WorldWideScience

Sample records for measured longitudinal deformation

  1. X-ray diffraction measurements to determine longitudinal and transverse lattice deformation in shocked LiF

    International Nuclear Information System (INIS)

    Rigg, P.A.; Gupta, Y.M.

    2000-01-01

    Experimental methods using both single and multiple x-ray diffraction were developed to determine real time, lattice deformation in directions parallel and perpendicular to shock wave propagation in single crystals subjected to plate impact loading. Initial experiments used single diffraction to monitor the interplanar spacing change, parallel to the shock propagation direction, in LiF crystals shocked along the [111] and [100] directions. These measurements, in combination with the macroscopic volume compression, were used to determine the state of compression of the unit cell. Subsequent development of a multiple diffraction technique permitted simultaneous determination of both the longitudinal and transverse lattice deformations. The present results showed that shock compression, below 4 GPa, along the [111] orientation--which results in macroscopic elastic deformation - produced one-dimensional unit cell compression. In contrast, shock compression along the [100] orientation - which results in macroscopic elastic-plastic deformation--produced isotropic unit cell compression. The implications of the present results and the ability to make quantitative x-ray diffraction measurements under shock loading are discussed

  2. Regional Longitudinal Myocardial Deformation Provides Incremental Prognostic Information in Patients with ST-Segment Elevation Myocardial Infarction.

    Directory of Open Access Journals (Sweden)

    Tor Biering-Sørensen

    Full Text Available Global longitudinal systolic strain (GLS has recently been demonstrated to be a superior prognosticator to conventional echocardiographic measures in patients after myocardial infarction (MI. The aim of this study was to evaluate the prognostic value of regional longitudinal myocardial deformation in comparison to GLS, conventional echocardiography and clinical information.In total 391 patients were admitted with ST-Segment elevation myocardial infarction (STEMI, treated with primary percutaneous coronary intervention and subsequently examined by echocardiography. All patients were examined by tissue Doppler imaging (TDI and two-dimensional strain echocardiography (2DSE.During a median-follow-up of 5.3 (IQR 2.5-6.1 years the primary endpoint (death, heart failure or a new MI was reached by 145 (38.9% patients. After adjustment for significant confounders (including conventional echocardiographic parameters and culprit lesion, reduced longitudinal performance in the anterior septal and inferior myocardial regions (but not GLS remained independent predictors of the combined outcome. Furthermore, inferior myocardial longitudinal deformation provided incremental prognostic information to clinical and conventional echocardiographic information (Harrell's c-statistics: 0.63 vs. 0.67, p = 0.032. In addition, impaired longitudinal deformation outside the culprit lesion perfusion region was significantly associated with an adverse outcome (p<0.05 for all deformation parameters.Regional longitudinal myocardial deformation measures, regardless if determined by TDI or 2DSE, are superior prognosticators to GLS. In addition, impaired longitudinal deformation in the inferior myocardial segment provides prognostic information over and above clinical and conventional echocardiographic risk factors. Furthermore, impaired longitudinal deformation outside the culprit lesion perfusion region seems to be a paramount marker of adverse outcome.

  3. Regional Longitudinal Myocardial Deformation Provides Incremental Prognostic Information in Patients with ST-Segment Elevation Myocardial Infarction

    DEFF Research Database (Denmark)

    Biering-Sorensen, Tor; Jensen, Jan Skov; Pedersen, Sune H

    2016-01-01

    deformation in comparison to GLS, conventional echocardiography and clinical information. Method In total 391 patients were admitted with ST-Segment elevation myocardial infarction (STEMI), treated with primary percutaneous coronary intervention and subsequently examined by echocardiography. All patients were...... information to clinical and conventional echocardiographic information (Harrell's c-statistics: 0.63 vs. 0.67, p = 0.032). In addition, impaired longitudinal deformation outside the culprit lesion perfusion region was significantly associated with an adverse outcome (p...). Conclusion Regional longitudinal myocardial deformation measures, regardless if determined by TDI or 2DSE, are superior prognosticators to GLS. In addition, impaired longitudinal deformation in the inferior myocardial segment provides prognostic information over and above clinical and conventional...

  4. Seismic Design of a Single Bored Tunnel: Longitudinal Deformations and Seismic Joints

    Science.gov (United States)

    Oh, J.; Moon, T.

    2018-03-01

    The large diameter bored tunnel passing through rock and alluvial deposits subjected to seismic loading is analyzed for estimating longitudinal deformations and member forces on the segmental tunnel liners. The project site has challenges including high hydrostatic pressure, variable ground profile and high seismic loading. To ensure the safety of segmental tunnel liner from the seismic demands, the performance-based two-level design earthquake approach, Functional Evaluation Earthquake and Safety Evaluation Earthquake, has been adopted. The longitudinal tunnel and ground response seismic analyses are performed using a three-dimensional quasi-static linear elastic and nonlinear elastic discrete beam-spring elements to represent segmental liner and ground spring, respectively. Three components (longitudinal, transverse and vertical) of free-field ground displacement-time histories evaluated from site response analyses considering wave passage effects have been applied at the end support of the strain-compatible ground springs. The result of the longitudinal seismic analyses suggests that seismic joint for the mitigation measure requiring the design deflection capacity of 5-7.5 cm is to be furnished at the transition zone between hard and soft ground condition where the maximum member forces on the segmental liner (i.e., axial, shear forces and bending moments) are induced. The paper illustrates how detailed numerical analyses can be practically applied to evaluate the axial and curvature deformations along the tunnel alignment under difficult ground conditions and to provide the seismic joints at proper locations to effectively reduce the seismic demands below the allowable levels.

  5. Campaigned GPS on Present-Day Crustal Deformation in Northernmost Longitudinal Valley Preliminary Results, Hualien Taiwan

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chen

    2014-01-01

    Full Text Available The Longitudinal Valley in Eastern Taiwan sits at the collision suture between the Eurasian and Philippine Sea plates. Based on repeated GPS campaigned measurements from 25 stations six times in 2007 - 2009, we characterize the surface deformation in the northernmost Longitudinal Valley where the Coastal Range of the Philippine Sea plate turns northward diving under the Eurasian plate producing two major active faults: the Milun fault and the Longitudinal Valley fault. We reconstructed a GPS velocity field and conducted strain analyses and elastic block modeling. Our results suggest a rapid clockwise rotation of 33° Myr-1 and an eastward tectonic escape in the small Hualien City block (HUAL area of ~10 × 10 km, which is apparently detached from the regional rotating RYUK block defined by previous studies. We interpret it as being initiated locally by the northwest indentation of the Coastal Range, which pushed the HUAL block to move upward and eastward. According to our strain analyses, the HUAL block shows a significant internal elastic strain inside the Milun Tableland, the hanging wall of the Milun fault. No significant deformation was observed across the surface trace of the fault, indicating that the Milun fault is now probably locked in the near surface. The deformation in the footwall of the fault was accommodated by pure-shear strain with a major NNW-compression and a minor ENE-extension. The deformation in the hanging wall is characterized by simple-shear strain with ENE-extension in its northern part and little deformation in the southern part, separated by a little known NW-trending active fault zone (Dongmingyi fault, which needs further investigation.

  6. Regional Longitudinal Deformation Improves Prediction of Ventricular Tachyarrhythmias in Patients With Heart Failure With Reduced Ejection Fraction

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Knappe, Dorit; Pouleur, Anne-Catherine

    2017-01-01

    BACKGROUND: Left ventricular dysfunction is a known predictor of ventricular arrhythmias. We hypothesized that measures of regional longitudinal deformation by speckle-tracking echocardiography predict ventricular tachyarrhythmias and provide incremental prognostic information over clinical...... in the model, only a decreasing myocardial function in the inferior myocardial wall predicted VT/VF (hazard ratio, 1.05 [1.00-1.11]; P=0.039). Only strain obtained from the inferior myocardial wall provided incremental prognostic information for VT/VF over clinical and echocardiographic parameters (C statistic...... 0.71 versus 0.69; P=0.005). CONCLUSIONS: Assessment of regional longitudinal myocardial deformation in the inferior region provided incremental prognostic information over clinical and echocardiographic risk factors in predicting ventricular tachyarrhythmias. CLINICAL TRIAL REGISTRATION: URL: http...

  7. FEAST 3.1: finite-element modeling of sheath deformation such as longitudinal ridging and collapse into axial gap

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Xu, Z.; Kim, Y-S.; Lai, L.; Cheng, G.; Xu, S. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    2010-07-01

    During normal operation, the collapsible CANDU® fuel sheath deforms, especially, it may deform into longitudinal ridges or collapse instantaneously into the axial gaps between the end pellet and endcap or between two neighbouring pellets. These phenomena occur under certain conditions, such as the coolant pressure exceeding critical pressures for longitudinal ridging or axial collapse. Both longitudinal ridging and axial collapse phenomena result from plastic instability in the sheath under coolant pressure. Longitudinal ridging features one or multiple lobes or 'ridges' (outward from the sheath surface) formed along the sheath in the longitudinal direction. Axial collapse features a 'valley' around the sheath circumference. Both phenomena can lead to sheath overstrain, which in turn potentially leads to sheath failure. The LONGER code, which contains empirical correlations, has been used to predict the critical pressures for these two sheath deformation phenomena. To study fuel behaviour outside of the application ranges of the LONGER empirical correlations, a mechanistic model is needed. FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. The FEAST code has recently been developed (to Version 3.1) to model processes occurring during longitudinal ridge formation and instantaneous collapse into the axial gap. The new models include those for geometric non-linearity (large deformation, large material rotation), non-linear stress-strain curve for plastic deformation, Zr-4 sheath creep law, and variable Young’s Modulus etc. This paper describes the mechanistic model (FEAST 3.1) development for analyses of longitudinal ridging and instantaneous collapse into axial gap, and the comparison with the results from empirical correlations in LONGER. (author)

  8. FEAST 3.1: finite-element modeling of sheath deformation such as longitudinal ridging and collapse into axial gap

    International Nuclear Information System (INIS)

    Wang, X.; Xu, Z.; Kim, Y-S.; Lai, L.; Cheng, G.; Xu, S.

    2010-01-01

    During normal operation, the collapsible CANDU® fuel sheath deforms, especially, it may deform into longitudinal ridges or collapse instantaneously into the axial gaps between the end pellet and endcap or between two neighbouring pellets. These phenomena occur under certain conditions, such as the coolant pressure exceeding critical pressures for longitudinal ridging or axial collapse. Both longitudinal ridging and axial collapse phenomena result from plastic instability in the sheath under coolant pressure. Longitudinal ridging features one or multiple lobes or 'ridges' (outward from the sheath surface) formed along the sheath in the longitudinal direction. Axial collapse features a 'valley' around the sheath circumference. Both phenomena can lead to sheath overstrain, which in turn potentially leads to sheath failure. The LONGER code, which contains empirical correlations, has been used to predict the critical pressures for these two sheath deformation phenomena. To study fuel behaviour outside of the application ranges of the LONGER empirical correlations, a mechanistic model is needed. FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. The FEAST code has recently been developed (to Version 3.1) to model processes occurring during longitudinal ridge formation and instantaneous collapse into the axial gap. The new models include those for geometric non-linearity (large deformation, large material rotation), non-linear stress-strain curve for plastic deformation, Zr-4 sheath creep law, and variable Young’s Modulus etc. This paper describes the mechanistic model (FEAST 3.1) development for analyses of longitudinal ridging and instantaneous collapse into axial gap, and the comparison with the results from empirical correlations in LONGER. (author)

  9. A comparison between Philips and Tomtec for left ventricular deformation and volume measurements in neonatal intensive care patients.

    Science.gov (United States)

    de Waal, Koert; Phad, Nilkant

    2018-03-01

    Two-dimensional speckle tracking echocardiography is an emerging technique for analyzing cardiac function in newborns. Strain is a highly reliable and reproducible parameter, and reference values have been established for term and preterm newborns. Its implementation into clinical practice has been slow, partly due to lack of inter-vendor consistency. Our aim was to compare recent versions of Philips and Tomtec speckle tracking software for deformation and semiautomated volume and area measurements in neonatal intensive care patients. Longitudinal and circumferential deformation and cavity dimensions (volume, area) were determined off line from apical and short-axis images in 50 consecutive newborns with a median birthweight of 760 g (range 460-3200 g). Absolute mean endocardial global longitudinal strain measurements were similar between vendors, but with wide limits of agreement (Philips -18.9 [2.1]%, Tomtec -18.6 [2.5]%, bias -0.3 [1.7]%, and limits of agreement -3.6%-3.1%). Longitudinal strain rate and circumferential measurements showed poor correlation. All volume and area measurements correlated well between the vendors, but with significant bias. Global longitudinal strain measurements compared well between vendors but wide limits of agreement, suggesting that longitudinal measurements are preferred using similar hardware and software. © 2017, Wiley Periodicals, Inc.

  10. Foot medial longitudinal-arch deformation during quiet standing and gait in subjects with medial tibial stress syndrome

    DEFF Research Database (Denmark)

    Bandholm, Thomas Quaade; Boysen, Lisbeth; Haugaard, Stine

    2008-01-01

    The objective of this study was to investigate (1) if subjects with medial tibial stress syndrome demonstrate increased navicular drop and medial longitudinal-arch deformation during quiet standing and gait compared with healthy subjects, and (2) the relationship between medial longitudinal-arch ...

  11. Feasibility, Reproducibility, and Agreement between Different Speckle Tracking Echocardiographic Techniques for the Assessment of Longitudinal Deformation

    Directory of Open Access Journals (Sweden)

    Sergio Buccheri

    2013-01-01

    Full Text Available Background. Left ventricular (LV longitudinal deformation can be assessed with new echocardiographic techniques like triplane echocardiography (3PE and four-dimensional echocardiography (4DE. We aimed to assess the feasibility, reproducibility, and agreement between these different speckle-tracking techniques for the assessment of longitudinal deformation. Methods. 101 consecutive subjects underwent echocardiographic examination. 2D cine loops from the apical views, a triplane view, and an LV 4D full volume were acquired in all subjects. LV longitudinal strain was obtained for each imaging modality. Results. 2DE analysis of LV strain was feasible in 90/101 subjects, 3PE strain in 89/101, and 4DE strain in 90/101. The mean value of 2DE and 3PE longitudinal strains was significantly higher with respect to 4DE. The relationship between 2DE and 3PE derived strains (r=0.782 was significantly higher (z=3.72, P<0.001 than that between 2DE and 4DE (r=0.429 and that between 3PE and 4DE (r=0.510; z=3.09, P=0.001. The mean bias between 2DE and 4DE strains was -6.61±7.31% while -6.42±6.81% between 3PE and 4DE strains; the bias between 2DE and 3PE strain was of 0.21±4.16%. Intraobserver and interobserver variabilities were acceptable among the techniques. Conclusions. Echocardiographic techniques for the assessment of longitudinal deformation are not interchangeable, and further studies are needed to assess specific reference values.

  12. Early Outcomes of Minimally Invasive Anterior Longitudinal Ligament Release for Correction of Sagittal Imbalance in Patients with Adult Spinal Deformity

    Directory of Open Access Journals (Sweden)

    Armen R. Deukmedjian

    2012-01-01

    Full Text Available The object of this study was to evaluate a novel surgical technique in the treatment of adult degenerative scoliosis and present our early experience with the minimally invasive lateral approach for anterior longitudinal ligament release to provide lumbar lordosis and examine its impact on sagittal balance. Methods. All patients with adult spinal deformity (ASD treated with the minimally invasive lateral retroperitoneal transpsoas interbody fusion (MIS LIF for release of the anterior longitudinal ligament were examined. Patient demographics, clinical data, spinopelvic parameters, and outcome measures were recorded. Results. Seven patients underwent release of the anterior longitudinal ligament (ALR to improve sagittal imbalance. All cases were split into anterior and posterior stages, with mean estimated blood loss of 125 cc and 530 cc, respectively. Average hospital stay was 8.3 days, and mean follow-up time was 9.1 months. Comparing pre- and postoperative 36′′ standing X-rays, the authors discovered a mean increase in global lumbar lordosis of 24 degrees, increase in segmental lumbar lordosis of 17 degrees per level of ALL released, decrease in pelvic tilt of 7 degrees, and decrease in sagittal vertical axis of 4.9 cm. At the last followup, there was a mean improvement in VAS and ODI scores of 26.2% and 18.3%. Conclusions. In the authors’ early experience, release of the anterior longitudinal ligament using the minimally invasive lateral retroperitoneal transpsoas approach may be a feasible alternative in correcting sagittal deformity.

  13. Analysis of the Mechanism of Longitudinal Bending Deformation Due to Welding in a Steel Plate by Using a Numerical Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Rae; Yan, Jieshen; Kim, Jae-Woong [Yeungnam Univ., Gyeongsan (Korea, Republic of); Song, Gyu Yeong [Gyeongbuk Hybrid Technology Institute, Yeongcheon (Korea, Republic of)

    2017-01-15

    Welding deformation is a permanent deformation that is caused in structures by welding heat. Welding distortion is the primary cause of reduced productivity, due to welded structural strength degradation, low dimensional accuracy, and appearance. As a result, research and numerous experiments are being carried out to control welding deformation. The aim of this study is to analyze the mechanism of longitudinal bending deformation due to welding. Welding experiments and numerical analyses were performed for this study. The welding experiments were performed on 4 mm and 8.5 mm thickness steel plates, and the numerical analysis was conducted on the welding deformation using the FE software MSC.marc.

  14. Red blood cell-deformability measurement: review of techniques.

    Science.gov (United States)

    Musielak, M

    2009-01-01

    Cell-deformability characterization involves general measurement of highly complex relationships between cell biology and physical forces to which the cell is subjected. The review takes account of the modern technical solutions simulating the action of the force applied to the red blood cell in macro- and microcirculation. Diffraction ektacytometers and rheoscopes measure the mean deformability value for the total red blood cell population investigated and the deformation distribution index of individual cells, respectively. Deformation assays of a whole single cell are possible by means of optical tweezers. The single cell-measuring setups for micropipette aspiration and atomic force microscopy allow conducting a selective investigation of deformation parameters (e.g., cytoplasm viscosity, viscoelastic membrane properties). The distinction between instrument sensitivity to various RBC-rheological features as well as the influence of temperature on measurement are discussed. The reports quoted confront fascinating possibilities of the techniques with their medical applications since the RBC-deformability has the key position in the etiology of a wide range of conditions.

  15. Bridge continuous deformation measurement technology based on fiber optic gyro

    Science.gov (United States)

    Gan, Weibing; Hu, Wenbin; Liu, Fang; Tang, Jianguang; Li, Sheng; Yang, Yan

    2016-03-01

    Bridge is an important part of modern transportation systems and deformation is a key index for bridge's safety evaluation. To achieve the long span bridge curve measurement rapidly and timely and accurately locate the bridge maximum deformation, the continuous deformation measurement system (CDMS) based on inertial platform is presented and validated in this paper. Firstly, based on various bridge deformation measurement methods, the method of deformation measurement based on the fiber optic gyro (FOG) is introduced. Secondly, the basic measurement principle based on FOG is presented and the continuous curve trajectory is derived by the formula. Then the measurement accuracy is analyzed in theory and the relevant factors are presented to ensure the measurement accuracy. Finally, the deformation measurement experiments are conducted on a bridge across the Yangtze River. Experimental results show that the presented deformation measurement method is feasible, practical, and reliable; the system can accurately and quickly locate the maximum deformation and has extensive and broad application prospects.

  16. Longitudinal magnetoresistance and magnototermopower in Bi nanowires

    International Nuclear Information System (INIS)

    Para, G.

    2011-01-01

    Full text: The galvanomagnetic effect of single crystals Bi nanowires have been studied in longitudinal magnetic fields up to 14 T. The influence of diameters, temperature and deformation extension on the longitudinal magnetoresistance and magnetotermopower (H||I, H||ΔT) of bismuth nanowires is studied. Elastic deformation measurements were conducted at maximum relative elongation 2 %. For the first time have been investigated the magnetotermopower of Bi nanowires with d=45 nm. Essentially non monotonic dependence H max on temperature in longitudinal thermopower in wires with d=45-60 nm is found out. Such difference in behavior of maximum on R(H) and on α(H) in wires with d<100nm says that the behavior of resistance is caused by other mechanism, then thermopower. (author)

  17. Predicting welding distortion in a panel structure with longitudinal stiffeners using inherent deformations obtained by inverse analysis method.

    Science.gov (United States)

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.

  18. Longitudinal and Lateral Stress Measurements in NiTi under One-Dimensional Shock Loading

    International Nuclear Information System (INIS)

    Meziere, Y. J. E.; Millett, J. C. F.; Bourne, N. K.; Wallwork, A.; Workman, A.

    2006-01-01

    This paper investigates the influence of the impact stress on the magnitude of the shear stress under one-dimensional shock loading. The shear stress is calculated from the measured longitudinal and the lateral stresses. New data in terms of shock stress, particle velocity and shock velocity has been gathered. Results indicate that the lateral stress has a positive dependence on the impact stress. A general decrease of the lateral stress was also observed immediately after the impact, while the longitudinal stress remains constant for the duration of the pulse length. This suggests that the shear strength increases behind the shock front. This decrease had been found to reach a constant value for the specimens impacted at lower stress. A complex mechanism of deformation behind the shock front during loading was thus reveals. This limit, related to the inflexion point noted on the Hugoniot (Us-up), seems to be an effect of the martensitic phase transformation undergoes by the material

  19. Myocardial Integrated Backscatter in Obese Adolescents: Associations with Measures of Adiposity and Left Ventricular Deformation.

    Directory of Open Access Journals (Sweden)

    Lijian Xie

    Full Text Available Myocardial fibrosis has been proposed to play an important pathogenetic role in left ventricular (LV dysfunction in obesity. This study tested the hypothesis that calibrated integrated backscatter (cIB as a marker of myocardial fibrosis is altered in obese adolescents and explored its associations with adiposity, LV myocardial deformation, and metabolic parameters.Fifty-two obese adolescents and 38 non-obese controls were studied with conventional and speckle tracking echocardiography. The average cIB of ventricular septum and LV posterior wall was measured. In obese subjects, insulin resistance as estimated by homeostasis model assessment (HOMA-IR and glucose tolerance were determined. Compared with controls, obese subjects had significantly greater cIB of ventricular septum (-16.8±7.8 dB vs -23.2±7.8 dB, p<0.001, LV posterior wall (-20.5±5.6 dBvs -25.0±5.1 dB, p<0.001 and their average (-18.7±5.7 dB vs -24.1±5.0 dB, p<0.001. For myocardial deformation, obese subjects had significantly reduced LV longitudinal systolic strain rate (SR (p = 0.045 and early diastolic SR (p = 0.015, and LV circumferential systolic strain (p = 0.008, but greater LV longitudinal late diastolic SR (p<0.001, and radial early (p = 0.037 and late (p = 0.002 diastolic SR than controls. For the entire cohort, myocardial cIB correlated positively with body mass index (r = 0.45, p<0.001 and waist circumference (r = 0.45, p<0.001, but negatively with LV circumferential systolic strain (r = -0.23, p = 0.03 and systolic SR (r = -0.25, p = 0.016. Among obese subjects, cIB tended to correlate with HOMA-IR (r = 0.26, p = 0.07.Obese adolescents already exhibit evidence of increased myocardial fibrosis, which is associated with measures of adiposity and impaired LV circumferential myocardial deformation.

  20. Measurement of Dam Deformations: Case Study of Obruk Dam (Turkey)

    Science.gov (United States)

    Gulal, V. Engin; Alkan, R. Metin; Alkan, M. Nurullah; İlci, Veli; Ozulu, I. Murat; Tombus, F. Engin; Kose, Zafer; Aladogan, Kayhan; Sahin, Murat; Yavasoglu, Hakan; Oku, Guldane

    2016-04-01

    In the literature, there is information regarding the first deformation and displacement measurements in dams that were conducted in 1920s Switzerland. Todays, deformation measurements in the dams have gained very different functions with improvements in both measurement equipment and evaluation of measurements. Deformation measurements and analysis are among the main topics studied by scientists who take interest in the engineering measurement sciences. The Working group of Deformation Measurements and Analysis, which was established under the International Federation of Surveyors (FIG), carries out its studies and activities with regard to this subject. At the end of the 1970s, the subject of the determination of fixed points in the deformation monitoring network was one of the main subjects extensively studied. Many theories arose from this inquiry, as different institutes came to differing conclusions. In 1978, a special commission with representatives of universities has been established within the FIG 6.1 working group; this commission worked on the issue of determining a general approach to geometric deformation analysis. The results gleaned from the commission were discussed at symposiums organized by the FIG. In accordance with these studies, scientists interested in the subject have begun to work on models that investigate cause and effect relations between the effects that cause deformation and deformation. As of the scientist who interest with the issue focused on different deformation methods, another special commission was established within the FIG engineering measurements commission in order to classify deformation models and study terminology. After studying this material for a long time, the official commission report was published in 2001. In this prepared report, studies have been carried out by considering the FIG Engineering Surveying Commission's report entitled, 'MODELS AND TERMINOLOGY FOR THE ANALYSIS OF GEODETIC MONITORING OBSERVATIONS

  1. Measurement of Rotorcraft Blade Deformation Using Projection Moiré Interferometry

    Directory of Open Access Journals (Sweden)

    Gary A. Fleming

    2000-01-01

    Full Text Available Projection Moiré Interferometry (PMI has been used to obtain near instantaneous, quantitative blade deformation measurements of a generic rotorcraft model at several test conditions. These laser-based measurements provide quantitative, whole field, dynamic blade deformation profiles conditionally sampled as a function of rotor azimuth. The instantaneous nature of the measurements permits computation of the mean and unsteady blade deformation, blade bending, and twist. The PMI method is presented, and the image processing steps required to obtain quantitative deformation profiles from PMI interferograms are described. Experimental results are provided which show blade bending, twist, and unsteady motion. This initial proof-of-concept test has demonstrated the capability of PMI to acquire accurate, full field rotorcraft blade deformation data.

  2. Measurement of shape and deformation of insect wing

    Science.gov (United States)

    Yin, Duo; Wei, Zhen; Wang, Zeyu; Zhou, Changqiu

    2018-01-01

    To measure the shape and deformation of an insect wing, a scanning setup adopting laser triangulation and image matching was developed. Only one industry camera with two light sources was employed to scan the transparent insect wings. 3D shape and point to point full field deformation of the wings could be obtained even when the wingspan is less than 3 mm. The venation and corrugation could be significantly identified from the results. The deformation of the wing under pin loading could be seen clearly from the results as well. Calibration shows that the shape and deformation measurement accuracies are no lower than 0.01 mm. Laser triangulation and image matching were combined dexterously to adapt wings' complex shape, size, and transparency. It is suitable for insect flight research or flapping wing micro-air vehicle development.

  3. Determination of multidirectional myocardial deformations in cats with hypertrophic cardiomyopathy by using two-dimensional speckle-tracking echocardiography.

    Science.gov (United States)

    Suzuki, Ryohei; Mochizuki, Yohei; Yoshimatsu, Hiroki; Teshima, Takahiro; Matsumoto, Hirotaka; Koyama, Hidekazu

    2017-12-01

    Objectives Hypertrophic cardiomyopathy, a primary disorder of the myocardium, is the most common cardiac disease in cats. However, determination of myocardial deformation with two-dimensional speckle-tracking echocardiography in cats with various stages of hypertrophic cardiomyopathy has not yet been reported. This study was designed to measure quantitatively multidirectional myocardial deformations of cats with hypertrophic cardiomyopathy. Methods Thirty-two client-owned cats with hypertrophic cardiomyopathy and 14 healthy cats serving as controls were enrolled and underwent assessment of myocardial deformation (peak systolic strain and strain rate) in the longitudinal, radial and circumferential directions. Results Longitudinal and radial deformations were reduced in cats with hypertrophic cardiomyopathy, despite normal systolic function determined by conventional echocardiography. Cats with severely symptomatic hypertrophic cardiomyopathy also had lower peak systolic circumferential strain, in addition to longitudinal and radial strain. Conclusions and relevance Longitudinal and radial deformation may be helpful in the diagnosis of hypertrophic cardiomyopathy. Additionally, the lower circumferential deformation in cats with severe hypertrophic cardiomyopathy may contribute to clinical findings of decompensation, and seems to be related to severe cardiac clinical signs. Indices of multidirectional myocardial deformations by two-dimensional speckle-tracking echocardiography may be useful markers and help to distinguish between cats with hypertrophic cardiomyopathy and healthy cats. Additionally, they may provide more detailed assessment of contractile function in cats with hypertrophic cardiomyopathy.

  4. Displacement and deformation measurement for large structures by camera network

    Science.gov (United States)

    Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu

    2014-03-01

    A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.

  5. Design of an Orthodontic Torque Simulator for Measurement of Bracket Deformation

    Science.gov (United States)

    Melenka, G. W.; Nobes, D. S.; Major, P. W.; Carey, J. P.

    2013-12-01

    The design and testing of an orthodontic torque simulator that reproduces the effect of archwire rotation on orthodontic brackets is described. This unique device is capable of simultaneously measuring the deformation and loads applied to an orthodontic bracket due to archwire rotation. Archwire rotation is used by orthodontists to correct the inclination of teeth within the mouth. This orthodontic torque simulator will provide knowledge of the deformation and loads applied to orthodontic bracket that will aide clinicians by describing the effect of archwire rotation on brackets. This will also impact that design on new archwirebracket systems by providing an assessment of performance. Deformation of the orthodontic bracket tie wings is measured using a digital image correlation process to measure elastic and plastic deformation. The magnitude of force and moments applied to the bracket though the archwire is also measured using a six-axis load cell. Initial tests have been performed on two orthodontic brackets of varying geometry to demonstrate the measurement capability of the orthodontic torque simulator. The demonstration experiment shows that a Damon Q bracket had a final plastic deformation after a single loading of 0.022 mm while the Speed bracket deformed 0.071 mm. This indicates that the Speed bracket plastically deforms 3.2 times more than the Damon Q bracket for similar magnitude of applied moment. The demonstration experiment demonstrates that bracket geometry affect the deformation of orthodontic brackets and this difference can be detected using the orthodontic torque simulator.

  6. Optical dynamic deformation measurements at translucent materials.

    Science.gov (United States)

    Philipp, Katrin; Koukourakis, Nektarios; Kuschmierz, Robert; Leithold, Christoph; Fischer, Andreas; Czarske, Jürgen

    2015-02-15

    Due to their high stiffness-to-weight ratio, glass fiber-reinforced polymers are an attractive material for rotors, e.g., in the aerospace industry. A fundamental understanding of the material behavior requires non-contact, in-situ dynamic deformation measurements. The high surface speeds and particularly the translucence of the material limit the usability of conventional optical measurement techniques. We demonstrate that the laser Doppler distance sensor provides a powerful and reliable tool for monitoring radial expansion at fast rotating translucent materials. We find that backscattering in material volume does not lead to secondary signals as surface scattering results in degradation of the measurement volume inside the translucent medium. This ensures that the acquired signal contains information of the rotor surface only, as long as the sample surface is rough enough. Dynamic deformation measurements of fast-rotating fiber-reinforced polymer composite rotors with surface speeds of more than 300 m/s underline the potential of the laser Doppler sensor.

  7. Measurement of Local Deformations in Steel Monostrands Using Digital Image Correlation

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2014-01-01

    The local deformation mechanisms in steel monostrands have a significant influence on their fatigue life and failure mode. However, the observation and quantification of deformations in monostrands experiencing axial and transverse deformations is challenging because of their complex geometry......, difficulties with the placement of strain gauges in the vicinity of the anchorage, and, most importantly, the relatively small magnitude of deformation occurring in the monostrand. This paper focuses on the measurement of localized deformations in high-strength steel monostrands using the digital image...... correlation (DIC) technique. The presented technique enables the measurement of individual wire strains along the length of the monostrand and also provides quantitative information on the relative movement between individual wires, leading to a more in-depth understanding of the underlying fatigue mechanisms...

  8. Videometric research on deformation measurement of large-scale wind turbine blades

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbine blades in mechanics experiments using a videometric method. In view that the blades experience small buckling deformation and large integral deformation simultaneously, we proposed a parallel network measurement(PNM) method including the key techniques such as camera network construction,c...

  9. Myocardial Deformation Measured by 3-Dimensional Speckle Tracking in Children and Adolescents With Systemic Arterial Hypertension.

    Science.gov (United States)

    Navarini, Susanne; Bellsham-Revell, Hannah; Chubb, Henry; Gu, Haotian; Sinha, Manish D; Simpson, John M

    2017-12-01

    Systemic arterial hypertension predisposes children to cardiovascular risk in childhood and adult life. Despite extensive study of left ventricular (LV) hypertrophy, detailed 3-dimensional strain analysis of cardiac function in hypertensive children has not been reported. The aim of this study was to evaluate LV mechanics (strain, twist, and torsion) in young patients with hypertension compared with a healthy control group and assess factors associated with functional measurements. Sixty-three patients (26 hypertension and 37 normotensive) were enrolled (mean age, 14.3 and 11.4 years; 54% men and 41% men, respectively). All children underwent clinical evaluation and echocardiographic examination, including 3-dimensional strain. There was no difference in LV volumes and ejection fraction between the groups. Myocardial deformation was significantly reduced in those with hypertension compared with controls. For hypertensive and normotensive groups, respectively, global longitudinal strain was -15.1±2.3 versus -18.5±1.9 ( P hypertensive and normotensive children, but children with hypertension had significantly lower strain indices. Whether reduced strain might predict future cardiovascular risk merits further longitudinal study. © 2017 American Heart Association, Inc.

  10. Measurements of longitudinal phase space in the SLC linac

    International Nuclear Information System (INIS)

    Bane, K.; Adolphsen, C.; Lavine, T.L.; Ross, M.; Seeman, J.; Thompson, K.

    1990-05-01

    In the Stanford Linear Collider the beam leaves a damping ring and then enters the Ring-to-Linac (RTL) transfer line. In the RTL it is compressed in length by a factor of 10 by means of an rf section, with which a longitudinally correlated energy variation is induced in the beam, and a following beam line which has non-zero momentum compaction. The compressed beam then enters the linac proper. In this paper we describe three measurements of longitudinal properties of the beam in the SLC linac. We present measurements of single bunch beam loading, of the energy spectrum at the end of the linac, and of the linac bunch length. Since the results of all three measurements depend on the beam's longitudinal charge distribution in the linac they, in turn, also depend on the bunch lengthening that occurs in the damping rings, as well as on the behavior of the compressor. The results of the first two measurements, in addition, depend critically on the strength of the longitudinal wakefields in the linac. The results of these three measurements are compared with simulations. For these calculations, at any given current, the potential well distortion in the damping ring is first computed. The compression process is then simulated to obtain the longitudinal charge distribution in the linac. For the first two measurements this distribution is then convolved with the calculated longitudinal wake function of the SLAC linac in order to obtain the induced voltage. Finally, the induced voltage is combined with the effect of the linac rf wave to give the final energy spectrum. 8 refs., 5 figs

  11. 6. International FIG-symposium on deformation measurements. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, H; Heer, R [eds.

    1997-12-31

    Due to the diversified fields of specialization of the authors, the papers span a very wide spectrum of theories, applications and case studies, concerning various problems of deformation studies in structural, geotechnical and mining engineering, in rock mechanics and earth crustal movements, covering such topics as: Design and analysis of deformations surveys; Integration of terrestrial, and space measurement techniques; New instrumental developements for automatic, continuous and telemetric data-acquisition with respect to geotechnical and geodetic applications; Monitoring and prediction of ground subsidence in mining areas, land slides and tectonic movements; Modeling and computation of deformations by Kalman-filtering techniques, finite element analysis and a special view to continuum mechanics; Application of expert systems and artificial intelligence; Description and analysis of dynamical deformation problems; special views in rock- and groundmechanics; Demonstration of mechanical engineering problems with respect to the supervision of industrial production and quality control. (orig.)

  12. 6. International FIG-symposium on deformation measurements. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, H.; Heer, R. [eds.

    1996-12-31

    Due to the diversified fields of specialization of the authors, the papers span a very wide spectrum of theories, applications and case studies, concerning various problems of deformation studies in structural, geotechnical and mining engineering, in rock mechanics and earth crustal movements, covering such topics as: Design and analysis of deformations surveys; Integration of terrestrial, and space measurement techniques; New instrumental developements for automatic, continuous and telemetric data-acquisition with respect to geotechnical and geodetic applications; Monitoring and prediction of ground subsidence in mining areas, land slides and tectonic movements; Modeling and computation of deformations by Kalman-filtering techniques, finite element analysis and a special view to continuum mechanics; Application of expert systems and artificial intelligence; Description and analysis of dynamical deformation problems; special views in rock- and groundmechanics; Demonstration of mechanical engineering problems with respect to the supervision of industrial production and quality control. (orig.)

  13. A thermal comparator sensor for measuring autogenous deformation in hardening Portland cement paste

    DEFF Research Database (Denmark)

    Østergaard, Thomas; Jensen, Ole Mejlhede

    2003-01-01

    This paper describes a simple and accurate experimental device specially developed to measure autogenous deformation in hardening cement-based materials. The measuring system consists of a so-called thermal comparator sensor and a modular thermostatically controlled system. The operating principle...... of the thermal comparator is based on thermal expansion of aluminium. A particular characteristic of the measuring system is the fixation of the thermal comparator sensor to the deforming specimen. The modular system ensures effective thermostatic control of the hydrating cement paste samples. The technique...... allows continuous measurement with high accuracy of the linear deformation as well as determination of the activation energy of autogenous deformation....

  14. Frequency of foot deformity in preschool girls

    Directory of Open Access Journals (Sweden)

    Mihajlović Ilona

    2010-01-01

    Full Text Available Background/Aim. In order to determine the moment of creation of postural disorders, regardless of the causes of this problem, it is necessary to examine the moment of entry of children into a new environment, ie. in kindergarten or school. There is a weak evidence about the age period when foot deformity occurs, and the type of these deformities. The aim of this study was to establish the relationship between the occurrence of foot deformities and age characteristics of girls. Methods. The research was conducted in preschools 'Radosno detinjstvo' in the region of Novi Sad, using the method of random selection, on the sample of 272 girls, 4-7 years of age, classified into four strata according to the year of birth. To determine the foot deformities measurement technique using computerized digitized pedografy (CDP was applied. Results. In preschool population girls pes transversoplanus and calcanei valga deformities occurred in a very high percentage (over 90%. Disturbed longitudinal instep ie flat feet also appeared in a high percentage, but we noted the improvement of this deformity according to increasing age. Namely, there was a statistically significant correlation between the age and this deformity. As a child grows older, the deformity is lower. Conclusion. This study confirmed that the formation of foot arches probably does not end at the age of 3-4 years but lasts until school age.

  15. Can We Measure the Heel Bump? Radiographic Evaluation of Haglund's Deformity.

    Science.gov (United States)

    Bulstra, Gythe H; van Rheenen, Thijs A; Scholtes, Vanessa A B

    2015-01-01

    Haglund's deformity is a symptomatic posterosuperior deformity of the heel. The lateral radiograph of the ankle will show a prominent, large, posterosuperior part of the calcaneus, which can be measured using the Fowler and Philips angle (FPA, the angle between the posterior and plantar surface of the calcaneus) and the calcaneal pitch angle (CPA, the angle between the sole of the foot and the plantar part of the calcaneus). Although these angles are commonly used, these radiographic angle measurements have never shown a relationship with Haglund's deformity. In 78 patients (51% male) with symptomatic Haglund's deformity and a control group of 100 patients (41% male) with no heel complaints, we measured the FPA and CPA on weightbearing lateral radiographs of the foot. Using an unpaired t tests, no significant difference was found between the 2 groups in the FPA (p = .40). We measured a significant difference in the CPA between the Haglund group and the control group (p = .014). Subgroup analysis showed that this difference was mainly found in females (p verticalization of the calcaneus. This change in position results in extra traction on the Achilles tendon and can eventually cause tendinitis and bursitis. Radiographic measurement should be used as an auxiliary tool. If the calcaneus tends to change position, it would be interesting to understand this process, which could eventually lead to improvement in the treatment of Haglund's deformity. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  16. A simplified algorithm for measuring erythrocyte deformability dispersion by laser ektacytometry

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, S Yu; Yurchuk, Yu S [Department of Physics, M.V. Lomonosov Moscow State University (Russian Federation)

    2015-08-31

    The possibility of measuring the dispersion of red blood cell deformability by laser diffractometry in shear flow (ektacytometry) is analysed theoretically. A diffraction pattern parameter is found, which is sensitive to the dispersion of erythrocyte deformability and to a lesser extent – to such parameters as the level of the scattered light intensity, the shape of red blood cells, the concentration of red blood cells in the suspension, the geometric dimensions of the experimental setup, etc. A new algorithm is proposed for measuring erythrocyte deformability dispersion by using data of laser ektacytometry. (laser applications in medicine)

  17. Anisotropic deformation of Zr–2.5Nb pressure tube material at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R.W.L., E-mail: fongr@aecl.ca [Fuel and Fuel Channel Safety Branch, Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario (Canada)

    2013-09-15

    Zr–2.5Nb alloy is used for the pressure tubes in CANDU® reactor fuel channels. In reactor, the pressure tube normally operates at 300 °C and experiences a primary coolant fluid internal pressure of approximately 10 MPa. Manufacturing and processing procedures generate an anisotropic state in the pressure tube which makes the tube stronger in the hoop (transverse) direction than in the axial (longitudinal) direction. This anisotropy condition is present for temperatures less than 500 °C. During postulated accident conditions where the material temperature could reach 1000 °C, it might be assumed that the high temperature and subsequent phase change would reduce the inherent anisotropy, and thus affect the deformation behaviour (ballooning) of the pressure tube. From constant-load, rapid-temperature-ramp, uniaxial deformation tests, the deformation rate in the longitudinal direction of the tube behaves differently than the deformation rate in the transverse direction of the tube. This anisotropic mechanical behaviour appears to persist at temperatures up to 1000 °C. This paper presents the results of high-temperature deformation tests using longitudinal and transverse specimens taken from as-received Zr–2.5Nb pressure tubes. It is shown that the anisotropic deformation behaviour observed at high temperatures is largely due to the stable crystallographic texture of the α-Zr phase constituent in the material that was previously observed by neutron diffraction measurements during heating at temperatures up to 1050 °C. The deformation behaviour is also influenced by the phase transformation occurring at high temperatures during heating. The effects of texture and phase transformation on the anisotropic deformation of as-received Zr–2.5Nb pressure tube material are discussed in the context of the tube ballooning behaviour. Because of the high temperatures in postulated accident scenarios, any irradiation damage will be annealed from the pressure tube material

  18. Method of measuring material properties of rock in the wall of a borehole

    Science.gov (United States)

    Overmier, David K.

    1985-01-01

    To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurement of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.

  19. Aeroelastic Deformation Measurements of Flap, Gap, and Overhang on a Semispan Model

    Science.gov (United States)

    Burner, A. W.; Liu, Tian-Shu; Garg, Sanjay; Ghee, Terence A.; Taylor, Nigel J.

    2001-01-01

    Single-camera, single-view videogrammetry has been used for the first time to determine static aeroelastic deformation of a slotted flap configuration on a semispan model at the National Transonic Facility (NTF). Deformation was determined by comparing wind-off to wind-on spatial data from targets placed on the main element, shroud, and flap of the model. Digitized video images from a camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. The videogrammetric technique used for the measurements presented here has been established at NASA facilities as the technique of choice when high-volume static aeroelastic data with minimum impact on data taking is required. However, the primary measurement at the NTF with this technique in the past has been the measurement of the static aeroelastic wing twist of the main wing element on full span models rather than for the measurement of component deformation. Considerations for using the videogrammetric technique for semispan component deformation measurements as well as representative results are presented.

  20. Measurement of Three-Dimensional Deformations by Phase-Shifting Digital Holographic Interferometry

    Directory of Open Access Journals (Sweden)

    Percival Almoro

    2003-06-01

    Full Text Available Out-of-plane deformations of a cantilever were measured using phase-shifting digital holographicinterferometry (PSDHI and the Fourier transform method (FTM. The cantilever was recorded in twodifferent states, and holograms were stored electronically with a charge-coupled device (CCD camera.When the holograms are superimposed and reconstructed jointly, a holographic interferogram results.The three-dimensional (3D surface deformations were successfully visualized by applying FTM toholographic interferogram analysis. The minimum surface displacement measured was 0.317 µm. Theprocessing time for the digital reconstruction and visualization of 3D deformation took about 1 minute.The technique was calibrated using Michelson interferometry setup.

  1. Early Echocardiographic Deformation Analysis for the Prediction of Sudden Cardiac Death and Life-Threatening Arrhythmias After Myocardial Infarction

    DEFF Research Database (Denmark)

    Ersbøll, Mads; Valeur, Nana; Andersen, Mads Jønsson

    2013-01-01

    This study sought to hypothesize that global longitudinal strain (GLS) as a measure of infarct size, and mechanical dispersion (MD) as a measure of myocardial deformation heterogeneity, would be of incremental importance for the prediction of sudden cardiac death (SCD) or malignant ventricular...

  2. Design and development of a device to measure the deformities of clubfoot.

    Science.gov (United States)

    Khas, Kanwaljit S; Pandey, Pulak M; Ray, Alok R

    2015-03-01

    Clubfoot describes a range of foot abnormalities usually present at birth, in which the foot of a baby is twisted out of shape or position. In order to develop an effective treatment plan for clubfoot and/or assess the extent to which existing interventions are successful, medical practitioners need to be able to accurately measure the nature and extent of the deformity. This is typically performed using a goniometer. However, this device is only able to measure one dimension at a time. As such, a complete assessment of the condition of a foot can be extremely burdensome and time-consuming. This article describes a new device that can quickly and efficiently take several measurements on feet of various sizes and shapes. The use of this device was verified by measuring the deformities of real clubfeet. A silicone rubber clubfoot model was also used in this study to clearly illustrate the effectiveness with which the proposed device can measure the various deformities of clubfoot. It is envisaged that the use of this device will significantly reduce the time and effort orthopedists require to measure clubfoot deformities and develop and assess treatment plans. © IMechE 2015.

  3. A Case Study of the Activity Gravitational Deformation Slate Slope on One Newly Rebuild Highway Bridge in Taitung Longitudinal Valley of Taiwan

    Science.gov (United States)

    Hsieh, Pei-Chen; Weng, Cheng-Hsueh; Lu, An; Lin, Ming-Lang

    2017-04-01

    There are many landslide hazards induced by typhoon and earthquake in Taiwan because Taiwan is located in active orogen zone, where the Taitung Longitudinal Valley is the plate boundary, and also many typhoons hit Taiwan and bring much precipitation. In Japan, where also is located in orogen zone, the 2016 Kumamoto Earthquake caused a large landslide which destroyed the Great Aso Bridge. It shows that landslides might have huge influence on the safety of bridges. In Sep. 2016, Typhoon No.14 (Meranti) hit Taiwan and caused a slate slope failure which located in Taitung Longitudinal Valley. It cut the approach road of a highway bridge called Songfeng Bridge and the maximum displacement is about 2 meters. The landslide body might include the bridge, and if this landslide continued move the bridge structure might be destroyed. The attitude of cleavage and joints measured in site investigation are complex and confused, it imply that this landslide event is not only controlled by gravitational deformation, but also affected by release joint and river erosion because the site is located on confluence of two river. The target of site investigation in this research includes finding the border of failure surface and the measurement of cleavage and joints. In this research, we compare the result of site investigation and numerical model to find the mechanism of failure, and try to analysis the possible influence on the bridge structure.

  4. Deformable Registration for Longitudinal Breast MRI Screening.

    Science.gov (United States)

    Mehrabian, Hatef; Richmond, Lara; Lu, Yingli; Martel, Anne L

    2018-04-13

    MRI screening of high-risk patients for breast cancer provides very high sensitivity, but with a high recall rate and negative biopsies. Comparing the current exam to prior exams reduces the number of follow-up procedures requested by radiologists. Such comparison, however, can be challenging due to the highly deformable nature of breast tissues. Automated co-registration of multiple scans has the potential to aid diagnosis by providing 3D images for side-by-side comparison and also for use in CAD systems. Although many deformable registration techniques exist, they generally have a large number of parameters that need to be optimized and validated for each new application. Here, we propose a framework for such optimization and also identify the optimal input parameter set for registration of 3D T 1 -weighted MRI of breast using Elastix, a widely used and freely available registration tool. A numerical simulation study was first conducted to model the breast tissue and its deformation through finite element (FE) modeling. This model generated the ground truth for evaluating the registration accuracy by providing the deformation of each voxel in the breast volume. An exhaustive search was performed over various values of 7 registration parameters (4050 different combinations of parameters were assessed) and the optimum parameter set was determined. This study showed that there was a large variation in the registration accuracy of different parameter sets ranging from 0.29 mm to 2.50 mm in median registration error and 3.71 mm to 8.90 mm in 95 percentile of the registration error. Mean registration errors of 0.32 mm, 0.29 mm, and 0.30 mm and 95 percentile errors of 3.71 mm, 5.02 mm, and 4.70 mm were obtained by the three best parameter sets. The optimal parameter set was applied to consecutive breast MRI scans of 13 patients. A radiologist identified 113 landmark pairs (~ 11 per patient) which were used to assess registration accuracy. The results demonstrated that

  5. Longitudinal tibial epiphyseal bracket in Nievergelt syndrome

    International Nuclear Information System (INIS)

    Burnstein, M.I.; De Smet, A.A.; Breed, A.L.; Thomas, J.R.; Hafez, G.R.

    1989-01-01

    A patient is described with lower extremity mesomelic dwarfism associated with bilateral congenital elbow, hip, and knee dislocations. Rhomboid-shaped tibiae and delayed ossification of the primary fibular ossification centers were demonstrated at birth. Plain films and magnetic resonance imaging revealed that the tibial deformities were due to the presence of longitudinal epiphyseal brackets. These brackets were observed at surgery and confirmed histologically. Recognition of the longitudinal epiphyseal bracket and its relationship to the tibial deformities seen in this patient with Nievergelt syndrome is important for planning surgical treatment. (orig.)

  6. Longitudinal tibial epiphyseal bracket in Nievergelt syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Burnstein, M.I.; De Smet, A.A.; Breed, A.L.; Thomas, J.R.; Hafez, G.R.

    1989-04-01

    A patient is described with lower extremity mesomelic dwarfism associated with bilateral congenital elbow, hip, and knee dislocations. Rhomboid-shaped tibiae and delayed ossification of the primary fibular ossification centers were demonstrated at birth. Plain films and magnetic resonance imaging revealed that the tibial deformities were due to the presence of longitudinal epiphyseal brackets. These brackets were observed at surgery and confirmed histologically. Recognition of the longitudinal epiphyseal bracket and its relationship to the tibial deformities seen in this patient with Nievergelt syndrome is important for planning surgical treatment. (orig.).

  7. Determination of Vertical Velocity Field of Southernmost Longitudinal Valley in Eastern Taiwan: A Joint Analysis of Leveling and GPS Measurements

    Directory of Open Access Journals (Sweden)

    Horng-Yue Chen

    2012-01-01

    Full Text Available In order to provide a detailed vertical velocity field in southernmost Longitudinal Valley where shows a complex three-fault system at the plate suture between Philippine Sea plate and Eurasia, we conducted leveling and GPS measurements, compiled data from previous surveys and combined them into a single data set. We compiled precise leveling results from 1984 to 2009, include 5 E-W trending and one N-S trending routes. We calculated the GPS vertical component from 10 continuous stations and from 89 campaign-mode stations from 1995 to 2010. The interseismic vertical rates are estimated by removing the co- and post-seismic effects of major large regional and nearby earthquakes. A stable continuous station S104 in the study area was adopted as the common reference station. We finally establish a map of the interseismic vertical velocity field. The interseismic vertical deformation was mainly accommodated by creeping/thrusting along two east-dipping strands of the three-fault system: the Luyeh and Lichi faults. The most dominant uplift of 30 mm yr-1 occurs at the hanging wall of the Lichi fault on the western Coastal Range. However the rate diminishes away from the fault in the hanging wall. The Quaternary tablelands inside of the Longitudinal Valley reveals uplift with a rate of 5 - 10 mm yr-1. Outside of the tablelands, the rest of the Longitudinal Valley flat area indicates substantial subsidence of -10 to -20 mm yr-1. Finally, it appears that the west-dipping blind fault under the eastern side of the Central Range does not play a significant role on interseismic deformation with subsidence rate of -5 to -10 mm yr-1.

  8. Predictions of total deformations in Jebba main dam by finite ...

    African Journals Online (AJOL)

    This paper examined the deformations of the Jebba Main Dam, Jebba Nigeria using the finite element method. The study also evaluated the predicted deformations and compared them with the actual deformations in the dam to identify possible causes of the observed longitudinal crack at the dam crest. The Jebba dam is a ...

  9. Mapping reservoir volume changes during cyclic steam stimulation using tiltmeter-based surface deformation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Du, J.; Davis, E.J.; Roadarmel, W.H.; Wolhart, S.L.; Marsic, S.; Gusek, R.; Wright, C.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Pinnacle Technologies Inc., Houston, TX (United States); Brissenden, S.J.; McGillivray, P. [Shell Canada Ltd., Calgary, AB (Canada). Calgary Research Centre; Bourne, S.; Hofstra, P. [Shell International E and P, Calgary, AB (Canada)

    2005-11-01

    Surface deformation measurements have been effectively used to monitor production, waterflooding, waste injection and steam flooding in oil fields, and in cyclic steam stimulation (CSS) applications. It was shown that further information can be obtained from this technique by inverting the surface deformation for the volumetric deformation at the reservoir level, so that the aerial distribution of volumetric distribution can be identified. A poroelastic model calculated deformation resulting from volumetric changes in the reservoir. A linear geophysical model was then formulated to invert the reservoir volumetric deformation from the measured surface deformation. Constraints were applied to resolve the inversion problem. Theoretical surface deformation was calculated after each inversion from the inverted volumetric deformation distribution which best fit the measured information data, or tilt, at the surface. The technique was then applied to real data from a CSS injection project at Shell Canada's Peace River development in northern Alberta, where several pads of horizontal wells have been developed. A total of 50 tiltmeters were used to monitor half of Pad A and 70 tiltmeters were used to monitor Pad B. Monitoring was used to identify and characterize any hydraulic fracturing that was contributing to injection mechanisms in the reservoir. It was noted that inverting the measured surface tilt for the volumetric change at reservoir levels improved the ability to interpret reservoir processes. It was observed that volumetric changes can be non-uniform with some pad areas deforming more than others. It was concluded that deformation-based, reservoir-level monitoring has proven helpful in ongoing efforts to optimize such variables as the length of well laterals, injection rates, lateral spacing and cycle times. 10 refs., 32 figs.

  10. The in-plane deformation of a tire carcass: analysis and measurement

    OpenAIRE

    Xiong, Yi; Tuononen, Ari

    2015-01-01

    The deformation of parts of a tire is the direct result of tire–road interactions, and therefore is of great interest in tire sensor development. This case study focuses on the analysis of the deformation of the tire carcass and investigates its potential for the estimation of the in-plane tire force. The deformation of the tire carcass due to applied steady-state in-plane forces is first analyzed with the flexible ring model and then validated through optical tire sensor measurements. Couple...

  11. Longitudinal transport measurements in an energy recovery accelerator with triple bend achromat arcs

    Directory of Open Access Journals (Sweden)

    F. Jackson

    2016-12-01

    Full Text Available Longitudinal properties of electron bunches (energy spread and bunch length and their manipulation are of importance in free electron lasers (FELs, where magnetic bunch length compression is a common feature of beam transport. Recirculating accelerators and energy recovery linac accelerators (ERLs have been used as FEL drivers for several decades and control of longitudinal beam transport is particularly important in their magnet lattices. We report on measurements of longitudinal transport properties in an ERL-FEL, the ALICE (Accelerators and Lasers in Combined Experiments accelerator at Daresbury Laboratory. ALICE is an energy recovery research accelerator that drives an infrared free electron laser. By measuring the time of arrival of electron bunches, the canonical longitudinal transport quantities were measured in the beam transport and bunch compression sections of the lattice. ALICE includes a four-dipole bunch compression chicane providing fixed longitudinal transport, and triple bend achromat arcs including sextupole magnets where the first and second order longitudinal transport can be adjusted. The longitudinal transport properties in these lattice sections were measured and compared with the theoretical model of the lattice. A reasonable level of agreement has been found. The effect of sextupoles in second order, as well as first order, longitudinal correction is considered, with the measurements indicating the level of alignment of the beam to the center of the sextupole.

  12. Finite-element analysis of the deformation of thin Mylar films due to measurement forces.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Michael Sean; Robinson, Alex Lockwood; Tran, Hy D.

    2012-01-01

    Significant deformation of thin films occurs when measuring thickness by mechanical means. This source of measurement error can lead to underestimating film thickness if proper corrections are not made. Analytical solutions exist for Hertzian contact deformation, but these solutions assume relatively large geometries. If the film being measured is thin, the analytical Hertzian assumptions are not appropriate. ANSYS is used to model the contact deformation of a 48 gauge Mylar film under bearing load, supported by a stiffer material. Simulation results are presented and compared to other correction estimates. Ideal, semi-infinite, and constrained properties of the film and the measurement tools are considered.

  13. Measurement of the force–displacement response of in vivo human skin under a rich set of deformations

    KAUST Repository

    Flynn, Cormac; Taberner, Andrew; Nielsen, Poul

    2011-01-01

    The non-linear, anisotropic, and viscoelastic properties of human skin vary according to location on the body, age, and individual. The measurement of skin's mechanical properties is important in several fields including medicine, cosmetics, and forensics. In this study, a novel force-sensitive micro-robot applied a rich set of three-dimensional deformations to the skin surface of different areas of the arms of 20 volunteers. The force-displacement response of each area in different directions was measured. All tested areas exhibited a non-linear, viscoelastic, and anisotropic force-displacement response. There was a wide quantitative variation in the stiffness of the response. For the right anterior forearm, the ratio of the maximum probe reaction force to maximum probe displacement ranged from 0.44Nmm-1 to 1.45Nmm-1. All volunteers exhibited similar qualitative anisotropic characteristics. For the anterior right forearm, the stiffest force-displacement response was when the probe displaced along the longitudinal axis of the forearm. The response of the anterior left forearm was stiffest in a direction 20° to the longitudinal axis of the forearm. The posterior upper arm was stiffest in a direction 90° to the longitudinal axis of the arm. The averaged posterior upper arm response was less stiff than the averaged anterior forearm response. The maximum probe force at 1.3mm probe displacement was 0.69N for the posterior upper arm and 1.1N for the right anterior forearm. The average energy loss during the loading-unloading cycle ranged from 11.9% to 34.2%. This data will be very useful for studying the non-linear, anisotropic, and viscoelastic behaviour of skin and also for generating material parameters for appropriate constitutive models. © 2011 IPEM.

  14. Measurement of the force–displacement response of in vivo human skin under a rich set of deformations

    KAUST Repository

    Flynn, Cormac

    2011-06-01

    The non-linear, anisotropic, and viscoelastic properties of human skin vary according to location on the body, age, and individual. The measurement of skin\\'s mechanical properties is important in several fields including medicine, cosmetics, and forensics. In this study, a novel force-sensitive micro-robot applied a rich set of three-dimensional deformations to the skin surface of different areas of the arms of 20 volunteers. The force-displacement response of each area in different directions was measured. All tested areas exhibited a non-linear, viscoelastic, and anisotropic force-displacement response. There was a wide quantitative variation in the stiffness of the response. For the right anterior forearm, the ratio of the maximum probe reaction force to maximum probe displacement ranged from 0.44Nmm-1 to 1.45Nmm-1. All volunteers exhibited similar qualitative anisotropic characteristics. For the anterior right forearm, the stiffest force-displacement response was when the probe displaced along the longitudinal axis of the forearm. The response of the anterior left forearm was stiffest in a direction 20° to the longitudinal axis of the forearm. The posterior upper arm was stiffest in a direction 90° to the longitudinal axis of the arm. The averaged posterior upper arm response was less stiff than the averaged anterior forearm response. The maximum probe force at 1.3mm probe displacement was 0.69N for the posterior upper arm and 1.1N for the right anterior forearm. The average energy loss during the loading-unloading cycle ranged from 11.9% to 34.2%. This data will be very useful for studying the non-linear, anisotropic, and viscoelastic behaviour of skin and also for generating material parameters for appropriate constitutive models. © 2011 IPEM.

  15. The analysis of the bedrock deformation in Olkiluoto using precise levelling measurements

    International Nuclear Information System (INIS)

    Saaranen, V.; Rouhiainen, P.; Suurmaeki, H.

    2014-01-01

    In order to research vertical bedrock deformations in the Olkiluoto area, Posiva Oy and the Finnish Geodetic Institute began monitoring with precise levelling in 2003. At the moment, the measuring plan includes a loop between the monitoring GPS stations around the island, a levelling line from the island to the mainland, levelling loops to ONKALO, the final disposal site, and VLJ, the low and intermediate level waste repository there. The levelling to the mainland has been performed every fourth year and the levelling of the GPS stations every second year. The micro loops (ONKALO and VLJ) have been measured annually. In this report, we use three-step method to research a vertical deformation of the Olkiluoto area. Firstly, the linear deformation rate in the area has been determined by the least squares adjustment of the levelling data. It varies from -0.2 mm/yr to +0.2 mm/yr. Secondly, local deformations have been analysed by comparing the height differences for different years. In this comparison a starting value for the yearly adjustment has been corrected for land uplift. Using this method the elevation changes are relative to the whole network. For a fixed benchmark, we correct its yearly deformation. Thirdly, the fault lines have been analysed by comparing the elevation changes between the successive benchmarks from one observation epoch to another. The results show that ONKALO and Lapijoki are in the subsidence area of the network, and VLJ has small uplift rate. On the island some deformations exist, but elevation difference from 2003 to 2011 is less than one millimetre at every benchmarks. The measurements in the Lapijoki-Olkiluoto line in 2003, 2007 and 2011 show that linear elevation change between the mainland and Olkiluoto island is a little since 2003. The elevation differences, from Olkiluoto to Lapijoki, measured in 2003 and 2011 differ less than one millimetre each other, but the 2007 observation differs three millimetres from the other measurements

  16. Measurements of residual deformations of steel-aluminum conductors in operating overhead lines

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.V.; Kesel' man, L.M.; Treiger, A.S.

    1982-12-01

    Experience in the operation of overhead power lines using steel-aluminum conductors is presented. Measurements were taken on the residual deformation of the steel-aluminum lines to determine the amount of sag increase and to forecast this increase for the entire period of operation. It is recommended that the work on measuring the residual deformation in the power lines be extended to a broader range of operating conditions such as conductors, spans, and climate conditions.

  17. Progression of spinal deformity in wheelchair-dependent patients with Duchenne muscular dystrophy who are not treated with steroids: coronal plane (scoliosis) and sagittal plane (kyphosis, lordosis) deformity.

    Science.gov (United States)

    Shapiro, F; Zurakowski, D; Bui, T; Darras, B T

    2014-01-01

    We determined the frequency, rate and extent of development of scoliosis (coronal plane deformity) in wheelchair-dependent patients with Duchenne muscular dystrophy (DMD) who were not receiving steroid treatment. We also assessed kyphosis and lordosis (sagittal plane deformity). The extent of scoliosis was assessed on sitting anteroposterior (AP) spinal radiographs in 88 consecutive non-ambulatory patients with DMD. Radiographs were studied from the time the patients became wheelchair-dependent until the time of spinal fusion, or the latest assessment if surgery was not undertaken. Progression was estimated using a longitudinal mixed-model regression analysis to handle repeated measurements. Scoliosis ≥ 10° occurred in 85 of 88 patients (97%), ≥ 20° in 78 of 88 (89%) and ≥ 30° in 66 of 88 patients (75%). The fitted longitudinal model revealed that time in a wheelchair was a highly significant predictor of the magnitude of the curve, independent of the age of the patient (p lordosis (16 (27%) abnormal and seven (11%) normal). This study provides a baseline to assess the effects of steroids and other forms of treatment on the natural history of scoliosis in patients with DMD, and an approach to assessing spinal deformity in the coronal and sagittal planes in wheelchair-dependent patients with other neuromuscular disorders.

  18. Longitudinal relationships among posturography and gait measures in multiple sclerosis.

    Science.gov (United States)

    Fritz, Nora E; Newsome, Scott D; Eloyan, Ani; Marasigan, Rhul Evans R; Calabresi, Peter A; Zackowski, Kathleen M

    2015-05-19

    Gait and balance dysfunction frequently occurs early in the multiple sclerosis (MS) disease course. Hence, we sought to determine the longitudinal relationships among quantitative measures of gait and balance in individuals with MS. Fifty-seven ambulatory individuals with MS (28 relapsing-remitting, 29 progressive) were evaluated using posturography, quantitative sensorimotor and gait measures, and overall MS disability with the Expanded Disability Status Scale at each session. Our cohort's age was 45.8 ± 10.4 years (mean ± SD), follow-up time 32.8 ± 15.4 months, median Expanded Disability Status Scale score 3.5, and 56% were women. Poorer performance on balance measures was related to slower walking velocity. Two posturography measures, the anterior-posterior sway and sway during static eyes open, feet apart conditions, were significant contributors to walk velocity over time (approximate R(2) = 0.95), such that poorer performance on the posturography measures was related to slower walking velocity. Similarly, the anterior-posterior sway and sway during static eyes closed, feet together conditions were also significant contributors to the Timed 25-Foot Walk performance over time (approximate R(2) = 0.83). This longitudinal cohort study establishes a strong relationship between clinical gait measures and posturography. The data show that increases in static posturography and reductions in dynamic posturography are associated with a decline in walk velocity and Timed 25-Foot Walk performance over time. Furthermore, longitudinal balance measures predict future walking performance. Quantitative walking and balance measures are important additions to clinical testing to explore longitudinal change and understand fall risk in this progressive disease population. © 2015 American Academy of Neurology.

  19. Real-time deformation measurement using a transportable shearography system

    Science.gov (United States)

    Weijers, A. L.; van Brug, Hedser H.; Frankena, Hans J.

    1997-03-01

    A new system for deformation visualization has been developed, being a real time phase stepped shearing speckle interferometer. This system provides the possibility to measure quantitatively deformations of diffusely reflecting objects in an industrial environment. The main characteristics of this interferometer are its speed of operation and its reduced sensitivity to external disturbances. Apart from its semiconductor laser source, this system has a shoe-box size and is mounted on a tripod for easy handling during inspection. This paper describes the shearing speckle interferometry set-up, as it is developed at our laboratory and its potential for detecting defects.

  20. Thermal image analysis of plastic deformation and fracture behavior by a thermo-video measurement system

    International Nuclear Information System (INIS)

    Ohbuchi, Yoshifumi; Sakamoto, Hidetoshi; Nagatomo, Nobuaki

    2016-01-01

    The visualization of the plastic region and the measurement of its size are necessary and indispensable to evaluate the deformation and fracture behavior of a material. In order to evaluate the plastic deformation and fracture behavior in a structural member with some flaws, the authors paid attention to the surface temperature which is generated by plastic strain energy. The visualization of the plastic deformation was developed by analyzing the relationship between the extension of the plastic deformation range and the surface temperature distribution, which was obtained by an infrared thermo-video system. Furthermore, FEM elasto-plastic analysis was carried out with the experiment, and the effectiveness of this non-contact measurement system of the plastic deformation and fracture process by a thermography system was discussed. The evaluation method using an infrared imaging device proposed in this research has a feature which does not exist in the current evaluation method, i.e. the heat distribution on the surface of the material has been measured widely by noncontact at 2D at high speed. The new measuring technique proposed here can measure the macroscopic plastic deformation distribution on the material surface widely and precisely as a 2D image, and at high speed, by calculation from the heat generation and the heat propagation distribution. (paper)

  1. Measuring co-seismic deformation of the Sichuan earthquake by satellite differential INSAR

    Science.gov (United States)

    Zhang, Yonghong; Gong, Wenyu; Zhang, Jixian

    2008-12-01

    The Sichuan Earthquake, occurred on May 12, 2008, is the strongest earthquake to hit China since the 1976 Tangshan earthquake. The earthquake had a magnitude of M 8.0, and caused surface deformation greater than 3 meters. This paper presents the research work of measuring the co-seismic deformations of the earthquake with satellite differential interferometric SAR technique. Four L-band SAR images were used to form the interferogram with 2 pre- scenes imaged on Feb 17, 2008 and 2 post- scenes on May 19, 2008. The Digital Elevation Models extracted from 1:50,000-scale national geo-spatial database were used to remove the topographic contribution and form a differential interferogram. The interferogram presents very high coherence in most areas, although the pre- and post- images were acquired with time interval of 92 days. This indicates that the L-band PALSAR sensor is very powerful for interferometry applications. The baseline error is regarded as the main phase error source in the differential interferogram. Due to the difficulties of doing field works immediately after the earthquake, only one deformation measurement recorded by a permanent GPS station is obtained for this research. An approximation method is proposed to eliminate the orbital phase error with one control point. The derived deformation map shows similar spatial pattern and deformation magnitude compared with deformation field generated by seismic inversion method.

