C heat wave reduced afternoon Anet by 23% in ambient [CO2 ]. Although this reduction was relatively greater under elevated [CO2 ], Anet values during this heat wave were still 34% higher than under ambient [CO2 ]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO2 ] and soil moisture conditions. © 2012 Blackwell Publishing Ltd.

  8. Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-01-01

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land−atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y−1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y−1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m−2⋅y−1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty. PMID:27247397

  9. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China.

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G L; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-14

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y(-1) of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y(-1), equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the "hotspots," largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m(-2)⋅y(-1)), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  10. Continuous in situ measurements of volcanic gases with a diode-laser-based spectrometer: CO2 and H2O concentration and soil degassing at Vulcano (Aeolian islands: Italy

    Directory of Open Access Journals (Sweden)

    De Natale Paolo

    2007-04-01

    Full Text Available Abstract We report on a continuous-measurement campaign carried out in Vulcano (Aeolian islands, Sicily, devoted to the simultaneous monitoring of CO2 and H2O concentrations. The measurements were performed with an absorption spectrometer based on a semiconductor laser source emitting around a 2-μm wavelength. The emitted radiation was selectively absorbed by two molecular ro-vibrational transitions specific of the investigated species. Data for CO2 and H2O concentrations, and CO2 soil diffusive flux using an accumulation chamber configuration, were collected at several interesting sampling points on the island (Porto Levante beach- PLB, Fossa Grande Crater – FOG- and Valley of Palizzi, PAL. CO2/H2O values, measured on the ground, are very similar (around 0.019 (± 0.006 and comparable to the previous discrete detected values of 0.213 (Fumarole F5-La Fossa crater rim and 0.012 (Fumarole VFS – Baia Levante beach obtaid during the 1977–1993 heating phase of the crater fumaroles. In this work much more homogeneous values are found in different points of the three sites investigated. The field work, although carried out in a limited time window (25th–28th August 2004, pointed out the new apparatus is suitable for continuous gas monitoring of the two species and their ratios, which are important geochemical indicators of volcanic activity, for which other reliable continuous monitoring systems are not yet available.

  11. Continuous in situ measurements of volcanic gases with a diode-laser-based spectrometer: CO2 and H2O concentration and soil degassing at Vulcano (Aeolian islands: Italy).

    Science.gov (United States)

    De Rosa, Maurizio; Gagliardi, Gianluca; Rocco, Alessandra; Somma, Renato; De Natale, Paolo; De Natale, Giuseppe

    2007-04-20

    We report on a continuous-measurement campaign carried out in Vulcano (Aeolian islands, Sicily), devoted to the simultaneous monitoring of CO2 and H2O concentrations. The measurements were performed with an absorption spectrometer based on a semiconductor laser source emitting around a 2-microm wavelength. The emitted radiation was selectively absorbed by two molecular ro-vibrational transitions specific of the investigated species. Data for CO2 and H2O concentrations, and CO2 soil diffusive flux using an accumulation chamber configuration, were collected at several interesting sampling points on the island (Porto Levante beach- PLB, Fossa Grande Crater - FOG- and Valley of Palizzi, PAL). CO2/H2O values, measured on the ground, are very similar (around 0.019 (+/- 0.006)) and comparable to the previous discrete detected values of 0.213 (Fumarole F5-La Fossa crater rim) and 0.012 (Fumarole VFS - Baia Levante beach) obtaid during the 1977-1993 heating phase of the crater fumaroles. In this work much more homogeneous values are found in different points of the three sites investigated. The field work, although carried out in a limited time window (25th-28th August 2004), pointed out the new apparatus is suitable for continuous gas monitoring of the two species and their ratios, which are important geochemical indicators of volcanic activity, for which other reliable continuous monitoring systems are not yet available.

  12. Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO2 efflux in two semiarid grasslands in southern Botswana

    Science.gov (United States)

    Thomas, Andrew D.

    2012-01-01

    Biological soil crusts (BSCs) are an important source of organic carbon, and affect a range of ecosystem functions in arid and semiarid environments. Yet the impact of grazing disturbance on crust properties and soil CO2 efflux remain poorly studied, particularly in African ecosystems. The effects of burial under wind-blown sand, disaggregation and removal of BSCs on seasonal variations in soil CO2 efflux, soil organic carbon, chlorophyll a and scytonemin were investigated at two sites in the Kalahari of southern Botswana. Field experiments were employed to isolate CO2 efflux originating from BSCs in order to estimate the C exchange within the crust. Organic carbon was not evenly distributed through the soil profile but concentrated in the BSC. Soil CO2 efflux was higher in Kalahari Sand than in calcrete soils, but rates varied significantly with seasonal changes in moisture and temperature. BSCs at both sites were a small net sink of C to the soil. Soil CO2 efflux was significantly higher in sand soils where the BSC was removed, and on calcrete where the BSC was buried under sand. The BSC removal and burial under sand also significantly reduced chlorophyll a, organic carbon and scytonemin. Disaggregation of the soil crust, however, led to increases in chlorophyll a and organic carbon. The data confirm the importance of BSCs for C cycling in drylands and indicate intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage. Managed grazing, where soil surfaces are only lightly disturbed, would help maintain a positive carbon balance in African drylands. PMID:23045706

  13. Measuring the Effects of Disturbance & Climate on the CO2 & Energy Exchange of Ponderosa Pine Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Beverly E. Law; Larry Mahrt

    2007-01-05

    The goal is to quantify and understand the influence of climate and disturbance on ecosystem processes and thus net carbon uptake by forests. The objective is to combine tower and ground-based observations to quantify the effects of disturbance on processes controlling carbon storage and CO{sub 2} and energy exchange in varying climatic conditions. Specific objectives are: (1) Investigate the effects of logging and fire on carbon storage and carbon dioxide and energy exchange in chronosequences of ponderosa pine, using consistent methodology; (2) Determine key environmental factors controlling carbon storage and carbon dioxide and energy exchange in these forests through a combination of measurements and process modeling; and (3) Assess spatial variation of the concentrations and transport in complex terrain. The eddy covariance method is used for measurements of CO2, water vapor, and energy exchanges in a chronosequence of ponderosa pine forests (burned in 2002 wildfire, 10 year-old stand, 90 year-old mature stand). The mature stand has been an AmeriFlux site since 2000 (following previous flux sites in young and old stands initiated in 1996). In addition to the eddy covariance measurements, a large suite of biological processes and ecosystem properties are determined for the purpose of developing independent forest carbon budgets and NEP estimates; these include photosynthesis, stand respiration, soil CO{sub 2} fluxes, annual litterfall, foliar chemistry, and bole increment, and soil organic matter among other parameters. The measurements are being integrated and evaluated with two ecosystem models (BIOME-BGC and SPA). Such analyses are needed to assess regional terrestrial ecosystem carbon budgets. The results will contribute scientific understanding of carbon processes, and will provide comprehensive data sets for forest managers and those preparing national carbon inventories to use in assessments of carbon sequestration in relation to interannual climate

  14. Effects of Biochar Addition on CO2 and N2O Emissions following Fertilizer Application to a Cultivated Grassland Soil.

    Directory of Open Access Journals (Sweden)

    Jingjing Chen

    Full Text Available Carbon (C sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N dynamics. Treatments included biochar addition (CHAR, NO CHAR and amendment (COMPOST, UREA, NO FERT. The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea.

  15. Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem.

    Science.gov (United States)

    Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2015-03-20

    Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0-5 cm and 5-15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems.

  16. [Effect of bamboo leaf biochar addition on soil CO2 efflux and labile organic carbon pool in a Chinese chestnut plantation].

    Science.gov (United States)

    Wang, Zhan-Lei; Li, Yong-Fu; Jiang, Pei-Kun; Zhou, Guo-Mo; Liu, Juan

    2014-11-01

    Effect of biochar addition on soil CO2 efflux in a typical Chinese chestnut (Castanea mollissima) plantation in Lin'an, Zhejiang Province, China was investigated from July 2012 to July 2013 by the static closed chamber-GC technique. Soil temperature, soil moisture, WSOC and MBC concentrations were determined as well. Results showed that soil CO2 efflux exhibited a strong sea- sonal pattern. Compared with the control (without biochar application), the biochar treatment increased the soil CO2 efflux only in the first month since application, and then the effect diminished thereafter. There were no significant differences in the annual cumulative value of soil CO2 efflux between the biochar and control treatments. The annual mean value in soil MBC concentration (362 mg · kg(-1)) in the biochar treatment was higher than that (322 mg · kg(-1)) in the control. However, no significant difference in the soil WSOC concentration was found between the biochar and control treatments. Strong exponential relationships between soil temperature and soil CO2 efflux were observed regardless of the treatment and soil layer. The apparent temperature sensitivity (Q10) of soil CO2 efflux in the biochar treatment was higher than that in the control. Soil CO2 efflux was related to soil WSOC concentration but not with soil MBC or moisture content. To conclude, the application of bamboo leaf biochar did not affect the annual cumulative CO2 emission in the Chinese chestnut plantation but increased the Q10, and the CO2 efflux was predominantly controlled by the soil temperature and soil WSOC level.

  17. Effects of elevated CO2 on soil organic matter turnover and plant nitrogen uptake: First results from a dual labeling mesocosm experiment

    Science.gov (United States)

    Eder, Lucia Muriel; Weber, Enrico; Schrumpf, Marion; Zaehle, Sönke

    2017-04-01

    The response of plant growth to elevated concentrations of CO2 (eCO2) is often constrained by plant nitrogen (N) uptake. To overcome potential N limitation, plants may invest photosynthetically fixed carbon (C) into N acquiring strategies, including fine root biomass, root exudation, or C allocation to mycorrhizal fungi. In turn, these strategies may affect the decomposition of soil organic matter, leading to uncertainties in net effects of eCO2 on C storage. To gain more insight into these plant-soil C-N-interactions, we combined C and N stable isotope labeling in a mesocosm experiment. Saplings of Fagus sylvatica L. were exposed to a 13CO2 enriched atmosphere at near ambient (380 ppm) or elevated (550 ppm) CO2 concentrations for four months of the vegetation period in 2016. Aboveground and belowground net CO2 fluxes were measured separately and the 13C label enabled partitioning of total soil CO2 efflux into old, soil derived and new, plant-derived C. We used ingrowth cores to assess effects of eCO2on belowground C allocation and plant N uptake in more detail and in particular we evaluated the relative importance of ectomycorrhizal associations. In the soil of each sapling, ingrowth cores with different mesh sizes allowed fine roots or only mycorrhizal hyphae to penetrate. In one type of ingrowth core each, we incorporated fine root litter that was enriched in 15N. Additionally, total N uptake was estimated by using 15N enriched saplings and unlabeled control plants. We found that eCO2 increased aboveground net CO2 exchange rates by 19% and total soil respiration by 11%. The eCO2 effect for GPP and also for NPP was positive (+23% and +11%, respectively). By combining gaseous C fluxes with data on new and old C stocks in bulk soil and plants through destructive harvesting in late autumn 2016, we will be able to infer net effects of eCO2 on the fate of C in these mesocosms. Biomass allocation patterns can reveal physiological responses to high C availability under

  18. Enhanced simulations of CH4 and CO2 production in permafrost-affected soils address soil moisture controls on anaerobic decomposition

    Science.gov (United States)

    Graham, D. E.; Zheng, J.; Moon, J. W.; Painter, S. L.; Thornton, P. E.; Gu, B.; Wullschleger, S. D.

    2017-12-01

    Rapid warming of Arctic ecosystems exposes soil organic carbon (SOC) to accelerated microbial decomposition, leading to increased emissions of carbon dioxide (CO2) and methane (CH4) that have a positive feedback on global warming. The magnitude, timing, and form of carbon release will depend not only on changes in temperature, but also on biogeochemical and hydrological properties of soils. In this synthesis study, we assessed the decomposability of thawed organic carbon from active layer soils and permafrost from the Barrow Environmental Observatory across different microtopographic positions under anoxic conditions. The main objectives of this study were to (i) examine environmental conditions and soil properties that control anaerobic carbon decomposition and carbon release (as both CO2 and CH4); (ii) develop a common set of parameters to simulate anaerobic CO2 and CH4 production; and (iii) evaluate uncertainties generated from representations of pH and temperature effects in the current model framework. A newly developed anaerobic carbon decomposition framework simulated incubation experiment results across a range of soil water contents. Anaerobic CO2 and CH4 production have different temperature and pH sensitivities, which are not well represented in current biogeochemical models. Distinct dynamics of CH4 production at -2° C suggest methanogen biomass and growth rate limit activity in these near-frozen soils, compared to warmer temperatures. Anaerobic CO2 production is well constrained by the model using data-informed labile carbon pool and fermentation rate initialization to accurately simulate its temperature sensitivity. On the other hand, CH4 production is controlled by water content, methanogenesis biomass, and the presence of alternative electron acceptors, producing a high temperature sensitivity with large uncertainties for methanogenesis. This set of environmental constraints to methanogenesis is likely to undergo drastic changes due to permafrost

  19. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2

    Science.gov (United States)

    Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.

    2011-06-01

    Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using δ13C (‰). Differences between individual δ13CPLFA and δ13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.

  20. Effects of forest regeneration practices on the flux of soil CO2 after clear-cutting in subtropical China.

    Science.gov (United States)

    Wang, Yixiang; Zhu, Xudan; Bai, Shangbin; Zhu, Tingting; Qiu, Wanting; You, Yujie; Wu, Minjuan; Berninger, Frank; Sun, Zhibin; Zhang, Hui; Zhang, Xiaohong

    2018-04-15

    Reforestation after clear-cutting is used to facilitate rapid establishment of new stands. However, reforestation may cause additional soil disturbance by affecting soil temperature and moisture, thus potentially influencing soil respiration. Our aim was to compare the effects of different reforestation methods on soil CO 2 flux after clear-cutting in a Chinese fir plantation in subtropical China: uncut (UC), clear-cut followed by coppicing regeneration without soil preparation (CC), clear-cut followed by coppicing regeneration and reforestation with soil preparation, tending in pits and replanting (CCR P ), and clear-cut followed by coppicing regeneration and reforestation with overall soil preparation, tending and replanting (CCR O ). Clear-cutting significantly increased the mean soil temperature and decreased the mean soil moisture. Compared to UC, CO 2 fluxes were 19.19, 37.49 and 55.93 mg m -2 h -1 higher in CC, CCR P and CCR O , respectively (P soil temperature, litter mass and the mixing of organic matter with mineral soil. The results suggest that, when compared to coppicing regeneration, reforestation practices result in additional CO 2 released, and that regarding the CO 2 emissions, soil preparation and tending in pits is a better choice than overall soil preparation and tending. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Variability of soil CO2 efflux in a semi-arid grassland in Arizona

    Science.gov (United States)

    Krishnan, P.; Meyers, T. P.; Heuer, M.

    2017-12-01

    Soil surface CO2 efflux or soil respiration (RS) is one of the most important components of the global carbon cycle. So it is critical to evaluate the response of soil respiration to environmental conditions to predict how future climate and land cover changes influence the ecosystem carbon balance. Continuous half-hourly measurements of RS were made between the end of March to December 2015 in a semi-arid temperate grassland located on the Audubon Research Ranch in south western Arizona (31.5907N, 110.5104W, elevation 1496 m), USA. This first time measurements of Rs over this site using an automated soil chamber were used to investigate the seasonal and diurnal variation of Rs and its relationship to environmental variables. The mean annual air temperature and precipitation at this site were 16 deg C and 370 mm with more than 60% of the annual precipitation was received during the North American monsoon period (July-September). Following the onset of the monsoon, drastic changes in vegetation growth occured turning the ecosystem to a carbon sink by August. Temporal variability in Rs was closely related to the changes in near surface soil temperature at 2 cm (Ts) and soil water content at 5 cm (θ). Half -hourly Rs varied from nearly 0.1 μmol m-2 s-1 in the winter months to a maximum of 5 μmol m-2 s-1 in the peak growing season in August. During the dry pre-monsoon period (May -June), Rs was relatively low ( 0.0.08 m3 m-3, RS was positively correlated to soil temperature at the 2 cm depth following an exponential relationship. Below this value of θ, RS was largely decoupled from TS dropping to less than half of their maximum values during wet soil conditions. Analysis of daily mean nighttime Rs for the year showed that for periods with θ below the threshold, the sensitivity of RS to temperature were substantially reduced resulting in a Q10 significantly < 2, thereby confirming that RS was less affected by soil temperature under low soil water conditions at this

  2. Landscape structure control on soil CO2 efflux variability in complex terrain: Scaling from point observations to watershed scale fluxes

    Science.gov (United States)

    Diego A. Riveros-Iregui; Brian L. McGlynn

    2009-01-01

    We investigated the spatial and temporal variability of soil CO2 efflux across 62 sites of a 393-ha complex watershed of the northern Rocky Mountains. Growing season (83 day) cumulative soil CO2 efflux varied from ~300 to ~2000 g CO2 m-2, depending upon landscape position, with a median of 879.8 g CO2 m-2. Our findings revealed that highest soil CO2 efflux rates were...

  3. New evidence of CO2 soil degassing anomalies on Piton de la Fournaise volcano and the link with volcano tectonic structures

    Science.gov (United States)

    Liuzzo, M.; Di Muro, A.; Giudice, G.; Michon, L.; Ferrazzini, V.; Gurrieri, S.

    2015-12-01

    Piton de la Fournaise (PdF) is recognized as one of the world's most active volcanoes in terms of eruptive frequency and the substantial quantity of lava produced. Yet with the sole exception of rather modest intracrateric fumarole activity, this seems to be in contrast with an apparent absence of any type of natural fluid emission during periods of quiescence. Measurement campaigns were undertaken during a long-lasting quiescent period (2012-2014) and just after a short-lived summit eruption (June 2014) in order to identify potential degassing areas in relation to the main structural features of the volcano (e.g., rift zones) with the aim of developing a broader understanding of the geometry of the plumbing and degassing system. In order to assess the possible existence of anomalous soil CO2 flux, 513 measurements were taken along transects roughly orthogonal to the known tectonic lineaments crossing PdF edifice. In addition, 53 samples of gas for C isotope analysis were taken at measurement points that showed a relatively high CO2 concentration in the soil. CO2 flux values range from 10 to 1300 g m-2 d-1 while δ13C are between -26.6 and -8‰. The results of our investigation clearly indicate that there is a strong spatial correlation between the anomalous high values of diffusive soil emissions and the main rift zones cutting the PdF massif and, moreover, that generally high soil CO2 fluxes show a δ13C signature clearly related to a magmatic origin.

  4. Linking soil O2, CO2, and CH4 concentrations in a wetland soil

    DEFF Research Database (Denmark)

    Elberling, Bo; Jensen, Louise Askær; Jørgensen, Christian Juncher

    2011-01-01

    and CH4 were measured in the laboratory during flooding of soil columns using a combination of planar O2 optodes and membrane inlet mass spectrometry. Microsensors were used to assess apparent diffusivity under both field and laboratory conditions. Gas concentration profiles were analyzed...... plants tissue on soil gas dynamics and greenhouse gas emissions following marked changes in water level....

  5. Geospatial variability of soil CO2-C exchange in the main terrestrial ecosystems of Keller Peninsula, Maritime Antarctica.

    Science.gov (United States)

    Thomazini, A; Francelino, M R; Pereira, A B; Schünemann, A L; Mendonça, E S; Almeida, P H A; Schaefer, C E G R

    2016-08-15

    Soils and vegetation play an important role in the carbon exchange in Maritime Antarctica but little is known on the spatial variability of carbon processes in Antarctic terrestrial environments. The objective of the current study was to investigate (i) the soil development and (ii) spatial variability of ecosystem respiration (ER), net ecosystem CO2 exchange (NEE), gross primary production (GPP), soil temperature (ST) and soil moisture (SM) under four distinct vegetation types and a bare soil in Keller Peninsula, King George Island, Maritime Antarctica, as follows: site 1: moss-turf community; site 2: moss-carpet community; site 3: phanerogamic antarctic community; site 4: moss-carpet community (predominantly colonized by Sanionia uncinata); site 5: bare soil. Soils were sampled at different layers. A regular 40-point (5×8 m) grid, with a minimum separation distance of 1m, was installed at each site to quantify the spatial variability of carbon exchange, soil moisture and temperature. Vegetation characteristics showed closer relation with soil development across the studied sites. ER reached 2.26μmolCO2m(-2)s(-1) in site 3, where ST was higher (7.53°C). A greater sink effect was revealed in site 4 (net uptake of 1.54μmolCO2m(-2)s(-1)) associated with higher SM (0.32m(3)m(-3)). Spherical models were fitted to describe all experimental semivariograms. Results indicate that ST and SM are directly related to the spatial variability of CO2 exchange. Heterogeneous vegetation patches showed smaller range values. Overall, poorly drained terrestrial ecosystems act as CO2 sink. Conversely, where ER is more pronounced, they are associated with intense soil carbon mineralization. The formations of new ice-free areas, depending on the local soil drainage condition, have an important effect on CO2 exchange. With increasing ice/snow melting, and resulting widespread waterlogging, increasing CO2 sink in terrestrial ecosystems is expected for Maritime Antarctica. Copyright

  6. Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum.

    Science.gov (United States)

    Butterly, Clayton R; Armstrong, Roger; Chen, Deli; Tang, Caixian

    2016-01-01

    Additional carbohydrate supply resulting from enhanced photosynthesis under predicted future elevated CO2 is likely to increase symbiotic nitrogen (N) fixation in legumes. This study examined the interactive effects of atmospheric CO2 and nitrate (NO3(-)) concentration on the growth, nodulation and N fixation of field pea (Pisum sativum) in a semi-arid cropping system. Field pea was grown for 15 weeks in a Vertosol containing 5, 25, 50 or 90 mg NO3(-)-N kg(-1) under either ambient CO2 (aCO2; 390 ppm) or elevated CO2 (eCO2; 550 ppm) using free-air CO2 enrichment (SoilFACE). Under aCO2, field pea biomass was significantly lower at 5 mg NO3(-)-N kg(-1) than at 90 mg NO3(-)-N kg(-1) soil. However, increasing the soil N level significantly reduced nodulation of lateral roots but not the primary root, and nodules were significantly smaller, with 85% less nodule mass in the 90 NO3(-)-N kg(-1) than in the 5 mg NO3(-)-N kg(-1) treatment, highlighting the inhibitory effects of NO3(-). Field pea grown under eCO2 had greater biomass (approx. 30%) than those grown under aCO2, and was not affected by N level. Overall, the inhibitory effects of NO3(-) on nodulation and nodule mass appeared to be reduced under eCO2 compared with aCO2, although the effects of CO2 on root growth were not significant. Elevated CO2 alleviated the inhibitory effect of soil NO3(-) on nodulation and N2 fixation and is likely to lead to greater total N content of field pea growing under future elevated CO2 environments. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Enhanced priming of old, not new soil carbon at elevated atmospheric CO2

    DEFF Research Database (Denmark)

    Vestergard, Mette; Reinsch, Sabine; Bengtson, Per

    2016-01-01

    Rising atmospheric CO2 concentrations accompanied by global warming and altered precipitation patterns calls for assessment of long-term effects of these global changes on carbon (C) dynamics in terrestrial ecosystems, as changes in net C exchange between soil and atmosphere will impact the atmos......Rising atmospheric CO2 concentrations accompanied by global warming and altered precipitation patterns calls for assessment of long-term effects of these global changes on carbon (C) dynamics in terrestrial ecosystems, as changes in net C exchange between soil and atmosphere will impact...... accelerate the decomposition of soil organic C (SOC), a phenomenon termed ‘the priming effect’, and the priming effect is most pronounced at low soil N availability. Hence, we hypothesized that priming of SOC decomposition in response to labile C addition would increase in soil exposed to long-term elevated...... decomposition of relatively old SOC fractions, i.e. SOC assimilated more than 8 years before sampling....

  8. Effects of elevated [CO2] and low soil moisture on the physiological responses of Mountain Maple (Acer spicatum L. seedlings to light.

    Directory of Open Access Journals (Sweden)

    Gabriel Danyagri

    Full Text Available Global climate change is expected to affect how plants respond to their physical and biological environments. In this study, we examined the effects of elevated CO2 ([CO2] and low soil moisture on the physiological responses of mountain maple (Acer spicatum L. seedlings to light availability. The seedlings were grown at ambient (392 µmol mol(-1 and elevated (784 µmol mol(-1 [CO2], low and high soil moisture (M regimes, at high light (100% and low light (30% in the greenhouse for one growing season. We measured net photosynthesis (A, stomatal conductance (g s, instantaneous water use efficiency (IWUE, maximum rate of carboxylation (V cmax, rate of photosynthetic electron transport (J, triose phosphate utilization (TPU, leaf respiration (R d, light compensation point (LCP and mid-day shoot water potential (Ψx. A and g s did not show significant responses to light treatment in seedlings grown at low soil moisture treatment, but the high light significantly decreased the C i/C a in those seedlings. IWUE was significantly higher in the elevated compared with the ambient [CO2], and the effect was greater at high than the low light treatment. LCP did not respond to the soil moisture treatments when seedlings were grown in high light under both [CO2]. The low soil moisture significantly reduced Ψx but had no significant effect on the responses of other physiological traits to light or [CO2]. These results suggest that as the atmospheric [CO2] rises, the physiological performance of mountain maple seedlings in high light environments may be enhanced, particularly when soil moisture conditions are favourable.

  9. Effects of elevated [CO2] and low soil moisture on the physiological responses of Mountain Maple (Acer spicatum L.) seedlings to light.

    Science.gov (United States)

    Danyagri, Gabriel; Dang, Qing-Lai

    2013-01-01

    Global climate change is expected to affect how plants respond to their physical and biological environments. In this study, we examined the effects of elevated CO2 ([CO2]) and low soil moisture on the physiological responses of mountain maple (Acer spicatum L.) seedlings to light availability. The seedlings were grown at ambient (392 µmol mol(-1)) and elevated (784 µmol mol(-1)) [CO2], low and high soil moisture (M) regimes, at high light (100%) and low light (30%) in the greenhouse for one growing season. We measured net photosynthesis (A), stomatal conductance (g s), instantaneous water use efficiency (IWUE), maximum rate of carboxylation (V cmax), rate of photosynthetic electron transport (J), triose phosphate utilization (TPU)), leaf respiration (R d), light compensation point (LCP) and mid-day shoot water potential (Ψx). A and g s did not show significant responses to light treatment in seedlings grown at low soil moisture treatment, but the high light significantly decreased the C i/C a in those seedlings. IWUE was significantly higher in the elevated compared with the ambient [CO2], and the effect was greater at high than the low light treatment. LCP did not respond to the soil moisture treatments when seedlings were grown in high light under both [CO2]. The low soil moisture significantly reduced Ψx but had no significant effect on the responses of other physiological traits to light or [CO2]. These results suggest that as the atmospheric [CO2] rises, the physiological performance of mountain maple seedlings in high light environments may be enhanced, particularly when soil moisture conditions are favourable.

  10. Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil.

    Science.gov (United States)

    Hawthorne, Iain; Johnson, Mark S; Jassal, Rachhpal S; Black, T Andrew; Grant, Nicholas J; Smukler, Sean M

    2017-05-01

    Nitrogen (N) fertilization of forests for increasing carbon sequestration and wood volume is expected to influence soil greenhouse gas (GHG) emissions, especially to increase N 2 O emissions. As biochar application is known to affect soil GHG emissions, we investigated the effect of biochar application, with and without N fertilization, to a forest soil on GHG emissions in a controlled laboratory study. We found that biochar application at high (10%) application rates increased CO 2 and N 2 O emissions when applied without urea-N fertilizer. At both low (1%) and high biochar (10%) application rates CH 4 consumption was reduced when applied without urea-N fertilizer. Biochar application with urea-N fertilization did not increase CO 2 emissions compared to biochar amended soil without fertilizer. In terms of CO 2 -eq, the net change in GHG emissions was mainly controlled by CO 2 emissions, regardless of treatment, with CH 4 and N 2 O together accounting for less than 1.5% of the total emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza

    DEFF Research Database (Denmark)

    Rønn, R.; Gavito, M.; Larsen, J.

    2002-01-01

    with or without the presence of the arbuscular mycorrhizal (AM) fungus Glomus caledonium. It was hypothesised that (1) the populations of free-living soil protozoa would increase as a response to elevated CO2, (2) the effect of elevated CO2 on protozoa would be moderated by the presence of mycorrhiza and (3......) the presence of arbuscular mycorrhiza would affect soil protozoan numbers regardless of atmospheric CO2. After 3 weeks growth there was no difference in bacterial numbers (direct counts) in soil, but the number of free-living bacterial-feeding protozoa was significantly higher under elevated CO2...... elevated CO2 suggest increased bacterial production, whereas the lower populations in response to presence of mycorrhiza suggest a depressing effect on bacterial production by AM colonisation. (C) 2002 Elsevier Science Ltd. All rights reserved....

  12. Degradation of kresoxim-methyl in soil: impact of varying moisture, organic matter, soil sterilization, soil type, light and atmospheric CO2 level.

    Science.gov (United States)

    Khandelwal, Ashish; Gupta, Suman; Gajbhiye, Vijay T; Varghese, Eldho

    2014-09-01

    In the present investigation, persistence of kresoxim-methyl (a broad spectrum strobilurin fungicide) was studied in two different soil types of India namely Inceptisol and Ultisol. Results revealed that kresoxim-methyl readily form acid metabolite in soil. Therefore, residues of kresoxim-methyl were quantified on the basis of parent molecule alone and sum total of kresoxim-methyl and its acid metabolite. Among the two soil types, kresoxim-methyl and total residues dissipated at a faster rate in Inceptisol (T1/2 0.9 and 33.8d) than in Ultisol (T1/2 1.5 and 43.6d). Faster dissipation of kresoxim-methyl and total residues was observed in submerged soil conditions (T1/2 0.5 and 5.2d) followed by field capacity (T1/2 0.9 and 33.8d) and air dry (T1/2 2.3 and 51.0d) conditions. Residues also dissipated faster in 5% sludge amended soil (T1/2 0.7 and 21.1d) and on Xenon-light exposure (T1/2 0.5 and 8.0d). Total residues of kresoxim-methyl dissipated at a faster rate under elevated CO2 condition (∼550μLL(-)(1)) than ambient condition (∼385μLL(-)(1)). The study suggests that kresoxim-methyl alone has low persistence in soil. Because of the slow dissipation of acid metabolite, the total residues (kresoxim-methyl+acid metabolite) persist for a longer period in soil. Statistical analysis using SAS 9.3 software and Duncan's Multiple Range Test (DMRT) revealed the significant effect of moisture regime, organic matter, microbial population, soil type, light exposure and atmospheric CO2 level on the dissipation of kresoxim-methyl from soil (at 95% confidence level p<0.0001). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Soil surface CO2 fluxes in a Norway spruce stand

    Czech Academy of Sciences Publication Activity Database

    Acosta, Manuel; Janouš, Dalibor; Marek, Michal V.

    2004-01-01

    Roč. 12, č. 50 (2004), s. 573-578 ISSN 1212-4834 R&D Projects: GA AV ČR(CZ) KJB3087301 Institutional research plan: CEZ:AV0Z6087904 Keywords : Norway spruce * Soil CO2 efflux * Q10 Subject RIV: EH - Ecology, Behaviour

  14. Measurements of flux and isotopic composition of soil carbon dioxide

    International Nuclear Information System (INIS)

    Gorczyca, Z.; Rozanski, K.; Kuc, T.

    2002-01-01

    The flux and isotope composition of soil CO 2 has been regularly measured at three sites located in the southern Poland, during the time period: January 1998 - October 2000. They represent typical ecosystems appearing in central Europe: (i) mixed forest; (ii) cultivated agricultural field; (iii) grassland. To monitor the flux and isotopic composition of soil CO 2 , a method based on the inverted cup principle was adopted. The flux of soil CO 2 reveals distinct seasonal fluctuations, with maximum values up to ca. 25 mmol/m 2 /h during sommer months and around ten times lower values during winter time. Also significant differences among the monitored sites were detected, the flux density of this gas being highest for the mixed forest site and ca. two times lower for the cultivated grassland. Carbon-13 content of the soil CO 2 reveals little seasonal variability, with δ 13 C values essentially reflecting the isotopic composition of the soil organic matter and the vegetation type. The carbon-14 content of soil CO 2 flux also reveals slight seasonality, with lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values were recorded at depth. (author)

  15. The soil microbiome at the Gi-FACE experiment responds to a moisture gradient but not to CO2 enrichment.

    Science.gov (United States)

    de Menezes, Alexandre B; Müller, Christoph; Clipson, Nicholas; Doyle, Evelyn

    2016-09-01

    The soil bacterial community at the Giessen free-air CO2 enrichment (Gi-FACE) experiment was analysed by tag sequencing of the 16S rRNA gene. No substantial effects of CO2 levels on bacterial community composition were detected. However, the soil moisture gradient at Gi-FACE had a significant effect on bacterial community composition. Different groups within the Acidobacteria and Verrucomicrobia phyla were affected differently by soil moisture content. These results suggest that modest increases in atmospheric CO2 may cause only minor changes in soil bacterial community composition and indicate that the functional responses of the soil community to CO2 enrichment previously reported at Gi-FACE are due to factors other than changes in bacterial community composition. The effects of the moisture gradient revealed new information about the relationships between poorly known Acidobacteria and Verrucomicrobia and soil moisture content. This study contrasts with the relatively small number of other temperate grassland free-air CO2 enrichment microbiome studies in the use of moderate CO2 enrichment and the resulting minor changes in the soil microbiome. Thus, it will facilitate the development of further climate change mitigation studies. In addition, the moisture gradient found at Gi-FACE contributes new knowledge in soil microbial ecology, particularly regarding the abundance and moisture relationships of the soil Verrucomicrobia.

  16. Monitoring of fumarole discharge and CO2 soil degassing in the Azores: contribution to volcanic surveillance and public health risk assessment

    Directory of Open Access Journals (Sweden)

    C. Faria

    2005-06-01

    Full Text Available Fluid geochemistry monitoring in the Azores involves the regular sampling and analysis of gas discharges from fumaroles and measurements of CO2 diffuse soil gas emissions. Main degassing areas under monitoring are associated with hydrothermal systems of active central volcanoes in S. Miguel, Terceira and Graciosa islands. Fumarole discharge analysis since 1991 show that apart from steam these gas emissions are CO2 dominated with H2S, H2, CH4 and N2 in minor amounts. Mapping of CO2 diffuse soil emissions in S. Miguel Island lead to the conclusion that some inhabited areas are located within hazard-zones. At Furnas village, inside Furnas volcano caldera, about 62% of the 896 houses are within the CO2 anomaly, 5% being in areas of moderate to high risk. At Ribeira Seca, on the north flank of Fogo volcano, few family houses were evacuated when CO2 concentrations in the air reached 8 mol%. To assess and analyse the CO2 soil flux emissions, continuous monitoring stations were installed in S. Miguel (2, Terceira and Graciosa islands. The statistical analysis of the data showed that some meteorological parameters influence the CO2 flux. The average of CO2 flux in S. Miguel stations ranges from 250 g/m2/d at Furnas volcano to 530 g/m2/d at Fogo volcano. At Terceira Island it is about 330 g/m2/d and at Graciosa 4400 g/m2/d.

