WorldWideScience

Sample records for measured intrinsic contact

  1. Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles.

    Science.gov (United States)

    Kozbial, Andrew; Trouba, Charlie; Liu, Haitao; Li, Lei

    2017-01-31

    Elucidating the intrinsic water wettability of the graphitic surface has increasingly attracted research interests, triggered by the recent finding that the well-established hydrophobicity of graphitic surfaces actually results from airborne hydrocarbon contamination. Currently, static water contact angle (WCA) is often used to characterize the intrinsic water wettability of graphitic surfaces. In the current paper, we show that because of the existence of defects, static WCA does not necessarily characterize the intrinsic water wettability. Freshly exfoliated graphite of varying qualities, characterized using atomic force microscopy and Raman spectroscopy, was studied using static, advancing, and receding WCA measurements. The results showed that graphite of different qualities (i.e., defect density) always has a similar advancing WCA, but it could have very different static and receding WCAs. This finding indicates that defects play an important role in contact angle measurements, and the static contact angle does not always represent the intrinsic water wettability of pristine graphite. On the basis of the experimental results, a qualitative model is proposed to explain the effect of defects on static, advancing, and receding contact angles. The model suggests that the advancing WCA reflects the intrinsic water wettability of pristine (defect-free) graphite. Our results showed that the advancing WCA for pristine graphite is 68.6°, which indicates that graphitic carbon is intrinsically mildly hydrophilic.

  2. Direct measurement of graphene contact resistivity to pre-deposited metal in buried contact test structure

    KAUST Repository

    Qaisi, Ramy M.; Smith, Casey; Ghoneim, Mohamed T.; Yu, Qingkai; Hussain, Muhammad Mustafa

    2013-01-01

    We demonstrate a buried contact based novel test structure for direct contact resistivity measurement of graphene-metal interfaces. We also observe excellent contact resistivity 1 μO-cm2 without any additional surface modification suggesting that the intrinsic Au-graphene contact is sufficient for achieving devices with low contact resistance. The chemical mechanical polishing less test structure and data described herein highlights an ideal methodology for systematic screening and engineering of graphene-metal contact resistivity to enable low power high speed carbon electronics. © 2013 IEEE.

  3. Direct measurement of graphene contact resistivity to pre-deposited metal in buried contact test structure

    KAUST Repository

    Qaisi, Ramy M.

    2013-08-01

    We demonstrate a buried contact based novel test structure for direct contact resistivity measurement of graphene-metal interfaces. We also observe excellent contact resistivity 1 μO-cm2 without any additional surface modification suggesting that the intrinsic Au-graphene contact is sufficient for achieving devices with low contact resistance. The chemical mechanical polishing less test structure and data described herein highlights an ideal methodology for systematic screening and engineering of graphene-metal contact resistivity to enable low power high speed carbon electronics. © 2013 IEEE.

  4. Effects of drop size and measuring condition on static contact angle measurement on a superhydrophobic surface with goniometric technique

    International Nuclear Information System (INIS)

    Seo, Kwangseok; Kim, Minyoung; Kim, Do Hyun; Ahn, Jeong Keun

    2015-01-01

    It is not a simple task to measure a contact angle of a water drop on a superhydrophobic surface with sessile drop method, because a roll-off angle is very low. Usually contact angle of a water drop on a superhydrophobic surface is measured by fixing a drop with intentional defects on the surface or a needle. We examined the effects of drop size and measuring condition such as the use of a needle or defects on the static contact angle measurement on superhydrophobic surface. Results showed that the contact angles on a superhydrophobic surface remain almost constant within intrinsic measurement errors unless there is a wetting transition during the measurement. We expect that this study will provide a deeper understanding on the nature of the contact angle and convenient measurement of the contact angle on the superhydrophobic surface.