  2. Measuring medial longitudinal arch deformation during gait. A reliability study

    DEFF Research Database (Denmark)

    Bencke, Jesper; Christiansen, Ditte; Jensen, Anne Kathrine Bendrup

    2012-01-01

    during gait and to compare this method with a static measure and a 2D dynamic method. Fifty-two feet (26 healthy male participants) were tested twice 4-9 days apart in a biomechanical gait analysis laboratory using a 3D three-marker foot model, a 2D video-based model for the measurement of MLAD during...

  3. Measurement of blockage in deformed LWR multi-rod arrays

    International Nuclear Information System (INIS)

    Hindle, E.D.; Jones, C.; Whitty, S.

    1983-01-01

    This paper critically reviews the current methods used for measuring blockage in multi-rod arrays and discusses their application. A new definition which overcomes the deficiencies of the previous methods is proposed. Also examples of the application of automatic computerised techniques to directly measure rod strain, blockage, sub-channel blockage and perimeter changes from photographs of sections through deformed arrays are presented. (author)

  4. Validation of an optical system to measure acetabular shell deformation in cadavers.

    Science.gov (United States)

    Dold, Philipp; Bone, Martin C; Flohr, Markus; Preuss, Roman; Joyce, Tom J; Deehan, David; Holland, James

    2014-08-01

    Deformation of the acetabular shell at the time of surgery can result in poor performance and early failure of the hip replacement. The study aim was to validate an ATOS III Triple Scan optical measurement system against a co-ordinate measuring machine using in vitro testing and to check repeatability under cadaver laboratory conditions. Two sizes of custom-made acetabular shells were deformed using a uniaxial/two-point loading frame and measured at different loads. Roundness measurements were performed using both the ATOS III Triple Scan optical system and a co-ordinate measuring machine and then compared. The repeatability was also tested by measuring shells pre- and post-insertion in a cadaver laboratory multiple times. The in vitro comparison with the co-ordinate measuring machine demonstrated a maximum difference of 5 µm at the rim and 9 µm at the measurement closest to the pole of the shell. Maximum repeatability was below 1 µm for the co-ordinate measuring machine and 3 µm for the ATOS III Triple Scan optical system. Repeatability was comparable between the pre-insertion (below 2 µm) and post-insertion (below 3 µm) measurements in the cadaver laboratory. This study supports the view that the ATOS III Triple Scan optical system fulfils the necessary requirements to accurately measure shell deformation in cadavers. © IMechE 2014.

  5. Nonlinear tension-bending deformation of a shape memory alloy rod

    International Nuclear Information System (INIS)

    Shang, Zejin; Wang, Zhongmin

    2012-01-01

    Based on the measured shape memory alloy (SMA) stress–strain curve and the nonlinear large deformation theory of extensible beams (or rods), the first-order nonlinear governing equations of a SMA cantilever straight rod are established. They consist of a boundary-value problem of ordinary differential equations with a strong nonlinearity, in which seven unknown functions are contained and the arc length of the deformed axis is considered as one of the basic unknown functions. The shooting method combining with the Newton–Raphson iteration method is applied to solve the equations numerically. For a SMA cantilever rod subjected to a transverse uniformly distributed force, the deformation characteristics curves, the maximum strain and the maximum stress distribution curves along the longitudinal direction of rod, and the relation curves between deformation characteristic parameters and transverse uniformly force under different slenderness ratios are obtained. The effects of material nonlinearity, geometrical nonlinearity and slenderness ratio on the tension-bending deformation of the SMA cantilever rod are investigated. The numerical simulation results are in good agreement with the experimental data from the literature, verifying the soundness of the entire numerical simulation scheme. (paper)

  6. Anthropometric measurements and vertebral deformities. European Vertebral Osteoporosis Study (EVOS) Group.

    Science.gov (United States)

    Johnell, O; O'Neill, T; Felsenberg, D; Kanis, J; Cooper, C; Silman, A J

    1997-08-15

    To investigate the association between anthropometric indices and morphometrically determined vertebral deformity, the authors carried out a cross-sectional study using data from the European Vertebral Osteoporosis Study (EVOS), a population-based study of vertebral osteoporosis in 36 European centers from 19 countries. A total of 16,047 EVOS subjects were included in this analysis, of whom 1,973 subjects (915 males, 1,058 females) (12.3%) aged 50 years or over had one or more vertebral deformities ("cases"). The cases were compared with the 14,074 subjects (6,539 males, 7,535 females) with morphometrically normal spines ("controls"). Data were collected on self-reported height at age 25 years and minimum weight after age 25 years, as well as on current measured height and weight. Body mass index (BMI) and height and weight change were calculated from these data. The relations between these variables and vertebral deformity were examined separately by sex with logistic regression adjusting for age, smoking, and physical activity. In females, there was a significant trend of decreasing risk with increasing quintile of current weight, current BMI, and weight gain since age 25 years. In males, subjects in the lightest quintile for these measures were at increased risk but there was no evidence of a trend. An ecologic analysis by country revealed a negative correlation between mean BMI and the prevalence of deformity in females but not in males. The authors conclude that low body weight is associated with presence of vertebral deformity.

  7. Estimators for longitudinal latent exposure models: examining measurement model assumptions.

    Science.gov (United States)

    Sánchez, Brisa N; Kim, Sehee; Sammel, Mary D

    2017-06-15

    Latent variable (LV) models are increasingly being used in environmental epidemiology as a way to summarize multiple environmental exposures and thus minimize statistical concerns that arise in multiple regression. LV models may be especially useful when multivariate exposures are collected repeatedly over time. LV models can accommodate a variety of assumptions but, at the same time, present the user with many choices for model specification particularly in the case of exposure data collected repeatedly over time. For instance, the user could assume conditional independence of observed exposure biomarkers given the latent exposure and, in the case of longitudinal latent exposure variables, time invariance of the measurement model. Choosing which assumptions to relax is not always straightforward. We were motivated by a study of prenatal lead exposure and mental development, where assumptions of the measurement model for the time-changing longitudinal exposure have appreciable impact on (maximum-likelihood) inferences about the health effects of lead exposure. Although we were not particularly interested in characterizing the change of the LV itself, imposing a longitudinal LV structure on the repeated multivariate exposure measures could result in high efficiency gains for the exposure-disease association. We examine the biases of maximum likelihood estimators when assumptions about the measurement model for the longitudinal latent exposure variable are violated. We adapt existing instrumental variable estimators to the case of longitudinal exposures and propose them as an alternative to estimate the health effects of a time-changing latent predictor. We show that instrumental variable estimators remain unbiased for a wide range of data generating models and have advantages in terms of mean squared error. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. In situ measurement on TSV-Cu deformation with hotplate system based on sheet resistance

    Science.gov (United States)

    Sun, Yunna; Wang, Bo; Wang, Huiying; Wu, Kaifeng; Yang, Shengyong; Wang, Yan; Ding, Guifu

    2017-12-01

    The in situ measurement of TSVs deformation at different temperature is meaningful for learning more about the thermal deformation schemes of 3D TSVs in the microelectronic devices. An efficient and smart hotplate based on sheet resistance is designed for offering more heat, producing a uniform temperature distribution, relieving thermal stress and heat concentration issues, and reducing room space, which was optimized by the finite element method (FEM). The fabricated hotplate is efficient and smart (2.5 cm  ×  2.0 cm  ×  0.5 cm) enough to be located in the limited space during measuring. The thermal infrared imager was employed as the temperature sensor for monitoring the temperature distribution of TSVs sample. The 3D profilometry was adopted as the observer for TSVs profiles survey. The in situ 2D top surface profiles and 3D displacement profiles of TSVs sample at the different temperature were measured by 3D profilometer. The in situ average relative deformation and effective plastic deformation of the TSV sample were measured. With optical measurement method, 3D profilometry, the TSV sample can be tested repeatedly.

  9. Neutron-diffraction measurement of the evolution of strain for non-uniform plastic deformation

    CERN Document Server

    Rogge, R B; Boyce, D

    2002-01-01

    Neutrons are particularly adept for the validation of modeling predictions of stress and strain. In recent years, there has been a significant effort to model the evolution of both the macroscopic stresses and the intergranular stress during plastic deformation. These have had broad implications with regard to understanding the evolution of residual stress and to diffraction-based measurements of strain. Generally the modeling and associated measurements have been performed for simple uniaxial tension, leaving questions with regard to plastic deformation under multi-axial stress and non-uniform stress. Extensive measurements of the strain profile across a plastic hinge for each of a series of loading and unloading cycles to progressively higher degrees of plastic deformation are presented. These measurements are used to assess multiple-length-scale finite-element modeling (FEM) of the plastic hinge, in which the elements will range in size from single crystallites (as used in successful simulations of uniaxia...

  10. Neutron-diffraction measurement of the evolution of strain for non-uniform plastic deformation

    International Nuclear Information System (INIS)

    Rogge, R.B.; Dawson, P.R.; Boyce, D.

    2002-01-01

    Neutrons are particularly adept for the validation of modeling predictions of stress and strain. In recent years, there has been a significant effort to model the evolution of both the macroscopic stresses and the intergranular stress during plastic deformation. These have had broad implications with regard to understanding the evolution of residual stress and to diffraction-based measurements of strain. Generally the modeling and associated measurements have been performed for simple uniaxial tension, leaving questions with regard to plastic deformation under multi-axial stress and non-uniform stress. Extensive measurements of the strain profile across a plastic hinge for each of a series of loading and unloading cycles to progressively higher degrees of plastic deformation are presented. These measurements are used to assess multiple-length-scale finite-element modeling (FEM) of the plastic hinge, in which the elements will range in size from single crystallites (as used in successful simulations of uniaxial tension) to macroscopic elements (as typically used in FEM simulations). (orig.)

  11. Measuring Regional Changes in the Diastolic Deformation of the Left Ventricle of SHR Rats Using microPET Technology and Hyperelastic Warping

    International Nuclear Information System (INIS)

    Gullberg, Grant T; VERESS, ALEXANDER I.; WEISS, JEFFREY A.; HUESMAN, RONALD H.; REUTTER, BRYAN W.; TAYLOR, SCOTT E.; SITEK, AREK; FENG, BING; YANG, YONGFENG; GULLBERG, GRANT T.

    2008-01-01

    The objective of this research was to assess applicability of a technique known as hyperelastic warping for the measurement of local strains in the left ventricle (LV) directly from microPET image data sets. The technique uses differences in image intensities between template (reference) and target (loaded) image data sets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target images. For validation, the template image was defined as the end-systolic microPET image data set from a Wistar Kyoto (WKY) rat. The target image was created by mapping the template image using the deformation results obtained from a FE model of diastolic filling. Regression analysis revealed highly significant correlations between the simulated forward FE solution and image derived warping predictions for fiber stretch (R2 = 0.96), circumferential strain (R2 = 0.96), radial strain (R2 = 0.93), and longitudinal strain (R2 = 0.76) (p < 0.001 for all cases). The technology was applied to microPET image data of two spontaneously hypertensive rats (SHR) and a WKY control. Regional analysis revealed that, the lateral freewall in the SHR subjects showed the greatest deformation compared with the other wall segments. This work indicates that warping can accurately predict the strain distributions during diastole from the analysis of microPET data sets

  12. Measuring Regional Changes in the Diastolic Deformation of the Left Ventricle of SHR Rats Using microPET Technology and Hyperelastic Warping

    Energy Technology Data Exchange (ETDEWEB)

    Gullberg, Grant T; VERESS , ALEXANDER I.; WEISS, JEFFREY A.; HUESMAN, RONALD H.; REUTTER, BRYAN W.; TAYLOR , SCOTT E.; SITEK , AREK; FENG, BING; YANG , YONGFENG; GULLBERG, GRANT T.

    2008-04-04

    The objective of this research was to assess applicability of a technique known as hyperelastic warping for the measurement of local strains in the left ventricle (LV) directly from microPET image data sets. The technique uses differences in image intensities between template (reference) and target (loaded) image data sets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target images. For validation, the template image was defined as the end-systolic microPET image data set from a Wistar Kyoto (WKY) rat. The target image was created by mapping the template image using the deformation results obtained from a FE model of diastolic filling. Regression analysis revealed highly significant correlations between the simulated forward FE solution and image derived warping predictions for fiber stretch (R2 = 0.96), circumferential strain (R2 = 0.96), radial strain (R2 = 0.93), and longitudinal strain (R2 = 0.76) (p<0.001for all cases). The technology was applied to microPET image data of two spontaneously hypertensive rats (SHR) and a WKY control. Regional analysis revealed that, the lateral freewall in the SHR subjects showed the greatest deformation compared with the other wall segments. This work indicates that warping can accurately predict the strain distributions during diastole from the analysis of microPET data sets.

  13. Measurements of very large deformations in potash salt in conjunction with an ongoing mining operation

    International Nuclear Information System (INIS)

    Sattler, A.R.; Christensen, C.L.

    1980-01-01

    Room and pillar deformation were measured in conjunction with a relatively new type of mining operation in a southeastern New Mexico potash mine. The extraction ration was approximately 90 percent in a first mining operation. Due to severe deformations encountered, instrumentation had to be developed/modified for these measurements. This paper concentrates on experiment design, design of special instrumentation, field installation of equipment, and presentation of the data. Measurements made include extensometers in the pillar, in the floor and ceiling in the room between pillars, absolute level measurements, floor ceiling closure, and stress (strain) measurements. Associated laboratory rock mechanics measurements of samples from the mine are being done separately. Two separate room pillar complexes were instrumented. In the first complex, floor-ceiling deformations of approximately 1 inch/day and pillar deformations around 1/2 inch/day were measured. In the second complex, instrumentation was installed while the pillar was a part of a long wall and the subsequent sequential mining (long wall-pillar with only one adjoining room on one side - pillar in the middle of room pillar complex) was observed. Data return from this operation was good

  14. Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high-speed video camera system.

    Science.gov (United States)

    Tsukada, K; Sekizuka, E; Oshio, C; Minamitani, H

    2001-05-01

    To measure erythrocyte deformability in vitro, we made transparent microchannels on a crystal substrate as a capillary model. We observed axisymmetrically deformed erythrocytes and defined a deformation index directly from individual flowing erythrocytes. By appropriate choice of channel width and erythrocyte velocity, we could observe erythrocytes deforming to a parachute-like shape similar to that occurring in capillaries. The flowing erythrocytes magnified 200-fold through microscopy were recorded with an image-intensified high-speed video camera system. The sensitivity of deformability measurement was confirmed by comparing the deformation index in healthy controls with erythrocytes whose membranes were hardened by glutaraldehyde. We confirmed that the crystal microchannel system is a valuable tool for erythrocyte deformability measurement. Microangiopathy is a characteristic complication of diabetes mellitus. A decrease in erythrocyte deformability may be part of the cause of this complication. In order to identify the difference in erythrocyte deformability between control and diabetic erythrocytes, we measured erythrocyte deformability using transparent crystal microchannels and a high-speed video camera system. The deformability of diabetic erythrocytes was indeed measurably lower than that of erythrocytes in healthy controls. This result suggests that impaired deformability in diabetic erythrocytes can cause altered viscosity and increase the shear stress on the microvessel wall. Copyright 2001 Academic Press.

  15. Compressive deformation of liquid phase-sintered porous silicon carbide ceramics

    Directory of Open Access Journals (Sweden)

    Taro Shimonosono

    2014-12-01

    Full Text Available Porous silicon carbide ceramics were fabricated by liquid phase sintering with 1 wt% Al2O3–1 wt% Y2O3 additives during hot-pressing at 1400–1900 °C. The longitudinal strain at compressive fracture increased at a higher porosity and was larger than the lateral strain. The compressive Young's modulus and the strain at fracture depended on the measured direction, and increased with the decreased specific surface area due to the formation of grain boundary. However, the compressive strength and the fracture energy were not sensitive to the measured direction. The compressive strength of a porous SiC compact increased with increasing grain boundary area. According to the theoretical modeling of the strength–grain boundary area relation, it is interpreted that the grain boundary of a porous SiC compact is fractured by shear deformation rather than by compressive deformation.

  16. Design and Testing of the Strain Transducer for Measuring Deformations of Pipelines Operating in the Mining-deformable Ground Environment

    Directory of Open Access Journals (Sweden)

    Gawedzki Waclaw

    2015-10-01

    Full Text Available Design and laboratory test results of the strain transducer intended for monitoring and assessing stress states of pipelines sited in mining areas are presented in this paper. This transducer allows measuring strains of pipelines subjected to external forces - being the mining operations effect. Pipeline strains can have a direct influence on a tightness loss and penetration of the transported fluid into the environment. The original strain gauge transducer was proposed for performing measurements of strains. It allows measuring circumferential strains and determining the value and direction of the main longitudinal strain. This strain is determined on the basis of measuring component longitudinal strains originating from axial forces and the resultant bending moment. The main purpose of investigations was the experimental verification of the possibility of applying the strain transducer for measuring strains of polyethylene pipelines. The obtained results of the transducer subjected to influences of tensile and compression forces are presented and tests of relaxation properties of polyethylene are performed.

  17. Investigation on coupling error characteristics in angular rate matching based ship deformation measurement approach

    Science.gov (United States)

    Yang, Shuai; Wu, Wei; Wang, Xingshu; Xu, Zhiguang

    2018-01-01

    The coupling error in the measurement of ship hull deformation can significantly influence the attitude accuracy of the shipborne weapons and equipments. It is therefore important to study the characteristics of the coupling error. In this paper, an comprehensive investigation on the coupling error is reported, which has a potential of deducting the coupling error in the future. Firstly, the causes and characteristics of the coupling error are analyzed theoretically based on the basic theory of measuring ship deformation. Then, simulations are conducted for verifying the correctness of the theoretical analysis. Simulation results show that the cross-correlation between dynamic flexure and ship angular motion leads to the coupling error in measuring ship deformation, and coupling error increases with the correlation value between them. All the simulation results coincide with the theoretical analysis.

  18. Measurement of curvature and twist of a deformed object using digital holography

    International Nuclear Information System (INIS)

    Chen Wen; Quan Chenggen; Cho Jui Tay

    2008-01-01

    Measurement of curvature and twist is an important aspect in the study of object deformation. In recent years, several methods have been proposed to determine curvature and twist of a deformed object using digital shearography. Here we propose a novel method to determine the curvature and twist of a deformed object using digital holography and a complex phasor. A sine/cosine transformation method and two-dimensional short time Fourier transform are proposed subsequently to process the wrapped phase maps. It is shown that high-quality phase maps corresponding to curvature and twist can be obtained. An experiment is conducted to demonstrate the validity of the proposed method

  19. Onsets of nuclear deformation from measurements with the Isoltrap mass spectrometer

    CERN Document Server

    Naimi, Sarah

    Mass measurements provide important information concerning nuclear structure. This work presents results from the pioneering Penning trap spectrometer ISOLTRAP at CERN-ISOLDE. High-precision mass measurements of neutron-rich manganese ($^{58−66}$Mn) and krypton isotopes ($^{96,97}$Kr) are presented, of which the $^{66}$Mn and $^{96,97}$Kr masses are measured for the first time. In particular, the mass of $^{97}$Kr was measured using the preparation trap and required the definition of a new fit function. In the case of the manganese isotopes, the N = 40 shell closure is addressed. The two-neutron-separation energies calculated from the new masses show no shell closure at N = 40 but give an estimation of the proton-neutron interaction (around 0.5 MeV) responsible for the increase of collectivity and nuclear deformation in this mass region. The new krypton masses show behavior in sharp contrast with heavier neighbors where sudden and intense deformation is present, interpreted as the establishment of a nuclea...

  20. Simultaneous measurements of photoemission and morphology of various Al alloys during mechanical deformation

    Science.gov (United States)

    Cai, M.; Li, W.; Dickinson, J. T.

    2006-11-01

    We report simultaneous measurements of strain and photoelectron emission from high purity Al (1350), Al-Mg (5052), Al-Mn (3003), Al-Cu (2024), and Al-Mg-Si (6061) alloys under uniaxial tension due to pulsed excimer laser radiation (248nm). The emission of low-energy photoelectrons is sensitive to deformation-induced changes in surface morphology, including the formation of slip lines and slip bands. Alloy composition and surface treatment significantly influence the photoemission during deformation. Surface oxide enhances the signal-to-noise level during photoemission measurement. In the early stage of deformation (strain ⩽0.04), photoemission intensity increases gradually in a nonlinear fashion. While subsequent photoemission increases almost linearly with strain until failure in samples with thin oxide layer (˜31Å), there are two linear segments of photoemission for the samples with oxide of 45Å. The onset of strain localization corresponds to the intersection point of two linear segments, usually at a strain of 0.08-0.20. A constitutive model incorporating microstructure evolution and work hardening during tensile deformation is proposed to qualitatively interpret the growth of the photoemission as a function of strain. Photoemissions from various alloys are interpreted in the light of surface treatment, work function, composition, and microstructural development during deformation.

  1. Longitudinal emittance measurement at the ATS

    International Nuclear Information System (INIS)

    Cottingame, W.B.; Cortez, J.H.; Higgins, W.W.; Sander, O.R.; Sandoval, D.P.

    1986-01-01

    With increasing brightness, beam diagnostic techniques requiring interception of the beam become impractical. For H - particle beams, solutions for this problem based on the phenomenon of photodissociation are now being investigated at the Los Alamos National Laboratory accelerator test stand (ATS). A laser can be used to selectively neutralize portions of the beam than can be characterized after the charged particles have been swept away. We have used this technique for measuring longitudinal emittance at the output of the ATS radio-frequency quadrupole

  2. Added clinical value of applying myocardial deformation imaging to assess right ventricular function.

    Science.gov (United States)

    Sokalskis, Vladislavs; Peluso, Diletta; Jagodzinski, Annika; Sinning, Christoph

    2017-06-01

    Right heart dysfunction has been found to be a strong prognostic factor predicting adverse outcome in various cardiopulmonary diseases. Conventional echocardiographic measurements can be limited by geometrical assumptions and impaired reproducibility. Speckle tracking-derived strain provides a robust quantification of right ventricular function. It explicitly evaluates myocardial deformation, as opposed to tissue Doppler-derived strain, which is computed from tissue velocity gradients. Right ventricular longitudinal strain provides a sensitive tool for detecting right ventricular dysfunction, even at subclinical levels. Moreover, the longitudinal strain can be applied for prognostic stratification of patients with pulmonary hypertension, pulmonary embolism, and congestive heart failure. Speckle tracking-derived right atrial strain, right ventricular longitudinal strain-derived mechanical dyssynchrony, and three-dimensional echocardiography-derived strain are emerging imaging parameters and methods. Their application in research is paving the way for their clinical use. © 2017, Wiley Periodicals, Inc.

  3. Deformation of ovalbumin-alginate capsules in a T-Junction

    Science.gov (United States)

    Häner, Edgar; Juel, Anne

    2015-11-01

    We study experimentally the flow-induced deformation of liquid-filled ovalbumin-alginate capsules in a T-junction. In applications, capsules/cells often negotiate branched networks with junctions thus experiencing large deformations. We investigate the constant volume-flux viscous flow of buoyancy-neutral thin-walled capsules close to the centreline of rectangular channels, by comparison to near-rigid gelled beads. The motion of the capsules in straight channels scales with the capillary number - the ration of viscous to elastic forces. However, the effect of elastic deformation on the motion is sufficiently weak that a rigid sphere model predicts the velocity of capsules with diameters of up to 70% of that of the channel to within 5%. In the T-junction, systematic selection of daughter channel (right-left) occurs outside a finite region around the channel centreline, by contrast with near-rigid gelled beads, where the actual centreline is the separator. We quantify the behaviour of capsules in terms of their longitudinal stretching (up to a factor of three without rupture). We show the large range of deformations encountered can be applied to the measurement of the elastic properties of capsules as well as to the geometric-induced sorting and manipulation of capsules.

  4. Indirect viscosimetric method is less accurate than ektacytometry for the measurement of red blood cell deformability.

    Science.gov (United States)

    Vent-Schmidt, Jens; Waltz, Xavier; Pichon, Aurélien; Hardy-Dessources, Marie-Dominique; Romana, Marc; Connes, Philippe

    2015-01-01

    The aim of this study was to test the accuracy of viscosimetric method to estimate the red blood cell (RBC) deformability properties. Thirty-three subjects were enrolled in this study: 6 healthy subjects (AA), 11 patients with sickle cell-hemoglobin C disease (SC) and 16 patients with sickle cell anemia (SS). Two methods were used to assess RBC deformability: 1) indirect viscosimetric method and 2) ektacytometry. The indirect viscosimetric method was based on the Dintenfass equation where blood viscosity, plasma viscosity and hematocrit are measured and used to calculate an index of RBC rigidity (Tk index). The RBC deformability/rigidity of the three groups was compared using the two methods. Tk index was not different between SS and SC patients and the two groups had higher values than AA group. When ektacytometry was used, RBC deformability was lower in SS and SC groups compared to the AA group and SS and SC patients were different. Although the two measures of RBC deformability were correlated, the association was not very high. Bland and Altman analysis demonstrated a 3.25 bias suggesting a slight difference between the two methods. In addition, the limit of agreement represented 28% (>15%) of the mean values of RBC deformability, showing no interchangeability between the two methods. In conclusion, measuring RBC deformability by indirect viscosimetry is less accurate than by ektacytometry, which is considered the gold standard.

  5. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    International Nuclear Information System (INIS)

    Babic, Bakir; Lawn, Malcolm A.; Coleman, Victoria A.; Jämting, Åsa K.; Herrmann, Jan

    2016-01-01

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation to zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.

  6. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Babic, Bakir, E-mail: bakir.babic@measurement.gov.au; Lawn, Malcolm A.; Coleman, Victoria A.; Jämting, Åsa K.; Herrmann, Jan [National Measurement Institute, 36 Bradfield Road, West Lindfield, New South Wales 2070 (Australia)

    2016-06-07

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation to zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.

  7. GPS deformation measurements at Olkiluoto in 2013

    International Nuclear Information System (INIS)

    Nyberg, S.; Kallio, U.; Koivula, H.

    2014-08-01

    The Finnish Geodetic Institute has monitored crustal deformations since mid-1990s at Olkiluoto, Kivetty and Romuvaara. The research was focused on the Olkiluoto area in 2001, when Olkiluoto was chosen to the site for the final disposal facility of the spent nuclear fuel. The work and the results of the GPS deformation monitoring at Olkiluoto in 2013 are presented. The measurement consisted of two GPS measurement campaigns, observations at local permanent stations and control markers measurements at four stations. In spring six new stations were set up for permanent tracking. In total 12 permanent stations were operating continuously from April to the end of the year. The residual time series of the stations showed periodic trends up to 3 mm in height and 1 mm in horizontal component relative to the GPS1 station. A few stations were still measured as campaign-based and analysed baseline by baseline. The data from permanent stations (GPS1-GPS9, and GPS13) were included. The analysis of the inner network based on campaign sessions showed very small motions as in previous years: 75 % of change rates are smaller than 0.10 mm/y. Roughly one third of the change rates could be considered statistically significant at 1 % significance level. Statistically significant change rates were estimated for baselines from GPS1 and GPS5. The trends and strains differed at some baselines clearly from the earlier analysis because of different troposphere modelling. The results of the outer network showed the largest difference on the baseline GPS1-GPS11 where the trend decreased from -0.42 mm/y to -0.28 mm/y. The strain pattern of the outer network shows an eastwards motion of GPS1. The estimated strains for the baselines east of GPS1 were -0.03/-0.04 ppm/y. The control marker measurements were carried at the stations GPS1, GPS2, GPS4 and GPS6. A comparison of the results with the previous measurements showed that the distance between control markers at GPS6 continues to increase. Also

  8. GPS deformation measurements at Olkiluoto in 2013

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, S.; Kallio, U.; Koivula, H. [Finnish Geodetic Institute, Masala (Finland)

    2014-08-15

    The Finnish Geodetic Institute has monitored crustal deformations since mid-1990s at Olkiluoto, Kivetty and Romuvaara. The research was focused on the Olkiluoto area in 2001, when Olkiluoto was chosen to the site for the final disposal facility of the spent nuclear fuel. The work and the results of the GPS deformation monitoring at Olkiluoto in 2013 are presented. The measurement consisted of two GPS measurement campaigns, observations at local permanent stations and control markers measurements at four stations. In spring six new stations were set up for permanent tracking. In total 12 permanent stations were operating continuously from April to the end of the year. The residual time series of the stations showed periodic trends up to 3 mm in height and 1 mm in horizontal component relative to the GPS1 station. A few stations were still measured as campaign-based and analysed baseline by baseline. The data from permanent stations (GPS1-GPS9, and GPS13) were included. The analysis of the inner network based on campaign sessions showed very small motions as in previous years: 75 % of change rates are smaller than 0.10 mm/y. Roughly one third of the change rates could be considered statistically significant at 1 % significance level. Statistically significant change rates were estimated for baselines from GPS1 and GPS5. The trends and strains differed at some baselines clearly from the earlier analysis because of different troposphere modelling. The results of the outer network showed the largest difference on the baseline GPS1-GPS11 where the trend decreased from -0.42 mm/y to -0.28 mm/y. The strain pattern of the outer network shows an eastwards motion of GPS1. The estimated strains for the baselines east of GPS1 were -0.03/-0.04 ppm/y. The control marker measurements were carried at the stations GPS1, GPS2, GPS4 and GPS6. A comparison of the results with the previous measurements showed that the distance between control markers at GPS6 continues to increase. Also

  9. Measurement of the Diffractive Longitudinal Structure Function F_L^D at HERA

    CERN Document Server

    Aaron, F.D.

    2011-12-22

    First measurements are presented of the diffractive cross section $\\sigma_{ep \\rightarrow eXY}$ at centre-of-mass energies $\\sqrt{s}$ of 225 and 252 GeV, together with a precise new measurement at $\\sqrt{s}$ of 319 GeV, using data taken with the H1 detector in the years 2006 and 2007. Together with previous H1 data at $\\sqrt{s}$ of 301 GeV, the measurements are used to extract the diffractive longitudinal structure function F_L^D in the range of photon virtualities 4.0 <= Q^2 <= 44.0 GeV^2 and fractional proton longitudinal momentum loss 5 10^{-4} <= x_{IP} <= 3 10^{-3}. The measured F_L^D is compared with leading twist predictions based on diffractive parton densities extracted in NLO QCD fits to previous measurements of diffractive Deep-Inelastic Scattering and with a model which additionally includes a higher twist contribution derived from a colour dipole approach. The ratio of the diffractive cross section induced by longitudinally polarised photons to that for transversely polarised photons ...

  10. Formation mechanisms of periodic longitudinal microstructure and texture patterns in friction stir welded magnesium AZ80

    Energy Technology Data Exchange (ETDEWEB)

    Hiscocks, J., E-mail: j.hiscocks@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, Ontario (Canada); Diak, B.J. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, Ontario (Canada); Gerlich, A.P. [Department of Mechanical and Mechatronics Engineering, Waterloo University, Waterloo, Ontario (Canada); Daymond, M.R. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, Ontario (Canada)

    2016-12-15

    Many studies of friction stir welding have shown that periodicity of metal flow around the tool pin may result in the formation of periodic differences in microstructure and texture in the weld nugget area correlated with the weld pitch. The current work investigates the periodicity of magnesium weld microtexture in the nugget region and its association with material flow using optical and electron microscopy. Two welds created in AZ80 at different processing conditions are presented in detail, one illustrating periodic longitudinal texture change, and one showing for the first time that periodic variations in texture, grain size, or composition are not defining features of periodic nugget flow. While nugget texture is dominated by shear deformation, it was found here to be affected to a lesser degree by compaction of material behind the welding tool, which led to reduction in intensity of the shear texture fiber. The decreased tendency for magnesium based alloys to form periodic patterns as compared to aluminum based alloys is explained with reference to the shear textures. - Highlights: •It is shown here that periodic material flow in the nugget does not necessitate longitudinal texture patterns. •Longitudinal texture patterns are shown to be present or absent in Mg AZ80 based on processing conditions. •Texture in the nugget is mainly dictated by shear deformation, but has measurable effects from other deformation modes. •Explanation of why longitudinal texture change is frequently reported in aluminum but not magnesium alloys is provided. •A new vector visualization of material flow based on EBSD data analysis is shown.

  11. A pratical case of a pipeline deformation by transverse and longitudinal thermal gradient

    International Nuclear Information System (INIS)

    Franca Filho, J.L. de; Souza, H.S.; Ribeiro, S.V.G.

    1982-01-01

    A pratical case of pipeline deformation due to a thermal gradient that exist in the cross section and along its length is presented. From an approximation of the temperature profile obtained by measurements made in the field and taking into account the boundary conditions of the structure, its displacements are calculated for comparison with the actual values observed. The analytical calculation of the displacements fields and stress fields are executed, using the concept of thermal momentum in the section. (EG) [pt

  12. Measurement of full-field deformation induced by a dc electrical field in organic insulator films

    Directory of Open Access Journals (Sweden)

    Boudou L.

    2010-06-01

    Full Text Available Digital image correlation method (DIC using the correlation coefficient curve-fitting for full-field surface deformation measurements of organic insulator films is investigated in this work. First the validation of the technique was undertaken. The computer-generated speckle images and the measurement of coefficient of thermal expansion (CTE of aluminium are used to evaluate the measurement accuracy of the technique. In a second part the technique is applied to measure the mechanical deformation induced by electrical field application to organic insulators. For that Poly(ethylene naphthalene 2,6-dicarboxylate (PEN thin films were subjected to DC voltage stress and DIC provides the full-field induced deformations of the test films. The obtained results show that the DIC is a practical and robust tool for better comprehension of mechanical behaviour of the organic insulator films under electrical stress.

  13. Right Atrial Deformation in Predicting Outcomes in Pediatric Pulmonary Hypertension.

    Science.gov (United States)

    Jone, Pei-Ni; Schäfer, Michal; Li, Ling; Craft, Mary; Ivy, D Dunbar; Kutty, Shelby

    2017-12-01

    Elevated right atrial (RA) pressure is a risk factor for mortality, and RA size is prognostic of adverse outcomes in pulmonary hypertension (PH). There is limited data on phasic RA function (reservoir, conduit, and pump) in pediatric PH. We sought to evaluate (1) the RA function in pediatric PH patients compared with controls, (2) compare the RA deformation indices with Doppler indices of diastolic dysfunction, functional capacity, biomarkers, invasive hemodynamics, and right ventricular functional indices, and (3) evaluate the potential of RA deformation indices to predict clinical outcomes. Sixty-six PH patients (mean age 7.9±4.7 years) were compared with 36 controls (7.7±4.4 years). RA and right ventricular deformation indices were obtained using 2-dimensional speckle tracking (2DCPA; TomTec, Germany). RA strain, strain rates, emptying fraction, and right ventricular longitudinal strain were measured. RA function was impaired in PH patients versus controls ( P right ventricular diastolic dysfunction. RA reservoir function, pump function, the rate of atrial filling, and atrial minimum volume emerged as outcome predictors in pediatric PH. © 2017 American Heart Association, Inc.

  14. Dynamics modeling for a rigid-flexible coupling system with nonlinear deformation field

    International Nuclear Information System (INIS)

    Deng Fengyan; He Xingsuo; Li Liang; Zhang Juan

    2007-01-01

    In this paper, a moving flexible beam, which incorporates the effect of the geometrically nonlinear kinematics of deformation, is investigated. Considering the second-order coupling terms of deformation in the longitudinal and transverse deflections, the exact nonlinear strain-displacement relations for a beam element are described. The shear strains formulated by the present modeling method in this paper are zero, so it is reasonable to use geometrically nonlinear deformation fields to demonstrate and simplify a flexible beam undergoing large overall motions. Then, considering the coupling terms of deformation in two dimensions, finite element shape functions of a beam element and Lagrange's equations are employed for deriving the coupling dynamical formulations. The complete expression of the stiffness matrix and all coupling terms are included in the formulations. A model consisting of a rotating planar flexible beam is presented. Then the frequency and dynamical response are studied, and the differences among the zero-order model, first-order coupling model and the new present model are discussed. Numerical examples demonstrate that a 'stiffening beam' can be obtained, when more coupling terms of deformation are added to the longitudinal and transverse deformation field. It is shown that the traditional zero-order and first-order coupling models may not provide an exact dynamic model in some cases

  15. Reliability-guided digital image correlation for image deformation measurement

    International Nuclear Information System (INIS)

    Pan Bing

    2009-01-01

    A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness

  16. A two-dimensional deformable phantom for quantitatively verifying deformation algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; Chuang, Cynthia; Pouliot, Jean [Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143-1708 (United States)

    2011-08-15

    Purpose: The incorporation of deformable image registration into the treatment planning process is rapidly advancing. For this reason, the methods used to verify the underlying deformation algorithms must evolve equally fast. This manuscript proposes a two-dimensional deformable phantom, which can objectively verify the accuracy of deformation algorithms, as the next step for improving these techniques. Methods: The phantom represents a single plane of the anatomy for a head and neck patient. Inflation of a balloon catheter inside the phantom simulates tumor growth. CT and camera images of the phantom are acquired before and after its deformation. Nonradiopaque markers reside on the surface of the deformable anatomy and are visible through an acrylic plate, which enables an optical camera to measure their positions; thus, establishing the ground-truth deformation. This measured deformation is directly compared to the predictions of deformation algorithms, using several similarity metrics. The ratio of the number of points with more than a 3 mm deformation error over the number that are deformed by more than 3 mm is used for an error metric to evaluate algorithm accuracy. Results: An optical method of characterizing deformation has been successfully demonstrated. For the tests of this method, the balloon catheter deforms 32 out of the 54 surface markers by more than 3 mm. Different deformation errors result from the different similarity metrics. The most accurate deformation predictions had an error of 75%. Conclusions: The results presented here demonstrate the utility of the phantom for objectively verifying deformation algorithms and determining which is the most accurate. They also indicate that the phantom would benefit from more electron density heterogeneity. The reduction of the deformable anatomy to a two-dimensional system allows for the use of nonradiopaque markers, which do not influence deformation algorithms. This is the fundamental advantage of this

  17. SU-E-J-91: Biomechanical Deformable Image Registration of Longitudinal Lung CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Cazoulat, G; Owen, D; Matuszak, M; Balter, J; Brock, K [University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Purpose: Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Methods: Four lung cancer patients previously treated with conventionally fractionated radiotherapy that exhibited notable tumor shrinkage during treatment were retrospectively evaluated. Exhale breathhold CT scans were obtained at treatment planning (PCT) and following three weeks (W3CT) of treatment. For each patient, the PCT was registered to the W3CT using Morfeus, a biomechanical model-based deformable registration algorithm, consisting of boundary conditions on the lungs and incorporating a sliding interface between the lung and chest wall. To model the complex response of the lung, an extension to Morfeus has been developed: (i) The vessel tree was segmented by thresholding a vesselness image based on the Hessian matrix’s eigenvalues and the centerline was extracted; (ii) A 3D shape context method was used to find correspondences between the trees of the two images; (ii) Correspondences were used as additional boundary conditions (Morfeus+vBC). An expert independently identified corresponding landmarks well distributed in the lung to compute Target Registration Errors (TRE). Results: The TRE within 15mm of the tumor boundaries (on average 11 landmarks) is: 6.1±1.8, 4.6±1.1 and 3.8±2.3 mm after rigid registration, Morfeus and Morfeus+vBC, respectively. The TRE in the rest of the lung (on average 13 landmarks) is: 6.4±3.9, 4.7±2.2 and 3.6±1.9 mm, which is on the order of the 2mm isotropic dose grid vector (3.5mm). Conclusion: The addition of boundary conditions on the vessels improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these

  18. Measurement of longitudinal and rayleigh wave velocities by advanced one-sided technique in concrete

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Song, Won Joon; Popovics, J. S.; Achenbach, J. D.

    1997-01-01

    A new procedure for the advanced one-sided measurement of longitudinal wave and surface wave velocities in concrete is presented in this paper. Stress waves are generated in a consistent fashion with a DC solenoid. Two piezoelectric accelerometers are mounted on the surface of a specimen as receivers. Stress waves propagate along the surface of the specimen and are detected by the receivers. In order to reduce the large incoherent noise levels of the signals, signals are collected and manipulated by a computer program for each velocity measurement. For a known distance between the two receivers and using the measured flight times, the velocities of the longitudinal wave and the surface wave are measured. The velocities of the longitudinal wave determined by this method are compared with those measured by conventional methods on concrete, PMMA and steel.

  19. Measurement of deforming mode of lattice truss structures under impact loading

    Directory of Open Access Journals (Sweden)

    Zhao H.

    2012-08-01

    Full Text Available Lattice truss structures, which are used as a core material in sandwich panels, were widely investigated experimentally and theoretically. However, explanation of the deforming mechanism using reliable experimental results is almost rarely reported, particularly for the dynamic deforming mechanism. The present work aimed at the measurement of the deforming mode of lattice truss structures. Indeed, quasi-static and Split Hopkinson Pressure Bar (SHPB tests have been performed on the tetrahedral truss cores structures made of Aluminum 3003-O. Global values such as crushing forces and displacements between the loading platens are obtained. However, in order to understand the deforming mechanism and to explain the observed impact strength enhancement observed in the experiments, images of the truss core element during the tests are recorded. A method based on the edge detection algorithm is developed and applied to these images. The deforming profiles of one beam are extracted and it allows for calculating the length of beam. It is found that these lengths diminish to a critical value (due to compression and remain constant afterwards (because of significant bending. The comparison between quasi-static and impact tests shows that the beam were much more compressed under impact loading, which could be understood as the lateral inertia effect in dynamic bucking. Therefore, the impact strength enhancement of tetrahedral truss core sandwich panel can be explained by the delayed buckling of beam under impact (more compression reached, together with the strain hardening of base material.

  20. A study on laser welding deformation of 304 stainless steel

    International Nuclear Information System (INIS)

    Kitagawa, Akikazu; Maehara, Kenji; Takeda, Shinnosuke; Matsunawa, Akira

    2002-01-01

    In heavy industries, 304 austenitic stainless steel is the most popular material which is used for nuclear equipment, chemical vessels, vacuum vessels and so on. On the fabrication, not only a joint quality but also severe dimensional accuracy is required. To keep dimensional accuracy, considerable cost and efforts are requested, because the welding deformation of austenitic stainless steel is deeply depended on the physical properties of material itself. To decrease welding deformation, big jigs or water cooling method are commonly used which lead to the high cost. In general, the fusion welding by high energy density heat source results in less distortion. Today, laser welding technology has grown up to the stage that enables to weld thick plate with small deformation. The researches of welding deformation have been conducted intensively, but they are mainly concerned for arc welding, and studies for laser welding are very few. In this report, the authors will show the test results of deformation behavior in laser welding of 304 stainless steel. Also, they will discuss the deformation behavior comparing to that in arc welding. The main results of this study are as follows. 1. The angular distortion of laser welding can be unified by heat input parameter (Hp) which is used for arc welding deformation. 2. The angular distortion are same under the condition of Hp 3 in spite of different welding method, however under the condition of Hp>6-9 J/mm 3 the angular distortion is quite different depending on the power density of welding method. 3. Pure angular distortion seemed to complete just after welding, but following longitudinal distortion took place for long period. 4. The critical value of longitudinal distortion can be estimated from heat input parameter. The transverse deformation can be also estimated by heat input parameter. (author)

  1. Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor.

    Science.gov (United States)

    Ozbey, Burak; Demir, Hilmi Volkan; Kurc, Ozgur; Erturk, Vakur B; Altintas, Ayhan

    2014-10-20

    We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment.

  2. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    Science.gov (United States)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  3. Beam measurements of the SPS longitudinal impedance

    CERN Document Server

    Lasheen, A

    2017-01-01

    Longitudinal instabilities are one of the main limitationsin the CERN SPS to reach the beam parameters requiredfor the High Luminosity LHC project. In preparation tothe SPS upgrade, possible remedies are studied by perform-ing macroparticle simulations using the machine impedancemodel obtained from electromagnetic simulations and mea-surements. To benchmark the impedance model, the resultsof simulations are compared with various beam measure-ments. In this study, the reactive part of the impedance wasprobed by measuring the quadrupole frequency shift withintensity, obtained from bunch length oscillations at mis-matched injection into the SPS. This method was appliedover many last years to follow up the evolution of the SPSimpedance, injecting bunches with the same bunch length.A novel approach, giving significantly more information,consists in varying the injected bunch length. The compari-son of these measurements with macroparticle simulationsallowed to test the existing model and identify some missingSPS i...

  4. Transverse and longitudinal emittance measurements in the ELSA linac

    International Nuclear Information System (INIS)

    Loulergue, A.; Dowell, D.H.; Joly, S.; De Brion, J.P.; Haouat, G.; Schumann, F.

    1997-01-01

    The ELSA RF linac photoinjector has been designed to deliver high-brightness electron beams. The present paper deals with the transverse and longitudinal emittance measurements, at different locations along the ELSA beam line, and the analysis of their variations as a function of the photoinjector parameters : magnetic field generated by the anode focusing lens, bunch charge and pulse duration. While transverse emittance has been already studied in other similar installations, there has been little study of the electron beam longitudinal dynamics. Experimental results are presented and compared to simulation-code expectations. For 2.0 nC, 85 A electron bunches, a normalized rms emittance of 2 π mm mrad and a brightness of 4.5 x 10 13 A/(π m rad) 2 at the linac exit have been measured as well as less than 10 keV rms energy spread (or less than 0.1% at 16.5 MeV). (orig.)

  5. Three-dimensional microscopic deformation measurements on cellular solids.

    Science.gov (United States)

    Genovese, K

    2016-07-01

    The increasing interest in small-scale problems demands novel experimental protocols providing dense sets of 3D deformation data of complex shaped microstructures. Obtaining such information is particularly significant for the study of natural and engineered cellular solids for which experimental data collected at macro scale and describing the global mechanical response provide only limited information on their function/structure relationship. Cellular solids, in fact, due their superior mechanical performances to a unique arrangement of the bulk material properties (i.e. anisotropy and heterogeneity) and cell structural features (i.e. pores shape, size and distribution) at the micro- and nano-scales. To address the need for full-field experimental data down to the cell level, this paper proposes a single-camera stereo-Digital Image Correlation (DIC) system that makes use of a wedge prism in series to a telecentric lens for performing surface shape and deformation measurements on microstructures in three dimensions. Although the system possesses a limited measurement volume (FOV~2.8×4.3mm(2), error-free DOF ~1mm), large surface areas of cellular samples can be accurately covered by employing a sequential image capturing scheme followed by an optimization-based mosaicing procedure. The basic principles of the proposed method together with the results of the benchmarking of its metrological performances and error analysis are here reported and discussed in detail. Finally, the potential utility of this method is illustrated with micro-resolution three-dimensional measurements on a 3D printed honeycomb and on a block sample of a Luffa sponge under compression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Laser wakefield excitation and measurement by femtosecond longitudinal interferometry

    International Nuclear Information System (INIS)

    Siders, C.W.; Le Blanc, S.P.; Fisher, D.; Tajima, T.; Downer, M.C.

    1996-04-01

    Plasma density oscillations (Langmuir waves) in the wake of an intense (I peak ∼ 3 x 10 17 W/cm 2 ) laser pulse (100 fs) are measured with ultrafast time resolution using a longitudinal interferometric technique. Phase shifts consistent with large amplitude (δn e /n e ∼ 1) density waves at the electron plasma frequency were observed in a fully tunnel-ionized He plasma, corresponding to longitudinal electric fields of ∼ 10 GV/m. Strong radial ponderomotive forces enhance the density oscillations. As this technique utilizes a necessary component of any laser-based plasma accelerator, it promises to be a powerful tool for on-line monitoring and control of future plasma-based particle accelerators

  7. Horn–Schunck optical flow applied to deformation measurement of a birdlike airfoil

    Directory of Open Access Journals (Sweden)

    Gong Xiaoliang

    2015-10-01

    Full Text Available Current deformation measurement techniques suffer from limited spatial resolution. In this work, a highly accurate and high-resolution Horn–Schunck optical flow method is developed and then applied to measuring the static deformation of a birdlike flexible airfoil at a series of angles of attack at Reynolds number 100,000 in a low speed, low noise wind tunnel. To allow relatively large displacements, a nonlinear Horn–Schunck model and a coarse-to-fine warping process are adopted. To preserve optical flow discontinuities, a nonquadratic penalization function, a multi-cue driven bilateral filtering and a principle component analysis of local image patterns are used. First, the accuracy and convergence of this Horn–Schunck technique are verified on a benchmark. Then, the maximum displacement that can be reliably calculated by this technique is studied on synthetic images. Both studies are compared with the performance of a Lucas–Kanade optical flow method. Finally, the Horn–Schunck technique is used to estimate the 3-D deformation of the birdlike airfoil through a stereoscopic camera setup. The results are compared with those computed by Lucas–Kanade optical flow, image correlation and numerical simulation.

  8. Local deformation method for measuring element tension in space deployable structures

    Directory of Open Access Journals (Sweden)

    Belov Sergey

    2017-01-01

    Full Text Available The article describes the local deformation method to determine the tension of cord and thin membrane elements in space deployable structure as antenna reflector. Possible measuring instrument model, analytical and numerical solutions and experimental results are presented. The boundary effects on measurement results of metallic mesh reflector surface tension are estimated. The study case depicting non-uniform reflector surface tension is considered.

  9. Experimental Investigation of Aeroelastic Deformation of Slender Wings at Supersonic Speeds Using a Video Model Deformation Measurement Technique

    Science.gov (United States)

    Erickson, Gary E.

    2013-01-01

    A video-based photogrammetric model deformation system was established as a dedicated optical measurement technique at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. This system was used to measure the wing twist due to aerodynamic loads of two supersonic commercial transport airplane models with identical outer mold lines but different aeroelastic properties. One model featured wings with deflectable leading- and trailing-edge flaps and internal channels to accommodate static pressure tube instrumentation. The wings of the second model were of single-piece construction without flaps or internal channels. The testing was performed at Mach numbers from 1.6 to 2.7, unit Reynolds numbers of 1.0 million to 5.0 million, and angles of attack from -4 degrees to +10 degrees. The video model deformation system quantified the wing aeroelastic response to changes in the Mach number, Reynolds number concurrent with dynamic pressure, and angle of attack and effectively captured the differences in the wing twist characteristics between the two test articles.

  10. High resolution deformation measurements at active volcanoes: a new remote sensing technology

    Science.gov (United States)

    Hort, M. K.; Scharff, L.; Gerst, A.; Meier, K.; Falk, S.; Peters, G.; Ripepe, M.

    2013-12-01

    It is known from observations at different volcanoes using ULP seismic observations that the volcanic edifice deforms slightly prior to an eruption. It can be expected that immediately prior to an eruption the largest deformation should occur in the vicinity of the vent. However, placing instruments at the vent is impossible as they will be destroyed during an eruption. Here we present new, high temporal resolution (up to 300Hz) deformation measurement that utilizes the phase information of a frequency modulated Doppler radar system. We decompose the Doppler signal into two parts, one part which allows us to measure speeds significantly above 0.5m/s (i.e. the movement of volcanic ash and clasts). The other part utilizes the slow phase changes of the signal reflected from non-moving objects, i.e. the volcanic edifice. This signal is used to measure very slow and longer term deformations, which are the main subject of this study. The method has been tested measuring the displacement of high rise buildings during strong winds. It can be shown that displacements down to 50 μm can be resolved without a problem. We apply this method to different data sets collected at Stromboli volcano, Italy, as well as Santiaguito volcano, Guatemala. At Stromboli we observed the NE crater once in 2008 and once in 2011. During both campaigns we observe on average a displacement between 1 and 5mm before different eruptions. This displacement can be interpreted as a widening of the conduit prior to an eruption. In a couple of cases even an oscillatory movement is observed with frequencies of about 0.5Hz. Finite element modeling of the rise of a pressurized slug indicates that deformations at the crater rim on the order of a 1mm or less are certainly reasonable. In the case of Santiaguito volcano prior to an eruption we observe a pre eruptive displacement 5-15mm and after the end of an eruption a displacement of up to 1m before the next eruption occurs. This can be interpreted as in

  11. Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus.

    Directory of Open Access Journals (Sweden)

    Ken Sakaie

    Full Text Available To test the validity of diffusion tensor imaging (DTI measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF. Injury to the MLF underlies internuclear ophthalmoparesis (INO.40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD, transverse diffusivity (TD, mean diffusivity (MD and fractional anisotropy (FA. Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI.LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03. FA was also lower in patients in the same region (p < 0.0004. LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05 as did FA in the midbrain section (R = 0.31, p < 0.02.This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity.

  12. Different Phases of Earthquake Cycle Reflected in GPS Measured Crustal Deformations along the Andes

    Science.gov (United States)

    Khazaradze, G.; Klotz, J.

    2001-12-01

    The South American Geodynamic Activities (SAGA) project was initiated in 1993 by the GeoForschungsZentrum together with host organizations in Argentina and Chile with the main objective of studying the kinematics and dynamics of present-day deformation processes along the central and southern Andes. Currently the SAGA network consists of 230 geodetic markers spanning more than 2000 km long distance from Peru/Chile border in the north to Cape Horn in the south. The majority of the observed crustal deformation field is relatively homogenous: roughly parallel to the plate convergence direction and decreasing in magnitude away from the deformation front. This pattern is characteristic for the \\textit{inter-seismic} phase of earthquake deformation cycle and can be explained by the elastic strain accumulation due to locking of the thrust interface between the subducting Nazca and the overriding South America plates. However, in addition to the dominant inter-seismic signal, close examination of the observed velocity field also reveals significant spatial and temporal variations, contrary to the commonly used assumption of constant deformation rates. This variation is especially pronounced for the measurements in the vicinity of the 1995 Mw8.0 Antofagasta earthquake (22{° }S-26{° }S). Here, after capturing up to 1 meters of \\textit{co-seismic} displacements associated with this event, the analysis of data obtained during the three following field campaigns (1996-1999), reveals highly time dependent deformation pattern. This can be explained by the decreasing importance of \\textit{post-seismic} effects of the Antofagasta event relative to the increasing dominance of the inter-seismic phase of subduction. Perhaps, even more interesting time dependent observations have been detected in the southern part the SAGA network (38{° }S-43{° }S).Here, after 35 years of the occurrence of the 1960 Mw9.5 Chile earthquake, we still see the continuing post-seismic effects of this

  13. Identifying deformation mechanisms in the NEEM ice core using EBSD measurements

    Science.gov (United States)

    Kuiper, Ernst-Jan; Weikusat, Ilka; Drury, Martyn R.; Pennock, Gill M.; de Winter, Matthijs D. A.

    2015-04-01

    Deformation of ice in continental sized ice sheets determines the flow behavior of ice towards the sea. Basal dislocation glide is assumed to be the dominant deformation mechanism in the creep deformation of natural ice, but non-basal glide is active as well. Knowledge of what types of deformation mechanisms are active in polar ice is critical in predicting the response of ice sheets in future warmer climates and its contribution to sea level rise, because the activity of deformation mechanisms depends critically on deformation conditions (such as temperature) as well as on the material properties (such as grain size). One of the methods to study the deformation mechanisms in natural materials is Electron Backscattered Diffraction (EBSD). We obtained ca. 50 EBSD maps of five different depths from a Greenlandic ice core (NEEM). The step size varied between 8 and 25 micron depending on the size of the deformation features. The size of the maps varied from 2000 to 10000 grid point. Indexing rates were up to 95%, partially by saving and reanalyzing the EBSP patterns. With this method we can characterize subgrain boundaries and determine the lattice rotation configurations of each individual subgrain. Combining these observations with arrangement/geometry of subgrain boundaries the dislocation types can be determined, which form these boundaries. Three main types of subgrain boundaries have been recognized in Antarctic (EDML) ice core¹². Here, we present the first results obtained from EBSD measurements performed on the NEEM ice core samples from the last glacial period, focusing on the relevance of dislocation activity of the possible slip systems. Preliminary results show that all three subgrain types, recognized in the EDML core, occur in the NEEM samples. In addition to the classical boundaries made up of basal dislocations, subgrain boundaries made of non-basal dislocations are also common. ¹Weikusat, I.; de Winter, D. A. M.; Pennock, G. M.; Hayles, M

  14. Damage visualization and deformation measurement in glass laminates during projectile penetration

    Directory of Open Access Journals (Sweden)

    Elmar Strassburger

    2014-06-01

    Full Text Available Transparent armor consists of glass-polymer laminates in most cases. The formation and propagation of damage in the different glass layers has a strong influence on the ballistic resistance of such laminates. In order to clarify the course of events during projectile penetration, an experimental technique was developed, which allows visualizing the onset and propagation of damage in each single layer of the laminate. A telecentric objective lens was used together with a microsecond video camera that allows recording 100 frames at a maximum rate of 1 MHz in a backlit photography set-up. With this technique, the damage evolution could be visualized in glass laminates consisting of four glass layers with lateral dimensions 500 mm × 500 mm. Damage evolution was recorded during penetration of 7.62 mm AP projectiles with tungsten carbide core and a total mass of 11.1 g in the impact velocity range from 800 to 880 m/s. In order to measure the deformation of single glass plates within the laminates, a piece of reflecting tape was attached to the corresponding glass plate, and photonic Doppler velocimetry (PDV was applied. With the photonic Doppler velocimeter, an infrared laser is used to illuminate an object to be measured and the Doppler-shifted light is superimposed to a reference light beam at the detector. The simultaneous visualization and PDV measurement of the glass deformation allow determining the deformation at the time of the onset of fracture. The analysis of the experimental data was supported by numerical simulations, using the AUTODYN commercial hydro-code.

  15. The Virtual Fields Method Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements

    CERN Document Server

    Pierron, Fabrice

    2012-01-01

    The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements is the first book on the Virtual Fields Method (VFM), a technique to identify materials mechanical properties from full-field measurements. Firmly rooted with extensive theoretical description of the method, the book presents numerous examples of application to a wide range of materials (composites, metals, welds, biomaterials) and situations (static, vibration, high strain rate). The authors give a detailed training section with examples of progressive difficulty to lead the reader to program the VFM and include a set of commented Matlab programs as well as GUI Matlab-based software for more general situations. The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements is an ideal book for researchers, engineers, and students interested in applying the VFM to new situations motivated by their research.  

  16. MR imaging in congenital lower limb deformities

    International Nuclear Information System (INIS)

    Laor, T.; Jaramillo, D.; Hoffer, F.A.; Kasser, J.R.

    1996-01-01

    Treatment for children with cogenital deformities of the lower extremities may vary, depending on the state of the unossified skeletal structures and surrounding soft tissues. The purpose of our study was to demonstrate the spectrum of the osteochondral and extrasosseous abnormalities as depicted with MR imaging. We retrospectively reviewed MR examinations of 13 limbs of ten children (aged 1 month-9 years, mean 2.1 years) with longitudinal and transverse deformities of the lower extremities. The lesions imaged were fibular hemimelia (n=5), tibial hemimelia (n=5), and congenital constriction bands (n=3). Each examination was assessed for abnormalities in the osteocartilaginous and extraosseous (articular or periarticular components such as ligaments, tendons, and menisci; the muscles and the arteries) structures. Abnormalities were seen in all patients. Osteocartilaginous abnormalities in the patients with longitudinal deformities included abnormal distal femoral epiphyses, abnormal proximal tribial physes, hypertrophied and dislocated proximal fibular epiphyses, unsuspected fibular and tibial remnants, and absence or coalition of the tarsal bones. No osteocartilaginous abnormalities were seen in the patients with congential constriction bands. Articular abormalities in patients with either form of hemimelia included absent cruciate ligaments and menisci, dislocated or absent cartilaginous patellae, absent patellar tendons, and abnormal collateral ligaments. All but one limb imaged had absent or attenuated muscle groups. Of the nine MR arteriograms performed at the level of the knee, eight were abnormal. The normal popliteal trifurcation was absent or in an abnormal location. We conclude that MR imaging of children with congenital lower extremity deformities shows many osteochondral and extraosseous abnormalities that are not depicted by conventional radiogrpahy. This information can help to plan early surgical intervention and prosthetic rehabilitation. (orig.)

  17. In-plane Tire Deformation Measurement Using a Multi-Laser Sensor System

    OpenAIRE

    Xiong, Yi

    2016-01-01

    The interactions between tires and roads are basic mechanisms that alter the dynamic states of vehicles. A fundamental understanding of tire-road interactions is clearly demanded in tire design to achieve performance improvements. The emergence of various tire sensors provides an opportunity to make accurate measurement of the physical quantities that are involved in tire-road interactions.  This thesis aims to measure and analyze the in-plane deformation of rolling tires through its direc...

  18. Experimental evaluation of a polycrystal deformation modeling scheme using neutron diffraction measurements

    DEFF Research Database (Denmark)

    Clausen, Bjørn; Lorentzen, Torben

    1997-01-01

    The uniaxial behavior of aluminum polycrystals is simulated using a rate-independent incremental self-consistent elastic-plastic polycrystal deformation model, and the results are evaluated by neutron diffraction measurements. The elastic strains deduced from the model show good agreement...

  19. Measurement of Seafloor Deformation in the Marine Sector of the Campi Flegrei Caldera (Italy)

    Science.gov (United States)

    Iannaccone, Giovanni; Guardato, Sergio; Donnarumma, Gian Paolo; De Martino, Prospero; Dolce, Mario; Macedonio, Giovanni; Chierici, Francesco; Beranzoli, Laura

    2018-01-01

    We present an assessment of vertical seafloor deformation in the shallow marine sector of the Campi Flegrei caldera (southern Italy) obtained from GPS and bottom pressure recorder (BPR) data, acquired over the period April 2016 to July 2017 in the Gulf of Pozzuoli by a new marine infrastructure, MEDUSA. This infrastructure consists of four fixed buoys with GPS receivers; each buoy is connected by cable to a seafloor multisensor module hosting a BPR. The measured maximum vertical uplift of the seafloor is about 4.2 ± 0.4 cm. The MEDUSA data were then compared to the expected vertical displacement in the marine sector according to a Mogi model point source computed using only GPS land measurements. The results show that a single point source model of deformation is able to explain both the GPS land and seafloor data. Moreover, we demonstrate that a network of permanent GPS buoys represents a powerful tool to measure the seafloor vertical deformation field in shallow water. The performance of this system is comparable to on-land high-precision GPS networks, marking a significant achievement and advance in seafloor geodesy and extending volcano monitoring capabilities to shallow offshore areas (up to 100 m depth). The GPS measurements of MEDUSA have also been used to confirm that the BPR data provide an independent measure of the seafloor vertical uplift in shallow water.

  20. Measuring Local Strain Rates In Ductile Shear Zones: A New Approach From Deformed Syntectonic Dykes

    Science.gov (United States)

    Sassier, C.; Leloup, P.; Rubatto, D.; Galland, O.; Yue, Y.; Ding, L.

    2006-12-01

    At the Earth surface, deformation is mostly localized in fault zones in between tectonic plates. In the upper crust, the deformation is brittle and the faults are narrow and produce earthquakes. In contrast, deformation in the lower ductile crust results in larger shear zones. While it is relatively easy to measure in situ deformation rates at the surface using for example GPS data, it is more difficult to determinate in situ values of strain rate in the ductile crust. Such strain rates can only be estimated in paleo-shear zones. Various methods have been used to assess paleo-strain rates in paleo-shear zones. For instance, cooling and/or decompression rates associated with assumptions on geothermic gradients and shear zone geometry can lead to such estimates. Another way to estimate strain rates is the integration of paleo-stress measurements in a power flow law. But these methods are indirect and imply strong assumptions. Dating of helicitic garnets or syntectonic fibres are more direct estimates. However these last techniques have been only applied in zones of low deformation and not in major shear zones. We propose a new direct method to measure local strain rates in major ductile shear zones from syntectonic dykes by coupling quantification of deformation and geochronology. We test our method in a major shear zone in a well constrained tectonic setting: the Ailao-Shan - Red River Shear Zone (ASRRsz) located in SE Asia. For this 10 km wide shear zone, large-scale fault rates, determined in three independent ways, imply strain rates between 1.17×10^{-13 s-1 and 1.52×10^{-13 s-1 between 35 and 16 Ma. Our study focused on one outcrop where different generations of syntectonic dykes are observed. First, we quantified the minimum shear strain γ for each dyke using several methods: (1) by measuring the stretching of dykes with a surface restoration method (2) by measuring the final angle of the dykes with respect to the shear direction and (3) by combining the two

  1. Surface deformation as a guide to kinematics and three-dimensional shape of slow-moving, clay-rich landslides, Honolulu, Hawaii

    Science.gov (United States)

    Baum, R.L.; Messerich, J.; Fleming, R.W.

    1998-01-01

    Two slow-moving landslides in Honolulu, Hawaii, were the subject of photogrammetric measurements, field mapping, and subsurface investigation to learn whether surface observations can yield useful information consistent with results of subsurface investigation. Mapping focused on structural damage and on surface features such as scarps, shears, and toes. The x-y-z positions of photo-identifiable points were obtained from aerial photographs taken at three different times. The measurements were intended to learn if the shape of the landslide failure surface can be determined from systematic surface observations and whether surface observations about deformation are consistent with photogrammetrically-obtained displacement gradients. Field and aerial photographic measurements were evaluated to identify the boundaries of the landslides, distinguish areas of incipient landslide enlargement, and identify zones of active and passive failure in the landslides. Data reported here apply mainly to the Alani-Paty landslide, a translational, earth-block landslide that damaged property in a 3.4-ha residential area. It began moving in the 1970s and displacement through 1991 totaled 4 m. Thickness, determined from borehole data, ranges from about 7 to 10 m; and the slope of the ground surface averages about 9??. Field evidence of deformation indicated areas of potential landslide enlargement outside the well-formed landslide boundaries. Displacement gradients obtained photogrammetrically and deformation mapping both identified similar zones of active failure (longitudinal stretching) and passive failure (longitudinal shortening) within the body of the landslide. Surface displacement on the landslide is approximately parallel to the broadly concave slip surface.

  2. A Piezoelectric Unimorph Deformable Mirror Concept by Wafer Transfer for Ultra Large Space Telescopes

    Science.gov (United States)

    Yang, Eui-Hyeok; Shcheglov, Kirill

    2002-01-01

    Future concepts of ultra large space telescopes include segmented silicon mirrors and inflatable polymer mirrors. Primary mirrors for these systems cannot meet optical surface figure requirements and are likely to generate over several microns of wavefront errors. In order to correct for these large wavefront errors, high stroke optical quality deformable mirrors are required. JPL has recently developed a new technology for transferring an entire wafer-level mirror membrane from one substrate to another. A thin membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers. The measured peak-to-valley surface error of a transferred and patterned membrane (1 mm x 1 mm x 0.016 mm) is only 9 nm. The mirror element actuation principle is based on a piezoelectric unimorph. A voltage applied to the piezoelectric layer induces stress in the longitudinal direction causing the film to deform and pull on the mirror connected to it. The advantage of this approach is that the small longitudinal strains obtainable from a piezoelectric material at modest voltages are thus translated into large vertical displacements. Modeling is performed for a unimorph membrane consisting of clamped rectangular membrane with a PZT layer with variable dimensions. The membrane transfer technology is combined with the piezoelectric bimorph actuator concept to constitute a compact deformable mirror device with a large stroke actuation of a continuous mirror membrane, resulting in a compact A0 systems for use in ultra large space telescopes.

  3. Interseismic Deformation along the Red River Fault from InSAR Measurements

    Science.gov (United States)

    Chen, J.; Li, Z.; Clarke, P. J.