  17. Genotype and plant trait effects on soil CO2 efflux responses to altered precipitation in switchgrass

    Science.gov (United States)

    Background/Question/Methods Global climate change models predict increasing drought during the growing season, which will alter many ecosystem processes including soil CO2 efflux (JCO2), with potential consequences for carbon retention in soils. Soil moisture, soil temperature and plant traits such...

  18. Response of detritus food web and litter quality to elevated CO2 and crop cultivars and their feedback to soil functionality

    Science.gov (United States)

    Hu, Zhengkun; Chen, Xiaoyun; Zhu, Chunwu; Bonkowski, Michael; Hu, Shuijin; Li, Huixin; Hu, Feng; Liu, Manqiang

    2017-04-01

    Elevated atmospheric CO2 concentrations (eCO2) often increase plant growth and alter the belowground detritus soil food web. Interactions with agriculture management may further modify soil process and the associated ecosystem functionality. Little attention, however, has been directed toward assessing the responses of soil food web and their feedback to soil functionality, particularly in wetland agroecosystems. We report results from a long-term free air CO2 enrichment (FACE) experiment in a rice paddy field that examined the responses of detritus food webs to eCO2 (200 ppm higher than ambient CO2 (aCO2)) of two rice cultivars with distinctly weak and strong responses to eCO2. Soil detritus food web components, including soil microbes and microfauna, soil environment as well as resources availability variables, were determined at the rice ripening stage. To obtain the information of soil functionality, indicated by litter decomposition and enzyme activities, we adopted a reciprocal transplant approach that fully manipulate the factors of litter straw and food web components for the incubation of 120 days. Results about the field investigation showed that eCO2 lead to a higher C/N ratio of litter and soil compared to aCO2, especially for the strong responsive cultivar. eCO2-induced enhanced carbon input stimulated the fungal decomposition pathway by increasing fungal biomass, fungi: bacteria ratio and fungivorous nematode. Results from the manipulative incubation experiment showed eCO2-induced lower quality of straw decreased cumulative C mineralization, but changes in detritus food web induced by eCO2 and strongly responsive cultivar lead to an increased CO2 respiration coincidently within each straw type, mainly due to the adaption to the high C/N ratio environment which increased their functional breadth. Based on SEMs and curves of carbon mineralization rate, soil communities showed significant effects on C release at the early stage through mediating enzyme

  19. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations.

    Science.gov (United States)

    Schindlbacher, Andreas; Schnecker, Jörg; Takriti, Mounir; Borken, Werner; Wanek, Wolfgang

    2015-11-01

    Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0-10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long-term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m(-2)  s(-1) , control: 2.34 ± 0.29 μmol m(-2)  s(-1) ; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass-specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long-term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C-rich calcareous temperate forest soils. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  20. Total soil C and N sequestration in a grassland following 10 years of free air CO2 enrichment

    NARCIS (Netherlands)

    Kessel, van C.; Boots, B.; Graaff, de M.A.; Harris, D.; Blum, H.; Six, J.

    2006-01-01

    Soil C sequestration may mitigate rising levels of atmospheric CO2. However, it has yet to be determined whether net soil C sequestration occurs in N-rich grasslands exposed to long-term elevated CO2. This study examined whether N-fertilized grasslands exposed to elevated CO2 sequestered additional

  1. Functional response of a near-surface soil microbial community to a simulated underground CO2 storage leak.

    Science.gov (United States)

    Morales, Sergio E; Holben, William E

    2013-01-01

    Understanding the impacts of leaks from geologic carbon sequestration, also known as carbon capture and storage, is key to developing effective strategies for carbon dioxide (CO2) emissions management and mitigation of potential negative effects. Here, we provide the first report on the potential effects of leaks from carbon capture and storage sites on microbial functional groups in surface and near-surface soils. Using a simulated subsurface CO2 storage leak scenario, we demonstrate how CO2 flow upward through the soil column altered both the abundance (DNA) and activity (mRNA) of microbial functional groups mediating carbon and nitrogen transformations. These microbial responses were found to be seasonally dependent and correlated to shifts in atmospheric conditions. While both DNA and mRNA levels were affected by elevated CO2, they did not react equally, suggesting two separate mechanisms for soil microbial community response to high CO2 levels. The results did not always agree with previous studies on elevated atmospheric (rather than subsurface) CO2 using FACE (Free-Air CO2 Enrichment) systems, suggesting that microbial community response to CO2 seepage from the subsurface might differ from its response to atmospheric CO2 increases.

  2. Short-term effects of CO2 leakage on the soil bacterial community in a simulated gas leakage scenario

    Directory of Open Access Journals (Sweden)

    Jing Ma

    2017-11-01

    Full Text Available The technology of carbon dioxide (CO2 capture and storage (CCS has provided a new option for mitigating global anthropogenic emissions with unique advantages. However, the potential risk of gas leakage from CO2 sequestration and utilization processes has attracted considerable attention. Moreover, leakage might threaten soil ecosystems and thus cannot be ignored. In this study, a simulation experiment of leakage from CO2 geological storage was designed to investigate the short-term effects of different CO2 leakage concentration (from 400 g m−2 day−1 to 2,000 g m−2 day−1 on soil bacterial communities. A shunt device and adjustable flow meter were used to control the amount of CO2 injected into the soil. Comparisons were made between soil physicochemical properties, soil enzyme activities, and microbial community diversity before and after injecting different CO2 concentrations. Increasing CO2 concentration decreased the soil pH, and the largest variation ranged from 8.15 to 7.29 (p < 0.05. Nitrate nitrogen content varied from 1.01 to 4.03 mg/Kg, while Olsen-phosphorus and total phosphorus demonstrated less regular downtrends. The fluorescein diacetate (FDA hydrolytic enzyme activity was inhibited by the increasing CO2 flux, with the average content varying from 22.69 to 11.25 mg/(Kg h (p < 0.05. However, the increasing activity amplitude of the polyphenol oxidase enzyme approached 230%, while the urease activity presented a similar rising trend. Alpha diversity results showed that the Shannon index decreased from 7.66 ± 0.13 to 5.23 ± 0.35 as the soil CO2 concentration increased. The dominant phylum in the soil samples was Proteobacteria, whose proportion rose rapidly from 28.85% to 67.93%. In addition, the proportion of Acidobacteria decreased from 19.64% to 9.29% (p < 0.01. Moreover, the abundances of genera Methylophilus, Methylobacillus, and Methylovorus increased, while GP4, GP6 and GP7 decreased. Canonical correlation analysis

  3. Soil CO2 emission of sugarcane fields as affected by topography Emissão de CO2 do solo sob cultivo de cana-de-açúcar em função da topografia

    Directory of Open Access Journals (Sweden)

    Liziane de Figueiredo Brito

    2009-02-01

    Full Text Available The spatial and temporal variation of soil CO2 emission is influenced by several soil attributes related to CO2 production and its diffusion in the soil. However, few studies aiming to understand the effect of topography on the variability of CO2 emissions exist, especially for cropping areas of tropical regions. The objective of this study was to evaluate the spatial and temporal changes of soil CO2 emission and its relation to soil attributes in an area currently cropped with sugarcane under different relief forms and slope positions. Mean CO2 emissions in the studied period (seven months varied between 0.23 and 0.71, 0.27 and 0.90, and 0.31 and 0.80 g m-2 h-1 of CO2 for concave (Conc, backslope (BackS and footslope (FootS positions, respectively. The temporal variability of CO2 emissions in each area was explained by an exponential relation between the CO2 emission and soil temperature and a linear relation between CO2 emission and soil water content. The Q10 values were 1.98 (± 0.34, 1.81 (± 0.49 and 1.71 (± 0.31 for Conc, BackS and FootS, respectively. Bulk density, macroporosity, penetration resistance, aggregation and oxidizable organic carbon content explain the changes in soil CO2 emission observed, especially when the Conc position was compared to BackS. The effect of relief form and topographic position on soil CO2 emission variation was dependent on the time of measurement.A variação temporal e espacial da emissão de CO2 solo-atmosfera é influenciada por inúmeros atributos do solo relacionados à produção de CO2 e à difusão do gás no solo. Ainda são escassos, entretanto, estudos visando compreender o efeito da topografia na variação da emissão deste gás, especialmente em áreas agrícolas da região tropical. O objetivo deste trabalho foi estudar a variação temporal e espacial da emissão de CO2 solo-atmosfera e sua relação com atributos do solo em área de cultivo de cana-de-açúcar sob diferentes formas de

  4. Water Redistribution, Temperature Change and CO2 Diffusion of Reconstruction Soil Profiles Filled with Gangue in Coal Mining Areas

    Science.gov (United States)

    Wang, S.; Zhan, H.; Chen, X.; Hu, Y.

    2017-12-01

    There were a great many projects of reconstruction soil profile filled with gangue to restore ecological environment and land resources in coal mining areas. A simulation experimental system in laboratory was designed for studying water transport and gas-heat diffusion of the reconstruction soil as to help the process of engineering and soil-ripening technology application. The system could be used for constantly measuring soil content, temperature and soil CO2 concentration by laid sensors and detectors in different depth of soil column. The results showed that soil water infiltration process was slowed down and the water-holding capacity of the upper soil was increased because of good water resistance from coal gangue layer. However, the water content of coal gangue layer, 10% approximately, was significantly lower than that of topsoil for the poor water-holding capacity of gangue. The temperature of coal gangue layer was also greater than that of soil layer and became easily sustainable temperature gradient under the condition with heating in reconstruction soil due to the higher thermal diffusivity from gangue, especially being plenty of temperature difference between gangue and soil layers. The effects of heated from below on topsoil was small, which it was mainly influenced from indoor temperature in the short run. In addition, the temperature changing curve of topsoil is similar with the temperature of laboratory and its biggest fluctuation range was for 2.89°. The effects of aerating CO2 from column bottom on CO2 concentration of topsoil soil was also very small, because gas transport from coal gangue layers to soil ones would easily be cut off as so to gas accumulated below the soil layer. The coal gangue could have a negative impact on microbial living environment to adjacent topsoil layers and declined microorganism activities. The effects of coal gangue on topsoil layer were brought down when the cove soil thickness was at 60 cm. And the influences

  5. Xylem anatomical responses of Vaccinium myrtillus exposed to air CO2 enrichment and soil warming at treeline

    Science.gov (United States)

    Anadon-Rosell, Alba; Fonti, Patrick; Dawes, Melissa; von Arx, Georg

    2016-04-01

    Plant life at treeline is limited by harsh growth conditions. In this study we used nine years of free air CO2 enrichment (+200 ppm from 2001 to 2009) and six years of soil warming (+4 °C from 2007 to 2012) at a treeline experimental site in the Swiss Alps to investigate xylem anatomical responses of Vaccinium myrtillus, a co-dominant dwarf shrub in many treeline communities. Our aim was to identify whether the release from limiting growth conditions induced adjustments of the water conductive and storage tissues. High-resolution images of wood anatomical microsections from the stem base of 40 individuals were captured with a digital camera mounted on a microscope. We used the specialized image analysis tool ROXAS to quantify size, density, grouping patterns, and potential hydraulic conductivity of vessels. In addition, we measured the abundance and distribution of ray parenchyma. Our preliminary results show that CO2 enrichment and soil warming induced contrasting anatomical responses. In the last years of the CO2 enhancement vessels were larger, whereas soil warming induced an immediate reduction of vessel size. Moreover, larger vessels were found when V. myrtillus was in cohabitation with pine as opposed to larch. Results for ray parenchyma measurements did not show clear trends, although warming seemed to have a slightly positive effect on the fraction of uniseriate vs. multiseriate rays. These results suggest that release from the growth limiting factors can result in contrasting and partially lagged responses in the hydraulic system with little impact on the storage tissues. In addition, the overstory species seem to play a key role on the anatomy of V. myrtillus at treeline.

  6. Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem.

    Science.gov (United States)

    C.K. Keller; T.M. White; R. O' Brien; J.L. Smith

    2006-01-01

    Soil CO2 production is a key process in ecosystem C exchange, and global change predictions require understanding of how ecosystem disturbance affects this process. We monitored CO2 levels in soil gas and as bicarbonate in drainage from an experimental red pine ecosystem, for 1 year before and 3 years after its aboveground...

  7. Influence of repeated canopy scorching on soil CO2 efflux

    Science.gov (United States)

    DP Aubrey; B Martazavi; Joseph O' Brien; JD McGee; JJ Hendricks; KA Kuehn; RJ Mitchell

    2012-01-01

    Forest ecosystems experience various disturbances that can affect belowground carbon cycling to different degrees. Here, we investigate if successive annual foliar scorching events will result in a large and rapid decline in soil CO2 efflux, similar to that observed in girdling studies. Using the fire-adapted longleaf pine (Pinus...

  8. Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem.

    Science.gov (United States)

    He, Zhili; Xiong, Jinbo; Kent, Angela D; Deng, Ye; Xue, Kai; Wang, Gejiao; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2014-03-01

    The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems.

  9. Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: Changes in microbial community compositions

    Science.gov (United States)

    Wang, Ning; Yu, Jian-Guang; Zhao, Ya-Hui; Chang, Zhi-Zhou; Shi, Xiao-Xia; Ma, Lena Q.; Li, Hong-Bo

    2018-02-01

    To explore microbial mechanisms of straw-induced changes in CO2, CH4, and N2O emissions from paddy field, wheat straw was amended to two paddy soils from Taizhou (TZ) and Yixing (YX), China for 60 d under flooded condition. Illumia sequencing was used to characterize shift in bacterial community compositions. Compared to control, 1-5% straw amendment significantly elevated CO2 and CH4 emissions with higher increase at higher application rates, mainly due to increased soil DOC concentrations. In contrast, straw amendment decreased N2O emission. Considering CO2, CH4, and N2O emissions as a whole, an overall increase in global warming potential was observed with straw amendment. Total CO2 and CH4 emissions from straw-amended soils were significantly higher for YX than TZ soil, suggesting that straw-induced greenhouse gas emissions depended on soil characteristics. The abundance of C-turnover bacteria Firmicutes increased from 28-41% to 54-77% with straw amendment, thereby increasing CO2 and CH4 emissions. However, straw amendment reduced the abundance of denitrifying bacteria Proteobacteria from 18% to 7.2-13% or increased the abundance of N2O reducing bacteria Clostridium from 7.6-11% to 13-30%, thereby decreasing N2O emission. The results suggested straw amendment strongly influenced greenhouse gas emissions via alerting soil properties and bacterial community compositions. Future field application is needed to ascertain the effects of straw return on greenhouse gas emissions.

  10. Measurements of soil, surface water, and groundwater CO2 concentration variability within Earth's critical zone: low-cost, long-term, high-temporal resolution monitoring

    Science.gov (United States)

    Blackstock, J. M.; Covington, M. D.; Williams, S. G. W.; Myre, J. M.; Rodriguez, J.

    2017-12-01

    Variability in CO2 fluxes within Earth's Critical zone occurs over a wide range of timescales. Resolving this and its drivers requires high-temporal resolution monitoring of CO2 both in the soil and aquatic environments. High-cost (> 1,000 USD) gas analyzers and data loggers present cost-barriers for investigations with limited budgets, particularly if high spatial resolution is desired. To overcome high-costs, we developed an Arduino based CO2 measuring platform (i.e. gas analyzer and data logger). The platform was deployed at multiple sites within the Critical Zone overlying the Springfield Plateau aquifer in Northwest Arkansas, USA. The CO2 gas analyzer used in this study was a relatively low-cost SenseAir K30. The analyzer's optical housing was covered by a PTFE semi-permeable membrane allowing for gas exchange between the analyzer and environment. Total approximate cost of the monitoring platform was 200 USD (2% detection limit) to 300 USD (10% detection limit) depending on the K30 model used. For testing purposes, we deployed the Arduino based platform alongside a commercial monitoring platform. CO2 concentration time series were nearly identical. Notably, CO2 cycles at the surface water site, which operated from January to April 2017, displayed a systematic increase in daily CO2 amplitude. Preliminary interpretation suggests key observation of seasonally increasing stream metabolic function. Other interpretations of observed cyclical and event-based behavior are out of the scope of the study; however, the presented method describes an accurate near-hourly characterization of CO2 variability. The new platform has been shown to be operational for several months, and we infer reliable operation for much longer deployments (> 1 year) given adequate environmental protection and power supply. Considering cost-savings, this platform is an attractive option for continuous, accurate, low-power, and low-cost CO2 monitoring for remote locations, globally.

  11. An approach to mitigating soil CO2 emission by biochemically inhibiting cellulolytic microbial populations through mediation via the medicinal herb Isatis indigotica

    Science.gov (United States)

    Wu, Hong-Sheng; Chen, Su-Yun; Li, Ji; Liu, Dong-Yang; Zhou, Ji; Xu, Ya; Shang, Xiao-Xia; Wei, Dong-yang; Yu, Lu-ji; Fang, Xiao-hang; Li, Shun-yi; Wang, Ke-ke

    2017-06-01

    Greenhouse gases (GHGs, particularly carbon dioxide (CO2)) emissions from soil under wheat production are a significant source of agricultural carbon emissions that have not been mitigated effectively. A field experiment and a static incubation study in a lab were conducted to stimulate wheat growth and investigate its potential to reduce CO2 emissions from soil through intercropping with a traditional Chinese medicinal herb called Isatis indigotica. This work was conducted by adding I. indigotica root exudates based on the quantitative real-time PCR (qPCR) analysis of the DNA copy number of the rhizosphere or bulk soil microbial populations. This addition was performed in relation to the CO2 formation by cellulolytic microorganisms (Penicillium oxalicum, fungi and Ruminococcus albus) to elucidate the microbial ecological basis for the molecular mechanism that decreases CO2 emissions from wheat fields using I. indigotica. The results showed that the panicle weight and full grains per panicle measured through intercropping with I. indigotica (NPKWR) increased by 39% and 28.6%, respectively, compared to that of the CK (NPKW). Intercropping with I. indigotica significantly decreased the CO2 emissions from soil under wheat cultivation. Compared with CK, the total CO2 emission flux during the wheat growth period in the I. indigotica (NPKWR) intercropping treatment decreased by 29.26%. The intensity of CO2 emissions per kg of harvested wheat grain declined from 7.53 kg CO2/kg grain in the NPKW (CK) treatment to 5.55 kg CO2/kg grain in the NPKWR treatment. The qPCR analysis showed that the DNA copy number of the microbial populations of cellulolytic microorganisms (P. oxalicum, fungi and R. albus) in the field rhizosphere around I. indigotica or in the bulk soil under laboratory incubation was significantly lower than that of CK. This finding indicated that root exudates from I. indigotica inhibited the activity and number of cellulolytic microbial populations, which led

  12. Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2015-01-01

    Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because ...

  13. Simulating trends in crop yield and soil carbon in a long-term experiment - effects of rising CO2, N deposition and improved cultivation

    DEFF Research Database (Denmark)

    Berntsen, Jørgen; Petersen, Bjørn Molt; Olesen, Jørgen E.

    2006-01-01

    Measurements of crop yield and soil carbon in the Bad Lauchstädt long-term fertiliser experiment were analysed with the FASSET model. The model satisfactorily predicted yield and soil carbon development in four treatments: no fertiliser, mineral fertiliser, farmyard manure and farmyard manure plus...... was the use of new crop varieties and/or pesticides, while the increase in atmospheris CO2 and changes in local N deposition were of lesser importance. The rise in CO2 thus only explained 9-37% of the yield increase. The observed and simulated developments in soil carbon were quite different in the four...

  14. Decontamination of Metal Ions in Soil by Supercritical CO2 Extraction with Crown Ether

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihe; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of)

    2015-05-15

    Previous decontamination methods have shortcomings in that they produce additional waste due to the usage of solutions with chemical toxicity. Hence, demand is strong for new decontamination methods that can guarantee effective decontamination while decreasing the chemical solution. In particular, methods using supercritical CO2 as a means of decontamination are currently in progress. This study examines the method of decontaminating metallic ions inside soil using supercritical CO2. This paper examined the effects of extracting metallic ions inside soil using supercritical CO2 and crown ether as the ligand. It was confirmed that extraction effectiveness increases following greater usage of ligand and co-ligand, with a drastic increase in extraction effectiveness when using extracts over a certain dose. Moreover, it was shown that if the usage of ligand and additive decreases, the extraction ratio also decreases.

  15. Decontamination of Metal Ions in Soil by Supercritical CO2 Extraction with Crown Ether

    International Nuclear Information System (INIS)

    Park, Jihe; Park, Kwangheon

    2015-01-01

    Previous decontamination methods have shortcomings in that they produce additional waste due to the usage of solutions with chemical toxicity. Hence, demand is strong for new decontamination methods that can guarantee effective decontamination while decreasing the chemical solution. In particular, methods using supercritical CO2 as a means of decontamination are currently in progress. This study examines the method of decontaminating metallic ions inside soil using supercritical CO2. This paper examined the effects of extracting metallic ions inside soil using supercritical CO2 and crown ether as the ligand. It was confirmed that extraction effectiveness increases following greater usage of ligand and co-ligand, with a drastic increase in extraction effectiveness when using extracts over a certain dose. Moreover, it was shown that if the usage of ligand and additive decreases, the extraction ratio also decreases

  16. Measurement of Total Free Iron in Soils by H2S Chemisorption and Comparison with the Citrate Bicarbonate Dithionite Method

    Directory of Open Access Journals (Sweden)

    Shui-Sheng Fan

    2016-01-01

    Full Text Available Free iron is one of the major analytical items for soil basic properties. It is also an important indicator for understanding the genesis of soil, soil classification, and soil distribution behavior. In this study, an alternative analytical method (chemisorption based on thermodynamic knowledge was proposed for measurement of total free iron oxides in soils. Several representative soil samples belonging to alfisols, ultisols, inceptisols, and entisols were collected from Taiwan and tested by the chemisorption, and the estimated total free iron oxides were compared with those measured from the traditional citrate bicarbonate dithionite (CBD method. Experimental results showed that the optimal operating temperature was found to be at 773 K and the carbon monoxide (CO is the best gaseous reagent to promote the formation of FeS. The estimated total free iron oxides for soil samples determined from the chemisorption in the presence of CO were very close to those from the CBD technique. The result of regression indicates that the estimated total free iron is strongly correlated with the CBD-Fe content (R2=0.999 in the presence of CO.

  17. Elevated atmospheric CO2 affected photosynthetic products in wheat seedlings and biological activity in rhizosphere soil under cadmium stress.

    Science.gov (United States)

    Jia, Xia; Liu, Tuo; Zhao, Yonghua; He, Yunhua; Yang, Mingyan

    2016-01-01

    The objective of this study was to investigate the effects of elevated CO2 (700 ± 23 μmol mol(-1)) on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated CO2 was associated with decreased quantities of reducing sugars, starch, and soluble amino acids, and with increased quantities of soluble sugars, total sugars, and soluble proteins in wheat seedlings under Cd stress. The contents of total soluble sugars, total free amino acids, total soluble phenolic acids, and total organic acids in the rhizosphere soil under Cd stress were improved by elevated CO2. Compared to Cd stress alone, the activity of amylase, phenol oxidase, urease, L-asparaginase, β-glucosidase, neutral phosphatase, and fluorescein diacetate increased under elevated CO2 in combination with Cd stress; only cellulase activity decreased. Bacterial abundance in rhizosphere soil was stimulated by elevated CO2 at low Cd concentrations (1.31-5.31 mg Cd kg(-1) dry soil). Actinomycetes, total microbial abundance, and fungi decreased under the combined conditions at 5.31-10.31 mg Cd kg(-1) dry soil. In conclusion, increased production of soluble sugars, total sugars, and proteins in wheat seedlings under elevated CO2 + Cd stress led to greater quantities of organic compounds in the rhizosphere soil relative to seedlings grown under Cd stress only. Elevated CO2 concentrations could moderate the effects of heavy metal pollution on enzyme activity and microorganism abundance in rhizosphere soils, thus improving soil fertility and the microecological rhizosphere environment of wheat under Cd stress.

  18. Geochemical Study of Natural CO{sub 2} Emissions in the French Massif Central: How to Predict Origin, Processes and Evolution of CO{sub 2} Leakage; Etude geochimique des emissions naturelles de CO{sub 2} du Massif Central: origine et processus de migration du gaz

    Energy Technology Data Exchange (ETDEWEB)

    Battani, A.; Deville, E.; Faure, J.L.; Jeandel, E.; Noirez, S.; Tocque, E.; Benoit, Y.; Schmitz, J.; Parlouar, D. [Institut francais du petrole, IFP, 92 - Rueil-Malmaison (France); Sarda, P. [Paris-11 Univ., 91 - Orsay (France); Gal, F.; Le Pierres, K.; Brach, M.; Braibant, G.; Beny, C. [Bureau de Recherches Geologiques et Minieres (BRGM), 45 - Orleans (France); Pokryszka, Z.; Charmoille, A.; Bentivegna, G. [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, 60 - Verneuil-en-Halatte (France); Pironon, J.; De Donato, P.; Garnier, C.; Cailteau, C.; Barres, O.; Radilla, G.; Bauer, A. [Institut National Polytechnique de Lorraine (INPL), 54 - Vandoeuvre-les-Nancy (France)

    2010-07-15

    This study presents an overview of some results obtained within the French ANR (National Agency of Research) supported Geocarbone-Monitoring research program. The measurements were performed in Sainte-Marguerite, located in the French Massif Central. This site represents a natural laboratory for CO{sub 2}/fluid/rock interactions studies, as well as CO{sub 2} migration mechanisms towards the surface. The CO{sub 2} leaking character of the studied area also allows to test and validate measurements methods and verifications for the future CO{sub 2} geological storage sites. During these surveys, we analyzed soil CO{sub 2} fluxes and concentrations. We sampled and analyzed soil gases, and gas from carbo-gaseous bubbling springs. A one-month continuous monitoring was also tested, to record the concentration of CO{sub 2} both in atmosphere and in the soil at a single point. We also developed a new methodology to collect soil gas samples for noble gas abundances and isotopic analyses, as well as carbon isotopic ratios. Our geochemical results, combined with structural geology, show that the leaking CO{sub 2} has a very deep origin, partially mantle derived. The gas rises rapidly along normal and strike-slip active faults. CO{sub 2} soil concentrations (also showing a mantle derived component) and CO{sub 2} fluxes are spatially variable, and reach high values. The recorded atmospheric CO{sub 2} is not very high, despite the important CO{sub 2} degassing throughout the whole area. (authors)

  19. Use of data mining techniques to classify soil CO2 emission induced by crop management in sugarcane field

    Science.gov (United States)

    de Souza, Zigomar Menezes; Oliveira, Stanley Robson de Medeiros; Tavares, Rose Luiza Moraes; Carvalho, João Luís Nunes

    2018-01-01

    Soil CO2 emissions are regarded as one of the largest flows of the global carbon cycle and small changes in their magnitude can have a large effect on the CO2 concentration in the atmosphere. Thus, a better understanding of this attribute would enable the identification of promoters and the development of strategies to mitigate the risks of climate change. Therefore, our study aimed at using data mining techniques to predict the soil CO2 emission induced by crop management in sugarcane areas in Brazil. To do so, we used different variable selection methods (correlation, chi-square, wrapper) and classification (Decision tree, Bayesian models, neural networks, support vector machine, bagging with logistic regression), and finally we tested the efficiency of different approaches through the Receiver Operating Characteristic (ROC) curve. The original dataset consisted of 19 variables (18 independent variables and one dependent (or response) variable). The association between cover crop and minimum tillage are effective strategies to promote the mitigation of soil CO2 emissions, in which the average CO2 emissions are 63 kg ha-1 day-1. The variables soil moisture, soil temperature (Ts), rainfall, pH, and organic carbon were most frequently selected for soil CO2 emission classification using different methods for attribute selection. According to the results of the ROC curve, the best approaches for soil CO2 emission classification were the following: (I)–the Multilayer Perceptron classifier with attribute selection through the wrapper method, that presented rate of false positive of 13,50%, true positive of 94,20% area under the curve (AUC) of 89,90% (II)–the Bagging classifier with logistic regression with attribute selection through the Chi-square method, that presented rate of false positive of 13,50%, true positive of 94,20% AUC of 89,90%. However, the (I) approach stands out in relation to (II) for its higher positive class accuracy (high CO2 emission) and lower

  20. Use of data mining techniques to classify soil CO2 emission induced by crop management in sugarcane field.

    Science.gov (United States)

    Farhate, Camila Viana Vieira; Souza, Zigomar Menezes de; Oliveira, Stanley Robson de Medeiros; Tavares, Rose Luiza Moraes; Carvalho, João Luís Nunes

    2018-01-01

    Soil CO2 emissions are regarded as one of the largest flows of the global carbon cycle and small changes in their magnitude can have a large effect on the CO2 concentration in the atmosphere. Thus, a better understanding of this attribute would enable the identification of promoters and the development of strategies to mitigate the risks of climate change. Therefore, our study aimed at using data mining techniques to predict the soil CO2 emission induced by crop management in sugarcane areas in Brazil. To do so, we used different variable selection methods (correlation, chi-square, wrapper) and classification (Decision tree, Bayesian models, neural networks, support vector machine, bagging with logistic regression), and finally we tested the efficiency of different approaches through the Receiver Operating Characteristic (ROC) curve. The original dataset consisted of 19 variables (18 independent variables and one dependent (or response) variable). The association between cover crop and minimum tillage are effective strategies to promote the mitigation of soil CO2 emissions, in which the average CO2 emissions are 63 kg ha-1 day-1. The variables soil moisture, soil temperature (Ts), rainfall, pH, and organic carbon were most frequently selected for soil CO2 emission classification using different methods for attribute selection. According to the results of the ROC curve, the best approaches for soil CO2 emission classification were the following: (I)-the Multilayer Perceptron classifier with attribute selection through the wrapper method, that presented rate of false positive of 13,50%, true positive of 94,20% area under the curve (AUC) of 89,90% (II)-the Bagging classifier with logistic regression with attribute selection through the Chi-square method, that presented rate of false positive of 13,50%, true positive of 94,20% AUC of 89,90%. However, the (I) approach stands out in relation to (II) for its higher positive class accuracy (high CO2 emission) and lower

  1. Atmospheric CO2 and O3 alter competition for soil nitrogen in developing forests

    Science.gov (United States)

    Donald R. Zak; Mark E. Kubiske; Kurt S. Pregitzer; Andrew J. Burton

    2012-01-01

    Plant growth responses to rising atmospheric CO2 and O3 vary among genotypes and between species, which could plausibly influence the strength of competitive interactions for soil N. Ascribable to the size-symmetric nature of belowground competition, we reasoned that differential growth responses to CO2...

  2. Fluxes of CH4 and N2O in aspen stands grown under ambient and twice-ambient CO2

    DEFF Research Database (Denmark)

    Ambus, P.; Robertson, G.P.

    1999-01-01

    Elevated atmospheric CO2 has the potential to change below-ground nutrient cycling and thereby alter the soil-atmosphere exchange of biogenic trace gases. We measured fluxes of CH4 and N2O in trembling aspen (Populus tremuloides Michx.) stands grown in open-top chambers under ambient and twice......-ambient CO2 concentrations crossed with `high' and low soil-N conditions. Flux measurements with small static chambers indicated net CH4 oxidation in the open-top chambers. Across dates, CH4 oxidation activity was significantly (P CO2 (8.7 mu g CH4-C m(-2) h(-1)) than...... with elevated CO2 (6.5 mu g CH4-C m(-2) h(-1)) in the low N soil. Likewise, across dates and soil N treatments CH4 was oxidized more rapidly (P CO2 (9.5 mu g CH4-C m(-2) h(-1)) than in chambers with elevated CO2 (8.8 mu g CH4-C m(-2) h(-1)). Methane oxidation in soils incubated...

  3. Soil surface CO2 efflux measurements in Norway spruce forests. Comparison between four different sites across Europe — from boreal to alpine forest

    Czech Academy of Sciences Publication Activity Database

    Acosta, Manuel; Pavelka, Marian; Montagnani, L.; Kutsch, W.; Lindroth, A.; Juszczak, R.; Janouš, Dalibor

    2013-01-01

    Roč. 192, JAN (2013), s. 295-303 ISSN 0016-7061 R&D Projects: GA MŠk OC08021; GA MŽP(CZ) SP/2D1/93/07; GA MŽP(CZ) SP/2D1/70/08; GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : Soil CO2 efflux * Forest * Chamber method * Q10 * Soil temperature * Spatial variability Subject RIV: EH - Ecology, Behaviour Impact factor: 2.509, year: 2013

  4. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2

    International Nuclear Information System (INIS)

    Schlesinger, W.H.; Lichter, J.

    2001-01-01

    The current rise in atmospheric CO 2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO 2 concentrations, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO 2 concentrations (565 μ l 1 ). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely. (author)

  5. Biogenic emissions of CO2 and N2O at multiple depths increase exponentially during a simulated soil thaw for a northern prairie Mollisol

    Science.gov (United States)

    Soil respiration occurs at depths below the surface, but belowground data are lacking to support multilayer models of soil CO2 and N2O emissions. In particular, Q10s for CO2 and N2O within soil profiles are needed to determine if temperature sensitivities calculated at the surface are similar to th...

  6. Soil CO2 venting as one of the mechanisms for tolerance of Zn deficiency by rice in flooded soils.

    Science.gov (United States)

    Affholder, Marie-Cecile; Weiss, Dominik J; Wissuwa, Matthias; Johnson-Beebout, Sarah E; Kirk, Guy J D

    2017-12-01

    We sought to explain rice (Oryza sativa) genotype differences in tolerance of zinc (Zn) deficiency in flooded paddy soils and the counter-intuitive observation, made in earlier field experiments, that Zn uptake per plant increases with increasing planting density. We grew tolerant and intolerant genotypes in a Zn-deficient flooded soil at high and low planting densities and found (a) plant Zn concentrations and growth increased with planting density and more so in the tolerant genotype, whereas the concentrations of other nutrients decreased, indicating a specific effect on Zn uptake; (b) the effects of planting density and genotype on Zn uptake could only be explained if the plants induced changes in the soil to make Zn more soluble; and (c) the genotype and planting density effects were both associated with decreases in dissolved CO 2 in the rhizosphere soil solution and resulting increases in pH. We suggest that the increases in pH caused solubilization of soil Zn by dissolution of alkali-soluble, Zn-complexing organic ligands from soil organic matter. We conclude that differences in venting of soil CO 2 through root aerenchyma were responsible for the genotype and planting density effects. © 2017 John Wiley & Sons Ltd.