    2017-12-01

    The Red River Fault (RRF) zone is a profound geological discontinuity separating South China from Indochina. Right lateral movements along this >900 km fault are considered to accommodate the extrusion of SE China. Crustal deformation monitoring at high resolution is the key to understand the present-day mode of deformation in this zone and its interaction with the adjacent regions. This is the first study to measure the interseismic deformation of the entire fault with ALOS-1/2 and Sentinel-1 observations. Nine ascending tracks of ALOS-1 data between 2007 and 2011 are collected from the Alaska Satellite Facility (ASF), four descending tracks of Sentinel-1 data are acquired every 24 days since October 2014, and ALOS-2 data are being systematically acquired since 2014. The long wavelength (L-band) of ALOS-1/2 and short temporal baseline of Sentinel-1 ensure good coherence to overcome the limitations of heavy vegetation and variable climate in the region. Stacks of interferograms are generated by our automatic processing chain based on the InSAR Scientific Computing Environment (ISCE) software, ionospheric errors are estimated and corrected using the split-spectrum method (Fattahi et al., IEEE Trans. Geosci. Remote Sens., 2017) and the tropospheric delays are calibrated using the Generic Atmospheric Correction Online Service for InSAR (GACOS: http://ceg-research.ncl.ac.uk/v2/gacos) with high-resolution ECMWF products (Yu et al., J. Geophys. Res., 2017). Time series analysis is performed to determine the interseismic deformation rate of the RRF using the in-house InSAR time series with atmospheric estimation model (InSAR TS + AEM) package based on the Small Baseline Subset (SBAS) algorithm. Our results reveal the decrease of slip rate from north to south. We map the interseismic strain rate field to characterize the deformation patterns and seismic hazard throughout the RRF zone.

  4. Laser-Beam Welding Impact on the Deformation Properties of Stainless Steels When Used for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Evin Emil

    2016-09-01

    Full Text Available Materials other than standard and advanced high strength steels are remarkable for the thin-walled structures of the car-body in recent years in order to safety enhancement, weight and emission reduction, corrosion resistance improvement. Thus, there are presented in the paper the deformation properties of laser welded austenitic AISI 304 and ferritic AISI 430 stainless steels compared to these one measured for the high strength low alloyed steel H220PD. The properties were researched by tensile test and 3-point bending test with fixed ends on specimens made of basic material and laser welded one. The specimens were welded by solid state fiber laser YLS-5000 in longitudinal direction (the load direction. The deformation properties such as strength, stiffness and deformation work were evaluated and compared. The strength and stiffness were calculated from tensile test results and the deformation work was calculated from both, tensile test and 3-point bending test results. There has been found only minor effect of laser welding to the deformation properties for high strength low alloyed steel H220PD and austenitic stainless steel AISI 304. Otherwise, the laser welding strongly influenced the deformation work of the ferritic stainless steel AISI 430 as well as the elongation at tensile test.

  5. The impact of preload reduction with head-up tilt testing on longitudinal and transverse left ventricular mechanics: a study utilizing deformation volume analysis.

    Science.gov (United States)

    Schneider, Caroline; Forsythe, Lynsey; Somauroo, John; George, Keith; Oxborough, David

    2018-03-01

    Left ventricular (LV) function is dependent on load, intrinsic contractility and relaxation with a variable impact on specific mechanics. Strain (ε) imaging allows the assessment of cardiac function; however, the direct relationship between volume and strain is currently unknown. The aim of this study was to establish the impact of preload reduction through head-up tilt (HUT) testing on simultaneous left ventricular (LV) longitudinal and transverse function and their respective contribution to volume change. A focused transthoracic echocardiogram was performed on 10 healthy male participants (23 ± 3 years) in the supine position and following 1 min and 5 min of HUT testing. Raw temporal longitudinal ε (Ls) and transverse ε (Ts) values were exported and divided into 5% increments across the cardiac cycle and corresponding LV volumes were traced at each 5% increment. This provided simultaneous LV longitudinal and transverse ε and volume loops (deformation volume analysis - DVA). There was a leftward shift of the ε-volume loop from supine to 1 min and 5 min of HUT ( P  transverse thickening from supine to 1 min, which was further augmented at 5 min ( P  = 0.018). Preload reduction occurs within 1 min of HUT but does not further reduce at 5 min. This decline is associated with a decrease in longitudinal ε and concomitant increase in transverse ε. Consequently, augmented transverse relaxation appears to be an important factor in the maintenance of LV filling in the setting of reduced preload. DVA provides information on the relative contribution of mechanics to a change in LV volume and may have a role in the assessment of clinical populations. © 2018 The authors.

  6. Quantitative stress measurement of elastic deformation using mechanoluminescent sensor: An intensity ratio model

    Science.gov (United States)

    Cai, Tao; Guo, Songtao; Li, Yongzeng; Peng, Di; Zhao, Xiaofeng; Liu, Yingzheng

    2018-04-01

    The mechanoluminescent (ML) sensor is a newly developed non-invasive technique for stress/strain measurement. However, its application has been mostly restricted to qualitative measurement due to the lack of a well-defined relationship between ML intensity and stress. To achieve accurate stress measurement, an intensity ratio model was proposed in this study to establish a quantitative relationship between the stress condition and its ML intensity in elastic deformation. To verify the proposed model, experiments were carried out on a ML measurement system using resin samples mixed with the sensor material SrAl2O4:Eu2+, Dy3+. The ML intensity ratio was found to be dependent on the applied stress and strain rate, and the relationship acquired from the experimental results agreed well with the proposed model. The current study provided a physical explanation for the relationship between ML intensity and its stress condition. The proposed model was applicable in various SrAl2O4:Eu2+, Dy3+-based ML measurement in elastic deformation, and could provide a useful reference for quantitative stress measurement using the ML sensor in general.

  7. Review of current capabilities for the measurement of stress, displacement, and in situ deformation modulus

    International Nuclear Information System (INIS)

    Schrauf, T.W.; Pratt, H.R.

    1979-12-01

    Current capabilities for the measurement of stress, displacement, and in situ deformation modulus in rock masses are reviewed as to their accuracy, sensitivity, advantages, and limitations. Consideration is given to both the instruments themselves and the measurement technique. Recommendations concerning adaptation of existing measurement techniques to repository monitoring are also discussed. These recommendations include: (1) development of a modified borehole deformation gage with improved long-term stability and reliability and reduced thermal sensitivity; (2) development of a downhole transducer type of extensometer; (3) development of a rigid inclusion type gage; (4) development of an improved vibrating wire stressmeter with greater accuracy and simplified calibration and installation requirements; and (5) modification of standard rod extensometers to improve their sensitivity

  8. Methods for measuring of fuel can deformation under radiation conditions

    International Nuclear Information System (INIS)

    Zelenchuk, A.V.; Fetisov, B.V.; Lakin, Yu.G.; Tonkov, V.Yu.

    1978-01-01

    The possibility for measuring fuel can deformation under radiation conditions by means of the acoustic method and tensoresistors is considered. The construction and operation of the in-pile facility for measuring creep of the fuel can specimen loaded by the internal pressure is described. The data on neutron radiation effect on changes in creep rate for zirconium fuel can are presented. The results obtained with tensoresistors are in a good agreement with those obtained by the acoustic method, which enables to recommend the use of both methods for the irradiation creep investigation of the fuel element cans

  9. [Posttraumatic torsional deformities of the forearm : Methods of measurement and decision guidelines for correction].

    Science.gov (United States)

    Blossey, R D; Krettek, C; Liodakis, E

    2018-03-01

    Forearm fractures are common in all age groups. Even if the adjacent joints are not directly involved, these fractures have an intra-articular character. One of the most common complications of these injuries is a painful limitation of the range of motion and especially of pronation and supination. This is often due to an underdiagnosed torsional deformity; however, in recent years new methods have been developed to make these torsional differences visible and quantifiable through the use of sectional imaging. The principle of measurement corresponds to that of the torsion measurement of the lower limbs. Computed tomography (CT) or magnetic resonance imaging (MRI) scans are created at defined heights. By searching for certain landmarks, torsional angles are measured in relation to a defined reference line. A new alternative is the use of 3D reformation models. The presence of a torsional deformity, especial of the radius, leads to an impairment of the pronation and supination of the forearm. In the presence of torsional deformities, radiological measurements can help to decide if an operation is needed or not. Unlike the lower limbs, there are still no uniform cut-off values as to when a correction is indicated. Decisions must be made together with the patient by taking the clinical and radiological results into account.

  10. Lifetime measurements of the first 2+ states in 104,106Zr: Evolution of ground-state deformations

    Directory of Open Access Journals (Sweden)

    F. Browne

    2015-11-01

    Full Text Available The first fast-timing measurements from nuclides produced via the in-flight fission mechanism are reported. The lifetimes of the first 2+ states in 104,106Zr nuclei have been measured via β-delayed γ-ray timing of stopped radioactive isotope beams. An improved precision for the lifetime of the 21+ state in 104Zr was obtained, τ(21+=2.90−20+25 ns, as well as a first measurement of the 21+ state in 106Zr, τ(21+=2.60−15+20 ns, with corresponding reduced transition probabilities of B(E2;21+→0g.s.+=0.39(2 e2b2 and 0.31(1 e2b2, respectively. Comparisons of the extracted ground-state deformations, β2=0.39(1 (104Zr and β2=0.36(1 (106Zr with model calculations indicate a persistence of prolate deformation. The data show that 104Zr is the most deformed of the neutron-rich Zr isotopes measured so far.

  11. Deformation of Olivine at Subduction Zone Conditions Determined from In situ Measurements with Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    H Long; D Weidner; L Li; J Chen; L Wang

    2011-12-31

    We report measurements of the deformation stress for San Carlos olivine at pressures of 3-5 GPa, temperatures of 25-1150 C, and strain rates of 10{sup -7}-10{sup -5} s{sup -1}. We determine a deformation stress of approximately 2.5 GPa that is relatively temperature and strain rate independent in the temperature range of 400-900 C. The deformation experiments have been carried out on a deformation DIA (D-DIA) apparatus, Sam85, at X17B2, NSLS. Powder samples are used in these experiments. Enstatite (MgSiO{sub 3}) (3-5% total quality of sample) is used as the buffer to control the activity of silica. Ni foil is used in some experiments to buffer the oxygen fugacity. Water content is confirmed by IR spectra of the recovered samples. Samples are compressed at room temperature and are then annealed at 1200 C for at least 2 h before deformation. The total (plastic and elastic) strains (macroscopic) are derived from the direct measurements of the images taken by X-ray radiograph technique. The differential stresses are derived from the diffraction determined elastic strains. In the regime of 25-400 C, there is a small decrease of stress at steady state as temperature increases; in the regime of 400 C to the 'transition temperature', the differential stress at steady state ({approx}2.5 GPa) is relatively insensitive to the changes of temperature and strain rate; however, it drastically decreases to about 1 GPa and becomes temperature-dependent above the transition temperature and thereafter. The transition temperature is near 900 C. Above the transition temperature, the flow agrees with power law creep measurements of previous investigations. The anisotropy of differential stress in individual planes indicates that the deformation of olivine at low temperature is dominated by [0 0 1](1 0 0). Accounting to a slower strain rate in the natural system, the transition temperature for the olivine in the slab is most likely in the range of 570-660 C.

  12. Longitudinal bunch deformation of a multi-bunched beam in the TRISTAN Accumulation Ring

    International Nuclear Information System (INIS)

    Obina, T.; Satoh, K.; Kasuga, T.; Funakoshi, Y.; Tobiyama, M.

    1997-01-01

    A remarkable bunch deformation has been observed in the TRISTAN Accumulation Ring (AR) during multi-bunch operations. When two bunches that have different populations are stored in the ring, the bunch length of the weaker bunch is longer than that of the stronger one. The phenomenon can be explained as an effect of wake fields due to higher-order modes (HOMs) of accelerating cavities. We tried to find out the frequency of the mode and the strength of the wake field, and introduced a new technique called a test bunch measurement. The estimated field strength from the experiment shows a reasonable agreement with the calculation of HOM impedance. copyright 1997 American Institute of Physics

  13. Model selection for marginal regression analysis of longitudinal data with missing observations and covariate measurement error.

    Science.gov (United States)

    Shen, Chung-Wei; Chen, Yi-Hau

    2015-10-01

    Missing observations and covariate measurement error commonly arise in longitudinal data. However, existing methods for model selection in marginal regression analysis of longitudinal data fail to address the potential bias resulting from these issues. To tackle this problem, we propose a new model selection criterion, the Generalized Longitudinal Information Criterion, which is based on an approximately unbiased estimator for the expected quadratic error of a considered marginal model accounting for both data missingness and covariate measurement error. The simulation results reveal that the proposed method performs quite well in the presence of missing data and covariate measurement error. On the contrary, the naive procedures without taking care of such complexity in data may perform quite poorly. The proposed method is applied to data from the Taiwan Longitudinal Study on Aging to assess the relationship of depression with health and social status in the elderly, accommodating measurement error in the covariate as well as missing observations. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. 3D video-based deformation measurement of the pelvis bone under dynamic cyclic loading

    Directory of Open Access Journals (Sweden)

    Freslier Marie

    2011-07-01

    Full Text Available Abstract Background Dynamic three-dimensional (3D deformation of the pelvic bones is a crucial factor in the successful design and longevity of complex orthopaedic oncological implants. The current solutions are often not very promising for the patient; thus it would be interesting to measure the dynamic 3D-deformation of the whole pelvic bone in order to get a more realistic dataset for a better implant design. Therefore we hypothesis if it would be possible to combine a material testing machine with a 3D video motion capturing system, used in clinical gait analysis, to measure the sub millimetre deformation of a whole pelvis specimen. Method A pelvis specimen was placed in a standing position on a material testing machine. Passive reflective markers, traceable by the 3D video motion capturing system, were fixed to the bony surface of the pelvis specimen. While applying a dynamic sinusoidal load the 3D-movement of the markers was recorded by the cameras and afterwards the 3D-deformation of the pelvis specimen was computed. The accuracy of the 3D-movement of the markers was verified with 3D-displacement curve with a step function using a manual driven 3D micro-motion-stage. Results The resulting accuracy of the measurement system depended on the number of cameras tracking a marker. The noise level for a marker seen by two cameras was during the stationary phase of the calibration procedure ± 0.036 mm, and ± 0.022 mm if tracked by 6 cameras. The detectable 3D-movement performed by the 3D-micro-motion-stage was smaller than the noise level of the 3D-video motion capturing system. Therefore the limiting factor of the setup was the noise level, which resulted in a measurement accuracy for the dynamic test setup of ± 0.036 mm. Conclusion This 3D test setup opens new possibilities in dynamic testing of wide range materials, like anatomical specimens, biomaterials, and its combinations. The resulting 3D-deformation dataset can be used for a better

  15. Robust estimation of partially linear models for longitudinal data with dropouts and measurement error.

    Science.gov (United States)

    Qin, Guoyou; Zhang, Jiajia; Zhu, Zhongyi; Fung, Wing

    2016-12-20

    Outliers, measurement error, and missing data are commonly seen in longitudinal data because of its data collection process. However, no method can address all three of these issues simultaneously. This paper focuses on the robust estimation of partially linear models for longitudinal data with dropouts and measurement error. A new robust estimating equation, simultaneously tackling outliers, measurement error, and missingness, is proposed. The asymptotic properties of the proposed estimator are established under some regularity conditions. The proposed method is easy to implement in practice by utilizing the existing standard generalized estimating equations algorithms. The comprehensive simulation studies show the strength of the proposed method in dealing with longitudinal data with all three features. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study and confirms the effectiveness of the intervention in producing weight loss at month 9. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Measurement bias detection with Kronecker product restricted models for multivariate longitudinal data: an illustration with health-related quality of life data from thirteen measurement occasions.

    Science.gov (United States)

    Verdam, Mathilde G E; Oort, Frans J

    2014-01-01

    Application of Kronecker product to construct parsimonious structural equation models for multivariate longitudinal data.A method for the investigation of measurement bias with Kronecker product restricted models.Application of these methods to health-related quality of life data from bone metastasis patients, collected at 13 consecutive measurement occasions.The use of curves to facilitate substantive interpretation of apparent measurement bias.Assessment of change in common factor means, after accounting for apparent measurement bias.Longitudinal measurement invariance is usually investigated with a longitudinal factor model (LFM). However, with multiple measurement occasions, the number of parameters to be estimated increases with a multiple of the number of measurement occasions. To guard against too low ratios of numbers of subjects and numbers of parameters, we can use Kronecker product restrictions to model the multivariate longitudinal structure of the data. These restrictions can be imposed on all parameter matrices, including measurement invariance restrictions on factor loadings and intercepts. The resulting models are parsimonious and have attractive interpretation, but require different methods for the investigation of measurement bias. Specifically, additional parameter matrices are introduced to accommodate possible violations of measurement invariance. These additional matrices consist of measurement bias parameters that are either fixed at zero or free to be estimated. In cases of measurement bias, it is also possible to model the bias over time, e.g., with linear or non-linear curves. Measurement bias detection with Kronecker product restricted models will be illustrated with multivariate longitudinal data from 682 bone metastasis patients whose health-related quality of life (HRQL) was measured at 13 consecutive weeks.

  17. Measurement of the diffractive longitudinal structure function F{sub L}{sup D} at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2011-07-15

    First measurements are presented of the diffractive cross section {sigma}{sub ep{yields}}{sub eXY} at centre-of-mass energies {radical}(s) of 225 and 252 GeV, together with a precise new measurement at {radical}(s) of 319 GeV, using data taken with the H1 detector in the years 2006 and 2007. Together with previous H1 data at {radical}(s) of 301 GeV, the measurements are used to extract the diffractive longitudinal structure function F{sub L}{sup D} in the range of photon virtualities 4.0{<=} Q{sup 2} {<=}44.0 GeV{sup 2} and fractional proton longitudinal momentum loss 5.10{sup -4}{<=}x{sub P}{<=}3.10{sup -3}. The measured F{sub L}{sup D} is compared with leading twist predictions based on diffractive parton densities extracted in NLO QCD fits to previous measurements of diffractive Deep-Inelastic Scattering and with a model which additionally includes a higher twist contribution derived from a colour dipole approach. The ratio of the diffractive cross section induced by longitudinally polarised photons to that for transversely polarised photons is extracted and compared with the analogous quantity for inclusive Deep-Inelastic Scattering. (orig.)

  18. Analysis of baseline, average, and longitudinally measured blood pressure data using linear mixed models.

    Science.gov (United States)

    Hossain, Ahmed; Beyene, Joseph

    2014-01-01

    This article compares baseline, average, and longitudinal data analysis methods for identifying genetic variants in genome-wide association study using the Genetic Analysis Workshop 18 data. We apply methods that include (a) linear mixed models with baseline measures, (b) random intercept linear mixed models with mean measures outcome, and (c) random intercept linear mixed models with longitudinal measurements. In the linear mixed models, covariates are included as fixed effects, whereas relatedness among individuals is incorporated as the variance-covariance structure of the random effect for the individuals. The overall strategy of applying linear mixed models decorrelate the data is based on Aulchenko et al.'s GRAMMAR. By analyzing systolic and diastolic blood pressure, which are used separately as outcomes, we compare the 3 methods in identifying a known genetic variant that is associated with blood pressure from chromosome 3 and simulated phenotype data. We also analyze the real phenotype data to illustrate the methods. We conclude that the linear mixed model with longitudinal measurements of diastolic blood pressure is the most accurate at identifying the known single-nucleotide polymorphism among the methods, but linear mixed models with baseline measures perform best with systolic blood pressure as the outcome.

  19. Measurement and modeling on hydrodynamic forces and deformation of an air bubble approaching a solid sphere in liquids.

    Science.gov (United States)

    Shahalami, Mansoureh; Wang, Louxiang; Wu, Chu; Masliyah, Jacob H; Xu, Zhenghe; Chan, Derek Y C

    2015-03-01

    The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble-solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 μm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble-solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes-Reynolds-Young-Laplace model

  20. Calculation model of non-linear dynamic deformation of composite multiphase rods

    Directory of Open Access Journals (Sweden)

    Mishchenko Andrey Viktorovich

    2014-05-01

    Full Text Available The method of formulating non-linear physical equations for multiphase rods is suggested in the article. Composite multiphase rods possess various structures, include shear, polar, radial and axial inhomogeneity. The Timoshenko’s hypothesis with the large rotation angles is used. The method is based on the approximation of longitudinal normal stress low by basic functions expansions regarding the linear viscosity low. The shear stresses are calculated with the equilibrium equation using the subsidiary function of the longitudinal shift force. The system of differential equations connecting the internal forces and temperature with abstract deformations are offered by the basic functions. The application of power functions with arbitrary index allows presenting the compact form equations. The functional coefficients in this system are the highest order rigidity characteristics. The whole multiphase cross-section rigidity characteristics are offered the sums of the rigidity characteristics of the same phases individually. The obtained system allows formulating the well-known particular cases. Among them: hard plasticity and linear elastic deformation, different module deformation and quadratic Gerstner’s low elastic deformation. The reform of differential equations system to the quasilinear is suggested. This system contains the secant variable rigidity characteristics depending on abstract deformations. This system includes the sum of the same uniform blocks of different order. The rods phases defined the various set of uniform blocks phase materials. The integration of dynamic, kinematic and physical equations taking into account initial and edge condition defines the full dynamical multiphase rods problem. The quasilinear physical equations allow getting the variable flexibility matrix of multiphase rod and rods system.

  1. Subsurface deformation measurements during a fast shallow landslide triggered by rainfall

    Science.gov (United States)

    Askarinejad, Amin; Springman, Sarah M.; Akca, Devrim; Bleiker, Ernst; Gruen, Armin

    2010-05-01

    A forested area in Ruedlingen, northern Switzerland, was selected to investigate the geotechnical and hydrological response of a steep slope prior to a rainfall induced failure. Artificial rainfall was applied according to a pre-planned schedule and parameters such as pore water pressure, volumetric water content, horizontal soil pressure, temperature, piezometric water level and subsurface deformations were monitored. The latter were determined from four deformation probes that were developed in the Institute for Geotechnical Engineering, ETHZ. Strain gauges have been attached at a regular spacing along a long, slender, flexible plate to enable measurements of bending strain to be made at different points along it. The strain gauges were connected as 'half bridges' to minimize the temperature effects. A biaxial inclinometer was also installed on the top of the plate, 20 cm above the soil surface, to measure the tilt above ground level, providing more boundary conditions to determine the deformed shape of the probe. The probe is installed vertically inside the soil, while the lowest part is grouted into the stiffer layer under the topsoil, and is assumed to be stable and without any rotation. Bending strains and the inclination at the top of the probe are sampled at a frequency of 100 Hz. These are input into an algorithm to determine a polynomial relationship of deformations and rotations with depth, so that the initiation of slow movements and propagation of failure during fast soil mass movements can be examined. A 4-camera arrangement was used for the image acquisition to monitor surface movements using photogrammetric analyses. Approximately 250 white ping-pong balls were attached to the ground and used as target points. Using a network simulation tool that was developed in-house, an a priori point positioning accuracy of the ping-pong balls was estimated to be ± 10.3 mm along the horizontal direction and ± 3.5 mm in the vertical direction. The cameras

  2. On the Use of Diversity Measures in Longitudinal Sequencing Studies of Microbial Communities.

    Science.gov (United States)

    Wagner, Brandie D; Grunwald, Gary K; Zerbe, Gary O; Mikulich-Gilbertson, Susan K; Robertson, Charles E; Zemanick, Edith T; Harris, J Kirk

    2018-01-01

    Identification of the majority of organisms present in human-associated microbial communities is feasible with the advent of high throughput sequencing technology. As substantial variability in microbiota communities is seen across subjects, the use of longitudinal study designs is important to better understand variation of the microbiome within individual subjects. Complex study designs with longitudinal sample collection require analytic approaches to account for this additional source of variability. A common approach to assessing community changes is to evaluate the change in alpha diversity (the variety and abundance of organisms in a community) over time. However, there are several commonly used alpha diversity measures and the use of different measures can result in different estimates of magnitude of change and different inferences. It has recently been proposed that diversity profile curves are useful for clarifying these differences, and may provide a more complete picture of the community structure. However, it is unclear how to utilize these curves when interest is in evaluating changes in community structure over time. We propose the use of a bi-exponential function in a longitudinal model that accounts for repeated measures on each subject to compare diversity profiles over time. Furthermore, it is possible that no change in alpha diversity (single community/sample) may be observed despite the presence of a highly divergent community composition. Thus, it is also important to use a beta diversity measure (similarity between multiple communities/samples) that captures changes in community composition. Ecological methods developed to evaluate temporal turnover have currently only been applied to investigate changes of a single community over time. We illustrate the extension of this approach to multiple communities of interest (i.e., subjects) by modeling the beta diversity measure over time. With this approach, a rate of change in community

  3. Deformation behaviour of turbine foundations

    International Nuclear Information System (INIS)

    Koch, W.; Klitzing, R.; Pietzonka, R.; Wehr, J.

    1979-01-01

    The effects of foundation deformation on alignment in turbine generator sets have gained significance with the transition to modern units at the limit of design possibilities. It is therefore necessary to obtain clarification about the remaining operational variations of turbine foundations. Static measurement programmes, which cover both deformation processes as well as individual conditions of deformation are described in the paper. In order to explain the deformations measured structural engineering model calculations are being undertaken which indicate the effect of limiting factors. (orig.) [de

  4. Onsets of nuclear deformation from measurements with the Isoltrap mass spectrometer

    International Nuclear Information System (INIS)

    Naimi, S.

    2010-10-01

    Mass measurements provide important information concerning nuclear structure. This work presents results from the pioneering Penning trap spectrometer Isoltrap at CERN-Isolde. High-precision mass measurements of neutron-rich manganese ( 58 - 66 Mn) and krypton isotopes ( 96, 97 Kr) are presented, of which the 66 Mn and 96, 97 Kr masses are measured for the first time. In particular, the mass of 97 Kr was measured using the preparation trap and required the definition of a new fit function. In the case of the manganese isotopes, the N=40 shell closure is addressed. The two-neutron-separation energies calculated from the new masses show no shell closure at N=40 but give an estimation of the proton-neutron interaction (around 0.5 MeV) responsible for the increase of collectivity and nuclear deformation in this mass region. The new krypton masses show behavior in sharp contrast with heavier neighbors where sudden and intense deformation is present, interpreted as the establishment of a nuclear quantum shape/phase transition critical-point boundary. The new masses confirm findings from nuclear mean-square charge-radius measurements up to N=60 but are at variance with conclusions from recent gamma-ray spectroscopy. Another part of this work was the design of new decay spectroscopy system behind the Isoltrap mass spectrometer. The beam purity achievable with Isoltrap will allow decay studies with γ and β detection coupled to a tape-station. This system has been mounted and commissioned with the radioactive beam 80 Rb. (author)

  5. Measurement bias detection with Kronecker product restricted models for multivariate longitudinal data: an illustration with health-related quality of life data from thirteen measurement occasions

    Science.gov (United States)

    Verdam, Mathilde G. E.; Oort, Frans J.

    2014-01-01

    Highlights Application of Kronecker product to construct parsimonious structural equation models for multivariate longitudinal data. A method for the investigation of measurement bias with Kronecker product restricted models. Application of these methods to health-related quality of life data from bone metastasis patients, collected at 13 consecutive measurement occasions. The use of curves to facilitate substantive interpretation of apparent measurement bias. Assessment of change in common factor means, after accounting for apparent measurement bias. Longitudinal measurement invariance is usually investigated with a longitudinal factor model (LFM). However, with multiple measurement occasions, the number of parameters to be estimated increases with a multiple of the number of measurement occasions. To guard against too low ratios of numbers of subjects and numbers of parameters, we can use Kronecker product restrictions to model the multivariate longitudinal structure of the data. These restrictions can be imposed on all parameter matrices, including measurement invariance restrictions on factor loadings and intercepts. The resulting models are parsimonious and have attractive interpretation, but require different methods for the investigation of measurement bias. Specifically, additional parameter matrices are introduced to accommodate possible violations of measurement invariance. These additional matrices consist of measurement bias parameters that are either fixed at zero or free to be estimated. In cases of measurement bias, it is also possible to model the bias over time, e.g., with linear or non-linear curves. Measurement bias detection with Kronecker product restricted models will be illustrated with multivariate longitudinal data from 682 bone metastasis patients whose health-related quality of life (HRQL) was measured at 13 consecutive weeks. PMID:25295016

  6. Longitudinal and transverse electric field measurements in resonant cavities

    International Nuclear Information System (INIS)

    Tong Dechun; Chen Linfeng; Zheng Xiaoyue

    1994-01-01

    The paper presents a measuring technique for the electric field distribution of high order modes in resonant cavities. A perturbing bead-like cage made with metallic wires are developed for S-band field measurements, which can be used to detect a small electric field component in the presence of other strong electric or magnetic field components (That means high sensitivity and high directivity). In order to avoid orientation error for the cage with very high directivity, two parallel threads were used for supporting the perturbing cage. A simple mechanical set-up is described. The cage can be driven into the cavity on-axis or off-axis in any azimuth for the longitudinal and transverse electric field measurements

  7. Combining Near-Subject Absolute and Relative Measures of Longitudinal Hydration in Hemodialysis

    OpenAIRE

    Chan, Cian; McIntyre, Christopher; Smith, David; Spanel, Patrik; Davies, Simon J.

    2009-01-01

    Background and objectives: The feasibility and additional value of combining bioimpedance analysis (BIA) with near-subject absolute measurement of total body water using deuterium dilution (TBWD) in determining longitudinal fluid status was investigated.

  8. Texture and Microtexture of Pure (6N and Commercially Pure Aluminum after Deformation by Extrusion with Forward-Backward Rotating Die (Kobo

    Directory of Open Access Journals (Sweden)

    Bieda M.

    2016-03-01

    Full Text Available Pure aluminium (6N and commercially pure aluminium (99.7 was deformed by KOBO method. Microstructure and texture of both materials after deformation was analyzed by means of scanning and transmission electron microscopy. Advanced methods of crystallographic orientations measurements like Electron Backscatter Diffraction - EBSD (SEM and microdiffraction (TEM was used. Grain size distribution and misorientation between grains in cross and longitudinal sections of the samples were analyzed. Differences in size and homogeneity of the grains were observed in both materials. Pure aluminium was characterized by larger grain size in both sections of extruded material. Whereas commercially pure aluminium reveals smaller grain size and more homogeneous and stable microstructure.

  9. Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala

    Directory of Open Access Journals (Sweden)

    Lauren N. Schaefer

    2016-01-01

    Full Text Available Pacaya volcano is a persistently active basaltic cone complex located in the Central American Volcanic Arc in Guatemala. In May of 2010, violent Volcanic Explosivity Index-3 (VEI-3 eruptions caused significant topographic changes to the edifice, including a linear collapse feature 600 m long originating from the summit, the dispersion of ~20 cm of tephra and ash on the cone, the emplacement of a 5.4 km long lava flow, and ~3 m of co-eruptive movement of the southwest flank. For this study, Interferometric Synthetic Aperture Radar (InSAR images (interferograms processed from both spaceborne Advanced Land Observing Satellite-1 (ALOS-1 and aerial Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR data acquired between 31 May 2010 and 10 April 2014 were used to measure post-eruptive deformation events. Interferograms suggest three distinct deformation processes after the May 2010 eruptions, including: (1 subsidence of the area involved in the co-eruptive slope movement; (2 localized deformation near the summit; and (3 emplacement and subsequent subsidence of about a 5.4 km lava flow. The detection of several different geophysical signals emphasizes the utility of measuring volcanic deformation using remote sensing techniques with broad spatial coverage. Additionally, the high spatial resolution of UAVSAR has proven to be an excellent compliment to satellite data, particularly for constraining motion components. Measuring the rapid initiation and cessation of flank instability, followed by stabilization and subsequent influence on eruptive features, provides a rare glimpse into volcanic slope stability processes. Observing these and other deformation events contributes both to hazard assessment at Pacaya and to the study of the stability of stratovolcanoes.

  10. Measurement of the diffractive longitudinal structure function F{sub L}{sup D} at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H. [Yerevan Physics Inst. (Armenia); Barrelet, E. [Univ. Pierre et Marie Curie Paris 6, Univ. Denis Diderot Paris 7, CNRS/IN2P3, LPNHE, Paris (France); Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Kleinwort, C.; Kogler, R.; Kraemer, M.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Schmitt, S.; Sefkow, F.; South, D.; Staykova, Z.; Steder, M.; Toll, T.; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [Univ. Paris-Sud, LAL, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [Ecole Polytechnique, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Univ. of Belgrade, Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham, School of Physics and Astronomy (United Kingdom); Bruncko, D.; Cerny, V.; Ferencei, J. [Slovak Academy of Sciences, Kosice (Slovakia)] [and others

    2011-12-15

    First measurements are presented of the diffractive cross section {sigma}{sub ep{yields}}{sub eXY} at centre-of-mass energies {radical}(s) of 225 and 252 GeV, together with a precise new measurement at {radical}(s) of 319 GeV, using data taken with the H1 detector in the years 2006 and 2007. Together with previous H1 data at {radical}(s) of 301 GeV, the measurements are used to extract the diffractive longitudinal structure function F{sub L}{sup D} in the range of photon virtualities 4.0{<=}Q{sup 2}{<=} 44.0 GeV{sup 2} and fractional proton longitudinal momentum loss 5 x 10{sup -4}{<=}x{sub P}{<=}3 x 10{sup -3}. The measured F{sub L}{sup D} is compared with leading twist predictions based on diffractive parton densities extracted in NLO QCD fits to previous measurements of diffractive Deep-Inelastic Scattering and with a model which additionally includes a higher twist contribution derived from a colour dipole approach. The ratio of the diffractive cross section induced by longitudinally polarised photons to that for transversely polarised photons is extracted and compared with the analogous quantity for inclusive Deep-Inelastic Scattering. (orig.)

  11. Nuclear moments and deformation changes in the lightest Pt isotopes measured by laser spectroscopy

    CERN Document Server

    Roussière, B; Crawford, J; Duong, H T; Genevey, J; Girod, M; Huber, G; Ibrahim, F; Krieg, M; Le Blanc, F; Lee, J K P; Obert, J; Oms, J; Peru, S; Pinard, J; Putaux, J C; Sauvage, J; Sebastian, V; Zemlyanoi, S G; Forkel-Wirth, Doris; Lettry, Jacques

    1999-01-01

    Laser spectroscopy measurements are performed with the lightest neutron-deficient platinum isotopes using the experimental setup COMPLIS installed at the ISOLDE-Booster facility. The hyperfine spectra of /sup 182-178/Pt and /sup 183m/Pt are recorded for the first time from the optical transition 5d/sup 9/6s/sup 3/D/sub 3/ to 5d/sup 9/6p/sup 3/P/sub 2/. The variation in the mean-square charge radius of these nuclei and the magnetic and quadrupole (for I>or=1) moments of the odd isotope nuclei are found. A large deformation change between the /sup 183g/Pt and /sup 183m/Pt nuclei, quite large inverted odd-even staggering of the charge radius around the neutron midshell N=104, and a nuclear deformation drop in the region A=179 are revealed. All the results are discussed in terms of nuclear shape variation and are compared with the results of Hartree-Fock- Bogoliubov calculations involving the Gogny force. Comparison of the deformation measured from /sup 183g, m/Pt to the odd-odd isotone /sup 184g, m/Au shows that...

  12. Non-dispersive method for measuring longitudinal neutron coherence length using high frequency cold neutron pulser

    International Nuclear Information System (INIS)

    Kawai, T.; Tasaki, S.; Ebisawa, T.; Hino, M.; Yamazaki, D.; Achiwa, N.

    1999-01-01

    Complete text of publication follows. A non-dispersive method is proposed for measuring the longitudinal coherence length of a neutron using a high frequency cold neutron pulser (hf-CNP) placed between two multilayer spin splitters (MSS) which composes the cold neutron spin interferometer. Two spin eigenstates of a neutron polarized x-y plane are split non-dispersively and longitudinally in time by the hf-CNP which could reflect two components alternatively in time. The reduction of the visibility of interference fringes after being superposed by the second MSS is measured as a function of the frequency of the pulser by TOF method. From the zero visibility point obtained by extrapolation one could obtain the longitudinal coherence length of the neutron. (author)

  13. Detailed measurements of deformation in the excavation disturbed zone

    International Nuclear Information System (INIS)

    Thompson, P.M.; Martino, J.B.; Spinney, M.H.

    1993-01-01

    An excavation damage extensometer (EDEX) is described. It was designed to enable detailed small-scale deformation measurements to be made in the excavation disturbed zone (EDZ) around a tunnel opening in stressed rock. Its use in the Mine-by Experiment in unfractured granitic rock at the Underground Research Laboratory (Manitoba) is described. The results obtained from an array of eight EDEX installations are presented. These demonstrate how the EDEX can be used to provide data on the EDZ which is supplementary to that obtained by larger scale borehole extensometers and a acoustic emission/micro-seismic monitoring system. (4 figures, 5 references) (UK)

  14. Deformation measurements of materials at low temperatures using laser speckle photography method

    International Nuclear Information System (INIS)

    Sumio Nakahara; Yukihide Maeda; Kazunori Matsumura; Shigeyoshi Hisada; Takeyoshi Fujita; Kiyoshi Sugihara

    1992-01-01

    The authors observed deformations of several materials during cooling down process from room temperature to liquid nitrogen temperature using the laser speckle photography method. The in-plane displacements were measured by the image plane speckle photography and the out-of-plane displacement gradients by the defocused speckle photography. The results of measurements of in-plane displacement are compared with those of FEM analysis. The applicability of laser speckle photography method to cryogenic engineering are also discussed

  15. Combining near-subject absolute and relative measures of longitudinal hydration in hemodialysis.

    Science.gov (United States)

    Chan, Cian; McIntyre, Christopher; Smith, David; Spanel, Patrik; Davies, Simon J

    2009-11-01

    The feasibility and additional value of combining bioimpedance analysis (BIA) with near-subject absolute measurement of total body water using deuterium dilution (TBW(D)) in determining longitudinal fluid status was investigated. Fifty-nine hemodialysis patients (17 female; age 58.4 +/- 16.1 yr; body mass index 27.0 +/- 5.4) were enrolled into a 12-mo, two-center, prospective cohort study. Deuterium concentration was measured in breath by flowing-afterglow mass spectrometry using a validated protocol ensuring full equilibration with the TBW; BIA was measured using a multifrequency, multisegmental device. Comorbidity was quantified by the Stoke score. Clinicians were blinded to body composition data. At baseline and 12 mo, there was an incremental discrepancy between TBW(BIA) and TBW(D) volumes such that greater comorbidity was associated with increasing overhydration. Forty-three patients who completed the study had no longitudinal differences in the prescribed or achieved postdialysis weights. In contrast, TBW(D) increased without a change in TBW(BIA) (mean difference -0.10 L). Changes in TBW and lean body mass differed according to baseline comorbidity; without comorbidity, BIA also identified an increase in TBW and lean body mass, whereas with increasing comorbid burden, BIA failed to demonstrate increases in tissue hydration identified by TBW(D). Combined near-patient measurements of absolute and BIA-estimated TBW are achievable in a dialysis facility by identifying changes in body composition not fully appreciated by routine assessment. BIA underestimates tissue overhydration that is associated with comorbidity, resulting in reduced sensitivity to longitudinal increases during a 12-mo period.

  16. Plastic deformation, residual stress, and crystalline texture measurements for in-process characterization of FCC metal alloys

    International Nuclear Information System (INIS)

    Ruud, C.O.; Jacobs, M.E.; Weedman, S.D.; Snoha, D.J.

    1989-01-01

    This paper describes the results of several on-going investigations on the measurement of plastic deformation, residual stress, and crystalline texture in nickel, copper, and aluminum base alloys by x-ray diffraction techniques. X-ray diffraction techniques have been shown to be effective in the measurement of plastic deformation, residual stress, and crystalline texture in FCC metals, from the breadth, position, and intensity of the x-ray diffraction peaks. The Ruud-Barrett position-sensitive scintillation detector has been demonstrated to be fast, non-contacting, and tolerant of detector to component distance variation -- necessary requirements for cost-effective in-process inspection of materials

  17. A novel holographic technique for strain and deformation measurement

    International Nuclear Information System (INIS)

    Ettemeyer, A.

    1988-01-01

    A complete holographic system is presented after a description of the holographic measurement principle and of the fundamentals of three-dimensional deformation and dilatation analysis. The new holographic system permits quasi-simultaneous measurements from three extremely divergent directions. For this purpose, the object is illuminated and observed from each of three perspectives. To avoid perturbing interferences and Moire effects, the laser beam is split up into three beams which are no longer coherent with each other. In this way, three holograms are produced in various sections of a single holographic plate. The holograms for the three measurement directions are evaluated with the help of a computer (Phase-shift method). A picture rectification is effected to compensate for the distortion of the object's perspectives due to diverging directions of observation. The three-dimensional shifting components of the displacement vector are calculated for each point of the object's surface. The expansion of the object's surface is derived from these calculations, by means of differentiation. (orig./HP) [de

  18. Bayesian Nonparametric Regression Analysis of Data with Random Effects Covariates from Longitudinal Measurements

    KAUST Repository

    Ryu, Duchwan

    2010-09-28

    We consider nonparametric regression analysis in a generalized linear model (GLM) framework for data with covariates that are the subject-specific random effects of longitudinal measurements. The usual assumption that the effects of the longitudinal covariate processes are linear in the GLM may be unrealistic and if this happens it can cast doubt on the inference of observed covariate effects. Allowing the regression functions to be unknown, we propose to apply Bayesian nonparametric methods including cubic smoothing splines or P-splines for the possible nonlinearity and use an additive model in this complex setting. To improve computational efficiency, we propose the use of data-augmentation schemes. The approach allows flexible covariance structures for the random effects and within-subject measurement errors of the longitudinal processes. The posterior model space is explored through a Markov chain Monte Carlo (MCMC) sampler. The proposed methods are illustrated and compared to other approaches, the "naive" approach and the regression calibration, via simulations and by an application that investigates the relationship between obesity in adulthood and childhood growth curves. © 2010, The International Biometric Society.

  19. Measurement of the longitudinal parameters of an electron beam in a storage ring

    International Nuclear Information System (INIS)

    Krinsky, S.

    1989-01-01

    We discuss the determination of the longitudinal parameters of a bunched beam of electrons or positrons circulating in a storage ring. From the analysis of the beam current observed at a fixed azimuthal location, one can learn much about the longitudinal behavior. We present an elementary analysis of the time-dependence of the current. In particular, we discuss the determination of the average current, bunch length, synchrotron oscillation frequency, and the coherent synchrotron oscillation modes associated with longitudinal instabilities. A brief discussion is also given of the incoherent synchrotron oscillations, or Schottky noise. We review the electromagnetic field traveling with a charge in uniform motion, and introduce some of the most common devices used to detect this field: capacitive pick-up, stripline monitor, and DC beam current transformer. Our paper is organized as follows: We discuss the analysis of the time-dependence of the beam current. Then, the measurement of the current is considered. Finally, we describe some measurements of energy spread and bunch lengthening made recently at SLAC on the SLC damping ring. 12 refs., 6 figs

  20. Acceleration and support post deformation measurements during surface and tunnel transport of a LHC Short Straight Section

    CERN Document Server

    Capatina, O; CERN. Geneva. TS Department

    2004-01-01

    This technical note is a complement to the technical note [1]. The former technical note dealt with the experimental modal analysis and the road transport with transport restraints and special suspension. The present note describes the measured accelerations and support post deformations during road transport at reduced speed without end restraints or special suspension. This note also reports the accelerations and support post deformations during handling and tunnel transport with the dedicated tunnel vehicle. The measured accelerations are compared with the specified acceleration limits.

  1. Evaluation of Package Stress during Temperature Cycling using Metal Deformation Measurement and FEM Simulation

    International Nuclear Information System (INIS)

    Hoeglauer, J.; Bohm, C.; Otremba, R.; Maerz, J.; Nelle, P.; Stecher, M.; Alpern, P.

    2006-01-01

    Plastic encapsulated devices that are exposed to Temperature Cycling (TC) tests undergo an excessive mechanical stress due to different Coefficients of Thermal Expansion (CTE) of the various materials used in the system. Especially in the corners of the die, passivation cracks and shifted metal lines can be observed, which demonstrates an increasing mechanical stress from chip center to the corners of the die. This effect has been known for a long time. This paper presents a simple measurement technique to quantify the mechanical shear stress at the chip-Mold Compound (MC) interface by measuring the deformation of a periodical metal structure. Based on this deformation measurement, we evaluated the stress distribution within the package, and the influence of different parameters such as number of cycles and chip size. Furthermore, these experimental results were compared with FEM simulation, and showed good agreement but could not account in all cases for the total amount of observed shift

  2. Extent of Spine Deformity Predicts Lung Growth and Function in Rabbit Model of Early Onset Scoliosis.

    Directory of Open Access Journals (Sweden)

    J Casey Olson

    Full Text Available Early onset deformity of the spine and chest wall (initiated <8 years of age is associated with increased morbidity at adulthood relative to adolescent onset deformity of comparable severity. Presumably, inhibition of thoracic growth during late stage alveolarization leads to an irreversible loss of pulmonary growth and thoracic function; however the natural history of this disease from onset to adulthood has not been well characterized. In this study we establish a rabbit model of early onset scoliosis to establish the extent that thoracic deformity affects structural and functional respiratory development. Using a surgical right unilateral rib-tethering procedure, rib fusion with early onset scoliosis was induced in 10 young New Zealand white rabbits (3 weeks old. Progression of spine deformity, functional residual capacity, total lung capacity, and lung mass was tracked through longitudinal breath-hold computed tomography imaging up to skeletal maturity (28 weeks old. Additionally at maturity forced vital capacity and regional specific volume were calculated as functional measurements and histo-morphometry performed with the radial alveolar count as a measure of acinar complexity. Data from tethered rib rabbits were compared to age matched healthy control rabbits (N = 8. Results show unilateral rib-tethering created a progressive spinal deformity ranging from 30° to 120° curvature, the severity of which was strongly associated with pulmonary growth and functional outcomes. At maturity rabbits with deformity greater than the median (55° had decreased body weight (89%, right (59% and left (86% lung mass, right (74% and left (69% radial alveolar count, right lung volume at total lung capacity (60%, and forced vital capacity (75%. Early treatment of spinal deformity in children may prevent pulmonary complications in adulthood and these results provide a basis for the prediction of pulmonary development from thoracic structure. This model may

  3. Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations.

    Directory of Open Access Journals (Sweden)

    Schanila Nawaz

    Full Text Available The measurement of the elastic properties of cells is widely used as an indicator for cellular changes during differentiation, upon drug treatment, or resulting from the interaction with the supporting matrix. Elasticity is routinely quantified by indenting the cell with a probe of an AFM while applying nano-Newton forces. Because the resulting deformations are in the micrometer range, the measurements will be affected by the finite thickness of the cell, viscous effects and even cell damage induced by the experiment itself. Here, we have analyzed the response of single 3T3 fibroblasts that were indented with a micrometer-sized bead attached to an AFM cantilever at forces from 30-600 pN, resulting in indentations ranging from 0.2 to 1.2 micrometer. To investigate the cellular response at lower forces up to 10 pN, we developed an optical trap to indent the cell in vertical direction, normal to the plane of the coverslip. Deformations of up to two hundred nanometers achieved at forces of up to 30 pN showed a reversible, thus truly elastic response that was independent on the rate of deformation. We found that at such small deformations, the elastic modulus of 100 Pa is largely determined by the presence of the actin cortex. At higher indentations, viscous effects led to an increase of the apparent elastic modulus. This viscous contribution that followed a weak power law, increased at larger cell indentations. Both AFM and optical trapping indentation experiments give consistent results for the cell elasticity. Optical trapping has the benefit of a lower force noise, which allows a more accurate determination of the absolute indentation. The combination of both techniques allows the investigation of single cells at small and large indentations and enables the separation of their viscous and elastic components.

  4. Thought problems from adolescence to adulthood: measurement invariance and longitudinal heritability

    NARCIS (Netherlands)

    Abdellaoui, A.; de Moor, M.H.M.; Geels, L.M.; van Beek, J.H.D.A.; Willemsen, G.; Boomsma, D.I.

    2012-01-01

    This study investigates the longitudinal heritability in Thought Problems (TP) as measured with ten items from the Adult Self Report (ASR). There were ∼9,000 twins, ∼2,000 siblings and ∼3,000 additional family members who participated in the study and who are registered at the Netherlands Twin

  5. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    Science.gov (United States)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  6. Measurement of deformation field in CT specimen using laser speckle

    International Nuclear Information System (INIS)

    Jeon, Moon Chang; Kang, Ki Ju

    2001-01-01

    To obtain A 2 experimentally in the J-A 2 theory, deformation field on the lateral surface of a CT specimen was to be determined using laser speckle method. The crack growth was measured using direct current potential drop method and most procedure of experimental and data reduction was performed according to ASTM Standard E1737-96. Laser speckle images during crack propagation were monitored by two CCD cameras to cancel the effect of rotation and translation of the specimen. An algorithm to pursue displacement of a point from each image was developed and successfully used to measure A 2 continuously as the crack tip was propagated. The effects of specimen thickness on J-R curve and A 2 were explored

  7. Multilayer Steel Materials Deformation Resistance and Roll Force Measurement

    Directory of Open Access Journals (Sweden)

    A. G. Kolesnikov

    2014-01-01

    Full Text Available To create new types of cars, raise their reliability, gain operational life, and decrease in metal consumption of products it is necessary to improve mechanical, physical, and also special properties of the constructional materials applied in mechanical engineering. Presently, there are intensive researches and developments under way to create materials with ultrafine-grained structure (the sizes of grains in their crystal lattice make less than 1 micron in one of the measurements.BMSTU developed a manufacturing technology of multilayer steel sheets with steady ultrafine-grained structure based on the multiple hot rolling of billet as a composition consisting of the alternating metal sheets. A principled condition for implementation of such technology is existence of different crystallographic modifications in the adjoining sheets of the composition at specified temperature of rolling.Power parameters of rolling are important technical characteristics of the process. Usually, to determine a deformation resistance value when rolling the diverse multilayer materials, is used the actual resistance value averaging in relation to the components of the composition. The aim of this work is a comparative analysis of known calculated dependences with experimental data when rolling the 100-layer samples. Objects of research were the 100-layer compositions based on the alternating layers of steel 08H18N10 and U8.Experimental samples represented the vacuumized capsules with height, width, and length of 53 mm x 53 mm x 200 mm, respectively, in which there were the 100-layer packs from sheets, each of 0.5 mm, based on the composition of steels (U8+08H18N10. Rolling was made on the double-high mill with rolls of 160 mm in diameter during 19 passes to the thickness of 7 mm with the speed of 0,1 m/s. Relative sinking in each pass was accepted to be equal 10±2,5%. Rolling forces were measured by the strain-gauging method using the measuring cells, located under

  8. Myocardial deformation assessed by longitudinal strain. Chamber specific normative data for CMR-feature tracking from the German competence network for congenital heart defects

    International Nuclear Information System (INIS)

    Shang, Quanliang; Patel, Shivani; Danford, David A.; Kutty, Shelby; Steinmetz, Michael; Schuster, Andreas; Beerbaum, Philipp; Sarikouch, Samir

    2018-01-01

    Left ventricular two-dimensional global longitudinal strain (LS) is superior to ejection fraction (EF) as predictor of outcome. We provide reference data for atrial and ventricular global LS during childhood and adolescence by CMR feature tracking (FT). We prospectively enrolled 115 healthy subjects (56 male, mean age 12.4 ± 4.1 years) at a single institution. CMR consisted of standard two-dimensional steady-state free-precession acquisitions. CMR-FT was performed on ventricular horizontal long-axis images for derivation of right and left atrial (RA, LA) and right and left ventricular (RV, LV) peak global LS. End-diastolic volumes (EDVs) and EF were measured. Correlations were explored for LS with age, EDV and EF of each chamber. Mean±SD of LS (%) for RA, RV, LA and LV were 26.56±10.2, -17.96±5.4, 26.45±10.6 and -17.47±5, respectively. There was a positive correlation of LS in LA, LV, RA and RV with corresponding EF (all P<0.05); correlations with age were weak. Gender-wise differences were not significant for atrial and ventricular LS, strain rate and displacement. Inter- and intra-observer comparisons showed moderate agreements. Chamber-specific nomograms for paediatric atrial and ventricular LS are provided to serve as clinical reference, and to facilitate CMR-based deformation research. (orig.)

  9. Myocardial deformation assessed by longitudinal strain. Chamber specific normative data for CMR-feature tracking from the German competence network for congenital heart defects

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Quanliang [University of Nebraska College of Medicine, Children' s Hospital and Medical Center, Division of Pediatric Cardiology, Omaha, NE (United States); Central South University, Department of Radiology, Second Xiangya Hospital, Changsha, Hunan Province (China); Patel, Shivani; Danford, David A.; Kutty, Shelby [University of Nebraska College of Medicine, Children' s Hospital and Medical Center, Division of Pediatric Cardiology, Omaha, NE (United States); Steinmetz, Michael [Georg-August-University and German Centre for Cardiovascular Research (DZHK, Partner Site), Department of Paediatric Cardiology, Goettingen (Germany); Schuster, Andreas [Georg-August-University and German Centre for Cardiovascular Research (DZHK, Partner Site), Department of Cardiology and Pulmonology, Goettingen (Germany); Beerbaum, Philipp; Sarikouch, Samir [Hanover Medical School, Hanover (Germany)

    2018-03-15

    Left ventricular two-dimensional global longitudinal strain (LS) is superior to ejection fraction (EF) as predictor of outcome. We provide reference data for atrial and ventricular global LS during childhood and adolescence by CMR feature tracking (FT). We prospectively enrolled 115 healthy subjects (56 male, mean age 12.4 ± 4.1 years) at a single institution. CMR consisted of standard two-dimensional steady-state free-precession acquisitions. CMR-FT was performed on ventricular horizontal long-axis images for derivation of right and left atrial (RA, LA) and right and left ventricular (RV, LV) peak global LS. End-diastolic volumes (EDVs) and EF were measured. Correlations were explored for LS with age, EDV and EF of each chamber. Mean±SD of LS (%) for RA, RV, LA and LV were 26.56±10.2, -17.96±5.4, 26.45±10.6 and -17.47±5, respectively. There was a positive correlation of LS in LA, LV, RA and RV with corresponding EF (all P<0.05); correlations with age were weak. Gender-wise differences were not significant for atrial and ventricular LS, strain rate and displacement. Inter- and intra-observer comparisons showed moderate agreements. Chamber-specific nomograms for paediatric atrial and ventricular LS are provided to serve as clinical reference, and to facilitate CMR-based deformation research. (orig.)

  10. Radiography used to measure internal spinal cord deformation in an in vivo rat model.

    Science.gov (United States)

    Lucas, E; Whyte, T; Liu, J; Tetzlaff, W; Cripton, P A

    2018-04-11

    Little is known about the internal mechanics of the in vivo spinal cord during injury. The objective of this study was to develop a method of tracking internal and surface deformation of in vivo rat spinal cord during compression using radiography. Since neural tissue is radio-translucent, radio-opaque markers were injected into the spinal cord. Two tantalum beads (260 µm) were injected into the cord (dorsal and ventral) at C5 of nine anesthetized rats. Four beads were glued to the lateral surface of the cord, caudal and cranial to the injection site. A compression plate was displaced 0.5 mm, 2 mm, and 3 mm into the spinal cord and lateral X-ray images were taken before, during, and after each compression for measuring bead displacements. Potential bead migration was monitored for by comparing displacements of the internal and glued surface beads. Dorsal beads moved significantly more than ventral beads with a range in averages of 0.57-0.71 mm and 0.31-0.35 mm respectively. Bead displacements during 0.5 mm compressions were significantly lower than 2 mm and 3 mm compressions. There was no statistically significant migration of the internal beads. The results indicate the merit of this technique for measuring in vivo spinal cord deformation. The pattern of bead displacements illustrates the complex internal and surface deformations of the spinal cord during transverse compression. This information is needed for validating physical and finite element spinal cord surrogates and to define relationships between loading parameters, internal cord deformation, and biological and functional outcomes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. First Measurement of Charged Current Cross Sections at HERA with Longitudinally Polarised Positrons

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Elsen, E.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kuckens, J.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reisert, B.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sedlak, K.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Steder, M.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    Data taken with positrons of different longitudinal polarisation states in collision with unpolarised protons at HERA are used to measure the total cross sections of the charged current process, e^+ p \\to \\bar{\

  12. Shape coexistence in 140Sm and the onset of deformation below N=82 from lifetime measurements

    Science.gov (United States)

    Cardona, M. A.; Lunardi, S.; Bazzacco, D.; de Angelis, G.; Roca, V.

    1991-08-01

    Different deformations for the two bands built above the (πh11/2)2 10+ and the (νh11/2)-2 10+ states in 140Sm have been determined from lifetime measurements using the reaction 106Pd(37Cl,p2n)140Sm at 143 MeV. The β values derived for the N=78 and N=80 core nuclei, coexisting in 140Sm, complete the systematics of nuclear deformation from N=72 to 80.

  13. Delayed cerebral infarction due to stent folding deformation following carotid artery stenting

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwon Duk; Lee, Kyung Yul; Suh, Sang Hyun [Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Byung Moon [Dept. of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    We report a case of delayed cerebral infarction due to stent longitudinal folding deformation following carotid artery stenting using a self-expandable stent with an open-cell design. The stented segment of the left common carotid artery was divided into two different lumens by this folding deformation, and the separated lumens became restricted with in-stent thrombosis. Although no established method of managing this rare complication exists, a conservative approach was taken with administration of anticoagulant and dual antiplatelet therapy. No neurological symptoms were observed during several months of clinical follow-up after discharge.

  14. Drift tube measurements of mobilities and longitudinal diffusion coefficients of ions in gases

    International Nuclear Information System (INIS)

    Chelf, R.D.

    1982-01-01

    The zero-field mobilities of Br - and NH 4+ in O 2 were determined as a function of gas temperature in a high pressure drift tube mass spectrometer. The mobilities and longitudinal diffusion coefficients of the ion-gas combinations Br - in Ne and Kr, Li + in Xe, and Tl/ + in Kr and Xe were determined as a function of E/N, where E is the electric field strength and N is the gas number density in a low pressure drift tube mass spectrometer. The measured longitudinal diffusion coefficients were used for a test and comparison of the generalized Einstein relations of Viehland-Mason and Waldman-Mason theories. The measured mobilities of Br - in Kr and Tl/ + in Kr were used in an iterative-inversion scheme from which the ion-neutral interaction potentials were determined

  15. Effect of loading pattern on longitudinal bowing in flexible roll forming

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyun; Woo, Young Yun; Hwang, Tae Woo; Han, Sang Wook; Moon, Young Hoon [School of Mechanical Engineering, Engineering Research Center for Net Shape and Die Manufacturing, Pusan National University,Busan (Korea, Republic of)

    2016-12-15

    The flexible roll forming process can be used to fabricate products with a variable cross-section profile in the longitudinal direction. Transversal nonuniformity of the longitudinal strain is one of the fundamental characteristics of blank deformation in flexible roll forming. Longitudinal bowing is a shape defect caused by transversal nonuniformity of the longitudinal strain. In this study, loading patterns in flexible roll forming are investigated in order to reduce the longitudinal bowing in a roll-formed blank. To analyze the effects of loading patterns on longitudinal bowing, two different forming schedules are implemented. In schedule 1, loading patterns with different bending angle increments are designed under fixed initial and final bending angles. In schedule 2, loading patterns with different initial bending angles under the fixed final bending angle are designed. Our results show that the bowing heights are significantly affected by the loading patterns. The bowing susceptibilities vary with blank shape such as trapezoid, convex, and concave shapes. In addition to the peak longitudinal strain at the respective roll stands, the cumulative longitudinal strain from the initial to final stands is shown to be a reliable index in predicting the tendency of longitudinal bowing.

  16. Geodetic Measurements and Mechanical Models of Cyclic Deformation at Okmok Volcano, Alaska

    Science.gov (United States)

    Feigl, K.; Masterlark, T.; Lu, Z.; Ohlendorf, S. J.; Thurber, C. H.; Sigmundsson, F.

    2009-12-01

    The 1997 and 2008 eruptions of Okmok volcano, Alaska, provide a rare opportunity for conducting a rheological experiment to unravel the complex processes associated with magma migration, storage, and eruption in an active volcano. In this experiment, the magma flux during the eruption provides the “impulse” and the subsequent, transient deformation, the “response”. By simulating the impulse, measuring the response, and interpreting the constitutive relations between the two, one can infer the rheology. Okmok is an excellent natural laboratory for such an experiment because a complete cycle of deformation has been monitored using geodetic and seismic means, including: (a) geodetic time series from Interferometric Synthetic Aperture Radar (InSAR) and the Global Positioning System (GPS), (b) earthquake locations; and (c) seismic tomography. We are developing quantitative models using the Finite Element Method (FEM) to simulate the timing and location of the observed seismicity and deformation by accounting for: (a) the geometry and loading of the magma chamber and lava flow, (b) the spatial distribution of material properties; and (c) the constitutive (rheological) relations between stress and strain. Here, we test the hypothesis that the deformation following the 1997 eruption did not reach a steady state before the eruption in 2008. To do so, we iteratively confront the FEM models with the InSAR measurements using the General Inversion of Phase Technique (GIPhT). This approach models the InSAR phase data directly, without unwrapping, as developed, validated, and applied by Feigl and Thurber [Geophys. J. Int., 2009]. By minimizing a cost function that quantifies the misfit between observed and modeled values in terms of “wrapped” phase (with values ranging from -1/2 to +1/2 cycles), GIPhT can estimate parameters in a geophysical model. By avoiding the pitfalls of phase-unwrapping approaches, GIPhT allows the analysis, interpretation and modeling of more

  17. Quantifying the Erlenmeyer flask deformity

    Science.gov (United States)

    Carter, A; Rajan, P S; Deegan, P; Cox, T M; Bearcroft, P

    2012-01-01

    Objective Erlenmeyer flask deformity is a common radiological finding in patients with Gaucher′s disease; however, no definition of this deformity exists and the reported prevalence of the deformity varies widely. To devise an easily applied definition of this deformity, we investigated a cohort of knee radiographs in which there was consensus between three experienced radiologists as to the presence or absence of Erlenmeyer flask morphology. Methods Using the presence or absence of Erlenmeyer flask morphology as a benchmark, we measured the diameter of the femur at the level of the physeal scar and serially at defined intervals along the metadiaphysis. Results A measured ratio in excess of 0.57 between the diameter of the femoral shaft 4 cm from the physis to the diameter of the physeal baseline itself on a frontal radiograph of the knee predicted the Erlenmeyer flask deformity with 95.6% sensitivity and 100% specificity in our series of 43 independently diagnosed adults with Gaucher′s disease. Application of this method to the distal femur detected the Erlenmeyer flask deformity reproducibly and was simple to carry out. Conclusion Unlike diagnostic assignments based on subjective review, our simple procedure for identifying the modelling deformity is based on robust quantitative measurement: it should facilitate comparative studies between different groups of patients, and may allow more rigorous exploration of the pathogenesis of the complex osseous manifestations of Gaucher′s disease to be undertaken. PMID:22010032

  18. Nonlinear Cascade Strategy for Longitudinal Control of Electric Vehicle.

    Science.gov (United States)

    El Majdoub, K; Giri, F; Ouadi, H; Chaoui, F Z

    2014-01-01

    The problem of controlling the longitudinal motion of front-wheels electric vehicle (EV) is considered making the focus on the case where a single dc motor is used for both front wheels. Chassis dynamics are modelled applying relevant fundamental laws taking into account the aerodynamic effects and the road slope variation. The longitudinal slip, resulting from tire deformation, is captured through Kiencke's model. Despite its highly nonlinear nature the complete model proves to be utilizable in longitudinal control design. The control objective is to achieve a satisfactory vehicle speed regulation in acceleration/deceleration stages, despite wind speed and other parameters uncertainty. An adaptive controller is developed using the backstepping design technique. The obtained adaptive controller is shown to meet its objectives in presence of the changing aerodynamics efforts and road slope.

  19. Measuring time-dependent deformations in metallic MEMS

    NARCIS (Netherlands)

    Bergers, L.I.J.C.; Hoefnagels, J.P.M.; Delhey, N.K.R.; Geers, M.G.D.

    2011-01-01

    The reliability of metallic microelectromechanical systems (MEMS) depends on time-dependent deformation such as creep. Key to this process is the interaction between microstructural length scales and dimensional length scales, so-called size-effects. As a first critical step towards studying these

  20. Non-invasive imaging of zebrafish with spinal deformities using optical coherence tomography: a preliminary study

    Science.gov (United States)

    Bernstein, Liane; Beaudette, Kathy; Patten, Kessen; Beaulieu-Ouellet, Émilie; Strupler, Mathias; Moldovan, Florina; Boudoux, Caroline

    2013-03-01

    A zebrafish model has recently been introduced to study various genetic mutations that could lead to spinal deformities such as scoliosis. However, current imaging techniques make it difficult to perform longitudinal studies of this condition in zebrafish, especially in the early stages of development. The goal of this project is to determine whether optical coherence tomography (OCT) is a viable non-invasive method to image zebrafish exhibiting spinal deformities. Images of both live and fixed malformed zebrafish (5 to 21 days postfertilization) as well as wild-type fish (5 to 29 days postfertilization) were acquired non-invasively using a commercial SD-OCT system, with a laser source centered at 930nm (λ=100nm), permitting axial and lateral resolutions of 7 and 8μm respectively. Using two-dimensional images and three-dimensional reconstructions, it was possible to identify the malformed notochord as well as deformities in other major organs at different stages of formation. Visualization of the notochord was facilitated with the development of a segmentation algorithm. OCT images were compared to HE histological sections and images obtained by calcein staining. Because of the possibility of performing longitudinal studies on a same fish and reducing image processing time as compared with staining techniques and histology, the use of OCT could facilitate phenotypic characterization in studying genetic factors leading to spinal deformities in zebrafish and could eventually contribute to the identification of the genetic causes of spinal deformities such as scoliosis.

  1. Ionospheric effects on DInSAR measurements of interseismic deformation in China

    Science.gov (United States)

    Gong, W.; Shan, X.; Song, X.; Liao, H.; Meyer, F. J.

    2017-12-01

    Interseismic deformation signals are small ground displacement that is critical to monitor the strain accumulates of major faults to foresee the potential seismic hazard. Accurate measurements of surface deformation could help recognize and interpret even subtle displacement and to give a better understanding of active fault behavior. However, the value and applicability of InSAR for inter-seismic monitoring problems is limited by the influence of temporal decorrelation and electromagnetic path delay variations (atmospheric disturbance), both reducing the sensitivity and accuracy of the technique. Ionospheric signal, a major part of atmospheric disturbance in InSAR, is related to the density of free electrons along the ray path, thus, that is dependent on the SAR signal frequency. Ionosphere induced phase distortions can lead to azimuth/range defocusing, geometry distortions and interferometric phase distortions. Some ionosphere phenomenon have been reported more severe at equatorial region and polar zones, e.g., ionosphere irregularity, while for middle latitude regions like West China it has not been thoroughly analyzed. Thus, this study is focus on the evaluation of ionosphere impacts in middle latitude zone, and its impacts in monitoring interseismic deformation in West China. The outcome would be useful to provide an empiric prior error condition of ionosphere disturbance, which can further benefit InSAR result interpretation and geophysical inversion, as well as the SAR data arrangement in future operational-(cloud) InSAR processing system. The study focus on two parts: 1. We will analyze the temporal-spatial variation of ionosphere and its magnitude at middle latitude zone, and investigate its impacts to current satellite SAR (C-band (Sentinel-1) and L-band (ALOS2) dataset) in earthquake-related deformation studies, especially inter-seismic study. 2. Ionosphere phase patterns at mid latitudes is typically small and the structure is compatibly smooth. This

  2. Examining the validity of Stoney-equation for in-situ stress measurements in thin film electrodes using a large-deformation finite-element procedure

    Science.gov (United States)

    Wen, Jici; Wei, Yujie; Cheng, Yang-Tse

    2018-05-01

    During the lithiation and delithiation of a thin film electrode, stress in the electrode is deduced from the curvature change of the film using the Stoney equation. The accuracy of such a measurement is conditioned on the assumptions that (a) the mechanical properties of the electrode remain unchanged during lithiation and (b) small deformation holds. Here, we demonstrate that the change in elastic properties can influence the measurement of the stress in thin film electrodes. We consider the coupling between diffusion and deformation during lithiation and delithiation of thin film electrodes and implement the constitutive behavior in a finite-deformation finite element procedure. We demonstrate that both the variation in elastic properties in thin film electrodes and finite-deformation during lithiation and delithiation would challenge the applicability of the Stoney-equation for in-situ stress measurements of thin film electrodes.

  3. Measuring structure deformations of a composite glider by optical means with on-ground and in-flight testing

    Science.gov (United States)

    Bakunowicz, Jerzy; Święch, Łukasz; Meyer, Ralf

    2016-12-01

    In aeronautical research experimental data sets of high quality are essential to verify and improve simulation algorithms. For this reason the experimental techniques need to be constantly refined. The shape, movement or deformation of structural aircraft elements can be measured implicitly in multiple ways; however, only optical, correlation-based techniques are able to deliver direct high-order and spatial results. In this paper two different optical metrologies are used for on-ground preparation and the actual execution of in-flight wing deformation measurements on a PW-6U glider. Firstly, the commercial PONTOS system is used for static tests on the ground and for wind tunnel investigations to successfully certify an experimental sensor pod mounted on top of the test bed fuselage. Secondly, a modification of the glider is necessary to implement the optical method named image pattern correlation technique (IPCT), which has been developed by the German Aerospace Center DLR. This scientific technology uses a stereoscopic camera set-up placed inside the experimental pod and a stochastic dot matrix applied to the area of interest on the glider wing to measure the deformation of the upper wing surface in-flight. The flight test installation, including the preparation, is described and results are presented briefly. Focussing on the compensation for typical error sources, the paper concludes with a recommended procedure to enhance the data processing for better results. Within the presented project IPCT has been developed and optimized for a new type of test bed. Adapted to the special requirements of the glider, the IPCT measurements were able to deliver a valuable wing deformation data base which now can be used to improve corresponding numerical models and simulations.

  4. Relation between self-image score of SRS-22 with deformity measures in female adolescent idiopathic scoliosis patients.

    Science.gov (United States)

    Wang, L; Wang, Y P; Yu, B; Zhang, J G; Shen, J X; Qiu, G X; Li, Y

    2014-11-01

    Adolescent idiopathic scoliosis (AIS) is a pathology which affects the individual's functioning in the widely understood physical, psychic, and social aspects. More attention should be paid to patients' perception of self-image when evaluating the spine deformity. The present retrospective study evaluated the associations between the deformity measures and self-image score as determined by the SRS-22 questionnaire in Chinese female AIS patients. The self-image score correlates significantly with deformity measures. The location of main curve apex and the number of curve could affect the self-image score. We retrospectively reviewed the records of 202 female patients, collected data on patient's age, body mass index, radiographic and physical measures and self-image score of SRS-22 questionnaire. According to the location of main curve apex and the number of curve, the patients were divided to different subgroups. Correlations between deformity measures and self-image score of different groups were evaluated by the Spearman correlation test. The self-image score correlated negatively with the main Cobb angle, apical vertebral translation (AVT), and razor hump height. There is no significant difference of self-image score between thoracic curve (TC) and thoracolumbar curve (TL/LC) subgroups. And the self-image scores of one-curve, two-curve and three-curve subgroups are similar. For Chinese female AIS patients in our study, self-image was found to correlate negatively with the main Cobb angle, AVT and razor hump height. And the location of scoliosis apex and the number of curve are not influencing factors of self-image perception. Level IV, retrospective study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Evolution of the structure and the phase composition of a bainitic structural steel during plastic deformation

    Science.gov (United States)

    Nikitina, E. N.; Glezer, A. M.; Ivanov, Yu. F.; Aksenova, K. V.; Gromov, V. E.; Kazimirov, S. A.

    2017-10-01

    The evolution of the phase composition and the imperfect substructure of the 30Kh2N2MFA bainitic structural steel subjected to compressive deformation by 36% is quantitatively analyzed. It is shown that deformation is accompanied by an increase in the scalar dislocation density, a decrease in the longitudinal fragment sizes, an increase in the number of stress concentrators, the dissolution of cementite particles, and the transformation of retained austenite.

  6. In vivo evaluation of axial integrity of coronary stents using intravascular ultrasound: Insights on longitudinal stent deformation.

    Science.gov (United States)

    Dvir, Danny; Kitabata, Hironori; Barbash, Israel M; Minha, Sa'ar; Badr, Salem; Loh, Joshua P; Chen, Fang; Torguson, Rebecca; Waksman, Ron

    2014-09-01

    To evaluate the axial integrity of different coronary stents using intravascular ultrasound (IVUS). Longitudinal stent deformation was recently reported. Consecutive patients who underwent IVUS analysis after drug-eluting stent (DES) implantation for de novo coronary lesions were evaluated. Stent length was compared with label length for calculation of absolute change and relative difference (absolute change divided by label length). A total of 233 DES utilizing five different platforms were included. The median absolute change in stent length was 0.90 mm (interquartile range [IQR] 0.48-1.39) and the relative difference was 5.24% (IQR 2.55-8.29). There was no significant difference among the groups in median absolute or relative change: Cypher 0.89 mm/3.89%, Taxus 0.88 mm/5.39%, Endeavor 1.16 mm/6.77%, Xience V 0.86 mm/5.80%, and PROMUS Element 0.79 mm/5.34% (P = 0.085, P = 0.072, respectively). Multivariate logistic regression revealed that the Cypher stent was independently correlated with a lower change in length, whereas stent label length and deployment pressure were correlated with higher absolute change. The axial integrity of DES platforms examined in vivo was high, with only mild changes in stent length after implantation. While there are differences between first- and second-generation DES, axial integrity among second-generation DES was similar. © 2013 Wiley Periodicals, Inc.

  7. Measurement and simulation of deformation and stresses in steel casting

    Science.gov (United States)

    Galles, D.; Monroe, C. A.; Beckermann, C.

    2012-07-01

    Experiments are conducted to measure displacements and forces during casting of a steel bar in a sand mold. In some experiments the bar is allowed to contract freely, while in others the bar is manually strained using embedded rods connected to a frame. Solidification and cooling of the experimental castings are simulated using a commercial code, and good agreement between measured and predicted temperatures is obtained. The deformations and stresses in the experiments are simulated using an elasto-viscoplastic finite-element model. The high temperature mechanical properties are estimated from data available in the literature. The mush is modeled using porous metal plasticity theory, where the coherency and coalescence solid fraction are taken into account. Good agreement is obtained between measured and predicted displacements and forces. The results shed considerable light on the modeling of stresses in steel casting and help in developing more accurate models for predicting hot tears and casting distortions.

  8. Measurement and simulation of deformation and stresses in steel casting

    International Nuclear Information System (INIS)

    Galles, D; Beckermann, C; Monroe, C A

    2012-01-01

    Experiments are conducted to measure displacements and forces during casting of a steel bar in a sand mold. In some experiments the bar is allowed to contract freely, while in others the bar is manually strained using embedded rods connected to a frame. Solidification and cooling of the experimental castings are simulated using a commercial code, and good agreement between measured and predicted temperatures is obtained. The deformations and stresses in the experiments are simulated using an elasto-viscoplastic finite-element model. The high temperature mechanical properties are estimated from data available in the literature. The mush is modeled using porous metal plasticity theory, where the coherency and coalescence solid fraction are taken into account. Good agreement is obtained between measured and predicted displacements and forces. The results shed considerable light on the modeling of stresses in steel casting and help in developing more accurate models for predicting hot tears and casting distortions.

  9. Measuring High Speed Deformation for Space Applications

    Science.gov (United States)

    Wentzel, Daniel

    2014-01-01

    PDV (Photonic Doppler Velocimetry) has proven to be a reliable and versatile technique to observe rapid deformation of frangible joints. It will be a valuable technique in order to understand the physics of two-stage light gas guns and the material response to hypervelocity impact.

  10. Measurement of three-dimensional deformations using digital holography with radial sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Christian; Viotti, Matias R.; Albertazzi, Jr.; G. Armando

    2010-07-10

    A measurement system based on digital holography for the simultaneous measurement of out-of-plane and radial in-plane displacement fields for the assessment of residual stress is presented. Two holograms are recorded at the same time with a single image taken by a digital camera, allowing the separate evaluation of in-plane and out-of-plane movement. An axis-symmetrical diffractive optical element is used for the illumination of the object, which causes radial sensitivity vectors. By the addition and, respectively, the subtraction, of the four phase maps calculated from two camera frames, the in-plane and out-of-plane deformation of an object can be calculated separately. The device presented is suitable for high-speed, high-resolution measurement of residual stress. In addition to the setup, first measurement results and a short comparison to a mature digital speckle pattern interferometry setup are shown.

  11. Child personality measures as contemporaneous and longitudinal predictors of social behaviour in pre-school

    Directory of Open Access Journals (Sweden)

    Maja Zupančič

    2005-04-01

    Full Text Available Predictive relations from personality measures to children's social behaviour in pre-school were examined for 3 year old children (at Time 1; T1 who were reassessed one year later (at Time 2; T2. At both times, mothers and fathers separately rated children's personality characteristics using the Inventory of Child Individual Differences (Halverson et al., 2003, while the pre-school teachers assessed the same children on the Social Competence and Behavior Evaluation Scale (LaFreniere et al., 2001. Three general predictive models were examined, contemporaneous (at T1 and T2, longitudinal, and cumulative. Mother- and father-rated child personality was contemporaneously predictive of children's social behaviour as assessed by their pre-school teachers. The most consistent predictions across the spouses and at both times of measurement were obtained for child externalizing behaviour. More disagreeable and emotionally stable children, as opposed to their less disagreeable and more in stable counterparts, were concurrently observed to exhibit more externalizing tendencies during the time spent in pre-school. Maternal reports were longitudinally predictive of children's social competence and internalizing behaviour and the father reports predicted internalizing and externalizing behaviour one year later. Neuroticism at age 3 was consistently linked to internalizing tendencies at age 4 across parents both longitudinally and cumulatively. Father-rated Disagreeableness at age 3 was predictive of externalizing behaviour one year later in both longitudinal and cumulative models, while the contemporaneous information on child Disagreeableness and Neuroticism (reversed at T2, independent of the respective child traits at T1, significantly improved the cumulative predictions of externalizing behaviour from maternal reports. In general, child personality scores derived from maternal data sets were more powerful predictors of children's social behaviour across

  12. Lifetime measurements and the nonaxial deformation in 119I

    International Nuclear Information System (INIS)

    Srebrny, J.; Droste, Ch.; Morek, T.; Starosta, K.; Juutinen, S.; Piiparinen, M.; Toermaenen, S.; Virtanen, A.

    2000-01-01

    Complete text of publication follows. Lifetimes in four negative parity bands of 119 I were measured using DSAM and RDM. 119 I nuclei were produced in the 109 Ag( 13 C,3n) reaction, γγ coincidences were collected using the NORDBALL array. The detailed description of experiment is given in (1,2,3). Information about electromagnetic properties of four negative parity bands, originating from the h 11/2 quasiproton coupled to an axially asymmetric core, was obtained. The lifetimes of 31 negative parity levels were determined. That is one of the largest sets of electromagnetic transition probabilities for an odd - A nucleus from the 50 119 I nucleus. We see that the 53-rd proton added to the 118 Te nucleus, through the polarisation effect, changes the properties of the even-even core. The β-deformation becomes at least as large as that of 120 Xe (β ∼ 0.28), whereas the γ-deformation is around 30 deg. Comparison of experimental data with calculation within Core Quasiparticle Coupling Model indicates the advantage of the γ- soft model over the γ-rigid one in the description of h 11/2 band structure in 119 I. One can see, that the most valuable information concerning the shape of 119 I is based on the properties of the unfavoured states, especially those belonging to band 9, with their regular energy spacing and fast intraband transitions. (author)

  13. Normal values for myocardial deformation within the right heart measured by feature-tracking cardiovascular magnetic resonance imaging.

    Science.gov (United States)

    Liu, Boyang; Dardeer, Ahmed M; Moody, William E; Edwards, Nicola C; Hudsmith, Lucy E; Steeds, Richard P

    2018-02-01

    Reproducible and repeatable assessment of right heart function is vital for monitoring congenital and acquired heart disease. There is increasing evidence for the additional value of myocardial deformation (strain and strain rate) in determining prognosis. This study aims to determine the reproducibility of deformation analyses in the right heart using cardiovascular magnetic resonance feature tracking (FT-CMR); and to establish normal ranges within an adult population. A cohort of 100 healthy subjects containing 10 males and 10 females from each decade of life between the ages of 20 and 70 without known congenital or acquired cardiovascular disease, hypertension, diabetes, dyslipidaemia or renal, hepatic, haematologic and systemic inflammatory disorders underwent FT-CMR assessment of right ventricular (RV) and right atrial (RA) myocardial strain and strain rate. RV longitudinal strain (Ell) was -21.9±3.24% (FW+S Ell) and -24.2±3.59% (FW-Ell). Peak systolic strain rate (S') was -1.45±0.39s -1 (FW+S) and -1.54±0.41s -1 (FW). Early diastolic strain rate (E') was 1.04±0.26s -1 (FW+S) and 1.04±0.33s -1 (FW). Late diastolic strain rate (A') was 0.94±0.33s -1 (FW+S) and 1.08±0.33s -1 (FW). RA peak strain was -21.1±3.76%. The intra- and inter-observer ICC for RV Ell (FW+S) was 0.92 and 0.80 respectively, while for RA peak strain was 0.92 and 0.89 respectively. Normal values of RV & RA deformation for healthy individuals using FT-CMR are provided with good RV Ell and RA peak strain reproducibility. Strain rate suffered from sub-optimal reproducibility and may not be satisfactory for clinical use. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Long-term Deformation Measurements of Atypical Roof Timber Structures

    Directory of Open Access Journals (Sweden)

    Jiří Bureš

    2014-06-01

    Full Text Available The paper includes conclusions from evaluation of results obtained from long-termmeasuring of innovative atypical roof timber structures. Based on the results ofmeasurements of vertical and horizontal deformation components it is possible to analyzethe real behavior of structures in given conditions. By assessing deformations in variousstages, including particularly external and internal environment temperatures, relative airhumidity and moisture content of wood, decisive parameters for real structure behaviorcan be established. The data are processed from period 2001 – 2013.

  15. The effect of modified benchmark on the accuracy of measuring the deformation at Muria

    International Nuclear Information System (INIS)

    Ari Nugroho

    2013-01-01

    The monitoring of deformation surrounding the Muria mountain is recommended by The IAEA (International Atomic Energy Agency). In addition, this study also to provide the data of deformation caused by the volcanic activity of Mount Muria, as a basic study in analyzing the volcanic hazard toward the NPP (Nuclear Power Plant). The main purpose of this study is to discover the accuracy between the two measurements by using the different BM (Benchmark). This study uses geodetic GPS (Global Positioning System) Trimble R7 GNSS. The measurement in the month of April to July 2011 used the standard BM and conducted in eight BM which are BKI (Bopkri), UJW (Ujung Watu), PDP (Perdopo), RTW (Rahtawu), RGG (Rengging), KTP (Ketek Putih), CRG (Cranggang), DM (Danyang Mulyo) and refer to one reference BM named Mijen. The measurement in the month of November 2011 used the modified BM and conducted in six BM which are BKI, PDP, RTW, RGG, KTP, CRG referred to the same reference BM named Mijen. These measurements resulted data in the range of 4-7 mm (horizontal), 16-28 mm (vertical), and in the range of 0.6 mm - 1.3 mm (horizontal), 0.3 mm – 0.6 mm, respectively. (author)

  16. Influence of White-Coat Hypertension on Left Ventricular Deformation 2- and 3-Dimensional Speckle Tracking Study.

    Science.gov (United States)

    Tadic, Marijana; Cuspidi, Cesare; Ivanovic, Branislava; Ilic, Irena; Celic, Vera; Kocijancic, Vesna

    2016-03-01

    We sought to compare left ventricular deformation in subjects with white-coat hypertension to normotensive and sustained hypertensive patients. This cross-sectional study included 139 untreated subjects who underwent 24-hour ambulatory blood pressure monitoring and completed 2- and 3-dimensional examination. Two-dimensional left ventricular multilayer strain analysis was also performed. White-coat hypertension was diagnosed if clinical blood pressure was elevated and 24-hour blood pressure was normal. Our results showed that left ventricular longitudinal and circumferential strains gradually decreased from normotensive controls across subjects with white-coat hypertension to sustained hypertensive group. Two- and 3-dimensional left ventricular radial strain, as well as 3-dimensional area strain, was not different between groups. Two-dimensional left ventricular longitudinal and circumferential strains of subendocardial and mid-myocardial layers gradually decreased from normotensive control to sustained hypertensive group. Longitudinal and circumferential strains of subepicardial layer did not differ between the observed groups. We concluded that white-coat hypertension significantly affects left ventricular deformation assessed by 2-dimensional traditional strain, multilayer strain, and 3-dimensional strain. © 2016 American Heart Association, Inc.

  17. Microscopic Measurements of Axial Accumulation of Red Blood Cells in Capillary Flows Effects of Deformability

    Science.gov (United States)

    Sasaki, Takahiro; Seki, Junji; Itano, Tomoaki; Sugihara-Seki, Masako

    2017-11-01

    In the microcirculation, red blood cells (RBCs) are known to accumulate in the region near the central axis of microvessels, which is called the ``axial accumulation''. Although this behavior of RBCs is considered to originate from high deformability of RBCs, there have been few experimental studies on the mechanism. In order to elucidate the effect of RBC deformability on the axial accumulation, we measured the cross-sectional distributions of RBCs flowing through capillary tubes with a high spatial resolution by a newly devised observation system for intact and softened RBCs as well as hardened RBCs to various degrees. It was found that the intact and softened RBCs are concentrated in the small area centered on the tube axis, whereas the hardened RBCs are dispersed widely over the tube cross section dependent on the degree of hardness. These results demonstrate clearly the essential role of the deformability of RBCs in the ``axial accumulation'' of RBCs. JSPS KAKENHI Grant Number 17H03176, Kansai University ORDIST group funds.

  18. Micro-deformation measurement on the concrete roadway surface slabs using Fiber Bragg Grating and analysis by computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    Serpa, C M; Gomez, N D [Instituto Tecnologico Metropolitano Institucion Universitaria (ITM), Medellin A. A. 54954 (Colombia); Velez, F J, E-mail: claudiaserpa@itm.edu.co [Universidad EAFIT, Medellin (Colombia)

    2011-01-01

    This work shows a non-invasive method for micro-deformation measurements on concrete structures using Bragg grating sensors in optical fibers adhered to the surface. We present the measurements on roadway slabs under a load of 10 kN, and we find an approximated ratio of 2:1 between the deformation registered by the sensors and the values from a computational simulation with the finite element method. We propose the use of these sensors for structural monitoring of the slabs and this installation shape for avoiding bends that can damage the edges in the optical fiber in embebed sensors in vertical shape.

  19. Structural Analysis of Shipping Casks, Vol. 9. Energy Absorption Capabilities of Plastically Deformed Struts Under Specified Impact Loading Conditions (Thesis)

    International Nuclear Information System (INIS)

    Davis, F.C.

    2001-01-01

    The purpose of this investigation was to determine the energy absorption characteristics of plastically deformed inclined struts under impact loading. This information is needed to provide a usable method by which designers and analysts of shipping casks for radioactive or fissile materials can determine the energy absorption capabilities of external longitudinal fins on cylindrical casks under specified impact conditions. A survey of technical literature related to experimental determination of the dynamic plastic behavior of struts revealed no information directly applicable to the immediate problem, especially in the impact velocity ranges desired, and an experimental program was conducted to obtain the needed data. Mild-steel struts with rectangular cross sections were impacted by free-falling weights dropped from known heights. These struts or fin specimens were inclined at five different angles to simulate different angles of impact that fins on a shipping cask could experience under certain accident conditions. The resisting force of the deforming strut was measured and recorded as a function of time by using load cells instrumented with resistance strain gage bridges, signal conditioning equipment, an oscilloscope, and a Polaroid camera. The acceleration of the impacting weight was measured and recorded as a function of time during the latter portion of the testing program by using an accelerometer attached to the drop hammer, appropriate signal conditioning equipment, the oscilloscope, and the camera. A digital computer program was prepared to numerically integrate the force-time and acceleration-time data recorded during the tests to obtain deformation-time data. The force-displacement relationships were then integrated to obtain values of absorbed energy with respect to deformation or time. The results for various fin specimen geometries and impact angles are presented graphically, and these curves may be used to compute the energy absorption capacity of

  20. Geodetic deformation monitoring at Pendidikan Diponegoro Dam

    Science.gov (United States)

    Yuwono, Bambang Darmo; Awaluddin, Moehammad; Yusuf, M. A.; Fadillah, Rizki

    2017-07-01

    Deformation monitoring is one indicator to assess the feasibility of Dam. In order to get the correct result of the deformation, it is necessary to determine appropriate deformation monitoring network and the observation data should be analyse and evaluated carefully. Measurement and analysis of deformation requires relatively accurate data and the precision is high enough, one of the observation method that used is GPS (Global Positioning System). The research was conducted at Pendidikan Undip Dams is Dam which is located in Tembang. Diponegoro Dam was built in 2013 and a volume of 50.86 m3 of water, inundation normal width of up to 13,500 m2. The main purpose of these building is not only for drainage but also for education and micro hydro power plant etc. The main goal of this reasearch was to monitor and analyze the deformation at Pendidikan Undip Dam and to determaine whether GPS measurement could meet accuracy requirement for dam deformation measurements. Measurements were made 2 times over 2 years, 2015 and 2016 using dual frequency GPS receivers with static methods and processed by Scientific Software GAMIT 10.6

  1. Fully automatic measurements of axial vertebral rotation for assessment of spinal deformity in idiopathic scoliosis

    International Nuclear Information System (INIS)

    Forsberg, Daniel; Andersson, Mats; Knutsson, Hans; Lundström, Claes; Vavruch, Ludvig; Tropp, Hans

    2013-01-01

    Reliable measurements of spinal deformities in idiopathic scoliosis are vital, since they are used for assessing the degree of scoliosis, deciding upon treatment and monitoring the progression of the disease. However, commonly used two dimensional methods (e.g. the Cobb angle) do not fully capture the three dimensional deformity at hand in scoliosis, of which axial vertebral rotation (AVR) is considered to be of great importance. There are manual methods for measuring the AVR, but they are often time-consuming and related with a high intra- and inter-observer variability. In this paper, we present a fully automatic method for estimating the AVR in images from computed tomography. The proposed method is evaluated on four scoliotic patients with 17 vertebrae each and compared with manual measurements performed by three observers using the standard method by Aaro–Dahlborn. The comparison shows that the difference in measured AVR between automatic and manual measurements are on the same level as the inter-observer difference. This is further supported by a high intraclass correlation coefficient (0.971–0.979), obtained when comparing the automatic measurements with the manual measurements of each observer. Hence, the provided results and the computational performance, only requiring approximately 10 to 15 s for processing an entire volume, demonstrate the potential clinical value of the proposed method. (paper)

  2. Effect of method for plastic working procedure on deformability of heat resisting alloys

    International Nuclear Information System (INIS)

    Nikiforov, B.A.

    1979-01-01

    Presented are the results of investigation of deformability of the heat resisting KhN56BMTYUR, KhN67BMTYU alloys at the wire drawing and rolling. The deformability has been evaluated by the results of macro- and micro-analyses, by the change of metal density and mechanical properties in the process of deformation. It is found that by the rolling it is possible to obtain 3-6 mm diameter wire with high surface quality avoiding intermediate heat treatments, cleaning and grinding the wire surface. The production of the wire of the same diameter by drawing is connected with intermediate heat treatments and with the presence of surface and internal defects in the form of longitudinal and transverse cracks, tears, laminations

  3. Change and anisotropy of elastic modulus in sheet metals due to plastic deformation

    Science.gov (United States)

    Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru

    2015-03-01

    In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.

  4. Longitudinal and dynamic measurement invariance of the FACIT-Fatigue scale: an application of the measurement model of derivatives to ECOG-ACRIN study E2805.

    Science.gov (United States)

    Estabrook, Ryne; Cella, David; Zhao, Fengmin; Manola, Judith; DiPaola, Robert S; Wagner, Lynne I; Haas, Naomi B

    2018-03-05

    While quality of life measures may be used to assess meaningful change and group differences, their scaling and validation often rely on a single occasion of measurement. Using the 13-item FACIT-Fatigue questionnaire at three timepoints, this study tests whether individual items change together in ways consistent with a general fatigue factor. The measurement model of derivatives (MMOD) is a novel method for measurement evaluation that directly assesses whether a given factor structure accurately describes how individual test items change over time. MMOD transforms item-level longitudinal data into a set of orthogonal change scores, each one representing either a within-person longitudinal mean or a different type of longitudinal change. These change scores are then factor analyzed and tested for invariance. This approach is applied to the FACIT-Fatigue scale in a sample of patients with renal cell carcinoma treated on 'ECOG-ACRIN Cancer Research Group (ECOG-ACRIN) study 2805. Analyses revealed strong evidence of unidimensionality, and apparent factorial invariance using traditional techniques. MMOD revealed a small but statistically significant difference in factor structure ([Formula: see text], [Formula: see text]), where factor loadings were weaker and more variable for measuring longitudinal change. The differences in factor structure were not large enough to substantially affect scale usage in this application, but they do reveal some variability across items in the FACIT-Fatigue in their ability to detect change. Future applications should consider differential sensitivity of individual items in multi-item scales, and perhaps even capitalize upon these differences by selecting items that are more sensitive to change.

  5. Objective measurements for grading the nasal esthetics on Basal view in individuals with secondary cleft nasal deformity.

    Science.gov (United States)

    He, Xing; Li, Hua; Shao, Yan; Shi, Bing

    2015-01-01

    The purpose of this study is to ascertain objective nasal measurements from the basal view that are predictive of nasal esthetics in individuals with secondary cleft nasal deformity. Thirty-three patients who had undergone unilateral cleft lip repair were retrospectively reviewed in this study. The degree of nasal deformity was subjectively ranked by seven surgeons using standardized basal-view measurements. Nine physical objective parameters including angles and ratios were measured. Correlations and regressions between these objective and subjective measurements were then analyzed. There was high concordance in subjective measurements by different surgeons (Kendall's harmonious coefficient = W = .825, P = .006). The strongest predictive factors for nasal aesthetics were the ratio of length of nasal alar (r = .370, P = .034) and the degree of deviation of the columnar axis (r = .451, P = .008). The columellar angle had a more powerful effect in rating nasal esthetics. There was reliable concordance in subjective ranking of nasal esthetics by surgeons. Measurement of the columnar angle may serve as an independent, objective predictor of esthetics of the nose.

  6. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.

    Science.gov (United States)

    Kang, Yang Jun; Ha, Young-Ran; Lee, Sang-Joon

    2016-01-07

    Red blood cell (RBC) deformability has been considered a potential biomarker for monitoring pathological disorders. High throughput and detection of subpopulations in RBCs are essential in the measurement of RBC deformability. In this paper, we propose a new method to measure RBC deformability by evaluating temporal variations in the average velocity of blood flow and image intensity of successively clogged RBCs in the microfluidic channel array for specific time durations. In addition, to effectively detect differences in subpopulations of RBCs, an air compliance effect is employed by adding an air cavity into a disposable syringe. The syringe was equally filled with a blood sample (V(blood) = 0.3 mL, hematocrit = 50%) and air (V(air) = 0.3 mL). Owing to the air compliance effect, blood flow in the microfluidic device behaved transiently depending on the fluidic resistance in the microfluidic device. Based on the transient behaviors of blood flows, the deformability of RBCs is quantified by evaluating three representative parameters, namely, minimum value of the average velocity of blood flow, clogging index, and delivered blood volume. The proposed method was applied to measure the deformability of blood samples consisting of homogeneous RBCs fixed with four different concentrations of glutaraldehyde solution (0%-0.23%). The proposed method was also employed to evaluate the deformability of blood samples partially mixed with normal RBCs and hardened RBCs. Thereafter, the deformability of RBCs infected by human malaria parasite Plasmodium falciparum was measured. As a result, the three parameters significantly varied, depending on the degree of deformability. In addition, the deformability measurement of blood samples was successfully completed in a short time (∼10 min). Therefore, the proposed method has significant potential in deformability measurement of blood samples containing hematological diseases with high throughput and precise detection of

  7. Feasibility study on longitudinal phase-space measurements at GSI UNILAC using charged-particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Milosic, Timo

    2014-04-14

    Accelerator facilities require access to many beam parameters during operation. The field of beam instrumentation serves this crucial role in commissioning, setup and optimisation of the facility. An important information is contained in the phase-space distribution of the accelerated particles. In case of GSI (Helmholtzzentrum fuer Schwerionenforschung) those are ions from protons to uranium. If established methods to access certain beam parameters do not exist, new approaches have to emerge. This is the case for the presented measurement setup which has been designed and realised by Forck et al. to support commissioning of the GSI high-current injector. It is aiming at an experimental method to access the longitudinal phase-space distribution at low energies of 1.4 AMeV. Established methods for higher energies and based on the measurement of the electric field distribution are not feasible at non-relativistic velocities. The presented method is based on a time-of-flight (TOF) measurement between two particle detectors. A modification allows, alternatively, the direct measurement of the kinetic energy using a mono-crystalline (MC) diamond detector. Currently, besides others, the focus of the optimisation of the injector is put on the longitudinal phase-space distribution. It allows for a systematic optimisation of the matching into the accelerator cavities and, thus, an improved transmission as well as lower emittance values. The new accelerator facility FAIR (Facility for Antiproton and Ion Research), a large-scale upgrade at GSI, requires an improved beam quality at the existing injector. In this work the experimental setup is investigated for its feasibility to measure the longitudinal phase-space distribution. To this end, the phase and momentum of the single ions along the beam axis have to be determined with high precision. Finally, the longitudinal phase-space distribution is identified with the measured ensemble. The setup is presented in detail

  8. Measurement of Flat Slab Deformations by the Multi-Image Photogrammetry Method

    Science.gov (United States)

    Marčiš, Marián; Fraštia, Marek; Augustín, Tomáš

    2017-12-01

    The use of photogrammetry during load tests of building components is a common practise all over the world. It is very effective thanks to its contactless approach, 3D measurement, fast data collection, and partial or full automation of image processing; it can deliver very accurate results. Multi-image convergent photogrammetry supported by artificial coded targets is the most accurate photogrammetric method when the targets are detected in an image with a higher degree of accuracy than a 0.1 pixel. It is possible to achieve an accuracy of 0.03 mm for all the points measured on the object observed if the camera is close enough to the object, and the positions of the camera and the number of shots are precisely planned. This contribution deals with the design of a special hanging frame for a DSLR camera used during the photogrammetric measurement of the deformation of flat concrete slab. The results of the photogrammetric measurements are compared to the results from traditional contact measurement techniques during load tests.

  9. Measurement of Flat Slab Deformations by the Multi-Image Photogrammetry Method

    Directory of Open Access Journals (Sweden)

    Marčiš Marián

    2017-12-01

    Full Text Available The use of photogrammetry during load tests of building components is a common practise all over the world. It is very effective thanks to its contactless approach, 3D measurement, fast data collection, and partial or full automation of image processing; it can deliver very accurate results. Multi-image convergent photogrammetry supported by artificial coded targets is the most accurate photogrammetric method when the targets are detected in an image with a higher degree of accuracy than a 0.1 pixel. It is possible to achieve an accuracy of 0.03 mm for all the points measured on the object observed if the camera is close enough to the object, and the positions of the camera and the number of shots are precisely planned. This contribution deals with the design of a special hanging frame for a DSLR camera used during the photogrammetric measurement of the deformation of flat concrete slab. The results of the photogrammetric measurements are compared to the results from traditional contact measurement techniques during load tests.

  10. Tuning transport properties of graphene three-terminal structures by mechanical deformation

    Science.gov (United States)

    Torres, V.; Faria, D.; Latgé, A.

    2018-04-01

    Straintronic devices made of carbon-based materials have been pushed up due to the graphene high mechanical flexibility and the possibility of interesting changes in transport properties. Properly designed strained systems have been proposed to allow optimized transport responses that can be explored in experimental realizations. In multiterminal systems, comparisons between schemes with different geometries are important to characterize the modifications introduced by mechanical deformations, especially if the deformations are localized at a central part of the system or extended in a large region. Then, in the present analysis, we study the strain effects on the transport properties of triangular and hexagonal graphene flakes, with zigzag and armchair edges, connected to three electronic terminals, formed by semi-infinite graphene nanoribbons. Using the Green's function formalism with circular renormalization schemes, and a single band tight-binding approximation, we find that resonant tunneling transport becomes relevant and is more affected by localized deformations in the hexagonal graphene flakes. Moreover, triangular systems with deformation extended to the leads, like longitudinal three-folded type, are shown as an interesting scenario for building nanoscale waveguides for electronic current.

  11. The effect of time duration in the network and radial method toward the accuracy in measuring the deformation at Muria

    International Nuclear Information System (INIS)

    Ari Nugroho and Hadi Suntoko

    2011-01-01

    The Deformation monitoring activities in the vicinity of Mount Muria are recommended by the IAEA (International Atomic Energy Agency) to be done for 5 years. The purpose of these activities is to determine the rate of the deformation caused by the volcanic activity of Mount Muria, as a basic study in analyzing the volcanic hazard toward the NPP (Nuclear Power Plant). The whole coordinate points measured encompass the district of Jepara, Pati, Demak, and Kudus. In 2010 deformation measurements were periodically conducted for 4 times a year using two geodetic GPS units of Trimble R7 GNSS type through the network method. The measurements were carried out at seven points of interest and at one reference point in March, April, May and December. Each session of the measurements was performed for 2.5 hours. In 2011 the deformation measurements were periodically conducted for 4 times a year by means of the radial method. The measurements were made at eight points of interest and at one reference point in April and May, June and July. Each session of measurements was performed for 10 hours. Based on the results of the measurements by means of the network method in 2010, it was concluded that the range of horizontal and vertical accuracy is between 6-10 mm and 25-46 mm, while the results of the measurements of the radial method in 2011 is 4-7 mm, and 16-28 mm respectively. Furthermore, it provides the evidence that the radial method tends to has better result than the network method if it is applied 4 times longer than the network method, resulting the accuracy below 7 mm and 28 mm for horizontal and vertical respectively. (author)

  12. TU-A-12A-06: Intra-Observer Variability in Delineation of Target Volumes in Breast Radiotherapy and Its Effect On Accuracy of Deformation Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Juneja, P; Harris, E [The Institute of Cancer Research, London (United Kingdom); Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Bonora, M [University of Milan, Milan (Italy); Evans, P [University of Surrey, Guildford (United Kingdom)

    2014-06-15

    Purpose: In breast radiotherapy, the target volume may change during treatment and need adaptation of the treatment plan. This is possible for both tumour bed (TB) and whole breast (WB) target volumes. Delineation of the target (to detect changes) is also subject to uncertainty due to intra- and inter-observer variability. This work measured the uncertainty, due to intraobserver variability, in the quantification of tissue deformation. Methods: Datasets consisting of paired prone and supine CT scans of three patients were used. Significant deformation in target volumes is expected between prone and supine patient positions. The selected cases had 1) no seroma, 2) some seroma, and 3) large seroma. The TB and WB were outlined on each dataset three times by one clinician. Delineation variability was defined as the standard deviations of the distances between observer outlines. For each target volume and each case, tissue deformation between prone and supine delineations was quantified using the Dice similarity coefficient (DSC) and the average surface distance (ASD). The uncertainty in the tissue deformation (due to delineation variability) was quantified by measuring the ranges of DSC and ASD using all combinations of pairs of outlines (9 pairs). Results: For the TB, the range of delineation variability was 0.44-1.16 mm. The deformation, DSC and ASD, (and uncertainty in measurement) of the TB between prone and supine position of the cases were: 1) 0.21 (0.17-0.28) and 12.4 mm (11.8-13 mm); 2) 0.54 (0.51-0.57) and 3.3 mm (3.1-3.5 mm); 3) 0.62 (0.61-0.64) and 4.9 mm (4.6-5.2 mm). WB deformation measurements were subject to less uncertainty due to delineation variability than TB deformation measurements. Conclusion: For the first time, the uncertainty, due to observer variability, in the measurement of the deformation of breast target volumes was investigated. Deformations in these ranges would be difficult to detect. This work was supported in part by Cancer Research

  13. Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors.

    Science.gov (United States)

    Lee, Jung-Rok; Appelmann, Iris; Miething, Cornelius; Shultz, Tyler O; Ruderman, Daniel; Kim, Dokyoon; Mallick, Parag; Lowe, Scott W; Wang, Shan X

    2018-01-01

    Cancer proteomics is the manifestation of relevant biological processes in cancer development. Thus, it reflects the activities of tumor cells, host-tumor interactions, and systemic responses to cancer therapy. To understand the causal effects of tumorigenesis or therapeutic intervention, longitudinal studies are greatly needed. However, most of the conventional mouse experiments are unlikely to accommodate frequent collection of serum samples with a large enough volume for multiple protein assays towards single-object analysis. Here, we present a technique based on magneto-nanosensors to longitudinally monitor the protein profiles in individual mice of lymphoma models using a small volume of a sample for multiplex assays. Methods: Drug-sensitive and -resistant cancer cell lines were used to develop the mouse models that render different outcomes upon the drug treatment. Two groups of mice were inoculated with each cell line, and treated with either cyclophosphamide or vehicle solution. Serum samples taken longitudinally from each mouse in the groups were measured with 6-plex magneto-nanosensor cytokine assays. To find the origin of IL-6, experiments were performed using IL-6 knock-out mice. Results: The differences in serum IL-6 and GCSF levels between the drug-treated and untreated groups were revealed by the magneto-nanosensor measurement on individual mice. Using the multiplex assays and mouse models, we found that IL-6 is secreted by the host in the presence of tumor cells upon the drug treatment. Conclusion: The multiplex magneto-nanosensor assays enable longitudinal proteomic studies on mouse tumor models to understand tumor development and therapy mechanisms more precisely within a single biological object.

  14. Failure mechanism and supporting measures for large deformation of Tertiary deep soft rock

    Institute of Scientific and Technical Information of China (English)

    Guo Zhibiao; Wang Jiong; Zhang Yuelin

    2015-01-01

    The Shenbei mining area in China contains typical soft rock from the Tertiary Period. As mining depths increase, deep soft rock roadways are damaged by large deformations and constantly need to be repaired to meet safety requirements, which is a great security risk. In this study, the characteristics of deformation and failure of typical roadway were analyzed, and the fundamental reason for the roadway deformation was that traditional support methods and materials cannot control the large deformation of deep soft rock. Deep soft rock support technology was developed based on constant resistance energy absorption using constant resistance large deformation bolts. The correlative deformation mechanisms of surrounding rock and bolt were analyzed to understand the principle of constant resistance energy absorption. The new technology works well on-site and provides a new method for the excavation of roadways in Tertiary deep soft rock.

  15. Longitudinal waves in carbon nanotubes in the presence of transverse magnetic field and elastic medium

    Science.gov (United States)

    Liu, Hu; Liu, Hua; Yang, Jialing

    2017-09-01

    In the present paper, the coupling effect of transverse magnetic field and elastic medium on the longitudinal wave propagation along a carbon nanotube (CNT) is studied. Based on the nonlocal elasticity theory and Hamilton's principle, a unified nonlocal rod theory which takes into account the effects of small size scale, lateral inertia and radial deformation is proposed. The existing rod theories including the classic rod theory, the Rayleigh-Love theory and Rayleigh-Bishop theory for macro solids can be treated as the special cases of the present model. A two-parameter foundation model (Pasternak-type model) is used to represent the elastic medium. The influence of transverse magnetic field, Pasternak-type elastic medium and small size scale on the longitudinal wave propagation behavior of the CNT is investigated in detail. It is shown that the influences of lateral inertia and radial deformation cannot be neglected in analyzing the longitudinal wave propagation characteristics of the CNT. The results also show that the elastic medium and the transverse magnetic field will also affect the longitudinal wave dispersion behavior of the CNT significantly. The results obtained in this paper are helpful for understanding the mechanical behaviors of nanostructures embedded in an elastic medium.

  16. Change of residual stresses during plastic deformation under uniaxial tension test; Variacion de las tensiones residuales con la deformacion plastica en el ensayo de traccion

    Energy Technology Data Exchange (ETDEWEB)

    Benito, J. A.; Jorba, J.; Roca, A.

    2001-07-01

    Hang of longitudinal and transverse residual stresses was studied by X Ray diffraction method as the applied plastic deformation, measured as A% was increased in a standard tension test. The starting material, hot rolling Armco iron, has values close to 0 MPa in longitudinal direction. But it reaches 600 MPa with only A=1,5%, this value remains constant until necking is produced. In transverse direction the stating values are 300 MPa, changes are small and residual stresses remain compressive until the end of tension test. In addition, studies of the changes of residual stresses with time and with misalignment between incident X Ray and drawing direction are presented. (Author) 5 refs.

  17. Seafloor geodesy: Measuring surface deformation and strain-build up

    Science.gov (United States)

    Kopp, Heidrun; Lange, Dietrich; Hannemann, Katrin; Petersen, Florian

    2017-04-01

    Seafloor deformation is intrinsically related to tectonic processes, which potentially may evolve into geohazards, including earthquakes and tsunamis. The nascent scientific field of seafloor geodesy provides a way to monitor crustal deformation at high resolution comparable to the satellite-based GPS technique upon which terrestrial geodesy is largely based. The measurements extract information on stress and elastic strain stored in the oceanic crust. Horizontal seafloor displacement can be obtained by acoustic/GPS combination to provide absolute positioning or by long-term acoustic telemetry between different beacons fixed on the seafloor. The GeoSEA (Geodetic Earthquake Observatory on the SEAfloor) array uses acoustic telemetry for relative positioning at mm-scale resolution. The transponders within an array intercommunicate via acoustic signals for a period of up to 3.5 years. The seafloor acoustic transponders are mounted on 4 m high tripod steel frames to ensure clear line-of-sight between the stations. The transponders also include high-precision pressure sensors to monitor vertical movements and dual-axis inclinometers in order to measure their level as well as any tilt of the seafloor. Sound velocity sensor measurements are used to correct for water sound speed variations. A further component of the network is GeoSURF, a self-steering autonomous surface vehicle (Wave Glider), which monitors system health and is able to upload the seafloor data to the sea surface and to transfer it via satellite. The GeoSEA array is capable of both continuously monitoring horizontal and vertical ground displacement rates along submarine fault zones and characterizing their behavior (locked or aseismically creeping). Seafloor transponders are currently installed along the Siliviri segment of the North Anatolian Fault offshore Istanbul for measurements of strain build-up along the fault. The first 18 month of baseline ranging were analyzed by a joint-least square inversion

  18. Defect Investigation of Plastically Deformed Al 5454 Wrought Alloy using PADBS and Electrical Measurements

    International Nuclear Information System (INIS)

    Abdel-Rahman, M.; Kamel, N.A.; Lotfy, Y.A.; Badawi, E.A.; Abdel-Rahman, M.A.

    2009-01-01

    Positron Annihilation Doppler Broadening Spectroscopy (PADPS) is a nondestructive technique used in material science. Electrical measurements are one of the oldest techniques used also in material science. This paper aimed to discuss the availability of using both PADPS and electrical measurements as diagnostic techniques to detect the defects in a set of plastically deformed 5454 wrought aluminum alloy. The results of the positron annihilation measurements and the electrical measurements were analyzed in terms of the two-state trapping model. This model can be used to investigate both defect and dislocation densities of the samples under investigation. Results obtained by both nuclear and electrical techniques have been reportedity

  19. Design of piezoelectric probe for measurement of longitudinal and shear components of elastic wave

    Science.gov (United States)

    Aoyanagi, Masafumi; Wakatsuki, Naoto; Mizutani, Koichi; Ebihara, Tadashi

    2017-07-01

    We focus on ultrasonic probes for nondestructive tests and evaluation. Transient characteristics of probes are important for nondestructive tests such as the pulse echo method. We previously reported the principle of measurement using a piezoelectric probe with triaxial sensitivities. In the results, it was calculated that the probe could transmit and receive particle displacement which contains normal and tangential components. It was confirmed that the probe had sensitivities in triaxial directions. However, its performance in terms of frequency and transient characteristics has not been evaluated. The purpose of this study is to design a probe by changing its shape to obtain better performance. The transient characteristics of probes in longitudinal and shear driving were evaluated by the inverse Fourier transformation of frequency responses of longitudinal and shear components, using the two-dimensional finite element method. As a result, the sensitivities at the dips of frequency characteristics increased when using our probe compared with those measured using conventional probes in longitudinal and shear driving. Hence, the performance in terms of the frequency response was improved by more than 3 dB under the conditions in this simulation. Also, the pulse width of impulse response was decreased by half compared with that of probes with conventional shapes.

  20. Correlative roentgenography and morphology of the longitudinal epiphyseal bracket

    International Nuclear Information System (INIS)

    Ogden, J.A.; Light, T.R.; Conlogue, G.J.; Yale Univ., New Haven, CT

    1981-01-01

    Detailed examination of a complete chondro-osseous specimen from a patient with duplication of the first ray of the foot revealed the involved metatarsal had a trapezoid-shaped, diaphyseal-metaphyseal osseous unit that was longitudinally bracketed along the lateral side by a functioning physis, epiphysis, and secondary (epiphyseal) ossification center. The physis extended as an arc from the medial proximal side toward and along the lateral side and then back to the medial side distally. The medial side of the diaphysis had a normal periosteum. The longitudinal epiphyseal ossification bracket was a composite of initially separate proximal and distal secondary ossification centers that had progressively extended toward each other and finally coalesced along the laterally placed epiphyseal cartilage. We have termed this deformity the 'longitudinal epiphyseal bracket' (LEB). The macroscopic and microscopic anatomy relevant to initial diagnosis and evaluation of sequential roentgenographic changes will be considered. (orig.)

  1. Visualization of Longitudinal and Transverse Components of Strongly Focused Optical Field by means of Photo-Reactive Azopolymers

    Directory of Open Access Journals (Sweden)

    Kharitonov A.V.

    2015-01-01

    Full Text Available Most important problems in modern photonics are fabrication, visualization and characterization of nanomaterials at optical frequencies. A number of optical techniques uses tightly focused laser beams to access longitudinal electromagnetic fields, which are directed towards the wave vector. In this Letter, the distribution of transverse and longitudinal optical fields in tightly focused laser beams, polarized in a new fashion, is investigated. Polarization dependent fingerprints of transverse and longitudinal optical fields are experimentally captured by means of photoinduced surface deformations in azobenzene polymer thin films.

  2. Measured longitudinal beam impedance of booster gradient magnets; TOPICAL

    International Nuclear Information System (INIS)

    James L Crisp and Brian J. Fellenz

    2001-01-01

    The Booster gradient magnets have no vacuum pipe which forces the beam image current to flow along the laminated pole tips. Both D and F style magnets were measured with a stretched wire to determine the longitudinal beam impedance caused by these laminations. Results are compared to calculations done 30 years ago. The inductive part of the magnet impedance is interesting because it partially compensates for the negative inductance effects of space charge on the beam. An R/L circuit consisting of 37K(center d ot) in parallel with between 40 and 100uH is a reasonable approximation to the total impedance of Booster magnet laminations

  3. Microwave measurements of energy lost to longitudinal modes by single electron bunches traversing periodic structures

    International Nuclear Information System (INIS)

    Wang, J.W.; Loew, G.A.; Weaver, J.N.; Wilson, P.B.

    1981-10-01

    In the design of future linear colliders, it will be important to minimize the loss of beam energy due to the excitation of higher-order modes in the accelerator structure by single bunches of electrons or positrons. This loss is not only detrimental in itself but also gives rise to energy spectrum widening and transverse emittance growth. Microwave measurements made on disk-loaded and alternating-spoke structures to determine the loss to the longitudinal modes are described. In these measurements the Gaussian bunch is simulated by a current pulse of the same shape transmitted through the structure on an axial center conductor. Results to date are presented for the total longitudinal loss parameter per period K in volts per picocoulomb

  4. Measurement of the longitudinal wakefield and the bunch shape in the SLAC linac

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Decker, F.J.; Seeman, J.T.; Zimmermann, F.

    1997-05-01

    The authors report on measurements of the bunch energy spectrum at the end of the SLAC linac. Using the spectra obtained for two different linac rf phases they obtain both the bunch induced voltage and the longitudinal distribution of the bunch. The measurement results are compared with theoretical predictions. In particular, the induced voltage is in good agreement with that obtained using the calculated wake function for the SLAC linac. This measurement technique may be useful for monitoring changes of the linac bunch shape in the SLC

  5. Three-dimensional deformation of orthodontic brackets

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  6. Three-dimensional deformation of orthodontic brackets.

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W; Carey, Jason P

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire-bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design.

  7. Measurement of elastic constants by simultaneously sensing longitudinal and shear waves as an overlapped signal

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ho Geon; Song, Dong Gi; Jhang, Kyoung Young [Hanyang University, Seoul (Korea, Republic of)

    2016-04-15

    Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data.

  8. Measurement of elastic constants by simultaneously sensing longitudinal and shear waves as an overlapped signal

    International Nuclear Information System (INIS)

    Seo, Ho Geon; Song, Dong Gi; Jhang, Kyoung Young

    2016-01-01

    Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data

  9. Measurement of in vitro and in vivo stent geometry and deformation by means of 3D imaging and stereo-photogrammetry.

    Science.gov (United States)

    Zwierzak, Iwona; Cosentino, Daria; Narracott, Andrew J; Bonhoeffer, Philipp; Diaz, Vanessa; Fenner, John W; Schievano, Silvia

    2014-12-01

    To quantify variability of in vitro and in vivo measurement of 3D device geometry using 3D and biplanar imaging. Comparison of stent reconstruction is reported for in vitro coronary stent deployment (using micro-CT and optical stereo-photogrammetry) and in vivo pulmonary valve stent deformation (using 4DCT and biplanar fluoroscopy). Coronary stent strut length and inter-strut angle were compared in the fully deployed configuration. Local (inter-strut angle) and global (dog-boning ratio) measures of stent deformation were reported during stent deployment. Pulmonary valve stent geometry was assessed throughout the cardiac cycle by reconstruction of stent geometry and measurement of stent diameter. Good agreement was obtained between methods for assessment of coronary stent geometry with maximum disagreement of +/- 0.03 mm (length) and +/- 3 degrees (angle). The stent underwent large, non-uniform, local deformations during balloon inflation, which did not always correlate with changes in stent diameter. Three-dimensional reconstruction of the pulmonary valve stent was feasible for all frames of the fluoroscopy and for 4DCT images, with good correlation between the diameters calculated from the two methods. The largest compression of the stent during the cardiac cycle was 6.98% measured from fluoroscopy and 7.92% from 4DCT, both in the most distal ring. Quantitative assessment of stent geometry reconstructed from biplanar imaging methods in vitro and in vivo has shown good agreement with geometry reconstructed from 3D techniques. As a result of their short image acquisition time, biplanar methods may have significant advantages in the measurement of dynamic 3D stent deformation.

  10. Tissue elasticity of in vivo skeletal muscles measured in the transverse and longitudinal planes using shear wave elastography.

    Science.gov (United States)

    Chino, Kentaro; Kawakami, Yasuo; Takahashi, Hideyuki

    2017-07-01

    The aim of the present study was to measure in vivo skeletal muscle elasticity in the transverse and longitudinal planes using shear wave elastography and then to compare the image stability, measurement values and measurement repeatability between these imaging planes. Thirty-one healthy males participated in this study. Tissue elasticity (shear wave velocity) of the medial gastrocnemius, rectus femoris, biceps brachii and rectus abdominis was measured in both the transverse and longitudinal planes using shear wave elastography. Image stability was evaluated by the standard deviation of the colour distribution in the shear wave elastography image. Measurement repeatability was assessed by the coefficient of variance obtained from three measurement values. Image stability of all tested muscles was significantly higher in the longitudinal plane (Pplanes (P>0·05), except in the biceps brachii (P = 0·001). Measurement values of the medial gastrocnemius, rectus femoris and biceps brachii were significantly different between the imaging planes (Pplane, which indicates that imaging plane should be considered when measuring skeletal muscle tissue elasticity by shear wave elastography. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  11. Stochastic dislocation kinetics and fractal structures in deforming metals probed by acoustic emission and surface topography measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, A. [Laboratory for the Physics of Strength of Materials and Intelligent Diagnostic Systems, Togliatti State University, Togliatti 445667 (Russian Federation); Laboratory of Hybrid Nanostructured Materials, NITU MISiS, Moscow 119490 (Russian Federation); Yasnikov, I. S. [Laboratory for the Physics of Strength of Materials and Intelligent Diagnostic Systems, Togliatti State University, Togliatti 445667 (Russian Federation); Estrin, Y. [Laboratory of Hybrid Nanostructured Materials, NITU MISiS, Moscow 119490 (Russian Federation); Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-06-21

    We demonstrate that the fractal dimension (FD) of the dislocation population in a deforming material is an important quantitative characteristic of the evolution of the dislocation structure. Thus, we show that peaking of FD signifies a nearing loss of uniformity of plastic flow and the onset of strain localization. Two techniques were employed to determine FD: (i) inspection of surface morphology of the deforming crystal by white light interferometry and (ii) monitoring of acoustic emission (AE) during uniaxial tensile deformation. A connection between the AE characteristics and the fractal dimension determined from surface topography measurements was established. As a common platform for the two methods, the dislocation density evolution in the bulk was used. The relations found made it possible to identify the occurrence of a peak in the median frequency of AE as a harbinger of plastic instability leading to necking. It is suggested that access to the fractal dimension provided by AE measurements and by surface topography analysis makes these techniques important tools for monitoring the evolution of the dislocation structure during plastic deformation—both as stand-alone methods and especially when used in tandem.

  12. Longitudinal Beam measurements at the LHC: The LHC Beam Quality Monitor

    CERN Document Server

    Papotti, G; Follin, F; Wehrle, U

    2011-01-01

    The LHC Beam Quality Monitor is a system that measures individual bunch lengths and positions, similarly to the twin system SPS Beam Quality Monitor, from which it was derived. The pattern verification that the system provides is vital during the injection process to verify the correctness of the injected pattern, while the bunch length measurement is fed back to control the longitudinal emittance blow up performed during the energy ramp and provides a general indication of the health of the RF system. The algorithms used, the hardware implementation and the system integration in the LHC control infrastructure are presented in this paper, along with possible improvements.

  13. Measuring longitudinal wave speed in solids: two methods and a half

    International Nuclear Information System (INIS)

    Fazio, C; Guastella, I; Sperandeo-Mineo, R M; Tarantino, G

    2006-01-01

    Three methods to analyse longitudinal wave propagation in metallic rods are discussed. Two of these methods also prove to be useful for measuring the sound propagation speed. The experimental results, as well as some interpretative models built in the context of a workshop on mechanical waves at the Graduate School for Pre-Service Physics Teacher Education, Palermo University, are described. Some considerations about observed modifications in trainee teachers' attitudes to utilizing physics experiments to build pedagogical activities are discussed

  14. Quantitative echocardiographic measures in the assessment of single ventricle function post-Fontan: Incorporation into routine clinical practice.

    Science.gov (United States)

    Rios, Rodrigo; Ginde, Salil; Saudek, David; Loomba, Rohit S; Stelter, Jessica; Frommelt, Peter

    2017-01-01

    Quantitative echocardiographic measurements of single ventricular (SV) function have not been incorporated into routine clinical practice. A clinical protocol, which included quantitative measurements of SV deformation (global circumferential and longitudinal strain and strain rate), standard deviation of time to peak systolic strain, myocardial performance index (MPI), dP/dT from an atrioventricular valve regurgitant jet, and superior mesenteric artery resistance index, was instituted for all patients with a history of Fontan procedure undergoing echocardiography. All measures were performed real time during clinically indicated studies and were included in clinical reports. A total of 100 consecutive patients (mean age = 11.95±6.8 years, range 17 months-31.3 years) completed the protocol between September 1, 2014 to April 29, 2015. Deformation measures were completed in 100% of the studies, MPI in 93%, dP/dT in 55%, and superior mesenteric artery Doppler in 82%. The studies were reviewed to assess for efficiency in completing the protocol. The average time for image acquisition was 27.4±8.8 (range 10-62 minutes). The average time to perform deformation measures was 10.8±5.5 minutes (range 5-35 minutes) and time from beginning of imaging to report completion was 53.4±13.7 minutes (range 27-107 minutes). There was excellent inter-observer reliability when deformation indices were blindly repeated. Patients with a single left ventricle had significantly higher circumferential strain and strain rate, longitudinal strain and strain rate, and dP/dT compared to a single right ventricle. There were no differences in quantitative indices of ventricular function between patients 10 years post-Fontan. Advanced quantitative assessment of SV function post-Fontan can be consistently and efficiently performed real time during clinically indicated echocardiograms with excellent reliability. © 2016, Wiley Periodicals, Inc.

  15. Longitudinal ultrasonic attenuation in normal and superconducting lead at low temperatures

    International Nuclear Information System (INIS)

    Sathish, S.; Samudravijaya, K.; Basu, B.K.

    1983-01-01

    We have measured longitudinal ultrasonic attenuation along the [110] direction in normal and superconducting states in two single crystals of lead, one made from high-purity lead and the other made with high-purity lead doped with 0.1 at % gold. In both specimens an amplitude-dependent effect in the superconducting state has been observed. The data have been taken in the frequency range from 12 to 108 MHz. In high-purity lead the amplitude-independent ratio α/sub s//α/sub n/ shows the frequency dependence observed by Randorff and Marshall, whereas in the doped specimen this ratio shows a very small spread with frequency. In both specimens deformation does not change the α/sub s//α/sub n/ ratio appreciably

  16. Method of control of machining accuracy of low-rigidity elastic-deformable shafts

    Directory of Open Access Journals (Sweden)

    Antoni Świć

    Full Text Available The paper presents an analysis of the possibility of increasing the accuracy and stability of machining of low-rigidity shafts while ensuring high efficiency and economy of their machining. An effective way of improving the accuracy of machining of shafts is increasing their rigidity as a result of oriented change of the elastic-deformable state through the application of a tensile force which, combined with the machining force, forms longitudinal-lateral strains. The paper also presents mathematical models describing the changes of the elastic-deformable state resulting from the application of the tensile force. It presents the results of experimental studies on the deformation of elastic low-rigidity shafts, performed on a special test stand developed on the basis of a lathe. An estimation was made of the effectiveness of the method of control of the elastic-deformable state with the use, as the regulating effects, the tensile force and eccentricity. It was demonstrated that controlling the two parameters: tensile force and eccentricity, one can improve the accuracy of machining, and thus achieve a theoretically assumed level of accuracy.

  17. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation

    Science.gov (United States)

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.

  18. Measurement of copper vapour laser-induced deformation of ...

    Indian Academy of Sciences (India)

    2014-02-14

    Feb 14, 2014 ... Laser & Plasma Technology Division, Beam Technology Development Group,. Bhabha Atomic ... of dielectric-coated mirror, caused by an incident repetitive pulsed laser beam with high average power. Minimum ... the optical surface deformation, caused by irradiation by a copper vapour laser (CVL) beam.

  19. Studies of longitudinal profile of electron bunches and impedance measurements at Indus-2 synchrotron radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Akash Deep, E-mail: akash-deep@rrcat.gov.in [Beam Diagnostics Section (BDS), Indus Operations, Beam Dynamics and Diagnostics Division (IOBDD), Raja Ramanna Centre for Advanced Technology, Indore 452 013, M.P. (India); Homi Bhabha National Institute (HBNI) at Raja Ramanna Centre for Advanced Technology, Indore (India); Yadav, S.; Kumar, Mukesh; Shrivastava, B.B.; Karnewar, A.K.; Ojha, A.; Puntambekar, T.A. [Beam Diagnostics Section (BDS), Indus Operations, Beam Dynamics and Diagnostics Division (IOBDD), Raja Ramanna Centre for Advanced Technology, Indore 452 013, M.P. (India)

    2016-04-01

    Indus-2 is a 3rd generation synchrotron radiation source at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We study the longitudinal profile of electrons in Indus-2 by using dual sweep synchroscan streak camera at visible diagnostic beamline. In this paper, the longitudinal profiles of electron bunch are analyzed by filling beam current in a single bunch mode. These studies are carried at injection energy (550 MeV) and at ramped beam energy (2.5 GeV). The effects of the wakefield generated interactions between the circulating electrons and the surrounding vacuum chamber are analyzed in terms of measured effects on longitudinal beam distribution. The impedance of the storage ring is obtained by fitting the solutions of Haissinski equation to the measured bunch lengthening with different impedance models. The impedance of storage ring obtained by a series R+L impedance model indicates a resistance (R) of 1350±125 Ω, an inductance (L) of 180±25 nH and broadband impedance of 2.69 Ω. These results are also compared with the values obtained from measured synchronous phase advancing and scaling laws. These studies are very useful in better understanding and control of the electromagnetic interactions.

  20. 2D vector-cyclic deformable templates

    DEFF Research Database (Denmark)

    Schultz, Nette; Conradsen, Knut

    1998-01-01

    In this paper the theory of deformable templates is a vector cycle in 2D is described. The deformable template model originated in (Grenander, 1983) and was further investigated in (Grenander et al., 1991). A template vector distribution is induced by parameter distribution from transformation...... matrices applied to the vector cycle. An approximation in the parameter distribution is introduced. The main advantage by using the deformable template model is the ability to simulate a wide range of objects trained by e.g. their biological variations, and thereby improve restoration, segmentation...... and probabillity measurement. The case study concerns estimation of meat percent in pork carcasses. Given two cross-sectional images - one at the front and one near the ham of the carcass - the areas of lean and fat and a muscle in the lean area are measured automatically by the deformable templates....

  1. Measurement of elasto-plastic deformations by speckle interferometry

    Science.gov (United States)

    Bova, Marco; Bruno, Luigi; Poggialini, Andrea

    2010-09-01

    In the paper the authors present an experimental equipment for elasto-plastic characterization of engineering materials by tensile tests. The stress state is imposed to a dog bone shaped specimen by a testing machine fixed on the optical table and designed for optimizing the performance of a speckle interferometer. All three displacement components are measured by a portable speckle interferometer fed by three laser diodes of 50 mW, by which the deformations of a surface of about 6×8 mm2 can be fully analyzed in details. All the equipment is driven by control electronics designed and realized on purpose, by which it is possible to accurately modify the intensity of the illumination sources, the position of a PZT actuator necessary for applying phase-shifting procedure, and the overall displacement applied to the specimen. The experiments were carried out in National Instrument LabVIEW environment, while the processing of the experimental data in Wolfram Mathematica environment. The paper reports the results of the elasto-plastic characterization of a high strength steel specimen.

  2. An Experimental Comparison of Similarity Assessment Measures for 3D Models on Constrained Surface Deformation

    Science.gov (United States)

    Quan, Lulin; Yang, Zhixin

    2010-05-01

    To address the issues in the area of design customization, this paper expressed the specification and application of the constrained surface deformation, and reported the experimental performance comparison of three prevail effective similarity assessment algorithms on constrained surface deformation domain. Constrained surface deformation becomes a promising method that supports for various downstream applications of customized design. Similarity assessment is regarded as the key technology for inspecting the success of new design via measuring the difference level between the deformed new design and the initial sample model, and indicating whether the difference level is within the limitation. According to our theoretical analysis and pre-experiments, three similarity assessment algorithms are suitable for this domain, including shape histogram based method, skeleton based method, and U system moment based method. We analyze their basic functions and implementation methodologies in detail, and do a series of experiments on various situations to test their accuracy and efficiency using precision-recall diagram. Shoe model is chosen as an industrial example for the experiments. It shows that shape histogram based method gained an optimal performance in comparison. Based on the result, we proposed a novel approach that integrating surface constrains and shape histogram description with adaptive weighting method, which emphasize the role of constrains during the assessment. The limited initial experimental result demonstrated that our algorithm outperforms other three algorithms. A clear direction for future development is also drawn at the end of the paper.

  3. Magnetic Barkhausen emission in lightly deformed AISI 1070 steel

    Energy Technology Data Exchange (ETDEWEB)

    Capo Sanchez, J., E-mail: jcapo@cnt.uo.edu.cu [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n, 90500 Santiago de Cuba (Cuba); Campos, M.F. de [EEIMVR-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Vila Santa Cecilia, 27255-125 Volta Redonda, RJ (Brazil); Padovese, L.R. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231, 05508-900 Sao Paulo (Brazil)

    2012-01-15

    The Magnetic Barkhausen Noise (MBN) technique can evaluate both micro- and macro-residual stresses, and provides indication about the relevance of contribution of these different stress components. MBN measurements were performed in AISI 1070 steel sheet samples, where different strains were applied. The Barkhausen emission is also analyzed when two different sheets, deformed and non-deformed, are evaluated together. This study is useful to understand the effect of a deformed region near the surface on MBN. The low permeability of the deformed region affects MBN, and if the deformed region is below the surface the magnetic Barkhausen signal increases. - Highlights: > Evaluated residual stresses by the magnetic Barkhausen technique. > Indication about the relevance of micro-and macro-stress components. > Magnetic Barkhausen measurements were carried out in AISI 1070 steel sheet samples. > Two different sheets, deformed and non-deformed, are evaluated together. > Magnetic Barkhausen signal increases when deformed region is below the surface.

  4. The course of skull deformation from birth to 5 years of age: a prospective cohort study.

    Science.gov (United States)

    van Vlimmeren, Leo A; Engelbert, Raoul Hh; Pelsma, Maaike; Groenewoud, Hans Mm; Boere-Boonekamp, Magda M; der Sanden, Maria Wg Nijhuis-van

    2017-01-01

    In a continuation of a prospective longitudinal cohort study in a healthy population on the course of skull shape from birth to 24 months, at 5 years of age, 248 children participated in a follow-up assessment using plagiocephalometry (ODDI-oblique diameter difference index, CPI-cranio proportional index). Data from the original study sampled at birth, 7 weeks, 6, 12, and 24 months were used in two linear mixed models. (1) if deformational plagiocephaly (ODDI skull shape can be predicted at 5 years of age; (2) if positional preference occurs, ODDI is the highest at 7 weeks and decreases to a stable lowest value at 2 and 5 years of age; and (3) regarding brachycephaly, all children showed the highest CPI at 6 months of age with a gradual decrease over time. The course of skull deformation is favourable in most of the children in The Netherlands; at 5 years of age, brachycephaly is within the normal range for all children, whereas the severity of plagiocephaly is within the normal range in 80%, within the mild range in 19%, and within the moderate/severe range in 1%. Medical consumption may be reduced by providing early tailored counselling. What is Known: • Skull deformation prevalence increased after recommendations against Sudden Infant Death Syndrome, little is known about the longitudinal course. • Paediatric physical therapy intervention between 2 and 6 months of age reduces deformational plagiocephaly at 6 and 12 months of age. What is New: • The course of skull deformation is favourable in most of the children in The Netherlands; at 5 years of age, deformational brachycephaly is within the normal range for all children, whereas the severity of deformational plagiocephaly is within the normal range in 80%, within the mild range in 19%, and within the moderate to severe range in only 1%. • Paediatric physical therapy intervention does not influence the long-term outcome; it only influences the earlier decrease of the severity of

  5. Evaluation of elastix-based propagated align algorithm for VOI- and voxel-based analysis of longitudinal F-18-FDG PET/CT data from patients with non-small cell lung cancer (NSCLC)

    OpenAIRE

    Kerner, Gerald S. M. A.; Fischer, Alexander; Koole, Michel J. B.; Pruim, Jan; Groen, Harry J. M.

    2015-01-01

    Background: Deformable image registration allows volume of interest (VOI)- and voxel-based analysis of longitudinal changes in fluorodeoxyglucose (FDG) tumor uptake in patients with non-small cell lung cancer (NSCLC). This study evaluates the performance of the elastix toolbox deformable image registration algorithm for VOI and voxel-wise assessment of longitudinal variations in FDG tumor uptake in NSCLC patients. Methods: Evaluation of the elastix toolbox was performed using F-18-FDG PET/CT ...

  6. Foot and Ankle Deformity in Young Acrobatic and Artistic Gymnasts

    Directory of Open Access Journals (Sweden)

    Sobera Anna

    2015-09-01

    Full Text Available Purpose. The aim of the paper was to determine the occurrence of feet and ankle deformities in trampoline and artistic gymnasts. Methods. Ten acrobatic gymnasts (trampolinists and 10 artistic gymnasts aged 6-14 years were recruited. The calcaneal-tibial (rearfoot angle was determined as the angle of the upper calcaneal tendon and the longitudinal heel axis while Clarke angles were determined by podoscopy. Results. The trampolinists showed significantly greater medial angulation (calcaneal valgus than the group of gymnasts. Right and left foot Clark’s angles in both the trampoline and artistic gymnasts were above 55°. Conclusions. Trampolinists exhibit significantly more pronounced calcaneal valgus than artistic gymnasts. The prevalence of foot and ankle deformities in both populations should be addressed by coaches in the gymnastics training of young children.