  7. [Effect of carbon substrate concentration on N2, N2O, NO, CO2, and CH4 emissions from a paddy soil in anaerobic condition].

    Science.gov (United States)

    Chen, Nuo; Liao, Ting-ting; Wang, Rui; Zheng, Xun-hua; Hu, Rong-gui; Butterbach-Bahl, Klaus

    2014-09-01

    Understanding the effects of carbon and nitrogen substrates concentrations on the emissions of denitrification gases including nitrogen (N2) , nitrous oxide (N2O) and nitric oxide (NO), carbon dioxide (CO2) and methane (CH4) from anaerobic paddy soils is believed to be helpful for development of greenhouse gas mitigation strategies. Moreover, understanding the quantitative dependence of denitrification products compositions on carbon substrate concentration could provide some key parameters or parameterization scheme for developing process-oriented model(s) of nitrogen transformation. Using a silt loam soil collected from a paddy field, we investigated the influence of carbon substrate concentration on the emissions of the denitrification gases, CO2 and CH4 from anaerobically incubated soils by setting two treatments: control (CK) with initial soil nitrate and dissolved organic carbon (DOC) concentrations of ~ 50 mg.kg-1 and -28 mg kg-1 , respectively; and DOC added (C + ) with initial soil nitrate and DOC concentrations of ~50 mg.kg-1 and ~300 mg.kg-1 , respectively. The emissions of denitrification gases, CO2 and CH4, as well as concentrations of carbon and nitrogen substrates for each treatment were dynamically measured, using the gas-flow-soil-core technique and a paralleling substrate monitoring system. The results showed that CH4 emission was not observed in CK treatment while observed in C treatment. Aggregate emission of greenhouse gases for C + treatment was significantly higher comparing with the CK treatment (P emissions in total nitrogen gases emissions were approximately 9% , 35% and 56% for CK treatment, respectively; and approximately 31% , 50% and 19% for C+ treatment, respectively, with significant differences between these two treatments (P carbon substrate concentrations can significantly change the composition of nitrogen gas emissions. The results also implicated that organic fertilizer should not be applied to nitrate-rich paddy soils prior to

  8. Modeling soil CO2 production and transport with dynamic source and diffusion terms: testing the steady-state assumption using DETECT v1.0

    Science.gov (United States)

    Ryan, Edmund M.; Ogle, Kiona; Kropp, Heather; Samuels-Crow, Kimberly E.; Carrillo, Yolima; Pendall, Elise

    2018-05-01

    The flux of CO2 from the soil to the atmosphere (soil respiration, Rsoil) is a major component of the global carbon (C) cycle. Methods to measure and model Rsoil, or partition it into different components, often rely on the assumption that soil CO2 concentrations and fluxes are in steady state, implying that Rsoil is equal to the rate at which CO2 is produced by soil microbial and root respiration. Recent research, however, questions the validity of this assumption. Thus, the aim of this work was two-fold: (1) to describe a non-steady state (NSS) soil CO2 transport and production model, DETECT, and (2) to use this model to evaluate the environmental conditions under which Rsoil and CO2 production are likely in NSS. The backbone of DETECT is a non-homogeneous, partial differential equation (PDE) that describes production and transport of soil CO2, which we solve numerically at fine spatial and temporal resolution (e.g., 0.01 m increments down to 1 m, every 6 h). Production of soil CO2 is simulated for every depth and time increment as the sum of root respiration and microbial decomposition of soil organic matter. Both of these factors can be driven by current and antecedent soil water content and temperature, which can also vary by time and depth. We also analytically solved the ordinary differential equation (ODE) corresponding to the steady-state (SS) solution to the PDE model. We applied the DETECT NSS and SS models to the six-month growing season period representative of a native grassland in Wyoming. Simulation experiments were conducted with both model versions to evaluate factors that could affect departure from SS, such as (1) varying soil texture; (2) shifting the timing or frequency of precipitation; and (3) with and without the environmental antecedent drivers. For a coarse-textured soil, Rsoil from the SS model closely matched that of the NSS model. However, in a fine-textured (clay) soil, growing season Rsoil was ˜ 3 % higher under the assumption of

  9. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China.

    Science.gov (United States)

    Liu, Qiaofei; Chen, Yu; Li, Weiwei; Liu, Yang; Han, Juan; Wen, Xiaoxia; Liao, Yuncheng

    2016-06-22

    A 2-year field experiment was conducted on maize (Zea mays L.) to explore effective ways to decrease soil CO2 emissions and increase grain yield. Treatments established were: (1) no mulching with urea, (2) no mulching with controlled release fertiliser (CRF), (3) transparent plastic-film mulching (PMt) with urea, (4) PMt with CRF, (5) black plastic-film mulching (PMb) with urea, and (6) PMb with CRF. During the early growth stages, soil CO2 emissions were noted as PMt > PMb > no mulching, and this order was reversed in the late growth stages. This trend was the result of topsoil temperature dynamics. There were no significant correlations noted between soil CO2 emissions and soil temperature and moisture. Cumulative soil CO2 emissions were higher for the PMt than for the PMb, and grain yield was higher for the PMb treatments than for the PMt or no mulching treatments. The CRF produced higher grain yield and inhibited soil CO2 emissions. Soil CO2 emissions per unit grain yield were lower for the BC treatment than for the other treatments. In conclusion, the use of black plastic-film mulching and controlled release fertiliser not only increased maize yield, but also reduced soil CO2 emissions.

  10. Gaseous elemental mercury emissions and CO2 respiration rates in terrestrial soils under controlled aerobic and anaerobic laboratory conditions

    International Nuclear Information System (INIS)

    Obrist, Daniel; Fain, Xavier; Berger, Carsen

    2010-01-01

    Mercury (Hg) levels in terrestrial soils are linked to the presence of organic carbon (C). Carbon pools are highly dynamic and subject to mineralization processes, but little is known about the fate of Hg during decomposition. This study evaluated relationships between gaseous Hg emissions from soils and carbon dioxide (CO 2 ) respiration under controlled laboratory conditions to assess potential losses of Hg to the atmosphere during C mineralization. Results showed a linear correlation (r 2 = 0.49) between Hg and CO 2 emissions in 41 soil samples, an effect unlikely to be caused by temperature, radiation, different Hg contents, or soil moisture. Stoichiometric comparisons of Hg/C ratios of emissions and underlying soil substrates suggest that 3% of soil Hg was subject to evasion. Even minute emissions of Hg upon mineralization, however, may be important on a global scale given the large Hg pools sequestered in terrestrial soils and C stocks. We induced changes in CO 2 respiration rates and observed Hg flux responses, including inducement of anaerobic conditions by changing chamber air supply from N 2 /O 2 (80% and 20%, respectively) to pure N 2 . Unexpectedly, Hg emissions almost quadrupled after O 2 deprivation while oxidative mineralization (i.e., CO 2 emissions) was greatly reduced. This Hg flux response to anaerobic conditions was lacking when repeated with sterilized soils, possibly due to involvement of microbial reduction of Hg 2+ by anaerobes or indirect abiotic effects such as alterations in soil redox conditions. This study provides experimental evidence that Hg volatilization, and possibly Hg 2+ reduction, is related to O 2 availability in soils from two Sierra Nevada forests. If this result is confirmed in soils from other areas, the implication is that Hg volatilization from terrestrial soils is partially controlled by soil aeration and that low soil O 2 levels and possibly low soil redox potentials lead to increased Hg volatilization from soils.

  11. Natural variations in snow cover do not affect the annual soil CO2 efflux from a mid-elevation temperate forest.

    Science.gov (United States)

    Schindlbacher, Andreas; Jandl, Robert; Schindlbacher, Sabine

    2014-02-01

    Climate change might alter annual snowfall patterns and modify the duration and magnitude of snow cover in temperate regions with resultant impacts on soil microclimate and soil CO2 efflux (Fsoil ). We used a 5-year time series of Fsoil measurements from a mid-elevation forest to assess the effects of naturally changing snow cover. Snow cover varied considerably in duration (105-154 days) and depth (mean snow depth 19-59 cm). Periodically shallow snow cover (soil freezing or increased variation in soil temperature. This was mostly not reflected in Fsoil which tended to decrease gradually throughout winter. Progressively decreasing C substrate availability (identified by substrate induced respiration) likely over-rid the effects of slowly changing soil temperatures and determined the overall course of Fsoil . Cumulative CO2 efflux from beneath snow cover varied between 0.46 and 0.95 t C ha(-1)  yr(-1) and amounted to between 6 and 12% of the annual efflux. When compared over a fixed interval (the longest period of snow cover during the 5 years), the cumulative CO2 efflux ranged between 0.77 and 1.18 t C ha(-1) or between 11 and 15% of the annual soil CO2 efflux. The relative contribution (15%) was highest during the year with the shortest winter. Variations in snow cover were not reflected in the annual CO2 efflux (7.44-8.41 t C ha(-1) ) which did not differ significantly between years and did not correlate with any snow parameter. Regional climate at our site was characterized by relatively high amounts of precipitation. Therefore, snow did not play a role in terms of water supply during the warm season and primarily affected cold season processes. The role of changing snow cover therefore seems rather marginal when compared to potential climate change effects on Fsoil during the warm season. © 2013 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  12. Methodologically controlled variations in laboratory and field pH measurements in waterlogged soils

    DEFF Research Database (Denmark)

    Elberling, Bo; Matthiesen, Henning

    2007-01-01

    artefacts is critical. But the study includes agricultural and forest soils for comparison. At a waterlogged site, Laboratory results were compared with three different field methods: calomel pH probes inserted in the soil from pits, pH measurements of soil solution extracted from the soil, and pH profiles...... using a solid-state pH electrode pushed into the soil from the surface. Comparisons between in situ and laboratory methods revealed differences of more than 1 pH unit. The content of dissolved ions in soil solution and field observations of O2 and CO2 concentrations were used in the speciation model...... PHREEQE in order to predict gas exchange processes. Changes in pH in soil solution following equilibrium in the laboratory could be explained mainly by CO2 degassing. Only soil pH measured in situ using either calomel or solid-state probes inserted directly into the soil was not affected by gas exchange...

  13. Long term monitoring at Solfatara of Pozzuoli (Campi Flegrei, Italy): 1998-2014, fifteen years of soil CO2 flux measurement.

    Science.gov (United States)

    Cardellini, Carlo; Chiodini, Giovanni; Rosiello, Angelo; Bagnato, Emanuela; Avino, Rosario; Frondini, Francesco; Donnini, Marco; Caliro, Stefano

    2015-04-01

    With a flux of deeply derived fluids of ~5000 t/d and an energetic release of ~100 MW Solfatara of Pozzuoli is one of the largest studied volcanic-hydrothermal system of the world. Since 1998, soil CO2 flux surveys where performed using the accumulation chamber method over a large area (1.45 km2), including the volcanic apparatus and its surroundings. The statistical elaboration of CO2 flux, also coupled with the investigation of the CO2 efflux isotopic composition, allowed to characterize both the CO2 flux connected to by biological activity in the soil and that feed to the degassing of the hydrothermal system. A geostatistical elaboration of CO2 fluxes based on sequential Gaussian simulations, allowed to define the spatial structure of the degassing area, pointing out the presence of a well defined diffuse degassing structure interested by the release of deeply derived CO2 (Solfatara DDS). Solfatara DDS results well correlated to volcanic and tectonic structures interesting the crater area and the eastern area of Pisciarelli. With the same approach the total amount of CO2 release was estimated to range between 754 t/d and 1530 t/d in the last fifteen year (with an error in the estimate varying between 9 and 15 %). Also the extension of the DDS experienced relevant variations varying between 4.5x105 m2 to 12.3 x105 m2. In particular two major changes occurred in the extension of the DDS, the first consisted in its doubling in 2003-2004 and the second in further enlargement of ~ 30% in 2011-2012, the last occurring after period of decreasing trend which interrupted 4-5 years of relative stability. These variations mainly occurred external to the crater area in correspondence of a NE-SW fault system where fluxes increased from background to values typical of the endogenous source. The first event was previously correlated with the occurrence in 2000 of a relatively deep seismic swarm, which was interpreted as the indicator of the opening of an easy-ascent pathway

  14. Carbon dioxide and radon measurements in the soils of Pantelleria island (southern Italy)

    OpenAIRE

    D'Alessandro, W.; Brusca, L.; Cinti, D.; Gagliano, A.L.; Longo, M.; Pecoraino, G.; Pizzino, L.; Voltattorni, N.

    2013-01-01

    Pantelleria is an active volcanic complex, at present in quiescent status, hosting a high enthalpy geothermal system. Explorative geothermal wells tapped exploitable water-dominated reservoirs at 600-800 m depth with maximum measured temperatures of 250°C. Five field campaigns for soil gas measurements were made in the period from July 2005 to October 2006. CO2 flux was measured with the accumulation chamber method at 807 sites, CO2 concentration and Rn activity in soil atmosphere were me...

  15. Forest soil CO2 fluxes as a function of understory removal and N-fixing species addition.

    Science.gov (United States)

    Li, Haifang; Fu, Shenglei; Zhao, Hongting; Xia, Hanping

    2011-01-01

    We report on the effects of forest management practices of understory removal and N-fixing species (Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation (EUp), Acacia crassicarpa plantation (ACp), 10-species-mixed plantation (Tp), and 30-species-mixed plantation (THp) using the static chamber method in southern China. Four forest management treatments, including (1) understory removal (UR); (2) C. alata addition (CA); (3) understory removal and replacement with C. alata (UR+CA); and (4) control without any disturbances (CK), were applied in the above four forest plantations with three replications for each treatment. The results showed that soil CO2 fluxes rates remained at a high level during the rainy season (from April to September), followed by a rapid decrease after October reaching a minimum in February. Soil CO2 fluxes were significantly higher (P plantations under various management practices.

  16. Influence of sustainable irrigation regimes and agricultural practices on the soil CO2 fluxes from olive groves in SE Spain

    Science.gov (United States)

    Marañón-Jiménez, Sara; Serrano-Ortíz, Penelope; Vicente-Vicente, Jose Luis; Chamizo, Sonia; Kowalski, Andrew S.

    2017-04-01

    Olive (Olea europaea) is the dominant agriculture plantation in Spain and its main product, olive oil, is vital to the economy of Mediterranean countries. Given the extensive surface dedicated to olive plantations, olive groves can potentially sequester large amounts of carbon and contribute to mitigate climate change. Their potential for carbon sequestration will, however, largely depend on the management and irrigation practices in the olive grove. Although soil respiration is the main path of C release from the terrestrial ecosystems to the atmosphere and a suitable indicator of soil health and fertility, the interaction of agricultural management practices with irrigation regimes on soil CO2 fluxes have not been assessed yet. Here we investigate the influence of the presence of herbaceous cover, use of artificial fertilizers and their interaction with the irrigation regime on the CO2 emission from the soil to the atmosphere. For this, the three agricultural management treatments were established in replicated plots in an olive grove in the SE of Spain: presence of herbaceous cover ("H"), exclusion of herbaceous cover by using herbicides ("NH"), and exclusion of herbaceous cover along with addition of artificial fertilizers (0.55 kg m-2 year-1 of N, P, K solid fertilizer in the proportion 20:10:10, "NHF"). Within each management treatment, three irrigation regimes were also implemented in a randomized design: no-irrigation ("NO") or rain fed, full irrigation (224 l week-1 per olive tree, "MAX"), and a 50% restriction (112 l week-1 per olive tree, "MED"). Soil respiration was measured every 2-3 weeks at 1, 3, and 5 meters from each olive tree together with soil temperature and soil moisture in order to account for the spatial and seasonal variability over the year. Soil respiration was higher when herbaceous cover was present compared to the herbaceous exclusion, whereas the addition of fertilizer did not exert any significant effect. Although the different

  17. Decontamination of Metal Ions in Soil by Supercritical CO{sub 2} Extraction with Catecholamine Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihye; Kim, Hakwon; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The role of fuel cladding and reactor vessels is to help prevent the leakage of radioactive materials, including the fission products. However, if these shielding materials are damaged by a severe disaster such as the Fukushima Accident, radioactive materials could leak outside of a power plant site. Indeed, after the Fukushima Accident, radioactive materials have been detected in air and water samples. The air and water pollution lead to soil pollution, which is particularly difficult to decontaminate, as soil pollution has several types that vary according to the characteristics of a pollutant or its area. The existing decontamination methods generate a secondary waste owing to use of chemical toxicity solvents. It is also disadvantageous due to the additional cost of handling them. Therefore, new effective decontamination methods that reduce the use of toxicity solvents are necessary. For example, using supercritical CO{sub 2} has been studied as a new decontamination method. This study examines the method of decontaminating metallic ions inside of the soil using supercritical CO{sub 2} and a catecholamine compound. This study examined the effects of extracting metallic ions inside the soil using supercritical CO{sub 2} and catecholamine as the ligand. Based on these results, it is evident that when only the extraction agent was used, there was no extraction effect and that only when the ligand, co-ligand, and additive were used together was there an extraction effect. Following this, the optimal extraction-agent ratio was confirmed using varying amounts of extraction agents. The most effective extraction ratio of ligand to co-ligand was 1:2 in E-9 when 0.3 ml of H{sub 2}O were added.

  18. Seasonal Changes of Coefficient Q10 in CO2 Flux from Soil Under Spruce Stand

    Czech Academy of Sciences Publication Activity Database

    Pavelka, Marian; Janouš, Dalibor

    2002-01-01

    Roč. 15, č. 15 (2002), s. 43-48. ISBN 80-7157-297-7 R&D Projects: GA ČR GA526/00/0485 Grant - others:EVK2(XE) CT-1999-00032 Keywords : soil CO2 efflux * Norway spruce * Q10 * respiration * soil Subject RIV: EH - Ecology, Behaviour

  19. Methane and CO2 fluxes from peat soil, palm stems and field drains in two oil palm plantations in Sarawak, Borneo, on different tropical peat soil types.

    Science.gov (United States)

    Manning, Frances; Lip Khoon, Kho; Hill, Tim; Arn Teh, Yit

    2017-04-01

    Oil palm plantations have been expanding rapidly on tropical peat soils in the last 20 years, with 50 % of SE Asian peatlands now managed as industrial or small-holder plantations, up from 11% in 1990. Tropical peat soils are an important carbon (C) store, containing an estimated 17 % of total peatland C. There are large uncertainties as to the soil C dynamics in oil palm plantations on peat due to a shortage of available data. It is therefore essential to understand the soil C cycle in order to promote effective management strategies that optimise yields, whilst maintaining the high C storage capacity of the soil. Here we present CO2 and CH4 fluxes from two oil palm plantations in Sarawak, Malaysia on peat soils. Data were collected from different surface microforms within each plantation that experienced different surface management practices. These included the area next to the palm, in bare soil harvest paths, beneath frond piles, underneath cover crops, from the surface of drains, and from palm stems. Data were collected continuously over one year and analysed with different environmental variables, including soil temperature, WTD, O2, soil moisture and weather data in order to best determine the constraints on the dataset. Total soil respiration (Rtot) varied between 0.09 and 1.59 g C m-2 hr-1. The largest fluxes (0.59 - 1.59 g C m-2 hr-1) were measured next to the palms. Larger CO2 fluxes were observed beneath the cover crops than in the bare soil. This trend was attributed to priming effects from the input of fresh plant litter and exudates. Peat soil type was shown to have significantly different fluxes. The different plantations also had different environmental drivers best explaining the variation in Rtot - with soil moisture being the most significant variable on Sabaju series soil and soil temperature being the most significant environmental variable in the plantation with the Teraja series soil. Rtot was shown to reduce significantly with increasing

  20. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    Science.gov (United States)

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

  1. Understanding the role of soil erosion on co{sub 2}-c loss using {sup 13}c isotopic signatures in abandoned Mediterranean agricultural land

    Energy Technology Data Exchange (ETDEWEB)

    Novara, Agata, E-mail: agata.novara@unipa.it [Department of Scienze Agrarie e Forestali, University of Palermo, viale delle Scienze, ed.4, 90128 Palermo (Italy); Keesstra, Saskia, E-mail: saskia.keesstra@wur.nl [Soil Physics and Land Management Group, Wageningen University, Droevendaalsesteeg 4, 6708PB Wageningen (Netherlands); Cerdà, Artemio, E-mail: artemio.cerda@uv.es [Soil Erosion and Degradation Research Group, Department of Geography, University of Valencia, Valencia (Spain); Pereira, Paulo, E-mail: paulo@mruni.eu [Environmental Management Centre, Mykolas Romeris University, Vilnius (Lithuania); Gristina, Luciano [Department of Scienze Agrarie e Forestali, University of Palermo, viale delle Scienze, ed.4, 90128 Palermo (Italy)

    2016-04-15

    Understanding soil water erosion processes is essential to evaluate the redistribution of soil organic carbon (SOC) within a landscape and is fundamental to assess the role of soil erosion in the global carbon (C) budget. The main aim of this study was to estimate the C redistribution and losses using {sup 13}C natural abundance. Carbon losses in soil sediment, dissolved organic carbon (DOC) and CO{sub 2} emission were determined. Four bounded parallel plots were installed on a 10% slope. In the upper part of the plots, C{sub 3}soil was replaced with C{sub 4}soil. The SOC and δ{sup 13}C were measured after 145.2 mm rainfall in the upper (2 m far from C{sub 4}strip), middle (4 m far from C{sub 4}strip) lower (6 m far from C{sub 4}strip) trams of the plot and in the sediments collected in the Gerlach collector at the lower part of the plot. A laboratory incubation experiment was performed to evaluate the CO{sub 2} emission rate of soils in each area. OC was mainly lost in the sediments as 2.08 g{sup −2} of C was lost after 145.2 mm rainfall. DOC losses were only 5.61% of off-site OC loss. Three months after the beginning of the experiment, 15.90% of SOC in the upper tram of the plot had a C{sub 4} origin. The C{sub 4}-SOC content decreased along the 6 m length of the plot, and in the sediments collected by the Gerlach collector. CO{sub 2} emission rate was high in the upper plot tram due to the high SOC content. The discrimination of CO{sub 2} in C{sub 3} and C{sub 4} portion permitted to increase our level of understanding on the stability of SOC and its resilience to decomposition. The transport of sediments along the plot increased SOC mineralization by 43%. Our study underlined the impact of rainfall in C losses in soil and water in abandoned Mediterranean agriculture fields and the consequent implications on the C balance. - Highlights: • The soil C isotopic difference is a useful tracer for erosion processes studies. • The main loss of Carbon was

  2. [Impacts of rice straw biochar on organic carbon and CO2 release in arable soil].

    Science.gov (United States)

    Ke, Yue-Jin; Hu, Xue-Yu; Yi, Qing; Yu, Zhong

    2014-01-01

    In order to investigate the stability of biochar and the effect of biochar when added into soil on soil organic carbon, a 130-day incubation experiment was conducted with rice straw biochar produced at 500 degrees C and 700 degrees C (RBC500 and RBC700) and with addition rates of 0% (control), 3%, 6% and 100% (pure biochar), to detect the change of total organic carbon (TOC), easily oxidized carbon (EOC) and status of CO2 release, following addition of biochar in arable soil. Results showed that: the content of both TOC and EOC in soil increased with biochar addition rates comparing with the control. RBC500 had greater contributions to both TOC and EOC increasing amounts than those of RBC700 under the same biochar addition rate. TOC contents of all treatments decreased during the initial 30 days with the largest decreasing amplitude of 15.8%, and tended to be stable in late incubation stages. Same to that of TOC, EOC contents of all treatments also tended to remain stable after 30 days, but in the 30 days of early incubation, EOC in the soil decreased by 72.4% and 81.7% respectively when the added amount of RBC500 was 3% and 6% , while it was reduced by 61.3% and 69.8% respectively when the added amount of RBC700 was 3% and 6%. EOC contents of soil added with biochar produced at the same temperature were similar in the end of incubation. The reduction of soil EOC content in early incubation may be related to mineralization caused by labile fractions of biochar. During the 130-day incubation, the accumulated CO2 releases showed an order of soil and biochar mixtures soil could reduce CO2 release, the largest reduction amplitude is 41.05%. In a long time scale, biochar as a soil amendment is favorable to the deduction of greenhouse gas release and soil carbon immobilization. Biochar could be used as a soil carbon sequestration carrier.

  3. Decomposition of 14C-labeled roots in a pasture soil exposed to 10 years of elevated CO2

    NARCIS (Netherlands)

    Groenigen, van C.J.; Gorissen, A.; Six, J.; Harris, D.; Kuikman, P.J.; Groenigen, van J.W.; Kessel, van C.

    2005-01-01

    The net flux of soil C is determined by the balance between soil C input and microbial decomposition, both of which might be altered under prolonged elevated atmospheric CO2. In this study, we determined the effect of elevated CO2 on decomposition of grass root material (Lolium perenne L.).

  4. The effect of elevated CO2 and N on decomposition of wheat straw and alfalfa residues in calcareous and non calcareous soils

    Directory of Open Access Journals (Sweden)

    S. Razavi Darbar

    2016-04-01

    Full Text Available Incorporation of plant residue in soils is considered as an important agricultural practice for maintaining soil fertility in sustainable agricultural system. CO2 levels, nitrogen fertilization and plant residues are factors which highly affect decomposition of added organic matter to soil. In this research controlled chambers were used to investigate the effects of elevated atmospheric CO2 concentrations (350 vs. 760 CO2 ppm under two N fertilization levels (0 vs. 500 kg N ha-1 and two replicates on decomposition of wheat and alfalfa residues in two calcareous (32.66 % CaCO3 and non calcareous soils (3.4 % CaCO3 at 6 times (0, 10, 20, 40, 60 and 90 under laboratory condition. Soil moistures were adjusted at 70% of field capacity. The results showed that elevated CO2 significantly increased decomposition of residues in both calcareous and non calcareous soils. In the samples that received N fertilizer, decomposition of wheat straw and alfalfa residues increased in both soils. From the obtained results, we concluded that in all treatments the amount of decomposition of wheat straw and alfalfa residues in calcareous soil were higher than non calcareous soils.

  5. Emission of CO{sub 2} and N{sub 2}O from soil cultivated with common bean (Phaseolus vulgaris L.) fertilized with different N sources

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Luqueno, F.; Reyes-Varela, V.; Martinez-Suarez, C.; Reynoso-Keller, R.E.; Mendez-Bautista, J.; Ruiz-Romero, E. [Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico D.F, C.P. 07360 (Mexico); Lopez-Valdez, F. [Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico D.F, C.P. 07360 (Mexico); CIBA, IPN, Tepetitla de Lardizabal, Tlaxcala C.P. 90700 (Mexico); Luna-Guido, M.L. [Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico D.F, C.P. 07360 (Mexico); Dendooven, L., E-mail: dendoove@cinvestav.mx [Laboratory of Soil Ecology, Department of Biotechnology and Bioengineering, Cinvestav, Mexico D.F, C.P. 07360 (Mexico)

    2009-07-01

    Addition of different forms of nitrogen fertilizer to cultivated soil is known to affect carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) emissions. In this study, the effect of urea, wastewater sludge and vermicompost on emissions of CO{sub 2} and N{sub 2}O in soil cultivated with bean was investigated. Beans were cultivated in the greenhouse in three consecutive experiments, fertilized with or without wastewater sludge at two application rates (33 and 55 Mg fresh wastewater sludge ha{sup -1}, i.e. 48 and 80 kg N ha{sup -1} considering a N mineralization rate of 40%), vermicompost derived from the wastewater sludge (212 Mg ha{sup -1}, i.e. 80 kg N ha{sup -1}) or urea (170 kg ha{sup -1}, i.e. 80 kg N ha{sup -1}), while pH, electrolytic conductivity (EC), inorganic nitrogen and CO{sub 2} and N{sub 2}O emissions were monitored. Vermicompost added to soil increased EC at onset of the experiment, but thereafter values were similar to the other treatments. Most of the NO{sub 3}{sup -} was taken up by the plants, although some was leached from the upper to the lower soil layer. CO{sub 2} emission was 375 C kg ha{sup -1} y{sup -1} in the unamended soil, 340 kg C ha{sup -1} y{sup -1} in the urea-amended soil and 839 kg ha{sup -1} y{sup -1} in the vermicompost-amended soil. N{sub 2}O emission was 2.92 kg N ha{sup -1} y{sup -1} in soil amended with 55 Mg wastewater sludge ha{sup -1}, but only 0.03 kg N ha{sup -1} y{sup -1} in the unamended soil. The emission of CO{sub 2} was affected by the phenological stage of the plant while organic fertilizer increased the CO{sub 2} and N{sub 2}O emission, and the yield per plant. Environmental and economic implications must to be considered to decide how many, how often and what kind of organic fertilizer could be used to increase yields, while limiting soil deterioration and greenhouse gas emissions.

  6. Soil carbon accumulation in a Populus spp. plantation supplied with high atmospheric CO2 and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Lagomarsino A

    2009-06-01

    Full Text Available This work was carried out in the experimental area POPFACE (Tuscania, Viterbo, where a poplar short rotation forest (SRF was treated with 550 ppm of atmospheric CO2 for six years. The experimental plots (Control and FACE were divided in two halves, one of which was treated with nitrogen fertilization. The general aim of this research was to quantify the impact of the two rotation cycles, the CO2 enrichment and the nitrogen fertilization on: i soil organic matter fractions more relevant for microbial metabolism; ii microbial C mineralization activity and iii the ecosystem capacity to store C in the soil. On soil samples collected from 2000 to 2004, the soil Organic C (TOC, the total extractable C (TEC and several labile C fractions (MBC, WSC, ExC were analysed. The microbial mineralization activity was also analysed. In comparison with the previous culture crop, the plantation increased the organic C storage in soil by about 23% in the second rotation cycle. Under elevated CO2, the increase of above- and belowground productivity supported a greater accumulation of labile C in soil, favouring a microbial C immobilization process. Fertilization treatment induced short-term changes in the soil C content, without overall modifications in the second rotation cycle.

  7. Measurement of OCS, CO2, CO and H2O aboard NASA's WB-57 High Altitude Platform Using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)

    Science.gov (United States)

    Leen, J. B.; Owano, T. G.; Du, X.; Gardner, A.; Gupta, M.

    2014-12-01

    Carbonyl sulfide (OCS) is the most abundant sulfur gas in the atmosphere and has been implicated in controlling the sulfur budget and aerosol loading of the stratosphere. In the troposphere, OCS is irreversibly consumed during photosynthesis and may serve as a tracer for gross primary production (GPP). Its primary sources are ocean outgassing, industrial processes, and biomass burning. Its primary sinks are vegetation and soils. Despite the importance of OCS in atmospheric processes, the OCS atmospheric budget is poorly determined and has high uncertainty. OCS is typically monitored using either canisters analyzed by gas chromatography or integrated atmospheric column measurements. Improved in-situ terrestrial flux and airborne measurements are required to constrain the OCS budget and further elucidate its role in stratospheric aerosol formation and as a tracer for biogenic volatile organics and photosynthesis. Los Gatos Research has developed a flight capable mid-infrared Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) analyzer to simultaneously quantify OCS, CO2, CO, and H2O in ambient air at up to 2 Hz. The prototype was tested on diluted, certified samples and found to be precise (OCS, CO2, CO, and H2O to better than ±4 ppt, ±0.2 ppm, ±0.31 ppb, and ±3.7 ppm respectively, 1s in 1 sec) and linear (R2 > 0.9997 for all gases) over a wide dynamic range (OCS, CO2, CO, and H2O ranging from 0.2 - 70 ppb, 500 - 3000 ppm, 150 - 480 ppb, and 7000 - 21000 ppm respectively). Cross-interference measurements showed no appreciable change in measured OCS concentration with variations in CO2 (500 - 3500 ppm) or CO. We report on high altitude measurements made aboard NASA's WB-57 research aircraft. Two research flights were conducted from Houston, TX. The concentration of OCS, CO2, CO, and H2O were continuously recorded from sea level to approximately 60,000 feet. The concentration of OCS was observed to increase with altitude through the troposphere due to the

  8. Elevated CO2 as a driver of global dryland greening

    KAUST Repository

    Lu, Xuefei

    2016-02-12

    While recent findings based on satellite records indicate a positive trend in vegetation greenness over global drylands, the reasons remain elusive. We hypothesize that enhanced levels of atmospheric CO2 play an important role in the observed greening through the CO2 effect on plant water savings and consequent available soil water increases. Meta-analytic techniques were used to compare soil water content under ambient and elevated CO2 treatments across a range of climate regimes, vegetation types, soil textures and land management practices. Based on 1705 field measurements from 21 distinct sites, a consistent and statistically significant increase in the availability of soil water (11%) was observed under elevated CO2 treatments in both drylands and non-drylands, with a statistically stronger response over drylands (17% vs. 9%). Given the inherent water limitation in drylands, it is suggested that the additional soil water availability is a likely driver of observed increases in vegetation greenness.

  9. Elevated CO2 as a driver of global dryland greening

    KAUST Repository

    Lu, Xuefei; Wang, Lixin; McCabe, Matthew

    2016-01-01

    While recent findings based on satellite records indicate a positive trend in vegetation greenness over global drylands, the reasons remain elusive. We hypothesize that enhanced levels of atmospheric CO2 play an important role in the observed greening through the CO2 effect on plant water savings and consequent available soil water increases. Meta-analytic techniques were used to compare soil water content under ambient and elevated CO2 treatments across a range of climate regimes, vegetation types, soil textures and land management practices. Based on 1705 field measurements from 21 distinct sites, a consistent and statistically significant increase in the availability of soil water (11%) was observed under elevated CO2 treatments in both drylands and non-drylands, with a statistically stronger response over drylands (17% vs. 9%). Given the inherent water limitation in drylands, it is suggested that the additional soil water availability is a likely driver of observed increases in vegetation greenness.

  10. Soil 13C–15N dynamics in an N2-fixing clover system under long-term exposure to elevated atmospheric CO2

    NARCIS (Netherlands)

    Groenigen, van C.J.; Six, J.; Harris, D.; Blum, H.; Kessel, van C.