  7. Characterisation of polycrystal deformation by numerical modelling and neutron diffraction measurements

    International Nuclear Information System (INIS)

    Clausen, B.

    1997-09-01

    The deformation of polycrystals are modelled using three micron mechanic models; the Taylor model, the Sachs model and Hutchinson's self-consistent (SC) model. The predictions of the rigid plastic Taylor and Sachs models are compared with the predictions of the SC model. As expected, the results of the SC model is about half-way between the upper- and lower-bound models. The influence of the elastic anisotropy is investigated by comparing the SC predictions for aluminium, copper and a hypothetical material (Hybrid) with the elastic anisotropy of copper and the Young's modulus and hardening behaviour of aluminium. It is concluded that the effect of the elastic anisotropy is limited to the very early stages of plasticity, as the deformation pattern is almost identical for the three materials at higher strains. The predictions of the three models are evaluated by neutron diffraction measurements of elastic lattice strains in grain sub-sets within the polycrystal. The two rigid plastic models do not include any material parameters and therefore the predictions of the SC model is more accurate and more detailed than the predictions of the Taylor and Sachs models. The SC model is used to determine the most suitable reflection for technological applications of neutron diffraction, where focus is on the volume average stress state in engineering components. To be able to successfully to convert the measured elastic lattice strains for a specific reflection into overall volume average stresses, there must be a linear relation between the lattice strain of the reflection and the overall stress. According to the model predictions the 311-reflection is the most suitable reflection as it shows the smallest deviations from linearity and thereby also the smallest build-up of residual strains. The model predictions have pin pointed that the selection of the reflection is crucial for the validity of stresses calculated from the measured elastic lattice strains. (au) 14 tabs., 41

  8. Dynamic Measurements of Plastic Deformation in a Water-Filled Aluminum Tube in Response to Detonation of a Small Explosives Charge

    Directory of Open Access Journals (Sweden)

    Harold Sandusky

    1999-01-01

    Full Text Available Experiments have been conducted to benchmark computer code calculations for the dynamic interaction of explosions in water with structures. Aluminum cylinders with a length slightly more than twice their diameter were oriented vertically, sealed on the bottom by a thin plastic sheet, and filled with distilled water. An explosive charge suspended in the center of the tube plastically deformed but did not rupture the wall. Tube wall velocity, displacement, and strain were directly measured. The agreement among the three sets of dynamic data and the agreement of the terminal displacement measurements with the residual deformation were excellent.

  9. Analysis of mitochondrial 3D-deformation in cardiomyocytes during active contraction reveals passive structural anisotropy of orthogonal short axes.

    Directory of Open Access Journals (Sweden)

    Yael Yaniv

    Full Text Available The cardiomyocyte cytoskeleton, composed of rigid and elastic elements, maintains the isolated cell in an elongated cylindrical shape with an elliptical cross-section, even during contraction-relaxation cycles. Cardiomyocyte mitochondria are micron-sized, fluid-filled passive spheres distributed throughout the cell in a crystal-like lattice, arranged in pairs sandwiched between the sarcomere contractile machinery, both longitudinally and radially. Their shape represents the extant 3-dimensional (3D force-balance. We developed a novel method to examine mitochondrial 3D-deformation in response to contraction and relaxation to understand how dynamic forces are balanced inside cardiomyocytes. The variation in transmitted light intensity induced by the periodic lattice of myofilaments alternating with mitochondrial rows can be analyzed by Fourier transformation along a given cardiomyocyte axis to measure mitochondrial deformation along that axis. This technique enables precise detection of changes in dimension of ∼1% in ∼1 µm (long-axis structures with 8 ms time-resolution. During active contraction (1 Hz stimulation, mitochondria deform along the length- and width-axes of the cell with similar deformation kinetics in both sarcomere and mitochondrial structures. However, significant deformation anisotropy (without hysteresis was observed between the orthogonal short-axes (i.e., width and depth of mitochondria during electrical stimulation. The same degree of deformation anisotropy was also found between the myocyte orthogonal short-axes during electrical stimulation. Therefore, the deformation of the mitochondria reflects the overall deformation of the cell, and the apparent stiffness and stress/strain characteristics of the cytoskeleton differ appreciably between the two cardiomyocyte orthogonal short-axes. This method may be applied to obtaining a better understanding of the dynamic force-balance inside cardiomyocytes and of changes in the

  10. First Measurements of the Longitudinal Bunch Profile at SLAC Using Coherent Smith-Purcell Radiation at 28GeV

    International Nuclear Information System (INIS)

    Arnold, R.; Molloy, S.; Woods, M.; Kimmitt, M.F.; Blackmore, V.; Doucas, G.; Ottewell, B.; Perry, C.

    2011-01-01

    Coherent Smith-Purcell radiation has been demonstrated as a technique for measuring the longitudinal profile of charged particles bunches in the low to intermediate energy range. However, with the advent of the International Linear Collider, the need has arisen for a non-invasive method of measuring the bunch profile at extremely high energies. Smith-Purcell radiation has been used for the first time in the multi-GeV regime to measure the longitudinal profile of the 28GeV SLAC beam. The experiment has both successfully determined the bunch length, and has also demonstrated its sensitivity to bunch profile changes. The challenges associated with this technique, and its prospects as a diagnostic tool are reported here.

  11. Longitudinal, transcranial measurement of functional activation in the rat brain by diffuse correlation spectroscopy.

    Science.gov (United States)

    Blanco, Igor; Zirak, Peyman; Dragojević, Tanja; Castellvi, Clara; Durduran, Turgut; Justicia, Carles

    2017-10-01

    Neural activity is an important biomarker for the presence of neurodegenerative diseases, cerebrovascular alterations, and brain trauma; furthermore, it is a surrogate marker for treatment effects. These pathologies may occur and evolve in a long time-period, thus, noninvasive, transcutaneous techniques are necessary to allow a longitudinal follow-up. In the present work, we have customized noninvasive, transcutaneous, diffuse correlation spectroscopy (DCS) to localize changes in cerebral blood flow (CBF) induced by neural activity. We were able to detect changes in CBF in the somatosensory cortex by using a model of electrical forepaw stimulation in rats. The suitability of DCS measurements for longitudinal monitoring was demonstrated by performing multiple sessions with the same animals at different ages (from 6 to 18 months). In addition, functional DCS has been cross-validated by comparison with functional magnetic resonance imaging (fMRI) in the same animals in a subset of the time-points. The overall results obtained with transcutaneous DCS demonstrates that it can be utilized in longitudinal studies safely and reproducibly to locate changes in CBF induced by neural activity in the small animal brain.

  12. Measurement of Strain in the Left Ventricle during Diastole withcine-MRI and Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Veress, Alexander I.; Gullberg, Grant T.; Weiss, Jeffrey A.

    2005-07-20

    The assessment of regional heart wall motion (local strain) can localize ischemic myocardial disease, evaluate myocardial viability and identify impaired cardiac function due to hypertrophic or dilated cardiomyopathies. The objectives of this research were to develop and validate a technique known as Hyperelastic Warping for the measurement of local strains in the left ventricle from clinical cine-MRI image datasets. The technique uses differences in image intensities between template (reference) and target (loaded) image datasets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target image. To validate the technique, MRI image datasets representing two deformation states of a left ventricle were created such that the deformation map between the states represented in the images was known. A beginning diastoliccine-MRI image dataset from a normal human subject was defined as the template. A second image dataset (target) was created by mapping the template image using the deformation results obtained from a forward FE model of diastolic filling. Fiber stretch and strain predictions from Hyperelastic Warping showed good agreement with those of the forward solution. The technique had low sensitivity to changes in material parameters, with the exception of changes in bulk modulus of the material. The use of an isotropic hyperelastic constitutive model in the Warping analyses degraded the predictions of fiber stretch. Results were unaffected by simulated noise down to an SNR of 4.0. This study demonstrates that Warping in conjunction with cine-MRI imaging can be used to determine local ventricular strains during diastole.

  13. Longitudinal change in quantitative meniscus measurements in knee osteoarthritis - data from the Osteoarthritis Initiative

    International Nuclear Information System (INIS)

    Bloecker, Katja; Wirth, W.; Eckstein, F.; Guermazi, A.; Hitzl, W.; Hunter, D.J.

    2015-01-01

    We aimed to apply 3D MRI-based measurement technology to studying 2-year change in quantitative measurements of meniscus size and position. Forty-seven knees from the Osteoarthritis Initiative with medial radiographic joint space narrowing had baseline and 2-year follow-up MRIs. Quantitative measures were obtained from manual segmentation of the menisci and tibia using coronal DESSwe images. The standardized response mean (SRM = mean/SD change) was used as measure of sensitivity to longitudinal change. Medial tibial plateau coverage decreased from 34.8 % to 29.9 % (SRM -0.82; p < 0.001). Change in medial meniscus extrusion in a central image (SRM 0.18) and in the central five slices (SRM 0.22) did not reach significance, but change in extrusion across the entire meniscus (SRM 0.32; p = 0.03) and in the relative area of meniscus extrusion (SRM 0.56; p < 0.001) did. There was a reduction in medial meniscus volume (10 %; p < 0.001), width (7 %; p < 0.001), and height (2 %; p = 0.08); meniscus substance loss was strongest in the posterior (SRM -0.51; p = 0.001) and weakest in the anterior horn (SRM -0.15; p = 0.31). This pilot study reports, for the first time, longitudinal change in quantitative 3D meniscus measurements in knee osteoarthritis. It provides evidence of improved sensitivity to change of 3D measurements compared with single slice analysis. (orig.)

  14. Longitudinal change in quantitative meniscus measurements in knee osteoarthritis - data from the Osteoarthritis Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Bloecker, Katja [Paracelsus Medical University Salzburg and Nuremberg (Austria); Salzburg, Institute of Anatomy, Salzburg (Austria); BHS Linz, Department of Orthopaedics, Linz (Austria); Wirth, W.; Eckstein, F. [Paracelsus Medical University Salzburg and Nuremberg (Austria); Salzburg, Institute of Anatomy, Salzburg (Austria); Chondrometrics GmbH, Ainring (Germany); Guermazi, A. [Boston University School of Medicine, Boston, MA (United States); Boston Imaging Core Lab (BICL), Boston, MA (United States); Hitzl, W. [Paracelsus Medical University Salzburg and Nuremberg, Research Office, Salzburg (Austria); Hunter, D.J. [University of Sydney, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, Sydney (Australia)

    2015-10-15

    We aimed to apply 3D MRI-based measurement technology to studying 2-year change in quantitative measurements of meniscus size and position. Forty-seven knees from the Osteoarthritis Initiative with medial radiographic joint space narrowing had baseline and 2-year follow-up MRIs. Quantitative measures were obtained from manual segmentation of the menisci and tibia using coronal DESSwe images. The standardized response mean (SRM = mean/SD change) was used as measure of sensitivity to longitudinal change. Medial tibial plateau coverage decreased from 34.8 % to 29.9 % (SRM -0.82; p < 0.001). Change in medial meniscus extrusion in a central image (SRM 0.18) and in the central five slices (SRM 0.22) did not reach significance, but change in extrusion across the entire meniscus (SRM 0.32; p = 0.03) and in the relative area of meniscus extrusion (SRM 0.56; p < 0.001) did. There was a reduction in medial meniscus volume (10 %; p < 0.001), width (7 %; p < 0.001), and height (2 %; p = 0.08); meniscus substance loss was strongest in the posterior (SRM -0.51; p = 0.001) and weakest in the anterior horn (SRM -0.15; p = 0.31). This pilot study reports, for the first time, longitudinal change in quantitative 3D meniscus measurements in knee osteoarthritis. It provides evidence of improved sensitivity to change of 3D measurements compared with single slice analysis. (orig.)

  15. Quantifying Quaternary Deformation in the Eastern Cordillera of the Colombian Andes Using Cosmogenic Nuclide Geochronology and Fluvial Geomorphology

    Science.gov (United States)

    Dalman, E.; Taylor, M. H.; Veloza-fajardo, G.; Mora, A.

    2014-12-01

    Northwest South America is actively deforming through the interaction between the Nazca, South American, and Caribbean plates. Though the Colombian Andes are well studied, much uncertainty remains in the rate of Quaternary deformation along the east directed frontal thrust faults hundreds of kilometers in board from the subduction zones. The eastern foothills of the Eastern Cordillera (EC) preserve deformed landforms, allowing us to quantify incision rates. Using 10Be in-situ terrestrial cosmogenic nuclide (TCN) geochronology, we dated 2 deformed fluvial terraces in the hanging wall of the Guaicaramo thrust fault. From the 10Be concentration and terrace profile relative to local base level, we calculated incision rates. We present a reconstructed slip history of the Guaicaramo thrust fault and its Quaternary slip rate. Furthermore, to quantify the regional Quaternary deformation, we look at the fluvial response to tectonic uplift. Approximately 20 streams along the eastern foothills of the Eastern Cordillera (EC) were studied using a digital elevation model (DEM). From the DEM, longitudinal profiles were created and normalized channel steepness (Ksn) values calculated from plots of drainage area vs. slope. Knickpoints in the longitudinal profiles can record transient perturbations or differential uplift. Calculated Ksn values indicate that the EC is experiencing high rates of uplift, with the highest mean Ksn values occurring in the Cocuy region. Mean channel steepness values along strike of the foothills are related to increasing uplift rates from south to north. In contrast, we suggest that high channel steepness values in the south appear to be controlled by high rates of annual precipitation.

  16. Model Deformation Measurements of Sonic Boom Models in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel

    Science.gov (United States)

    Schairer, Edward T.; Kushner, Laura K.; Garbeff, Theodore J.; Heineck, James T.

    2015-01-01

    The deformations of two sonic-boom models were measured by stereo photogrammetry during tests in the 9- by 7-Ft Supersonic Wind Tunnel at NASA Ames Research Center. The models were geometrically similar but one was 2.75 times as large as the other. Deformation measurements were made by simultaneously imaging the upper surfaces of the models from two directions by calibrated cameras that were mounted behind windows of the test section. Bending and twist were measured at discrete points using conventional circular targets that had been marked along the leading and trailing edges of the wings and tails. In addition, continuous distributions of bending and twist were measured from ink speckles that had been applied to the upper surfaces of the model. Measurements were made at wind-on (M = 1.6) and wind-off conditions over a range of angles of attack between 2.5 deg. and 5.0 deg. At each condition, model deformation was determined by comparing the wind-off and wind-on coordinates of each measurement point after transforming the coordinates to reference coordinates tied to the model. The necessary transformations were determined by measuring the positions of a set of targets on the rigid center-body of the models whose model-axes coordinates were known. Smoothly varying bending and twist measurements were obtained at all conditions. Bending displacements increased in proportion to the square of the distance to the centerline. Maximum deflection of the wingtip of the larger model was about 5 mm (2% of the semispan) and that of the smaller model was 0.9 mm (1% of the semispan). The change in wing twist due to bending increased in direct proportion to distance from the centerline and reached a (absolute) maximum of about -1? at the highest angle of attack for both models. The measurements easily resolved bending displacements as small as 0.05 mm and bending-induced changes in twist as small as 0.05 deg.

  17. First measurement of charged current cross sections at HERA with longitudinally polarised positrons

    Science.gov (United States)

    H1 Collaboration; Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bähr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; Desch, K.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Elsen, E.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Kückens, J.; Landon, M. P. J.; Lange, W.; Laštovička, T.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lüke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Reisert, B.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauvan, E.; Schätzel, S.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sedlák, K.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Tomasz, F.; Traynor, D.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-03-01

    Data taken with positrons of different longitudinal polarisation states in collision with unpolarised protons at HERA are used to measure the total cross sections of the charged current process, ep→ν¯X, for negative four-momentum transfer squared Q>400 GeV and inelasticity y<0.9. Together with the corresponding cross section obtained from the previously published unpolarised data, the polarisation dependence of the charged current cross section is measured for the first time at high Q and found to be in agreement with the Standard Model prediction.

  18. Measurement of Deformations by MEMS Arrays, Verified at Sub-millimetre Level Using Robotic Total Stations

    Directory of Open Access Journals (Sweden)

    Tomas Beran

    2014-06-01

    Full Text Available Measurement of sub-millimetre-level deformations of structures in the presence of ambienttemperature changes can be challenging. This paper describes the measurement of astructure moving due to temperature changes, using two ShapeAccelArray (SAAinstruments, and verified by a geodetic monitoring system. SAA is a geotechnicalinstrument often used for monitoring of displacements in soil. SAA uses micro-electro-mechanical system (MEMS sensors to measure tilt in the gravity field. The geodeticmonitoring system, which uses ALERT software, senses the displacements of targetsrelative to control points, using a robotic total station (RTS. The test setup consists of acentral four-metre free-standing steel tube with other steel tubes welded to most of itslength. The central tube is anchored in a concrete foundation. This composite “pole” isequipped with two SAAs as well as three geodetic prisms mounted on the top, in the middle,and in the foundation. The geodetic system uses multiple control targets mounted inconcrete foundations of nearby buildings, and at the base of the pole. Long-termobservations using two SAAs indicate that the pole is subject to deformations due to cyclicalambient temperature variations causing the pole to move by a few millimetres each day. Ina multiple-day experiment, it was possible to track this movement using SAA as well as theRTS system. This paper presents data comparing the measurements of the two instrumentsand provides a good example of the detection of two-dimensional movements of seeminglyrigid objects due to temperature changes.

  19. A novel deformation mechanism for superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Muto, H.; Sakai, M. (Toyohashi Univ. of Technology (Japan). Dept. of Materials Science)

    1999-01-01

    Uniaxial compressive creep tests with strain value up to -0.1 for a [beta]-spodumene glass ceramic are conducted at 1060 C. From the observation of microstructural changes between before and after the creep deformations, it is shown that the grain-boundary sliding takes place via cooperative movement of groups of grains rather than individual grains under the large-scale-deformation. The deformation process and the surface technique used in this work are not only applicable to explain the deformation and flow of two-phase ceramics but also the superplastic deformation. (orig.) 12 refs.

  20. Tomographic Measurements of Longitudinal Phase Space Density

    CERN Document Server

    Hancock, S; McIntosh, E; Metcalf, M

    1999-01-01

    Tomography : the reconstruction of a two-dimensional image from a series of its one-dimensional projections is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. One of the simplest algorithms has been modified to take into account the non-linearity of large-amplitude synchrotron motion in a particle accelerator. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The algorithm was developed in Mathematica TM in order to exploit the extensive built-in functions and graphics. Subsequently, it has been recoded in Fortran 90 with the aim of reducing the execution time by at least a factor of one hundred. The choice of Fortran 90 was governed by the desire ultimately to exploit parallel architectures, but sequential compilation and execution have already largely yielded the required gain in speed. The use of the method to produce longitudinal phase space plots, animated sequences o...

  1. The choice of a constitutive formulation for modeling limb flexion-induced deformations and stresses in the human femoropopliteal arteries of different ages.

    Science.gov (United States)

    Desyatova, Anastasia; MacTaggart, Jason; Poulson, William; Deegan, Paul; Lomneth, Carol; Sandip, Anjali; Kamenskiy, Alexey

    2017-06-01

    Open and endovascular treatments for peripheral arterial disease are notorious for high failure rates. Severe mechanical deformations experienced by the femoropopliteal artery (FPA) during limb flexion and interactions between the artery and repair materials play important roles and may contribute to poor clinical outcomes. Computational modeling can help optimize FPA repair, but these simulations heavily depend on the choice of constitutive model describing the arterial behavior. In this study finite element model of the FPA in the standing (straight) and gardening (acutely bent) postures was built using computed tomography data, longitudinal pre-stretch and biaxially determined mechanical properties. Springs and dashpots were used to represent surrounding tissue forces associated with limb flexion-induced deformations. These forces were then used with age-specific longitudinal pre-stretch and mechanical properties to obtain deformed FPA configurations for seven age groups. Four commonly used invariant-based constitutive models were compared to determine the accuracy of capturing deformations and stresses in each age group. The four-fiber FPA model most accurately portrayed arterial behavior in all ages, but in subjects younger than 40 years, the performance of all constitutive formulations was similar. In older subjects, Demiray (Delfino) and classic two-fiber Holzapfel-Gasser-Ogden formulations were better than the Neo-Hookean model for predicting deformations due to limb flexion, but both significantly overestimated principal stresses compared to the FPA or Neo-Hookean models.

  2. 3D geodetic monitoring slope deformations

    Directory of Open Access Journals (Sweden)

    Weiss Gabriel

    1996-06-01

    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  3. ANALYSIS OF DEFORMATION PROCESSES IN THE LITHOSPHERE FROM GEODETIC MEASUREMENTS BASED ON THE EXAMPLE OF THE SAN ANDREAS FAULT

    Directory of Open Access Journals (Sweden)

    Yury V. Gabsatarov

    2012-01-01

    Full Text Available Analysis of data from permanent GPS observation stations located in tectonically active regions provides for direct observation of deformation processes of the earth's surface which result from elastic interaction of the lithospheric plates and also occur when accumulated stresses are released by seismic events and postseismic processes.This article describes the methodology of applying the regression analysis of time series of data from GPS-stations for identification of individual components of the stations’ displacements caused by the influence of various deformation processes. Modelling of the stations’ displacements caused only by deformations of the marginal zone, wherein the lithospheric plates interact, allows us to study variations of the steady-state deformation in the marginal zone.he proposed methodology is applied to studies of variations of fields of cumulative surface displacements, surface displacement velocity and maximum shear strain velocity which are determined from the GPS data recorded prior to the Parkfield earthquake of 28 September 2004 (Mw=6.0.Combined analysis of the variations of the above-mentioned fields shows that measurable anomalies of the elastic deformation of the transform fault’s edge took place prior to the seismic event of 28 September 2004, and such anomalies were coincident in space and time with the focal area of the future seismic event.

  4. Measuring in-vivo and in-situ ex-vivo the 3D deformation of the lamina cribrosa microstructure under elevated intraocular pressure

    Science.gov (United States)

    Wei, Junchao; Yang, Bin; Voorhees, Andrew P.; Tran, Huong; Brazile, Bryn; Wang, Bo; Schuman, Joel; Smith, Matthew A.; Wollstein, Gadi; Sigal, Ian A.

    2018-02-01

    Elevated intraocular pressure (IOP) deforms the lamina cribrosa (LC), a structure within the optic nerve head (ONH) in the back of the eye. Evidence suggests that these deformations trigger events that eventually cause irreversible blindness, and have therefore been studied in-vivo using optical coherence tomography (OCT), and ex-vivo using OCT and a diversity of techniques. To the best of our knowledge, there have been no in-situ ex-vivo studies of LC mechanics. Our goal was two-fold: to introduce a technique for measuring 3D LC deformations from OCT, and to determine whether deformations of the LC induced by elevated IOP differ between in-vivo and in-situ ex-vivo conditions. A healthy adult rhesus macaque monkey was anesthetized and IOP was controlled by inserting a 27- gauge needle into the anterior chamber of the eye. Spectral domain OCT was used to obtain volumetric scans of the ONH at normal and elevated IOPs. To improve the visibility of the LC microstructure the scans were first processed using a novel denoising technique. Zero-normalized cross-correlation was used to find paired corresponding locations between images. For each location pair, the components of the 3D strain tensor were determined using non-rigid image registration. A mild IOP elevation from 10 to 15mmHg caused LC effective strains as large as 3%, and about 50% larger in-vivo than in-situ ex-vivo. The deformations were highly heterogeneous, with substantial 3D components, suggesting that accurate measurement of LC microstructure deformation requires high-resolution volumes. This technique will help improve understanding of LC biomechanics and how IOP contributes to glaucoma.

  5. FTIR measurements of OH in deformed quartz and feldspars of the South Tibetan Detachment, Greater Himalaya

    Science.gov (United States)

    Jezek, L.; Law, R. D.; Jessup, M. J.; Searle, M. P.; Kronenberg, A. K.

    2017-12-01

    OH absorption bands due to water in deformed quartz and feldspar grains of mylonites from the low-angle Lhotse Detachment (of the South Tibetan Detachment System, Rongbuk Valley north of Mount Everest) have been measured by Fourier Transform Infrared (FTIR) Spectroscopy. Previous microstructural studies have shown that these rocks deformed by dislocation creep at high temperature conditions in the middle crust (lower - middle amphibolite facies), and oxygen isotope studies suggest significant influx of meteoric water. OH absorption bands at 3400 cm-1 of quartz mylonites from the footwall of the Lhotse Detachment Fault are large, with the character of the molecular water band due to fluid inclusions in milky quartz. Mean water contents depend on structural position relative to the core of the Lhotse Detachment, from 1000 ppm (OH/106 Si) at 420 m below the fault to 11,350 (+/-1095) ppm near its center. The gradient in OH content shown by quartz grains implies influx of meteoric water along the Lhotse Detachment from the Tibetan Plateau ground surface to middle crustal depths, and significant fluid penetration into the extruding Himalayan slab by intergranular, permeable fluid flow processes. Feldspars of individual samples have comparable water contents to those of quartz and some are wetter. Large water contents of quartz and feldspar may have contributed to continued deformation and strain localization on the South Tibetan Detachment System. Dislocation creep in quartz is facilitated by water in laboratory experiments, and the water contents of the Lhotse fault rocks are similar to (and even larger than) water contents of quartz experimentally deformed during water weakening. Water contents of feldspars are comparable to those of plagioclase aggregates deformed experimentally by dislocation and diffusion creep under wet conditions.

  6. Measurements of the longitudinal nuclear magnetic resonance in superfluid helium-3 B as a function of magnetic field

    International Nuclear Information System (INIS)

    Sherrill, D.S.

    1987-01-01

    These are the first measurements of the longitudinal NMR mode in a magnetic field large enough to cause an appreciable distortion of the energy gap. Measurements were made at pressures P = 3, 6, 12, 21, and 33 bar; at fields from 2 to 15 MHz; and over temperatures between 0.18 and 0.40 T/sub c/(P), where T/sub c/(P) is the superfluid transition temperature. Therefore, these experiments are in the collisionless regime in which the longitudinal resonance frequency is small compared to the quasiparticle collision frequency. The gap distortion causes a large shift in the longitudinal frequency. As the magnetic field increases from 2 to 15 MHz, the frequency decreases by about 20 kHz at all pressures. Thus, these experiments are a powerful probe of the field distortion of the energy gap. Pulsed NMR is used and, in addition to the resonance frequency, the amplitude and damping of the induced oscillations were obtained. Results are compared for the longitudinal frequency as a function of field, temperature, and pressure to a recent theory, and estimates of the theoretical parameters involved were obtained. At the lowest temperatures a startling behavior was observed, in which the resonance lineshape broadened with decreasing temperature

  7. Mechanical and thermal measurements on a 11 m long beam screen in the LHC Magnet Test String during RUN 3A

    CERN Document Server

    Artoos, K; Kos, N

    1999-01-01

    Two eleven meter long beam screens were installed in the third dipole of the LHC Magnet Test String. Instrumentation was used to measure the mechanical and thermal behaviour of the screens during thermal transients and quenches. The horizontal deformation, angular displacement, heating of the screen as a result of the quench induced eddy currents and relative longitudinal displacement between beam screen and magnet end were measured.

  8. Bridge monitoring by interferometric deformation sensors

    Science.gov (United States)

    Inaudi, Daniele; Vurpillot, Samuel; Casanova, Nicoletta

    1996-09-01

    In many concrete bridges, the deformations are the most relevant parameter to be monitored in both short and long- terms. Strain monitoring gives only local information about the material behavior and too many such sensors would therefore be necessary to gain a complete understanding of the bridge behavior. We have found that fiber optic deformation sensors, with measurement bases of the order of one to a few meters, can give useful information both during the first days after concrete pouring and in the long term. In a first phase it is possible to monitor the thermal expansion due to the exothermic setting reaction and successively the thermal and drying shrinkages. Thanks to the long sensor basis, the detection of a crack traverse to the measurement region becomes probable and the evolution of cracks can therefore be followed with a reduced number of sensors. In the long-term it is possible to measure the geometric deformations and therefore the creeping of the bridge under static loads, especially under its own weight. In the past two years, our laboratory has installed hundreds of fiber optic deformation sensors in more than five concrete, composite steel-concrete, refurbished and enlarged bridges (road, highway and railway bridges). The measuring technique relies on low-coherence interferometry and offers a resolution down to a few microns even for long-term measurements. This contribution briefly discusses the measurement technique and then focuses on the development of a reliable sensor for direct concrete embedding and on the experimental results obtained on these bridges.

  9. Corneal biomechanical properties from air-puff corneal deformation imaging

    Science.gov (United States)

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  10. Point-Connecting Measurements of the Hallux Valgus Deformity: A New Measurement and Its Clinical Application

    Science.gov (United States)

    Seo, Jeong-Ho; Boedijono, Dimas

    2016-01-01

    Purpose The aim of this study was to investigate new point-connecting measurements for the hallux valgus angle (HVA) and the first intermetatarsal angle (IMA), which can reflect the degree of subluxation of the first metatarsophalangeal joint (MTPJ). Also, this study attempted to compare the validity of midline measurements and the new point-connecting measurements for the determination of HVA and IMA values. Materials and Methods Sixty feet of hallux valgus patients who underwent surgery between 2007 and 2011 were classified in terms of the severity of HVA, congruency of the first MTPJ, and type of chevron metatarsal osteotomy. On weight-bearing dorsal-plantar radiographs, HVA and IMA values were measured and compared preoperatively and postoperatively using both the conventional and new methods. Results Compared with midline measurements, point-connecting measurements showed higher inter- and intra-observer reliability for preoperative HVA/IMA and similar or higher inter- and intra-observer reliability for postoperative HVA/IMA. Patients who underwent distal chevron metatarsal osteotomy (DCMO) had higher intraclass correlation coefficient for inter- and intra-observer reliability for pre- and post-operative HVA and IMA measured by the point-connecting method compared with the midline method. All differences in the preoperative HVAs and IMAs determined by both the midline method and point-connecting methods were significant between the deviated group and subluxated groups (p=0.001). Conclusion The point-connecting method for measuring HVA and IMA in the subluxated first MTPJ may better reflect the severity of a HV deformity with higher reliability than the midline method, and is more useful in patients with DCMO than in patients with proximal chevron metatarsal osteotomy. PMID:26996576

  11. Nd-Fe-B-Cu hot deformation processing: a comparison of deformation modes, microstructural development and magnetic properties

    International Nuclear Information System (INIS)

    Ferrante, M.; Sinka, V.; Assis, O.B.G.; Oliveira, I. de; Freitas, E. de

    1996-01-01

    Due to its relative simplicity and low cost the hot deformation of Nd-Fe-B ingots is rapidly reaching the status of a valid alternative to sintering. Among the possible deformation modes, pressing, rolling and forging are perhaps the most successful. This paper describes the research programme undertaken so far, by discussing the relationship between deformation mode, microstructure and magnetic properties of magnets produced by hot deformation mode, microstructure and magnetic properties of magnets produced by hot deformation of a number of Nd-fe-B-Cu alloys. Microstructural observation showed that both pressed and forged samples are characterized by a heterogeneous microstructure and from magnetic measurements it was concluded that magnetic properties differ when taken in the center or in the periphery of the sample. On the other hand roller magnets were homogeneous both in terms of microstructure and magnetic properties, and interpretations of the mechanisms of texture development and of microstructural development of hot deformed magnets is put forward. (author)

  12. [Distal soft-tissue procedure in hallux valgus deformity].

    Science.gov (United States)

    Arbab, D; Wingenfeld, C; Frank, D; Bouillon, B; König, D P

    2016-04-01

    Distal, lateral soft tissue release to restore mediolateral balance of the first metatarsophalangeal (MTP) joint in hallux valgus deformity. Incision of the adductor hallucis tendon from the fibular sesamoid, the lateral capsule, the lateral collateral ligament, and the lateral metatarsosesamoid ligament. Hallux valgus deformities or recurrent hallux valgus deformities with an incongruent MTP joint. General medical contraindications to surgical interventions. Painful stiffness of the MTP joint, osteonecrosis, congruent joint. Relative contraindications: connective tissue diseases (Marfan syndrome, Ehler-Danlos syndrome). Longitudinal, dorsal incision in the first intermetatarsal web space between the first and second MTP joint. Blunt dissection and identification of the adductor hallucis tendon. Release of the adductor tendon from the fibular sesamoid. Incision of the lateral capsule, the lateral collateral ligament, and the lateral metatarsosesamoid ligament. Postoperative management depends on bony correction. In joint-preserving procedures, dressing for 3 weeks in corrected position. Subsequently hallux valgus orthosis at night and a toe spreader for a further 3 months. Passive mobilization of the first MTP joint. Postoperative weight-bearing according to the osteotomy. A total of 31 patients with isolated hallux valgus deformity underwent surgery with a Chevron and Akin osteotomy and a distal medial and lateral soft tissue balancing. The mean preoperative intermetatarsal (IMA) angle was 12.3° (range 11-15°); the hallux valgus (HV) angle was 28.2° (25-36°). The mean follow-up was 16.4 months (range 12-22 months). The mean postoperative IMA correction ranged between 2 and 7° (mean 5.2°); the mean HV correction was 15.5° (range 9-21°). In all, 29 patients (93%) were satisfied or very satisfied with the postoperative outcome, while 2 patients (7%) were not satisfied due to one delayed wound healing and one recurrent hallux valgus deformity. There were no

  13. [Micropore filters for measuring red blood cell deformability and their pore diameters].

    Science.gov (United States)

    Niu, X; Yan, Z

    2001-09-01

    Micropore filters are the most important components in micropore filtration testes for assessing red blood cell (RBC) deformability. With regard to their appearance and filtration behaviors, comparisons are made for different kinds of filters currently in use. Nickel filters with regular geometric characteristics are found to be more sensitive to the effects of physical, chemical, especially pathological factors on the RBC deformability. We have critically reviewed the following viewpoint that filters with 3 microns pore diameter are more sensitive to cell volume than to internal viscosity while filters with 5 microns pore diameter are just the opposite. After analyzing the experiment results with 3 microns and 5 microns filters, we point out that filters with smaller pore diameters are more suitable for assessing the RBC deformability.

  14. Evaluation of elastix-based propagated align algorithm for VOI- and voxel-based analysis of longitudinal F-18-FDG PET/CT data from patients with non-small cell lung cancer (NSCLC)

    NARCIS (Netherlands)

    Kerner, Gerald S. M. A.; Fischer, Alexander; Koole, Michel J. B.; Pruim, Jan; Groen, Harry J. M.

    2015-01-01

    Background: Deformable image registration allows volume of interest (VOI)- and voxel-based analysis of longitudinal changes in fluorodeoxyglucose (FDG) tumor uptake in patients with non-small cell lung cancer (NSCLC). This study evaluates the performance of the elastix toolbox deformable image

  15. A Longitudinal Analysis of Adolescent Smoking: Using Smoking Status to Differentiate the Influence of Body Weight Measures

    Science.gov (United States)

    Hong, Traci; Johnson, Carolyn

    2013-01-01

    Background: Previous research has reported mixed results on the association between body weight measures (ie, perception of weight and weight loss goal) and cigarette smoking prevalence--and how these associations vary by sex and race. This longitudinal study assessed the relationship between these 2 body weight measures and smoking prevalence by…

  16. Nanoscale deformation measurements for reliability assessment of material interfaces

    Science.gov (United States)

    Keller, Jürgen; Gollhardt, Astrid; Vogel, Dietmar; Michel, Bernd

    2006-03-01

    With the development and application of micro/nano electronic mechanical systems (MEMS, NEMS) for a variety of market segments new reliability issues will arise. The understanding of material interfaces is the key for a successful design for reliability of MEMS/NEMS and sensor systems. Furthermore in the field of BIOMEMS newly developed advanced materials and well known engineering materials are combined despite of fully developed reliability concepts for such devices and components. In addition the increasing interface-to volume ratio in highly integrated systems and nanoparticle filled materials are challenges for experimental reliability evaluation. New strategies for reliability assessment on the submicron scale are essential to fulfil the needs of future devices. In this paper a nanoscale resolution experimental method for the measurement of thermo-mechanical deformation at material interfaces is introduced. The determination of displacement fields is based on scanning probe microscopy (SPM) data. In-situ SPM scans of the analyzed object (i.e. material interface) are carried out at different thermo-mechanical load states. The obtained images are compared by grayscale cross correlation algorithms. This allows the tracking of local image patterns of the analyzed surface structure. The measurement results are full-field displacement fields with nanometer resolution. With the obtained data the mixed mode type of loading at material interfaces can be analyzed with highest resolution for future needs in micro system and nanotechnology.

  17. Factor structure and longitudinal measurement invariance of the demand control support model: an evidence from the Swedish Longitudinal Occupational Survey of Health (SLOSH).

    Science.gov (United States)

    Chungkham, Holendro Singh; Ingre, Michael; Karasek, Robert; Westerlund, Hugo; Theorell, Töres

    2013-01-01

    To examine the factor structure and to evaluate the longitudinal measurement invariance of the demand-control-support questionnaire (DCSQ), using the Swedish Longitudinal Occupational Survey of Health (SLOSH). A confirmatory factor analysis (CFA) and multi-group confirmatory factor analysis (MGCFA) models within the framework of structural equation modeling (SEM) have been used to examine the factor structure and invariance across time. Four factors: psychological demand, skill discretion, decision authority and social support, were confirmed by CFA at baseline, with the best fit obtained by removing the item repetitive work of skill discretion. A measurement error correlation (0.42) between work fast and work intensively for psychological demands was also detected. Acceptable composite reliability measures were obtained except for skill discretion (0.68). The invariance of the same factor structure was established, but caution in comparing mean levels of factors over time is warranted as lack of intercept invariance was evident. However, partial intercept invariance was established for work intensively. Our findings indicate that skill discretion and decision authority represent two distinct constructs in the retained model. However removing the item repetitive work along with either work fast or work intensively would improve model fit. Care should also be taken while making comparisons in the constructs across time. Further research should investigate invariance across occupations or socio-economic classes.

  18. Factor structure and longitudinal measurement invariance of the demand control support model: an evidence from the Swedish Longitudinal Occupational Survey of Health (SLOSH.

    Directory of Open Access Journals (Sweden)

    Holendro Singh Chungkham

    Full Text Available OBJECTIVES: To examine the factor structure and to evaluate the longitudinal measurement invariance of the demand-control-support questionnaire (DCSQ, using the Swedish Longitudinal Occupational Survey of Health (SLOSH. METHODS: A confirmatory factor analysis (CFA and multi-group confirmatory factor analysis (MGCFA models within the framework of structural equation modeling (SEM have been used to examine the factor structure and invariance across time. RESULTS: Four factors: psychological demand, skill discretion, decision authority and social support, were confirmed by CFA at baseline, with the best fit obtained by removing the item repetitive work of skill discretion. A measurement error correlation (0.42 between work fast and work intensively for psychological demands was also detected. Acceptable composite reliability measures were obtained except for skill discretion (0.68. The invariance of the same factor structure was established, but caution in comparing mean levels of factors over time is warranted as lack of intercept invariance was evident. However, partial intercept invariance was established for work intensively. CONCLUSION: Our findings indicate that skill discretion and decision authority represent two distinct constructs in the retained model. However removing the item repetitive work along with either work fast or work intensively would improve model fit. Care should also be taken while making comparisons in the constructs across time. Further research should investigate invariance across occupations or socio-economic classes.

  19. Rigid-Plastic Approximations for Predicting Plastic Deformation of Cylindrical Shells Subject to Dynamic Loading

    Directory of Open Access Journals (Sweden)

    Michelle S. Hoo Fatt

    1996-01-01

    Full Text Available A theoretical approach was developed for predicting the plastic deformation of a cylindrical shell subject to asymmetric dynamic loads. The plastic deformation of the leading generator of the shell is found by solving for the transverse deflections of a rigid-plastic beam/string-on-foundation. The axial bending moment and tensile force in the beam/string are equivalent to the longitudinal bending moments and membrane forces of the shell, while the plastic foundation force is equivalent to the shell circumferential bending moment and membrane resistances. Closed-form solutions for the transient and final deformation profile of an impulsive loaded shell when it is in a “string” state were derived using the eigenfunction expansion method. These results were compared to DYNA 3D predictions. The analytical predictions of the transient shell and final centerline deflections were within 25% of the DYNA 3D results.

  20. The calculation, simulation, and measurement of longitudinal beam dynamics in electron injectors

    International Nuclear Information System (INIS)

    Dunham, B.; Liu, H.; Kazimi, R.

    1997-01-01

    Polarized electrons are a valuable commodity for nuclear physics research and every effort must be made to preserve them during transport Measurements of the beam emitted from the polarized source at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) have shown a considerable bunch lengthening with increasing beam current. This lengthening leads to unacceptable loss as the beam passes through the injector chopping system. We present an application of the longitudinal envelope equation to describe the bunch lengthening and compare the results to measurements and simulations using PARMELA. In addition, a possible solution to the problem by adding a low power buncher to the beamline is described and initial results are shown

  1. Deformation of wrought uranium: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, R.J., E-mail: rmccabe@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Capolungo, L. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)] [UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Marshall, P.E.; Cady, C.M.; Tome, C.N. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-09-15

    The room temperature deformation behavior of wrought polycrystalline uranium is studied using a combination of experimental techniques and polycrystal modeling. Electron backscatter diffraction is used to analyze the primary deformation twinning modes for wrought alpha-uranium. The {l_brace}1 3 0{r_brace}<3 1 0> twinning mode is found to be the most prominent twinning mode, with minor contributions from the '{l_brace}1 7 2{r_brace}'<3 1 2> and {l_brace}1 1 2{r_brace}'<3 7 2>' twin modes. Because of the large number of deformation modes, each with limited deformation systems, a polycrystalline model is employed to identify and quantify the activity of each mode. Model predictions of the deformation behavior and texture development agree reasonably well with experimental measures and provide reliable information about deformation systems.

  2. Volcanic deformation in the Andes

    Science.gov (United States)

    Riddick, S.; Fournier, T.; Pritchard, M.

    2009-05-01

    We present the results from an InSAR survey of volcanic activity in South America. We use data from the Japanese Space Agency's ALOS L-band radar satellite from 2006-2009. The L-band instrument provides better coherence in densely vegetated regions, compared to the shorter wave length C-band data. The survey reveals volcano related deformation in regions, north, central and southern, of the Andes volcanic arc. Since observations are limited to the austral summer, comprehensive coverage of all volcanoes is not possible. Yet, our combined observations reveal volcanic/hydrothermal deformation at Lonquimay, Llaima, Laguna del Maule, and Chaitén volcanoes, extend deformation measurements at Copahue, and illustrate temporal complexity to the previously described deformation at Cerro Hudson and Cordón Caulle. No precursory deformation is apparent before the large Chaitén eruption (VEI_5) of 2 May 2008, (at least before 16 April) suggesting rapid magma movement from depth at this long dormant volcano. Subsidence at Ticsani Volcano occurred coincident with an earthquake swarm in the same region.

  3. Static response of deformable microchannels

    Science.gov (United States)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  4. Longitudinal detection of ferromagnetic resonance using x-ray transmission measurements

    International Nuclear Information System (INIS)

    Boero, G.; Rusponi, S.; Kavich, J.; Rizzini, A. Lodi; Piamonteze, C.; Nolting, F.; Tieg, C.; Thiele, J.-U.; Gambardella, P.

    2009-01-01

    We describe a setup for the x-ray detection of ferromagnetic resonance in the longitudinal geometry using element-specific transmission measurements. Thin magnetic film samples are placed in a static magnetic field collinear with the propagation direction of a polarized soft x-ray beam and driven to ferromagnetic resonance by a continuous wave microwave magnetic field perpendicular to it. The transmitted photon flux is measured both as a function of the x-ray photon energy and as a function of the applied static magnetic field. We report experiments performed on a 15 nm film of doped Permalloy (Ni 73 Fe 18 Gd 7 Co 2 ) at the L 3 /L 2 -edges of Fe, Co, and Ni. The achieved ferromagnetic resonance sensitivity is about 0.1 monolayers/√(Hz). The obtained results are interpreted in the framework of a conductivity tensor based formalism. The factors limiting the sensitivity as well as different approaches for the x-ray detection of ferromagnetic resonance are discussed.

  5. School Security Measures and Longitudinal Trends in Adolescents' Experiences of Victimization.

    Science.gov (United States)

    Fisher, Benjamin W; Mowen, Thomas J; Boman, John H

    2018-06-01

    Although school security measures have become a common fixture in public schools across the United States, research on the relationship between security and adolescent victimization is mixed, with very few studies examining trends in adolescent victimization across time. Using two waves of data from the Educational Longitudinal Study 2002 (N = 7659; 50.6% female; 56.7% White, 13.3% Black, 13.5% Hispanic, 11.3% Asian American, 5.4% other race), results from a series of multi-level models demonstrate that adolescents in schools with more security measures report higher odds of being threatened with harm, and no difference in odds of being in a physical altercation or having something stolen over time. Although prior research has established racial disparities in using school security measures, results demonstrate inconsistent patterns in the extent to which adolescents' race conditions the relationship between security and victimization. The findings are discussed in light of existing theoretical and empirical work, and implications for both research and practice are offered.

  6. Fluid-Driven Deformation of a Soft Porous Medium

    Science.gov (United States)

    Lutz, Tyler; Wilen, Larry; Wettlaufer, John

    2017-11-01

    Viscous drag forces resisting the flow of fluid through a soft porous medium are maintained by restoring forces associated with deformations in the solid matrix. We describe experimental measurements of the deformation of foam under a pressure-driven flow of water along a single axis. Image analysis techniques allow tracking of the foam displacement while pressure sensors allow measurement of the fluid pressure. Experiments are performed for a series of different pressure heads ranging from 10 to 90 psi, and the results are compared to theory. This work builds on previous measurements of the fluid-induced deformation of a bed of soft hydrogel spheres. Compared to the hydrogel system, foams have the advantage that the constituents of the porous medium do not rearrange during an experiment, but they have the disadvantage of having a high friction coefficient with any boundaries. We detail strategies to characterize and mitigate the effects of friction on the observed foam deformations.

  7. Breakdowns in the deformation monitoring and their control

    Directory of Open Access Journals (Sweden)

    Gabriel Weiss

    2007-04-01

    Full Text Available The deformation analysis from the point of view of its subject and methodology is an extensive part of geodetic and other methods for watching objects´ stabilities and for the determination of their changes using suitable quantities from deformation measurements performed in more epochs. In the monitoring of the object deformations, their characteristic points – object points (OB are measured and their stabilities or movements are registered relating to a convenient number of robust reference points (RB in the surroundings. It often happens in the monitoring that some RBs are lost (damage, destruction, etc., resulting in datum changes of the deformation net and making a reliable stability evaluation of the OBs impossible.In this contribution to the problems of right datum determination for the whole net, three methods are introduced to reduce various datums to one of them for the whole deformation net, when the original (1st datum can not be used in all epochs.

  8. Measuring adolescents’ exposure to victimization: The Environmental Risk (E-Risk) Longitudinal Twin Study

    Science.gov (United States)

    Fisher, Helen L.; Caspi, Avshalom; Moffitt, Terrie E.; Wertz, Jasmin; Gray, Rebecca; Newbury, Joanne; Ambler, Antony; Zavos, Helena; Danese, Andrea; Mill, Jonathan; Odgers, Candice L.; Pariante, Carmine; Wong, Chloe C.; Arseneault, Louise

    2016-01-01

    This paper presents mutlilevel findings on adolescents’ victimization exposure from a large longitudinal cohort of twins. Data were obtained from the Environmental Risk (E-Risk) Longitudinal Twin Study, an epidemiological study of 2,232 children (1,116 twin pairs) followed to 18 years of age (with 93% retention). To assess adolescent victimization we combined best practices in survey research on victimization with optimal approaches to measuring life stress and traumatic experiences, and introduce a reliable system for coding severe victimization. One in three children experienced at least one type of severe victimization during adolescence (crime victimization, peer/sibling victimization, internet/mobile phone victimization, sexual victimization, family violence, maltreatment, or neglect), and most types of victimization were more prevalent amongst children from low socioeconomic backgrounds. Exposure to multiple victimization types was common, as was re-victimization; over half of those physically maltreated in childhood were also exposed to severe physical violence in adolescence. Biometric twin analyses revealed that environmental factors had the greatest influence on most types of victimization, while severe physical maltreatment from caregivers during adolescence was predominantly influenced by heritable factors. The findings from this study showcase how distinct levels of victimization measurement can be harmonized in large-scale studies of health and development. PMID:26535933

  9. Development of AN Open-Source Automatic Deformation Monitoring System for Geodetical and Geotechnical Measurements

    Science.gov (United States)

    Engel, P.; Schweimler, B.

    2016-04-01

    The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the Neubrandenburg University of Applied Sciences (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.

  10. Large inelastic deformation analysis of steel pressure vessels at high temperature

    International Nuclear Information System (INIS)

    Ikonen, K.

    2001-01-01

    This publication describes the calculation methodology developed for a large inelastic deformation analysis of pressure vessels at high temperature. Continuum mechanical formulation related to a large deformation analysis is presented. Application of the constitutive equations is simplified when the evolution of stress and deformation state of an infinitesimal material element is considered in the directions of principal strains determined by the deformation during a finite time increment. A quantitative modelling of time dependent inelastic deformation is applied for reactor pressure vessel steels. Experimental data of uniaxial tensile, relaxation and creep tests performed at different laboratories for reactor pressure vessel steels are investigated and processed. An inelastic deformation rate model of strain hardening type is adopted. The model simulates well the axial tensile, relaxation and creep tests from room temperature to high temperature with only a few fitting parameters. The measurement data refined for the inelastic deformation rate model show useful information about inelastic deformation phenomena of reactor pressure vessel steels over a wide temperature range. The methodology and calculation process are validated by comparing the calculated results with measurements from experiments on small scale pressure vessels. A reasonably good agreement, when taking several uncertainties into account, is obtained between the measured and calculated results concerning deformation rate and failure location. (orig.)

  11. Neutron scattering on deformed nuclei

    International Nuclear Information System (INIS)

    Hansen, L.F.; Haight, R.C.; Pohl, B.A.; Wong, C.; Lagrange, C.

    1984-09-01

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9 Be, C, 181 Ta, 232 Th, 238 U and 239 Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP

  12. Quantitative measurement of piezoelectric coefficient of thin film using a scanning evanescent microwave microscope.

    Science.gov (United States)

    Zhao, Zhenli; Luo, Zhenlin; Liu, Chihui; Wu, Wenbin; Gao, Chen; Lu, Yalin

    2008-06-01

    This article describes a new approach to quantitatively measure the piezoelectric coefficients of thin films at the microscopic level using a scanning evanescent microwave microscope. This technique can resolve 10 pm deformation caused by the piezoelectric effect and has the advantages of high scanning speed, large scanning area, submicron spatial resolution, and a simultaneous accessibility to many other related properties. Results from the test measurements on the longitudinal piezoelectric coefficient of PZT thin film agree well with those from other techniques listed in literatures.

  13. X-ray microbeam measurements of individual dislocation cell elastic strains in deformed single-crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Lyle E. [National Institute of Standards and Technology (NIST); Larson, Ben C [ORNL; Yang, Wenge [Carnegie Institution of Washington; Kassner, Michael E. [University of Southern California; Tischler, Jonathan Zachary [ORNL; Delos-Reyes, Michael A. [University of Southern California; Fields, Richard J. [National Institute of Standards and Technology (NIST); Liu, Wenjun [Argonne National Laboratory (ANL)

    2006-01-01

    The distribution of elastic strains (and thus stresses) at the sub-micrometer length scale within deformed metal single crystals has surprisingly broad implications for our understanding of important physical phenomena. These include the evolution of the complex dislocation structures that govern mechanical behavior within individual grains [1-4], the transport of dislocations through such structures [5-7], changes in mechanical properties that occur during reverse loading [8-10] (e.g. sheet metal forming), and the analyses of diffraction line profiles for microstructural studies of these phenomena [11-17]. We present the first direct, spatially-resolved measurements of the elastic strains within individual dislocation cells in copper single crystals deformed in tension and compression along <100> axes. Broad distributions of elastic strains are found, with profound implications for theories of dislocation structure evolution [4,18], dislocation transport [5-7], and the extraction of dislocation parameters from X-ray line profiles [11-17,19].

  14. Accuracy of deformable image registration on magnetic resonance images in digital and physical phantoms.

    Science.gov (United States)

    Ger, Rachel B; Yang, Jinzhong; Ding, Yao; Jacobsen, Megan C; Fuller, Clifton D; Howell, Rebecca M; Li, Heng; Jason Stafford, R; Zhou, Shouhao; Court, Laurence E

    2017-10-01

    Accurate deformable image registration is necessary for longitudinal studies. The error associated with commercial systems has been evaluated using computed tomography (CT). Several in-house algorithms have been evaluated for use with magnetic resonance imaging (MRI), but there is still relatively little information about MRI deformable image registration. This work presents an evaluation of two deformable image registration systems, one commercial (Velocity) and one in-house (demons-based algorithm), with MRI using two different metrics to quantify the registration error. The registration error was analyzed with synthetic MR images. These images were generated from interpatient and intrapatient variation models trained on 28 patients. Four synthetic post-treatment images were generated for each of four synthetic pretreatment images, resulting in 16 image registrations for both the T1- and T2-weighted images. The synthetic post-treatment images were registered to their corresponding synthetic pretreatment image. The registration error was calculated between the known deformation vector field and the generated deformation vector field from the image registration system. The registration error was also analyzed using a porcine phantom with ten implanted 0.35-mm diameter gold markers. The markers were visible on CT but not MRI. CT, T1-weighted MR, and T2-weighted MR images were taken in four different positions. The markers were contoured on the CT images and rigidly registered to their corresponding MR images. The MR images were deformably registered and the distance between the projected marker location and true marker location was measured as the registration error. The synthetic images were evaluated only on Velocity. Root mean square errors (RMSEs) of 0.76 mm in the left-right (LR) direction, 0.76 mm in the anteroposterior (AP) direction, and 0.69 mm in the superior-inferior (SI) direction were observed for the T1-weighted MR images. RMSEs of 1.1 mm in the LR

  15. Model Deformation and Optical Angle of Attack Measurement System in the NASA Ames Unitary Plan Wind Tunnel

    Science.gov (United States)

    Kushner, Laura K.; Drain, Bethany A.; Schairer, Edward T.; Heineck, James T.; Bell, James H.

    2017-01-01

    Both AoA and MDM measurements can be made using an optical system that relies on photogrammetry. Optical measurements are being requested by customers in wind tunnels with increasing frequency due to their non-intrusive nature and recent hardware and software advances that allow measurements to become near real time. The NASA Ames Research Center Unitary Plan Wind Tunnel is currently developing a system based on photogrammetry to measure model deformation and model angle of attack. This paper describes the new system, its development, its use on recent tests and plans to further develop the system.

  16. Measuring deformation of Fuel pin in a Nuclear Fuel Test Rig

    Energy Technology Data Exchange (ETDEWEB)

    Heo, S. H.; Yang, T. H.; Hong, J. T.; Joung, C. Y.; Ahn, S. H.; Jang, S. Y.; Kim, J. H. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, an LVDT core for measuring the longitudinal displacement of fuel pellets and clad was designed and produced. A signal processing method for the prepared core was investigated. The Nuclear Fuel Test Rig is used to observe changes in the characteristics of the fuel according to the neutron irradiation at HANARO (High-flux Advanced Neutron Application Reactor), which is a research reactor. Which are the strain and internal temperature of the irradiated nuclear fuel and the internal pressure of fuel due to fission gas, the characteristics of the fuel are measured using various sensors such as a thermocouple, SPND and LVDT. In this study, two shaped LVDT (Linear Variable Differential Transformer) cores for displacement measurements were designed and manufactured in order to measure the displacement of a fuel pellet and cladding tube using LVDT sensors for measuring electrical signals by converting the physical variation such as the force and displacement into a linear motion. In addition, signals from the manufactured LVDT sensor were collected and calibrated. Moreover, a method for obtaining the displacement in the core according to the sensing signal was planned. A derived equation can used to predict the change in the position of core. A following study should be conducted to test the output signal and real variation of out-pile system. For further work, a performance verification is required for an in-pile irradiation test.

  17. Adaptive compensation of aberrations in ultrafast 3D microscopy using a deformable mirror

    Science.gov (United States)

    Sherman, Leah R.; Albert, O.; Schmidt, Christoph F.; Vdovin, Gleb V.; Mourou, Gerard A.; Norris, Theodore B.

    2000-05-01

    3D imaging using a multiphoton scanning confocal microscope is ultimately limited by aberrations of the system. We describe a system to adaptively compensate the aberrations with a deformable mirror. We have increased the transverse scanning range of the microscope by three with compensation of off-axis aberrations.We have also significantly increased the longitudinal scanning depth with compensation of spherical aberrations from the penetration into the sample. Our correction is based on a genetic algorithm that uses second harmonic or two-photon fluorescence signal excited by femtosecond pulses from the sample as the enhancement parameter. This allows us to globally optimize the wavefront without a wavefront measurement. To improve the speed of the optimization we use Zernike polynomials as the basis for correction. Corrections can be stored in a database for look-up with future samples.

  18. A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Khoo Sze-Wei

    2016-09-01

    Full Text Available Among the full-field optical measurement methods, the Digital Image Correlation (DIC is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.

  19. Pair correlation of super-deformed rotation band

    International Nuclear Information System (INIS)

    Shimizu, Yoshio

    1989-01-01

    The effect of pair correlation, one of the most important residual interactions associated with the super-deformed rotation band, is discussed in terms of the characteristics of the rotation band (its effect on the moment of inertia in particular), and the tunneling into an normal deformed state in relation to its effect on the angular momentum dependence of the potential energy plane as a function of the deformation. The characteristics of the rotation band is discussed in terms of the kinematic and dynamic momenta of inertia. It is shown that the pair correlation in a super-deformed rotation band acts to decrease the former and increase the latter momentum mainly due to dynamic pair correlation. A theoretical approach that takes this effect into account can provide results that are consistent with measured momenta, although large differences can occur in some cases. Major conflicts include a large measured kinetic momentum of inertia compared to the theoretical value, and the absence of the abnormality (shape increase) generally seen in low-spin experiments. The former seems likely to be associated with the method of measuring the angular momentum. (N.K.)

  20. Alterations of left ventricular deformation and cardiac sympathetic derangement in patients with systolic heart failure: a 3D speckle tracking echocardiography and cardiac {sup 123}I-MIBG study

    Energy Technology Data Exchange (ETDEWEB)

    Leosco, Dario; Parisi, Valentina; Pagano, Gennaro; Femminella, Grazia Daniela; Bevilacqua, Agnese; Formisano, Roberto; Ferro, Gaetana; De Lucia, Claudio; Ferrara, Nicola [University Federico II, Department of Translational Medical Science, Naples (Italy); Pellegrino, Teresa [Italian National Research Council (CNR), Institute of Biostructure and Bioimaging, Naples (Italy); University Federico II, Department of Advanced Biomedical Science, Naples (Italy); Paolillo, Stefania [University Federico II, Department of Advanced Biomedical Science, Naples (Italy); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples (Italy); Prastaro, Maria; Filardi, Pasquale Perrone; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Science, Naples (Italy); Rengo, Giuseppe [University Federico II, Department of Translational Medical Science, Naples (Italy); Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, BN (Italy)

    2015-09-15

    Myocardial contractile function is under the control of cardiac sympathetic activity. Three-dimensional speckle tracking echocardiography (3D-STE) and cardiac imaging with {sup 123}I-metaiodobenzylguanidine ({sup 123}I-MIBG) are two sophisticated techniques for the assessment of left ventricular (LV) deformation and sympathetic innervation, respectively, which offer important prognostic information in patients with heart failure (HF). The purpose of this investigation was to explore, in patients with systolic HF, the relationship between LV deformation assessed by 3D-STE and cardiac sympathetic derangement evaluated by {sup 123}I-MIBG imaging. We prospectively studied 75 patients with systolic HF. All patients underwent a 3D-STE study (longitudinal, circumferential, area and radial) and {sup 123}I-MIBG planar and SPECT cardiac imaging. 3D-STE longitudinal, circumferential and area strain values were correlated with {sup 123}I-MIBG late heart to mediastinum (H/M) ratio and late SPECT total defect score. After stratification of the patients according to ischaemic or nonischaemic HF aetiology, we observed a good correlation of all 3D-STE measurements with late H/M ratio and SPECT data in the ischaemic group, but in patients with HF of nonischaemic aetiology, no correlation was found between LV deformation and cardiac sympathetic activity. At the regional level, the strongest correlation between LV deformation and adrenergic innervation was found for the left anterior descending coronary artery distribution territory for all four 3D-STE values. In multivariate linear regression analyses, including age, gender, LV ejection fraction, NYHA class, body mass index, heart rate and HF aetiology, only 3D-STE area and radial strain values significantly predicted cardiac sympathetic derangement on {sup 123}I-MIBG late SPECT. This study indicated that 3D-STE measurements are correlated with {sup 123}I-MIBG planar and SPECT data. Furthermore, 3D-STE area and radial strain values

  1. Disordered long-range internal stresses in deformed copper and the mechanisms underlying plastic deformation

    International Nuclear Information System (INIS)

    Levine, Lyle E.; Geantil, Peter; Larson, Bennett C.; Tischler, Jonathan Z.; Kassner, Michael E.; Liu, Wenjun; Stoudt, Mark R.; Tavazza, Francesca

    2011-01-01

    Highlights: → Axial elastic strains were measured from numerous individual, contiguous dislocation cell walls and cell interiors. → The mean stresses for the cell walls and cell interiors were of opposite sign, in agreement with theoretical predictions. → The separation between the mean cell wall and cell interior stresses was about 20% of the flow stress. → Broad distributions of dipolar stresses were observed that are consistent with a simple size-scaling model. - Abstract: The strength of wavy glide metals increases dramatically during deformation as dislocations multiply and entangle, forming dense dislocation wall structures. Numerous competing models have been proposed for this process but experimental validation and guidance for further model development require new experimental approaches capable of resolving local stresses within the dislocation microstructure. We use three-dimensional X-ray microscopy combining submicrometer spatial resolution with diffracted-beam masking to make direct measurements of axial elastic strain (and thus stress) in individual dislocation cell walls and their adjacent cell interiors in heavily deformed copper. These spatially resolved measurements show broad, asymmetric distributions of dipolar stresses that directly discriminate between long-standing deformation models and demonstrate that the distribution of local stresses is statistically connected to the global behavior through simple rules.

  2. Compensation of deformations in 3D cone beam tomography

    International Nuclear Information System (INIS)

    Desbat, L.; Roux, S.; Roux, S.; Grangeat, P.

    2006-01-01

    In dynamic tomography, the measured objects or organs are no-longer supposed to be static in the scanner during the acquisition but are supposed to move or to be deformed. Our approach is the analytic deformation compensation during the reconstruction. Our work concentrates on 3-dimensional cone beam tomography. We introduce a new large class of deformations preserving the 3-dimensional cone beam geometry. We show that deformations from this class can be analytically compensated. We present numerical experiments on phantoms showing the compensation of these deformations in 3-dimensional cone beam tomography. (authors)

  3. Three-Dimensional Dynamic Deformation Measurements Using Stereoscopic Imaging and Digital Speckle Photography

    International Nuclear Information System (INIS)

    Prentice, H. J.; Proud, W. G.

    2006-01-01

    A technique has been developed to determine experimentally the three-dimensional displacement field on the rear surface of a dynamically deforming plate. The technique combines speckle analysis with stereoscopy, using a modified angular-lens method: this incorporates split-frame photography and a simple method by which the effective lens separation can be adjusted and calibrated in situ. Whilst several analytical models exist to predict deformation in extended or semi-infinite targets, the non-trivial nature of the wave interactions complicates the generation and development of analytical models for targets of finite depth. By interrogating specimens experimentally to acquire three-dimensional strain data points, both analytical and numerical model predictions can be verified more rigorously. The technique is applied to the quasi-static deformation of a rubber sheet and dynamically to Mild Steel sheets of various thicknesses

  4. Measurement of the longitudinal polarization of the HERA electron beam using crystals and the ZEUS luminosity monitor

    International Nuclear Information System (INIS)

    Piotrzkowski, K.

    1995-12-01

    A measurement of the longitudinal polarization of the electron beam at HERA utilizing coherent interactions of high energy photons in crystals is described. Modification of existing facilities would allow an independent polarization measurement and a verification of birefringence phenomena in crystals for 20-30 GeV photons. Relevant experimental issues and systematic uncertainties are also presented. (orig.)

  5. A novel methodology for 3D deformable dosimetry.

    Science.gov (United States)

    Yeo, U J; Taylor, M L; Dunn, L; Kron, T; Smith, R L; Franich, R D

    2012-04-01

    Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms. A modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue-equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT. Reproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter-FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all three dimensions occurring as

  6. A novel methodology for 3D deformable dosimetry

    International Nuclear Information System (INIS)

    Yeo, U. J.; Taylor, M. L.; Dunn, L.; Kron, T.; Smith, R. L.; Franich, R. D.

    2012-01-01

    Purpose: Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms. Methods: A modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue-equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT. Results: Reproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter-FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all

  7. Energy measurement and longitudinal beam emittance reconstruction in L4T line

    CERN Document Server

    Meng, C; Garoby, R; Lallement, JB; Lombardi, A; Tang, J Y; Yarmohammadi Satri, M; CERN. Geneva. ATS Department

    2013-01-01

    LINAC4 is a new linear accelerator for H- ion which will replace proton Linac2 as injector for the CERN proton accelerator complex. LINAC4 accelerates H− ions from 45 keV to 160 MeV in a sequence of normal conducting structures. Then, H- ions with a kinetic energy of 160 MeV will be sent to the PS Booster. This note describes two energy measurement methods and a improved method that will be used for longitudinal emittance reconstruction with space charge by multi-particle tracking code and the expected results.

  8. An experimental study of plastic deformation of materials

    DEFF Research Database (Denmark)

    Knudsen, Tine

    The thesis falls in three parts, focusing on different aspects of plastic deformation of metals. Part I investigates the dislocation structures induced by hot deformation and compares these with the structures after cold deformation. In particular, it is shown that the dislocation structures...... after cold deformation by calorimetry and by analysis of the dislocation structure. The stored energy measured by calorimetry is found to be larger than that determined from the dislocation structure by a factor between 1.9 and 2.7, and this factor decreases with the plastic strain. Part III aimed...

  9. Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus.

    Science.gov (United States)

    Zhang, Xurui; Tchoukov, Plamen; Manica, Rogerio; Wang, Louxiang; Liu, Qingxia; Xu, Zhenghe

    2016-11-09

    Interactions involving deformable surfaces reveal a number of distinguishing physicochemical characteristics that do not exist in interactions between rigid solid surfaces. A unique fully custom-designed instrument, referred to as integrated thin liquid film force apparatus (ITLFFA), was developed to study the interactions between one deformable and one solid surface in liquid. Incorporating a bimorph force sensor with interferometry, this device allows for the simultaneous measurement of the time-dependent interaction force and the corresponding spatiotemporal film thickness of the intervening liquid film. The ITLFFA possesses the specific feature of conducting measurement under a wide range of hydrodynamic conditions, with a displacement velocity of deformable surfaces ranging from 2 μm s -1 to 50 mm s -1 . Equipped with a high speed camera, the results of a bubble interacting with hydrophilic and partially hydrophobic surfaces in aqueous solutions indicated that ITLFFA can provide information on interaction forces and thin liquid film drainage dynamics not only in a stable film but also in films of the quick rupture process. The weak interaction force was extracted from a measured film profile. Because of its well-characterized experimental conditions, ITLFFA permits the accurate and quantitative comparison/validation between measured and calculated interaction forces and temporal film profiles.

  10. Longitudinal measurement of physical activity following kidney transplantation

    NARCIS (Netherlands)

    Dontje, M. L.; de Greef, Mathieu; Krijnen, W. P.; Corpeleijn, E.; Kok, T.; Bakker, S. J. L.; Stolk, R. P.; van der Schans, C. P.

    The purpose of this longitudinal observational study was to (i) examine the change of daily physical activity in 28 adult kidney transplant recipients over the first 12 months following transplantation; and (ii) to examine the change in metabolic characteristics and renal function.

  11. Viscoelastic deformation of lipid bilayer vesicles.

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L; Malmstadt, Noah

    2015-10-07

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic.