    2003-01-01

    Reduced soil N availability under elevated CO2 may limit the plant's capacity to increase photosynthesis and thus the potential for increased soil C input. Plant productivity and soil C input should be less constrained by available soil N in an N2-fixing system. We studied the effects of Trifolium

  11. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Eric A. [Woods Hole Research Center, Falmouth, MA (United States); Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Savage, Kathleen [Woods Hole Research Center, Falmouth, MA (United States); Finzi, Adrien [Boston Univ., MA (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States); Wehr, Richard [Univ. of Arizona, Tucson, AZ (United States)

    2016-02-18

    1. Project Summary and Objectives This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2).

  12. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States). Dept. of Ecology and Evolutionary Biology; Davidson, Eric [Woods Hole Research Center, Falmouth, MA (United States); Finzi, Adrien [Boston Univ., MA (United States). Dept. of Biology; Wehr, Richard [Univ. of Arizona, Tucson, AZ (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States). Dept. of Organismic and Evolutionary Biology

    2016-01-28

    This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of below ground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. above ground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: (A) Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics; (B) Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated below ground using measurements of root growth and indices of below ground autotrophic vs. heterotrophic respiration (via trenched plots andisotope measurements); (C) Testing whether plant allocation of carbon below ground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and (D) Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2).

  13. Gaseous elemental mercury emissions and CO{sub 2} respiration rates in terrestrial soils under controlled aerobic and anaerobic laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Obrist, Daniel, E-mail: daniel.obrist@dri.edu [Desert Research Institute, Division of Atmospheric Sciences, 2215 Raggio Parkway, Reno, Nevada, 89512 (United States); Fain, Xavier; Berger, Carsen [Desert Research Institute, Division of Atmospheric Sciences, 2215 Raggio Parkway, Reno, Nevada, 89512 (United States)

    2010-03-01

    Mercury (Hg) levels in terrestrial soils are linked to the presence of organic carbon (C). Carbon pools are highly dynamic and subject to mineralization processes, but little is known about the fate of Hg during decomposition. This study evaluated relationships between gaseous Hg emissions from soils and carbon dioxide (CO{sub 2}) respiration under controlled laboratory conditions to assess potential losses of Hg to the atmosphere during C mineralization. Results showed a linear correlation (r{sup 2} = 0.49) between Hg and CO{sub 2} emissions in 41 soil samples, an effect unlikely to be caused by temperature, radiation, different Hg contents, or soil moisture. Stoichiometric comparisons of Hg/C ratios of emissions and underlying soil substrates suggest that 3% of soil Hg was subject to evasion. Even minute emissions of Hg upon mineralization, however, may be important on a global scale given the large Hg pools sequestered in terrestrial soils and C stocks. We induced changes in CO{sub 2} respiration rates and observed Hg flux responses, including inducement of anaerobic conditions by changing chamber air supply from N{sub 2}/O{sub 2} (80% and 20%, respectively) to pure N{sub 2}. Unexpectedly, Hg emissions almost quadrupled after O{sub 2} deprivation while oxidative mineralization (i.e., CO{sub 2} emissions) was greatly reduced. This Hg flux response to anaerobic conditions was lacking when repeated with sterilized soils, possibly due to involvement of microbial reduction of Hg{sup 2+} by anaerobes or indirect abiotic effects such as alterations in soil redox conditions. This study provides experimental evidence that Hg volatilization, and possibly Hg{sup 2+} reduction, is related to O{sub 2} availability in soils from two Sierra Nevada forests. If this result is confirmed in soils from other areas, the implication is that Hg volatilization from terrestrial soils is partially controlled by soil aeration and that low soil O{sub 2} levels and possibly low soil redox

  14. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA

    Science.gov (United States)

    Lindsey E. Rustad; Ivan J. Fernandez

    1998-01-01

    The effect of soil warming on CO2 and CH4 flux from a spruce-fir forest soil was evaluated at the Howland Integrated Forest Study site in Maine, USA from 1993 to 1995. Elevated soil temperatures (~5 °C) were maintained during the snow-free season (May-November) in replicated 15 × 15-m plots using electric cables buried 1-2...

  15. Free atmospheric CO2 enrichment increased above ground biomass but did not affect symbiotic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales

    Directory of Open Access Journals (Sweden)

    A. R. Smith

    2011-02-01

    Full Text Available Through increases in net primary production (NPP, elevated CO2 is hypothesized to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests can escape nitrogen limitation. In a Free atmospheric CO2 Enrichment (FACE experiment near Bangor, Wales, 4 ambient and 4 elevated [CO2] plots were planted with patches of Betula pendula, Alnus glutinosa and Fagus sylvatica on a former arable field. After 4 years, biomass averaged for the 3 species was 5497 (se 270 g m−2 in ambient and 6450 (se 130 g m−2 in elevated [CO2] plots, a significant increase of 17% (P = 0.018. During that time, only a shallow L forest floor litter layer had formed due to intensive bioturbation. Total soil C and N contents increased irrespective of treatment and species as a result of afforestation. We could not detect an additional C sink in the soil, nor were soil C stabilization processes affected by elevated [CO2]. We observed a decrease of leaf N content in Betula and Alnus under elevated [CO2], while the soil C/N ratio decreased regardless of CO2 treatment. The ratio of N taken up from the soil and by N2-fixation in Alnus was not affected by elevated [CO2]. We infer that increased nitrogen use efficiency is the mechanism by which increased NPP is sustained under elevated [CO2] at this site.

  16. Impacts of afforestation and silviculture on the soil C balance of tropical tree plantations: belowground C allocation, soil CO2 efflux and C accretion (Invited)

    Science.gov (United States)

    Epron, D.; Koutika, L.; Mareschal, L.; Nouvellon, Y.

    2013-12-01

    Tropical forest plantations will provide a large part of the global wood supply which is anticipated to increase sharply in the next decades, becoming a valuable source of income in many countries, where they also contribute to land use changes that impact the global carbon (C) cycle. Tropical forest plantations established on previous grasslands are potential C sinks offsetting anthropogenic CO2 emissions. When they are managed on short rotations, the aboveground biomass is frequently removed and transformed into wood products with short lifetimes. The soil is thus the only compartment for durable C sequestration. The soil C budget results from the inputs of C from litterfall, root turnover and residues left at logging stage, balanced by C losses through heterotrophic respiration and leaching of organic C with water flow. Intensive researches have been conducted these last ten years in eucalypt plantations in the Congo on the effects of management options on soil fertility improvement and C sequestration. Our aim is to review important results regarding belowground C allocation, soil CO2 efflux and C accretion in relation to management options. We will specifically address (i) the soil C dynamics after afforestation of a tropical savannah, (ii) the impact of post-harvest residue management, and (iii) the beneficial effect of introducing nitrogen fixing species for C sequestration. Our results on afforestation of previous savannah showed that mechanical soil disturbance for site preparation had no effect on soil CO2 efflux and soil C balance. Soil C increased after afforestation despite a rapid disappearance of the labile savannah-derived C because a large fraction of savannah-derived C is stable and the aboveground litter layer is as the major source of CO2 contributing to soil CO2 efflux. We further demonstrated that the C stock in and on the soil slightly increased after each rotation when large amounts of residues are left at logging stage and that most of

  17. Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soils

    Science.gov (United States)

    Gladys I. Loranger; Kurt S. Pregitzer; John S. King

    2004-01-01

    Rising atmospheric CO2 concentrations may change soil fauna abundance. How increase of tropospheric ozone (O3t) concentration will modify these responses is still unknown. We have assessed independent and interactive effects of elevated [CO2] and [O3t] on selected groups of soil...

  18. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON SOIL CARBON DENSITY FRACTIONS IN A DOUGLAS FIR MESOCOSM STUDY

    Science.gov (United States)

    We conducted a 4-year full-factorial study of the effects of elevated atmospheric CO2 and temperature on Douglas fir seedlings growing in reconstructed native forest soils in mesocosms. The elevated CO2 treatment was ambient CO2 plus 200 ppm CO2. The elevated temperature treatm...

  19. Responses of soil Collembola to long-term atmospheric CO2 enrichment in a mature temperate forest

    International Nuclear Information System (INIS)

    Xu Guoliang; Fu Shenglei; Schleppi, Patrick; Li Maihe

    2013-01-01

    Responses of Collembola to 7 years of CO 2 enrichment (550 ppm) in a Swiss free-air CO 2 enrichment (FACE) experiment in a forest with 80- to 120-year-old trees were investigated in this study. Contrary to our expectations, increased CO 2 caused a significant decrease in Collembola numbers, including a significant decrease in euedaphic Collembola. Increased CO 2 , however, did not affect community group richness. Collembola biomass was not significantly changed by CO 2 enrichment, regardless of whether it was considered in terms of the total community, life-strategy groups, or individual species (with an exception of Mesaphorura krausbaueri). The reason for this is that CO 2 enrichment caused a general increase in individual body size, which compensated for reduced abundances. The results are consistent with the idea that the rhizosphere is important for soil fauna, and the combination of reduced fine root growth and increased soil moisture might trigger a reduction in Collembola abundance. - Highlights: ► Increased CO 2 caused a significant decrease in Collembola abundance. ► Increased CO 2 caused a significant decrease in euedaphic Collembola. ► Collembola body size tended to be larger. ► A decrease in fine roots biomass might trigger the reduction in Collembola. - Seven years of CO 2 enrichment caused a significant decrease in Collembola abundance, especially in euedaphic species.

  20. Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States

    Science.gov (United States)

    Bowling, David R.; Grote, E.E.; Belnap, J.

    2011-01-01

    Biological activity in arid grasslands is strongly dependent on moisture. We examined gas exchange of biological soil crusts (biocrusts), the underlying soil biotic community, and the belowground respiratory activity of C3 and C4 grasses over 2 years in southeast Utah, USA. We used soil surface CO2 flux and the amount and carbon isotope composition (δ13C) of soil CO2 as indicators of belowground and soil surface activity. Soil respiration was always below 2 μmol m-2s-1 and highly responsive to soil moisture. When moisture was available, warm spring and summer temperature was associated with higher fluxes. Moisture pulses led to enhanced soil respiration lasting for a week or more. Biological response to rain was not simply dependent on the amount of rain, but also depended on antecedent conditions (prior moisture pulses). The short-term temperature sensitivity of respiration was very dynamic, showing enhancement within 1-2 days of rain, and diminishing each day afterward. Carbon uptake occurred by cyanobacterially dominated biocrusts following moisture pulses in fall and winter, with a maximal net carbon uptake of 0.5 μmol m-2s-1, although typically the biocrusts were a net carbon source. No difference was detected in the seasonal activity of C3 and C4 grasses, contrasting with studies from other arid regions (where warm- versus cool-season activity is important), and highlighting the unique biophysical environment of this cold desert. Contrary to other studies, the δ13C of belowground respiration in the rooting zone of each photosynthetic type did not reflect the δ13C of C3 and C4 physiology.

  1. CO2 measurements during transcranial Doppler examinations in headache patients

    DEFF Research Database (Denmark)

    Thomsen, L L; Iversen, Helle Klingenberg

    1994-01-01

    Transcranial Doppler (TCD) examinations are increasingly being used in studies of headache pathophysiology. Because blood velocity is highly dependent on PCO2, these parameters should be measured simultaneously. The most common way of performing measurements during TCD examinations is as end......-tidal pCO2 with a capnograph. When patients are nauseated and vomit, as in migraine, the mask or mouthpiece connected to the capnograph represents a problem. We therefore evaluated whether a transcutaneous pCO2 electrode was as useful as the capnograph for pCO2 measurements in TCD examinations. We...... conclude that this is not the case, and recommend capnographic end-tidal pCO2 measurements during TCD examinations. However, transcutaneous pCO2 measurements may represent a supplement to spot measurements of end-tidal pCO2 in stable conditions when long-term monitoring is needed, and the mask...

  2. Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements: A cost-effective sampling strategy

    Science.gov (United States)

    OgéE, J.; Peylin, P.; Ciais, P.; Bariac, T.; Brunet, Y.; Berbigier, P.; Roche, C.; Richard, P.; Bardoux, G.; Bonnefond, J.-M.

    2003-06-01

    The current emphasis on global climate studies has led the scientific community to set up a number of sites for measuring the long-term biosphere-atmosphere net CO2 exchange (net ecosystem exchange, NEE). Partitioning this flux into its elementary components, net assimilation (FA), and respiration (FR), remains necessary in order to get a better understanding of biosphere functioning and design better surface exchange models. Noting that FR and FA have different isotopic signatures, we evaluate the potential of isotopic 13CO2 measurements in the air (combined with CO2 flux and concentration measurements) to partition NEE into FR and FA on a routine basis. The study is conducted at a temperate coniferous forest where intensive isotopic measurements in air, soil, and biomass were performed in summer 1997. The multilayer soil-vegetation-atmosphere transfer model MuSICA is adapted to compute 13CO2 flux and concentration profiles. Using MuSICA as a "perfect" simulator and taking advantage of the very dense spatiotemporal resolution of the isotopic data set (341 flasks over a 24-hour period) enable us to test each hypothesis and estimate the performance of the method. The partitioning works better in midafternoon when isotopic disequilibrium is strong. With only 15 flasks, i.e., two 13CO2 nighttime profiles (to estimate the isotopic signature of FR) and five daytime measurements (to perform the partitioning) we get mean daily estimates of FR and FA that agree with the model within 15-20%. However, knowledge of the mesophyll conductance seems crucial and may be a limitation to the method.

  3. Edaphic factors controlling summer (rainy season) greenhouse gas emissions (CO_2 and CH_4) from semiarid mangrove soils (NE-Brazil)

    International Nuclear Information System (INIS)

    Nóbrega, Gabriel N.; Ferreira, Tiago O.; Siqueira Neto, M.; Queiroz, Hermano M.; Artur, Adriana G.; Mendonça, Eduardo De S.; Silva, Ebenezer De O.

    2016-01-01

    The soil attributes controlling the CO_2, and CH_4 emissions were assessed in semiarid mangrove soils (NE-Brazil) under different anthropogenic activities. Soil samples were collected from different mangroves under different anthropogenic impacts, e.g., shrimp farming (Jaguaribe River); urban wastes (Cocó River) and a control site (Timonha River). The sites were characterized according to the sand content; physicochemical parameters (Eh and pH); total organic C; soil C stock (SCS) and equivalent SCS (SCS_E_Q_V); total P and N; dissolved organic C (DOC); and the degree of pyritization (DOP). The CO_2 and CH_4 fluxes from the soils were assessed using static closed chambers. Higher DOC and SCS and the lowest DOP promote greater CO_2 emission. The CH_4 flux was only observed at Jaguaribe which presented higher DOP, compared to that found in mangroves from humid tropical climates. Semiarid mangrove soils cannot be characterized as important greenhouse gas sources, compared to humid tropical mangroves. - Highlights: • GHG emission was associated with different soil characteristics. • Highest CO_2 emissions were found in mangroves with larger dissolved C and lower DOP. • Less CH_4 flux was due to low DOP in semiarid mangrove soils.

  4. Effects of Climate Change and Organic Matter Amendments on the Fate of Soil Carbon and the Global Warming Potential of CO2, CH4, and N2O Emissions in an Upland Soil

    Science.gov (United States)

    Simmonds, M.; Muehe, E. M.; Fendorf, S. E.

    2017-12-01

    Our current understanding of the mechanisms driving carbon stabilization in soil organic matter (SOM) and its release to the atmosphere is insufficient for predicting the response of soil carbon dynamics to future climatic conditions. The persistence of SOM has been studied primarily within the context of biochemical, physical, and geochemical protection from decomposition. More recently, bioenergetic constraints on SOM decomposition due to oxygen limitations have been demonstrated in submerged soils. However, the relevance of anaerobic domains in upland soils is uncertain. To better understand how upland soils will respond to climate change, we conducted a 52-day incubation of an upland soil at constant soil moisture (field capacity) under varying air temperatures (32°C and 37°C), CO2 concentrations (398 and 850 ppmv), and soil organic carbon contents (1.3%, 2.4%). Overall, we observed a stimulatory effect of future climate (elevated temperature and CO2) and higher carbon inputs on net SOM mineralization rates (higher CO2, CH4 and N2O emissions). Importantly, CH4 emissions were observed in the soils with added plant residue, indicating anaerobic microsites are relevant in upland soils, and significantly impact microbial respiration pathways, rates of SOM mineralization, and the global warming potential of trace gas emissions. These findings have important implications for positive soil carbon-climate feedbacks, and warrant further investigation into representing anaerobic soil domains of upland soils in biogeochemical models.

  5. BOREAS TGB-5 CO2, CH4 and CO Chamber Flux Data Over the NSA

    Science.gov (United States)

    Burke, Roger; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Zepp, Richard

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected a variety of trace gas concentration and flux measurements at several NSA sites. This data set contains carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) chamber flux measurements conducted in 1994 at upland forest sites that experienced stand-replacement fires. These measurements were acquired to understand the impact of fires on soil biogeochemistry and related changes in trace gas exchange in boreal forest soils. Relevant ancillary data, including data concerning the soil temperature, solar irradiance, and information from nearby un-burned control sites, are included to provide a basis for modeling the regional impacts of fire and climate changes on trace gas biogeochemistry. The data are provided in tabular ASCII files.

  6. Interactive effects of preindustrial, current and future atmospheric CO2 concentrations and temperature on soil fungi associated with two Eucalyptus species.

    Science.gov (United States)

    Anderson, Ian C; Drigo, Barbara; Keniry, Kerry; Ghannoum, Oula; Chambers, Susan M; Tissue, David T; Cairney, John W G

    2013-02-01

    Soil microbial processes have a central role in global fluxes of the key biogenic greenhouse gases and are likely to respond rapidly to climate change. Whether climate change effects on microbial processes lead to a positive or negative feedback for terrestrial ecosystem resilience is unclear. In this study, we investigated the interactive effects of [CO(2)] and temperature on soil fungi associated with faster-growing Eucalyptus saligna and slower-growing Eucalyptus sideroxylon, and fungi that colonised hyphal in-growth bags. Plants were grown in native soil under controlled soil moisture conditions, while subjecting the above-ground compartment to defined atmospheric conditions differing in CO(2) concentrations (290, 400, 650 μL L(-1)) and temperature (26 and 30 °C). Terminal restriction fragment length polymorphism and sequencing methods were used to examine effects on the structure of the soil fungal communities. There was no significant effect of host plant or [CO(2)]/temperature treatment on fungal species richness (α diversity); however, there was a significant effect on soil fungal community composition (β diversity) which was strongly influenced by eucalypt species. Interestingly, β diversity of soil fungi associated with both eucalypt species was significantly influenced by the elevated [CO(2) ]/high temperature treatment, suggesting that the combination of future predicted levels of atmospheric [CO(2)] and projected increases in global temperature will significantly alter soil fungal community composition in eucalypt forest ecosystems, independent of eucalypt species composition. These changes may arise through direct effects of changes in [CO(2)] and temperature on soil fungi or through indirect effects, which is likely the case in this study given the plant-dependent nature of our observations. This study highlights the role of plant species in moderating below-ground responses to future predicted changes to [CO(2)] and temperature and the

  7. A STELLA model to estimate soil CO2 emissions from a short-rotation woody crop

    Science.gov (United States)

    Ying Ouyang; Theodor D. Leininger; Jeff Hatten; Prem B. Parajuli

    2012-01-01

    The potential for climatic factors as well as soil–plant–climate interactions to change as a result of rising levels of atmospheric CO2 concentration is an issue of increasing international environmental concern. Agricultural and forest practices and managements may be important contributors to mitigating elevated atmospheric CO2...

  8. Carbon allocation and decomposition of root-derived organic matter in a plant-soil system of Calluna vulgaris as affected by elevated CO2.

    NARCIS (Netherlands)

    Verburg, P.S.J.; Gorissenand, A.; Arp, W.J.

    1998-01-01

    The effect of elevated CO2 on C allocation in plant and soil was assessed using soil cores planted with 1-y-old heather (Calluna vulgaris (L.) Hull). Plants were pulse-labeled with 14CO2 at ambient and elevated CO2 and two nitrogen regimes (low and high). After harvesting the plants, the soil was

  9. The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev desert, Israel

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2008-10-01

    Full Text Available Biological soil crusts (BSC contribute significantly to the soil surface cover in many dryland ecosystems. A mixed type of BSC, which consists of cyanobacteria, mosses and cyanolichens, constitutes more than 60% of ground cover in the semiarid grass-shrub steppe at Sayeret Shaked in the northern Negev Desert, Israel. This study aimed at parameterizing the carbon sink capacity of well-developed BSC in undisturbed steppe systems. Mobile enclosures on permanent soil borne collars were used to investigate BSC-related CO2 fluxes in situ and with natural moisture supply during 10 two-day field campaigns within seven months from fall 2001 to summer 2002. Highest BSC-related CO2 deposition between –11.31 and –17.56 mmol m−2 per 15 h was found with BSC activated from rain and dew during the peak of the winter rain season. Net CO2 deposition by BSC was calculated to compensate 120%, –26%, and less than 3% of the concurrent soil CO2 efflux from November–January, February–May and November–May, respectively. Thus, BSC effectively compensated soil CO2 effluxes when CO2 uptake by vascular vegetation was probably at its low point. Nighttime respiratory emission reduced daily BSC-related CO2 deposition within the period November–January by 11–123% and on average by 27%. The analysis of CO2 fluxes and water inputs from the various sources showed that the bulk of BSC-related CO2 deposition occurs during periods with frequent rain events and subsequent condensation from water accumulated in the upper soil layers. Significant BSC activity on days without detectable atmospheric water supply emphasized the importance of high soil moisture contents as additional water source for soil-dwelling BSC, whereas activity upon dew formation at low soil water contents was not of major importance for BSC-related CO2 deposition. However, dew may still be important in attaining a pre-activated status during the transition from a long "summer" anabiosis towards

  10. Hydrogel-based sensor for CO2 measurements

    NARCIS (Netherlands)

    Herber, S.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2004-01-01

    A hydrogel-based sensor is presented for CO2 measurements. The sensor consists of a pressure sensor and porous silicon cover. A pH-sensitive hydrogel is confined between the two parts. Furthermore the porous cover contains a bicarbonate solution and a gaspermeable membrane. CO2 reacts with the

  11. Calibration of δ13C and δ18O measurements in CO2 using Off-axis Integrated Cavity Output Spectrometer (ICOS)

    Science.gov (United States)

    Joseph, Jobin; Külls, Christoph

    2014-05-01

    The δ13C and δ18O of CO2 has enormous potential as tracers to study and quantify the interaction between the water and carbon cycles. Isotope ratio mass spectrometry (IRMS) being the conventional method for stable isotopic measurements, has many limitations making it impossible for deploying them in remote areas for online or in-situ sampling. New laser based absorption spectroscopy approaches like Cavity Ring Down Spectroscopy (CRDS) and Integrated Cavity Output Spectroscopy (ICOS) have been developed for online measurements of stable isotopes at an expense of considerably less power requirement but with precision comparable to IRMS. In this research project, we introduce a new calibration system for an Off- Axis ICOS (Los Gatos Research CCIA-36d) for a wide range of varying concentrations of CO2 (800ppm - 25,000ppm), a typical CO2 flux range at the plant-soil continuum. The calibration compensates for the concentration dependency of δ13C and δ18O measurements, and was performed using various CO2 standards with known CO2 concentration and δC13 and δO18 values. A mathematical model was developed after the calibration procedure as a correction factor for the concentration dependency of δ13C and δ18O measurements. Temperature dependency of δ13C and δ18O measurements were investigated and no significant influence was found. Simultaneous calibration of δ13C and δ18O is achieved using this calibration system with an overall accuracy of (~ 0.75±0.24 ‰ for δ13C, ~ 0.81 ±0.26‰ for δ18O). This calibration procedure is found to be appropriate for making Off-Axis ICOS suitable for measuring CO2 concentration and δ13C and δ18O measurements at atmosphere-plant-soil continuum.

  12. Effects of soil water content and elevated CO2 concentration on the monoterpene emission rate of Cryptomeria japonica.

    Science.gov (United States)

    Mochizuki, Tomoki; Amagai, Takashi; Tani, Akira

    2018-04-11

    Monoterpenes emitted from plants contribute to the formation of secondary pollution and affect the climate system. Monoterpene emission rates may be affected by environmental changes such as increasing CO 2 concentration caused by fossil fuel burning and drought stress induced by climate change. We measured monoterpene emissions from Cryptomeria japonica clone saplings grown under different CO 2 concentrations (control: ambient CO 2 level, elevated CO 2 : 1000μmolmol -1 ). The saplings were planted in the ground and we did not artificially control the SWC. The relationship between the monoterpene emissions and naturally varying SWC was investigated. The dominant monoterpene was α-pinene, followed by sabinene. The monoterpene emission rates were exponentially correlated with temperature for all measurements and normalized (35°C) for each measurement day. The daily normalized monoterpene emission rates (E s0.10 ) were positively and linearly correlated with SWC under both control and elevated CO 2 conditions (control: r 2 =0.55, elevated CO 2 : r 2 =0.89). The slope of the regression line of E s0.10 against SWC was significantly higher under elevated CO 2 than under control conditions (ANCOVA: P<0.01), indicating that the effect of CO 2 concentration on monoterpene emission rates differed by soil water status. The monoterpene emission rates estimated by considering temperature and SWC (Improved G93 algorithm) better agreed with the measured monoterpene emission rates, when compared with the emission rates estimated by considering temperature alone (G93 algorithm). Our results demonstrated that the combined effects of SWC and CO 2 concentration are important for controlling the monoterpene emissions from C. japonica clone saplings. If these relationships can be applied to the other coniferous tree species, our results may be useful to improve accuracy of monoterpene emission estimates from the coniferous forests as affected by climate change in the present and

  13. Soil properties related to 60Co bioavailability in tropical soils

    International Nuclear Information System (INIS)

    Bartoly, Flavia; Wasserman, Maria Angelica; Rochedo, Elaine Ruas Rodriguez; Viana, Aline Gonzalez; Souza, Rodrigo Camara; Oliveira, Giselle Rodrigues; Reis, Wagner Goncalves Soares; Perez, Daniel Vidal

    2005-01-01

    This work presents the results of field experiments to obtain soil to plants Transfer factor (TF) for 60 Co in reference plants cultivated in Ferralsol, Acrisol and Nitisol. These soils represent the majority of Brazilian agricultural area. Values of TF varied from 0.001 to 0.05 for corn and from 0.001 to 0.81 for cabbage. Results of 60 Co TF were discussed in relation to the physical and chemical properties of the soils and 60 Co geochemical partition. The sequential chemical extraction showed that more than 40% of the 60 Co present in the soils are associated to manganese oxides. These results will provide regional values for parameters used in the environmental radiological modeling aiming to optimize the planning of emergency interventions or the waste management related to tropical soils. (author)

  14. Assessment of soil nitrogen and phosphorous availability under elevated CO2 and N-fertilization in a short rotation poplar plantation

    NARCIS (Netherlands)

    Lagomarsino, A.; Moscatelli, M.C.; Hoosbeek, M.R.; Angelis, de P.; Grego, S.

    2008-01-01

    Photosynthetic stimulation by elevated [CO2] is largely regulated by nitrogen and phosphorus availability in the soil. During a 6 year Free Air CO2 Enrichment (FACE) experiment with poplar trees in two short rotations, inorganic forms of soil nitrogen, extractable phosphorus, microbial and total

  15. Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux

    Science.gov (United States)

    Christian P. Giardina; Creighton M. Litton; Susan E. Crow; Gregory P Asner

    2014-01-01

    The universally observed exponential increase in soil-surface CO2 effux (‘soil respiration’; FS) with increasing temperature has led to speculation that global warming will accelerate soil organic carbon (SOC) decomposition, reduce SOC storage, and drive a positive feedback to future warming. However, interpreting temperature–FS relationships,...

  16. Unusual isotopic composition of C-CO2 from sterilized soil microcosms: a new way to separate intracellular from extracellular respiratory metabolisms.

    Science.gov (United States)

    Kéraval, Benoit; Alvarez, Gaël; Lehours, Anne Catherine; Amblard, Christian; Fontaine, Sebastien

    2015-04-01

    The mineralization of organic C requires two main steps. First, microorganisms secrete exoenzymes in soil in order to depolymerize plant and microbial cell walls and release soluble substrates for microbial assimilation. The second step of mineralization, during which C is released as CO2, implies the absorption and utilization of solubilized substrates by microbial cells with the aim to produce energy (ATP). In cells, soluble substrates are carried out by a cascade of respiratory enzymes, along which protons and electrons are transferred from a substrate to oxygen. Given the complexity of this oxidative metabolism and the typical fragility of respiratory enzymes, it is traditionally considered that respiration (second step of C mineralization process) is strictly an intracellular metabolism process. The recurrent observations of substantial CO2 emissions in soil microcosms where microbial cells have been reduced to extremely low levels challenges this paradigm. In a recent study where some respiratory enzymes have shown to function in an extracellular context in soils, Maire et al. (2013) suggested that an extracellular oxidative metabolism (EXOMET) substantially contributes to CO2 emission from soils. This idea is supported by the recent publication of Blankinship et al., 2014 who showed the presence of active enzymes involved in the Krebs cycle on soil particles. Many controversies subsist in the scientific community due to the presence of non-proliferating but morphologically intact cells after irradiation that could substantially contribute to those soil CO2 emissions. To test whether a purely extracellular oxidative metabolism contribute to soil CO2 emissions, we combined high doses of gamma irradiations to different time of soil autoclaving. The presence of active and non-active cells in soil was checked by DNA and RNA extraction and by electronic microscopy. None active cells (RNA-containing cells) were detectable after irradiation, but some morphological

  17. Effect of dolomite and biochar addition on N2O and CO2 emissions from acidic tea field soil.

    Science.gov (United States)

    Oo, Aung Zaw; Sudo, Shigeto; Akiyama, Hiroko; Win, Khin Thuzar; Shibata, Akira; Yamamoto, Akinori; Sano, Tomohito; Hirono, Yuhei

    2018-01-01

    A laboratory study was conducted to study the effects of liming and different biochar amendments on N2O and CO2 emissions from acidic tea field soil. The first experiment was done with three different rates of N treatment; N 300 (300 kg N ha-1), N 600 (600 kg N ha-1) and N 900 (900 kg N ha-1) and four different rates of bamboo biochar amendment; 0%, 0.5%, 1% and 2% biochar. The second experiment was done with three different biochars at a rate of 2% (rice husk, sawdust, and bamboo) and a control and lime treatment (dolomite) and control at two moisture levels (50% and 90% water filled pore space (WFPS)). The results showed that dolomite and biochar amendment significantly increased soil pH. However, only biochar amendment showed a significant increase in total carbon (C), C/N (the ratio of total carbon and total nitrogen), and C/IN ratio (the ratio of total carbon and inorganic nitrogen) at the end of incubation. Reduction in soil NO3--N concentration was observed under different biochar amendments. Bamboo biochar with the rates of 0.5, 1 and 2% reduced cumulative N2O emission by 38%, 48% and 61%, respectively, compare to the control soil in experiment 1. Dolomite and biochar, either alone or combined significantly reduced cumulative N2O emission by 4.6% to 32.7% in experiment 2. Reduction in N2O production under biochar amendment was due to increases in soil pH and decreases in the magnitude of mineral-N in soil. Although, both dolomite and biochar increased cumulative CO2 emission, only biochar amendment had a significant effect. The present study suggests that application of dolomite and biochar to acidic tea field soil can mitigate N2O emissions.

  18. Progress Toward Measuring CO2 Isotopologue Fluxes in situ with the LLNL Miniature, Laser-based CO2 Sensor

    Science.gov (United States)

    Osuna, J. L.; Bora, M.; Bond, T.

    2015-12-01

    One method to constrain photosynthesis and respiration independently at the ecosystem scale is to measure the fluxes of CO2­ isotopologues. Instrumentation is currently available to makes these measurements but they are generally costly, large, bench-top instruments. Here, we present progress toward developing a laser-based sensor that can be deployed directly to a canopy to passively measure CO2 isotopologue fluxes. In this study, we perform initial proof-of-concept and sensor characterization tests in the laboratory and in the field to demonstrate performance of the Lawrence Livermore National Laboratory (LLNL) tunable diode laser flux sensor. The results shown herein demonstrate measurement of bulk CO2 as a first step toward achieving flux measurements of CO2 isotopologues. The sensor uses a Vertical Cavity Surface Emitting Laser (VCSEL) in the 2012 nm range. The laser is mounted in a multi-pass White Cell. In order to amplify the absorption signal of CO2 in this range we employ wave modulation spectroscopy, introducing an alternating current (AC) bias component where f is the frequency of modulation on the laser drive current in addition to the direct current (DC) emission scanning component. We observed a strong linear relationship (r2 = 0.998 and r2 = 0.978 at all and low CO2 concentrations, respectively) between the 2f signal and the CO2 concentration in the cell across the range of CO2 concentrations relevant for flux measurements. We use this calibration to interpret CO2 concentration of a gas flowing through the White cell in the laboratory and deployed over a grassy field. We will discuss sensor performance in the lab and in situ as well as address steps toward achieving canopy-deployed, passive measurements of CO2 isotopologue fluxes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675788

  19. Edaphic factors controlling summer (rainy season) greenhouse gas emissions (CO2 and CH4) from semiarid mangrove soils (NE-Brazil).

    Science.gov (United States)

    Nóbrega, Gabriel N; Ferreira, Tiago O; Siqueira Neto, M; Queiroz, Hermano M; Artur, Adriana G; Mendonça, Eduardo De S; Silva, Ebenezer De O; Otero, Xosé L

    2016-01-15

    The soil attributes controlling the CO2, and CH4 emissions were assessed in semiarid mangrove soils (NE-Brazil) under different anthropogenic activities. Soil samples were collected from different mangroves under different anthropogenic impacts, e.g., shrimp farming (Jaguaribe River); urban wastes (Cocó River) and a control site (Timonha River). The sites were characterized according to the sand content; physicochemical parameters (Eh and pH); total organic C; soil C stock (SCS) and equivalent SCS (SCSEQV); total P and N; dissolved organic C (DOC); and the degree of pyritization (DOP). The CO2 and CH4 fluxes from the soils were assessed using static closed chambers. Higher DOC and SCS and the lowest DOP promote greater CO2 emission. The CH4 flux was only observed at Jaguaribe which presented higher DOP, compared to that found in mangroves from humid tropical climates. Semiarid mangrove soils cannot be characterized as important greenhouse gas sources, compared to humid tropical mangroves.

  20. Abundance and Diversity of CO2-Assimilating Bacteria and Algae Within Red Agricultural Soils Are Modulated by Changing Management Practice.

    Science.gov (United States)

    Yuan, Hongzhao; Ge, Tida; Chen, Xiangbi; Liu, Shoulong; Zhu, Zhenke; Wu, Xiaohong; Wei, Wenxue; Whiteley, Andrew Steven; Wu, Jinshui

    2015-11-01

    Elucidating the biodiversity of CO(2)-assimilating bacterial and algal communities in soils is important for obtaining a mechanistic view of terrestrial carbon sinks operating at global scales. "Red" acidic soils (Orthic Acrisols) cover large geographic areas and are subject to a range of management practices, which may alter the balance between carbon dioxide production and assimilation through changes in microbial CO(2)-assimilating populations. Here, we determined the abundance and diversity of CO(2)-assimilating bacteria and algae in acidic soils using quantitative PCR and terminal restriction fragment length polymorphism (T-RFLP) of the cbbL gene, which encodes the key CO(2) assimilation enzyme (ribulose-1,5-bisphosphate carboxylase/oxygenase) in the Calvin cycle. Within the framework of a long-term experiment (Taoyuan Agro-ecosystem, subtropical China), paddy rice fields were converted in 1995 to four alternative land management regimes: natural forest (NF), paddy rice (PR), maize crops (CL), and tea plantations (TP). In 2012 (17 years after land use transformation), we collected and analyzed the soils from fields under the original and converted land management regimes. Our results indicated that fields under the PR soil management system harbored the greatest abundance of cbbL copies (4.33 × 10(8) copies g(-1) soil). More than a decade after converting PR soils to natural, rotation, and perennial management systems, a decline in both the diversity and abundance of cbbL-harboring bacteria and algae was recorded. The lowest abundance of bacteria (0.98 × 10(8) copies g(-1) soil) and algae (0.23 × 10(6) copies g(-1) soil) was observed for TP soils. When converting PR soil management to alternative management systems (i.e., NF, CL, and TP), soil edaphic factors (soil organic carbon and total nitrogen content) were the major determinants of bacterial autotrophic cbbL gene diversity. In contrast, soil phosphorus concentration was the major regulator

  1. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions.

    Science.gov (United States)

    Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong

    2011-08-15

    Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.

  2. Measuring priming using 14C of respired CO2: effects on respiration source pools and interactions with warming

    Science.gov (United States)

    Hopkins, F. M.; Trumbore, S.

    2011-12-01

    The role of substrate availability on soil carbon turnover is a critical unknown in predicting future soil carbon stocks. Substrate composition and availability can be altered by land cover change, warming, and nitrogen deposition, which can in turn affect soil carbon stocks through the priming effect. In particular, little is understood about the interaction between warming and changing substrate concentration. We examined the interactions between global change factors and the priming effect using sucrose addition to incubations of soils from two forest Free Air CO2 Enrichment (FACE) sites (Duke and Aspen). In addition to the in situ global change manipulations conducted at these sites, the CO2 fertilization procedure over the decade-long experiment labeled soil carbon pools with fossil-derived carbon (depleted in 14C relative to the background isotope content of soil carbon), allowing us to determine the effect of priming on respiration of soil carbon substrates of different ages. Thus, we used the carbon-13 signature of sucrose-derived CO2 to account for losses of substrate C, and the carbon-14 signature to partition fluxes of soil-derived CO2 between pre-FACE (> 10 y) and FACE derived (stocks, differences in the source of the priming effect between the two sites may be due to inherent differences in the relative role of stabilization factors within the soil carbon stock.

  3. 14CO2 analysis of soil gas: Evaluation of sample size limits and sampling devices

    Science.gov (United States)

    Wotte, Anja; Wischhöfer, Philipp; Wacker, Lukas; Rethemeyer, Janet

    2017-12-01

    Radiocarbon (14C) analysis of CO2 respired from soils or sediments is a valuable tool to identify different carbon sources. The collection and processing of the CO2, however, is challenging and prone to contamination. We thus continuously improve our handling procedures and present a refined method for the collection of even small amounts of CO2 in molecular sieve cartridges (MSCs) for accelerator mass spectrometry 14C analysis. Using a modified vacuum rig and an improved desorption procedure, we were able to increase the CO2 recovery from the MSC (95%) as well as the sample throughput compared to our previous study. By processing series of different sample size, we show that our MSCs can be used for CO2 samples of as small as 50 μg C. The contamination by exogenous carbon determined in these laboratory tests, was less than 2.0 μg C from fossil and less than 3.0 μg C from modern sources. Additionally, we tested two sampling devices for the collection of CO2 samples released from soils or sediments, including a respiration chamber and a depth sampler, which are connected to the MSC. We obtained a very promising, low process blank for the entire CO2 sampling and purification procedure of ∼0.004 F14C (equal to 44,000 yrs BP) and ∼0.003 F14C (equal to 47,000 yrs BP). In contrast to previous studies, we observed no isotopic fractionation towards lighter δ13C values during the passive sampling with the depth samplers.

  4. Leaf Cutter Ant (Atta cephalotes) Soil Modification and In Situ CO2 Gas Dynamics in a Neotropical Wet Forest

    Science.gov (United States)

    Fernandez Bou, A. S.; Carrasquillo Quintana, O.; Dierick, D.; Harmon, T. C.; Johnson, S.; Schwendenmann, L.; Zelikova, T. J.

    2016-12-01

    The goal of this work is to advance our understanding of soil carbon cycling in highly productive neotropical wet forests. More specifically, we are investigating the influence of leaf cutter ants (LCA) on soil CO2 gas dynamics in primary and secondary forest soils at La Selva Biological Station, Costa Rica. LCA are the dominant herbivore in tropical Americas, responsible for as much as 50% of the total herbivory. Their presence is increasing and their range is expanding because of forest fragmentation and other human impacts. We installed gas sampling wells in LCA (Atta cephalotes) nest and control sites (non-nests in the same soil and forest settings). The experimental design encompassed land cover (primary and secondary forest) and soil type (residual and alluvial). We collected gas samples monthly over an 18-month period. Several of the LCA nests were abandoned during this period. Nevertheless, we continued to sample these sites for LCA legacy effects. In several of the sites, we also installed sensors to continuously monitor soil moisture content, temperature, and CO2 levels. Within the 18-month period we conducted a 2-month field campaign to collect soil and nest vent CO2 efflux data from 3 of the nest-control pairs. Integrating the various data sets, we observed that for most of the sites nest and control soils behaved similarly during the tropical dry season. However, during the wet season gas well CO2 concentrations increased in the control sites while levels in the nests remained at dry season levels. This outcome suggests that ants modify soil gas transport properties (e.g., tortuosity). In situ time series and efflux sampling campaign data corroborated these findings. Abandoned nest CO2 levels were similar to those of the active nests, supporting the notion of a legacy effect from LCA manipulations. For this work, the period of abandonment was relatively short (several months to 1 year maximum), which appears to be insufficient for estimating the

  5. Simulation with models of increasing complexity of CO2 emissions and nitrogen mineralisation, after soil application of labelled pig slurry and maize stalks

    Science.gov (United States)

    Bechini, Luca; Marino Gallina, Pietro; Geromel, Gabriele; Corti, Martina; Cavalli, Daniele

    2015-04-01

    High amounts of nitrogen are available per unit area in regions with intensive livestock operations. In swine farms, pig slurries are frequently incorporated in the soil together with maize stalks. Simulation models may help to understand nitrogen dynamics associated with animal manure and crop residue decomposition in the soil, and to support the definition of best management practices. The objective of this work was to test the ability of different models to simulate CO2 emissions and nitrogen mineralisation during a laboratory incubation (under optimal soil water content and constant temperature) of maize stalks (ST) and pig slurry (PS). A loam soil was amended with labelled (15N) or unlabelled maize stalks and pig slurries, in the presence of ammonium sulphate (AS). These treatments were established: unfertilised soil; ST15 + AS + PS; ST + AS15 + PS; and ST + AS + PS15. During 180 days, we measured CO2 emissions; microbial biomass C, N, and 15N; and soil mineral N (SMN and SM-15N). Three models of increasing complexity were calibrated using measured data. The models were two modifications of ICBM 2B/N (Kätterer and Andrén, 2001) and CN-SIM (Petersen et al., 2005). The three models simulated rather accurately the emissions of CO2 throughout the incubation period (Relative Root Mean Squared Error, RRMSE = 8-25). The simplest model (with one pool for ST and one for PS) strongly overestimated SMN immobilisation from day 3 to day 21, both in the treatments with AS15 and PS15 (RRMSE = 27-30%). The other two models represented rather well the dynamics of SMN in the soil (RRMSE = 21-25%), simulating a fast increase of nitrate concentration in the first days, and slower rates of nitrification thereafter. Worse performances were obtained with all models for the simulation of SM-15N in the treatment with ST15 (RRMSE = 64-104%): experimental data showed positive mineralization of stalk-derived N from the beginning of the incubation, while models strongly underestimated

  6. 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    Science.gov (United States)

    Singh, Upendra N.; Bai, Yingxin; Yu, Jirong

    2009-01-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam

  7. Soil-plant transfer factors of Co-60 for alfalfa lettuce and spinach

    International Nuclear Information System (INIS)

    Dumitru, Radu Octavian

    1997-01-01

    The transfer of Co-60 from soil into plants is a less studied problem. Soil-plant transfer factors for Co-60 known from literature vary by about four orders of magnitude for each kind of plants. We have calculated the average values and have determined the field of variability of the known transfer factors. These indicated us that alfalfa, lettuce and spinach have in this order the greatest absorption capacity of Co-60 from soil. We have determined the physical, chemical and mineralogical properties of the utilized soil. This is a brown reddish forest type soil. The plants have been cultivated in pots by plantlet method of Neubauer and Schneider. The results of our measurements of soil-to-plant transfer factors of 60-Co are the followings: 0.0612 ± 0.0047 for alfalfa, 0.0960 ± 0.0072 for lettuce and 0.1446 ± 0.0107 for spinach. These values prove the strong dependence of the type of soil and plant of the soil-plant transfer factors for Co-60. (author)

  8. A multichannel automated chamber system for continuous measurement of forest soil CO2 efflux

    International Nuclear Information System (INIS)

    Liang, N.; Inoue, G.; Fujinuma, Y.

    2003-01-01

    Development of a fast-response multi-chamber system for measuring soil-surface carbon dioxide efflux is described. The sixteen-chamber automated system continuously monitors surface carbon dioxide efflux at different locations within a forest ecosystem using a single infrared gas analyzer that successively measures gas samples from each of the sixteen chambers. The chambers have lids that open and close automatically, and are connected in parallel to the single carbon dioxide analyzer which is equipped with a sixteen-channel gas sampler. Air is withdrawn continuously from the inlets and outlets of each chamber and fed sequentially to the gas analyzer. Using this instrument, surface carbon dioxide efflux was measured in a 40-year old pine forest during a three-month period (February to May) in 2001. Results showed a steady increase in mean carbon dioxide efflux during the period. A statistically significant correlation between soil-surface carbon dioxide efflux and surface temperature was also established. Spatial variation of carbon dioxide efflux was found to be higher in the non-growing season than in the growing season. It was concluded that the multi-channel automated chamber system can provide large amounts of high quality data on soil carbon dioxide efflux over a large surface area and simultaneously evaluate both spatial and temporal variation. The system uses a relatively small amount of power (70 W maximum) which can be further reduced (to 15 W) by minimizing the pressure difference between inside and outside the chamber. The system requires no maintenance other than the calibration of the gas analyzer and measurement of the flow rate through the chambers. 34 refs., 8 figs

  9. Decontamination of Uranium-Contaminated Soil Sand Using Supercritical CO2 with a TBP–HNO3 Complex

    Directory of Open Access Journals (Sweden)

    Kwangheon Park

    2015-09-01

    Full Text Available An environmentally friendly decontamination process for uranium-contaminated soil sand is proposed. The process uses supercritical CO2 as the cleaning solvent and a TBP–HNO3 complex as the reagent. Four types of samples (sea sand and coarse, medium, and fine soil sand were artificially contaminated with uranium. The effects of the amount of the reagent, sand type, and elapsed time after the preparation of the samples on decontamination were examined. The extraction ratios of uranium in all of the four types of sand samples were very high when the time that elapsed after preparation was less than a few days. The extraction ratio of uranium decreased in the soil sand with a higher surface area as the elapsed time increased, indicating the possible formation of chemisorbed uranium on the surface of the samples. The solvent of supercritical CO2 seemed to be very effective in the decontamination of soil sand. However, the extraction of chemisorbed uranium in soil sand may need additional processes, such as the application of mechanical vibration and the addition of bond-breaking reagents.

  10. Effect of Wildfire on Sequoiadendron giganteum Growth and CO2 Flux

    Science.gov (United States)

    Barwegen, S.

    2016-12-01

    Due to global warming, parts of the United States are becoming drier than ever before. In 2015, we surpassed 9 million acres burned by wildfires nationally (Rice 2015). Wildfires are most common in the Western United States due to drought, and the fact that the summer months are drier than other areas such as the East Coast, so there is a higher risk for wildland fires (Donegan 2016). These high-growth forests that are more frequently burned by wildfires each year are located near mountain ranges on the west side of the United States. They are important to tourism, contain many endangered species, and need to maintain the natural cycle of fire and regrowth for the continued success of the native plant life. This project investigated the effect of burnt soil on Sequoiadendron giganteum trees. Three were grown in burnt potting soil that had been roasted over a grill for 45 minutes (which is the average destructive fire time), and the other three were the control group in unburned potting soil. We assessed growth by measuring height, color, photosynthetically active radiation (PAR), and CO2 flux to evaluate the health of the trees in the two soil conditions. We noted that after two weeks the trunks of the trees growing in burnt soil began to brown in color, and they lost leaves. Over the course of the experiment, the trees growing in burnt soil had reduced levels of photosynthesis as compared to the unburned soil (as measured by the net change in CO2 concentration in a sealed chamber over the course of fifteen minutes intervals). On average, the trees growing in burnt soil had flux rates that were 19.59 ppm CO2 /min. more than those growing in unburned soil. In the dark reactions, the burnt soil flux was 54.5 ppm CO2/min., while the unburned soil averaged 40.5 ppm CO2/min. Our results help quantify the impact of fire on delicate ecosystems that are experiencing an increase in fire activity caused by global warming.

  11. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee H.; Dobeck, Laura M.; Repasky, Kevin S.; Nehrir, Amin R.; Humphries, Seth D.; Barr, Jamie L.; Keith, Charlie J.; Shaw, Joseph A.; Rouse, Joshua H.; Cunningham, Alfred B.; Benson, Sally M.; Oldenburg, Curtis M.; Lewicki, Jennifer L.; Wells, Arthur W.; Diehl, J. R.; Strazisar, Brian; Fessenden, Julianna; Rahn, Thom A.; Amonette, James E.; Barr, Jonathan L.; Pickles, William L.; Jacobson, James D.; Silver, Eli A.; Male, Erin J.; Rauch, Henry W.; Gullickson, Kadie; Trautz, Robert; Kharaka, Yousif; Birkholzer, Jens; Wielopolski, Lucien

    2010-03-01

    A facility has been constructed to perform controlled shallow releases of CO2 at flow rates that challenge near surface detection techniques and can be scalable to desired retention rates of large scale CO2 storage projects. Preinjection measurements were made to determine background conditions and characterize natural variability at the site. Modeling of CO2 transport and concentration in saturated soil and the vadose zone was also performed to inform decisions about CO2 release rates and sampling strategies. Four releases of CO2 were carried out over the summer field seasons of 2007 and 2008. Transport of CO2 through soil, water, plants, and air was studied using near surface detection techniques. Soil CO2 flux, soil gas concentration, total carbon in soil, water chemistry, plant health, net CO2 flux, atmospheric CO2 concentration, movement of tracers, and stable isotope ratios were among the quantities measured. Even at relatively low fluxes, most techniques were able to detect elevated levels of CO2 in the soil, atmosphere, or water. Plant stress induced by CO2 was detectable above natural seasonal variations.

  12. Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification.

    Science.gov (United States)

    Rossi, Federico; Olguín, Eugenia J; Diels, Ludo; De Philippis, Roberto

    2015-01-25

    The growing concern for the increase of the global warming effects due to anthropogenic activities raises the challenge of finding novel technological approaches to stabilize CO2 emissions in the atmosphere and counteract impinging interconnected issues such as desertification and loss of biodiversity. Biological-CO2 mitigation, triggered through biological fixation, is considered a promising and eco-sustainable method, mostly owing to its downstream benefits that can be exploited. Microorganisms such as cyanobacteria, green algae and some autotrophic bacteria could potentially fix CO2 more efficiently than higher plants, due to their faster growth. Some examples of the potential of biological-CO2 mitigation are reported and discussed in this paper. In arid and semiarid environments, soil carbon sequestration (CO2 fixation) by cyanobacteria and biological soil crusts is considered an eco-friendly and natural process to increase soil C content and a viable pathway to soil restoration after one disturbance event. Another way for biological-CO2 mitigation intensively studied in the last few years is related to the possibility to perform carbon dioxide sequestration using microalgae, obtaining at the same time bioproducts of industrial interest. Another possibility under study is the exploitation of specific chemotrophic bacteria, such as Ralstonia eutropha (or picketii) and related organisms, for CO2 fixation coupled with the production chemicals such as polyhydroxyalkanoates (PHAs). In spite of the potential of these processes, multiple factors still have to be optimized for maximum rate of CO2 fixation by these microorganisms. The optimization of culture conditions, including the optimal concentration of CO2 in the provided gas, the use of metabolic engineering and of dual purpose systems for the treatment of wastewater and production of biofuels and high value products within a biorefinery concept, the design of photobioreactors in the case of phototrophs are some

  13. Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil measurements

    Energy Technology Data Exchange (ETDEWEB)

    Barba, Josep; Cueva, Alejandro; Bahn, Michael; Barron-Gafford, Greg A.; Bond-Lamberty, Benjamin; Hanson, Paul J.; Jaimes, Aline; Kulmala, Liisa; Pumpanen, Jukka; Scott, Russell L.; Wohlfahrt, Georg; Vargas, Rodrigo

    2018-02-01

    The net ecosystem exchange (NEE) is the difference between ecosystem CO2 assimilation and CO2 losses to the atmosphere. Ecosystem respiration (Reco), the efflux of CO2 from the ecosystem to the atmosphere, includes the soil-to-atmosphere carbon flux (i.e., soil respiration; Rsoil) and aboveground plant respiration. Therefore, Rsoil is a fraction of Reco and by definition has to be smaller than Reco at annual, seasonal and daily scales. However, several studies estimating Reco with the eddy covariance technique and measuring Rsoil within the footprint of the tower have reported higher Rsoil than Reco at different time scales. Here, we compare four different and contrasting ecosystems (from forest to grasslands, and from boreal to semiarid) to study whether, and under what conditions, measurements of Reco are lower than Rsoil. In general, both fluxes showed similar temporal patterns, but Reco was not consistently higher than Rsoil from daily to annual scales across sites. We identified several issues that apply for measuring NEE and measuring/upscaling Rsoil that could result in an underestimation of Reco and/or an overestimation of Rsoil. These issues are discussed based on (a) nighttime measurements of NEE, (b) Rsoil measurements, and (c) the interpretation of the functional relationships of these fluxes with temperature (i.e., Q10). We highlight that there is still a need for better integration of Rsoil with eddy covariance measurements to address challenges related to spatial and temporal variability of Reco and Rsoil.

  14. Chambers versus Relaxed Eddy Accumulation: an intercomparison study of two methods for short-term measurements of biogenic CO2 fluxes

    Science.gov (United States)

    Jasek, Alina; Zimnoch, Miroslaw; Gorczyca, Zbigniew; Chmura, Lukasz; Necki, Jaroslaw

    2014-05-01

    The presented work is a part of comprehensive study aimed at thorough characterization of carbon cycle in the urban environment of Krakow, southern Poland. In the framework of this study two independent methods were employed to quantify biogenic CO2 flux in the city: (i) closed chambers, and (ii) Relaxed Eddy Accumulation (REA). The results of a three-day intensive intercomparison campaign performed in July 2013 and utilizing both measurement methods are reported here. The chamber method is a widely used approach for measurements of gas exchange between the soil and the atmosphere. The system implemented in this study consisted of a single chamber operating in a closed-dynamic mode, combined with Vaisala CarboCAP infrared CO2 sensor in a mobile setup. An alternative flux measurement method, covering larger area is represented by REA, which is a modification of the eddy covariance method. It consists of a 3D anemometer (Gill Windmaster Pro) and the system collecting updraft and downdraft samples to 5-litre Tedlar bags. The CO2 mixing ratios in the collected samples are measured by Picarro G2101i analyzer. The setup consists of two sets of bags so that the sampling can be performed continuously with 15-min temporal resolution. A 48-hectares open meadow located close the city center was chosen as a test site for comparison of the two methods of CO2 flux measurements outlined above. In the middle of the meadow a 3-metre high tripod was installed with the anemometer and REA inlet system. For a period of 46 hours the system was measuring net CO2 flux from the surrounding area. A meteorological conditions and intensity of photosynthetically active radiation (PAR) were also recorded. In the same time, CO2 flux from several points around the REA inlet was measured with the chamber system, resulting in 93 values for both respiration and net CO2 flux. Chamber results show rather homogenous distribution of the soil CO2 flux (the mean value equal to 40.9 ± 2.2 mmol/m2h), with

  15. Arbuscular Mycorrhizal Fungi May Mitigate the Influence of a Joint Rise of Temperature and Atmospheric CO2 on Soil Respiration in Grasslands

    International Nuclear Information System (INIS)

    Vicca, S.; Zavalloni, C.; Fu, Y.S.H.; Ceulemans, R.; Nijs, I.; Janssens, I.A.; Voets, L.; Boulois, H.D.D.; Declerck, S.

    2009-01-01

    We investigated the effects of mycorrhizal colonization and future climate on roots and soil respiration (R soil) in model grassland ecosystems. We exposed artificial grassland communities on pasteurized soil (no living arbuscular mycorrhizal fungi (AMF) present) and on pasteurized soil subsequently inoculated with AMF to ambient conditions and to a combination of elevated CO 2 and temperature (future climate scenario). After one growing season, the inoculated soil revealed a positive climate effect on AMF root colonization and this elicited a significant AMF x climate scenario interaction on root biomass. Whereas the future climate scenario tended to increase root biomass in the non inoculated soil, the inoculated soil revealed a 30% reduction of root biomass under warming at elevated CO 2 (albeit not significant). This resulted in a diminished response of R soil to simulated climatic change, suggesting that AMF may contribute to an attenuated stimulation of R soil in a warmer, high CO 2 world.

  16. Contrasting effects of elevated CO2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy field.

    Science.gov (United States)

    Chen, Zhaozhi; Wang, Bingyu; Wang, Jinyang; Pan, Genxing; Xiong, Zhengqin

    2015-10-01

    Climate changes including elevated CO2 and temperature have been known to affect soil carbon (C) storage, while the effects of climate changes on the temperature sensitivity of soil organic matter (SOM) are unclear. A 365-day laboratory incubation was used to investigate the temperature sensitivity for decomposition of labile (Q 10-L) and recalcitrant (Q 10-R) SOMs by comparing the time required to decompose a given amount of C at 25 and 35 °C. Soils were collected from a paddy field that was subjected to four treatments: ambient CO2 and temperature, elevated CO2 (500 μmol/mol), enhanced temperature (+2 °C), and their combination. The results showed that the temperature sensitivity of SOM decomposition increased with increasing SOM recalcitrance in this paddy soil (Q 10-L = 2.21 ± 0.16 vs. Q 10-R = 2.78 ± 0.42; mean ± SD). Elevated CO2 and enhanced temperature showed contrasting effects on the temperature sensitivity of SOM decomposition. Elevated CO2 stimulated Q 10-R but had no effect on Q 10-L; in contrast, enhanced temperature increased Q 10-L but had no effect on Q 10-R. Furthermore, the elevated CO2 combined with enhanced temperature treatment significantly increased Q 10-L and Q 10-R by 18.9 and 10.2 %, respectively, compared to the ambient conditions. Results suggested that the responses of SOM to temperature, especially for the recalcitrant SOM pool, were altered by climate changes. The greatly enhanced temperature sensitivity of SOM decomposition by elevated CO2 and temperature indicates that more CO2 will be released to the atmosphere and losses of soil C may be even greater than that previously expected in paddy field.

  17. Preliminary assessment of the state of CO2 soil degassing on the flanks of Gede volcano (West Java, Indonesia)

    Science.gov (United States)

    Kunrat, S. L.; Schwandner, F. M.

    2013-12-01

    Gede Volcano (West Java) is part of an andesitic stratovolcano complex consisting of Pangrango in the north-west and Gede in the south-east. The last recorded eruptive activity was a phreatic subvolcanian ash eruption in 1957. Current activity is characterized by episodic swarms at 2-4 km depth, and low-temperature (~160°C) crater degassing in two distinct summit crater fumarolic areas. Hot springs occur in the saddle between the Gede and Pangrango edifice, as well as on the NE flank base. The most recent eruptive events produced pyroclastic material, their flow deposits concentrate toward the NE. A collaborative effort between the Center for Volcanology and Geological Hazard Mitigation (CVGHM), Geological Agency and the Earth Observatory of Singapore (EOS) is since 2010 aimed at upgrading the geophysical and geochemical monitoring network at Gede Volcano. To support the monitoring instrumentation upgrades under way, surveys of soil CO2 degassing have been performed on the flanks of Gede, in circular and radial traverses.The goal was to establish a spatial distribution of flank CO2 fluxes, and to allow smart siting for continuous gas monitoring stations. Crater fluxes were not surveyed, as its low-temperature hydrothermal system is likely prone to large hydraulic changes in this tropical environment, resulting in variable permeability effects that might mask signals from deeper reservoir or conduit degassing. The high precipitation intensity in the mountains of tropical Java pose challenges to this method, since soil gas permeability is largely controlled by soil moisture content. Simultaneous soil moisture measurements were undertaken. The soil CO2 surveys were carried out using a LI-8100A campaign flux chamber instrument (LICOR Biosciences, Lincoln, Nebraska). This instrument has a very precise and highly stable sensor and an atmospheric pressure equilibrator, making it highly sensitive to low fluxes. It is the far superior choice for higher precision low

  18. Preliminary estimate of CO2 budget discharged from Vulcano island

    OpenAIRE

    Inguaggiato, S.; Mazot, A.; Diliberto, I. S.; Rowet, D.; Vita, F.; Capasso, G.; Bobrowski, N.; Inguaggiato, C.; Grassa, F.

    2008-01-01

    Total CO2 output from fumaroles, soil gases, bubbling and water dissolved gases were estimated at Vulcano Island, Italy. The fumaroles output has been estimated from SO2 plume flux, while soil flux emission has been carried out through 730 CO2 fluxes measured on the island surface, performed by means of accumulation chamber method. Vulcano Island, located in the Aeolian Archipelago, is an active volcano that has been in state of solphataric activity, since the last eruption (1888-1890). At p...

  19. High temporal resolution ecosystem CH4, CO2 and H2O flux data measured with a novel chamber technique

    Science.gov (United States)

    Steenberg Larsen, Klaus; Riis Christiansen, Jesper

    2016-04-01

    switching automatically between transparent and darkened mode enabling for separation of light-sensitive and light-indifferent processes in chambers. In a pilot study we measured hourly fluxes of CO2, H2O and CH4 continuously for two weeks in Danish Calluna vulgaris (common heather) heathland (Larsen et al. 2011). We will present an analysis of the novel, high-frequency data of CH4 fluxes under light and dark conditions, assess the advantages and limitations of the experimental setup and recommend future improvements of the technology involved. References: Carter, M.S., Larsen, K.S., et al. 2012. Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands: responses to climatic and environmental changes. Biogeosciences 3739-3755. Christiansen, J.R., Korhonen, J.F.J., et al. 2011. Assessing the effects of chamber placement, manual sampling and headspace mixing on CH4 fluxes in a laboratory experiment. Plant and Soil 343, 171-185. Christiansen, J.R., Outhwaite, J., et al. 2015. Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography. Agricultural and Forest Meteorology 211-212, 48-57. Creelman, C., Nickerson, N., Risk, D., 2013. Quantifying Lateral Diffusion Error in Soil Carbon Dioxide Respiration Estimates using Numerical Modeling. Soil Science Society of America Journal 77, 699-708. Larsen, K.S., Andresen, L.C., et al. 2011. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments. Global Change Biology 17, 1884-1899. Pihlatie, M.K., Christiansen, J.R., et al. 2013. Comparison of static chambers to measure CH4 emissions from soils. Agricultural and Forest Meteorology 171-172, 124-136.

  20. The Density and Compressibility of BaCO3-SrCO3-CaCO3-K2CO3-Na2CO3-Li2CO3 Liquids: New Measurements and a Systematic Trend with Cation Field Strength

    Science.gov (United States)

    Hurt, S. M.; Lange, R. A.; Ai, Y.

    2015-12-01

    The volumetric properties of multi-component carbonate liquids are required to extend thermodynamic models that describe partial melting of the deep mantle (e.g. pMELTS; Ghiorso et al., 2003) to carbonate-bearing lithologies. Carbonate in the mantle is an important reservoir of carbon, which is released to the atmosphere as CO2 through volcanism, and thus contributes to the carbon cycle. Although MgCO3 is the most important carbonate component in the mantle, it is not possible to directly measure the 1-bar density and compressibility of MgCO3 liquid because, like other alkaline-earth carbonates, it decomposes at a temperature lower than its melting temperature. Despite this challenge, Liu and Lange (2003) and O'Leary et al. (2015) showed that the one bar molar volume, thermal expansion and compressibility of the CaCO3 liquid component could be obtained by measuring the density and sound speeds of stable liquids in the CaCO3-Li2CO3-Na2CO3-K2CO3 quaternary system at one bar. In this study, this same strategy is employed on SrCO3- and BaCO3-bearing alkali carbonate liquids. The density and sound speed of seven liquids in the SrCO3-Li2CO3-Na2CO3-K2CO3 quaternary and three liquids in the BaCO3-Li2CO3-Na2CO3-K2CO3 quaternary were measured from 739-1367K, with SrCO3 and BaCO3 concentrations ranging from 10-50 mol%. The density measurements were made using the double-bob Archimedean method and sound speeds were obtained with a frequency-sweep acoustic interferometer. The molar volume and sound speed measurements were used to calculate the isothermal compressibility of each liquid, and the results show the volumetric properties mix ideally with composition. The partial molar volume and compressibility of the SrCO3 and BaCO3 components are compared to those obtained for the CaCO3 component as a function of cation field strength. The results reveal a systematic trend that allows the partial molar volume and compressibility of the MgCO3 liquid component to be estimated.

  1. Soil gases and SAR measurements reveal hidden faults on the sliding flank of Mt. Etna (Italy)

    Science.gov (United States)

    Bonforte, Alessandro; Federico, Cinzia; Giammanco, Salvatore; Guglielmino, Francesco; Liuzzo, Marco; Neri, Marco

    2013-02-01

    From October 2008 to November 2009, soil CO2, radon and structural field surveys were performed on Mt. Etna, in order to acquire insights into active tectonic structures in a densely populated sector of the south-eastern flank of the volcano, which is involved in the flank dynamics, as highlighted by satellite data (InSAR). The studied area extends about 150 km2, in a sector of the volcano where InSAR results detected several lineaments that were not well-defined from previous geological surveys. In order to validate and better constrain these features with ground data evidences, soil CO2 and soil radon measurements were performed along transects roughly orthogonal to the newly detected faults, with measurement points spaced about 100 m. In each transect, the highest CO2 values were found very close to the lineaments evidenced by InSAR observations. Anomalous soil CO2 and radon values were also measured at old eruptive fractures. In some portions of the investigated area soil gas anomalies were rather broad over transects, probably suggesting a complex structural framework consisting of several parallel volcano-tectonic structures, instead of a single one. Soil gas measurements proved particularly useful in areas at higher altitude on Mt. Etna (i.e. above 900 m asl), where InSAR results are not very informative/are fairly limited, and allowed recognizing the prolongation of some tectonic lineaments towards the summit of the volcano. At a lower altitude on the volcanic edifice, soil gas anomalies define the active structures indicated by InSAR results prominently, down to almost the coastline and through the northern periphery of the city of Catania. Coupling InSAR with soil gas prospecting methods has thus proved to be a powerful tool in detecting hidden active structures that do not show significant field evidences.

  2. Soil CO2 CH4 and N2O fluxes from an afforested lowland raised peatbog in Scotland: implications for drainage and restoration

    Directory of Open Access Journals (Sweden)

    J. I. L. Morison

    2013-02-01

    Full Text Available The effect of tree (lodgepole pine planting with and without intensive drainage on soil greenhouse gas (GHG fluxes was assessed after 45 yr at a raised peatbog in West Flanders Moss, central Scotland. Fluxes of CO2 CH4 and N2O from the soil were monitored over a 2-yr period every 2 to 4 weeks using the static opaque chamber method in a randomised experimental block trial with the following treatments: drained and planted (DP, undrained and planted (uDP, undrained and unplanted (uDuP and for reference also from an adjoining near-pristine area of bog at East Flanders Moss (n-pris. There was a strong seasonal pattern in both CO2 and CH4 effluxes which were significantly higher in late spring and summer months because of warmer temperatures. Effluxes of N2O were low and no significant differences were observed between the treatments. Annual CH4 emissions increased with the proximity of the water table to the soil surface across treatments in the order: DP 4 m−2 yr−1, respectively. For CO2, effluxes increased in the order uDP 2 m−2 yr−1, respectively. CO2 effluxes dominated the total net GHG emission, calculated using the global warming potential (GWP of the three GHGs for each treatment (76–98%, and only in the n-pris site was CH4 a substantial contribution (23%. Based on soil effluxes only, the near pristine (n-pris peatbog had 43% higher total net GHG emission compared with the DP treatment because of high CH4 effluxes and the DP treatment had 33% higher total net emission compared with the uDP because drainage increased CO2 effluxes. Restoration is likely to increase CH4 emissions, but reduce CO2 effluxes. Our study suggests that if estimates of CO2 uptake by vegetation from similar peatbog sites were included, the total net GHG emission of restored peatbog would still be higher than that of the peatbog with trees.