  12. Development of deformable moving lung phantom to simulate respiratory motion in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jina [Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Lee, Youngkyu [Department of Radiation Oncology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, 137-701, Seoul (Korea, Republic of); Shin, Hunjoo [Department of Radiation Oncology, Inchoen St. Mary' s Hospital College of Medicine, The Catholic University of Korea, Incheon 403-720 (Korea, Republic of); Ji, Sanghoon [Field Robot R& D Group, Korea Institute of Industrial Technology, Ansan 426-910 (Korea, Republic of); Park, Sungkwang [Department of Radiation Oncology, Busan Paik Hospital, Inje University, Busan 614-735 (Korea, Republic of); Kim, Jinyoung [Department of Radiation Oncology, Haeundae Paik Hospital, Inje University, Busan 612-896 (Korea, Republic of); Jang, Hongseok [Department of Radiation Oncology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, 137-701, Seoul (Korea, Republic of); Kang, Youngnam, E-mail: ynkang33@gmail.com [Department of Radiation Oncology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, 137-701, Seoul (Korea, Republic of)

    2016-07-01

    Radiation treatment requires high accuracy to protect healthy organs and destroy the tumor. However, tumors located near the diaphragm constantly move during treatment. Respiration-gated radiotherapy has significant potential for the improvement of the irradiation of tumor sites affected by respiratory motion, such as lung and liver tumors. To measure and minimize the effects of respiratory motion, a realistic deformable phantom is required for use as a gold standard. The purpose of this study was to develop and study the characteristics of a deformable moving lung (DML) phantom, such as simulation, tissue equivalence, and rate of deformation. The rate of change of the lung volume, target deformation, and respiratory signals were measured in this study; they were accurately measured using a realistic deformable phantom. The measured volume difference was 31%, which closely corresponds to the average difference in human respiration, and the target movement was − 30 to + 32 mm. The measured signals accurately described human respiratory signals. This DML phantom would be useful for the estimation of deformable image registration and in respiration-gated radiotherapy. This study shows that the developed DML phantom can exactly simulate the patient's respiratory signal and it acts as a deformable 4-dimensional simulation of a patient's lung with sufficient volume change.

  13. Development of deformable moving lung phantom to simulate respiratory motion in radiotherapy

    International Nuclear Information System (INIS)

    Kim, Jina; Lee, Youngkyu; Shin, Hunjoo; Ji, Sanghoon; Park, Sungkwang; Kim, Jinyoung; Jang, Hongseok; Kang, Youngnam

    2016-01-01

    Radiation treatment requires high accuracy to protect healthy organs and destroy the tumor. However, tumors located near the diaphragm constantly move during treatment. Respiration-gated radiotherapy has significant potential for the improvement of the irradiation of tumor sites affected by respiratory motion, such as lung and liver tumors. To measure and minimize the effects of respiratory motion, a realistic deformable phantom is required for use as a gold standard. The purpose of this study was to develop and study the characteristics of a deformable moving lung (DML) phantom, such as simulation, tissue equivalence, and rate of deformation. The rate of change of the lung volume, target deformation, and respiratory signals were measured in this study; they were accurately measured using a realistic deformable phantom. The measured volume difference was 31%, which closely corresponds to the average difference in human respiration, and the target movement was − 30 to + 32 mm. The measured signals accurately described human respiratory signals. This DML phantom would be useful for the estimation of deformable image registration and in respiration-gated radiotherapy. This study shows that the developed DML phantom can exactly simulate the patient's respiratory signal and it acts as a deformable 4-dimensional simulation of a patient's lung with sufficient volume change.

  14. A Bloch-Torrey Equation for Diffusion in a Deforming Media

    International Nuclear Information System (INIS)

    Rohmer, Damien; Gullberg, Grant T.

    2006-01-01

    Diffusion Tensor Magnetic Resonance Imaging (DTMRI)technique enables the measurement of diffusion parameters and therefore, informs on the structure of the biological tissue. This technique is applied with success to the static organs such as brain. However, the diffusion measurement on the dynamically deformable organs such as the in-vivo heart is a complex problem that has however a great potential in the measurement of cardiac health. In order to understand the behavior of the Magnetic Resonance (MR)signal in a deforming media, the Bloch-Torrey equation that leads the MR behavior is expressed in general curvilinear coordinates. These coordinates enable to follow the heart geometry and deformations through time. The equation is finally discredited and presented in a numerical formulation using implicit methods, in order to get a stable scheme that can be applied to any smooth deformations. Diffusion process enables the link between the macroscopic behavior of molecules and the microscopic structure in which they evolve. The measurement of diffusion in biological tissues is therefore of major importance in understanding the complex underlying structure that cannot be studied directly. The Diffusion Tensor Magnetic Resonance Imaging(DTMRI) technique enables the measurement of diffusion parameters and therefore provides information on the structure of the biological tissue. This technique has been applied with success to static organs such as the brain. However, diffusion measurement of dynamically deformable organs such as the in-vivo heart remains a complex problem, which holds great potential in determining cardiac health. In order to understand the behavior of the magnetic resonance (MR) signal in a deforming media, the Bloch-Torrey equation that defines the MR behavior is expressed in general curvilinear coordinates. These coordinates enable us to follow the heart geometry and deformations through time. The equation is finally discredited and presented in a

  15. Intra-observer reproducibility and interobserver reliability of the radiographic parameters in the Spinal Deformity Study Group's AIS Radiographic Measurement Manual.

    Science.gov (United States)

    Dang, Natasha Radhika; Moreau, Marc J; Hill, Douglas L; Mahood, James K; Raso, James

    2005-05-01

    Retrospective cross-sectional assessment of the reproducibility and reliability of radiographic parameters. To measure the intra-examiner and interexaminer reproducibility and reliability of salient radiographic features. The management and treatment of adolescent idiopathic scoliosis (AIS) depends on accurate and reproducible radiographic measurements of the deformity. Ten sets of radiographs were randomly selected from a sample of patients with AIS, with initial curves between 20 degrees and 45 degrees. Fourteen measures of the deformity were measured from posteroanterior and lateral radiographs by 2 examiners, and were repeated 5 times at intervals of 3-5 days. Intra-examiner and interexaminer differences were examined. The parameters include measures of curve size, spinal imbalance, sagittal kyphosis and alignment, maximum apical vertebral rotation, T1 tilt, spondylolysis/spondylolisthesis, and skeletal age. Intra-examiner reproducibility was generally excellent for parameters measured from the posteroanterior radiographs but only fair to good for parameters from the lateral radiographs, in which some landmarks were not clearly visible. Of the 13 parameters observed, 7 had excellent interobserver reliability. The measurements from the lateral radiograph were less reproducible and reliable and, thus, may not add value to the assessment of AIS. Taking additional measures encourages a systematic and comprehensive assessment of spinal radiographs.

  16. The Historical Loss Scale: Longitudinal measurement equivalence and prospective links to anxiety among North American indigenous adolescents.

    Science.gov (United States)

    Armenta, Brian E; Whitbeck, Les B; Habecker, Patrick N

    2016-01-01

    Thoughts of historical loss (i.e., the loss of culture, land, and people as a result of colonization) are conceptualized as a contributor to the contemporary distress experienced by North American Indigenous populations. Although discussions of historical loss and related constructs (e.g., historical trauma) are widespread within the Indigenous literature, empirical efforts to understand the consequence of historical loss are limited, partially because of the lack of valid assessments. In this study we evaluated the longitudinal measurement properties of the Historical Loss Scale (HLS)-a standardized measure that was developed to systematically examine the frequency with which Indigenous individuals think about historical loss-among a sample of North American Indigenous adolescents. We also test the hypothesis that thoughts of historical loss can be psychologically distressing. Via face-to-face interviews, 636 Indigenous adolescents from a single cultural group completed the HLS and a measure of anxiety at 4 time-points, which were separated by 1- to 2-year intervals (Mage = 12.09 years, SD = .86, 50.0% girls at baseline). Responses to the HLS were explained well by 3-factor (i.e., cultural loss, loss of people, and cultural mistreatment) and second-order factor structures. Both of these factor structures held full longitudinal metric (i.e., factor loadings) and scalar (i.e., intercepts) equivalence. In addition, using the second-order factor structure, more frequent thoughts of historical loss were associated with increased anxiety. The identified 3-factor and second-order HLS structures held full longitudinal measurement equivalence. Moreover, as predicted, our results suggest that historical loss can be psychologically distressing for Indigenous adolescents. (c) 2016 APA, all rights reserved).

  17. A Bed-Deformation Experiment Beneath Engabreen, Norway

    Science.gov (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    2001-12-01

    Although deformation of sediment beneath ice masses may contribute to their motion and may sometimes enable fast glacier flow, both the kinematics and mechanics of deformation are controversial. This controversy stems, in part, from subglacial measurements that are difficult to interpret. Measurements have been made either beneath ice margins or remotely through boreholes with interpretive limitations caused by uncertain instrument position and performance, uncertain sediment thickness and bed geometry, and unknown disturbance of the bed and stress state by drilling. We have used a different approach made possible by the Svartisen Subglacial Laboratory, which enables human access to the bed of Engabreen, Norway, beneath 230 m of temperate ice. A trough (2 m x 1.5 m x 0.4 m deep) was blasted in the rock bed and filled with sediment (75 percent sand and gravel, 20 percent silt, 5 percent clay). Instruments were placed in the sediment to record shear deformation (tiltmeters), dilation and contraction, total normal stress, and pore-water pressure. Pore pressure was manipulated by feeding water to the base of the sediment with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. After irregular deformation during closure of ice on the sediment, shear deformation and volume change stopped, and total normal stress became constant at 2.2 MPa. Subsequent pump tests, which lasted several hours, induced pore-water pressures greater than 70 percent of the total normal stress and resulted in shear deformation over most of the sediment thickness with attendant dilation. Ice separated from the sediment when effective normal stress was lowest, arresting shear deformation. Displacement profiles during pump tests were similar to those observed by Boulton and co-workers at Breidamerkurjökull, Iceland, with rates of shear strain increasing upward toward the glacier sole. Such deformation does not require viscous deformation resistance and is expected in a

  18. Deformation and Failure Mechanism of Roadway Sensitive to Stress Disturbance and Its Zonal Support Technology

    Directory of Open Access Journals (Sweden)

    Qiangling Yao

    2016-01-01

    Full Text Available The 6163 haulage roadway in the Qidong coal mine passes through a fault zone, which causes severe deformation in the surrounding rock, requiring repeated roadway repairs. Based on geological features in the fault area, we analyze the factors affecting roadway deformation and failure and propose the concept of roadway sensitive to stress disturbance (RSSD. We investigate the deformation and failure mechanism of the surrounding rocks of RSSD using field monitoring, theoretical analysis, and numerical simulation. The deformation of the surrounding rocks involves dilatation of shallow rocks and separation of deep rocks. Horizontal and longitudinal fissures evolve to bed separation and fracture zones; alternatively, fissures can evolve into fracture zones with new fissures extending to deeper rock. The fault affects the stress field of the surrounding rock to ~27 m radius. Its maximum impact is on the vertical stress of the rib rock mass and its minimum impact is on the vertical stress of the floor rock mass. Based on our results, we propose a zonal support system for a roadway passing through a fault. Engineering practice shows that the deformation of the surrounding rocks of the roadway can be effectively controlled to ensure normal and safe production in the mine.

  19. The influences of deformation velocity and temperature on localized deformation of zircaloy-4 in tensile tests

    International Nuclear Information System (INIS)

    Boratto, F.J.M.

    1973-01-01

    A new parameter to describe the necking stability in zircaloy-4 during tensile tests is introduced. The parameter is defined as: s = ∂Ln (dσ/dε)/∂Ln ((1/L)dL/dt) for constant temperature, deformation and history. Measures of stress strain rate sensitivity n, reduction of the area at fracture, and deformation profiles of tensile fracture, are done. A complete description of the curve of non-uniform deformation variation with the temperature, is presented. The results are compared with existing data for pure commercially titanium. The influence of strain rate and history on s and n parameters, in the temperature range from 100-700 0 C). (author) [pt

  20. Deformation of in-service pressure tubes

    International Nuclear Information System (INIS)

    Sarce, A.L.

    1993-01-01

    Candu type nuclear reactor pressure tubes suffer deformations during operation. This are consequences of irradiation growth and creep. By means of a computer code which takes into account the material microstructure, the above mentioned deformations are calculated, and results are compared with corresponding values measured at Embalse nuclear power plant. The calculations make explicit inclusion of intergranular stresses caused by an isotropy in the material. (author). 1 ref

  1. A test case of the deformation rate analysis (DRA) stress measurement method

    Energy Technology Data Exchange (ETDEWEB)

    Dight, P.; Hsieh, A. [Australian Centre for Geomechanics, Univ. of WA, Crawley (Australia); Johansson, E. [Saanio and Riekkola Oy, Helsinki (Finland); Hudson, J.A. [Rock Engineering Consultants (United Kingdom); Kemppainen, K.

    2012-01-15

    As part of Posiva's site and ONKALO investigations, the in situ rock stress has been measured by a variety of techniques, including hydraulic fracturing, overcoring, and convergence measurements. All these techniques involve direct measurements in a drillhole or at the rock surface. An alternative method is to test drillhole core in a way that enables estimation of the magnitudes and orientations of the in situ rock stress. The Kaiser Effect (KE) and Deformation Rate Analysis (DRA) are two ways to do this. In the work reported here, a 'blind' DRA test was conducted on core obtained from the POSE (Posiva's Olkiluoto Spalling Experiment) niche in the ONKALO. The term 'blind' means that the two first authors of this report, who conducted the tests at the Australian Centre for Geomechanics, did not know the depths below surface at which the cores had been obtained. The results of this DRA Test Case are presented, together with an explanation of the DRA procedure. Also, additional information that would help in such DRA testing and associated analysis is explained. One of the problems in comparing the DRA results with the known Olkiluoto stress field is that the latter is highly variable across the site, as experienced by the previous in situ stress measurements and as predicted by numerical analysis. The variability is mainly caused by the presence of the large brittle deformation zones which perturb the local stress state. However, this variability reduces with depth and the stress field becomes more stable at the {approx} 350 m at which the drillhole cores were obtained. Another compounding difficulty is that the stress quantity, being a second order tensor, requires six independent components for its specification. In other words, comparison of the DRA results and the known stress field requires comparison of six different quantities. In terms of the major principal stress orientation, the DRA results predict an orientation completely

  2. A test case of the deformation rate analysis (DRA) stress measurement method

    International Nuclear Information System (INIS)

    Dight, P.; Hsieh, A.; Johansson, E.; Hudson, J.A.; Kemppainen, K.

    2012-01-01

    As part of Posiva's site and ONKALO investigations, the in situ rock stress has been measured by a variety of techniques, including hydraulic fracturing, overcoring, and convergence measurements. All these techniques involve direct measurements in a drillhole or at the rock surface. An alternative method is to test drillhole core in a way that enables estimation of the magnitudes and orientations of the in situ rock stress. The Kaiser Effect (KE) and Deformation Rate Analysis (DRA) are two ways to do this. In the work reported here, a 'blind' DRA test was conducted on core obtained from the POSE (Posiva's Olkiluoto Spalling Experiment) niche in the ONKALO. The term 'blind' means that the two first authors of this report, who conducted the tests at the Australian Centre for Geomechanics, did not know the depths below surface at which the cores had been obtained. The results of this DRA Test Case are presented, together with an explanation of the DRA procedure. Also, additional information that would help in such DRA testing and associated analysis is explained. One of the problems in comparing the DRA results with the known Olkiluoto stress field is that the latter is highly variable across the site, as experienced by the previous in situ stress measurements and as predicted by numerical analysis. The variability is mainly caused by the presence of the large brittle deformation zones which perturb the local stress state. However, this variability reduces with depth and the stress field becomes more stable at the ∼ 350 m at which the drillhole cores were obtained. Another compounding difficulty is that the stress quantity, being a second order tensor, requires six independent components for its specification. In other words, comparison of the DRA results and the known stress field requires comparison of six different quantities. In terms of the major principal stress orientation, the DRA results predict an orientation completely different to the NW-SE regional

  3. Microstructure and mechanical properties of precipitation hardened aluminum under high rate deformation

    International Nuclear Information System (INIS)

    Grady, D.E.; Asav, J.R.; Rohde, R.W.; Wise, J.L.

    1983-01-01

    This chapter attempts to correlate the shock compression and quasistatic deformation of 6061-T6 aluminium. Examines recovered specimens which have been shock loaded, and compares results with both static and dynamic mechanical property measurements. Discusses experimental procedures (reshock and unloading experiments, shock recovery techniques, metallographic techniques and coldwork experiments); dynamic strength and wave-profile properties (strength and shear-stress states on the Hugoniot, steady-wave risetime and viscosity); quasistatic and shock metallography studies (metallography of quasistatically deformed material; metallography of shock deformed specimens; comparison of static and shock deformation; correlation of hardness and dynamic strength measurements); and thermal trapping calculations in shocked aluminium (heterogeneous deformation and adiabatic heating in shock-wave loading; energy and risetime relations under steadywave shock compression; heterogeneous temperature calculations in aluminium). Concludes that heterogeneous shear deformation appears to play a role in the dynamic deformation process

  4. Problem of ''deformed'' superheavy nuclei

    International Nuclear Information System (INIS)

    Sobiczewski, A.; Patyk, Z.; Muntian, I.

    2000-08-01

    Problem of experimental confirmation of deformed shapes of superheavy nuclei situated in the neighbourhood of 270 Hs is discussed. Measurement of the energy E 2+ of the lowest 2+ state in even-even species of these nuclei is considered as a method for this confirmation. The energy is calculated in the cranking approximation for heavy and superheavy nuclei. The branching ratio p 2+ /p 0+ between α decay of a nucleus to this lowest 2+ state and to the ground state 0+ of its daughter is also calculated for these nuclei. The results indicate that a measurement of the energy E 2+ for some superheavy nuclei by electron or α spectroscopy is a promising method for the confirmation of their deformed shapes. (orig.)

  5. Cam deformity and the omega angle, a novel quantitative measurement of femoral head-neck morphology: a 3D CT gender analysis in asymptomatic subjects

    International Nuclear Information System (INIS)

    Mascarenhas, Vasco V.; Gaspar, Augusto; Rego, Paulo; Dantas, Pedro; Soldado, Francisco; Consciencia, Jose G.

    2017-01-01

    Our objectives were to use 3D computed tomography (CT) to define head-neck morphologic gender-specific and normative parameters in asymptomatic individuals and use the omega angle (Ω ) to provide quantification data on the location and radial extension of a cam deformity. We prospectively included 350 individuals and evaluated 188 asymptomatic hips that underwent semiautomated CT analysis. Different thresholds of alpha angle (α ) were considered in order to analyze cam morphology and determine Ω . We calculated overall and gender-specific parameters for imaging signs of cam morphology (Ω and circumferential α ). The 95 % reference interval limits were beyond abnormal thresholds found in the literature for cam morphology. Specifically, α at 3/1 oclock were 46.9 /60.8 overall, 51.8 /65.4 for men and 45.7 /55.3 for women. Cam prevalence, magnitude, location, and epicenter were significantly gender different. Increasing α correlated with higher Ω , meaning that higher angles correspond to larger cam deformities. Hip morphometry measurements in this cohort of asymptomatic individuals extended beyond current thresholds used for the clinical diagnosis of cam deformity, and α was found to vary both by gender and measurement location. These results suggest that α measurement is insufficient for the diagnosis of cam deformity. Enhanced morphometric evaluation, including 3D imaging and Ω , may enable a more accurate diagnosis. (orig.)

  6. Cam deformity and the omega angle, a novel quantitative measurement of femoral head-neck morphology: a 3D CT gender analysis in asymptomatic subjects

    Energy Technology Data Exchange (ETDEWEB)

    Mascarenhas, Vasco V.; Gaspar, Augusto [Hospital da Luz, MSK imaging Unit (UIME), Imaging Center, Lisbon (Portugal); Rego, Paulo [Hospital da Luz, Department of Orthopaedic Surgery, Lisbon (Portugal); Dantas, Pedro [Hospital CUF Descobertas, Lisbon (Portugal); Soldado, Francisco [Universitat de Barcelona, Hospital Sant Joan de Deu, Barcelona (Spain); Consciencia, Jose G. [NOVA Medical School, Lisbon (Portugal)

    2017-05-15

    Our objectives were to use 3D computed tomography (CT) to define head-neck morphologic gender-specific and normative parameters in asymptomatic individuals and use the omega angle (Ω ) to provide quantification data on the location and radial extension of a cam deformity. We prospectively included 350 individuals and evaluated 188 asymptomatic hips that underwent semiautomated CT analysis. Different thresholds of alpha angle (α ) were considered in order to analyze cam morphology and determine Ω . We calculated overall and gender-specific parameters for imaging signs of cam morphology (Ω and circumferential α ). The 95 % reference interval limits were beyond abnormal thresholds found in the literature for cam morphology. Specifically, α at 3/1 oclock were 46.9 /60.8 overall, 51.8 /65.4 for men and 45.7 /55.3 for women. Cam prevalence, magnitude, location, and epicenter were significantly gender different. Increasing α correlated with higher Ω , meaning that higher angles correspond to larger cam deformities. Hip morphometry measurements in this cohort of asymptomatic individuals extended beyond current thresholds used for the clinical diagnosis of cam deformity, and α was found to vary both by gender and measurement location. These results suggest that α measurement is insufficient for the diagnosis of cam deformity. Enhanced morphometric evaluation, including 3D imaging and Ω , may enable a more accurate diagnosis. (orig.)

  7. Measurement bias detection with Kronecker product restricted models for multivariate longitudinal data : An illustration with health-related quality of life data from thirteen measurement occasions

    NARCIS (Netherlands)

    Verdam, M.G.E.; Oort, F.J.

    2014-01-01

    Highlights: - Application of Kronecker product to construct parsimonious structural equation models for multivariate longitudinal data. - A method for the investigation of measurement bias with Kronecker product restricted models. - Application of these methods to health-related quality of life data

  8. Viscoelastic deformation of lipid bilayer vesicles†

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L.

    2015-01-01

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic. PMID:26268612

  9. Upper-extremity phocomelia reexamined: a longitudinal dysplasia.

    Science.gov (United States)

    Goldfarb, Charles A; Manske, Paul R; Busa, Riccardo; Mills, Janith; Carter, Peter; Ezaki, Marybeth

    2005-12-01

    In contrast to longitudinal deficiencies, phocomelia is considered a transverse, intercalated segmental dysplasia. Most patients demonstrate severe, but not otherwise classifiable, upper-extremity deformities, which usually cannot be placed into one of three previously described phocomelia groups. Additionally, these phocomelic extremities do not demonstrate true segmental deficits; the limb is also abnormal proximal and distal to the segmental defect. The purpose of this investigation was to present evidence that upper-extremity abnormalities in patients previously diagnosed as having phocomelia in fact represent a proximal continuum of radial or ulnar longitudinal dysplasia. The charts and radiographs of forty-one patients (sixty extremities) diagnosed as having upper-extremity phocomelia were reviewed retrospectively. On the basis of the findings on the radiographs, the disorders were categorized into three groups: (1) proximal radial longitudinal dysplasia, which was characterized by an absent proximal part of the humerus, a nearly normal distal part of the humerus, a completely absent radius, and a radial-sided hand dysplasia; (2) proximal ulnar longitudinal dysplasia, characterized by a short one-bone upper extremity that bifurcated distally and by severe hand abnormalities compatible with ulnar dysplasia; and (3) severe combined dysplasia, with type A characterized by an absence of the forearm segment (i.e., the radius and ulna) and type B characterized by absence of the arm and forearm (i.e., the hand attached to the thorax). Twenty-nine limbs in sixteen patients could be classified as having proximal radial longitudinal dysplasia. Systemic medical conditions such as thrombocytopenia-absent radius syndrome were common in those patients, but additional musculoskeletal conditions were rare. Twenty limbs in seventeen patients could be classified as having proximal ulnar longitudinal dysplasia. Associated musculoskeletal abnormalities, such as proximal femoral

  10. Electrical resistivity response due to elastic-plastic deformations

    International Nuclear Information System (INIS)

    Stout, R.B.

    1987-01-01

    The electrical resistivity of many materials is sensitive to changes in the electronic band configurations surrounding the atoms, changes in the electron-phonon interaction cross-sections, and changes in the density of intrinsic defect structures. These changes are most directly dependent on interatomic measures of relative deformation. For this reason, a model for resistivity response is developed in terms of interatomic measures of relative deformation. The relative deformation consists of two terms, a continuous function to describe the recoverable displacement between two atoms in the atomic lattice structure and a functional to describe the nonrecoverable displacement between two atoms as a result of interatomic discontinuities from dislocation kinetics. This model for resistivity extends the classical piezoresistance representation and relates electric resistance change directly to physical mechanisms. An analysis for the resistivity change of a thin foil ideally embedded in a material that undergoes elastic-plastic deformation is presented. For the case of elastic deformations, stress information in the material surrounding the thin foil is inferred for the cases of pure strain coupling boundary conditions, pure stress coupling boundary conditions, and a combination of stress-strain coupling boundary conditions. 42 refs., 4 figs

  11. NONINVASIVE DETERMINATION OF KNEE CARTILAGE DEFORMATION DURING JUMPING

    Directory of Open Access Journals (Sweden)

    Djordje Kosanic

    2009-12-01

    Full Text Available The purpose of this investigation was to use a combination of image processing, force measurements and finite element modeling to calculate deformation of the knee cartilage during jumping. Professional athletes performed jumps analyzed using a force plate and high-speed video camera system. Image processing was performed on each frame of video using a color recognition algorithm. A simplified mass-spring-damper model was utilized for determination of global force and moment on the knee. Custom software for fitting the coupling characteristics was created. Simulated results were used as input data for the finite element calculation of cartilage deformation in the athlete's knee. Computer simulation data was compared with the average experimental ground reaction forces. The results show the three-dimensional mechanical deformation distribution inside the cartilage volume. A combination of the image recognition technology, force plate measurements and the finite element cartilage deformation in the knee may be used in the future as an effective noninvasive tool for prediction of injury during jumping

  12. Deformation analysis with Total Least Squares

    Directory of Open Access Journals (Sweden)

    M. Acar

    2006-01-01

    Full Text Available Deformation analysis is one of the main research fields in geodesy. Deformation analysis process comprises measurement and analysis phases. Measurements can be collected using several techniques. The output of the evaluation of the measurements is mainly point positions. In the deformation analysis phase, the coordinate changes in the point positions are investigated. Several models or approaches can be employed for the analysis. One approach is based on a Helmert or similarity coordinate transformation where the displacements and the respective covariance matrix are transformed into a unique datum. Traditionally a Least Squares (LS technique is used for the transformation procedure. Another approach that could be introduced as an alternative methodology is the Total Least Squares (TLS that is considerably a new approach in geodetic applications. In this study, in order to determine point displacements, 3-D coordinate transformations based on the Helmert transformation model were carried out individually by the Least Squares (LS and the Total Least Squares (TLS, respectively. The data used in this study was collected by GPS technique in a landslide area located nearby Istanbul. The results obtained from these two approaches have been compared.

  13. Deformation-specific and deformation-invariant visual object recognition: pose vs identity recognition of people and deforming objects

    Directory of Open Access Journals (Sweden)

    Tristan J Webb

    2014-04-01

    Full Text Available When we see a human sitting down, standing up, or walking, we can recognise one of these poses independently of the individual, or we can recognise the individual person, independently of the pose. The same issues arise for deforming objects. For example, if we see a flag deformed by the wind, either blowing out or hanging languidly, we can usually recognise the flag, independently of its deformation; or we can recognise the deformation independently of the identity of the flag. We hypothesize that these types of recognition can be implemented by the primate visual system using temporo-spatial continuity as objects transform as a learning principle. In particular, we hypothesize that pose or deformation can be learned under conditions in which large numbers of different people are successively seen in the same pose, or objects in the same deformation. We also hypothesize that person-specific representations that are independent of pose, and object-specific representations that are independent of deformation and view, could be built, when individual people or objects are observed successively transforming from one pose or deformation and view to another. These hypotheses were tested in a simulation of the ventral visual system, VisNet, that uses temporal continuity, implemented in a synaptic learning rule with a short-term memory trace of previous neuronal activity, to learn invariant representations. It was found that depending on the statistics of the visual input, either pose-specific or deformation-specific representations could be built that were invariant with respect to individual and view; or that identity-specific representations could be built that were invariant with respect to pose or deformation and view. We propose that this is how pose-specific and pose-invariant, and deformation-specific and deformation-invariant, perceptual representations are built in the brain.

  14. Fibre optical measuring network based on quasi-distributed amplitude sensors for detecting deformation loads

    International Nuclear Information System (INIS)

    Kul'chin, Yurii N; Kolchinskiy, V A; Kamenev, O T; Petrov, Yu S

    2013-01-01

    A new design of a sensitive element for a fibre optical sensor of deformation loads is proposed. A distributed fibre optical measuring network, aimed at determining both the load application point and the load mass, has been developed based on these elements. It is shown that neural network methods of data processing make it possible to combine quasi-distributed amplitude sensors of different types into a unified network. The results of the experimental study of a breadboard of a fibre optical measuring network are reported, which demonstrate successful reconstruction of the trajectory of a moving object (load) with a spatial resolution of 8 cm, as well as the load mass in the range of 1 – 10 kg with a sensitivity of 0.043 kg -1 . (laser optics 2012)

  15. Measurements of multipolarities in 227Ra as tests of evidence for stable octupole deformation

    International Nuclear Information System (INIS)

    Borge, M.J.G.; Burke, D.G.; Gietz, H.; Hill, P.; Kaffrell, N.

    1987-01-01

    Multipolarities of ∝30 transitions in 227 Ra have been established by measuring conversion electrons following the β - decay of 227 Fr. For this purpose a 'mini-orange'-type electron spectrometer has been constructed. The 227 Fr isotopes were produced by the ISOLDE on-line separator at the CERN Synchro-cyclotron. Internal conversion coefficients were obtained from singles spectra and also from simultaneous γe - and γγ coincidence measurements. The new results support the placement of levels and transitions in the earlier level scheme but require changes in the previously assigned parities for four of the levels. Also, one E0 transition was identified. The results are consistent with previous interpretations for most of the levels that have been used to argue in favour of a small permanent octupole deformation for 227 Ra. (orig.)

  16. Measurement of R = σL/σT and the Separated Longitudinal and Transverse Structure Functions in the Nucleon Resonance Region

    International Nuclear Information System (INIS)

    Yongguang Liang; Michael Christy; Abdellah Ahmidouch; Christopher Armstrong; John Arrington; Arshak Asaturyan; Steven Avery; Baker, O.; Douglas Beck; Henk Blok; Bochna, C.W.; Werner Boeglin; Peter Bosted; Maurice Bouwhuis; Herbert Breuer; Daniel Brown; Antje Bruell; Roger Carlini; Jinseok Cha; Nicholas Chant; Anthony Cochran; Leon Cole; Samuel Danagoulian; Donal Day; James Dunne; Dipangkar Dutta; Rolf Ent; Howard Fenker; Fox, B.; Liping Gan; Haiyan Gao; Kenneth Garrow; David Gaskell; Ashot Gasparian; Don Geesaman; Ronald Gilman; Paul Gueye; Mark Harvey; Roy Holt; Xiaodong Jiang; Mark Jones; Cynthia Keppel; Edward Kinney; Wolfgang Lorenzon; Allison Lung; David Mack; Pete Markowitz; Martin, J.W.; Kevin McIlhany; Daniella Mckee; David Meekins; Miller, M.A.; Richard Milner; Joseph Mitchell; Hamlet Mkrtchyan; Robert Mueller; Alan Nathan; Gabriel Niculescu; Maria-Ioana Niculescu; Thomas O'neill; Vassilios Papavassiliou; Stephen Pate; Rodney Piercey; David Potterveld; Ronald Ransome; Joerg Reinhold; Rollinde, E.; Oscar Rondon-Aramayo; Philip Roos; Adam Sarty; Reyad Sawafta; Elaine Schulte; Edwin Segbefia; Smith, C.; Samuel Stepanyan; Steffen Strauch; Vardan Tadevosyan; Liguang Tang; Raphael Tieulent; Vladas Tvaskis; Alicia Uzzle; William Vulcan; Stephen Wood; Feng Xiong; Lulin Yuan; Markus Zeier; Benedikt Zihlmann; Vitaliy Ziskin

    2004-01-01

    We report on a detailed study of longitudinal strength in the nucleon resonance region, presenting new results from inclusive electron-proton cross sections measured at Jefferson Lab Hall C in the four-momentum transfer range 0.2 2 2 . The data have been used to accurately perform over 170 Rosenbluth-type longitudinal/transverse separations. The precision R σ L /σ T data are presented here, along with the first separate values of the inelastic structure functions F 1 and F L in this regime. The resonance longitudinal component is found to be significant. With the new data, quark-hadron duality is observed above Q 2 = 1 GeV 2 in the separated structure functions independently

  17. Strength and structure during hot deformation of nickel-base superalloys

    International Nuclear Information System (INIS)

    Ribeiro, N.D.; Sellars, C.M.

    1984-01-01

    The effect of deformational variables on the flow stress and microstructure developed by plane strain compression testing and experimental rolling of three otherwise well characterized nickel-base super alloys, Nimonic 80A, Nimonic 90 and Waspaloy are presented. Rolled or tested samples were sectioned longitudinally at mid-width and were prepared for optical metallography. X-ray analysis of particles observed in several samples was carried out on polished and lightly etehed surfaces using a diffractometer with CoKα radiation. For other samples, energy dispersive x-ray analysis was also carried out in a scanning microscope. (E.G.) [pt

  18. Measurement bias detection with Kronecker product restricted models for multivariate longitudinal data: an illustration with health-related quality of life data from thirteen measurement occasions

    NARCIS (Netherlands)

    Verdam, Mathilde G. E.; Oort, Frans J.

    2014-01-01

    Application of Kronecker product to construct parsimonious structural equation models for multivariate longitudinal data. A method for the investigation of measurement bias with Kronecker product restricted models. Application of these methods to health-related quality of life data from bone

  19. Developing a Virtual Rock Deformation Laboratory

    Science.gov (United States)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  20. Three-dimensional deformation of orthodontic brackets

    OpenAIRE

    Melenka, Garrett W; Nobes, David S; Major, Paul W; Carey, Jason P

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire?bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are c...

  1. Nucleon deformation from lattice QCD

    International Nuclear Information System (INIS)

    Tsapalis, A.

    2008-01-01

    The issue of nucleon and Delta(1232) deformation is discussed through the evaluation of the N to Delta electromagnetic transition and Delta electromagnetic form factors in Lattice QCD. The momentum dependence of the form factors is studied using 2+1 staggered dynamical flavors at pion masses as low as 350 MeV and compared to results obtained in the Wilson quenched and two-flavor dynamical theory at similar pion masses. The measurement of small non-zero quadrupole amplitudes, in agreement to recent experiments, establishes the existence of deformation in the N and Delta states. (author)

  2. Channeling of protons through radial deformed carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Borka Jovanović, V., E-mail: vborka@vinca.rs [Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Borka, D. [Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Galijaš, S.M.D. [Faculty of Physics, University of Belgrade, P.O. Box 368, 11001 Belgrade (Serbia)

    2017-05-18

    Highlights: • For the first time we presented theoretically obtained distributions of channeled protons with radially deformed SWNT. • Our findings indicate that influence of the radial deformation is very strong and it should not be omitted in simulations. • We show that the spatial and angular distributions depend strongly of level of radial deformation of nanotube. • Our obtained results can be compared with measured distributions to reveal the presence of various types of defects in SWNT. - Abstract: In this paper we have presented a theoretical investigation of the channeling of 1 GeV protons with the radial deformed (10, 0) single-wall carbon nanotubes (SWNTs). We have calculated channeling potential within the deformed nanotubes. For the first time we presented theoretically obtained spatial and angular distributions of channeled protons with radially deformed SWNT. We used a Monte Carlo (MC) simulation technique. We show that the spatial and angular distributions depend strongly of level of radial deformation of nanotube. These results may be useful for nanotube characterization and production and guiding of nanosized ion beams.

  3. Longitudinal Electron Bunch Diagnostics Using Coherent Transition Radiation

    CERN Document Server

    Mihalcea, Daniel; Happek, Uwe; Regis-Guy Piot, Philippe

    2005-01-01

    The longitudinal charge distribution of electron bunches in the Fermilab A0 photo-injector was determined by using the coherent transition radiation produced by electrons passing through a thin metallic foil. The auto-correlation of the transition radiation signal was measured with a Michelson type interferometer. The response function of the interferometer was determined from measured and simulated power spectra for low electron bunch charge and maximum longitudinal compression. Kramers-Kroning technique was used to determine longitudinal charge distribution. Measurements were performed for electron bunch lengths in the range from 0.3 to 2 ps (rms).

  4. Deformation analyse of the high point field Košická Nová Ves

    Directory of Open Access Journals (Sweden)

    Sedlák Vladimír

    2003-09-01

    Full Text Available From the science point of view the deformation measurements serve to an objective determination of movements and from the technical point of view the deformation measurements serve to a determinantion of the building technologies and the construction procedures. Detrmined movements by means of using the geodetic terrestrial or satellite navigation technologies give informations about displacements in a concrete time information on the base of repeated geodetic measurements in the concrete time intervals (epochs.Level deformation investigation of the point of the monitoring station stabled in the fill slope territory Košická Nová Ves is the main task of the presented paper. Level measurements are realized in autumn 2000 (the epoch 200.9 - it is considered as the first epoch of the deformation measurement, and in spring 2001 (the epoch 2001.3 – it is considered as the second epoch of the deformation measurement.

  5. Longitudinal relaxation of initially straight flexible and stiff polymers

    Science.gov (United States)

    Dimitrakopoulos, Panagiotis; Dissanayake, Inuka

    2004-11-01

    The present talk considers the relaxation of a single flexible or stiff polymer chain from an initial straight configuration in a viscous solvent. This problem commonly arises when strong flows are turned off in both industrial and biological applications. The problem is also motivated by recent experiments with single biopolymer molecules relaxing after being fully extended by applied forces as well as by the recent development of micro-devices involving stretched tethered biopolymers. Our results are applicable to a wide array of synthetic polymers such as polyacrylamides, Kevlar and polyesters as well as biopolymers such as DNA, actin filaments, microtubules and MTV. In this talk we discuss the mechanism of the polymer relaxation as was revealed through Brownian Dynamics simulations covering a broad range of time scales and chain stiffness. After the short-time free diffusion, the chain's longitudinal reduction at early intermediate times is shown to constitute a universal behavior for any chain stiffness caused by a quasi-steady relaxation of tensions associated with the deforming action of the Brownian forces. Stiff chains are shown to exhibit a late intermediate-time longitudinal reduction associated with a relaxation of tensions affected by the deforming Brownian and the restoring bending forces. The longitudinal and transverse relaxations are shown to obey different laws, i.e. the chain relaxation is anisotropic at all times. In the talk, we show how from the knowledge of the relaxation mechanism, we can predict and explain the polymer properties including the polymer stress and the solution birefringence. In addition, a generalized stress-optic law is derived valid for any time and chain stiffness. All polymer properties which depend on the polymer length are shown to exhibit two intermediate-time behaviors with the early one to constitute a universal behavior for any chain stiffness. This work was supported in part by the Minta Martin Research Fund. The

  6. UTILIZATION OF STEREOLOGY FOR QUANTITATIVE ANALYSIS OF PLASTIC DEFORMATION OF FORMING PIECES

    Directory of Open Access Journals (Sweden)

    Maroš Martinkovič

    2012-01-01

    Full Text Available Mechanical working leads to final properties of forming pieces, which are affected by conditions of production technology. Utilization of stereology leads to the detail analysis of three-dimensional plastic deformed material structure by different forming technologies, e.g. forging, extruding, upsetting, metal spinning, drawing etc. The microstructure of cold drawing wires was analyzed. Grain boundaries orientation was measured on the parallel section of wire with a different degree of deformation and direct axis plastic deformation was evaluated in bulk formed part. The strain of probes on their sections was obtained using stereology by measurement of degree of grain boundary orientation which was converted to deformation using model of conversion of grain boundary orientation degree to deformation.

  7. Deformation Measurement of a Driven Pile Using Distributed Fibre-optic Sensing

    Science.gov (United States)

    Monsberger, Christoph; Woschitz, Helmut; Hayden, Martin

    2016-03-01

    New developments in distributed fibre-optic sensing allow the measurement of strain with a very high precision of about 1 µm / m and a spatial resolution of 10 millimetres or even better. Thus, novel applications in several scientific fields may be realised, e. g. in structural monitoring or soil and rock mechanics. Especially due to the embedding capability of fibre-optic sensors, fibre-optic systems provide a valuable extension to classical geodetic measurement methods, which are limited to the surface in most cases. In this paper, we report about the application of an optical backscatter reflectometer for deformation measurements along a driven pile. In general, pile systems are used in civil engineering as an efficient and economic foundation of buildings and other structures. Especially the length of the piles is crucial for the final loading capacity. For optimization purposes, the interaction between the driven pile and the subsurface material is investigated using pile testing methods. In a field trial, we used a distributed fibre-optic sensing system for measuring the strain below the surface of an excavation pit in order to derive completely new information. Prior to the field trial, the fibre-optic sensor was investigated in the laboratory. In addition to the results of these lab studies, we briefly describe the critical process of field installation and show the most significant results from the field trial, where the pile was artificially loaded up to 800 kN. As far as we know, this is the first time that the strain is monitored along a driven pile with such a high spatial resolution.

  8. A Systematic Review of Longitudinal Studies Which Measure Alzheimer's Disease Biomarkers.

    Science.gov (United States)

    Lawrence, Emma; Vegvari, Carolin; Ower, Alison; Hadjichrysanthou, Christoforos; De Wolf, Frank; Anderson, Roy M

    2017-01-01

    Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease, with no effective treatment or cure. A gold standard therapy would be treatment to slow or halt disease progression; however, knowledge of causation in the early stages of AD is very limited. In order to determine effective endpoints for possible therapies, a number of quantitative surrogate markers of disease progression have been suggested, including biochemical and imaging biomarkers. The dynamics of these various surrogate markers over time, particularly in relation to disease development, are, however, not well characterized. We reviewed the literature for studies that measured cerebrospinal fluid or plasma amyloid-β and tau, or took magnetic resonance image or fluorodeoxyglucose/Pittsburgh compound B-positron electron tomography scans, in longitudinal cohort studies. We summarized the properties of the major cohort studies in various countries, commonly used diagnosis methods and study designs. We have concluded that additional studies with repeat measures over time in a representative population cohort are needed to address the gap in knowledge of AD progression. Based on our analysis, we suggest directions in which research could move in order to advance our understanding of this complex disease, including repeat biomarker measurements, standardization and increased sample sizes.

  9. Research on Non-Similarity about Thermal Deformation Error of Mechanical Parts in High-accuracy Measurement

    International Nuclear Information System (INIS)

    Luo, Z; Fei, Y T

    2006-01-01

    Expanding with heat and contracting with cold are common physical phenomenon in the nature. The conventional theories and calculations of thermal deformation are approximate and linear, can only be applied in normal or low precision field. The thermal deformation error of mechanical parts doesn't follow the conventional linear formula, it relates to all physical dimension of the mechanical part, and the deformation can be indicated by a nonlinear formula of physical dimensions. A theory on non-similarity about thermal deformation error of mechanical parts is presented. Studies on some common mechanical parts in precision technology have went on and the mathematical models have been set up, hollow piece, gear and cube are included. The experimental results also make it clear that these models are more logical than traditional models

  10. Low-cost, portable, robust and high-resolution single-camera stereo-DIC system and its application in high-temperature deformation measurements

    Science.gov (United States)

    Chi, Yuxi; Yu, Liping; Pan, Bing

    2018-05-01

    A low-cost, portable, robust and high-resolution single-camera stereo-digital image correlation (stereo-DIC) system for accurate surface three-dimensional (3D) shape and deformation measurements is described. This system adopts a single consumer-grade high-resolution digital Single Lens Reflex (SLR) camera and a four-mirror adaptor, rather than two synchronized industrial digital cameras, for stereo image acquisition. In addition, monochromatic blue light illumination and coupled bandpass filter imaging are integrated to ensure the robustness of the system against ambient light variations. In contrast to conventional binocular stereo-DIC systems, the developed pseudo-stereo-DIC system offers the advantages of low cost, portability, robustness against ambient light variations, and high resolution. The accuracy and precision of the developed single SLR camera-based stereo-DIC system were validated by measuring the 3D shape of a stationary sphere along with in-plane and out-of-plane displacements of a translated planar plate. Application of the established system to thermal deformation measurement of an alumina ceramic plate and a stainless-steel plate subjected to radiation heating was also demonstrated.

  11. Measuring Cultural Socialization Attitudes and Behaviors of Mexican-Origin Mothers With Young Children: A Longitudinal Investigation.

    Science.gov (United States)

    Derlan, Chelsea L; Umaña-Taylor, Adriana J; Toomey, Russell B; Jahromi, Laudan B; Updegraff, Kimberly A

    2016-07-01

    We describe the development and psychometric testing of the Cultural Socialization Behaviors Measure (CSBM) and the Cultural Socialization Attitudes Measure (CSAM). The CSBM assesses cultural socialization behaviors that parents use with young children, and the CSAM assesses the attitudes that parents have regarding the importance of socializing their young children about their culture. Both measures demonstrated strong reliability, validity, and cross-language equivalence (i.e., Spanish and English) among a sample of 204 Mexican-origin young mothers ( M age = 20.94 years, SD = 1.01) with 4-year-old children. In addition, the measures demonstrated longitudinal equivalence when children were 4 and 5 years of age.

  12. Longitudinal evaluation of the mental health continuum-short form (MHC-SF): Measurement invariance across demographics, physical illness, and mental illness

    NARCIS (Netherlands)

    Lamers, S.M.A.; Glas, Cornelis A.W.; Westerhof, Gerben Johan; Bohlmeijer, Ernst Thomas

    2012-01-01

    This study evaluated the measurement invariance of the Mental Health Continuum-Short Form (MHC-SF), a 14-item self-report questionnaire for measuring emotional, social, and psychological well-being. The study draws on data of a representative panel (Longitudinal Internet Studies for the Social

  13. Nuclear masses, deformations and shell effects

    International Nuclear Information System (INIS)

    Hirsch, Jorge G; Barbero, César A; Mariano, Alejandro E

    2011-01-01

    We show that the Liquid Drop Model is best suited to describe the masses of prolate deformed nuclei than of spherical nuclei. To this end three Liquid Drop Mass formulas are employed to describe nuclear masses of eight sets of nuclei with similar quadrupole deformations. It is shown that they are able to fit the measured masses of prolate deformed nuclei with an RMS smaller than 750 keV, while for the spherical nuclei the RMS is, in the three cases, larger than 2000 keV. The RMS of the best fit of the masses of semi-magic nuclei is also larger than 2000 keV. The parameters of the three models are studied, showing that the surface symmetry term is the one which varies the most from one group of nuclei to another. In one model, isospin dependent terms are also found to exhibit strong changes. The inclusion of shell effects allows for better fits, which continue to be better in the prolate deformed nuclei region.

  14. An On-Chip RBC Deformability Checker Significantly Improves Velocity-Deformation Correlation

    Directory of Open Access Journals (Sweden)

    Chia-Hung Dylan Tsai

    2016-10-01

    Full Text Available An on-chip deformability checker is proposed to improve the velocity–deformation correlation for red blood cell (RBC evaluation. RBC deformability has been found related to human diseases, and can be evaluated based on RBC velocity through a microfluidic constriction as in conventional approaches. The correlation between transit velocity and amount of deformation provides statistical information of RBC deformability. However, such correlations are usually only moderate, or even weak, in practical evaluations due to limited range of RBC deformation. To solve this issue, we implemented three constrictions of different width in the proposed checker, so that three different deformation regions can be applied to RBCs. By considering cell responses from the three regions as a whole, we practically extend the range of cell deformation in the evaluation, and could resolve the issue about the limited range of RBC deformation. RBCs from five volunteer subjects were tested using the proposed checker. The results show that the correlation between cell deformation and transit velocity is significantly improved by the proposed deformability checker. The absolute values of the correlation coefficients are increased from an average of 0.54 to 0.92. The effects of cell size, shape and orientation to the evaluation are discussed according to the experimental results. The proposed checker is expected to be useful for RBC evaluation in medical practices.

  15. Elevated temperature cyclic deformation of stainless-steel and interaction effects with other modes of deformation

    International Nuclear Information System (INIS)

    Turner, A.P.L.

    1976-01-01

    Since pertinent information concerning the deformation history of a material is stored in its current structure, an attempt has been made to determine the number of state variables necessary to uniquely describe the material's present condition. An experimental program has been carried out to determine the number of state variables which is required to describe the tensile test, cyclic, and creep behavior of 304 stainless steel at elevated temperature. Tests have been conducted at 300 0 C and 560 0 C which correspond to homologous temperatures of 1 / 3 and 1 / 2 , respectively. The experiments consisted of subjecting samples to deformation histories during which the mode of deformation was changed so that two material responses could be measured for the same state of the material. Results strongly suggest that at least two state variables are necessary

  16. On the ambiguity in relativistic tidal deformability

    Science.gov (United States)

    Gralla, Samuel E.

    2018-04-01

    The LIGO collaboration recently reported the first gravitational-wave constraints on the tidal deformability of neutron stars. I discuss an inherent ambiguity in the notion of relativistic tidal deformability that, while too small to affect the present measurement, may become important in the future. I propose a new way to understand the ambiguity and discuss future prospects for reliably linking observed gravitational waveforms to compact object microphysics.

  17. Measurement of Longitudinal Spin Asymmetries for Weak Boson Production in Polarized Proton-Proton Collisions at RHIC

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-08-01

    We report measurements of single- and double-spin asymmetries for W± and Z/γ* boson production in longitudinally polarized p+p collisions at √s =510 GeV by the STAR experiment at RHIC. The asymmetries for W± were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05

  18. Deformation effects in the Si + C and Si + Si reactions

    Indian Academy of Sciences (India)

    The possible occurrence of highly deformed configurations is investigated in the. ¼ ... Fusion–fission; nuclear deformation; exclusive light charge particle measurements. .... In hot rotating nuclei formed in heavy-ion reactions, the energy level.

  19. Bed-Deformation Experiments Beneath a Temperate Glacier

    Science.gov (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    2002-12-01

    Fast flow of glaciers and genesis of glacial landforms are commonly attributed to shear deformation of subglacial sediment. Although models of this process abound, data gathered subglacially on the kinematics and mechanics of such deformation are difficult to interpret. Major difficulties stem from the necessity of either measuring deformation near glacier margins, where conditions may be abnormal, or at the bottoms of boreholes, where the scope of instrumentation is limited, drilling disturbs sediment, and local boundary conditions are poorly known. A different approach is possible at the Svartisen Subglacial Laboratory, where tunnels melted in the ice provide temporary human access to the bed of Engabreen, a temperate outlet glacier of the Svartisen Ice Cap in Norway. A trough (2 m x 1.5 m x 0.5 m deep) was blasted in the rock bed, where the glacier is 220 m thick and sliding at 0.1-0.2 m/d. During two spring field seasons, this trough was filled with 2.5 tons of simulated till. Instruments in the till recorded shear (tiltmeters), volume change, total normal stress, and pore-water pressure as ice moved across the till surface. Pore pressure was brought to near the total normal stress by feeding water to the base of the till with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. Results illustrate some fundamental aspects of bed deformation. Permanent shear deformation requires low effective normal stress and hence high pore-water pressure, owing to the frictional nature of till. Shear strain generally increases upward in the bed toward the glacier sole, consistent with previous measurements beneath thinner ice at glacier margins. At low effective normal stresses, ice sometimes decouples from underlying till. Overall, bed deformation accounts for 10-35 % of basal motion, although this range excludes shear in the uppermost 0.05 m of till where shear was not measured. Pump tests with durations ranging from seconds to hours highlight the need

  20. Influence of anisotropic hardening on longitudinal welding strains and stresses

    International Nuclear Information System (INIS)

    Gatovskij, K.M.; Revutskij, M.N.

    1981-01-01

    The algorithm and program for estimation of longitudinal welding strains and stresses with account of hardening and Bauschinger effect, which expand the possibilities of more complete description of stress change during thermodeformation welding cycles at bead surfacing on plate made of the 06Kh18N9T steel and AMg61 alloy. It is shown that for metals, deformation curves which are characterized by considerable yield moduli (Esub(T)/E>=0.05) hardening effect is considerable and its account leads to the decrease of stress level in the heataffected zone (down to 20%) [ru

  1. Dislocation-drag contribution to high-rate plastic deformation in shock-loaded tantalum

    International Nuclear Information System (INIS)

    Tonks, D.L.; Hixson, R.S.; Johnson, J.N.; Gray, G.T. III

    1994-01-01

    Time-resolved plastic waves in plate-impact experiments give information on the relationship between applied shear stress and plastic strain rate at low plastic strain. This information is essentially different from that obtained at intermediate strain rates using Hopkins on bar techniques, because in the former case the material deformation state is driven briefly into the regime dominated by dislocation drag rather than thermal activation. Two VISAR records of the particle velocity at the tantalum/sapphire (window) interface are obtained for symmetric impact producing peak in situ longitudinal stresses of approximately 75 kbar and 111 kbar. The risetimes of the plastic waves are about 100 ns and 60 ns, respectively, with peak strain rates of about 2x10 5 /s and 1x10 6 /s, respectively, as determined by weak-shock analysis [Wallace, Phys. Rev. B 22, 1487 (1980), and Tonks, Los Alamos DataShoP Report LA-12068-MS (1991)]. These data show a much stronger dependence of plastic strain rate on applied shear stress than previously predicted by linear viscous drag models in combination with thermal activation through a large Peierls barrier. The data also show complex evolution of the mobile dislocation density during early stages of high-rate plastic flow. This measurement and analysis aid significantly in establishing the fundamental picture of dynamic deformation of BCC metals and the evolution of the internal material state at early times following shock compression. copyright 1994 American Institute of Physics

  2. Deformation and velocity measurements at elevated temperature in a fractured 0.5 M block of tuff

    International Nuclear Information System (INIS)

    Blair, S.C.; Berge, P.A.

    1996-01-01

    This paper presents preliminary results of laboratory tests conducted on small block samples of Topopah Spring tuff, in support of the Yucca Mountain Site Characterization Project. The overall objective of these tests is to investigate the thermal-mechanical, thermal-hydrological, and thermal-chemical response of the rock to conditions similar to the near-field environment (NFE) of a potential nuclear waste repository. We present preliminary results of deformation and elastic wave velocity measurements on a 0.5-m-scale block of Topopah Spring tuff tested in uniaxial compression to 8.5 MPa and at temperatures to 85 degree C. The Young's modulus was found to be about 7 to 31 GPa for vertical measurements parallel to the stress direction across parts of the block containing no fractures or a few fractures, and 0.5 to 0.9 GPA for measurements across individual fractures, at ambient temperature and 8.5 MPa maximum stress. During stress cycles between 5 and 8.5 MPa, the deformation modulus values for the matrix with fractures were near 15-20 GPa at ambient temperature but dropped to about 10 GPa at 85 degree C. Compressional wave velocities were found to be about 3.6 to 4.7 km/s at ambient temperature and stress. After the stress was cycled, velocities dropped to values as low as 2.6 km/s in the south end of the block where vertical cracks developed. Heating the block to about 85 degree C raised velocities to as much as 5.6 km/s in the upper third of the block

  3. Deformation of high-speed meteor bodies by the atmosphere

    International Nuclear Information System (INIS)

    Maslov, I V; Gorshkov, A V

    2012-01-01

    We model the deformation that a meteorite can undergo during its passage through the atmosphere. First, the pressure distribution around a solid body in a flow was measured in a wind tunnel. Second, the deformation of molten tin droplets with different temperatures dropped into water was observed. Finally, a mathematical model of the fall was constructed to determine what pressure the meteorite experiences in the atmosphere and whether it is enough to deform it. (paper)

  4. Mapping and Measuring the Microrelief of Slope Deformations Using Modern Contactless Technologies and Practical Application in Territorial Planning

    Science.gov (United States)

    Chudý, František; Slámová, Martina; Tomaštík, Julián; Kardoš, Miroslav; Tunák, Daniel; Saloň, Šimon

    2017-04-01

    Slope deformations are risks limiting economic land use potential. A national database system keeps records of slope disturbances and deformations, however, it is important to update the information mainly from the point of view of practical territorial planning, especially in the high-risk areas presented in the study. The paper explains the possibilities of applying modern methods of mapping the microrelief of slope deformations of a lower extent (up to several hundreds of m2) and using not very well known contactless technologies, which could be applied in practice due to their low-cost and low-time consuming nature. In order to create a digital model of the microrelief used to carry out the measurements we applied the method of terrestrial photogrammetry, terrestrial scanning using Lenovo Phab 2Pro. It is the first device available for users that uses the Google Tango technology. So far there have been only prototypes of devices available for the developers only. The Tango technology consists of 3 partial technologies - "depth perception" (measuring the distance to objects, nowadays it uses mainly infrared radiation), "motion tracking" (tracking the position and motion of the device using embedded sensors) and "area learning" (simply learning the area, where the device looks for same objects within already existing 3D models and real space). Even though the technology utilisation is nowadays presented mainly in the field of augmented reality and navigation in the interior, there are already some applications for collecting the point clouds in real time, which can be used in a wide spectrum of applications in exterior, which was also applied in our research. Data acquired this way can be processed in readily available software products, what enabled a high degree of automation also in our case. After comparing with the reference point field that was measured using GNSS and electronic tachymeter, we reached accuracy of point position determination from a digital

  5. Importance of methodological standardization for the ektacytometric measures of red blood cell deformability in sickle cell anemia

    NARCIS (Netherlands)

    Renoux, Céline; Parrow, Nermi; Faes, Camille; Joly, Philippe; Hardeman, Max; Tisdale, John; Levine, Mark; Garnier, Nathalie; Bertrand, Yves; Kebaili, Kamila; Cuzzubbo, Daniela; Cannas, Giovanna; Martin, Cyril; Connes, Philippe

    2016-01-01

    Red blood cell (RBC) deformability is severely decreased in patients with sickle cell anemia (SCA), which plays a role in the pathophysiology of the disease. However, investigation of RBC deformability from SCA patients demands careful methodological considerations. We assessed RBC deformability by

  6. Validity of a smartphone protractor to measure sagittal parameters in adult spinal deformity.

    Science.gov (United States)

    Kunkle, William Aaron; Madden, Michael; Potts, Shannon; Fogelson, Jeremy; Hershman, Stuart

    2017-10-01

    Smartphones have become an integral tool in the daily life of health-care professionals (Franko 2011). Their ease of use and wide availability often make smartphones the first tool surgeons use to perform measurements. This technique has been validated for certain orthopedic pathologies (Shaw 2012; Quek 2014; Milanese 2014; Milani 2014), but never to assess sagittal parameters in adult spinal deformity (ASD). This study was designed to assess the validity, reproducibility, precision, and efficiency of using a smartphone protractor application to measure sagittal parameters commonly measured in ASD assessment and surgical planning. This study aimed to (1) determine the validity of smartphone protractor applications, (2) determine the intra- and interobserver reliability of smartphone protractor applications when used to measure sagittal parameters in ASD, (3) determine the efficiency of using a smartphone protractor application to measure sagittal parameters, and (4) elucidate whether a physician's level of experience impacts the reliability or validity of using a smartphone protractor application to measure sagittal parameters in ASD. An experimental validation study was carried out. Thirty standard 36″ standing lateral radiographs were examined. Three separate measurements were performed using a marker and protractor; then at a separate time point, three separate measurements were performed using a smartphone protractor application for all 30 radiographs. The first 10 radiographs were then re-measured two more times, for a total of three measurements from both the smartphone protractor and marker and protractor. The parameters included lumbar lordosis, pelvic incidence, and pelvic tilt. Three raters performed all measurements-a junior level orthopedic resident, a senior level orthopedic resident, and a fellowship-trained spinal deformity surgeon. All data, including the time to perform the measurements, were recorded, and statistical analysis was performed to

  7. Moeller scattering and the measurement of beta-ray longitudinal polarization

    International Nuclear Information System (INIS)

    Kliwer, J.

    1989-01-01

    Two problems that are inherent in the measurement of longitudinal polarization of beta rays via Moeller scattering (Bhabha scattering for positrons) are the low signal-to-noise ratio due to the electron-nucleon-scattered background and the small fraction of electrons that are polarized in the target. The present article shows how to optimize the signal-to-noise ratio by the collection of Moeller-scattered events using a thick-lens beta-ray spectrometer where the entrance baffle is set very narow to accommodate the relativistically contracted cone of Moeller events; this in turn minimizes the electron-nucleon-scattered background and maximizes the signal-to-noise ratio. In the case of positrons, recent studies of electron channeling in crystals suggest a target that will reduce Bhabha scattering from the large fraction of unpolarized inner-shell electrons and predominantly pick off the polarized fraction of target electrons. (orig.)

  8. On-resonance deformation effect measurements: A probe of order within chaos in the nucleus

    International Nuclear Information System (INIS)

    Davis, E.D.; Gould, C.R.; Gould, C.R.

    1998-01-01

    The statistics of on-resonance measurements of the deformation effect cross section σ 02 in unpolarized neutron transmission through an aligned 165 Ho target is discussed. Under the standard Porter-Thomas assumption about reduced partial width amplitudes, the sign of σ 02 is random at s-wave resonances with d-wave admixtures. Motivated by the observation of sign correlations in epithermal parity-violation studies, conditions under which a doorway state will give rise to σ 02 close-quote s of nonrandom sign are identified. Oblate shape isomers lying at excitation energies in the isolated resonance regime could meet these conditions. copyright 1998 The American Physical Society

  9. Analysis on Wetting Deformation Properties of Silty Clay

    Directory of Open Access Journals (Sweden)

    Xinrong Liu

    2014-06-01

    Full Text Available Changes in water level that cause deformation and stability problems often occur in foundation pit engineering. Water damage is one of the main problems that will lead to disasters in foundation pit engineering. Research findings with regard to properties of wetting deformation due to water damage can be applied not only in foundation pit engineering, slope engineering, hydraulic engineering, and mining engineering but also in related issues in the field of theoretical research and practice. In this study, the characteristics of silty clay deformation after wetting are examined from the perspective of the effect of wetting on the side wall of foundation pit, and wetting experiments on silty clay of a selected area’s stratum located in Chongqing Municipality are conducted under different confining pressures and stress levels through a multi-function triaxial apparatus. Then, laws of silty clay wetting deformation are obtained, and the relationship between wetting stress level and wetting deformation amount is also figured out. The study reveals that the maximum values of wetting deformation under different confining pressures have appear at a particular stress level; therefore, the related measures should be taken to avoid this deformation in the process of construction.

  10. q-deformed Weinberg-Salam model and q-deformed Maxwell equations

    International Nuclear Information System (INIS)

    Alavi, S.A.; Sarbishaei, M.; Mokhtari, A.

    2000-01-01

    We study the q-deformation of the gauge part of the Weinberg-Salam model and show that the q-deformed theory involves new interactions. We then obtain q-deformed Maxwell equations from which magnetic monopoles appear naturally. (author)

  11. The impact of breathing on HRV measurements: implications for the longitudinal follow-up of athletes.

    Science.gov (United States)

    Saboul, Damien; Pialoux, Vincent; Hautier, Christophe

    2013-01-01

    The purpose of the present work was to compare daily variations of heart rate variability (HRV) parameters between controlled breathing (CB) and spontaneous breathing (SB) sessions during a longitudinal follow-up of athletes. HRV measurements were performed daily on 10 healthy male runners for 21 consecutive days. The signals were recorded during two successive randomised 5-minutes sessions. One session was performed in CB and the other in SB. The results showed significant differences between the two respiration methods in the temporal, nonlinear and frequency domains. However, significant correlations were observed between CB and SB (higher than 0.70 for RMSSD and SD1), demonstrating that during a longitudinal follow-up, these markers provide the same HRV variations regardless of breathing pattern. By contrast, independent day-to-day variations were observed with HF and LF/HF frequency markers, indicating no significant relationship between SB and CB data over time. Therefore, we consider that SB and CB may be used for HRV longitudinal follow-ups only for temporal and nonlinear markers. Indeed, the same daily increases and decreases were observed whatever the breathing method employed. Conversely, frequency markers did not provide the same variations between SB and CB and we propose that these indicators are not reliable enough to be used for day-to-day HRV monitoring.

  12. Deformation bands in porous sandstones their microstructure and petrophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, Anita

    2007-12-15

    deformation bands are characterized by strain hardening, these new bands feature a central slip surface, which indicates late strain softening. They lack the characteristic compaction envelop, and are typified by higher porosity and lower permeability than previously-described cataclastic deformation bands. Intense background fracturing of the host rock and significant initial porosity are considered to be important in creating these newly-discovered deformation bands. In a related study, we investigate, for millimeter- wide deformation bands, the scale limitation inherent in laboratory measurements of porosity and permeability. The scale limitations imposed by the deformation band relative to the physical sample size motivated us to develop a new method for determining porosity and permeability based on image processing. While plug measurements measure the effective permeability across a 25.4 mm (1 inch) long sample, which includes both host rock and deformation band, the method presented here provides a means to estimate porosity and permeability of deformation band on microscale. This method utilizes low-order (one- and two orders) spatial correlation functions to analyze high-resolution, high-magnification backscatter images, to estimate the porosity and specific surface area of the pore-grain interface in the deformed sandstones. Further, this work demonstrates the use of a modified version of the Kozeny-Carmen relation to calculate permeability by using porosity and specific surface area obtained through the image processing. The result shows that permeability difference between the band and the host rock is up to four orders of magnitude. Moreover, the porosities and permeabilities estimated from image processing are lower than those obtained from their plug measurements; hence the traditional laboratory measurements have been overestimating permeability because of the previously-unrecognized scale problem. In addition, the image processing results clearly show that

  13. Rock mass deformation properties of closely jointed basalt

    International Nuclear Information System (INIS)

    Kim, K.; Cramer, M.L.

    1982-12-01

    The deformational behavior of the Columbia River basalt is being investigated as part of a comprehensive site characterization program intended to determine the feasibility of constructing a nuclear waste repository in basalt at Hanford, Washington. Direct field measurements were conducted in a 2-m cube of basalt to obtain truly representative rock mass deformation properties. Load was applied to the test block in three orthogonal directions through the use of flat jacks in two perpendicular planes and a cable anchor system in the third. This configuration allowed the block to be placed in a simulated triaxial stress state at stress levels up to 12.5 MPa. The deformation at the center of the test block was monitored through the use of an optical measurement system developed for this project. The results indicate that the vertically oriented columnar joints have a significant influence on the deformation behavior of the basalt. The modulus in the direction parallel to the column axis was approx. 30 GPa, while the modulus value perpendicular to the columns was approx. 20 GPa. Laboratory measurements of intact specimens taken from this area yielded a value of 80 GPa with no indication of anisotropy. Hysteresis was observed in all loading cycles, but was distinctly more pronounced perpendicular to the column axis, indicative of significant joint displacement in this direction. The results of this test represent the first true rock mass modulus data obtained in closely jointed rock on a large scale. These measurement methods have eliminated many of the ambiguities associated with borehole jacking and surface measurement techniques

  14. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.