  3. Measurements of 222Rn, 220Rn, and CO2 Emissions in Natural CO2 Fields in Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Kaszuba, John [Univ. of Wyoming, Laramie, WY (United States); Sims, Kenneth [Univ. of Wyoming, Laramie, WY (United States)

    2014-09-30

    An integrated field-laboratory program evaluated the use of radon and CO2 flux measurements to constrain source and timescale of CO2 fluxes in environments proximate to CO2 storage reservoirs. By understanding the type and depth of the gas source, the integrity of a CO2 storage reservoir can be assessed and monitored. The concept is based on correlations of radon and CO2 fluxes observed in volcanic systems. This fundamental research is designed to advance the science of Monitoring, Verification, and Accounting (MVA) and to address the Carbon Storage Program goal of developing and validating technologies to ensure 99 percent storage performance. Graduate and undergraduate students conducted the research under the guidance of the Principal Investigators; in doing so they were provided with training opportunities in skills required for implementing and deploying CCS technologies. Although a final method or “tool” was not developed, significant progress was made. The field program identified issues with measuring radon in environments rich in CO2. Laboratory experiments determined a correction factor to apply to radon measurements made in CO2-bearing environments. The field program also identified issues with radon and CO2-flux measurements in soil gases at a natural CO2 analog. A systematic survey of radon and CO2 flux in soil gases at the LaBarge CO2 Field in Southwest Wyoming indicates that measurements of 222Rn (radon), 220Rn (thoron), and CO2 flux may not be a robust method for monitoring the integrity of a CO2 storage reservoir. The field program was also not able to correlate radon and CO2 flux in the CO2-charged springs of the Thermopolis hydrothermal system. However, this part of the program helped to motivate the aforementioned laboratory experiments that determined

  4. Effect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil.

    Science.gov (United States)

    Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu

    2016-09-29

    Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.

  5. Variabilidade espacial da emissão de CO2 em Latossolos sob cultivo de cana-de-açúcar em diferentes sistemas de manejo Spatial variability of CO2 emission on Oxisol soils cultivated with sugar cane under different management practices

    Directory of Open Access Journals (Sweden)

    Alan R. Panosso

    2008-06-01

    Full Text Available Neste trabalho, foi determinada a estrutura da variabilidade espacial da emissão de CO2, temperatura e umidade de solos desprovidos de vegetação em duas localidades sob cultivo da cana-de-açúcar, em sistemas de manejos de cana crua e de cana queimada, no nordeste do Estado de São Paulo. A emissão de CO2 e a temperatura do solo foram registradas utilizando-se de câmara de fluxo portátil e sensor de temperatura do sistema LI-6400. A umidade foi avaliada utilizando sistema portátil TDR. A maior emissão foi observada no local sob manejo de cana queimada, com valor médio de 2,05 μmol m-2 s-1, porém a dependência espacial na emissão de CO2 foi encontrada somente na área sob manejo de cana crua. Os mapas de krigagem da emissão de CO2, temperatura e umidade do solo sob manejo de cana queimada mostraram correspondência à declividade do terreno, com as maiores emissões e temperaturas localizadas na parte mais alta, sendo as maiores umidades do solo encontradas na parte mais baixa do local estudado. Os resultados indicam correlação linear positiva da emissão de CO2 com a temperatura, e negativa com a umidade do solo somente no local com manejo de cana queimada, e não no sistema de cana crua, onde a presença de palhada certamente impede a ação direta da radiação solar e o escoamento de chuvas.In this work, it was determined the spatial variability structure of soil CO2 emission, the temperature and the soil moisture in two locations currently cultivated with sugar cane and submitted to different management systems: slash/burn and no-till, in the northeast of São Paulo State. The soil CO2 emission and the soil temperature were registered by using a portable chamber and a temperature sensor of LI-6400 system. Soil moisture was measured by a portable TDR system. The highest emission was observed in the slash and burn plot, with an average value of 2.05 μmol m-2 s-1, but spatial variability structure was observed just for the CO2

  6. Faults as Windows to Monitor Gas Seepage: Application to CO2 Sequestration and CO2-EOR

    Directory of Open Access Journals (Sweden)

    Ronald W. Klusman

    2018-03-01

    Full Text Available Monitoring of potential gas seepage for CO2 sequestration and CO2-EOR (Enhanced Oil Recovery in geologic storage will involve geophysical and geochemical measurements of parameters at depth and at, or near the surface. The appropriate methods for MVA (Monitoring, Verification, Accounting are needed for both cost and technical effectiveness. This work provides an overview of some of the geochemical methods that have been demonstrated to be effective for an existing CO2-EOR (Rangely, CA, USA and a proposed project at Teapot Dome, WY, USA. Carbon dioxide and CH4 fluxes and shallow soil gas concentrations were measured, followed by nested completions of 10-m deep holes to obtain concentration gradients. The focus at Teapot Dome was the evaluation of faults as pathways for gas seepage in an under-pressured reservoir system. The measurements were supplemented by stable carbon and oxygen isotopic measurements, carbon-14, and limited use of inert gases. The work clearly demonstrates the superiority of CH4 over measurements of CO2 in early detection and quantification of gas seepage. Stable carbon isotopes, carbon-14, and inert gas measurements add to the verification of the deep source. A preliminary accounting at Rangely confirms the importance of CH4 measurements in the MVA application.

  7. The effect of elevated CO2 and temperature on nutrient uptake by plants grown in basaltic soil

    Science.gov (United States)

    Villasenor Iribe, E.; Dontsova, K.; Juarez, S.; Le Galliard, J. F.; Chollet, S.; Llavata, M.; Massol, F.; Barré, P.; Gelabert, A.; Daval, D.; Troch, P.; Barron-Gafford, G.; Van Haren, J. L. M.; Ferrière, R.

    2017-12-01

    Mineral weathering is an important process in soil formation. The interactions between the hydrologic, geologic and atmospheric cycles often determine the rate at which weathering occurs. Elements and nutrients weathered from the soil by water can be removed from soils in the runoff and seepage, but they can also remain in situ as newly precipitated secondary minerals or in biomass as a result of plant uptake. Here we present data from an experiment that was conducted at the controlled environment facility, Ecotron Ile-de-France (Saint-Pierre-les-Nemours, France) that studied mineral weathering and plant growth in granular basaltic material with high glass content that is being used to simulate soil in large scale Biosphere 2 Landscape Evolution Observatory (LEO) project. The experiment used 3 plant types: velvet mesquite (Prosopis velutina), green spangletop (Leptochloa dubia), and alfalfa (Medicago sativa), which were grown under varying temperature and CO2 conditions. We hypothesized that plants grown under warmer, higher CO2 conditions would have larger nutrient concentrations as more mineral weathering would occur. Results of plant digestions and analysis showed that plant concentrations of lithogenic elements were significantly influenced by the plant type and were different between above- and below-ground parts of the plant. Temperature and CO2 treatment effects were less pronounced, but we observed significant temperature effect on plant uptake. A number of major and trace elements showed increase in concentration with increase in temperature at elevated atmospheric CO2. Effect was observed both in the shoots and in the roots, but more significant differences were observed in the shoots. Results presented here indicate that climate change would have strong effect on plant uptake and mobility of weathered elements during soil formation and give further evidence of interactions between abiotic and biological processes in terrestrial ecosystems.

  8. Summer fluxes of atmospheric greenhouse gases N{sub 2}O, CH{sub 4} and CO{sub 2} from mangrove soil in South China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G.C. [Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR (China); Tam, N.F.Y., E-mail: bhntam@cityu.edu.hk [Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR (China); Ye, Y. [State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian (China)

    2010-06-01

    The atmospheric fluxes of N{sub 2}O, CH{sub 4} and CO{sub 2} from the soil in four mangrove swamps in Shenzhen and Hong Kong, South China were investigated in the summer of 2008. The fluxes ranged from 0.14 to 23.83 {mu}mol m{sup -2} h{sup -1}, 11.9 to 5168.6 {mu}mol m{sup -2} h{sup -1} and 0.69 to 20.56 mmol m{sup -2} h{sup -1} for N{sub 2}O, CH{sub 4} and CO{sub 2}, respectively. Futian mangrove swamp in Shenzhen had the highest greenhouse gas fluxes, followed by Mai Po mangrove in Hong Kong. Sha Kong Tsuen and Yung Shue O mangroves in Hong Kong had similar, low fluxes. The differences in both N{sub 2}O and CH{sub 4} fluxes among different tidal positions, the landward, seaward and bare mudflat, in each swamp were insignificant. The N{sub 2}O and CO{sub 2} fluxes were positively correlated with the soil organic carbon, total nitrogen, total phosphate, total iron and NH{sub 4}{sup +}-N contents, as well as the soil porosity. However, only soil NH{sub 4}{sup +}-N concentration had significant effects on CH{sub 4} fluxes.

  9. Fluid geochemistry and soil gas fluxes (CO2-CH4-H2S) at a promissory Hot Dry Rock Geothermal System: The Acoculco caldera, Mexico

    Science.gov (United States)

    Peiffer, L.; Bernard-Romero, R.; Mazot, A.; Taran, Y. A.; Guevara, M.; Santoyo, E.

    2014-09-01

    The Acoculco caldera has been recognized by the Mexican Federal Electricity Company (CFE) as a Hot Dry Rock Geothermal System (HDR) and could be a potential candidate for developing an Enhanced Geothermal System (EGS). Apart from hydrothermally altered rocks, geothermal manifestations within the Acoculco caldera are scarce. Close to ambient temperature bubbling springs and soil degassing are reported inside the caldera while a few springs discharge warm water on the periphery of the caldera. In this study, we infer the origin of fluids and we characterize for the first time the soil degassing dynamic. Chemical and isotopic (δ18O-δD) analyses of spring waters indicate a meteoric origin and the dissolution of CO2 and H2S gases, while gas chemical and isotopic compositions (N2/He, 3He/4He, 13C, 15N) reveal a magmatic contribution with both MORB- and arc-type signatures which could be explained by an extension regime created by local and regional fault systems. Gas geothermometry results are in agreement with temperature measured during well drilling (260 °C-300 °C). Absence of well-developed water reservoir at depth impedes re-equilibration of gases upon surface. A multi-gas flux survey including CO2, CH4 and H2S measurements was performed within the caldera. Using the graphical statistical analysis (GSA) approach, CO2 flux measurements were classified in two populations. Population A, representing 95% of measured fluxes is characterized by low values (mean: 18 g m- 2 day- 1) while the remaining 5% fluxes belonging to Population B are much higher (mean: 5543 g m- 2 day- 1). This low degassing rate probably reflects the low permeability of the system, a consequence of the intense hydrothermal alteration observed in the upper 800 m of volcanic rocks. An attempt to interpret the origin and transport mechanism of these fluxes is proposed by means of flux ratios as well as by numerical modeling. Measurements with CO2/CH4 and CO2/H2S flux ratios similar to mass ratios

  10. Corn residue removal and CO2 emissions

    Science.gov (United States)

    Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) are the primary greenhouse gases (GHG) emitted from the soil due to agricultural activities. In the short-term, increases in CO2 emissions indicate increased soil microbial activity. Soil micro-organisms decompose crop residues and release...

  11. Soil efflux and total emission rates of magmatic CO2 at the horseshoe lake tree kill, mammoth mountain, California, 1995-1999

    Science.gov (United States)

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.

    2001-01-01

    We report the results of eight soil CO2 efflux surveys by the closed circulation chamber method at the Horseshoe Lake tree kill (HLTK) - the largest tree kill on Mammoth Mountain. The surveys were undertaken from 1995 to 1999 to constrain total HLTK CO2 emissions and to evaluate occasional efflux surveys as a surveillance tool for the tree kills. HLTK effluxes range from 1 to > 10,000 g m -2 day -1 (grams CO2 per square meter per day); they are not normally distributed. Station efflux rates can vary by 7-35% during the course of the 8- to 16-h surveys. Disturbance of the upper 2 cm of ground surface causes effluxes to almost double. Semivariograms of efflux spatial covariance fit exponential or spherical models; they lack nugget effects. Efflux contour maps and total CO2 emission rates based on exponential, spherical, and linear kriging models of survey data are nearly identical; similar results are also obtained with triangulation models, suggesting that the kriging models are not seriously distorted by the lack of normal efflux distributions. In addition, model estimates of total CO2 emission rates are relatively insensitive to the measurement precision of the efflux rates and to the efflux value used to separate magmatic from forest soil sources of CO2. Surveys since 1997 indicate that, contrary to earlier speculations, a termination of elevated CO2 emissions at the HLTK is unlikely anytime soon. The HLTK CO2 efflux anomaly fluctuated greatly in size and intensity throughout the 1995-1999 surveys but maintained a N-S elongation, presumably reflecting fault control of CO2 transport from depth. Total CO2 emission rates also fluctuated greatly, ranging from 46 to 136 t day-1 (metric tons CO2 per day) and averaging 93 t day-1. The large inter-survey variations are caused primarily by external (meteorological) processes operating on time scales of hours to days. The externally caused variations can mask significant changes occurring at depth; a striking example is

  12. Lack of photosynthetic or stomatal regulation after 9 years of elevated [CO2] and 4 years of soil warming in two conifer species at the alpine treeline.

    Science.gov (United States)

    Streit, Kathrin; Siegwolf, Rolf T W; Hagedorn, Frank; Schaub, Marcus; Buchmann, Nina

    2014-02-01

    Alpine treelines are temperature-limited vegetation boundaries. Understanding the effects of elevated [CO2 ] and warming on CO2 and H2 O gas exchange may help predict responses of treelines to global change. We measured needle gas exchange of Larix decidua Mill. and Pinus mugo ssp. uncinata DC trees after 9 years of free air CO2 enrichment (575 µmol mol(-1) ) and 4 years of soil warming (+4 °C) and analysed δ(13) C and δ(18) O values of needles and tree rings. Tree needles under elevated [CO2 ] showed neither nitrogen limitation nor end-product inhibition, and no down-regulation of maximal photosynthetic rate (Amax ) was found. Both tree species showed increased net photosynthetic rates (An ) under elevated [CO2 ] (L. decidua: +39%; P. mugo: +35%). Stomatal conductance (gH2O ) was insensitive to changes in [CO2 ], thus transpiration rates remained unchanged and intrinsic water-use efficiency (iWUE) increased due to higher An . Soil warming affected neither An nor gH2O . Unresponsiveness of gH2O to [CO2 ] and warming was confirmed by δ(18) O needle and tree ring values. Consequently, under sufficient water supply, elevated [CO2 ] induced sustained enhancement in An and lead to increased C inputs into this ecosystem, while soil warming hardly affected gas exchange of L. decidua and P. mugo at the alpine treeline. © 2013 John Wiley & Sons Ltd.

  13. Edaphic factors controlling summer (rainy season) greenhouse gas emissions (CO{sub 2} and CH{sub 4}) from semiarid mangrove soils (NE-Brazil)

    Energy Technology Data Exchange (ETDEWEB)

    Nóbrega, Gabriel N. [Departamento de Ciência do Solo, Escola Superior de Agricultura Luiz de Queiroz, ESALQ/USP, Av.Pádua Dias 11, Piracicaba, São Paulo 13.418-260 (Brazil); Ferreira, Tiago O., E-mail: toferreira@usp.br [Departamento de Ciência do Solo, Escola Superior de Agricultura Luiz de Queiroz, ESALQ/USP, Av.Pádua Dias 11, Piracicaba, São Paulo 13.418-260 (Brazil); Siqueira Neto, M. [Laboratório de Biogeoquímica Ambiental, Centro de Energia Nuclear na Agricultura, CENA/USP, Av. Centenário 303, Piracicaba, São Paulo 13.400-970 (Brazil); Queiroz, Hermano M.; Artur, Adriana G. [Departamento de Ciências do Solo, Universidade Federal do Ceará, UFC, Av. Mister Hull 2977, Campus do Pici, Fortaleza, Ceará 60.440-554 (Brazil); Mendonça, Eduardo De S. [Departamento de Produção Vegetal, Universidade Federal do Espírito Santo, UFES, Alto Universitário s/n, Alegre, Espírito Santo 29.500-000 (Brazil); Silva, Ebenezer De O. [Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Agroindústria Tropical, Pós Colheita, Dra. Sara Mesquita Street, 2270, Planalto Pici, Fortaleza, Ceará 60.511-110 (Brazil); and others

    2016-01-15

    The soil attributes controlling the CO{sub 2}, and CH{sub 4} emissions were assessed in semiarid mangrove soils (NE-Brazil) under different anthropogenic activities. Soil samples were collected from different mangroves under different anthropogenic impacts, e.g., shrimp farming (Jaguaribe River); urban wastes (Cocó River) and a control site (Timonha River). The sites were characterized according to the sand content; physicochemical parameters (Eh and pH); total organic C; soil C stock (SCS) and equivalent SCS (SCS{sub EQV}); total P and N; dissolved organic C (DOC); and the degree of pyritization (DOP). The CO{sub 2} and CH{sub 4} fluxes from the soils were assessed using static closed chambers. Higher DOC and SCS and the lowest DOP promote greater CO{sub 2} emission. The CH{sub 4} flux was only observed at Jaguaribe which presented higher DOP, compared to that found in mangroves from humid tropical climates. Semiarid mangrove soils cannot be characterized as important greenhouse gas sources, compared to humid tropical mangroves. - Highlights: • GHG emission was associated with different soil characteristics. • Highest CO{sub 2} emissions were found in mangroves with larger dissolved C and lower DOP. • Less CH{sub 4} flux was due to low DOP in semiarid mangrove soils.

  14. Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil.

    Science.gov (United States)

    Eykelbosh, Angela Joy; Johnson, Mark S; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions.

  15. Biochar from Sugarcane Filtercake Reduces Soil CO2 Emissions Relative to Raw Residue and Improves Water Retention and Nutrient Availability in a Highly-Weathered Tropical Soil

    Science.gov (United States)

    Eykelbosh, Angela Joy; Johnson, Mark S.; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions. PMID:24897522

  16. Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil.

    Directory of Open Access Journals (Sweden)

    Angela Joy Eykelbosh

    Full Text Available In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w. were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w. raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w. in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions.

  17. Pilot scale aided-phytoremediation of a co-contaminated soil.

    Science.gov (United States)

    Marchand, Charlotte; Mench, Michel; Jani, Yahya; Kaczala, Fabio; Notini, Peter; Hijri, Mohamed; Hogland, William

    2018-03-15

    A pilot scale experiment was conducted to investigate the aided-phytoextraction of metals and the aided-phytodegradation of petroleum hydrocarbons (PHC) in a co-contaminated soil. First, this soil was amended with compost (10% w/w) and assembled into piles (Unp-10%C). Then, a phyto-cap of Medicago sativa L. either in monoculture (MS-10%C) or co-cropped with Helianthus annuus L. as companion planting (MSHA-10%C) was sown on the topsoil. Physico-chemical parameters and contaminants in the soil and its leachates were measured at the beginning and the end of the first growth season (after five months). In parallel, residual soil ecotoxicity was assessed using the plant species Lepidium sativum L. and the earthworm Eisenia fetida Savigny, 1826, while the leachate ecotoxicity was assessed using Lemna minor L. After 5months, PH C10-C40, PAH-L, PAH-M PAH-H, Pb and Cu concentrations in the MS-10%C soil were significantly reduced as compared to the Unp-10%C soil. Metal uptake by alfalfa was low but their translocation to shoots was high for Mn, Cr, Co and Zn (transfer factor (TF) >1), except for Cu and Pb. Alfalfa in monoculture reduced electrical conductivity, total organic C and Cu concentration in the leachate while pH and dissolved oxygen increased. Alfalfa co-planting with sunflower did not affect the extraction of inorganic contaminants from the soil, the PAH (M and H) degradation and was less efficient for PH C10-C40 and PAH-L as compared to alfalfa monoculture. The co-planting reduced shoot and root Pb concentrations. The residual soil ecotoxicity after 5months showed a positive effect of co-planting on L. sativum shoot dry weight (DW) yield. However, high contaminant concentrations in soil and leachate still inhibited the L. sativum root DW yield, earthworm development, and L. minor growth rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2

    Science.gov (United States)

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris M.; Belnap, Jayne; Evans, R. David; Kuske, Cheryl R.

    2012-01-01

    Biological soil crusts (biocrusts) cover soil surfaces in many drylands globally. The impacts of 10 years of elevated atmospheric CO2 on the cyanobacteria in biocrusts of an arid shrubland were examined at a large manipulated experiment in Nevada, USA. Cyanobacteria-specific quantitative PCR surveys of cyanobacteria small-subunit (SSU) rRNA genes suggested a reduction in biocrust cyanobacterial biomass in the elevated CO2 treatment relative to the ambient controls. Additionally, SSU rRNA gene libraries and shotgun metagenomes showed reduced representation of cyanobacteria in the total microbial community. Taxonomic composition of the cyanobacteria was similar under ambient and elevated CO2 conditions, indicating the decline was manifest across multiple cyanobacterial lineages. Recruitment of cyanobacteria sequences from replicate shotgun metagenomes to cyanobacterial genomes representing major biocrust orders also suggested decreased abundance of cyanobacteria sequences across the majority of genomes tested. Functional assignment of cyanobacteria-related shotgun metagenome sequences indicated that four subsystem categories, three related to oxidative stress, were differentially abundant in relation to the elevated CO2 treatment. Taken together, these results suggest that elevated CO2 affected a generalized decrease in cyanobacteria in the biocrusts and may have favoured cyanobacteria with altered gene inventories for coping with oxidative stress.

  19. Spatial variability of soil N2O and CO2 fluxes in different topographic positions in a tropical montane forest in Kenya

    NARCIS (Netherlands)

    Arias-navarro, C.; Díaz-pinés, E.; Klatt, S.; Brandt, P.; Rufino, M.C.; Butterbach-bahl, K.; Verchot, L.V.

    2017-01-01

    Quantifying and understanding the small-scale variability of nitrous oxide (N2O) and carbon dioxide (CO2) emission are essential for reporting accurate ecosystem greenhouse gas budgets. The objective of this study was to evaluate the spatial pattern of soil CO2 and N2O emissions and their relation

  20. The influence of CO2 proceding from plant residue decomposition in the soil on isotopic ratio 13C/12c and plant development

    International Nuclear Information System (INIS)

    Martins, D.

    1987-01-01

    To determine the effect of plant incorporated in the soil on the microclimate of plant growth, an experiment was carried out in greenhouse and then under field conditions. Plant residue of C-3 crops δ 13 C = - 27.6 0 /00, was incorporated in the soil. This altered the isotopic composition of the CO 2 in soil air and in atmospheric air of soil layers adjacent to the surface. The soil air CO 2 isotopic composition showed that approximately 79% carbon was from the incorporated organic matter and 50% to 3% in O to 30 cm layers, respectively, in the atmospheric air adjacent to the surface. The isotopic ratio 13 C/ 12 C of plants cultivated in soil with incorporated organic matter was determined and it was noted that the envolved CO 2 was photosynthetically absorved by the plants during growth. CO 2 contribution from organic matter to the isotopic composition of C-4 plants varied from 33% to 13% during growth. Plants cultivated in soil with organic matter had a better development than those cultivated in natural soil. Productivity was on average 50% greater than the control plants. (author) [pt

  1. Detection of CO2 leaks from carbon capture and storage sites with combined atmospheric CO2 and O-2 measurements

    NARCIS (Netherlands)

    van Leeuwen, Charlotte; Meijer, Harro A. J.

    2015-01-01

    This paper presents a transportable instrument that simultaneously measures the CO2 and (relative) O-2 concentration of the atmosphere with the purpose to aid in the detection of CO2 leaks from CCS sites. CO2 and O-2 are coupled in most processes on earth (e.g., photosynthesis, respiration and

  2. Understorey productivity in temperate grassy woodland responds to soil water availability but not to elevated [CO2 ].

    Science.gov (United States)

    Collins, Luke; Bradstock, Ross A; Resco de Dios, Victor; Duursma, Remko A; Velasco, Sabrina; Boer, Matthias M

    2018-06-01

    Rising atmospheric [CO 2 ] and associated climate change are expected to modify primary productivity across a range of ecosystems globally. Increasing aridity is predicted to reduce grassland productivity, although rising [CO 2 ] and associated increases in plant water use efficiency may partially offset the effect of drying on growth. Difficulties arise in predicting the direction and magnitude of future changes in ecosystem productivity, due to limited field experimentation investigating climate and CO 2 interactions. We use repeat near-surface digital photography to quantify the effects of water availability and experimentally manipulated elevated [CO 2 ] (eCO 2 ) on understorey live foliage cover and biomass over three growing seasons in a temperate grassy woodland in south-eastern Australia. We hypothesised that (i) understorey herbaceous productivity is dependent upon soil water availability, and (ii) that eCO 2 will increase productivity, with greatest stimulation occurring under conditions of low water availability. Soil volumetric water content (VWC) determined foliage cover and growth rates over the length of the growing season (August to March), with low VWC (productivity. However, eCO 2 did not increase herbaceous cover and biomass over the duration of the experiment, or mitigate the effects of low water availability on understorey growth rates and cover. Our findings suggest that projected increases in aridity in temperate woodlands are likely to lead to reduced understorey productivity, with little scope for eCO 2 to offset these changes. © 2018 John Wiley & Sons Ltd.

  3. [Effects of elevated atmospheric CO2 and nitrogen application on cotton biomass, nitrogen utilization and soil urease activity].

    Science.gov (United States)

    Lyu, Ning; Yin, Fei-hu; Chen, Yun; Gao, Zhi-jian; Liu, Yu; Shi, Lei

    2015-11-01

    In this study, a semi-open-top artificial climate chamber was used to study the effect of CO2 enrichment (360 and 540 µmol · mol(-1)) and nitrogen addition (0, 150, 300 and 450 kg · hm(-2)) on cotton dry matter accumulation and distribution, nitrogen absorption and soil urease activity. The results showed that the dry matter accumulation of bud, stem, leaf and the whole plant increased significantly in the higher CO2 concentration treatment irrespective of nitrogen level. The dry matter of all the detected parts of plant with 300 kg · hm(-2) nitrogen addition was significantly higher than those with the other nitrogen levels irrespective of CO2 concentration, indicating reasonable nitrogen fertilization could significantly improve cotton dry matter accumulation. Elevated CO2 concentration had significant impact on the nitrogen absorption contents of cotton bud and stem. Compared to those under CO2 concentration of 360 µmol · mol(-1), the nitrogen contents of bud and stem both increased significantly under CO2 concentration of 540 µmol · mol(-1). The nitrogen content of cotton bud in the treatment of 300 kg · hm(-2) nitrogen was the highest among the four nitrogen fertilizer treatments. While the nitrogen contents of cotton stem in the treatments of 150 kg · hm(-2) and 300 kg · hm(-2) nitrogen levels were higher than those in the treatment of 0 kg · hm(-2) and 450 kg · hm(-2) nitrogen levels. The nitrogen content of cotton leaf was significantly influenced by the in- teraction of CO2 elevation and N addition as the nitrogen content of leaf increased in the treatments of 0, 150 and 300 kg · hm(-2) nitrogen levels under the CO2 concentration of 540 µmol · mol(-1). The nitrogen content in cotton root was significantly increased with the increase of nitrogen fertilizer level under elevated CO2 (540 µmol · mol(-1)) treatment. Overall, the cotton nitrogen absorption content under the elevated CO2 (540 µmol · mol(-1)) treatment was higher than that

  4. Comparing organic versus conventional soil management on soil respiration [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bence Mátyás

    2018-03-01

    Full Text Available Soil management has great potential to affect soil respiration. In this study, we investigated the effects of organic versus conventional soil management on soil respiration.  We measured the main soil physical-chemical properties from conventional and organic managed soil in Ecuador. Soil respiration was determined using alkaline absorption according to Witkamp.  Soil properties such as organic matter, nitrogen, and humidity, were comparable between conventional and organic soils in the present study, and in a further analysis there was no statically significant correlation with soil respiration. Therefore, even though organic farmers tend to apply more organic material to their fields, but this did not result in a significantly higher CO2 production in their soils in the present study.

  5. Measurement of N2O and CH4 soil fluxes from garden, agricultural and natural soils using both closed and open chamber systems coupled with high-precision CRDS analyzer

    Science.gov (United States)

    He, Yonggang; Jacobson, Gloria; Alexander, Chris; Fleck, Derek; Hoffnagel, John; Del Campo, Bernardo; Rella, Chris

    2013-04-01

    Studying the emission and uptake of greenhouse gases from soil is essential for understanding, adapting to and ultimately mitigating the effects of climate change. To-date, majority of such studies have been focused on carbon dioxide (CO2 ) , however, in 2006 the EPA estimated that "Agricultural activities currently generate the largest share, 63 percent, of the world's anthropogenic non-carbon dioxide (non-CO2) emissions (84 percent of nitrous oxide [N2O] and 52 percent of methane[CH4]), and make up roughly 15 percent of all anthropogenic greenhouse gas emissions" (Prentice et al., 2001). Therefore, enabling accurate N2O and CH4 flux measurements in the field are clearly critical to our ability to better constrain carbon and nitrogen budgets, characterize soil sensitivities, agricultural practices, and microbial processes like denitrification and nitrification. To aide in these studies, Picarro has developed a new analyzer based on its proven, NIR technology platform, which is capable of measuring both N2O and CH4 down to ppb levels in a single, field-deployable analyzer. This analyzer measures N2O with a 1-sigma, precision of 3.5 ppb and CH4 with a 1-sigma precision of 3ppb on a 5 minute average. The instrument also has extremely low drift to enable accurate measurements with infrequent calibrations. The data rate of the analyzer is on the order of 5 seconds in order to capture fast, episodic emission events. One of the keys to making accurate CRDS measurements is to thoroughly characterize and correct for spectral interfering species. This is especially important for closed system soil chambers used on agricultural soils where a variety of soil amendments may be applied and gases not usually present in ambient air could concentrate to high levels. In this work, we present the results of analyzer interference testing and corrections completed for the interference of carbon dioxide, methane, ammonia, ethane, ethylene, acetylene, and water on N2O. In addition, we

  6. Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements

    Science.gov (United States)

    Jiang, F.; Wang, H. M.; Chen, J. M.; Machida, T.; Zhou, L. X.; Ju, W. M.; Matsueda, H.; Sawa, Y.

    2014-09-01

    Terrestrial carbon dioxide (CO2) flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002-2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the Boreal Ecosystems Productivity Simulator (BEPS) model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced (2-12%). CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements may have improved the inversion results.

  7. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand.

    Science.gov (United States)

    Hasin, Sasitorn; Ohashi, Mizue; Yamada, Akinori; Hashimoto, Yoshiaki; Tasen, Wattanachai; Kume, Tomonori; Yamane, Seiki

    2014-10-01

    Many ant species construct subterranean nests. The presence of their nests may explain soil respiration "hot spots", an important factor in the high CO2 efflux from tropical forests. However, no studies have directly measured CO2 efflux from ant nests. We established 61 experimental plots containing 13 subterranean ant species to evaluate the CO2 efflux from subterranean ant nests in a tropical seasonal forest, Thailand. We examined differences in nest CO2 efflux among ant species. We determined the effects of environmental factors on nest CO2 efflux and calculated an index of nest structure. The mean CO2 efflux from nests was significantly higher than those from the surrounding soil in the wet and dry seasons. The CO2 efflux was species-specific, showing significant differences among the 13 ant species. The soil moisture content significantly affected nest CO2 efflux, but there was no clear relationship between nest CO2 efflux and nest soil temperature. The diameter of the nest entrance hole affected CO2 efflux. However, there was no significant difference in CO2 efflux rates between single-hole and multiple-hole nests. Our results suggest that in a tropical forest ecosystem the increase in CO2 efflux from subterranean ant nests is caused by species-specific activity of ants, the nest soil environment, and nest structure.

  8. High Precision Stable Isotope Measurements of Caribic Aircraft CO{sub 2} Samples: Global Distribution and Exchange with the Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Assonov, S. S. [Max Planck Institute for Chemistry, Mainz (Germany); Joint Research Centre, Institute for Reference Materials and Measurements (JRC-IRMM), European Commission, Geel (Belgium); Brenninkmeijer, C. A.M.; Schuck, T. J. [Max Planck Institute for Chemistry, Mainz (Germany); Taylor, P. [Joint Research Centre, Institute for Reference Materials and Measurements (JRC-IRMM), European Commission, Geel (Belgium)

    2013-07-15

    In 2007-2009 JRC-IRMM, in collaboration with the project CARIBIC (Civil Aircraft for Regular Investigation of the atmosphere Based on an Instrument Container, www.caribicatmospheric. com), conducted systematic measurements aimed to study the global distribution of CO{sub 2} isotopic composition. A large data set for the upper troposphere-lowermost stratosphere and free troposphere was obtained. For the first time it is demonstrated how CO{sub 2} isotope signals reflect global scale variability in air mass origin. Tight correlations observed arise either from stratosphere/troposphere mixing or from mixing of background air and air masses affected by CO{sub 2} sources and sinks, over long distances and throughout the seasons. The high quality {delta}{sup 18}O(CO{sub 2}) data prove to be a useful tracer reflecting long range CO{sub 2} transport and also CO{sub 2} exchange with land biosphere and soils. The data provide a benchmark for future comparisons and are available for modelling studies. (author)

  9. Study on the measurement method of diffusion coefficient for radon in the soil. 2

    International Nuclear Information System (INIS)

    Iida, Takao

    2000-03-01

    To investigate radon behavior in the soil at Ningyo Pass, the radon concentrations in the soil and the radon exhalation rate from soil surface were measured by four continuous soil radon monitoring systems, soil gas sampling method, and accumulation method. The radon concentrations in the soil measured with continuous soil radon monitoring systems varied form 5000 Bq·m -3 to 15000 Bq·m -3 at 10 cm to 40 cm depth. On the other hand, the radon concentrations measured by soil gas sampling method was 15000 Bq·m -3 at 15 cm depth. The accumulation method gives the vales of 0. 36∼0.68 Bq·m -2 ·s -1 for radon exhalation rate from soil surface. To simulate the radon transport in soil, the following parameters of the soil are important: radon diffusion coefficients, dry density, wet density, soil particle density, true density, water content and radium concentration. The measured radon diffusion coefficients in the soil were (1.61±0.09)x10 -6 m 2 s -1 , (8.68±0.23)x10 -7 m 2 s -1 ∼ (1.53±0.12)x10 -6 m 2 s -1 and (2.99±0.32)x10 -6 m 2 s -1 ∼ (4.39±0.43)x10 -6 m 2 s -1 for sandy soils of the campus of Nagoya University, Tsuruga peninsula, and Ningyo Pass, respectively. By using these parameters, the radon transport phenomena in the soil of two layers were calculated by analytical and numerical methods. The radon profile calculated by numerical method agrees fairly well with measured values. By covering of 2 m soil, the radon exhalation rate decreases to 1/4 by analytical method, and 3/5 by numerical method. The covering of normal soil is not so effective for reducing the radon exhalation rate. (author)

  10. When CO2 kills: effects of magmatic CO2 flux on belowground biota at Mammoth Mountain, CA

    Science.gov (United States)

    McFarland, J.; Waldrop, M. P.; Mangan, M.

    2011-12-01

    The biomass, composition, and activity of the soil microbial community is tightly linked to the composition of the aboveground plant community. Microorganisms in aerobic surface soils, both free-living and plant-associated are largely structured by the availability of growth limiting carbon (C) substrates derived from plant inputs. When C availability declines following a catastrophic event such as the death of large swaths of trees, the number and composition of microorganisms in soil would be expected to decline and/or shift to unique microorganisms that have better survival strategies under starvation conditions. High concentrations of volcanic cold CO2 emanating from Mammoth Mountain near Horseshoe Lake on the southwestern edge of Long Valley Caldera, CA has resulted in a large kill zone of tree species, and associated soil microbial species. In July 2010, we assessed belowground microbial community structure in response to disturbance of the plant community along a gradient of soil CO2 concentrations grading from 80% (no plant life). We employed a microbial community fingerprinting technique (automated ribosomal intergenic spacer analysis) to determine changes in overall community composition for three broad functional groups: fungi, bacteria, and archaea. To evaluate changes in ectomycorrhizal fungal associates along the CO2 gradient, we harvested root tips from lodgepole pine seedlings collected in unaffected forest as well as at the leading edge of colonization into the kill zone. We also measured soil C fractions (dissolved organic C, microbial biomass C, and non-extractable C) at 10 and 30 cm depth, as well as NH4+. Not surprisingly, our results indicate a precipitous decline in soil C, and microbial C with increasing soil CO2; phospholipid fatty acid analysis in conjunction with community fingerprinting indicate both a loss of fungal diversity as well as a dramatic decrease in biomass as one proceeds further into the kill zone. This observation was

  11. Co-effects of pyrene and nitrate on the activity and abundance of soil denitrifiers under anaerobic condition.

    Science.gov (United States)

    Zhou, Zhi-Feng; Yao, Yan-Hong; Wang, Ming-Xia; Zuo, Xiao-Hu

    2017-10-01

    It has previously been confirmed that polycyclic aromatic hydrocarbons (PAHs) could be degraded by soil microbes coupling with denitrification, but the relationships among soil denitrifiers, PAHs, and nitrate under obligate anaerobic condition are still unclear. Here, co-effects of pyrene and nitrate on the activity and abundance of soil denitrifiers were investigated through a 45-day incubation experiment. Two groups of soil treatments with (N 30 ) and without (N 0 ) nitrate (30 mg kg -1 dry soil) amendment were conducted, and each group contained three treatments with different pyrene concentrations (0, 30, and 60 mg kg -1 dry soil denoted as P 0 , P 30 , and P 60 , respectively). The pyrene content, abundances of denitrification concerning genes (narG, periplasmic nitrate reductase gene; nirS, cd 1 -nitrite reductase gene; nirK, copper-containing nitrite reductase gene), and productions of N 2 O and CO 2 were measured at day 3, 14, 28, and 45, and the bacterial community structures in four represented treatments (N 0 P 0 , N 0 P 60 , N 30 P 0 , and N 30 P 60 ) were analyzed at day 45. The results indicated that the treatments with higher pyrene concentration had higher final pyrene removal rates than the treatments with lower pyrene concentration. Additionally, intensive emission of N 2 O was detected in all treatments only at day 3, but a continuous production of CO 2 was measured in each treatment during the incubation. Nitrate amendment could enhance the activity of soil denitrifiers, and be helpful for soil microbes to sustain their activity. While pyrene seemed had no influence on the productions of N 2 O and CO 2 , and amendment with pyrene or nitrate both had no obvious effect on abundances of denitrification concerning genes. Furthermore, it was nitrate but not pyrene had an obvious influence on the community structure of soil bacteria. These results revealed that, under anaerobic condition, the activity and abundance of soil denitrifiers both were

  12. ELEVATED TEMPERATURE, SOIL MOISTURE AND SEASONALITY BUT NOT CO2 AFFECT CANOPY ASSIMILATION AND SYSTEM RESPIRATION IN SEEDLING DOUGLAS-FIR ECOSYSTEMS

    Science.gov (United States)

    We investigated the effects of elevated atmospheric CO2 and air temperature on C cycling in trees and associated soil system, focusing on canopy CO2 assimilation (Asys) and system CO2 loss through respiration (Rsys). We hypothesized that both elevated CO2 and elevated temperature...

  13. Non-destructive estimates of soil carbonic anhydrase activity and associated soil water oxygen isotope composition

    Science.gov (United States)

    Jones, Sam P.; Ogée, Jérôme; Sauze, Joana; Wohl, Steven; Saavedra, Noelia; Fernández-Prado, Noelia; Maire, Juliette; Launois, Thomas; Bosc, Alexandre; Wingate, Lisa

    2017-12-01

    The contribution of photosynthesis and soil respiration to net land-atmosphere carbon dioxide (CO2) exchange can be estimated based on the differential influence of leaves and soils on budgets of the oxygen isotope composition (δ18O) of atmospheric CO2. To do so, the activity of carbonic anhydrases (CAs), a group of enzymes that catalyse the hydration of CO2 in soils and plants, needs to be understood. Measurements of soil CA activity typically involve the inversion of models describing the δ18O of CO2 fluxes to solve for the apparent, potentially catalysed, rate of CO2 hydration. This requires information about the δ18O of CO2 in isotopic equilibrium with soil water, typically obtained from destructive, depth-resolved sampling and extraction of soil water. In doing so, an assumption is made about the soil water pool that CO2 interacts with, which may bias estimates of CA activity if incorrect. Furthermore, this can represent a significant challenge in data collection given the potential for spatial and temporal variability in the δ18O of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by inferring the rate of CO2 hydration and the δ18O of soil water from the relationship between the δ18O of CO2 fluxes and the δ18O of CO2 at the soil surface measured at different ambient CO2 conditions. This approach was tested through laboratory incubations of air-dried soils that were re-wetted with three waters of different δ18O. Gas exchange measurements were made on these soils to estimate the rate of hydration and the δ18O of soil water, followed by soil water extraction to allow for comparison. Estimated rates of CO2 hydration were 6.8-14.6 times greater than the theoretical uncatalysed rate of hydration, indicating that CA were active in these soils. Importantly, these estimates were not significantly different among water treatments, suggesting

  14. Arbuscular Mycorrhizal Fungi May Mitigate the Influence of a Joint Rise of Temperature and Atmospheric CO2 on Soil Respiration in Grasslands

    Directory of Open Access Journals (Sweden)

    S. Vicca

    2009-01-01

    Full Text Available We investigated the effects of mycorrhizal colonization and future climate on roots and soil respiration (Rsoil in model grassland ecosystems. We exposed artificial grassland communities on pasteurized soil (no living arbuscular mycorrhizal fungi (AMF present and on pasteurized soil subsequently inoculated with AMF to ambient conditions and to a combination of elevated CO2 and temperature (future climate scenario. After one growing season, the inoculated soil revealed a positive climate effect on AMF root colonization and this elicited a significant AMF x climate scenario interaction on root biomass. Whereas the future climate scenario tended to increase root biomass in the noninoculated soil, the inoculated soil revealed a 30% reduction of root biomass under warming at elevated CO2 (albeit not significant. This resulted in a diminished response of Rsoil to simulated climatic change, suggesting that AMF may contribute to an attenuated stimulation of Rsoil in a warmer, high CO2 world.

  15. Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa)

    Science.gov (United States)

    Brümmer, Christian; Papen, Hans; Wassmann, Reiner; Brüggemann, Nicolas

    2009-03-01

    The contribution of West African savanna ecosystems to global greenhouse gas budgets is highly uncertain. In this study we quantified soil-atmosphere CH4 and CO2 fluxes in the southwest of Burkina Faso from June to September 2005 and from April to September 2006 at four different agricultural fields planted with sorghum (n = 2), cotton, and peanut and at a natural savanna site with termite (Cubitermes fungifaber) mounds. During the rainy season both CH4 uptake and CH4 emission were observed in the savanna, which was on average a CH4 source of 2.79 and 2.28 kg CH4-C ha-1 a-1 in 2005 and 2006, respectively. The crop sites were an average CH4 sink of -0.67 and -0.70 kg CH4-C ha-1 a-1 in the 2 years, without significant seasonal variation. Mean annual soil respiration ranged between 3.86 and 5.82 t CO2-C ha-1 a-1 in the savanna and between 2.50 and 4.51 t CO2-C ha-1 a-1 at the crop sites. CH4 emission from termite mounds was 2 orders of magnitude higher than soil CH4 emissions, whereas termite CO2 emissions were of the same order of magnitude as soil CO2 emissions. Termite CH4 and CO2 release in the savanna contributed 8.8% and 0.4% to the total soil CH4 and CO2 emissions, respectively. At the crop sites, where termite mounds had been almost completely removed because of land use change, termite fluxes were insignificant. Mound density-based upscaling of termite CH4 fluxes resulted in a global termite CH4 source of 0.9 Tg a-1, which corresponds to 0.15% of the total global CH4 budget of 582 Tg a-1, hence significantly lower than those obtained previously by biomass-based calculations. This study emphasizes that land use change, which is of high relevance in this region, has particularly affected soil CH4 fluxes in the past and might still do so in the future.

  16. [Effects of short-term elevated CO2 concentration and drought stress on the rhizosphere effects of soil carbon, nitrogen and microbes of Bothriochloa ischaemum.

    Science.gov (United States)

    Xiao, Lie; Liu, Guo Bin; Li, Peng; Xue, Sha

    2017-10-01

    A water control pot experiment was conducted in climate controlled chambers to study soil carbon, nitrogen and microbial community structure and their rhizosphere effects in the rhizosphere and non rhizosphere soil of Bothriochloa ischaemum at elevated CO2 concentrations (800 μmol·mol -1 ) under three water regimes, i.e., well watered (75%-80% of field capacity, FC), moderate drought stress (55%-60% of FC), and severe drought stress (35%-40% of FC). The results showed that elevated CO2 concentration and drought stress did not have significant impacts on the content of soil organic carbon, total nitrogen or dissolved organic carbon (DOC) in the rhizosphere and bulk soils or their rhizosphere effects. Elevated CO2 concentration significantly decreased dissolved organic nitrogen (DON) content in the rhizosphere soil under moderate drought stress, increased DOC/DON, and significantly increased the negative rhizosphere effect of DON and positive rhizosphere effect of DOC/DON. Drought stress and elevated CO2 concentration did not have significant impacts on the rhizosphere effect of total and bacterial phospholipid fatty acids (PLFA). Drought stress under elevated CO2 concentration significantly increased the G + /G - PLFA in the rhizosphere soil and decreased the G + /G - PLFA in the bulk soil, so its rhizosphere effect significantly increased, indicating that the soil microbial community changed from chemoautotroph microbes to heterotrophic microbes.

  17. Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O

    DEFF Research Database (Denmark)

    Johansen, Anders; Carter, Mette Sustmann; Jensen, Erik S.

    2013-01-01

    ) anaerobically digested cattle slurry/grass-clover, or (5) fresh grass-clover was applied to soil at arable realistic rates. Experimental unites were sequentially sampled destructively after 1, 3 and 9 days of incubation and the soil assayed for content of mineral N, available organic C, emission of CO2 and N2O......, microbial phospholipid fatty acids (biomass and community composition) and catabolic response profiling (functional diversity). Fertilizing with the anaerobically digested materials increased the soil concentration of NO3− ca. 30–40% compared to when raw cattle slurry was applied. Grass-clover contributed...... with four times more readily degradable organic C than the other materials, causing an increased microbial biomass which depleted the soil for mineral N and probably also O2. Consequently, grass-clover also caused a ∼10 times increase in emissions of CO2 and N2O greenhouse gasses compared to any...

  18. Carbon Balance at Landscape Level inferred fromTower CO2 Concentration Measurements

    Science.gov (United States)

    Chen, J. M.; Chen, B.; Higuchi, K.; Chan, D.; Shashkov, A.; Lin, H.; Liu, J.

    2003-04-01

    Terrestrial carbon sinks are considerable in the global carbon budget, but the accumulation of carbon in terrestrial ecosystems is very small (~0.2% per year) relative to the total carbon stocks in forests. Currently, eddy-covariance instruments mounted on towers are the only reliable means to measure carbon balance of a land surface, albeit limited to small areas and not free of caveats. In our quest of understanding the collective performance of ecosystems under the changing climate, it is highly desirable to have the ability to acquire carbon cycle information for large areas (landscape) consisting of patches of different ecosystems. For this purpose we explored methodologies of inferring carbon cycle information from tower CO2 concentration measurements affected by large areas (100-10000 km2). An ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS) is coupled with a carbon-specific Vertical Diffusion Scheme (VDS) in order to decipher temporal variations in CO2 for landscape-level photosynthesis and respiration information. The coupled BEPS-VDS is applied to a unique 9-year (1990-2000 with 1997-8 missing data) 5-minute CO2 record measured on a 40-m tower over boreal forests near Fraserdale, Ontario, Canada. Over the period, the mean diurnal amplitude of the measured CO2 at 40 m increased by 5.58 ppmv, or 28% in the growing season. The increase in nighttime ecosystem respiration, causing the increase in the daily maximum CO2 concentration, was responsible for 65% of the increase in the diurnal amplitude, i.e., 3.61 ppmv, corresponding to an increase in the mean daily air temperature by about 2.77 degC and precipitation by 5% over the same period. The rest (35%) is explained by the increase in ecosystem daytime photosynthesis, causing the decrease in the daily minimum CO2 concentration. As the nighttime stable boundary layer (SBL) (270-560 m) was much shallower than the daytime convective boundary layer (CBL) (1000-1600 m), the increase in

  19. CO2 and Carbon Balance of an Intensively Grazed Temperate Pasture: Response to Cultivation

    Science.gov (United States)

    Rutledge, S.; Mudge, P. L.; Wallace, D.; Campbell, D.; Wall, A.; Hosking, C. L.; Schipper, L. A.

    2012-12-01

    Recent soil resampling studies have shown that soils on flat land used for intensive dairy farming in New Zealand have lost large amounts of carbon (~1 t C ha-1y-1) over the past few decades, and the causes of these losses are poorly understood. One of the management practices potentially contributing to the C losses from these dairy soils is the periodic cultivation commonly associated with pasture renewal or the rotation through summer or winter crops. Here we report the results of three experiments aimed at quantifying the effect of cultivation as part of pasture renewal on the CO2 and C balances of permanent pastures. In the first experiment, the net ecosystem CO2 exchange (NEE) of an intensively grazed dairy pasture was measured before, during and after cultivation using eddy covariance (EC) from 2008 to 2011 at a dairy farm in the Waikato region on the North Island of New Zealand. The net ecosystem carbon balance (NECB) was determined by combining NEE data with measurements and estimates of other C imports (feed) and C exports (milk, methane, silage and leaching). The other two experiments took place on the same farm and monitored two different cultivation events in 2008. We made chamber measurements of soil CO2 losses between spraying and seedling emergence. One of the cultivations took place in summer 2008 during a drought, whereas the other took place in spring 2008 when soil water was not limiting. For the first two years of experiment 1 the site was under permanent pasture and it was a sink for both CO2 (1.6 and 2.3 t C ha-1y-1 for 2008 and 2009, respectively) and C (0.59 and 0.90 t C ha-1y-1 for 2008 and 2009, respectively), despite a severe drought in summer 2008 which had led to a loss of approximately 1.1 t C ha-1 as CO2 over the three summer months. Pasture renewal took place in March 2010 and CO2 losses during this event were approximately 1.7 t C ha-1. However, the site seemed to recover quickly and was a sink of CO2 at an annual time scale of

  20. Estimation of Corn Yield and Soil Nitrogen via Soil Electrical Conductivity Measurement Treated with Organic, Chemical and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    H. Khalilzade

    2016-02-01

    Full Text Available Introduction Around the world maize is the second crop with the most cultivated areas and amount of production, so as the most important strategic crop, have a special situation in policies, decision making, resources and inputs allocation. On the other side, negative environmental consequences of intensive consumption of agrochemicals resulted to change view concerning food production. One of the most important visions is sustainable production of enough food plus attention to social, economic and environmental aspects. Many researchers stated that the first step to achieve this goal is optimization and improvement of resources use efficiencies. According to little knowledge on relation between soil electrical conductivity and yield of maize, beside the environmental concerns about nitrogen consumption and need to replace chemical nitrogen by ecological inputs, this study designed and aimed to evaluate agroecological characteristics of corn and some soil characteristics as affected by application of organic and biological fertilizers under field conditions. Materials and Methods In order to probing the possibility of grain yield and soil nitrogen estimation via measurement of soil properties, a field experiment was conducted during growing season 2010 at Research Station, Ferdowsi University of Mashhad, Iran. A randomized complete block design (RCBD with three replications was used. Treatments included: 1- manure (30 ton ha-1, 2-vermicompost (10 ton ha-1, 3- nitroxin (containing Azotobacter sp. and Azospirillum sp., inoculation was done according to Kennedy et al., 4- nitrogen as urea (400 kg ha-1 and 5- control (without fertilizer. Studied traits were soil pH, soil EC, soil respiration rate, N content of soil and maize yield. Soil respiration rate was measured using equation 1: CO2= (V0- V× N×22 Equation 1 In which V0 is the volume of consumed acid for control treatment titration, V is of the volume of consumed acid for sample treatment

  1. Temporal and spatial heterogeneity of soil CO2 efflux in a Norway spruce stand

    Czech Academy of Sciences Publication Activity Database

    Kurajdová, Jana; Acosta, Manuel; Pavelka, Marian

    2006-01-01

    Roč. 2006, č. 19 (2006), s. 1 ISSN 1803-1013 R&D Projects: GA MŠk OC 627.001 Institutional research plan: CEZ:AV0Z60870520 Keywords : soil CO2 efflux * Norway spruce stand * temperature * spatial and temporal heterogeneity * stand density Subject RIV: ED - Physiology

  2. Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2.

    Science.gov (United States)

    Berthrong, Sean T; Yeager, Chris M; Gallegos-Graves, Laverne; Steven, Blaire; Eichorst, Stephanie A; Jackson, Robert B; Kuske, Cheryl R

    2014-05-01

    Biological nitrogen fixation is the primary supply of N to most ecosystems, yet there is considerable uncertainty about how N-fixing bacteria will respond to global change factors such as increasing atmospheric CO2 and N deposition. Using the nifH gene as a molecular marker, we studied how the community structure of N-fixing soil bacteria from temperate pine, aspen, and sweet gum stands and a brackish tidal marsh responded to multiyear elevated CO2 conditions. We also examined how N availability, specifically, N fertilization, interacted with elevated CO2 to affect these communities in the temperate pine forest. Based on data from Sanger sequencing and quantitative PCR, the soil nifH composition in the three forest systems was dominated by species in the Geobacteraceae and, to a lesser extent, Alphaproteobacteria. The N-fixing-bacterial-community structure was subtly altered after 10 or more years of elevated atmospheric CO2, and the observed shifts differed in each biome. In the pine forest, N fertilization had a stronger effect on nifH community structure than elevated CO2 and suppressed the diversity and abundance of N-fixing bacteria under elevated atmospheric CO2 conditions. These results indicate that N-fixing bacteria have complex, interacting responses that will be important for understanding ecosystem productivity in a changing climate.

  3. Retrieval of average CO2 fluxes by combining in situ CO2 measurements and backscatter lidar information

    Science.gov (United States)

    Gibert, Fabien; Schmidt, Martina; Cuesta, Juan; Ciais, Philippe; Ramonet, Michel; Xueref, IrèNe; Larmanou, Eric; Flamant, Pierre Henri

    2007-05-01

    The present paper deals with a boundary layer budgeting method which makes use of observations from various in situ and remote sensing instruments to infer regional average net ecosystem exchange (NEE) of CO2. Measurements of CO2 within and above the atmospheric boundary layer (ABL) by in situ sensors, in conjunction with a precise knowledge of the change in ABL height by lidar and radiosoundings, enable to infer diurnal and seasonal NEE variations. Near-ground in situ CO measurements are used to discriminate natural and anthropogenic contributions of CO2 diurnal variations in the ABL. The method yields mean NEE that amounts to 5 μmol m-2 s-1 during the night and -20 μmol m-2 s-1 in the middle of the day between May and July. A good agreement is found with the expected NEE accounting for a mixed wheat field and forest area during winter season, representative of the mesoscale ecosystems in the Paris area according to the trajectory of an air column crossing the landscape. Daytime NEE is seen to follow the vegetation growth and the change in the ratio diffuse/direct radiation. The CO2 vertical mixing flux during the rise of the atmospheric boundary layer is also estimated and seems to be the main cause of the large decrease of CO2 mixing ratio in the morning. The outcomes on CO2 flux estimate are compared to eddy-covariance measurements on a barley field. The importance of various sources of error and uncertainty on the retrieval is discussed. These errors are estimated to be less than 15%; the main error resulted from anthropogenic emissions.

  4. Soil greenhouse gas emissions from afforested organic soil croplands and cutaway peatlands

    International Nuclear Information System (INIS)

    Maekiranta, P.; Hytoenen, J.; Aro, L.

    2007-01-01

    The effects of land-use and land-use change on soil greenhouse gas (GHG) fluxes are of concern due to Kyoto Protocol requirements. To quantify the soil GHG-fluxes of afforested organic soils in Finland, chamber measurements of soil CO 2 , CH 4 and N 2 O fluxes were made during the years 2002 to 2005 on twelve organic soil cropland and six cutaway peatland sites afforested 9 to 35 years ago. The annual soil CO 2 effluxes were statistically modelled using soil temperature as the driving variable and the annual CH 4 and N 2 O fluxes were estimated using the average fluxes during the measurement period. Soil CO 2 effluxes on afforested organic soil croplands varied from 207 to 539 g CO 2 -C m -2 a -1 and on cutaway peatlands from 276 to 479 g CO 2 -C m -2 a -1 . Both the afforested organic soil cropland and cutaway peatland sites acted mainly as small sinks for CH 4 ; the annual flux ranged from -0.32 to 0.61 g CH 4 -C m -2 . Afforested organic croplands emitted more N 2 O (from 0.1 to over 3.0 g N 2 O-N m -2 a -1 ) than cutaway peatland sites (from 0.01 to 0.48 g N 2 O-N m -2 a -1 ). Due to the decrease in soil CO 2 efflux, and no change in CH 4 and N 2 O fluxes, afforestation of organic croplands appears to decrease the greenhouse impact of these lands. (orig.)

  5. Transversely Excited Atmospheric CO2 Laser-Induced Plasma Spectroscopy for the Detection of Heavy Metals in Soil

    Science.gov (United States)

    Khumaeni, A.; Sugito, H.; Setia Budi, W.; Yoyo Wardaya, A.

    2018-01-01

    A rapid detection of heavy metals in soil was presented by the metal-assisted gas plasma method using specific characteristics of a pulsed, transversely excited atmospheric (TEA) CO2 laser. The soil particles were placed in a hole made of acrylic plate. The sample was covered by a to prevent the soil particles from being blown off. The mesh also functioned to initiate a luminous plasma. When a TEA CO2 laser (1500 mJ, 200 ns) was focused on the soil sample, passing through the metal mesh, some of the laser energy was used to generate the gas plasma on the mesh surface, and the remaining laser energy was employed to ablate the soil particles. The fine, ablated soil particles moved into the gas plasma region to be dissociated and excited. Using this technique, analysis can be made with reduced sample pretreatment, and therefore a rapid analysis can be performed efficiently. The results proved that the signal to noise ratio (S/N) of the emission spectral lines is much better for the case of the present method (mesh method) compared to the case of standard laser-induced breakdown spectroscopy using the pellet method. Rapid detection of heavy metal elements in soil has been successfully carried out. The detection limits of Cu and Hg in soil were estimated to be 3 and 10 mg/kg, respectively. The present method has good potential for rapid and sensitive detection of heavy metals in soil samples.

  6. Effects of elevated CO2 on forest soil CH4 consumption in Changbai Mountains%CO2浓度增加对长白山森林土壤甲烷氧化影响

    Institute of Scientific and Technical Information of China (English)

    关键; 张颖; 史荣久; 李慧; 韩斯琴; 徐慧

    2012-01-01

    Elevated atmospheric CO2 concentration may affect the oxidation rate of methane ( CH4) in forest soil. In this study, the effects of a 6-year exposure to elevated CO2 concentration (500 μnol · mol-1 ) on the soil microbial process of CH4 oxidation under Quercus mongolica seedlings were investigated with open top chamber (OTC) , and specific 16S rRNA and pmoA gene fragment primers were adopted to analyze the diversity and abundance of soil methanotrophs. Comparing with that under ambient CO2 and open-air, the soil methane consumption under elevated atmospheric CO2 during growth season was reduced by 4% and 22% , respectively. The specific 16S rRNA PCR-DGGE analysis showed that under elevated CO2, the community structure of methane-oxidizing bacteria ( MOB) changed, and the diversity index decreased. Elevated CO2 concentration had no distinct effects on the abundance of Type Ⅰ MOB, but decreased the amount of Type Ⅱ MOB significantly. The pmoA gene copy number under elevated CO2 concentration decreased by 15% and 46% , respectively, as compared with that under ambient CO2 and open-air. Our results suggested that elevated atmospheric CO2 decreased the abundance and activity of soil methanotrophs, and the main cause could be the increase of soil moisture content.%大气CO2浓度升高可能对森林土壤的甲烷(CH4)氧化速率产生影响.本文采用开顶箱技术,对连续6年高浓度CO2(500 μmol·mol-1)处理的长白山森林典型树种蒙古栎树下土壤CH4氧化速率进行研究,并利用CH4氧化菌的16S rRNA特异性引物以及CH4单加氧酶功能基因引物分析了土壤中CH4氧化菌的群落结构与数量.结果表明:CO2浓度增高后,生长季土壤甲烷氧化量与对照和裸地相比分别降低了4%和22%;基于16S rRNA特异性引物的DGGE分析表明,CO2浓度增高导致两类甲烷氧化菌的多样性指数降低;CO2

  7. 地表面近傍における<14>^CO_2移行特性に関する研究

    OpenAIRE

    山外, 功太郎; Yamasoto, Koutarou; 森泉, 純; Moriizumi, Jun; 小嵐, 淳; Koarashi, Jun; 飯田, 孝夫; Iida, Takao

    2002-01-01

    Concentration of ^CO_2 and flux of ^CO_2 from the ground surface were measured at Nagoya University in October 2001. This measurements are useful to provide transport mechanism of ^CO_2 near the ground surface. Distribution of ^CO_2 suggested that transport mechanism of ^CO_2 in soil is similar to that of CO_2. Distributions of specific activity of CO_2 in soil air is obviously not uniform, and have higher value than that of atmospheric CO_2. Time variation of ^CO_2 flux ranged from 0.3×10^ t...

  8. Annual CO2 budget and seasonal CO2 exchange signals at a High Arctic permafrost site on Spitsbergen, Svalbard archipelago

    Science.gov (United States)

    Lüers, J.; Westermann, S.; Piel, K.; Boike, J.

    2014-01-01

    The annual variability of CO2 exchange in most ecosystems is primarily driven by the activities of plants and soil microorganisms. However, little is known about the carbon balance and its controlling factors outside the growing season in arctic regions dominated by soil freeze/thaw-processes, long-lasting snow cover, and several months of darkness. This study presents a complete annual cycle of the CO2 net ecosystem exchange (NEE) dynamics for a High Arctic tundra area on the west coast of Svalbard based on eddy-covariance flux measurements. The annual cumulative CO2 budget is close to zero grams carbon per square meter per year, but shows a very strong seasonal variability. Four major CO2 exchange seasons have been identified. (1) During summer (ground snow-free), the CO2 exchange occurs mainly as a result of biological activity, with a predominance of strong CO2 assimilation by the ecosystem. (2) The autumn (ground snow-free or partly snow-covered) is dominated by CO2 respiration as a result of biological activity. (3) In winter and spring (ground snow-covered), low but persistent CO2 release occur, overlain by considerable CO2 exchange events in both directions associated with changes of air masses and air and atmospheric CO2 pressure. (4) The snow melt season (pattern of snow-free and snow-covered areas), where both, meteorological and biological forcing, resulting in a visible carbon uptake by the high arctic ecosystem. Data related to this article are archived under: http://doi.pangaea.de/10.1594/PANGAEA.809507.

  9. EFFECTS OF CO2 AND O3 IN PONDEROSA PINE PLANT/LITTER/SOIL MESOCOSMS

    Science.gov (United States)

    Forested ecosysems are subjected to interacting conditions whose joint impacts may be quite different from those from single factors. To understand the impacts of CO2 and O3 on forest ecosystems, in April 1998, we initiated a four-year study of a Ponderosa pine seedling/soil/lit...

  10. Enhancement of farmland greenhouse gas emissions from leakage of stored CO{sub 2}: Simulation of leaked CO{sub 2} from CCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xueyan [Chinese Academy of Meteorological Sciences, Beijing 100-081 (China); Ma, Xin, E-mail: max@ami.ac.cn [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing (China); Laboratory of Agricultural Environment and Climate Change, Ministry of Agriculture, Beijing 100-081 (China); Wu, Yang [Engineering Consulting Centre, China Meteorological Administration, Beijing 100-081 (China); Li, Yue [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing (China); Laboratory of Agricultural Environment and Climate Change, Ministry of Agriculture, Beijing 100-081 (China)

    2015-06-15

    The effects of leaked CO{sub 2} on plant and soil constitute a key objective of carbon capture and storage (CCS) safety. The effects of leaked CO{sub 2} on trace soil gas (e.g., methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emissions in farmlands are not well-understood. This study simulated the effects of elevated soil CO{sub 2} on CH{sub 4} and N{sub 2}O through pot experiments. The results revealed that significant increases of CH{sub 4} and N{sub 2}O emissions were induced by the simulated CO{sub 2} leakages; the emission rates of CH{sub 4} and N{sub 2}O were substantial, reaching about 222 and 48 times than that of the control, respectively. The absolute global warming potentials (GWPs) of the additional CH{sub 4} and N{sub 2}O are considerable, but the cumulative GWPs of the additional CH{sub 4} and N{sub 2}O only accounted for 0.03% and 0.06%, respectively, of the cumulative amount of leaked CO{sub 2} under high leakage conditions. The results demonstrate that leakage from CCS projects may lead to additional greenhouse gas emissions from soil; however, in general, the amount of additional CH{sub 4} and N{sub 2}O emissions is negligible when compared with the amount of leaked CO{sub 2}. - Highlights: • Relationship between CO{sub 2} leakage and CH{sub 4} and N{sub 2}O emissions was examined. • Geologically stored CO{sub 2} leaking into surface soil enhances CH{sub 4} and N{sub 2}O emissions. • GWP of additional CH{sub 4} and N{sub 2}O is negligible compared with amount of leaked CO{sub 2}. • Significant increase of CH{sub 4} and N{sub 2}O emissions from soil could indicate CCS leakage.

  11. Leaf area index drives soil water availability and extreme drought-related mortality under elevated CO2 in a temperate grassland model system.

    Science.gov (United States)

    Manea, Anthony; Leishman, Michelle R

    2014-01-01

    The magnitude and frequency of climatic extremes, such as drought, are predicted to increase under future climate change conditions. However, little is known about how other factors such as CO2 concentration will modify plant community responses to these extreme climatic events, even though such modifications are highly likely. We asked whether the response of grasslands to repeat extreme drought events is modified by elevated CO2, and if so, what are the underlying mechanisms? We grew grassland mesocosms consisting of 10 co-occurring grass species common to the Cumberland Plain Woodland of western Sydney under ambient and elevated CO2 and subjected them to repeated extreme drought treatments. The 10 species included a mix of C3, C4, native and exotic species. We hypothesized that a reduction in the stomatal conductance of the grasses under elevated CO2 would be offset by increases in the leaf area index thus the retention of soil water and the consequent vulnerability of the grasses to extreme drought would not differ between the CO2 treatments. Our results did not support this hypothesis: soil water content was significantly lower in the mesocosms grown under elevated CO2 and extreme drought-related mortality of the grasses was greater. The C4 and native grasses had significantly higher leaf area index under elevated CO2 levels. This offset the reduction in the stomatal conductance of the exotic grasses as well as increased rainfall interception, resulting in reduced soil water content in the elevated CO2 mesocosms. Our results suggest that projected increases in net primary productivity globally of grasslands in a high CO2 world may be limited by reduced soil water availability in the future.

  12. Elevated CO2, not defoliation, enhances N cycling and increases short-term soil N immobilization regardless of N addition in a semiarid grassland

    Science.gov (United States)

    Elevated CO2 and defoliation effects on nitrogen (N) cycling in rangeland soils remain poorly understood. Here we tested whether effects of elevated CO2 and defoliation (clipping to 2.5 cm height) on N cycling depended on soil N availability (addition of 1 vs. 11 g N/m2) in intact mesocosms extracte...

  13. Analysis of Vertical Weighting Functions for Lidar Measurements of Atmospheric CO2 and O2

    Science.gov (United States)

    Kooi, S.; Mao, J.; Abshire, J. B.; Browell, E. V.; Weaver, C. J.; Kawa, S. R.

    2011-12-01

    Several NASA groups have developed integrated path differential absorption (IPDA) lidar approaches to measure atmospheric CO2 concentrations from space as a candidates for NASA's ASCENDS space mission. For example, the Goddard CO2 Sounder approach uses two pulsed lasers to simultaneously measure both CO2 and O2 absorption in the vertical path to the surface at a number of wavelengths across a CO2 line near 1572 nm and an O2 line doublet near 764 nm. The measurements of CO2 and O2 absorption allow computing their vertically weighted number densities and then their ratios for estimating CO2 concentration relative to dry air. Since both the CO2 and O2 densities and their absorption line-width decrease with altitude, the absorption response (or weighting function) varies with both altitude and absorption wavelength. We have used some standard atmospheres and HITRAN 2008 spectroscopy to calculate the vertical weighting functions for two CO2 lines near 1571 nm and the O2 lines near 764.7 and 1260 nm for candidate online wavelength selections for ASCENDS. For CO2, the primary candidate on-line wavelengths are 10-12 pm away from line center with the weighting function peaking in the atmospheric boundary layer to measure CO2 sources and sinks at the surface. Using another on-line wavelength 3-5 pm away from line center allows the weighting function to peak in the mid- to upper troposphere, which is sensitive to CO2 transport in the free atmosphere. The Goddard CO2 sounder team developed an airborne precursor version of a space instrument. During the summers of 2009, 2010 and 2011 it has participated in airborne measurement campaigns over a variety of different sites in the US, flying with other NASA ASCENDS lidar candidates along with accurate in-situ atmospheric sensors. All flights used altitude patterns with measurements at steps in altitudes between 3 and 13 km, along with spirals from 13 km altitude to near the surface. Measurements from in-situ sensors allowed an

  14. Measurements and modeling of absorption by CO2 + H2O mixtures in the spectral region beyond the CO2 ν3-band head

    Science.gov (United States)

    Tran, H.; Turbet, M.; Chelin, P.; Landsheere, X.