    Science.gov (United States)

    Sosa, Jose M; Nielsen, Nathan D; Vignes, Seth M; Chen, Tanya G; Shevkoplyas, Sergey S

    2014-01-01

    The ability of red blood cells (RBC) to undergo a wide range of deformations while traversing the microvasculature is crucial for adequate perfusion. Interpretation of RBC deformability measurements performed in vitro in the context of microvascular perfusion has been notoriously difficult. This study compares the measurements of RBC deformability performed using micropore filtration and ektacytometry with the RBC ability to perfuse an artificial microvascular network (AMVN). Human RBCs were collected from healthy consenting volunteers, leukoreduced, washed and exposed to graded concentrations (0-0.08%) of glutaraldehyde (a non-specific protein cross-linker) and diamide (a spectrin-specific protein cross-linker) to impair the deformability of RBCs. Samples comprising cells with two different levels of deformability were created by adding non-deformable RBCs (hardened by exposure to 0.08% glutaraldehyde) to the sample of normal healthy RBCs. Ektacytometry indicated a nearly linear decline in RBC deformability with increasing glutaraldehyde concentration. Micropore filtration showed a significant reduction only for concentrations of glutaraldehyde higher than 0.04%. Neither micropore filtration nor ektacytometry measurements could accurately predict the AMVN perfusion. Treatment with diamide reduced RBC deformability as indicated by ektacytometry, but had no significant effect on either micropore filtration or the AMVN perfusion. Both micropore filtration and ektacytometry showed a linear decline in effective RBC deformability with increasing fraction of non-deformable RBCs in the sample. The corresponding decline in the AMVN perfusion plateaued above 50%, reflecting the innate ability of blood flow in the microvasculature to bypass occluded capillaries. Our results suggest that in vitro measurements of RBC deformability performed using either micropore filtration or ektacytometry may not represent the ability of same RBCs to perfuse microvascular networks. Further

  15. Estimation methods of deformational behaviours of RC beams under the unrestrained condition at elevated temperatures

    International Nuclear Information System (INIS)

    Kanezu, Tsutomu; Nakano, Takehiro; Endo, Tatsumi

    1986-01-01

    The estimation methods of free deformations of reinforced concrete (RC) beams at elevated temperatures are investigated based on the concepts of ACI's and CEB/FIP's formulas, which are well used to estimate the flexural deformations of RC beams at normal temperature. Conclusions derived from the study are as follows. 1. Features of free deformations of RC beams. (i) The ratios of the average compressive strains on the top fiber of RC beams to the calculated ones at the cracked section show the inclinations that the ratios once drop after cracking and then remain constant according to temperature rises. (ii) Average compressive strains might be estimated by the average of the calculated strains at the perfect bond section and the cracked section of RC beam. (iii) The ratios of the average tensile strains on the level of reinforcements to the calculated ones at the cracked section are inclined to approach the value of 1.0 monotonically according to temperature rises. The changes of the average tensile strains are caused by the deterioration of bond strength and cracking due to the increase of the differences of expansive strains between reinforcement and concrete. 2. Estimation methods of free deformations of RC beams. (i) In order to estimate the free deformations of RC beams at elevated temperatures, the basic concepts of ACI's and CEB/FIP's formulas are adopted, which are well used to estimate the M-φ relations of RC beams at normal temperature. (ii) It was confirmed that the suggested formulas are able to estimate the free deformations of RC beams, that is, the longitudinal deformation and the curvature, at elevated temperatures. (author)

  16. Contributions of muscle imbalance and impaired growth to postural and osseous shoulder deformity following brachial plexus birth palsy: a computational simulation analysis.

    Science.gov (United States)

    Cheng, Wei; Cornwall, Roger; Crouch, Dustin L; Li, Zhongyu; Saul, Katherine R

    2015-06-01

    Two potential mechanisms leading to postural and osseous shoulder deformity after brachial plexus birth palsy are muscle imbalance between functioning internal rotators and paralyzed external rotators and impaired longitudinal growth of paralyzed muscles. Our goal was to evaluate the combined and isolated effects of these 2 mechanisms on transverse plane shoulder forces using a computational model of C5-6 brachial plexus injury. We modeled a C5-6 injury using a computational musculoskeletal upper limb model. Muscles expected to be denervated by C5-6 injury were classified as affected, with the remaining shoulder muscles classified as unaffected. To model muscle imbalance, affected muscles were given no resting tone whereas unaffected muscles were given resting tone at 30% of maximal activation. To model impaired growth, affected muscles were reduced in length by 30% compared with normal whereas unaffected muscles remained normal in length. Four scenarios were simulated: normal, muscle imbalance only, impaired growth only, and both muscle imbalance and impaired growth. Passive shoulder rotation range of motion and glenohumeral joint reaction forces were evaluated to assess postural and osseous deformity. All impaired scenarios exhibited restricted range of motion and increased and posteriorly directed compressive glenohumeral joint forces. Individually, impaired muscle growth caused worse restriction in range of motion and higher and more posteriorly directed glenohumeral forces than did muscle imbalance. Combined muscle imbalance and impaired growth caused the most restricted joint range of motion and the highest joint reaction force of all scenarios. Both muscle imbalance and impaired longitudinal growth contributed to range of motion and force changes consistent with clinically observed deformity, although the most substantial effects resulted from impaired muscle growth. Simulations suggest that treatment strategies emphasizing treatment of impaired longitudinal

  17. Deformation and shell effects in nuclear mass formulas

    International Nuclear Information System (INIS)

    Barbero, César; Hirsch, Jorge G.; Mariano, Alejandro E.

    2012-01-01

    We analyze the ability of three different Liquid Drop Mass (LDM) formulas to describe nuclear masses for nuclei in various deformation regions. Separating the 2149 measured nuclear species into eight sets with similar quadrupole deformations, we show that the masses of prolate deformed nuclei are better described than those of spherical ones. In fact, the prolate deformed nuclei are fitted with an RMS smaller than 750 keV, while for spherical and semi-magic species the RMS is always larger than 2000 keV. These results are found to be independent of pairing. It is also shown that the macroscopic sector of the Duflo–Zuker (DZ) mass model reproduces shell effects, while most of the deformation dependence is lost and the RMS is larger than in any LDM. Adding to the LDM the microscopically motivated DZ master terms introduces the shell effects, allowing for a significant reduction in the RMS of the fit but still exhibiting a better description of prolate deformed nuclei. The inclusion of shell effects following the Interacting Boson Model's ideas produces similar results.

  18. Deformation and shell effects in nuclear mass formulas

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, Cesar [Departamento de Fisica, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Instituto de Fisica La Plata, CONICET, 1900 La Plata (Argentina); Hirsch, Jorge G., E-mail: hirsch@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico); Mariano, Alejandro E. [Departamento de Fisica, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Instituto de Fisica La Plata, CONICET, 1900 La Plata (Argentina)

    2012-01-15

    We analyze the ability of three different Liquid Drop Mass (LDM) formulas to describe nuclear masses for nuclei in various deformation regions. Separating the 2149 measured nuclear species into eight sets with similar quadrupole deformations, we show that the masses of prolate deformed nuclei are better described than those of spherical ones. In fact, the prolate deformed nuclei are fitted with an RMS smaller than 750 keV, while for spherical and semi-magic species the RMS is always larger than 2000 keV. These results are found to be independent of pairing. It is also shown that the macroscopic sector of the Duflo-Zuker (DZ) mass model reproduces shell effects, while most of the deformation dependence is lost and the RMS is larger than in any LDM. Adding to the LDM the microscopically motivated DZ master terms introduces the shell effects, allowing for a significant reduction in the RMS of the fit but still exhibiting a better description of prolate deformed nuclei. The inclusion of shell effects following the Interacting Boson Model's ideas produces similar results.

  19. Ocean tidal loading affecting precise geodetic observations on Greenland: Error account of surface deformations by tidal gravity measurements

    DEFF Research Database (Denmark)

    Jentzsch, G.; Knudsen, Per; Ramatschi, M.

    2000-01-01

    Air-borne and satellite based altimetry are used to monitor the Greenland ice-cap. Since these measurements are related to fiducial sites at the coast, the robustness of the height differences depends on the stability of these reference points. To benefit from the accuracy of these methods...... observations. Near the coast ocean tidal loading causes additional vertical deformations in the order of 1 to 10 cm Therefore, tidal gravity measurements were carried out at four fiducial sites around Greenland in order to provide corrections for the kinematic part of the coordinates of these sites. Starting...

  20. A New Kicker for the TLS Longitudinal Feedback System

    CERN Document Server

    Lau, Wai-Keung; Dehler, Micha; Hsu, Kuo-Tung; Hsu, San-Yuang; Jung Chou Ping; Wei Chen, Cheng; Yang Chen Huan; Yang Tze Te

    2005-01-01

    A new longitudinal kicker that is modified from the Swiss Light Source (SLS) design to fit into the TLS storage ring. It will be served as the actuator in the longitudinal multi-bunch feedback control loop. Beam coupling impedance has been calculated by Gdfidl with a PC cluster. Previous to the installation of this new kicker, bench measurement has been performed in the laboratory to characterize this new kicker. The experimental setups for bandwidth and coaxial wire measurement of longitudinal coupling impedance and their corresponding test results will be reported. As a cross check, bead-pull measurement has also been done to verify the beam coupling measurement by coaxial wire method at the kicker center frequency. Longitudinal field profile of the accelerating mode along the beam path has also been mapped. High order cavity modes of the kicker have also been observed and their effects on the beam are evaluated.

  1. Predictors of Health-Related Quality-of-Life After Complex Adult Spinal Deformity Surgery

    DEFF Research Database (Denmark)

    Carreon, Leah Y.; Glassman, Steven D.; Shaffrey, Christopher I.

    2017-01-01

    , treatment effectiveness is assessed by the extent to which the procedure improves a patient's health-related quality of life (HRQOL). This is especially true in patients with complex adult spinal deformity. Methods The data set from the Scoli-Risk-1 study was queried for patients with complete 2-year SF-36......Study Design Longitudinal cohort. Objectives To identify variables that predict 2-year Short Form-36 Physical Composite Summary Score (SF-36PCS) and the Scoliosis Research Society-22R (SRS22-R) Total score after surgery for complex adult spinal deformity. Summary of Background Data Increasingly...... = .049) and type of neurologic complication (p = .068). Factors predictive of 2-year SRS-22R Total scores were maximum preoperative Cobb angle (p = .001) and the number of serious adverse events (p = .071). Conclusions Factors predictive of lower 2-year HRQOLs after surgery for complex adult spinal...

  2. Multilevel Cross-Dependent Binary Longitudinal Data

    KAUST Repository

    Serban, Nicoleta

    2013-10-16

    We provide insights into new methodology for the analysis of multilevel binary data observed longitudinally, when the repeated longitudinal measurements are correlated. The proposed model is logistic functional regression conditioned on three latent processes describing the within- and between-variability, and describing the cross-dependence of the repeated longitudinal measurements. We estimate the model components without employing mixed-effects modeling but assuming an approximation to the logistic link function. The primary objectives of this article are to highlight the challenges in the estimation of the model components, to compare two approximations to the logistic regression function, linear and exponential, and to discuss their advantages and limitations. The linear approximation is computationally efficient whereas the exponential approximation applies for rare events functional data. Our methods are inspired by and applied to a scientific experiment on spectral backscatter from long range infrared light detection and ranging (LIDAR) data. The models are general and relevant to many new binary functional data sets, with or without dependence between repeated functional measurements.

  3. Measurement of longitudinal spin asymmetries for weak boson production in polarized proton-proton collisions at RHIC.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Balewski, J; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-08-15

    We report measurements of single- and double-spin asymmetries for W^{±} and Z/γ^{*} boson production in longitudinally polarized p+p collisions at sqrt[s]=510  GeV by the STAR experiment at RHIC. The asymmetries for W^{±} were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05

  4. Deformation induced martensitic transformation in stainless steels

    International Nuclear Information System (INIS)

    Nagy, E.; Mertinger, V.; Tranta, F.; Solyom, J.

    2003-01-01

    Deformation induced martensitic transformation was investigated in metastable austenitic stainless steel. This steel can present a microstructure of austenite (γ), α' martensite and non magnetic ε martensite. Uni-axial tensile test was used for loading at different temperatures below room temperature (from -120 to 20 deg. C). During the deformation the transformation takes place at certain places in an anisotropic way and texture also develops. Quantitative phase analysis was done by X-ray diffraction (XRD) and magnetic methods while the texture was described by X-ray diffraction using a special inverse pole figure. The quantitative phase analysis has shown that the formation of α' and ε martensite from austenite is the function of deformation rate, and deformation temperature. The transformation of the textured austenite takes place in an anisotropic way and a well defined crystallographic relationship between the parent and α' martensite phase has been measured

  5. Analytic-graphic testing of deformities at the waterworks Pod Bukovcom

    Directory of Open Access Journals (Sweden)

    Jeèný Miloš

    2001-09-01

    Full Text Available The paper presents some geodetic measurement results in a frame of deformity survey of the bulk dam at the waterworks Pod Bukovcom nearby Košice. Periodic geodetic position and levelling measurement are realized on the dam since 1999. Testing statistics are applied into the deformity survey. Geodetic data obtained from individual measurements in the geodetic network on the bulk dam at the waterworks Pod Bukovcom are adjusted using Gauss-Markov model. Accuracy analysis by means of using relative and confidence ellipses is complemented to geodetic measurements.

  6. Deformation Parameters and Fatigue of the Recycled Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Šrámek Juraj

    2015-12-01

    Full Text Available The deformational properties of asphalt mixtures measured by dynamic methods and fatigue allow a design the road to suit the expected traffic load. Quality of mixtures is also expressed by the resistance to permanent deformation. Complex modulus of stiffness and fatigue can reliably characterize the proposed mixture of asphalt pavement. The complex modulus (E* measurement of asphalt mixtures are carried out in laboratory of Department of Construction Management at University of Žilina by two-point bending test method on trapezoid-shaped samples. Today, the fatigue is verified on trapezoid-shaped samples and is assessed by proportional strain at 1 million cycles (ε6. The test equipment and software is used to evaluate fatigue and deformation characteristics.

  7. Dynamic Sensing of Cornea Deformation during an Air Puff

    Science.gov (United States)

    Yamada, Kenji; Yamasaki, Naoyuki; Gosho, Takumi; Kiuchi, Yoshiaki; Takenaka, Jouji; Higashimori, Mitsuru; Kaneko, Makoto

    In early diagnosis of glancoma, intraocular pressure measurement is one of an important method. Non-contact method has measured eye pressure through the deformation of cornea during the increase of the force due to air puff. The deformation is influenced by the cornea stiffness as well as the eye internal pressure. Since the cornea stiffness is unknown in general, it is difficult to evaluate the ture eye pressure. The dynamic behavior of cornea under air puff may provide us with a good hint for evaluating the cornea stiffness appropriately. For this purpose, we develop the sensing system composed of a high speed camera, a mirror for producing a virtual camera, a non-contact tonometer and a slit light source. This system enables us to measure the cornea deformation under concave shape. We show the experimental data for human eyes as well as an artificial eye made by transparent material.

  8. One-Dimensional-Ratio Measures of Atrophy Progression in Multiple Sclerosis as Evaluated by Longitudinal Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Martola, J.; Wiberg Kristoffersen, M.; Aspelin, P.; Stawiarz, L.; Fredrikson, S.; Hillert, J.; Bergstroem, J.; Flodmark, O.

    2009-01-01

    Background: For decades, normalized one-dimensional (1D) measures have been used in the evaluation of brain atrophy. In multiple sclerosis (MS), the use of normalized linear measures over longitudinal follow-up remains insufficiently documented. Purpose: To evaluate the association between different regional atrophy measures and disability in MS patients over four decades in a longitudinal cross-sectional study. Material and Methods: 37 consecutively selected MS patients were included. At baseline, patients had a range of disease duration (1-33 years) and age (24-65 years). Each patient was followed by magnetic resonance imaging (MRI) for a mean of 9.25 years (range 7.3-10 years). Four 1D measures were applied at three time points on axial 5-mm T1-weighted images. Three clinical MS subgroups were represented: relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and primary progressive MS (PPMS). Results: There were significant changes in all 1D ratios during follow-up. The Evans ratio (ER) and the bifrontal ratio (BFR) were associated with the development of disability. Changes of ER and BFR reflected more aggressive disease progression, as expressed by MS severity score (MSSS). Conclusion: All four normalized ratios showed uniform atrophy progression, suggesting a consistent rate of atrophy over long-term disease duration independent of MS course. Disability status correlated with 1D measures, suggesting that serial evaluation of Evans and bifrontal ratios might contribute to the radiological evaluation of MS patients

  9. Characterization of particle deformation during compression measured by confocal laser scanning microscopy.

    Science.gov (United States)

    Guo, H X; Heinämäki, J; Yliruusi, J

    1999-09-20

    Direct compression of riboflavin sodium phosphate tablets was studied by confocal laser scanning microscopy (CLSM). The technique is non-invasive and generates three-dimensional (3D) images. Tablets of 1% riboflavin sodium phosphate with two grades of microcrystalline cellulose (MCC) were individually compressed at compression forces of 1.0 and 26.8 kN. The behaviour and deformation of drug particles on the upper and lower surfaces of the tablets were studied under compression forces. Even at the lower compression force, distinct recrystallized areas in the riboflavin sodium phosphate particles were observed in both Avicel PH-101 and Avicel PH-102 tablets. At the higher compression force, the recrystallization of riboflavin sodium phosphate was more extensive on the upper surface of the Avicel PH-102 tablet than the Avicel PH-101 tablet. The plastic deformation properties of both MCC grades reduced the fragmentation of riboflavin sodium phosphate particles. When compressed with MCC, riboflavin sodium phosphate behaved as a plastic material. The riboflavin sodium phosphate particles were more tightly bound on the upper surface of the tablet than on the lower surface, and this could also be clearly distinguished by CLSM. Drug deformation could not be visualized by other techniques. Confocal laser scanning microscopy provides valuable information on the internal mechanisms of direct compression of tablets.

  10. Measurement of longitudinal polarization of direct muons produced in NN collisions at Psub(perpendicular)=1.9 GeV/c

    International Nuclear Information System (INIS)

    Abramov, V.V.; Alekseev, A.V.; Bityukov, S.I.

    1978-01-01

    The experiment on the measurement of direct muon yield and their longitudinal polarization in pN interactions are described. The polarization has been determined by measuring forward-backward decay asymmetry of muons stopped in the multilayer scintillation detector, placed in transverse magnetic field, and is equal to νsub(x)=-0.41+-0.17. The value for μ + /π + has been measured in three independent experiments and amounts (7.0+-1.1)x10 -5

  11. Vertebral deformity arising from an accelerated "creep" mechanism.

    Science.gov (United States)

    Luo, Jin; Pollintine, Phillip; Gomm, Edward; Dolan, Patricia; Adams, Michael A

    2012-09-01

    Vertebral deformities often occur in patients who recall no trauma, and display no evident fracture on radiographs. We hypothesise that vertebral deformity can occur by a gradual creep mechanism which is accelerated following minor damage. "Creep" is continuous deformation under constant load. Forty-five thoracolumbar spine motion segments were tested from cadavers aged 42-92 years. Vertebral body areal BMD was measured using DXA. Specimens were compressed at 1 kN for 30 min, while creep in each vertebral body was measured using an optical MacReflex system. After 30 min recovery, each specimen was subjected to a controlled overload event which caused minor damage to one of its vertebrae. The creep test was then repeated. Vertebral body creep was measurable in specimens with BMD Creep was greater anteriorly than posteriorly (p creep by 800 % (anteriorly), 1,000 % (centrally) and 600 % (posteriorly). In 34 vertebrae with complete before-and-after data, anterior wedging occurring during the 1st creep test averaged 0.07° (STD 0.17°), and in the 2nd test (after minor damage) it averaged 0.79° (STD 1.03°). The increase was highly significant (P creep test was proportional to the severity of damage, as quantified by specimen height loss during the overload event (r (2) = 0.51, p creep to such an extent that it makes a substantial contribution to vertebral deformity.

  12. Assessment of the Medial Longitudinal Arch in children with Flexible Pes Planus by Plantar Pressure Mapping.

    Science.gov (United States)

    Elmoatasem, E M; Eid, M A

    2016-12-01

    Plantar Pressure mapping was introduced as a new modality for assessment of the height of the medial longitudinal arch of the foot. Therefore, the aim of this study is to correlate the plantar pressure mapping readings of arch index contact force ratio (AICFR) in children with flexible pes planus with radiographic measurements and static plantar footprints in order to determine the reliability of pressure mapping as a modality for the assessment and follow up of the flat foot deformity. Radiographic measurements, foot prints, and pressure mapping scans were recorded for each foot at initial presentation and at latest follow up in 28 children (56 feet) with flexible pes planus. A positive correlation of pressure mapping results was found with the talo-first metatarsal angle, the calcaneal pitch angle, as well as the footprint scans (P plantar pressure mapping is a reliable and effective tool in screening, diagnosis, and follow up of children with flexible pes planus.

  13. Cyclic deformation of bidisperse two-dimensional foams

    Science.gov (United States)

    Fátima Vaz, M.; Cox, S. J.; Teixeira, P. I. C.

    2011-12-01

    In-plane deformation of foams was studied experimentally by subjecting bidisperse foams to cycles of traction and compression at a prescribed rate. Each foam contained bubbles of two sizes with given area ratio and one of three initial arrangements: sorted perpendicular to the axis of deformation (iso-strain), sorted parallel to the axis of deformation (iso-stress), or randomly mixed. Image analysis was used to measure the characteristics of the foams, including the number of edges separating small from large bubbles N sl , the perimeter (surface energy), the distribution of the number of sides of the bubbles, and the topological disorder μ2(N). Foams that were initially mixed were found to remain mixed after the deformation. The response of sorted foams, however, depended on the initial geometry, including the area fraction of small bubbles and the total number of bubbles. For a given experiment we found that (i) the perimeter of a sorted foam varied little; (ii) each foam tended towards a mixed state, measured through the saturation of N sl ; and (iii) the topological disorder μ2(N) increased up to an "equilibrium" value. The results of different experiments showed that (i) the change in disorder, ? decreased with the area fraction of small bubbles under iso-strain, but was independent of it under iso-stress; and (ii) ? increased with ? under iso-strain, but was again independent of it under iso-stress. We offer explanations for these effects in terms of elementary topological processes induced by the deformations that occur at the bubble scale.

  14. Low-Cost Smartphone-Based Photogrammetry for the Analysis of Cranial Deformation in Infants.

    Science.gov (United States)

    Barbero-García, Inés; Lerma, José Luis; Marqués-Mateu, Ángel; Miranda, Pablo

    2017-06-01

    Cranial deformation, including deformational plagiocephaly, brachycephaly, and craniosynostosis, is a condition that affects a large number of infants. Despite its prevalence, there are no standards for the systematic evaluation of the cranial deformation. Usually, the deformation is measured manually by the use of calipers. Experts, however, do not agree on the suitability of these measurements to correctly represent the deformation. Other methodologies for evaluation include 3-dimensional (3D) photography and radiologic scanners. These techniques require either patient's sedation and ionizing radiation or high investment. The aim of this study is to develop a novel, low-cost, and minimally invasive methodology to correctly evaluate the cranial deformation using 3D imagery. A smart phone was used to record a slow motion video sequence on 5 different patients. Then, the videos were processed to create accurate 3D models of the patients' head, and the results were compared with the measurements obtained by the manual caliper. The correspondence between the manual and the photogrammetric 3D model measurements was high as far as head marks are available, with differences of 2 mm ± 0.9 mm; without marks, measurement results differed up to 20 mm. Smartphone-based photogrammetry is a low-cost, highly useful methodology to evaluate cranial deformation. This technique provides a much larger quantity of information than linear measurements with a similar accuracy as far as head marks exist. In addition, a new approach for the evaluation is pointed out: the comparison between the head 3D model and an ideal head, represented by a 3-axis ellipsoid. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. High-precision mass measurements in the realm of the deformed shell closure N=152

    Energy Technology Data Exchange (ETDEWEB)

    Eibach, Martin Andreas

    2013-12-04

    The nuclear masses reflect the sum of all interactions inside a nucleus. Their precise knowledge can be used to benchmark nuclear mass models and to gain nuclear structure information. Penning-trap mass spectrometers have proven their potential to obtain lowest uncertainties. Uniquely located at a nuclear reactor, the double Penning-trap mass spectrometer TRIGA-TRAP is dedicated to measurements in the neutron-rich region. For a gain in sensitivity a non-destructive detection system for single ion mass measurements was adopted. This includes the implementation of a narrow band-pass filter tuned to the heavy ion cyclotron frequency as well as a cryogenic low-noise amplifier. For on-line mass measurements, the laser ablation ion source was equipped with a newly developed miniature radiofrequency quadrupole trap in order to improve the extraction efficiency. A more economic use of the radioactive material enabled mass measurements using only 10{sup 15} atoms of target material. New mass measurements were performed within this work in the realm of the deformed shell closure N=152. Their implementation into the atomic-mass evaluation improved the uncertainty of more than 80 nuclides in the heavy mass region and simultaneously shifted the absolute mass of two α decay chains.

  16. Interfacial characterization of soil-embedded optical fiber for ground deformation measurement

    International Nuclear Information System (INIS)

    Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin; She, Jun-Kuan

    2014-01-01

    Recently fiber-optic sensing technologies have been applied for performance monitoring of geotechnical structures such as slopes, foundations, and retaining walls. However, the validity of measured data from soil-embedded optical fibers is strongly influenced by the properties of the interface between the sensing fiber and the soil mass. This paper presents a study of the interfacial properties of an optical fiber embedded in soil with an emphasis on the effect of overburden pressure. Laboratory pullout tests were conducted to investigate the load-deformation characteristics of a 0.9 mm tight-buffered optical fiber embedded in soil. Based on a tri-linear interfacial shear stress-displacement relationship, an analytical model was derived to describe the progressive pullout behavior of an optical fiber from soil matrix. A comparison between the experimental and predicted results verified the effectiveness of the proposed pullout model. The test results are further interpreted and discussed. It is found that the interfacial bond between an optical fiber and soil is prominently enhanced under high overburden pressures. The apparent coefficients of friction of the optical fiber/soil interface decrease as the overburden pressure increases, due to the restrained soil dilation around the optical fiber. Furthermore, to facilitate the analysis of strain measurement, three working states of a soil-embedded sensing fiber were defined in terms of two characteristic displacements. (paper)

  17. Deformation twinning in a creep-deformed nanolaminate structure

    International Nuclear Information System (INIS)

    Hsiung, Luke L

    2010-01-01

    The underlying mechanism of deformation twinning occurring in a TiAl-(γ)/Ti 3 Al-(α 2 ) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both γ and α 2 thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed.

  18. Deformation twinning in a creep-deformed nanolaminate structure

    Science.gov (United States)

    Hsiung, Luke L.

    2010-10-01

    The underlying mechanism of deformation twinning occurring in a TiAl-(γ)/Ti3Al-(α2) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both γ and α2 thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed.

  19. Metallurgical physics. Applications of microplasticity measurements to the fundamental study of deformation mechanisms

    International Nuclear Information System (INIS)

    Gouzou, J.; D'Haeyer, R.

    1977-01-01

    This work has resulted in formulating a new method for the treatment of plastic phenomena under combined stresses. This method describes any plastic deformation as a combination of shears in the six planes at 45 0 to the principal stresses, and results in a satisfactory description of the macroscopic properties. A new tensile machine was built for microplasticity measurements under very low stresses. This machine includes a piston-pump, driven by a synchronous electric motor which ensures a perfectly linear stress increase, and it is equipped with a new extensometer whose sensitiveness reaches 10 -8 . Tests were performed on four steels, including two high-strength steels, and on pure iron. These tests revealed the existence of a microplastic component which comes into action for stresses much lower than those required for dislocations movements, and which is probably due to kink displacements. Tests were also performed on four ferritic alloys with various silicon and manganese contents. The linear microstrains were measured at various temperatures and for various rates of stress increase, with and without interstitial elements

  20. Measurement of installation deformation of the acetabulum during prosthetic replacement of a hip joint using digital image correlation

    Science.gov (United States)

    Lei, Dong; Bai, Pengxiang; Zhu, Feipeng

    2018-01-01

    Nowadays, acetabulum prosthesis replacement is widely used in clinical medicine. However, there is no efficient way to evaluate the implantation effect of the prosthesis. Based on a modern photomechanics technique called digital image correlation (DIC), the evaluation method of the installation effect of the acetabulum was established during a prosthetic replacement of a hip joint. The DIC method determines strain field by comparing the speckle images between the undeformed sample and the deformed counterpart. Three groups of experiments were carried out to verify the feasibility of the DIC method on the acetabulum installation deformation test. Experimental results indicate that the installation deformation of acetabulum generally includes elastic deformation (corresponding to the principal strain of about 1.2%) and plastic deformation. When the installation angle is ideal, the plastic deformation can be effectively reduced, which could prolong the service life of acetabulum prostheses.

  1. Measurements of the Neutron Longitudinal Spin Asymmetry A1n and Flavor Decomposition in the Valence Quark Region

    Energy Technology Data Exchange (ETDEWEB)

    Flay, David J. [Temple University, Philadelphia, PA (United States)

    2014-08-01

    The current data for the nucleon-virtual photon longitudinal spin asymmetry A1 on the proton and neutron have shown that the ratio of the polarized-to-unpolarized down-quarkparton distribution functions,Dd=d, tends towards -1/2 at large x, in disagreement with the perturbative QCD prediction that Dd/d approaches 1 but more in line with constituent quark models. As a part of experiment E06-014 in Hall A of Jefferson Lab, double-spin asymmetries were measured in the scattering of a longitudinally polarized electron beam of energies 4.74 and 5.89 GeV from a longitudinally and transversely polarized 3He target in the deep inelastic scattering and resonance region, allowing for the extraction of the neutron asymmetry An1 and the ratios Dd/d and Du/u. We will discuss our analysis of the data and present results for A1 and g1/F1 on both 3He and the neutron, and the resulting quark ratios for the up and down quarks in the kinematic range of 0.2

  2. Measurement of Pion and Proton Response and Longitudinal Shower Profiles up to 20 Nuclear Interaction Lengths with the ATLAS Tile Calorimeter

    CERN Document Server

    Adragna, P; Anderson, K; Antonaki, A; Arabidze, A; Batkova, L; Batusov, V; Beck, H P; Bergeaas Kuutmann, E; Biscarat, C; Blanchot, G; Bogush, A; Bohm, C; Boldea, V; Bosman, M; Bromberg, C; Budagov, J; Burckhart-Chromek, D; Caprini, M; Caloba, L; Calvet, D; Carli, T; Carvalho, J; Cascella, M; Castelo, J; Castillo, M V; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clement, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Corso-Radu, A; Cuenca, C; Damazio, D O; Davidek, T; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Djobava, T; Dobson, M; Dotti, A; Downing, R; Efthymiopoulos, I; Eriksson, D; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Febbraro, R; Fenyuk, A; Ferdi, C; Ferrer, A; Flaminio, V; Francis, D; Fullana, E; Gadomski, S; Gameiro, S; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; Gonzalez, V; Gorini, B; Grenier, P; Gris, P; Gruwe, M; Guarino, V; Guicheney, C; Gupta, A; Haeberli, C; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higon, E; Holmgren, S; Hurwitz, M; Huston, J; Iglesias, C; Isaev, A; Jen-La Plante, I; Jon-And, K; Joos, M; Junk, T; Karyukhin, A; Kazarov, A; Khandanyan, H; Khramov, J; Khubua, J; Kolos, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; LeCompte, T; Lefevre, R; Lehmann, G; Leitner, R; Lembesi, M; Lesser, J; Li, J; Liablin, M; Lokajicek, M; Lomakin, Y; Lupi, A; Maidanchik, C; Maio, A; Makouski, M; Maliukov, S; Manousakis, A; Mapelli, L; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F; Miagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Mosidze, M; Myagkov, A; Nemecek, S; Nessi, M; Nodulman, L; Nordkvist, B; Norniella, O; Novakova, J; Onofre, A; Oreglia, M; Pallin, D; Pantea, D; Petersen, J; Pilcher, J; Pina, J; Pinhao, J; Podlyski, F; Portell Bueso, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramstedt, M; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsev, V; Russakovich, N; Salto, O; Salvachua, B; Sanchis, E; Sanders, H; Santoni, C; Saraiva, J G; Sarri, F; Satsunkevitch, I; Says, L P; Schlager, G; Schlereth, J; Seixas, J M; Sellden, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Da Silva, P; Simaitis, V; Simonyan, M; Sissakian, A; Sjolin, J; Solans, C; Solodkov, A; Soloviev, I; Solovyanov, O; Sosebee, M; Spano, F; Stanek, R; Starchenko, E; Starovoitov, P; Stavina, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Tremblet, L; Tsiareshka, P; Tylmad, M; Underwood, D; Unel, G; Usai, G; Valero, A; Valkar, S; Valls, J A; Vartapetian, A; Vazeille, F; Vichou, I; Vinogradov, V; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenine, A; Zenis, T

    2010-01-01

    The response of pions and protons in the energy range of 20 to 180 GeV produced at CERN's SPS H8 test beam line in the ATLAS iron-scintillator Tile hadron calorimeter has been measured. The test-beam configuration allowed to measure the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It is found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion to proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parameterization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parameterised as a function of the b...

  3. New intraocular pressure measurement method using reflected pneumatic pressure from cornea deformed by air puff of ring-type nozzle.

    Science.gov (United States)

    Kim, Hyung Jin; Seo, Yeong Ho; Kim, Byeong Hee

    2017-01-01

    In this study, a non-contact type intraocular pressure (IOP) measuring system using reflected pneumatic pressure is proposed to overcome the disadvantages of existing measurement systems. A ring-type nozzle, a key component in the proposed system, is designed via computational fluid analysis. It predicts the reflected pneumatic pressure based on the nozzle exit angle and inner and outer diameters of the nozzle, which are 30°, 7 mm, and 9 mm, respectively. Performance evaluation is conducted using artificial eyes fabricated using polydimethylsiloxane with the specifications of human eyes. The IOP of the fabricated artificial eyes is adjusted to 10, 30, and 50 mm Hg, and the reflected pneumatic pressure is measured as a function of the distance between the ring-type nozzle and artificial eye. The measured reflected pneumatic pressure is high when the measurement distance is short and eye pressure is low. The cornea of an artificial eye is significantly deformed at a low IOP, and the applied pneumatic pressure is more concentrated in front of the ring-type nozzle because of the deformed cornea. Thus, the reflected pneumatic pressure at a low IOP has more inflows into the pressure sensor inserted inside the nozzle. The sensitivity of the output based on the IOP at measurement distances between 3-5 mm is -0.0027, -0.0022, -0.0018, -0.0015, and -0.0012. Sensitivity decreases as the measurement distance increases. In addition, the reflected pneumatic pressure owing to the misalignment at the measurement distances of 3-5 mm is not affected within a range of 0.5 mm. Therefore, the measurement range is acceptable up to a 1 mm diameter from the center of an artificial eye. However, the accuracy gradually decreases as the reflected pneumatic pressure from a misalignment of 1 mm or more decreases by 26% or more.

  4. Measurement of the longitudinal proton structure function in diffraction at the H1 experiment and prospects for diffraction at LHC

    International Nuclear Information System (INIS)

    Salek, David

    2011-05-01

    A measurement of the longitudinal diffractive structure function F L D using the H1 detector at HERA is presented. The structure function is extracted from first measurements of the diffractive cross section ep→eXY at centre of mass energies √(s) of 225 and 252 GeV at high values of inelasticity y, together with a new measurement at √(s) of 319 GeV, using data taken in 2006 and 2007. Previous H1 data at √(s) of 301 GeV complete the kinematic coverage needed to extract F L D in the range of photon virtualities 2.5 2 2 and fractional proton longitudinal momentum loss 10 -4 P -2 . The measured F L D is compared with leading twist predictions based on diffractive parton densities extracted in NLO QCD fits to previous diffractive DIS data and to a model which additionally includes a higher twist contribution derived from a colour dipole approach. The photoabsorption ratio for diffraction RD is extracted for Q 2 >7 GeV 2 and compared to the analogous quantity for inclusive DIS. (orig.)

  5. GLOBAL BALANCE IN ADULT SPINAL DEFORMITIES. A STUDY OF 60 CASES

    Directory of Open Access Journals (Sweden)

    Victor Misael Galicia Luna

    Full Text Available ABSTRACT Objectives: Determine the most prevalent type of curve in our population, to quantify the radiographic parameters such as PT, IP, SS and compare the physical function according to ODI and SRS-22r. Methods: Retrospective, observational, longitudinal, single-center study, carried out from January 2010 to May 2015 at the Centro Médico ISSEMYM Ecatepec, Spine Surgery Service. Results: A total of 60 patients were obtained, 60% female, with curvatures according to SRS-Schwab, type T (28%, TL (46.6%, D (15%, N (10%, with a mean preoperative VAS of 7 for all curves and post-surgical 2 after 6 months. The SRS-22r preoperative test was 2.1 and postoperatively was 3.75, with p<0.001. Conclusions: Deformities of the adult spine are a growing disease in our country. The surgical management of deformities requires proper clinical and radiographic planning. Patients undergoing surgical treatment in our study showed curvature type TL and demonstrated significant improvement in ODI and SRS-22r.

  6. Measurement of flow fluctuations in single longitudinal mode pulsed ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... Page 1 ... Keywords. Dye lasers; single longitudinal mode; flow fluctuations. PACS Nos 42.55.Mv; 42.60.Mi; 42.60.By. 1. Introduction. Narrow-band dye lasers offer ... stabilized tunable laser source plays an important role for many applications as mentioned above [1]. For tight wavelength control, the ...

  7. Measurement of high-Q2 deep inelastic scattering cross sections with a longitudinally polarised positron beam at HERA

    NARCIS (Netherlands)

    Chekanov, S.; Kooijman, P.

    2006-01-01

    The cross sections for charged and neutral current deep inelastic scattering in e+p collisions with a longitudinally polarised positron beam have been measured using the ZEUS detector at HERA. The results, based on data corresponding to an integrated luminosity of 23.8 pb−1 at , are given for both

  8. A single hole tracer test to determine longitudinal dispersion

    International Nuclear Information System (INIS)

    Noy, D.J.; Holmes, D.C.

    1986-03-01

    The paper concerns a single hole tracer test to determine longitudinal dispersion, which is an important parameter in assessing the suitability of a site for radioactive waste disposal. The theory, equipment and procedure for measuring longitudinal dispersion in a single borehole is described. Results are presented for field trials conducted in an aquifer, where the technique produced good results. The measured value of longitudinal dispersion, from a single hole test, relates only to a limited volume of rock immediately adjacent to the borehole. (U.K.)

  9. Fast free-form deformable registration via calculus of variations

    International Nuclear Information System (INIS)

    Lu Weiguo; Chen Mingli; Olivera, Gustavo H; Ruchala, Kenneth J; Mackie, Thomas R

    2004-01-01

    In this paper, we present a fully automatic, fast and accurate deformable registration technique. This technique deals with free-form deformation. It minimizes an energy functional that combines both similarity and smoothness measures. By using calculus of variations, the minimization problem was represented as a set of nonlinear elliptic partial differential equations (PDEs). A Gauss-Seidel finite difference scheme is used to iteratively solve the PDE. The registration is refined by a multi-resolution approach. The whole process is fully automatic. It takes less than 3 min to register two three-dimensional (3D) image sets of size 256 x 256 x 61 using a single 933 MHz personal computer. Extensive experiments are presented. These experiments include simulations, phantom studies and clinical image studies. Experimental results show that our model and algorithm are suited for registration of temporal images of a deformable body. The registration of inspiration and expiration phases of the lung images shows that the method is able to deal with large deformations. When applied to the daily CT images of a prostate patient, the results show that registration based on iterative refinement of displacement field is appropriate to describe the local deformations in the prostate and the rectum. Similarity measures improved significantly after the registration. The target application of this paper is for radiotherapy treatment planning and evaluation that incorporates internal organ deformation throughout the course of radiation therapy. The registration method could also be equally applied in diagnostic radiology

  10. Precision Machining When Cutting with Leading Plastic Deformation

    Directory of Open Access Journals (Sweden)

    N. A. Yaroslavtseva

    2017-01-01

    system, thereby raising the accuracy of processing through reducing a value of the elastic deformations of a work-piece in the cutting zone.The paper presents the comparative test results of the work-piece shape accuracy in cutting with LPD and in conventional cutting in two respects: profile deviation of the longitudinal section of the cylindrical surface and circularity deviation. The studies were carried out using a special BMSTU-designed installation, which allows us to regulate direction of the angle of LPD force action, and, consequently, the load values in direction perpendicular to the surface to be machined. The experiments were carried out on soft samples, made from the low rigid hard-to-machine materials, belonging to different groups of machining property. It is found that when cutting with LPD there is a significant reduction of shape errors. For the processing conditions, assumed in the experiments, as compared to the ordinary cutting a deviation of the profile of the longitudinal section and a circularity deviation were decreased by 2.4-3.3 times and 1.2-1.6 times, respectively.

  11. Stent Design Affects Femoropopliteal Artery Deformation.

    Science.gov (United States)

    MacTaggart, Jason; Poulson, William; Seas, Andreas; Deegan, Paul; Lomneth, Carol; Desyatova, Anastasia; Maleckis, Kaspars; Kamenskiy, Alexey

    2018-03-23

    Poor durability of femoropopliteal artery (FPA) stenting is multifactorial, and severe FPA deformations occurring with limb flexion are likely involved. Different stent designs result in dissimilar stent-artery interactions, but the degree of these effects in the FPA is insufficiently understood. To determine how different stent designs affect limb flexion-induced FPA deformations. Retrievable markers were deployed into n = 28 FPAs of lightly embalmed human cadavers. Bodies were perfused and CT images were acquired with limbs in the standing, walking, sitting, and gardening postures. Image analysis allowed measurement of baseline FPA foreshortening, bending, and twisting associated with each posture. Markers were retrieved and 7 different stents were deployed across the adductor hiatus in the same limbs. Markers were then redeployed in the stented FPAs, and limbs were reimaged. Baseline and stented FPA deformations were compared to determine the influence of each stent design. Proximal to the stent, Innova, Supera, and SmartFlex exacerbated foreshortening, SmartFlex exacerbated twisting, and SmartControl restricted bending of the FPA. Within the stent, all devices except Viabahn restricted foreshortening; Supera, SmartControl, and AbsolutePro restricted twisting; SmartFlex and Innova exacerbated twisting; and Supera and Viabahn restricted bending. Distal to the stents, all devices except AbsolutePro and Innova exacerbated foreshortening, and Viabahn, Supera, Zilver, and SmartControl exacerbated twisting. All stents except Supera were pinched in flexed limb postures. Peripheral self-expanding stents significantly affect limb flexion-induced FPA deformations, but in different ways. Although certain designs seem to accommodate some deformation modes, no device was able to match all FPA deformations.

  12. AC electric field induced droplet deformation in a microfluidic T-junction.

    Science.gov (United States)

    Xi, Heng-Dong; Guo, Wei; Leniart, Michael; Chong, Zhuang Zhi; Tan, Say Hwa

    2016-08-02

    We present for the first time an experimental study on the droplet deformation induced by an AC electric field in droplet-based microfluidics. It is found that the deformation of the droplets becomes stronger with increasing electric field intensity and frequency. The measured electric field intensity dependence of the droplet deformation is consistent with an early theoretical prediction for stationary droplets. We also proposed a simple equivalent circuit model to account for the frequency dependence of the droplet deformation. The model well explains our experimental observations. In addition, we found that the droplets can be deformed repeatedly by applying an amplitude modulation (AM) signal.

  13. Configuration dependent deformation in 183Au

    International Nuclear Information System (INIS)

    Joshi, P.; Kumar, A.; Govil, I.M.; Mukherjee, G.; Singh, R.P.; Muralithar, S.; Bhowmik, R.K.

    1998-01-01

    The lifetime measurements in 183 Au nucleus were carried in order to probe the deformation properties of the band built on the i 3/2 and h 9/2 configurations. The nucleus of 183 Au was populated using a reaction 28 Si( 159 Tb,4n) 183 Au at a beam energy of 140 MeV. Lifetime measurements were carried out using Recoil Distance Measurements (RDM) method

  14. Development of a deformable dosimetric phantom to verify dose accumulation algorithms for adaptive radiotherapy.

    Science.gov (United States)

    Zhong, Hualiang; Adams, Jeffrey; Glide-Hurst, Carri; Zhang, Hualin; Li, Haisen; Chetty, Indrin J

    2016-01-01

    Adaptive radiotherapy may improve treatment outcomes for lung cancer patients. Because of the lack of an effective tool for quality assurance, this therapeutic modality is not yet accepted in clinic. The purpose of this study is to develop a deformable physical phantom for validation of dose accumulation algorithms in regions with heterogeneous mass. A three-dimensional (3D) deformable phantom was developed containing a tissue-equivalent tumor and heterogeneous sponge inserts. Thermoluminescent dosimeters (TLDs) were placed at multiple locations in the phantom each time before dose measurement. Doses were measured with the phantom in both the static and deformed cases. The deformation of the phantom was actuated by a motor driven piston. 4D computed tomography images were acquired to calculate 3D doses at each phase using Pinnacle and EGSnrc/DOSXYZnrc. These images were registered using two registration software packages: VelocityAI and Elastix. With the resultant displacement vector fields (DVFs), the calculated 3D doses were accumulated using a mass-and energy congruent mapping method and compared to those measured by the TLDs at four typical locations. In the static case, TLD measurements agreed with all the algorithms by 1.8% at the center of the tumor volume and by 4.0% in the penumbra. In the deformable case, the phantom's deformation was reproduced within 1.1 mm. For the 3D dose calculated by Pinnacle, the total dose accumulated with the Elastix DVF agreed well to the TLD measurements with their differences <2.5% at four measured locations. When the VelocityAI DVF was used, their difference increased up to 11.8%. For the 3D dose calculated by EGSnrc/DOSXYZnrc, the total doses accumulated with the two DVFs were within 5.7% of the TLD measurements which are slightly over the rate of 5% for clinical acceptance. The detector-embedded deformable phantom allows radiation dose to be measured in a dynamic environment, similar to deforming lung tissues, supporting

  15. Development of a deformable dosimetric phantom to verify dose accumulation algorithms for adaptive radiotherapy

    Directory of Open Access Journals (Sweden)

    Hualiang Zhong

    2016-01-01

    Full Text Available Adaptive radiotherapy may improve treatment outcomes for lung cancer patients. Because of the lack of an effective tool for quality assurance, this therapeutic modality is not yet accepted in clinic. The purpose of this study is to develop a deformable physical phantom for validation of dose accumulation algorithms in regions with heterogeneous mass. A three-dimensional (3D deformable phantom was developed containing a tissue-equivalent tumor and heterogeneous sponge inserts. Thermoluminescent dosimeters (TLDs were placed at multiple locations in the phantom each time before dose measurement. Doses were measured with the phantom in both the static and deformed cases. The deformation of the phantom was actuated by a motor driven piston. 4D computed tomography images were acquired to calculate 3D doses at each phase using Pinnacle and EGSnrc/DOSXYZnrc. These images were registered using two registration software packages: VelocityAI and Elastix. With the resultant displacement vector fields (DVFs, the calculated 3D doses were accumulated using a mass-and energy congruent mapping method and compared to those measured by the TLDs at four typical locations. In the static case, TLD measurements agreed with all the algorithms by 1.8% at the center of the tumor volume and by 4.0% in the penumbra. In the deformable case, the phantom's deformation was reproduced within 1.1 mm. For the 3D dose calculated by Pinnacle, the total dose accumulated with the Elastix DVF agreed well to the TLD measurements with their differences <2.5% at four measured locations. When the VelocityAI DVF was used, their difference increased up to 11.8%. For the 3D dose calculated by EGSnrc/DOSXYZnrc, the total doses accumulated with the two DVFs were within 5.7% of the TLD measurements which are slightly over the rate of 5% for clinical acceptance. The detector-embedded deformable phantom allows radiation dose to be measured in a dynamic environment, similar to deforming lung

  16. Evaluation of the deformation value of an optical flat under gravity

    International Nuclear Information System (INIS)

    Kondo, Yohan; Bitou, Youichi

    2014-01-01

    The flatness of an optical surface can be evaluated using a Fizeau interferometer. There is strong demand for ensuring that the measurement uncertainty of flatness is of nanometer order over a measurement range of 300 mm or more; however, the measurement range and measurement uncertainty of flatness at the National Metrology Institute of Japan (NMIJ) are 300 mm and 10 nm, respectively. In a Fizeau flatness interferometer, the gap distance between the reference flat and the specimen is measured. To obtain the absolute profile of the specimen, the absolute profile of the reference flat should be measured in advance. The three-flat test is one of the methods used to measure the absolute profile of a reference flat. The reference flat, however, deforms under the force of gravity, and its absolute deformation value cannot be determined by the three-flat test. The deformation value of the reference flat can be corrected by the finite element method (FEM) analysis; however, it is difficult to ensure the validity of the analysis and there is a large uncertainty component of the Fizeau flatness interferometer. To verify the FEM analysis, we developed a scanning deflectometric profiler (SDP) that does not require a reference flat and can directly measure a profile. We calibrated an optical flat using a Fizeau flatness interferometer and the SDP. Finally, the deformation value of the reference flat under the force of gravity was evaluated by comparing the measurement results. (paper)

  17. Multi-axial load application and DIC measurement of advanced composite beam deformation behavior

    Directory of Open Access Journals (Sweden)

    Berggreen C.

    2010-06-01

    Full Text Available For the validation of a new beam element formulation, a wide set of experimental data consisting of deformation patterns obtained for a number of specially designed composite beam elements, have been obtained. The composite materials applied in the beams consist of glass-fiber reinforced plastic with specially designed layup configurations promoting advanced coupling behavior. Furthermore, the beams are designed with different cross-section shapes. The data obtained from the experiments are also used in order to improve the general understanding related to practical implementation of mechanisms of elastic couplings due to anisotropic properties of composite materials. The knowledge gained from these experiments is therefore essential in order to facilitate an implementation of passive control in future large wind turbine blades. A test setup based on a four-column MTS servo-hydraulic testing machine with a maximum capacity of 100 kN was developed, see Figure 1. The setup allows installing and testing beams of different cross-sections applying load cases such as axial extension, shear force bending, pure bending in two principal directions as well as pure torsion, see Figure 2. In order to apply multi-axial loading, a load application system consisting of three hydraulic actuators were mounted in two planes using multi-axial servo-hydraulic control. The actuator setup consists of the main actuator on the servo-hydraulic test machine working in the vertical axis (depicted on Figure 1 placed at the testing machine crosshead and used for application of vertical forces to the specimens. Two extra actuators are placed in a horizontal plane on the T-slot table of the test machine in different positions in order to apply loading at the tip of the specimen in various configurations. In order to precisely characterize the global as well as surface deformations of the beam specimens tested, a combination of different measurement systems were used during

  18. Plastic deformation of aluminium under continuous electron irradiation

    International Nuclear Information System (INIS)

    Dubinko, V.I.; Dovbnya, A.N.; Kushnir, V.A.; Khodak, I.V.; Mitrochenko, V.V.; Lebedev, V.P.; Krylovskij, V.S.; Lebedev, S.V.; Klepikov, V.F.

    2010-01-01

    Plastic deformation of polycrystalline aluminum (99.5%) was investigated in the absence and presence of a high-energy electron beam (E = 0.5 MeV, φ = (0.5...5)·10 13 cm -2 ·c -1 ). Reduction of the yield stress and hardening coefficient was determined as a function of deformation, the sample thickness and the beam density. The increase of plasticity of the metal due to the impact of the electron beam has been established. The temperature in the deformation process was measured, which allowed separating the contribution of radiation-induced effects on the mechanical characteristics of aluminum. Possible mechanisms of the phenomenon are discussed.

  19. Classical and quantum-mechanical picture of NRSE - measuring the longitudinal Stern-Gerlach effect by means of TOF methods

    International Nuclear Information System (INIS)

    Arend, Nikolas; Gaehler, Roland; Keller, Thomas; Georgii, Robert; Hils, Thomas; Boeni, Peter

    2004-01-01

    If a neutron pulse passes through an NRSE flipper coil, the coherent splitting in energy of the spin-up and spin-down states leads to their macroscopic spatial separation, depending on the experimental parameters (longitudinal Stern-Gerlach effect). We furthermore present a discussion about the effects measurability and propose two possible setups

  20. Classical and quantum-mechanical picture of NRSE - measuring the longitudinal Stern-Gerlach effect by means of TOF methods

    Energy Technology Data Exchange (ETDEWEB)

    Arend, Nikolas; Gaehler, Roland; Keller, Thomas; Georgii, Robert; Hils, Thomas; Boeni, Peter

    2004-06-21

    If a neutron pulse passes through an NRSE flipper coil, the coherent splitting in energy of the spin-up and spin-down states leads to their macroscopic spatial separation, depending on the experimental parameters (longitudinal Stern-Gerlach effect). We furthermore present a discussion about the effects measurability and propose two possible setups.

  1. Effects of ballet training of children in Turkey on foot anthropometric measurements and medial longitudinal arc development.

    Science.gov (United States)

    Ozdinc, Sevgi Anar; Turan, Fatma Nesrin

    2016-07-01

    To investigate the effects of ballet training on foot structure and the formation of the medial longitudinal arc in childhood, and the association of body mass index with structural change secondary to ballet training. This study was conducted at Öykü Ballet and Dance School and Trakya University, Edirne, Turkey, from September 2007 to November 2008, and comprised girl students who were taking ballet classes, and a group of those who were not taking such who acted as the controls. Static footprints of both feet of all participants were taken with an ink paedogram. Parameters evaluated from footprints included foot length, metatarsal width, heel width and medial longitudinal arch. The relationship between the parameters, the ballet starting age, training duration and body mass index was investigated. Of the 67 participants, there were 36(53.7%) in the experimental group and 31(48.3%) in the control group. The difference between age, height, weight and body mass index between the two groups was insignificant (p>0.05). The average ballet starting age was 6.47±1.55 years and duration was 4.36±2.002 years. Positive correlations were found between body mass index and foot length, metatarsal width, heel width, medial longitudinal arch contact width and halluxvalgus angle; between ballet starting age and metatarsal width, heel width; between duration of training and foot length, metatarsal width and hallux valgus angle (p?0.05 each). Evidence supporting the education in children on foot anthropometric measurements and medial longitudinal arc development could not be found.

  2. Deformation behavior of curling strips on tearing tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji Won; Kwon, Tae Soo; Jung, Hyun Seung; Kim, Jin Sung [Dept. of Robotics and Virtual Engineering, Korea University of Science and Technology, Seoul (Korea, Republic of)

    2015-10-15

    This paper discusses the analysis of the curl deformation behavior when a dynamic force is applied to a tearing tube installed on a flat die to predict the energy absorption capacity and deformation behavior. The deformation of the tips of the curling strips was obtained when the curl tips and tube body are in contact with each other, and a formula describing the energy dissipation rate caused by the deformation of the curl tips is proposed. To improve this formula, we focused on the variation of the curl radius and the reduced thickness of the tube. A formula describing the mean curl radius is proposed and verified using the curl radius measurement data of collision test specimens. These improved formulas are added to the theoretical model previously proposed by Huang et al. and verified from the collision test results of a tearing tube.

  3. Muscle imbalance and reduced ankle joint motion in people with hammer toe deformity.

    Science.gov (United States)

    Kwon, O Y; Tuttle, L J; Johnson, J E; Mueller, M J

    2009-10-01

    Multiple factors may contribute to hammer toe deformity at the metatarsophalangeal joint. The purposes of this study were to (1) compare the ratio of toe extensor/flexor muscle strength in toes 2-4 among groups with and without hammer toe deformity, (2) to determine correlations between the ratio of toe extensor/flexor muscle strength in toes 2-4, and metatarsophalangeal joint deformity (3) to determine if other clinical measures differ between groups and if these measures are correlated with metatarsophalangeal joint angle. Twenty-seven feet with visible hammer toe deformity and 31 age matched feet without hammer toe deformity were tested. Toe muscle strength was measured using a dynamometer and the ratio of toe extensor muscle strength to flexor muscle strength was calculated. Metatarsophalangeal joint angle was measured from a computerized tomography image. Ankle and subtalar joint range of motion, and tibial torsion were measured using goniometry. Extensor/flexor toe muscle strength ratio was 2.3-3.0 times higher in the hammer toe group compared to the non-hammer toe group, in toes 2-4. The ratios of extensor/flexor toe muscle strength for toes 2-4 and metatarsophalangeal joint angle were highly correlated (r=0.69-0.80). Ankle dorsiflexion and metatarsophalangeal joint angle were negatively correlated for toes 2-4 (r=-0.38 to -0.56) as were eversion and metatarsophalangeal joint angle. These results provide insight into potential risk factors for the development of hammer toe deformity. Additional research is needed to determine the causal relationship between hammer toe deformity and the ratio of toe extensor/flexor muscle strength in toes 2-4.

  4. Static Aeroelastic and Longitudinal Trim Model of Flexible Wing Aircraft Using Finite-Element Vortex-Lattice Coupled Solution

    Science.gov (United States)

    Ting, Eric; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.

  5. Crustal deformation and volcanism at active plate boundaries

    Science.gov (United States)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and

  6. The impact of patient self assessment of deformity on HRQL in adults with scoliosis

    Directory of Open Access Journals (Sweden)

    Moss Nathan D

    2007-10-01

    Full Text Available Abstract Background Body image and HRQL are significant issues for patients with scoliosis due to cosmetic deformity, physical and psychological symptoms, and treatment factors. A selective review of scoliosis literature revealed that self report measures of body image and HRQL share unreliable correlations with radiographic measures and clinician recommendations for surgery. However, current body image and HRQL measures do not indicate which aspects of scoliosis deformity are the most distressing for patients. The WRVAS is an instrument designed to evaluate patient self assessment of deformity, and may show some promise in identifying aspects of deformity most troubling to patients. Previous research on adolescents with scoliosis supports the use of the WRVAS as a clinical tool, as the instrument shares strong correlations with radiographic measures and quality of life instruments. There has been limited use of this instrument on adult populations. Methods The WRVAS and the SF-36v2, a HRQL measure, were administered to 71 adults with scoliosis, along with a form to report age and gender. Preliminary validation analyses were performed on the WRVAS (floor and ceiling effects, internal consistency and collinearity, correlations with the SF-36v2, and multiple regression with the WRVAS total score as the predictor, and SF-36v2 scores as outcomes. Results The psychometric properties of the WRVAS were acceptable. Older participants perceived their deformities as more severe than younger participants. More severe deformities were associated with lower scores on the Physical Component Summary Score of the SF-36v2. Total WRVAS score also predicted Physical Component Summary scores. Conclusion The results of the current study indicate that the WRVAS is a reliable tool to use with adult patients, and that patient self assessment of deformity shared a relationship with physical rather than psychological aspects of HRQL. The current and previous studies

  7. Effect of plastic deformation on the magnetic properties of selected austenitic stainless steels

    Directory of Open Access Journals (Sweden)

    Tatiana Oršulová

    2017-04-01

    Full Text Available Austenitic stainless steels are materials, that are widely used in various fields of industry, architecture and biomedicine. Their specific composition of alloying elements has got influence on their deformation behavior. The main goal of this study was evaluation of magnetic properties of selected steels, caused by plastic deformation. The samples were heat treated in different intervals of temperature before measuring. Then the magnetic properties were measured on device designed for measuring of magnetism. From tested specimens, only AISI 304 confirmed effect of plastic deformation on the magnetic properties. Magnetic properties changed with increasing temperature.

  8. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  9. Monitoring Bridge Dynamic Deformation in Vibration by Digital Photography

    Science.gov (United States)

    Yu, Chengxin; Zhang, Guojian; Liu, Xiaodong; Fan, Li; Hai, Hua

    2018-01-01

    This study adopts digital photography to monitor bridge dynamic deformation in vibration. Digital photography in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, we monitor the bridge in static as a zero image. Then, we continuously monitor the bridge in vibration as the successive images. Based on the reference points on each image, PST-TBPM is used to calculate the images to obtain the dynamic deformation values of these deformation points. Results show that the average measurement accuracies are 0.685 pixels (0.51mm) and 0.635 pixels (0.47mm) in X and Z direction, respectively. The maximal deformations in X and Z direction of the bridge are 4.53 pixels and 5.21 pixels, respectively. PST-TBPM is valid in solving the problem that the photographing direction is not perpendicular to the bridge. Digital photography in this study can be used to assess bridge health through monitoring the dynamic deformation of a bridge in vibration. The deformation trend curves also can warn the possible dangers over time.

  10. A research about characteristics of longitudinal variations of ES layers irregularities based on CHAMP occultation measurements

    Science.gov (United States)

    Liao, Sunmin

    2018-04-01

    Based on the data of CHAMP occultation measurements, this paper makes a preliminary analysis of the longitudinal variations of ES irregular structure by using Fourier decomposition and reconstruction technique. It is found that the longitudinal variations of the ES irregular structure show the features of multiple wave-numbers, which is dominated by the wave number 1 to the wave number 5 components, and decrease from the amplitudes of the wave number 6 components. The features of wave number structures are very different in different DIP latitude and different seasons. The number of crests in summer and autumn is mostly 3 or 4 crest structures, while the number of crests in spring achieves 5 at DIP 15°N with small fluctuates, the crests number of winter is the least. In the multiple wave-numbers structure, the wave number 4 component shows a significant dependence on the season, mainly in the summer and autumn, particularly obvious from July to October.

  11. Constitutive model with time-dependent deformations

    DEFF Research Database (Denmark)

    Krogsbøll, Anette

    1998-01-01

    are common in time as well as size. This problem is adressed by means of a new constitutive model for soils. It is able to describe the behavior of soils at different deformation rates. The model defines time-dependent and stress-related deformations separately. They are related to each other and they occur...... was the difference in time scale between the geological process of deposition (millions of years) and the laboratory measurements of mechanical properties (minutes or hours). In addition, the time scale relevant to the production history of the oil field was interesting (days or years)....

  12. Dynamic skin deformation simulation using musculoskeletal model and soft tissue dynamics

    Institute of Scientific and Technical Information of China (English)

    Akihiko Murai; Q. Youn Hong; Katsu Yamane; Jessica K. Hodgins

    2017-01-01

    Deformation of skin and muscle is essential for bringing an animated character to life. This deformation is difficult to animate in a realistic fashion using traditional techniques because of the subtlety of the skin deformations that must move appropriately for the character design. In this paper, we present an algorithm that generates natural, dynamic, and detailed skin deformation (movement and jiggle) from joint angle data sequences. The algorithm has two steps: identification of parameters for a quasi-static muscle deformation model, and simulation of skin deformation. In the identification step, we identify the model parameters using a musculoskeletal model and a short sequence of skin deformation data captured via a dense marker set. The simulation step first uses the quasi-static muscle deformation model to obtain the quasi-static muscle shape at each frame of the given motion sequence (slow jump). Dynamic skin deformation is then computed by simulating the passive muscle and soft tissue dynamics modeled as a mass–spring–damper system. Having obtained the model parameters, we can simulate dynamic skin deformations for subjects with similar body types from new motion data. We demonstrate our method by creating skin deformations for muscle co-contraction and external impacts from four different behaviors captured as skeletal motion capture data. Experimental results show that the simulated skin deformations are quantitatively and qualitatively similar to measured actual skin deformations.

  13. Dynamic skin deformation simulation using musculoskeletal model and soft tissue dynamics

    Institute of Scientific and Technical Information of China (English)

    Akihiko Murai; Q.Youn Hong; Katsu Yamane; Jessica K.Hodgins

    2017-01-01

    Deformation of skin and muscle is essential for bringing an animated character to life. This deformation is difficult to animate in a realistic fashion using traditional techniques because of the subtlety of the skin deformations that must move appropriately for the character design. In this paper, we present an algorithm that generates natural, dynamic, and detailed skin deformation(movement and jiggle) from joint angle data sequences. The algorithm has two steps: identification of parameters for a quasi-static muscle deformation model, and simulation of skin deformation. In the identification step, we identify the model parameters using a musculoskeletal model and a short sequence of skin deformation data captured via a dense marker set. The simulation step first uses the quasi-static muscle deformation model to obtain the quasi-static muscle shape at each frame of the given motion sequence(slow jump). Dynamic skin deformation is then computed by simulating the passive muscle and soft tissue dynamics modeled as a mass–spring–damper system. Having obtained the model parameters, we can simulate dynamic skin deformations for subjects with similar body types from new motion data. We demonstrate our method by creating skin deformations for muscle co-contraction and external impacts from four different behaviors captured as skeletal motion capture data. Experimental results show that the simulated skin deformations are quantitatively and qualitatively similar to measured actual skin deformations.

  14. A technique for measuring an electron beam close-quote s longitudinal phase space with sub-picosecond resolution

    International Nuclear Information System (INIS)

    Crosson, E.R.; Berryman, K.W.; Richman, B.A.; Smith, T.I.; Swent, R.L.

    1996-01-01

    We have developed a technique for measuring the longitudinal phase space distribution of the Stanford Superconducting Accelerator close-quote s (SCA) electron beam which involves applying tomographic techniques to energy spectra taken as a function of the relative phase between the beam and the accelerating field, and optionally, as a function of the strength of a variable dispersion section in the system. The temporal profile of the beam obtained by projecting the inferred distribution onto the time axis is compared with that obtained from interferometric transition radiation measurements. copyright 1996 American Institute of Physics

  15. Influence of implant rod curvature on sagittal correction of scoliosis deformity.

    Science.gov (United States)

    Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu

    2014-08-01

    Deformation of in vivo-implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. To analyze the changes of the implant rod's angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. Twenty adolescent idiopathic scoliosis patients underwent surgery. Average age at the time of operation was 14 years. The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. Two implant rods were attached to the concave and convex side of the spinal deformity. The preoperative implant rod geometry was measured before surgical implantation. The postoperative implant rod geometry after surgery was measured by computed tomography. The implant rod angle of curvature at the sagittal plane was obtained from the implant rod geometry. The angle of curvature between the implant rod extreme ends was measured before implantation and after surgery. The sagittal curvature between the corresponding spinal levels of healthy adolescents obtained by previous studies was compared with the implant rod angle of curvature to evaluate the sagittal curve correction. The difference between the postoperative implant rod angle of curvature and normal spine sagittal curvature of the corresponding instrumented level was used to evaluate over or under correction of the sagittal deformity. The implant rods at the concave side of deformity of all patients were significantly deformed after surgery. The average degree of rod deformation Δθ at the concave and convex sides was 15.8° and 1.6°, respectively. The average preoperative and postoperative implant rod angle of curvature at the concave side was 33.6° and 17.8

  16. Is nucleon deformed?

    International Nuclear Information System (INIS)

    Abbas, Afsar

    1992-01-01

    The surprising answer to this question Is nucleon deformed? is : Yes. The evidence comes from a study of the quark model of the single nucleon and when it is found in a nucleus. It turns out that many of the long standing problems of the Naive Quark Model are taken care of if the nucleon is assumed to be deformed. Only one value of the parameter P D ∼1/4 (which specifies deformation) fits g A (the axial vector coupling constant) for all the semileptonic decay of baryons, the F/D ratio, the pion-nucleon-delta coupling constant fsub(πNΔ), the double delta coupling constant 1 fsub(πΔΔ), the Ml transition moment μΔN and g 1 p the spin structure function of proton 2 . All this gives strong hint that both neutron and proton are deformed. It is important to look for further signatures of this deformation. When this deformed nucleon finds itself in a nuclear medium its deformation decreases. So much that in a heavy nucleus the nucleons are actually spherical. We look into the Gamow-Teller strengths, magnetic moments and magnetic transition strengths in nuclei to study this property. (author). 15 refs

  17. Measurements of longitudinal and transverse momentum distributions for neutral pions in the forward-rapidity region with the LHCf detector

    CERN Document Server

    Adriani, O.; Bonechi, L.; Bongi, M.; D'Alessandro, R.; Del Prete, M.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Kawade, K.; Makino, Y.; Masuda, K.; Matsubayashi, E.; Menjo, H.; Mitsuka, G.; Muraki, Y.; Papini, P.; Perrot, A.L.; Ricciarini, S.; Sako, T.; Sakurai, N.; Suzuki, T.; Tamura, T.; Tiberio, A.; Torii, S.; Tricomi, A.; Turner, W.C.; Zhou, Q.D.

    2016-01-01

    The transverse and longitudinal momentum distributions for inclusive neutral pions in the very forward rapidity region have been measured with the Large Hadron Collider forward detector in proton-proton collisions at $\\sqrt{s}=$ 2.76 and 7 TeV and in proton-lead collisions at nucleon-nucleon center-of-mass energies of $\\sqrt{s_\\text{NN}}=$ 5.02 TeV at the LHC. Such momentum distributions in proton-proton collisions are compatible with the hypotheses of limiting fragmentation and Feynman scaling. A sizable suppression of the production of neutral pions, after taking into account ultraperipheral collisions, is found in the transverse and longitudinal momentum distributions obtained in proton-lead collisions. This leads to a strong nuclear modification factor value of about 0.1-0.3. The experimental measurements presented in this paper provide a benchmark for the hadronic interaction Monte Carlo simulations codes that are used for the simulation of air showers.

  18. Strength and deformation of shocked diamond single crystals: Orientation dependence

    Science.gov (United States)

    Lang, J. M.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ˜120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}⟨110⟩ slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (˜33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (˜23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response

  19. Right ventricular longitudinal strain correlates well with right ventricular stroke work index in patients with advanced heart failure referred for heart transplantation.