    2018-05-01

    In this work, we measured the absorption by CO2 + H2O mixtures from 2400 to 2600 cm-1 which corresponds to the spectral region beyond the ν3 band head of CO2. Transmission spectra of CO2 mixed with water vapor were recorded with a high-resolution Fourier-transform spectrometer for various pressure, temperature and concentration conditions. The continuum absorption by CO2 due to the presence of water vapor was determined by subtracting from measured spectra the contribution of local lines of both species, that of the continuum of pure CO2 as well as of the self- and CO2-continua of water vapor induced by the H2O-H2O and H2O-CO2 interactions. The obtained results are in very good agreement with the unique previous measurement (in a narrower spectral range). They confirm that the H2O-continuum of CO2 is significantly larger than that observed for pure CO2. This continuum thus must be taken into account in radiative transfer calculations for media involving CO2+ H2O mixture. An empirical model, using sub-Lorentzian line shapes based on some temperature-dependent correction factors χ is proposed which enables an accurate description of the experimental results.

  15. Pig manure vermicompost (PMVC) can improve phytoremediation of Cd and PAHs co-contaminated soil by Sedum alfredii

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Zhang, Jie; Huang, Huagang; Li, Tingqiang; Yang, Xiaoe [Zhejiang Univ., Hangzhou (China). MOE Key Laboratory of Environment Remediation and Ecosystem Health; Zhu, Zhiqiang [Zhejiang Univ., Hangzhou (China). MOE Key Laboratory of Environment Remediation and Ecosystem Health; Hainan Univ., Haikou (China). College of Agriculture; He, Zehnli [Florida Univ., Fort Pierce (United States). Indian River Research and Education Center; Alva, Ashok [U.S. Department of Agriculture, Prosser, WA (United States). Agricultural Research Service

    2012-08-15

    Purpose: A major challenge to phytoremediation of co-contaminated soils is developing strategies for efficient and simultaneous removal of multiple pollutants. A pot experiment was conducted to investigate the potential for enhanced phytoextraction of cadmium (Cd) by Sedum alfredii and dissipation of polycyclic aromatic hydrocarbons (PAHs) in co-contaminated soil by application of pig manure vermicompost (PMVC). Materials and methods: Soil contaminated by Cd (5.53 mg kg{sup -1} DW) was spiked with phenanthrene, anthracene, and pyrene together (250 mg kg{sup -1} DW for each PAH). A pot experiment was conducted in a greenhouse with four treatments: (1) soil without plants and PMVC (Control), (2) soil planted with S. alfredii (Plant), (3) soil amended with PMVC at 5 % (w/w) (PMVC), and (4) treatment 2 + 3 (Plant + PMVC). After 90 days, shoot and root biomass of plants, Cd concentrations in plant and soil, and PAH concentrations in soil were determined. Abundance of PAH degraders in soil, soil bacterial community structure and diversity, and soil enzyme activities and microbial biomass carbon were measured. Results and discussion: Application of PMVC to co-contaminated soil increased the shoot and root dry biomass of S. alfredii by 2.27- and 3.93-fold, respectively, and simultaneously increased Cd phytoextraction without inhibiting soil microbial population and enzyme activities. The highest dissipation rate of PAHs was observed in Plant + PMVC treatment. However, neither S. alfredii nor PMVC enhanced PAH dissipation when applied separately. Abundance of PAH degraders in soil was not significantly related to PAH dissipation rate. Plant + PMVC treatment significantly influenced the bacterial community structure. Enhanced PAH dissipation in the Plant + PMVC treatment could be due to the improvement of plant root growth, which may result in increased root exudates, and subsequently change bacterial community structure to be favorable for PAH dissipation. Conclusions: This

  16. The role of iron and reactive oxygen species in the production of CO2 in arctic soil waters

    Science.gov (United States)

    Trusiak, Adrianna; Treibergs, Lija A.; Kling, George W.; Cory, Rose M.

    2018-03-01

    Hydroxyl radical (radOH) is a highly reactive oxidant of dissolved organic carbon (DOC) in the environment. radOH production in the dark was observed through iron and DOC mediated Fenton reactions in natural environments. Specifically, when dissolved oxygen (O2) was added to low oxygen and anoxic soil waters in arctic Alaska, radOH was produced in proportion to the concentrations of reduced iron (Fe(II)) and DOC. Here we demonstrate that Fe(II) was the main electron donor to O2 to produce radOH. In addition to quantifying radOH production, hydrogen peroxide (H2O2) was detected in soil waters as a likely intermediate in radOH production from oxidation of Fe(II). For the first time in natural systems we detected carbon dioxide (CO2) production from radOH oxidation of DOC. More than half of the arctic soil waters tested showed production of CO2 under conditions conducive for production of radOH. Findings from this study strongly suggest that DOC is the main sink for radOH, and that radOH can oxidize DOC to yield CO2. Thus, this iron-mediated, dark chemical oxidation of DOC may be an important component of the arctic carbon cycle.

  17. Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnska jama, Slovenia

    Directory of Open Access Journals (Sweden)

    Magda Mandic

    2013-09-01

    Full Text Available Partial pressure of CO2 (pCO2 and its isotopic composition (δ13CairCO2 were measured in Postojnska jama, Slovenia, at 10 locations inside the cave and outside the cave during a one-year period. At all interior locations the pCO2 was higher and δ13CairCO2 lower than in the outside atmosphere. Strong seasonal fluctuations in both parameters were observed at locations deeper in the cave, which are isolated from the cave air circulation. By using a binary mixing model of two sources of CO2, one of them being the atmospheric CO2, we show that the excess of CO2 in the cave air has a δ13C value of -23.3 ± 0.7 ‰, in reasonable agreement with the previously measured soil-CO2 δ13C values. The stable isotope data suggest that soil CO2 is brought to the cave by drip water.

  18. Flask sample measurements for CO2, CH4 and CO using cavity ring-down spectrometry

    Science.gov (United States)

    Wang, J.-L.; Jacobson, G.; Rella, C. W.; Chang, C.-Y.; Liu, I.; Liu, W.-T.; Chew, C.; Ou-Yang, C.-F.; Liao, W.-C.; Chang, C.-C.

    2013-08-01

    In recent years, cavity ring-down spectrometry (CRDS) has been demonstrated to be a highly sensitive, stable and fast analytical technique for real-time in situ measurements of greenhouse gases. In this study, we propose the technique (which we call flask-CRDS) of analyzing whole air flask samples for CO2, CH4 and CO using a custom gas manifold designed to connect to a CRDS analyzer. Extremely stable measurements of these gases can be achieved over a large pressure range in the flask, from 175 to 760 Torr. The wide pressure range is conducive to flask sample measurement in three ways: (1) flask samples can be collected in low-pressure environments (e.g. high-altitude locations); (2) flask samples can be first analyzed for other trace gases with the remaining low-pressure sample for CRDS analysis of CO2, CH4 and CO; and (3) flask samples can be archived and re-analyzed for validation. The repeatability of this method (1σ of 0.07 ppm for CO2, 0.4 ppb for CH4, and 0.5 ppb for CO) was assessed by analyzing five canisters filled with the same air sample to a pressure of 200 Torr. An inter-comparison of the flask-CRDS data with in-situ CRDS measurements at a high-altitude mountain baseline station revealed excellent agreement, with differences of 0.10 ± 0.09 ppm (1σ) for CO2 and 0.9 ± 1.0 ppb for CH4. This study demonstrated that the flask-CRDS method was not only simple to build and operate but could also perform highly accurate and precise measurements of atmospheric CO2, CH4 and CO in flask samples.

  19. Quantification of 16S gene and its relation with the CO2 emission and soil properties in areas under management of sugarcane (Saccharum spp.)

    Science.gov (United States)

    Moitinho, Mara Regina; da Silva Bicalho, Elton; De Bortoli Teixeira, Daniel; La Scala, Newton, Jr.

    2015-04-01

    A diversity of microorganisms has an essential role in the recycling of soil chemical elements, controlling, for example, the dynamics of carbon de)ion and stabilization, and consequently the patterns of soil CO2 emission. In this sense, the objectives of this study were: (i) to estimate and compare the genetic diversity of microorganisms in soils under different sugarcane (Saccharum spp.) managements using molecular techniques based on metagenomic studies, and (ii) investigate the relationship of soil CO2 emission (FCO2) with microbiological results and soil chemical and physical properties in the evaluated managements. This study was conducted in agricultural areas located in southern Brazil, in which the following sugarcane managements were used: green and burned residues management, a sugarcane area under reform, and a native forest (used as a reference of the original soil condition). FCO2, soil temperature, and soil moisture were measured over 10 days, and at the end of the measurements soil samples were taken in order to determine the physical and chemical soil properties. The determination of the diversity of soil microorganisms was carried out by means of molecular techniques based on 16S rRNA gene sequencing. The highest mean value for FCO2 (3.25 μmol m-2s-1) was observed in the sugarcane area under reform, and the lowest values (1.85 and 1.27 μmol m-2s-1) were observed respectively in the green residue management and native forest areas. This same pattern was also observed when the 16S gene was quantified. In this case, the largest number of copies of this gene was found in the sugarcane area under reform (4.3x1010 copies of 16S rRNA gene per gram of dry soil), and its smallest number of copies was found in the green residues management area (1.7x1010 copies of 16S rRNA gene per gram of dry soil). The largest number of copies of the 16S gene associated to the highest values of FCO2, both observed in the sugarcane area under reform, could be related to

  20. Experimental Ion Mobility measurements in Ne-CO$_2$ and CO$_2$-N$_2$ mixtures

    CERN Document Server

    Encarnação, P.M.C.C.; Veenhof, R.; Neves, P.N.B.; Santos, F.P.; Trindade, A.M.F.; Borges, F.I.G.M.; Conde, C.A.N.

    2016-01-01

    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V−1s−1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V−1s−1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This secon...

  1. Carbonyl sulfide (OCS) as a proxy for GPP: Complications derived from studies on the impact of CO2, soil humidity and sterilization on the OCS exchange between soils and atmosphere

    Science.gov (United States)

    Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide is discussed to be used as a proxy for gross primary productivity (GPP) of forest ecosystems. However, soils may interfere. Soils play an important role in budgeting global and local carbonyl sulfide (OCS) fluxes, yet the available data on the uptake and emission behavior of soils in conjunction with environmental factors is limited. The work of many authors has shown that the OCS exchange of soils depends on various factors, such as soil type, atmospheric OCS concentrations, temperature or soil water content (Kesselmeier et al., J. Geophys. Res., 104, No. D9, 11577-11584, 1999; Van Diest & Kesselmeier, Biogeosciences, 5, 475-483, 2008; Masyek et al., PNAS, 111, No 25, 9064-9069, doi: 10.1073/pnas.1319132111, 2014; Whelan and Rhew, J. Geophys. Res. Biogeosciences., 120, 54-62, doi: 10.1002/2014JG002661, 2015) and the light dependent and obviously abiotic OCS production as reported by Whelan and Rhew (2015). To get a better constraint on the impact of some environmental factors on the OCS exchange of soils we used a new laser based integrated cavity output spectroscopy instrument (LGR COS/CO Analyzer Model 907-0028, Los Gatos, Mountain View, California, USA) in conjunction with an automated soil chamber system (as described in Behrendt et al, Biogeosciences, 11, 5463-5492, doi: 10.5194/bg-11-5463-2014, 2014). The OCS exchange of various soils under the full range of possible soil humidity and various CO2 mixing ratios was examined. Additionally OCS exchange of chloroform sterilized subsamples was compared to their live counterparts to illuminate the influence of microorganisms. Results were quite heterogeneous between different soils. With few exceptions, all examined soils show dependence between OCS exchange and soil humidity, usually with strongest uptake at a certain humidity range and less uptake or even emission at higher and lower humidity. Differences in CO2 mixing ratio also clearly impacts on OCS exchange, but trends for different soils

  2. Atmospheric and geogenic CO2 within the crown and root of spruce (Picea abies L. Karst.) growing in a mofette area

    Science.gov (United States)

    Vodnik, D.; Thomalla, A.; Ferlan, M.; Levanič, T.; Eler, K.; Ogrinc, N.; Wittmann, C.; Pfanz, H.

    2018-06-01

    Mofettes are often investigated in ecology, either as extreme sites, natural analogues to future conditions under climate change, or model ecosystems for environmental impact assessments of carbon capture and storage systems. Much of this research, however, inadequately addresses the complexity of the gas environment at these sites, mainly focusing on aboveground CO2-enrichment. In the current research, the gaseous environment of Norway spruce (Picea abies (L) Karst.) trees growing at the Stavešinske slepice mofette (NE Slovenia) were studied by measuring both soil ([CO2]soil) and atmospheric CO2 concentrations ([CO2]air). Within the studied site (800 m2), soil CO2 enrichment was spatially heterogeneous; about 25% of the area was characterized by very high [CO2]soil (>40%) and hypoxic conditions. Aboveground gas measurements along vertical profiles not only revealed substantially elevated [CO2]air close to the ground (height up to 1.5 m), but also in the upper heights (20-25 m; crown layer). On the basis δ13C of CO2, it was shown that elevated CO2 relates to a geogenic source. Trees grown in high [CO2]soil were characterized by decreased radial growth; the δ13C of their wood was less negative than in trees growing in normal soil. Unfavorable gaseous soil conditions should generally be accepted as being by far the most important factor affecting (i.e. disturbing) the growth of mofette trees.

  3. Measuring soil organic matter turn over and carbon stabilisation in pasture soils using 13C enrichment methodology.

    Science.gov (United States)

    Robinson, J. M.; Barker, S.; Schipper, L. A.

    2017-12-01

    Carbon storage in soil is a balance between photosynthesis and respiration, however, not all C compounds decompose equally in soil. Soil C consists of several fractions of C ranging from, accessible C (rapidly cycling) to stored or protected C (slow cycling). The key to increasing C storage is through the transfer of soil C from this accessible fraction, where it can be easily lost through microbial degradation, into the more stable fraction. With the increasing use of isotope enrichment techniques, 13C may be used to trace the movement of newly incorporated carbon in soil and examine how land management practises affect carbon storage. A laboratory method was developed to rapidly analyse soil respired CO2 for δ13C to determine the temperature sensitivity of newly incorporated 13C enriched carbon. A Horotiu silt loam (2 mm sieved, 60% MWHC) was mixed with 13C enriched ryegrass/clover plant matter in Hungate tubes and incubated for 5 hours at 20 temperatures( 4 - 50 °C) using a temperature gradient method (Robinson J. M., et al, (2017) Biogeochemistry, 13, 101-112). The respired CO2 was analysed using a modified Los Gatos, Off-axis ICOS carbon dioxide analyser. This method was able to analyse the δ13C signature of respired CO2 as long as a minimum concentration of CO2 was produced per tube. Further analysis used a two-component mixing model to separate the CO2 into source components to determine the contribution of added C and soil to total respiration. Preliminary data showed the decomposition of the two sources of C were both temperature dependant. Overall this method is a relatively quick and easy way to analyse δ13C of respired soil CO2 samples, and will allow for the testing of the effects of multiple variables on the decomposition of carbon fractions in future use.

  4. Soil CO2 efflux in three wet meadow ecosystems with different C and N status

    Czech Academy of Sciences Publication Activity Database

    Zemanová, K.; Čížková, Hana; Šantrůčková, H.

    Suppl.S, č. 9 (2008), s. 49-55 ISSN 1585-8553 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z60660521 Keywords : wet meadow * soil CO2 efflux * eutrophication Subject RIV: EH - Ecology, Behaviour Impact factor: 0.898, year: 2008

  5. Plant-soil interactions promote co-occurrence of three nonnative woody shrubs.

    Science.gov (United States)

    Kuebbing, Sara E; Classen, Aimée T; Call, Jaime J; Henning, Jeremiah A; Simberloff, Daniel

    2015-08-01

    Ecosystems containing multiple nonnative plant species are common, but mechanisms promoting their co-occurrence are understudied. Plant-soil interactions contribute to the dominance of singleton species in nonnative ranges because many nonnatives experience stronger positive feedbacks relative to co-occurring natives. Plant-soil interactions could impede other nonnatives if an individual nonnative benefits from its soil community to a greater extent than its neighboring nonnatives, as is seen with natives. However, plant-soil interactions could promote nonnative co-occurrence if a nonnative accumulates beneficial soil mutualists that also assist other nonnatives. Here, we use greenhouse and field experiments to ask whether plant-soil interactions (1) promote the codominance of two common nonnative shrubs (Ligustrum sinense and Lonicera maackii) and (2) facilitate the invasion of a less-common nonnative shrub (Rhamnus davurica) in deciduous forests of the southeastern United States. In the greenhouse, we found that two of the nonnatives, L. maackii and R. davurica, performed better in soils conditioned by nonnative shrubs compared to uninvaded forest soils, which. suggests that positive feedbacks among co-occurring nonnative shrubs can promote continued invasion of a site. In both greenhouse and field experiments, we found consistent signals that the codominance of the nonnatives L. sinense and L. maackii may be at least partially explained by the increased growth of L. sinense in L. maackii soils. Overall, significant effects of plant-soil interactions on shrub performance indicate that plant-soil interactions can potentially structure the co-occurrence patterns of these nonnatives.

  6. A new set-up for simultaneous high-precision measurements of CO2, δ13C-CO2 and δ18O-CO2 on small ice core samples

    Science.gov (United States)

    Jenk, Theo Manuel; Rubino, Mauro; Etheridge, David; Ciobanu, Viorela Gabriela; Blunier, Thomas

    2016-08-01

    Palaeoatmospheric records of carbon dioxide and its stable carbon isotope composition (δ13C) obtained from polar ice cores provide important constraints on the natural variability of the carbon cycle. However, the measurements are both analytically challenging and time-consuming; thus only data exist from a limited number of sampling sites and time periods. Additional analytical resources with high analytical precision and throughput are thus desirable to extend the existing datasets. Moreover, consistent measurements derived by independent laboratories and a variety of analytical systems help to further increase confidence in the global CO2 palaeo-reconstructions. Here, we describe our new set-up for simultaneous measurements of atmospheric CO2 mixing ratios and atmospheric δ13C and δ18O-CO2 in air extracted from ice core samples. The centrepiece of the system is a newly designed needle cracker for the mechanical release of air entrapped in ice core samples of 8-13 g operated at -45 °C. The small sample size allows for high resolution and replicate sampling schemes. In our method, CO2 is cryogenically and chromatographically separated from the bulk air and its isotopic composition subsequently determined by continuous flow isotope ratio mass spectrometry (IRMS). In combination with thermal conductivity measurement of the bulk air, the CO2 mixing ratio is calculated. The analytical precision determined from standard air sample measurements over ice is ±1.9 ppm for CO2 and ±0.09 ‰ for δ13C. In a laboratory intercomparison study with CSIRO (Aspendale, Australia), good agreement between CO2 and δ13C results is found for Law Dome ice core samples. Replicate analysis of these samples resulted in a pooled standard deviation of 2.0 ppm for CO2 and 0.11 ‰ for δ13C. These numbers are good, though they are rather conservative estimates of the overall analytical precision achieved for single ice sample measurements. Facilitated by the small sample requirement

  7. The response of soil CO2 fluxes to progressively excluding vertebrate and invertebrate herbivores depends on ecosystem type

    Science.gov (United States)

    Anita C. Risch; Alan G. Haynes; Matt D. Busse; Flurin Filli; Martin Schütz

    2013-01-01

    Grasslands support large populations of herbivores and store up to 30% of the world’s soil carbon (C). Thus, herbivores likely play an important role in the global C cycle. However, most studies on how herbivory impacts the largest source of C released from grassland soils—soil carbon dioxide (CO2) emissions—only considered the role of large...

  8. Measurement of CO{sub 2}, CO, SO{sub 2}, and NO emissions from coal-based thermal power plants in India

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, N.; Mukheriee, I.; Santra, A.K.; Chowdhury, S.; Chakraborty, S.; Bhattacharya, S.; Mitra, A.P.; Sharma, C. [Jadavpur University, Calcutta (India). Dept. of Power Engineering

    2008-02-15

    Measurements of CO{sub 2} (direct GHG) and CO, SO{sub 2}, NO (indirect GHGs) were conducted on-line at some of the coal-based thermal power plants in India. The objective of the study was three-fold: to quantify the measured emissions in terms of emission coefficient per kg of coal and per kWh of electricity, to calculate the total possible emission from Indian thermal power plants, and subsequently to compare them with some previous studies. Instrument IMR 2800P Flue Gas Analyzer was used on-line to measure the emission rates Of CO{sub 2}, CO, SO{sub 2}, and NO at 11 numbers of generating units of different ratings. Certain quality assurance (QA) and quality control (QC) techniques were also adopted to gather the data so as to avoid any ambiguity in subsequent data interpretation. For the betterment of data interpretation, the requisite statistical parameters (standard deviation and arithmetic mean) for the measured emissions have been also calculated. The emission coefficients determined for CO{sub 2}, CO, SO{sub 2}, and NO have been compared with their corresponding values as obtained in the studies conducted by other groups. The total emissions of CO{sub 2}, CO, SO{sub 2}, and NO calculated on the basis of the emission coefficients for the year 2003-2004 have been found to be 465.667, 1.583, 4.058, and 1.129 Tg, respectively.

  9. Soil application of an encapsulated CO2 source and its potential for management of western corn rootworm larvae.

    Science.gov (United States)

    Schumann, M; Patel, A; Vidal, S

    2014-02-01

    Western corn rootworm (Diabrotica virgifera virgifera LeConte) larvae use carbon dioxide (CO2) to locate the roots of their hosts. This study investigated whether an encapsulated CO2 source (CO2-emitting capsules) is able to outcompete CO2 gradients established by corn root respiration in the soil. Furthermore, the following two management options with the capsules were tested in semifield experiments (0.5- to 1-m2 greenhouse plots): the disruption of host location and an "attract-and-kill" strategy in which larvae were lured to a soil insecticide (Tefluthrin) between the corn rows. The attract-and-kill strategy was compared with an application of Tefluthrin in the corn rows (conventional treatment) at 33 and 18% of the standard field application rate. Application of the CO2-emitting capsules 30 cm from the plant base increased CO2 levels near the application point for up to 20 d with a peak at day 10. Both the disruption of host location and an attract-and-kill strategy caused a slight but nonsignificant reduction in larval densities. The disruption of host location caused a 17% reduction in larval densities, whereas an attract-and-kill strategy with Tefluthrin added at 33 and 18% of the standard application rate caused a 24 and 27% reduction in larval densities, respectively. As presently formulated, the CO2-emitting capsules, either with or without insecticide, do not provide adequate control of western corn rootworm.

  10. Long-term C-CO2 emissions and carbon crop residue mineralization in an oxisol under different tillage and crop rotation systems

    Directory of Open Access Journals (Sweden)

    Ben-Hur Costa de Campos

    2011-06-01

    Full Text Available Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM. The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification, mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a conventional tillage (CT and (b no tillage (NT in combination with three cropping systems: (a R0- monoculture system (soybean/wheat, (b R1- winter crop rotation (soybean/wheat/soybean/black oat, and (c R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat. The soil C-CO2 efflux was measured every 14 days for two years (48 measurements, by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between

  11. Diffuse CO2 degassing at Vesuvio, Italy

    Science.gov (United States)

    Frondini, Francesco; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Granieri, Domenico; Ventura, Guido

    2004-10-01

    At Vesuvio, a significant fraction of the rising hydrothermal-volcanic fluids is subjected to a condensation and separation process producing a CO2-rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic-hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d-1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d-1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d-1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.

  12. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Directory of Open Access Journals (Sweden)

    H. Jamali

    2013-04-01

    Full Text Available We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the

  13. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Science.gov (United States)

    Jamali, H.; Livesley, S. J.; Hutley, L. B.; Fest, B.; Arndt, S. K.

    2013-04-01

    We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e) basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past) would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but

  14. Experimental warming in a dryland community reduced plant photosynthesis and soil CO2 efflux although the relationship between the fluxes remained unchanged

    Science.gov (United States)

    Wertin, Timothy M.; Belnap, Jayne; Reed, Sasha C.

    2016-01-01

    1. Drylands represent our planet's largest terrestrial biome and, due to their extensive area, maintain large stocks of carbon (C). Accordingly, understanding how dryland C cycling will respond to climate change is imperative for accurately forecasting global C cycling and future climate. However, it remains difficult to predict how increased temperature will affect dryland C cycling, as substantial uncertainties surround the potential responses of the two main C fluxes: plant photosynthesis and soil CO2 efflux. In addition to a need for an improved understanding of climate effects on individual dryland C fluxes, there is also notable uncertainty regarding how climate change may influence the relationship between these fluxes.2. To address this important knowledge gap, we measured a growing season's in situphotosynthesis, plant biomass accumulation, and soil CO2 efflux of mature Achnatherum hymenoides (a common and ecologically important C3 bunchgrass growing throughout western North America) exposed to ambient or elevated temperature (+2°C above ambient, warmed via infrared lamps) for three years.3. The 2°C increase in temperature caused a significant reduction in photosynthesis, plant growth, and soil CO2 efflux. Of important note, photosynthesis and soil respiration appeared tightly coupled and the relationship between these fluxes was not altered by the elevated temperature treatment, suggesting C fixation's strong control of both above-ground and below-ground dryland C cycling. Leaf water use efficiency was substantially increased in the elevated temperature treatment compared to the control treatment.4. Taken together, our results suggest notable declines in photosynthesis with relatively subtle warming, reveal strong coupling between above- and below-ground C fluxes in this dryland, and highlight temperature's strong effect on fundamental components of dryland C and water cycles.

  15. Enhancement of farmland greenhouse gas emissions from leakage of stored CO2: simulation of leaked CO2 from CCS.

    Science.gov (United States)

    Zhang, Xueyan; Ma, Xin; Wu, Yang; Li, Yue

    2015-06-15

    The effects of leaked CO2 on plant and soil constitute a key objective of carbon capture and storage (CCS) safety. The effects of leaked CO2 on trace soil gas (e.g., methane (CH4) and nitrous oxide (N2O) emissions in farmlands are not well-understood. This study simulated the effects of elevated soil CO2 on CH4 and N2O through pot experiments. The results revealed that significant increases of CH4 and N2O emissions were induced by the simulated CO2 leakages; the emission rates of CH4 and N2O were substantial, reaching about 222 and 48 times than that of the control, respectively. The absolute global warming potentials (GWPs) of the additional CH4 and N2O are considerable, but the cumulative GWPs of the additional CH4 and N2O only accounted for 0.03% and 0.06%, respectively, of the cumulative amount of leaked CO2 under high leakage conditions. The results demonstrate that leakage from CCS projects may lead to additional greenhouse gas emissions from soil; however, in general, the amount of additional CH4 and N2O emissions is negligible when compared with the amount of leaked CO2. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Emission of CO2 from the arable soils polluted by heavy metals of Baikal forest-steppe region

    International Nuclear Information System (INIS)

    Semenova, Yu.V.; Pomazkina, L.V.

    2008-01-01

    The influence of arable soil contamination by heavy metals on C0 2 emission in Lake Baikal region had been studied during the period from 1992 till 2005. It was shown, that the way of agroecosystems response on technogenic impact vary from year to year following the changes in both the temperature and humidity. The contamination mostly resulted in soil organic matter mineralization increase and, consequently, increased carbon losses in the form of CO 2 .

  17. N2O, NO, N2 and CO2 emissions from tropical savanna and grassland of northern Australia: an incubation experiment with intact soil cores

    Science.gov (United States)

    Werner, C.; Reiser, K.; Dannenmann, M.; Hutley, L. B.; Jacobeit, J.; Butterbach-Bahl, K.

    2014-11-01

    Strong seasonal variability of hygric and thermal soil conditions are a defining environmental feature in northern Australia. However, how such changes affect the soil-atmosphere exchange of nitrous oxide (N2O), nitric oxide (NO) and dinitrogen (N2) is still not well explored. By incubating intact soil cores from four sites (three savanna, one pasture) under controlled soil temperatures (ST) and soil moisture (SM) we investigated the release of the trace gas fluxes of N2O, NO and carbon dioxide (CO2). Furthermore, the release of N2 due to denitrification was measured using the helium gas flow soil core technique. Under dry pre-incubation conditions NO and N2O emissions were very low (soil uptake was observed. Substantial NO (max: 306.5 μg N m-2 h-1) and relatively small N2O pulse emissions (max: 5.8 ± 5.0 μg N m-2 h-1) were recorded following soil wetting, but these pulses were short lived, lasting only up to 3 days. The total atmospheric loss of nitrogen was generally dominated by N2 emissions (82.4-99.3% of total N lost), although NO emissions contributed almost 43.2% to the total atmospheric nitrogen loss at 50% SM and 30 °C ST incubation settings (the contribution of N2 at these soil conditions was only 53.2%). N2O emissions were systematically higher for 3 of 12 sample locations, which indicates substantial spatial variability at site level, but on average soils acted as weak N2O sources or even sinks. By using a conservative upscale approach we estimate total annual emissions from savanna soils to average 0.12 kg N ha-1 yr-1 (N2O), 0.68 kg N ha-1 yr-1 (NO) and 6.65 kg N ha-1 yr-1 (N2). The analysis of long-term SM and ST records makes it clear that extreme soil saturation that can lead to high N2O and N2 emissions only occurs a few days per year and thus has little impact on the annual total. The potential contribution of nitrogen released due to pulse events compared to the total annual emissions was found to be of importance for NO emissions

  18. Measurement and modelling of CO2 flux from a drained fen peatland cultivated with reed canary grass and spring barley

    DEFF Research Database (Denmark)

    Kandel, Tanka Prasad; Elsgaard, Lars; Lærke, Poul Erik

    2013-01-01

    Cultivation of bioenergy crops has been suggested as a promising option for reduction of greenhouse gas (GHG) emissions from arable organic soils (Histosols). Here, we report the annual net ecosystem exchange (NEE) fluxes of CO2 as measured with a dynamic closed chamber method at a drained fen......-C m−2 in RCG and SB plots, respectively, with Rfb accounting for 32 and 22% respectively. Total estimated annual GP was −1818 ± 42 and −1329 ± 66 g CO2-C m−2 in RCG and SB plots leading to a NEE of 69 ± 36 g CO2-C m−2 yr−1 in RCG plots (i.e., a weak net source) and −41 ± 47 g CO2-C m−2 yr−1 in SB...

  19. The rapid measurement of soil carbon stock using near-infrared technology

    Science.gov (United States)

    Kusumo, B. H.; Sukartono; Bustan

    2018-03-01

    As a soil pool stores carbon (C) three times higher than an atmospheric pool, the depletion of C stock in the soil will significantly increase the concentration of CO2 in the atmosphere, causing global warming. However, the monitoring or measurement of soil C stock using conventional procedures is time-consuming and expensive. So it requires a rapid and non-destructive technique that is simple and does not need chemical substances. This research is aimed at testing whether near-infrared (NIR) technology is able to rapidly measure C stock in the soil. Soil samples were collected from an agricultural land at the sub-district of Kayangan, North Lombok, Indonesia. The coordinates of the samples were recorded. Parts of the samples were analyzed using conventional procedure (Walkley and Black) and some other parts were scanned using near-infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) was used to develop models from soil C data measured by conventional analysis and from spectral data scanned by NIRS. The best model was moderately successful to measure soil C stock in the study area in North Lombok. This indicates that the NIR technology can be further used to monitor the change of soil C stock in the soil.

  20. Seasonal variability in soil-surface CO{sub 2} efflux in selected young tree plantations in semi-arid eco-climate of Madurai

    Energy Technology Data Exchange (ETDEWEB)

    Saraswathi, S.G.; Lalrammawia, C.; Paliwal, K. [Madurai Kamaraj Univ., Madurai (India). Dept. of Plant Sciences

    2008-07-10

    Atmospheric CO{sub 2} concentrations have been increasing in response to the disruption of the global carbon cycle by anthropogenic activities such as deforestation, agricultural practices and burning of fossil fuels. This has resulted in large shifts among carbon pools. The efflux of CO{sub 2} from soil results from the combined rates of autotrophic (root) and heterotrophic (microbial and soil fauna) respiration. It is often called soil respiration. The response of soil respiration (SR) to varying soil temperature and soil moisture was studied in three year-old plantation sites of Dalbergia sissoo, Dalbergia latifolia, Albizia lebbeck, Hardwickia binata and Cassia siamea during 2005--06. Significant seasonal differences in SR rates were observed in each site (P {<=} 0.001). The highest rates of soil CO{sub 2} efflux were generally found during the rainy season and the lowest during summer in all the study sites. Highest SR rates were found in D. sissoo, 9.89 {+-} 0.78 {mu}mol m{sup -2} s{sup -1} in November and December, followed by H. binata, 9.68 {+-} 0.45 {mu}mol m{sup -2} s{sup -1} in September and October 2005, A. lebbeck, 8.84 {+-} 0.43 {mu}mol m{sup -2} s{sup -1} between November 2005 and January 2006, D. latifolia, 7.6 {+-} 0.12 {mu}mol m{sup -2} s{sup -1} in November and December 2005 and C. siamea, 7.3 {mu}mol m{sup -2} s{sup -1} in December 2005. There was a positive and significant (P {<=} 0.001) relationship between SR rates and soil moisture in all the sites (r{sup 2} above 0.60), except C. siamea (r{sup 2} = 0.30). A poor relationship was observed between SR and soil temperature in all the sites (r{sup 2} below 0.2). Examination of the seasonal pattern of SR rates suggests that much of the variability could be attributed to variations in soil moisture. There was a strong indication suggesting that the soil-water deficits served to reduce SR rates during summer and after subsequent rain events. Overall sensitivity of SR rate to soil moisture seems to