    Science.gov (United States)

    Cameli, Matteo; Lisi, Matteo; Righini, Francesca Maria; Tsioulpas, Charilaos; Bernazzali, Sonia; Maccherini, Massimo; Sani, Guido; Ballo, Piercarlo; Galderisi, Maurizio; Mondillo, Sergio

    2012-03-01

    Right ventricular (RV) systolic function has a critical role in determining the clinical outcome and success of using left ventricular assist devices (LVADs) in patients with refractory heart failure. Tissue Doppler and M-mode measurements of tricuspid systolic motion (tricuspid S' and tricuspid annular plane systolic excursion [TAPSE]) are the most currently used methods for the quantification of RV longitudinal function; RV deformation analysis by speckle-tracking echocardiography (STE) has recently allowed the analysis of global RV longitudinal function. Using cardiac catheterization as the reference standard, this study aimed at exploring the correlation between RV longitudinal function by STE and RV stroke work index (RVSWI) in patients referred for cardiac transplantation. Right-side heart catheterization and transthoracic echo Doppler were simultaneously performed in 41 patients referred for cardiac transplantation evaluation for advanced systolic heart failure. Thermodilution RV stroke volume and invasive pulmonary pressures were used to obtain RVSWI. RV longitudinal strain (RVLS) by STE was assessed averaging all segments in apical 4-chamber view (global RVLS) and by averaging RV free-wall segments (free-wall RVLS). Tricuspid S' and TAPSE were also calculated. No significant correlations were found for TAPSE or tricuspid S' with RVSWI (r = 0.14; r = 0.06; respectively). Close negative correlations between global RVLS and free-wall RVLS with the RVSWI were found (r = -0.75; r = -0.82; respectively; both P rights reserved.

  20. Covariance estimation for dInSAR surface deformation measurements in the presence of anisotropic atmospheric noise

    KAUST Repository

    Knospe, Steffen H G

    2010-04-01

    We study anisotropic spatial autocorrelation in differential synthetic aperture radar interferometric (dInSAR) measurements and its impact on geophysical parameter estimations. The dInSAR phase acquired by the satellite sensor is a superposition of different contributions, and when studying geophysical processes, we are usually only interested in the surface deformation part of the signal. Therefore, to obtain high-quality results, we would like to characterize and/or remove other phase components. A stochastic model has been found to be appropriate to describe atmospheric phase delay in dInSAR images. However, these phase delays are usually modeled as being isotropic, which is a simplification, because InSAR images often show directional atmospheric anomalies. Here, we analyze anisotropic structures and show validation results using both real and simulated data. We calculate experimental semivariograms of the dInSAR phase in several European Remote Sensing satellite-1/2 tandem interferograms. Based on the theory of random functions (RFs), we then fit anisotropic variogram models in the spatial domain, employing Matérn-and Bessel-family correlation functions in nested models to represent complex dInSAR covariance structures. The presented covariance function types, in the statistical framework of stationary RFs, are consistent with tropospheric delay models. We find that by using anisotropic data covariance information to weight dInSAR measurements, we can significantly improve both the precision and accuracy of geophysical parameter estimations. Furthermore, the improvement is dependent on how similar the deformation pattern is to the dominant structure of the anisotropic atmospheric signals. © 2009 IEEE.

  1. Speckle photography applied to measure deformations of very large structures

    Science.gov (United States)

    Conley, Edgar; Morgan, Chris K.

    1995-04-01

    Fundamental principles of mechanics have recently been brought to bear on problems concerning very large structures. Fields of study include tectonic plate motion, nuclear waste repository vault closure mechanisms, the flow of glacier and sea ice, and highway bridge damage assessment and residual life prediction. Quantitative observations, appropriate for formulating and verifying models, are still scarce however, so the need to adapt new methods of experimental mechanics is clear. Large dynamic systems often exist in environments subject to rapid change. Therefore, a simple field technique that incorporates short time scales and short gage lengths is required. Further, the measuring methods must yield displacements reliably, and under oft-times adverse field conditions. Fortunately, the advantages conferred by an experimental mechanics technique known as speckle photography nicely fulfill this rather stringent set of performance requirements. Speckle seemed to lend itself nicely to the application since it is robust and relatively inexpensive. Experiment requirements are minimal -- a camera, high resolution film, illumination, and an optically rough surface. Perhaps most important is speckle's distinct advantage over point-by-point methods: It maps the two dimensional displacement vectors of the whole field of interest. And finally, given the method's high spatial resolution, relatively short observation times are necessary. In this paper we discuss speckle, two variations of which were used to gage the deformation of a reinforced concrete bridge structure subjected to bending loads. The measurement technique proved to be easily applied, and yielded the location of the neutral axis self consistently. The research demonstrates the feasibility of using whole field techniques to detect and quantify surface strains of large structures under load.

  2. Beam Based RF Voltage Measurements and Longitudinal Beam Tomography at the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab; Bhat, S. [Fermilab

    2017-10-19

    Increasing proton beam power on neutrino production targets is one of the major goals of the Fermilab long term accelerator programs. In this effort, the Fermilab 8 GeV Booster synchrotron plays a critical role for at least the next two decades. Therefore, understanding the Booster in great detail is important as we continue to improve its performance. For example, it is important to know accurately the available RF power in the Booster by carrying out beam-based measurements in order to specify the needed upgrades to the Booster RF system. Since the Booster magnetic field is changing continuously measuring/calibrating the RF voltage is not a trivial task. Here, we present a beam based method for the RF voltage measurements. Data analysis is carried out using computer programs developed in Python and MATLAB. The method presented here is applicable to any RCS which do not have flat-bottom and flat-top in the acceleration magnetic ramps. We have also carried out longitudinal beam tomography at injection and extraction energies with the data used for RF voltage measurements. Beam based RF voltage measurements and beam tomography were never done before for the Fermilab Booster. The results from these investigations will be very useful in future intensity upgrades.

  3. Deformational Features and Microstructure Evolution of Copper Fabricated by a Single Pass of the Elliptical Cross-Section Spiral Equal-Channel Extrusion (ECSEE) Process

    Science.gov (United States)

    Wang, Chengpeng; Li, Fuguo; Liu, Juncheng

    2018-04-01

    The objectives of this work are to study the deformational feature, textures, microstructures, and dislocation configurations of ultrafine-grained copper processed by the process of elliptical cross-section spiral equal-channel extrusion (ECSEE). The deformation patterns of simple shear and pure shear in the ECSEE process were evaluated with the analytical method of geometric strain. The influence of the main technical parameters of ECSEE die on the effective strain distribution on the surface of ECSEE-fabricated samples was examined by the finite element simulation. The high friction factor could improve the effective strain accumulation of material deformation. Moreover, the pure copper sample fabricated by ECSEE ion shows a strong rotated cube shear texture. The refining mechanism of the dislocation deformation is dominant in copper processed by a single pass of ECSEE. The inhomogeneity of the micro-hardness distribution on the longitudinal section of the ECSEE-fabricated sample is consistent with the strain and microstructure distribution features.

  4. A Bloch-Torrey Equation for Diffusion in a Deforming Media

    Energy Technology Data Exchange (ETDEWEB)

    Rohmer, Damien; Gullberg, Grant T.

    2006-12-29

    Diffusion Tensor Magnetic Resonance Imaging (DTMRI)technique enables the measurement of diffusion parameters and therefore,informs on the structure of the biological tissue. This technique isapplied with success to the static organs such as brain. However, thediffusion measurement on the dynamically deformable organs such as thein-vivo heart is a complex problem that has however a great potential inthe measurement of cardiac health. In order to understand the behavior ofthe Magnetic Resonance (MR)signal in a deforming media, the Bloch-Torreyequation that leads the MR behavior is expressed in general curvilinearcoordinates. These coordinates enable to follow the heart geometry anddeformations through time. The equation is finally discretized andpresented in a numerical formulation using implicit methods, in order toget a stable scheme that can be applied to any smooth deformations.Diffusion process enables the link between the macroscopic behavior ofmolecules and themicroscopic structure in which they evolve. Themeasurement of diffusion in biological tissues is therefore of majorimportance in understanding the complex underlying structure that cannotbe studied directly. The Diffusion Tensor Magnetic ResonanceImaging(DTMRI) technique enables the measurement of diffusion parametersand therefore provides information on the structure of the biologicaltissue. This technique has been applied with success to static organssuch as the brain. However, diffusion measurement of dynamicallydeformable organs such as the in-vivo heart remains a complex problem,which holds great potential in determining cardiac health. In order tounderstand the behavior of the magnetic resonance (MR) signal in adeforming media, the Bloch-Torrey equation that defines the MR behavioris expressed in general curvilinear coordinates. These coordinates enableus to follow the heart geometry and deformations through time. Theequation is finally discretized and presented in a numerical formulationusing

  5. Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR

    Science.gov (United States)

    Bayer, Benedikt; Simoni, Alessandro; Mulas, Marco; Corsini, Alessandro; Schmidt, David

    2018-05-01

    Slow moving landslides are widespread geomorphological features in the Northern Apennines of Italy where they represent one of the main landscape forming processes. The lithology of the Northern Apennines fold and thrust belt is characterized by alternations of sandstone, siltstone and clayshales, also known as flysch, and clay shales with a chaotic block in matrix fabric, which are often interpreted as tectonic or sedimentary mélanges. While flysch rocks with a high pelitic fraction host earthslides that occasionally evolve into flow like movements, earthflows are the dominant landslide type in chaotic clay shales. In the present work, we document the kinematic response to rainfall of landslides in these different lithologies using radar interferometry. The study area includes three river catchments in the Northern Apennines. Here, the Mediterranean climate is characterized by two wet seasons during autumn and spring respectively, separated by dry summers and winters with moderate precipitation. We use SAR imagery from the X-band satellite COSMO SkyMed and from the C-band satellite Sentinel 1 to retrieve spatial displacement measurements between 2009 and 2016 for 25 landslides in our area of interest. We also document detailed temporal and spatial deformation signals for eight representative landslides, although the InSAR derived deformation signal is only well constrained by our dataset during the years 2013 and 2015. In spring 2013, long enduring rainfalls struck the study area and numerous landslide reactivations were documented by the regional authorities. During 2013, we measured higher displacement rates on the landslides in pelitic flysch formations compared to the earthflows in the clay shales. Slower mean velocities were measured on most landslides during 2015. We analyse the temporal deformation signal of our eight representative landslides and compare the temporal response to precipitation. We show that earthslides in pelitic flysch formations

  6. An Efficient Data-driven Tissue Deformation Model

    DEFF Research Database (Denmark)

    Mosbech, Thomas Hammershaimb; Ersbøll, Bjarne Kjær; Christensen, Lars Bager

    2009-01-01

    empirical data; 10 pig carcasses are subjected to deformation from a controlled source imitating the cutting tool. The tissue deformation is quantified by means of steel markers inserted into the carcass as a three-dimensional lattice. For each subject marker displacements are monitored through two...... find an association between the first principal mode and the lateral movement. Furthermore, there is a link between this and the ratio of meat-fat quantity - a potentially very useful finding since existing tools for carcass grading and sorting measure equivalent quantities....

  7. Nature of negative microplastic deformation in alloys

    International Nuclear Information System (INIS)

    Palatnik, L.S.; Ivantsov, V.I.; Kagan, Ya.I.; Papirov, I.I.; Fat'yanova, N.B.; AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst.)

    1985-01-01

    The paper deals with investigation of microplastic deformation of corrosion resistant aging 40KhNYU alloy and the study of physical nature of negative microdeformation in this alloy under tension. Investigation of microplasticity of 40KhNYU alloy was conducted by the method of mechanostatic hysteresis using resistance strain gauge for measuring stresses and deformations. Microplasticity curves for 40KhNYU alloy were obtained. They represent the result of competition between usual (positive) microdeformation and phase (negative) deformation under tensile effect on the alloy. It was established that the negative microdeformation increment occurs during secondary aging of the phase precipitated from initial supersat urated solid solution (primary decomposition product). This phase decomposes under tension with disperse phase precipitation which promotes decreasing its specific volume and specimen volume as a whole

  8. Measurements of red cell deformability and hydration reflect HbF and HbA2 in blood from patients with sickle cell anemia.

    Science.gov (United States)

    Parrow, Nermi L; Tu, Hongbin; Nichols, James; Violet, Pierre-Christian; Pittman, Corinne A; Fitzhugh, Courtney; Fleming, Robert E; Mohandas, Narla; Tisdale, John F; Levine, Mark

    2017-06-01

    Decreased erythrocyte deformability, as measured by ektacytometry, may be associated with disease severity in sickle cell anemia (SCA). Heterogeneous populations of rigid and deformable cells in SCA blood result in distortions of diffraction pattern measurements that correlate with the concentration of hemoglobin S (HbS) and the percentage of irreversibly sickled cells. We hypothesize that red cell heterogeneity, as well as deformability, will also be influenced by the concentration of alternative hemoglobins such as fetal hemoglobin (HbF) and the adult variant, HbA 2 . To test this hypothesis, we investigate the relationship between diffraction pattern distortion, osmotic gradient ektacytometry parameters, and the hemoglobin composition of SCA blood. We observe a correlation between the extent of diffraction pattern distortions and percentage of HbF and HbA 2 . Osmotic gradient ektacytometry data indicate that minimum elongation in the hypotonic region is positively correlated with HbF, as is the osmolality at which it occurs. The osmolality at both minimum and maximum elongation is inversely correlated with HbS and HbA 2 . These data suggest that HbF may effectively improve surface-to-volume ratio and osmotic fragility in SCA erythrocytes. HbA 2 may be relatively ineffective in improving these characteristics or cellular hydration at the levels found in this patient cohort. Copyright © 2017. Published by Elsevier Inc.

  9. Micrometric deformation imaging at W-Band with GBSAR

    OpenAIRE

    Martínez, Arturo; Aguasca Solé, Alberto; Lort Cuenca, Marc; Broquetas Ibars, Antoni

    2017-01-01

    The paper presents the experimental evaluation of 94 GHz CW-FM Radar that can be configured as a Ground Based SAR (Synthetic Aperture Radar) for high resolution imaging and deformation control. This system has been designed to obtain and analyze data of deformations on different types of bodies, being able to detect range changes of the order of micrometers. After indoor testing and validation measurements, several experimental results obtained in different scenarios are presented. Finall...

  10. How the continents deform: The evidence from tectonic geodesy

    Science.gov (United States)

    Thatcher, Wayne R.

    2009-01-01

    Space geodesy now provides quantitative maps of the surface velocity field within tectonically active regions, supplying constraints on the spatial distribution of deformation, the forces that drive it, and the brittle and ductile properties of continental lithosphere. Deformation is usefully described as relative motions among elastic blocks and is block-like because major faults are weaker than adjacent intact crust. Despite similarities, continental block kinematics differs from global plate tectonics: blocks are much smaller, typically ∼100–1000 km in size; departures from block rigidity are sometimes measurable; and blocks evolve over ∼1–10 Ma timescales, particularly near their often geometrically irregular boundaries. Quantitatively relating deformation to the forces that drive it requires simplifying assumptions about the strength distribution in the lithosphere. If brittle/elastic crust is strongest, interactions among blocks control the deformation. If ductile lithosphere is the stronger, its flow properties determine the surface deformation, and a continuum approach is preferable.

  11. Dynamic strain ageing of deformed nitrogen-alloyed AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Ehrnsten, U.; Toivonen, A.; Ivanchenko, M.; Nevdacha, V.; Yagozinskyy, Y.; Haenninen, H.

    2004-01-01

    Intergranular stress corrosion cracking has occurred in BWR environment in non-sensitized, deformed austenitic stainless steel materials. The affecting parameters are so far not fully known, but deformation mechanisms may be decisive. The effect of deformation and nitrogen content on the behaviour of austenitic stainless steels was investigated. The materials were austenitic stainless steels of AISI 316L type with different amounts of nitrogen (0.03 - 0.18%) and they were mechanically deformed 0, 5 and 20%. The investigations are focused on the dynamic strain ageing (DSA) behaviour. A few crack growth rate measurements are performed on nuclear grade AISI 316NG material with different degrees of deformation (0, 5 and 20%). The effects of DSA on mechanical properties of these materials are evaluated based on peaks in ultimate tensile strength and strain hardening coefficient and minimum in ductility in the DSA temperature range. Additionally, internal friction measurements have been performed in the temperature range of -100 to 600 deg. C for determining nitrogen interactions with other alloying elements and dislocations (cold-worked samples). The results show an effect of nitrogen on the stainless steel behaviour, e.g. clear indications of dynamic strain ageing and changes in the internal friction peaks as a function of nitrogen content and amount of deformation. (authors)

  12. Mathematical modeling of deformation of a porous medium, considering its strengthening due to pore collapse

    Energy Technology Data Exchange (ETDEWEB)

    Sadovskii, V. M., E-mail: sadov@icm.krasn.ru; Sadovskaya, O. V., E-mail: o-sadov@icm.krasn.ru [Institute of Computational Modeling, SB RAS, Akademgorodok 50/44, 660036 Krasnoyarsk (Russian Federation)

    2015-10-28

    Based on the generalized rheological method, the mathematical model describing small deformations of a single-phase porous medium without regard to the effects of a fluid or gas in pores is constructed. The change in resistance of a material to the external mechanical impacts at the moment of pore collapse is taken into account by means of the von Mises–Schleicher strength condition. In order to consider irreversible deformations, alongside with the classical yield conditions by von Mises and Tresca– Saint-Venant, the special condition modeling the plastic loss of stability of a porous skeleton is used. The random nature of the pore size distribution is taken into account. It is shown that the proposed mathematical model satisfies the principles of thermodynamics of irreversible processes. Phenomenological parameters of the model are determined on the basis of the approximate calculation of the problem on quasi-static loading of a cubic periodicity cell with spherical voids. In the framework of the obtained model, the process of propagation of plane longitudinal waves of the compression in a homogenous porous medium, accompanied by the plastic deformation of a skeleton and the collapse of pores, is analyzed.

  13. Measurement of high-Q{sup 2} charged current deep inelastic scattering cross sections with a longitudinally polarised positron beam at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). Faculty of Exact Sciences, School of Physics; Max-Planck-Inst., Munich (Germany); Abt, I. [Max-Planck-Inst. fuer Physik, Muenchen (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2010-08-15

    Measurements of the cross sections for charged current deep inelastic scattering in e{sup +}p collisions with a longitudinally polarised positron beam are presented. The measurements are based on a data sample with an integrated luminosity of 132 pb{sup -1} collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is presented at positive and negative values of the longitudinal polarisation of the positron beams. The single-differential cross sections d{sigma}/dQ{sup 2}, d{sigma}/dx and d{sigma}/dy are presented for Q{sup 2}>200 GeV{sup 2}. The reduced cross-section {sigma} is presented in the kinematic range 200measurements agree well with the predictions of the Standard Model. The results are used to determine a lower limit on the mass of a hypothetical right-handed W boson. (orig.)

  14. Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adragna, P [Pisa University and INFN, Pisa (Italy); Alexa, C [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Anderson, K [University of Chicago, Chicago, IL (United States); Antonaki, A; Arabidze, A [University of Athens, Athens (Greece); Batkova, L [Comenius University, Bratislava (Slovakia); Batusov, V [JINR, Dubna (Russian Federation); Beck, H P [Laboratory for High Energy Physics, University of Bern (Switzerland); Bergeaas Kuutmann, E [Stockholm University, Stockholm (Sweden); Biscarat, C [LPC Clermont-Ferrand, Universite Blaise Pascal, Clermont-Ferrand (France); Blanchot, G [CERN, Geneva (Switzerland); Bogush, A [Institute of Physics, National Academy of Sciences, Minsk (Belarus); Bohm, C [Stockholm University, Stockholm (Sweden); Boldea, V [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Bosman, M [Institut de Fisica d' Altes Energies, Universitat Autonoma de Barcelona, Barcelona (Spain); Bromberg, C [Michigan State University, East Lansing, MI (United States); Budagov, J [JINR, Dubna (Russian Federation); Burckhart-Chromek, D [CERN, Geneva (Switzerland); Caprini, M [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Caloba, L [COPPE/EE/UFRJ, Rio de Janeiro (Brazil)

    2010-04-01

    The response of pions and protons in the energy range of 20-180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron-scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parametrization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parametrized as a function of the beam energy and the calorimeter depth. This allows for a leakage correction of test-beam results in the standard projective geometry.

  15. Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter

    International Nuclear Information System (INIS)

    Adragna, P.; Alexa, C.; Anderson, K.; Antonaki, A.; Arabidze, A.; Batkova, L.; Batusov, V.; Beck, H.P.; Bergeaas Kuutmann, E.; Biscarat, C.; Blanchot, G.; Bogush, A.; Bohm, C.; Boldea, V.; Bosman, M.; Bromberg, C.; Budagov, J.; Burckhart-Chromek, D.; Caprini, M.; Caloba, L.

    2010-01-01

    The response of pions and protons in the energy range of 20-180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron-scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parametrization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parametrized as a function of the beam energy and the calorimeter depth. This allows for a leakage correction of test-beam results in the standard projective geometry.

  16. Analysis of the braking longitudinal force considered by NBR7187 (2003 through a case study

    Directory of Open Access Journals (Sweden)

    G. C. Bettazzi

    Full Text Available This paper analyzed the mechanical behavior of a railway bridge by the Finite Element Method and by monitoring strain deformations with extensometry during its operation. To represent the situations that occur in its operation, tests were made with train braking. The results of monitoring the bottom cross section of column P15 of the bridge are presented. Based on the obtained data, the deformations occurring during the tests are verified against the calculated values obtained by the FEM method and those prescribed by NBR 7187(2003. The comparison between the real behavior of the structure, recorded experimentally through extensometry, and the numerical forecast and its assumptions from the project conceived was done. From this comparison, it verified that the value of longitudinal force due to braking recommended by the standard is appropriate.

  17. Micromechanics of deformation of metallic-glass-matrix composites from in situ synchrotron strain measurements and finite element modeling

    International Nuclear Information System (INIS)

    Ott, R.T.; Sansoz, F.; Molinari, J.F.; Almer, J.; Ramesh, K.T.; Hufunagel, T.C.

    2005-01-01

    In situ X-ray scattering and finite element modeling (FEM) were used to examine the micromechanics of deformation of in situ formed metallic-glass-matrix composites consisting of Ta-rich particles dispersed in an amorphous matrix. The strain measurements show that under uniaxial compression the second-phase particles yield at an applied stress of approx. 325 MPa. After yielding, the particles do not strain harden significantly; we show that this is due to an increasingly hydrostatic stress state arising from the lateral constraint on deformation of the particles imposed by the elastic matrix. Shear band initiation in the matrix is not due to the difference in elastic properties between the matrix and the particles. Rather, the development of a plastic misfit strain causes stress concentrations around the particles, resulting in localized yielding of the matrix by shear band formation at an applied stress of approx. 1450 MPa, considerably lower than the macroscopic yield stress of the composite (approx. 1725 MPa). Shear bands do not propagate at the lower stress because the yield criterion of the matrix is only satisfied in the region immediately around the particles. At the higher stresses, the yield criterion is satisfied in large regions of the matrix, allowing extensive shear band propagation and significant macroscopic plastic deformation. However, the presence of the particles makes the stress state highly inhomogeneous, which may partially explain why fracture is suppressed in the composite, allowing the development of large plastic strains

  18. High prevalence of morphometric vertebral deformities in patients with inflammatory bowel disease.

    Science.gov (United States)

    Heijckmann, Anna Caroline; Huijberts, Maya S P; Schoon, Erik J; Geusens, Piet; de Vries, Jolanda; Menheere, Paul P C A; van der Veer, Eveline; Wolffenbuttel, Bruce H R; Stockbrugger, Reinhold W; Dumitrescu, Bianca; Nieuwenhuijzen Kruseman, Arie C

    2008-08-01

    Earlier studies have documented that the prevalence of decreased bone mineral density (BMD) is elevated in patients with inflammatory bowel disease. The objective of this study was to investigate the prevalence of vertebral deformities in inflammatory bowel disease patients and their relation with BMD and bone turnover. One hundred and nine patients with Crohn's disease (CD) and 72 with ulcerative colitis (UC) (age 44.5+/-14.2 years) were studied. BMD of the hip (by dual X-ray absorptiometry) was measured and a lateral single energy densitometry of the spine for assessment of vertebral deformities was performed. Serum markers of bone resorption (carboxy-terminal cross-linked telopeptide of type I collagen) and formation (procollagen type I amino-terminal propeptide) were measured, and determinants of prevalent vertebral deformities were assessed using logistic regression analysis. Vertebral deformities were found in 25% of both CD and UC patients. Comparing patients with and without vertebral deformities, no significant difference was found between Z-scores and T-scores of BMD, or levels of serum carboxy-terminal cross-linked telopeptide of type I collagen and serum procollagen type I amino-terminal propeptide. Using logistic regression analysis the only determinant of any morphometric vertebral deformity was sex. The presence of multiple vertebral deformities was associated with older age and glucocorticoid use. The prevalence of morphometric vertebral deformities is high in CD and UC. Male sex, but neither disease activity, bone turnover markers, clinical risk factors, nor BMD predicted their presence. The determinants for having more than one vertebral deformity were age and glucocorticoid use. This implies that in addition to screening for low BMD, morphometric assessment of vertebral deformities is warranted in CD and UC.

  19. Internal strain and texture evolution during deformation twinning in magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W. [MS-H805, BLDG 622, TA-53, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)]. E-mail: dbrown@lanl.gov; Agnew, S.R. [Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Bourke, M.A.M. [MS-H805, BLDG 622, TA-53, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Holden, T.M. [Northern Stress Technologies, Deep River, Ont., K0J 1P0 (Canada); Vogel, S.C. [MS-H805, BLDG 622, TA-53, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tome, C.N. [MS-H805, BLDG 622, TA-53, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    The development of a twinned microstructure in hexagonal close-packed rolled magnesium compressed in the in-plane direction has been monitored in situ with neutron diffraction. The continuous conversion of the parent to daughter microstructure is tracked through the variation of diffraction peak intensities corresponding to each. Approximately 80% of the parent microstructure twins by 8% compression. Elastic lattice strain measurements indicate that the stress in the newly formed twins (daughters) is relaxed relative to the stress field in the surrounding matrix. However, since the daughters are in a plastically 'hard' deformation orientation, they quickly accumulate elastic strain as surrounding grains deform plastically. Polycrystal modeling of the deformation process provides insight about the crystallographic deformation mechanism involved.

  20. Correlations between plastic deformation parameters and radiation detector quality in HgI2

    International Nuclear Information System (INIS)

    Georgeson, G.; Milstein, F.; California Univ., Santa Barbara

    1989-01-01

    Mercuric iodide radiation detectors of various grades of quality were subjected to shearing forces in the (001) crystallographic planes using a specially designed micromechanical shear testing fixture. Experimental measurements were made of (001) shear stress versus shear strain. Each of the stress-strain curves was described by two empirically determined deformation parameters, s 0 and σ, where s 0 is a measure of 'bulk yielding' and σ indicates the 'sharpness of yielding' during plastic deformation. It was observed that the deformation parameters of many HgI 2 single crystal samples fit the relation s 0 =8σ 2/3 and that significant deviation from this relation, with s 0 >8σ 2/3 , indicates poor detector quality. Work hardening by prior plastic deformation was also found to cause s 0 to depart (in an increasing manner) from the 8σ 2/3 relation. For good quality material that has not previously been plastically deformed, the deformation parameter s c =s 0 -2σ<19 psi; this parameter can be interpreted as the 'onset of plastic yielding'. The results are discussed in terms of dislocation mechanisms for plastic deformation, work hardening, and recovery of work hardening. (orig.)

  1. Pattern of seismic deformation in the Western Mediterranean

    Directory of Open Access Journals (Sweden)

    S. Pondrelli

    1999-06-01

    Full Text Available The seismic deformation of the Western Mediterranean was studied with the aim of defining the strain pattern that characterizes the Africa-Eurasia plate boundary in this area. Within different sections along the boundary the cumulative moment tensor was computed over 90 years of seismological data. The results were compared with NUVELlA plate motion model and geodetic data. A stable agreement was found along Northern Africa to Sicily, where only Africa and Eurasia plates are involved. In this zone it is evident that changes in the strike of the boundary correspond to variations in the prevailing geometry of deformation, tectonic features and in the percentage of seismic with respect to total expected deformation. The geometry of deformation of periadriatic sections (Central to Southern Apennines, Eastern Alps and the Eastern Adriatic area agrees well with VLBI measurements and with regional geological features. Seismicity seems to account for low rates, from 3% to 31%, of total expected deformation. Only in the Sicily Strait, characterized by extensional to strike slip deformation, does the ratio reach a higher value (79%. If the amount of deformation deduced from seismicity seems low, because 90 years are probably not representative of the recurrence seismic cycle of the Western Mediterranean, the strain pattern we obtain from cumulative moment tensors is more representative of the kinematics of this area than global plate motion models and better identifies lower scale geodynamic features.

  2. Repeated absolute gravity measurements for monitoring slow intraplate vertical deformation in Western Europe

    Science.gov (United States)

    Van Camp, M. J.; de Viron, O.; Scherneck, H.; Hinzen, K. G.; Williams, S. D.; Lecocq, T.; Quinif, Y.; Camelbeeck, T.

    2011-12-01

    In continental plate interiors, ground surface movements are at the limit of the noise level and close to or below the accuracy of current geodetic techniques. Absolute gravity measurements are valuable to quantify slow vertical movements, as this instrument is drift free and, unlike GPS, independent of the terrestrial reference frame. Repeated absolute gravity (AG) measurements have been performed in Oostende (Belgian coastline) and at 8 stations along a southwest-northeast profile across the Belgian Ardennes and the Roer Valley Graben (Germany), in order to estimate the tectonic deformation in the area. The AG measurements, repeated once or twice a year, can resolve elusive gravity changes with a precision better than 3.7 nm/s2/yr (95% confidence interval) after 11 years, even in difficult conditions. After 8-15 years (depending on the station), we find that the gravity rates of change lie in the [-3.1, 8.1] nm/s2/yr interval and result from a combination of anthropogenic, climatic, tectonic, and Glacial Isostatic Adjustment (GIA) effects. After correcting for the GIA, the inferred gravity rates and consequently, the vertical land movements, reduce to zero within the uncertainty level at all stations except Jülich (due to man-induced subsidence) and Sohier (possibly, an artefact due to the shortness of the time series at that station).

  3. Plastic deformation

    NARCIS (Netherlands)

    Sitter, de L.U.

    1937-01-01

    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  4. DETERMINANTS OF RED-BLOOD-CELL DEFORMABILITY IN RELATION TO CELL AGE

    NARCIS (Netherlands)

    BOSCH, FH; WERRE, JM; ROERDINKHOLDERSTOELWINDER, B; HULS, T; WILLEKENS, FLA; WICHERS, G; HALIE, MR

    Red blood cell (RBC) deformability was determined with an ektacytometer in fractions separated on the basis of differences in cell volume or density. Deformability was measured with ektacytometry (rpm-scan and osmo-scan). We studied three groups of RBC fractions:l. By counterflow centrifugation we

  5. Prevalence of rickets-like bone deformities in rural Gambian children.

    Science.gov (United States)

    Jones, Helen L; Jammeh, Lamin; Owens, Stephen; Fulford, Anthony J; Moore, Sophie E; Pettifor, John M; Prentice, Ann

    2015-08-01

    The aim of this study was to estimate the burden of childhood rickets-like bone deformity in a rural region of West Africa where rickets has been reported in association with a low calcium intake. A population-based survey of children aged 0.5-17.9 years living in the province of West Kiang, The Gambia was conducted in 2007. 6221 children, 92% of those recorded in a recent census, were screened for physical signs of rickets by a trained survey team with clinical referral of suspected cases. Several objective measures were tested as potential screening tools. The prevalence of bone deformity in children rickets on X-ray at the time of medical examination. This emphasises the difficulties in comparing prevalence estimates of rickets-like bone deformities from population surveys and clinic-based studies. Interpopliteal distance showed promise as an objective screening measure for bow-leg deformity. In conclusion, this population survey in a rural region of West Africa with a low calcium diet has demonstrated a significant burden of rickets-like bone deformity, whether based on physical signs under survey conditions or after clinical examination, especially in boys < 5.0 years. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. High-energy X-ray measurements of structural anisotropy and excess free volume in a homogenously deformed Zr-based metallic glass

    International Nuclear Information System (INIS)

    Ott, R.T.; Kramer, M.J.; Besser, M.F.; Sordelet, D.J.

    2006-01-01

    We have used high-energy X-ray scattering to measure the structural anisotropy and excess free volume in a homogeneously deformed Zr-based metallic glass alloy. The scattering results show that bond length anisotropy is present in the samples following isothermal tensile creep deformation. The average atomic bond length in the direction parallel to the tensile loading axis is larger than that in the direction normal to the loading axis. The magnitude of the bond length anisotropy is found to be dependent on the gradient of macroscopic plastic strain along the gauge length. Furthermore, the scattering results show that the excess free volume also increases with increasing macroscopic plastic strain. Results from differential scanning calorimetry analysis of free volume variations along the gauge length of the creep samples are consistent with results from the X-ray scattering experiments

  7. Electrical and photomechanical effects of plastic deformation of mercuric iodide

    International Nuclear Information System (INIS)

    Marschall, J.; Milstein, F.; Gerrish, V.

    1991-01-01

    The effects of bulk plastic deformation of mercuric iodide (HgI 2 ), upon some of the electronic properties relevant to the performance of HgI 2 as a radiation detector were examined experimentally. Hole lifetimes, as well as hole and electron mobilities, were measured at various stages of sample deformation. Hole lifetimes were found to decrease by a factor of 2 under strains of several percent; carrier mobilities varied within experimental error, except during creep loading where electron and hole mobilities decreased by about 65 % and 25 %, respectively. Additionally, dark current measurements were made on specimens with varying degrees of accumulated plastic damage caused by c plane shear. Dark current values did not strongly reflect the extent of bulk plastic damage in deformed specimens. 16 refs., 4 figs., 1 tab

  8. Deformation compensation in dynamic tomography; Compensation de deformations en tomographie dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Desbat, L. [Universite Joseph Fourier, UMR CNRS 5525, 38 - Grenoble (France); Roux, S. [Universite Joseph Fourier, TIMC-IMAG, In3S, Faculte de Medecine, 38 - Grenoble (France)]|[CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France); Grangeat, P. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France)

    2005-07-01

    This work is a contribution to the compensation of motion in tomography. New classes of deformation are proposed, that compensates analytically by an algorithm of a F.B.P. type reconstruction. This work makes a generalisation of the known results for affine deformations, in parallel geometry and fan-beam, to deformation classes of infinite dimension able to include strong non linearities. (N.C.)

  9. Deformable image registration as a tool to improve survival prediction after neoadjuvant chemotherapy for breast cancer: results from the ACRIN 6657/I-SPY-1 trial

    Science.gov (United States)

    Jahani, Nariman; Cohen, Eric; Hsieh, Meng-Kang; Weinstein, Susan P.; Pantalone, Lauren; Davatzikos, Christos; Kontos, Despina

    2018-02-01

    We examined the ability of DCE-MRI longitudinal features to give early prediction of recurrence-free survival (RFS) in women undergoing neoadjuvant chemotherapy for breast cancer, in a retrospective analysis of 106 women from the ISPY 1 cohort. These features were based on the voxel-wise changes seen in registered images taken before treatment and after the first round of chemotherapy. We computed the transformation field using a robust deformable image registration technique to match breast images from these two visits. Using the deformation field, parametric response maps (PRM) — a voxel-based feature analysis of longitudinal changes in images between visits — was computed for maps of four kinetic features (signal enhancement ratio, peak enhancement, and wash-in/wash-out slopes). A two-level discrete wavelet transform was applied to these PRMs to extract heterogeneity information about tumor change between visits. To estimate survival, a Cox proportional hazard model was applied with the C statistic as the measure of success in predicting RFS. The best PRM feature (as determined by C statistic in univariable analysis) was determined for each of the four kinetic features. The baseline model, incorporating functional tumor volume, age, race, and hormone response status, had a C statistic of 0.70 in predicting RFS. The model augmented with the four PRM features had a C statistic of 0.76. Thus, our results suggest that adding information on the texture of voxel-level changes in tumor kinetic response between registered images of first and second visits could improve early RFS prediction in breast cancer after neoadjuvant chemotherapy.

  10. Magnetic properties of cyclically deformed austenite

    Energy Technology Data Exchange (ETDEWEB)

    Das, Arpan, E-mail: dasarpan1@yahoo.co.in

    2014-06-01

    In meta-stable austenitic stainless steels, low cycle fatigue deformation is accompanied by a partial stress/strain-induced solid state phase transformation of paramagnetic γ(fcc) austenite phase to ferromagnetic α{sup /}(bcc) martensite. The measured characteristic of magnetic properties, which are the saturation magnetization, susceptibility, coercivity, retentivity, and the area under the magnetic hysteresis loop are sensitive to the total strain amplitude imposed and the corresponding material behaviour. The morphologies and nucleation characteristics of deformation induced martensites (i.e., ϵ(hcp), α{sup /}(bcc)) have been investigated through analytical transmission electron microscope. It has been observed that deformation induced martensites can nucleate at a number of sites (i.e., shear band intersections, isolated shear bands, shear band–grain boundary intersection, grain boundary triple points, etc.) through multiple transformation sequences: γ(fcc)→ϵ(hcp), γ(fcc)→ϵ(hcp)→α{sup /}(bcc), γ(fcc)→ deformation twin →α{sup /}(bcc) and γ(fcc)→α{sup /}(bcc). - Highlights: • LCF tests were done at various strain amplitudes of 304LNSS. • Quantification of martensite was done through ferritecope. • Magnetic properties were characterised through VSM. • Correlation of magnetic properties with the cyclic plastic response was done. • TEM was done to investigate the transformation micro-mechanisms.

  11. Joint Terrestrial and Aerial Measurements to Study Ground Deformation: Application to the Sciara Del Fuoco at the Stromboli Volcano (Sicily

    Directory of Open Access Journals (Sweden)

    Alessandro Bonforte

    2016-05-01

    Full Text Available The 2002–2003 Stromboli eruption triggered the failure of part of the Sciara del Fuoco slope, which generated a tsunami that struck the island and the northern coastline of Sicily. The Sciara del Fuoco is a very steep slope where all lava flows from the craters’ emplacement; most lateral eruptions usually take place from fissures propagating in this sector of the volcano. The eruption went on to produce a lava field that filled the area affected by the landslide. This in turn led to further instability, renewing the threat of another slope failure and a potentially related tsunami. This work describes a new joint approach, combining surveying data and aerial image correlometry methods, to study the motion of this unstable slope. The combination has the advantage of very precise surveying measurements, which can be considered the ground truth to constrain the very-high-resolution aerial photogrammetric data, thereby obtaining highly detailed and accurate ground deformation maps. The joint use of the two methods can be very useful to obtain a more complete image of the deformation field for monitoring dangerous and/or rather inaccessible places. The proposed combined methodology improves our ability to study and assess hazardous processes associated with significant ground deformation.

  12. Recrystallization of magnesium deformed at low temperatures

    International Nuclear Information System (INIS)

    Fromageau, R.; Pastol, J.L.; Revel, G.

    1978-01-01

    The recrystallization of magnesium was studied after rolling at temperatures ranging between 248 and 373 K. For zone refined magnesium the annealing behaviour as observed by electrical resistivity measurements showed two stages at about 250 K and 400 K due respectively to recrystallization and grain growth. The activation energy associated with the recrystallization stage was 0.75 +- 0.01 eV. In less pure magnesium, with nominal purity 99.99 and 99.9%, the recrystallization stage was decomposed into two substages. Activation energies were determined in relation with deformation temperature and purity. The magnesium of intermediate purity (99.99%) behaved similarly to the lowest purity metal when it was deformed at high temperature and to the purest magnesium when the deformation was made at low temperature. This behaviour was discussed in connection with the theories of Luecke and Cahn. (Auth.)

  13. Spaceborne Differential SAR Interferometry: Data Analysis Tools for Deformation Measurement

    Directory of Open Access Journals (Sweden)

    Michele Crosetto

    2011-02-01

    Full Text Available This paper is focused on spaceborne Differential Interferometric SAR (DInSAR for land deformation measurement and monitoring. In the last two decades several DInSAR data analysis procedures have been proposed. The objective of this paper is to describe the DInSAR data processing and analysis tools developed at the Institute of Geomatics in almost ten years of research activities. Four main DInSAR analysis procedures are described, which range from the standard DInSAR analysis based on a single interferogram to more advanced Persistent Scatterer Interferometry (PSI approaches. These different procedures guarantee a sufficient flexibility in DInSAR data processing. In order to provide a technical insight into these analysis procedures, a whole section discusses their main data processing and analysis steps, especially those needed in PSI analyses. A specific section is devoted to the core of our PSI analysis tools: the so-called 2+1D phase unwrapping procedure, which couples a 2D phase unwrapping, performed interferogram-wise, with a kind of 1D phase unwrapping along time, performed pixel-wise. In the last part of the paper, some examples of DInSAR results are discussed, which were derived by standard DInSAR or PSI analyses. Most of these results were derived from X-band SAR data coming from the TerraSAR-X and CosmoSkyMed sensors.

  14. Induction of mouthpart deformities in chironomid larvae exposed to contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Di Veroli, Alessandra [Dipartimento di Biologia Cellulare e Ambientale, Universita degli Studi di Perugia, Via Elce Di Sotto, 06123 Perugia (Italy); Goretti, Enzo [Dipartimento di Biologia Cellulare e Ambientale, Universita degli Studi di Perugia, Via Elce Di Sotto, 06123 Perugia (Italy); Paumen, Miriam Leon; Kraak, Michiel H.S.; Admiraal, Wim [Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam (Netherlands)

    2012-07-15

    The aim of the present study was to improve the cause-effect relationship between toxicant exposure and chironomid mouthpart deformities, by linking induction of mouthpart deformities to contaminated field sediments, metal mixtures and a mutagenic polycyclic aromatic compound metabolite (acridone). Mouthpart deformities in Chironomus riparius larvae were induced by both the heavy metal mixture and by acridone. A clear correlation between metal concentrations in the sediment and deformities incidence was only observed when the contaminated field sediments were left out of the analysis, probably because these natural sediments contained other toxic compounds, which could be responsible for a higher incidence of deformities than predicted by the measured metal concentrations only. The present study clearly improved the cause-effect relationship between toxicant exposure and the induction of mouthpart deformities. It is concluded that the incidence of mouthpart deformities may better reflect the potential toxicity of contaminated sediments than chemical analysis. - Highlights: Black-Right-Pointing-Pointer We tested the induction of deformities in C. riparius in laboratory toxicity experiments. Black-Right-Pointing-Pointer We used field sediments and spiked sediments with heavy metals and mutagenic PAC. Black-Right-Pointing-Pointer Mouthpart deformities were induced both by heavy metal mixtures and by acridone. Black-Right-Pointing-Pointer A correlation between metal concentrations in the sediment and deformities was found. Black-Right-Pointing-Pointer Mouthpart deformities better reflect the toxicity of sediments than chemical analysis. - Mouthpart deformities of Chironomus riparius larvae better reflect the toxicity of sediments than chemical analysis.

  15. Deformation of cylindrical vessel and the effect of barrel on deformation under inpulsive pressure of high explosive

    International Nuclear Information System (INIS)

    Iikura, Shoichi; Yashizawa, Hiroyasu; Sasanuma, Katsumi.

    1982-01-01

    According to the research performed so far, the result that the amount of deformation due to impulsive pressure was able to be evaluated by the impulse of impulsive pressure waves has been obtained. The analysis treating impulsive pressure waves as plane waves has been made frequently, but the analysis in which impulsive pressure waves must be treated as spherical waves, or the analysis of a vessel with a barrel (internal cylinder) is complex and difficult. In this report, the results of element test, which was carried out in the Oita Works, Asahi Chemical Industry Co., Ltd., in 1973 by the Power Reactor and Nuclear Fuel Development Corp. as the impact resistance test for fast breeder reactors, are rearranged and investigated. The specimens were the cylindrical vessels with upper and lower flanges, and 10 vessels and 9 kinds of barrels were made. Water was used as the pressure medium. The residual deformation and dynamic strain of the vessels and the wave form of pressure waves were measured. The deformation of cylindrical vessels subjected to the impulsive pressure from a point pressure source was able to be evaluated by the impulse distribution in normal direction. The maximum amount of deformation depended on the total plate thickness of barrels. (Kako, I.)

  16. Study of deformation evolution during failure of rock specimens using laser-based vibration measurements

    Science.gov (United States)

    Smolin, I. Yu.; Kulkov, A. S.; Makarov, P. V.; Tunda, V. A.; Krasnoveikin, V. A.; Eremin, M. O.; Bakeev, R. A.

    2017-12-01

    The aim of the paper is to analyze experimental data on the dynamic response of the marble specimen in uniaxial compression. To make it we use the methods of mathematical statistics. The lateral surface velocity evolution obtained by the laser Doppler vibrometer represents the data for analysis. The registered data were regarded as a time series that reflects deformation evolution of the specimen loaded up to failure. The revealed changes in statistical parameters were considered as precursors of failure. It is shown that before failure the deformation response is autocorrelated and reflects the states of dynamic chaos and self-organized criticality.

  17. Interaction and deformation of viscoelastic particles: Nonadhesive particles

    International Nuclear Information System (INIS)

    Attard, Phil

    2001-01-01

    A viscoelastic theory is formulated for the deformation of particles that interact with finite-ranged surface forces. The theory generalizes the static approach based upon classic continuum elasticity theory to account for time-dependent effects, and goes beyond contact theories such as Hertz and that given by Johnson, Kendall, and Roberts by including realistic surface interactions. Common devices used to measure load and deformation are modeled and the theory takes into account the driving velocity of the apparatus and the relaxation time of the material. Nonadhesive particles are modeled by an electric double layer repulsion. Triangular, step, and sinusoidal trajectories are analyzed in a unified treatment of loading and unloading. The load-deformation and the load-contact area curves are shown to be velocity dependent and hysteretic

  18. Numerical modeling of solute transport in deformable unsaturated layered soil

    Directory of Open Access Journals (Sweden)

    Sheng Wu

    2017-07-01

    Full Text Available The effect of soil stratification was studied through numerical investigation based on the coupled model of solute transport in deformable unsaturated soil. The theoretical model implied two-way coupled excess pore pressure and soil deformation based on Biot's consolidation theory as well as a one-way coupled volatile pollutant concentration field developed from the advection-diffusion theory. Embedded in the model, the degree of saturation, fluid compressibility, self-weight of the soil matrix, porosity variance, longitudinal dispersion, and linear sorption were computed. Based on simulation results of a proposed three-layer landfill model using the finite element method, the multi-layer effects are discussed with regard to the hydraulic conductivity, shear modulus, degree of saturation, molecular diffusion coefficient, and thickness of each layer. Generally speaking, contaminants spread faster in a stratified field with a soft and highly permeable top layer; soil parameters of the top layer are more critical than the lower layers but controlling soil thicknesses will alter the results. This numerical investigation showed noticeable impacts of stratified soil properties on solute migration results, demonstrating the importance of correctly modeling layered soil instead of simply assuming the averaged properties across the soil profile.

  19. Simulation of Stamping Process of Automotive Panel Considering Die Deformation

    International Nuclear Information System (INIS)

    Keum, Y.T.; Ahn, I.H.; Lee, I.K.; Song, M.H.; Kwon, S.O.; Park, J.S.

    2005-01-01

    In order to see the effect of die deformation on the forming of sheet metals, the draw-ins, strains, and spring-backs of an automotive fender panels are numerically simulated considering the die deformation, which is found by the simultaneous structural analysis of press and dies. By coupling the forming analysis and the structural analysis, the die deformation is simultaneously taken into account in the forming process. Furthermore, for the consideration of load difference transferred among the upper die, punch, and blank holder due to the changes in sheet thickness, the gap elements are employed instead of the blank sheet in the structural analysis. The numerical simulation results of an automotive fender draw panel are compared with the measurements. The comparison of the forming and spring-back analysis results between the rigid die and the deformed die shows that the deformed tool provides more accurate forming and spring-back prediction

  20. STRUCTURAL AND MECHANICAL CHARACTERIZATION OF DEFORMED POLYMER USING CONFOCAL RAMAN MICROSCOPY AND DSC

    Directory of Open Access Journals (Sweden)

    Birgit Neitzel

    2016-02-01

    Full Text Available Polymers have various interesting properties, which depend largely on their inner structure. One way to influence the macroscopic behaviour is the deformation of the polymer chains, which effects the change in microstructure. For analyzing the microstructure of non-deformed and deformed polymer materials, Raman spectroscopy as well as differential scanning calorimetry (DSC were used. In the present study we compare the results for crystallinity measurements of deformed polymers using both methods in order to characterize the differences in micro-structure due to deformation. The study is ongoing, and we present the results of the first tests.

  1. q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy

    OpenAIRE

    He, Jingsong; Li, Yinghua; Cheng, Yi

    2006-01-01

    Using the determinant representation of gauge transformation operator, we have shown that the general form of $au$ function of the $q$-KP hierarchy is a $q$-deformed generalized Wronskian, which includes the $q$-deformed Wronskian as a special case. On the basis of these, we study the $q$-deformed constrained KP ($q$-cKP) hierarchy, i.e. $l$-constraints of $q$-KP hierarchy. Similar to the ordinary constrained KP (cKP) hierarchy, a large class of solutions of $q$-cKP hierarchy can be represent...

  2. Longitudinal Muscle Dysfunction in Achalasia Esophagus and Its Relevance

    OpenAIRE

    Mittal, Ravinder K; Hong, Su Jin; Bhargava, Valmik

    2013-01-01

    Muscularis propria of the esophagus is organized into circular and longitudinal muscle layers. Goal of this review is to summarize the role of longitudinal muscle in physiology and pathophysiology of esophageal sensory and motor function. Simultaneous manometry and ultrasound imaging that measure circular and longitudinal muscle contraction respectively reveal that during peristalsis 2 layers of the esophagus contract in perfect synchrony. On the other hand, during transient relaxation of the...

  3. Organ Surface Deformation Measurement and Analysis in Open Hepatic Surgery: Method and Preliminary Results From 12 Clinical Cases

    OpenAIRE

    Clements, Logan W.; Dumpuri, Prashanth; Chapman, William C.; Dawant, Benoit M.; Galloway, Robert L.; Miga, Michael I.

    2011-01-01

    The incidence of soft tissue deformation has been well documented in neurosurgical procedures and is known to compromise the spatial accuracy of image-guided surgery systems. Within the context of image-guided liver surgery (IGLS), no detailed method to study and analyze the observed organ shape change between preoperative imaging and the intraoperative presentation has been developed. Contrary to the studies of deformation in neurosurgical procedures, the majority of deformation in IGLS is i...

  4. Application of GNSS Methods for Monitoring Offshore Platform Deformation

    Science.gov (United States)

    Myint, Khin Cho; Nasir Matori, Abd; Gohari, Adel

    2018-03-01

    Global Navigation Satellite System (GNSS) has become a powerful tool for high-precision deformation monitoring application. Monitoring of deformation and subsidence of offshore platform due to factors such as shallow gas phenomena. GNSS is the technical interoperability and compatibility between various satellite navigation systems such as modernized GPS, Galileo, reconstructed GLONASS to be used by civilian users. It has been known that excessive deformation affects platform structurally, causing loss of production and affects the efficiency of the machinery on board the platform. GNSS have been proven to be one of the most precise positioning methods where by users can get accuracy to the nearest centimeter of a given position from carrier phase measurement processing of GPS signals. This research is aimed at using GNSS technique, which is one of the most standard methods to monitor the deformation of offshore platforms. Therefore, station modeling, which accounts for the spatial correlated errors, and hence speeds up the ambiguity resolution process is employed. It was found that GNSS combines the high accuracy of the results monitoring the offshore platforms deformation with the possibility of survey.

  5. Modelling of the deformation of shot peened cylindrical specimens of 42 CrMo4 in uniaxial tension and deformation and of the resulting macro residual stresses

    International Nuclear Information System (INIS)

    Schulze, V.; Voehringer, O.; Macherauch, E.

    1998-01-01

    Tensile and compressive stress-strain-curves of shot peened and unpeened specimens of quenched and tempered 42 CrMo 4 (AISI 4140) with a diameter of 5 mm only differ in the yield strengths and in the Lueders-deformation. In comparison to the core the regions close to the surface of shot peened cylindrical specimens bear relatively large axial and tangential residual stresses and show different deformation properties. A multi-layer-model was developed to describe both the tensile as well as the compressive deformation behaviour of shot peened cylindrical specimens quantitatively. The calculated transitions from the elastic to the elastic-plastic deformation state during tensile and compressive loading agree quite well with the experimental observations. Also the changes of axial and tangential macro residual stresses after distinct tensile or compressive deformations are in best agreement with the measurements. (orig.)

  6. Shear zone nucleation and deformation transient: effect of heterogeneities and loading conditions in experimentally deformed calcite

    Science.gov (United States)

    Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.

    2015-12-01

    In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  7. Thermal deformation prediction in reticles for extreme ultraviolet lithography based on a measurement-dependent low-order model

    NARCIS (Netherlands)

    Bikcora, C.; Weiland, S.; Coene, W.M.J.

    2014-01-01

    In extreme ultraviolet lithography, imaging errors due to thermal deformation of reticles are becoming progressively intolerable as the source power increases. Despite this trend, such errors can be mitigated by adjusting the wafer and reticle stages based on a set of predicted deformation-induced

  8. Measurement error, time lag, unmeasured confounding: Considerations for longitudinal estimation of the effect of a mediator in randomised clinical trials.

    Science.gov (United States)

    Goldsmith, K A; Chalder, T; White, P D; Sharpe, M; Pickles, A

    2018-06-01

    Clinical trials are expensive and time-consuming and so should also be used to study how treatments work, allowing for the evaluation of theoretical treatment models and refinement and improvement of treatments. These treatment processes can be studied using mediation analysis. Randomised treatment makes some of the assumptions of mediation models plausible, but the mediator-outcome relationship could remain subject to bias. In addition, mediation is assumed to be a temporally ordered longitudinal process, but estimation in most mediation studies to date has been cross-sectional and unable to explore this assumption. This study used longitudinal structural equation modelling of mediator and outcome measurements from the PACE trial of rehabilitative treatments for chronic fatigue syndrome (ISRCTN 54285094) to address these issues. In particular, autoregressive and simplex models were used to study measurement error in the mediator, different time lags in the mediator-outcome relationship, unmeasured confounding of the mediator and outcome, and the assumption of a constant mediator-outcome relationship over time. Results showed that allowing for measurement error and unmeasured confounding were important. Contemporaneous rather than lagged mediator-outcome effects were more consistent with the data, possibly due to the wide spacing of measurements. Assuming a constant mediator-outcome relationship over time increased precision.

  9. Measurement of the longitudinal proton structure function in diffraction at the H1 experiment and prospects for diffraction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Salek, David

    2011-05-15

    A measurement of the longitudinal diffractive structure function F{sub L}{sup D} using the H1 detector at HERA is presented. The structure function is extracted from first measurements of the diffractive cross section ep{yields}eXY at centre of mass energies {radical}(s) of 225 and 252 GeV at high values of inelasticity y, together with a new measurement at {radical}(s) of 319 GeV, using data taken in 2006 and 2007. Previous H1 data at {radical}(s) of 301 GeV complete the kinematic coverage needed to extract F{sub L}{sup D} in the range of photon virtualities 2.5longitudinal momentum loss 10{sup -4}measured F{sub L}{sup D} is compared with leading twist predictions based on diffractive parton densities extracted in NLO QCD fits to previous diffractive DIS data and to a model which additionally includes a higher twist contribution derived from a colour dipole approach. The photoabsorption ratio for diffraction RD is extracted for Q{sup 2}>7 GeV{sup 2} and compared to the analogous quantity for inclusive DIS. (orig.)

  10. Separation of the transverse and longitudinal structure functions for the (e,e'p) coincidence reaction on the 40Ca nucleus

    International Nuclear Information System (INIS)

    Reffay-Pikeroen, Dominique

    1987-01-01

    The bound-nucleon current has been investigated in the region of the quasi-elastic peak, with (e,e'p) coincidence measurements where by the one-nucleon knock-out process is selected. This study is refined by the measurement of the separate transverse and longitudinal structure functions. The (e,e'p) reaction has been performed on the 40 Ca nucleus in a momentum transfer range from 330 to 825 MeV/c. We have chosen a range of proton momenta in the nucleus from 40 to 140 MeV and a missing energy range from 8 to 60 MeV which corresponds to the shells 1d3/2, 1d5/2, 2s1/2, 1s1/2, 1p3/2, 1p1/2 of 39 K as predicted by the shell model. The first aim of these measurements was to verify, on an exclusive process, the results of the inclusive measurements on this nucleus with transverse/longitudinal separation, since the inclusive results are presently difficult to interpret. More generally, the aim of this kind of measurements is to test the validity of the traditional theoretical approach to the quasi-elastic scattering: Schroedinger equation, impulse approximation, choice of a prescription for the off shell effect on the nucleonic current keeping the free nucleon electromagnetic form factors. The answer to the first question is the observation of a quenching of the longitudinal/transverse ratio, consistent with the effect observed in the inclusive experiments. Regarding the most general aspect of the study of the electromagnetic structure of the bound nucleus, this experiment has brought some entirely new results about the momentum transfer dependence of its electric and magnetic form factors. These results do not suggest any important deformation of the nucleon in the nucleus. We were able to derive an upper limit of 4 pc for a possible increase of the magnetic radius of the bound proton. Regarding the electric radius, the data still remain too inaccurate to draw final conclusions. (author) [fr

  11. Soft object deformation monitoring and learning for model-based robotic hand manipulation.

    Science.gov (United States)

    Cretu, Ana-Maria; Payeur, Pierre; Petriu, Emil M

    2012-06-01

    This paper discusses the design and implementation of a framework that automatically extracts and monitors the shape deformations of soft objects from a video sequence and maps them with force measurements with the goal of providing the necessary information to the controller of a robotic hand to ensure safe model-based deformable object manipulation. Measurements corresponding to the interaction force at the level of the fingertips and to the position of the fingertips of a three-finger robotic hand are associated with the contours of a deformed object tracked in a series of images using neural-network approaches. The resulting model captures the behavior of the object and is able to predict its behavior for previously unseen interactions without any assumption on the object's material. The availability of such models can contribute to the improvement of a robotic hand controller, therefore allowing more accurate and stable grasp while providing more elaborate manipulation capabilities for deformable objects. Experiments performed for different objects, made of various materials, reveal that the method accurately captures and predicts the object's shape deformation while the object is submitted to external forces applied by the robot fingers. The proposed method is also fast and insensitive to severe contour deformations, as well as to smooth changes in lighting, contrast, and background.

  12. Automated three-dimensional tracking of the left ventricular myocardium in time-resolved and dose-modulated cardiac CT images using deformable image registration.

    Science.gov (United States)

    Gupta, Vikas; Lantz, Jonas; Henriksson, Lilian; Engvall, Jan; Karlsson, Matts; Persson, Anders; Ebbers, Tino

    Assessment of myocardial deformation from time-resolved cardiac computed tomography (4D CT) would augment the already available functional information from such an examination without incurring any additional costs. A deformable image registration (DIR) based approach is proposed to allow fast and automatic myocardial tracking in clinical 4D CT images. Left ventricular myocardial tissue displacement through a cardiac cycle was tracked using a B-spline transformation based DIR. Gradient of such displacements allowed Lagrangian strain estimation with respect to end-diastole in clinical 4D CT data from ten subjects with suspected coronary artery disease. Dice similarity coefficient (DSC), point-to-curve error (PTC), and tracking error were used to assess the tracking accuracy. Wilcoxon signed rank test provided significance of tracking errors. Topology preservation was verified using Jacobian of the deformation. Reliability of estimated strains and torsion (normalized twist angle) was tested in subjects with normal function by comparing them with normal strain in the literature. Comparison with manual tracking showed high accuracy (DSC: 0.99±0.05; PTC: 0.56mm±0.47 mm) and resulted in determinant(Jacobian)>0 for all subjects, indicating preservation of topology. Average radial (0.13 mm), angular (0.64) and longitudinal (0.10 mm) tracking errors for the entire cohort were not significant (p > 0.9). For patients with normal function, average strain [circumferential, radial, longitudinal] and peak torsion estimates were: [-23.5%, 31.1%, -17.2%] and 7.22°, respectively. These estimates were in conformity with the reported normal ranges in the existing literature. Accurate wall deformation tracking and subsequent strain estimation are feasible with the proposed method using only routine time-resolved 3D cardiac CT. Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  13. TWITCH PARAMETERS IN TRANSVERSAL AND LONGITUDINAL BICEPS BRACHII RESPONSE

    Directory of Open Access Journals (Sweden)

    Boštjan Šimunič

    2010-01-01

    Full Text Available Assessment of the contractile properties of skeletal muscles is continuing to be an important issue and a difficult task methodologically. Longitudinal direction of skeletal muscle contraction blurs intrinsic muscle belly contractile properties with many factors. This study evaluates and explains contractile properties such as: delay time (Td, contraction time (Tc, half relaxation time (Tr and maximal amplitude (Dm extracted from twitch transversal response and compare them with torque response. In fifteen healthy males (age 23.7 ± 3.4 years isometric twitch transversal and torque responses were simultaneously recorded during graded electrically elicited contractions in the biceps brachii muscle. The amplitude of electrical stimulation was increased in 5 mA steps from a threshold up to a maximal response. The muscles’ belly transversal response was measured by a high precision mechanical displacement sensor while elbow joint torque was calculated from force readings. Results indicate a parabolic relation between the transversal displacement and the torque Dm. A significantly shorter Tc was found in transversal response without being correlated to torque Tc (r = -0.12; > 0.05. A significant correlation was found between torque Tc and the time occurrence of the second peak in the transversal response (r = 0.83; < 0.001. Electrical stimulation amplitude dependant variation of the Tc was notably different in transversal than in torque response. Td was similar at submaximal and maximal responses but larger in transversal at just above threshold contractions. Tr has a similar linear trend in both responses, however, the magnitude and the slope are much larger in the transversal response. We could conclude that different mechanisms affect longitudinal and transversal twitch skeletal muscle deformations. Contractile properties extracted from the transversal response enable alternative insights into skeletal muscle contraction mechanics.

  14. N=4 Scattering Amplitudes and the Deformed Graßmannian

    CERN Document Server

    Ferro, Livia; Staudacher, Matthias

    2014-01-01

    Some time ago the general tree-level scattering amplitudes of N=4 Super Yang-Mills theory were expressed as certain Grassmannian contour integrals. These remarkable formulas allow to clearly expose the super-conformal, dual super-conformal, and Yangian symmetries of the amplitudes. Using ideas from integrability it was recently shown that the building blocks of the amplitudes permit a natural multi-parameter deformation. However, this approach had been criticized by the observation that it seemed impossible to reassemble the building blocks into Yangian-invariant deformed non-MHV amplitudes. In this note we demonstrate that the deformations may be succinctly summarized by a simple modification of the measure of the Grassmannian integrals, leading to a Yangian-invariant deformation of the general tree-level amplitudes. Interestingly, the deformed building-blocks appear as residues of poles in the spectral parameter planes. Given that the contour integrals also contain information on the amplitudes at loop-leve...

  15. Inspecting plastic deformation of Pd by means of fractal geometry

    International Nuclear Information System (INIS)

    Eftekhari, Ali

    2007-01-01

    The influence of phase transformation-induced plastic deformation in Pd|H system on the electrode surface was investigated. Since the Pd surface is subject of severe plastic deformation during this process, the structure and roughness of the electrode surface significantly change. Quantitative analysis of the electrode surfaces for comparative study of such changes is a valuable tool to inspect the plastic deformation induced. Fractal dimension can be used as a quantitative measure for this purpose. Since inappropriate methods may lead to significant errors, an appropriate approach was proposed for the determination of fractal dimensions in such systems. It was demonstrated that the surface roughness generated is mainly due to the plastic deformation induced, not the other side processes, as the electrodes were coated with a uniform layer of gold with thickness smaller than 10 nm. Since plastic deformation is due to hydrogen insertion/extraction and occurs in atomic-scale, it is necessary to divide structural changes appeared in nano- and micro-scale

  16. Deformations of superconformal theories

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ 08540 (United States); Dumitrescu, Thomas T. [Department of Physics, Harvard University,17 Oxford Street, Cambridge, MA 02138 (United States); Intriligator, Kenneth [Department of Physics, University of California,9500 Gilman Drive, San Diego, La Jolla, CA 92093 (United States)

    2016-11-22

    We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d≥3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.

  17. The effect of longitudinal chromatic aberration on the lag of accommodation and depth of field.

    Science.gov (United States)

    Jaskulski, Mateusz; Marín-Franch, Iván; Bernal-Molina, Paula; López-Gil, Norberto

    2016-11-01

    Longitudinal chromatic aberration is present in all states of accommodation and may play a role in the accommodation response and the emmetropisation process. We study the change of the depth of field (DOFi) with the state of accommodation, taking into account the longitudinal chromatic aberration. Subjective DOFi was defined as the range of defocus beyond which the blur of the target (one line of optotypes of 0.1 logMAR shown on a black-and-white microdisplay, seen through different colour filters) was perceived as objectionable. The subject's eye was paralysed and different, previously-measured accommodative states (corresponding to the accommodative demands of 0D, 2D and 4D) were simulated with a deformable mirror. Different colour conditions (monochromatic red, green and blue and polychromatic (white) were tested. The DOFi was measured subjectively, using a motorised Badal system. Taking as reference the average accommodative response for the white stimulus, the blue response exhibits on average a lead of 0.45 ± 0.09D, the green a negligible lead of 0.07 ± 0.02D and red a lag of 0.49 ± 0.10D. The monochromatic DOFi, calculated by averaging DOFi over the red, green and blue colour conditions for each accommodative demand was 1.10 ± 0.10D for 0D, 1.20 ± 0.08D for 2D, and 1.26 ± 0.40D for 4D. The polychromatic white DOFi were greater than the average monochromatic DOFi by 19%, 9% and 14% for 0D, 2D, and 4D of accommodative demand, respectively. The longitudinal chromatic aberration causes a dioptric shift of the monochromatic accommodation response. The study did not reveal this shift to depend on the accommodative demand or to have an effect on the DOFi. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  18. Longitudinal multigroup invariance analysis of the satisfaction with food-related life scale in university students

    DEFF Research Database (Denmark)

    Schnettler, Berta; Miranda, Horacio; Miranda-Zapata, Edgardo

    2017-01-01

    This study examined longitudinal measurement invariance in the Satisfaction with Food-related Life (SWFL) scale using follow-up data from university students. We examined this measure of the SWFL in different groups of students, separated by various characteristics. Through non......-probabilistic longitudinal sampling, 114 university students (65.8% female, mean age: 22.5) completed the SWFL questionnaire three times, over intervals of approximately one year. Confirmatory factor analysis was used to examine longitudinal measurement invariance. Two types of analysis were conducted: first, a longitudinal...... students of both sexes, and among those older and younger than 22 years. Generally, these findings suggest that the SWFL scale has satisfactory psychometric properties for longitudinal measurement invariance in university students with similar characteristics as the students that participated...

  19. Measurement of neutral current deep inelastic e+p scattering cross sections with longitudinally polarized positrons with ZEUS at HERA

    International Nuclear Information System (INIS)

    Wlasenko, Michal

    2009-05-01

    Measurements of neutral current deep inelastic scattering of protons colliding with longitudinally polarized positrons, performed with data recorded in years 2006 and 2007 with the ZEUS detector, corresponding to an integrated luminosity of L=113.3 pb -1 , are presented. The single-differential cross sections dσ/dQ 2 , dσ/dx, dσ/dy and the double-differential reduced cross section σ were measured in the kinematic region of 185 2 2 and y + and the generalized structure function x F 3 were extracted. All measurements agree well with the predictions of the Standard Model. (orig.)

  20. q-Deformed Kink solutions

    International Nuclear Information System (INIS)

    Lima, A.F. de

    2003-01-01

    The q-deformed kink of the λφ 4 -model is obtained via the normalisable ground state eigenfunction of a fluctuation operator associated with the q-deformed hyperbolic functions. The kink mass, the bosonic zero-mode and the q-deformed potential in 1+1 dimensions are found. (author)