  5. Contact and Non-contact Measurements of Grinding Pins

    Directory of Open Access Journals (Sweden)

    Magdziak Marek

    2015-01-01

    Full Text Available The paper presents the results of contact and non-contact measurements of external profiles of selected grinding pins. The measurements were conducted in order to choose the appropriate measuring technique in the case of the considered measurement task. In the case of contact measurements the coordinate measuring machine ACCURA II was applied. The used coordinate measuring machine was equipped with the contact scanning probe VAST XT and the Calypso inspection software. Contact coordinate measurements were performed by using of different measurement strategies. The applied strategies included different scanning velocities and distances between measured points. Non-contact measurements were conducted by means of the tool presetter produced by the Mahr company. On the basis of gained results the guidelines concerning measurements of grinding pins were formulated. The measurements of analyzed grinding pins performed by means of the non-contact measuring system are characterized by higher reproducibility than the contact measurements. The low reproducibility of contact measurements may be connected with the inaccuracy of the selected coordinate measuring machine and the measuring probe, the measurement parameters and environmental conditions in the laboratory where the coordinate measuring machine is located. Moreover, the paper presents the possible application of results of conducted investigations. The results of non-contact measurements can be used in the simulation studies of grinding processes. The simulations may reduce the costs of machining processes.

  6. Non-contact measurement of rotation angle with solo camera

    Science.gov (United States)

    Gan, Xiaochuan; Sun, Anbin; Ye, Xin; Ma, Liqun

    2015-02-01

    For the purpose to measure a rotation angle around the axis of an object, a non-contact rotation angle measurement method based on solo camera was promoted. The intrinsic parameters of camera were calibrated using chessboard on principle of plane calibration theory. The translation matrix and rotation matrix between the object coordinate and the camera coordinate were calculated according to the relationship between the corners' position on object and their coordinates on image. Then the rotation angle between the measured object and the camera could be resolved from the rotation matrix. A precise angle dividing table (PADT) was chosen as the reference to verify the angle measurement error of this method. Test results indicated that the rotation angle measurement error of this method did not exceed +/- 0.01 degree.

  7. Influence of interfacial layer on contact resistance

    NARCIS (Netherlands)

    Roy, D.; In 't Zand, M.A.A.; Delhounge, R.; Klootwijk, J.H.; Wolters, Robertus A.M.

    2008-01-01

    The contact resistance between two materials is dependent on the intrinsic properties of the materials in contact and the presence and properties of an interfacial layer at the contact. This article presents the difference in contact resistance measurements with and without the presence of a process

  8. Evaluation of metal–nanowire electrical contacts by measuring contact end resistance

    International Nuclear Information System (INIS)

    Park, Hongsik; Beresford, Roderic; Xu, Jimmy; Ha, Ryong; Choi, Heon-Jin; Shin, Hyunjung

    2012-01-01

    It is known, but often unappreciated, that the performance of nanowire (NW)-based electrical devices can be significantly affected by electrical contacts between electrodes and NWs, sometimes to the extent that it is really the contacts that determine the performance. To correctly understand and design NW device operation, it is thus important to carefully measure the contact resistance and evaluate the contact parameters, specific contact resistance and transfer length. A four-terminal pattern or a transmission line model (TLM) pattern has been widely used to measure contact resistance of NW devices and the TLM has been typically used to extract contact parameters of NW devices. However, the conventional method assumes that the electrical properties of semiconducting NW regions covered by a metal are not changed after electrode formation. In this study, we report that the conventional methods for contact evaluation can give rise to considerable errors because of an altered property of the NW under the electrodes. We demonstrate that more correct contact resistance can be measured from the TLM pattern rather than the four-terminal pattern and correct contact parameters including the effects of changed NW properties under electrodes can be evaluated by using the contact end resistance measurement method. (paper)

  9. Measuring contact area in a sliding human finger-pad contact.

    Science.gov (United States)

    Liu, X; Carré, M J; Zhang, Q; Lu, Z; Matcher, S J; Lewis, R

    2018-02-01

    The work outlined in this paper was aimed at achieving further understanding of skin frictional behaviour by investigating the contact area between human finger-pads and flat surfaces. Both the static and the dynamic contact areas (in macro- and micro-scales) were measured using various techniques, including ink printing, optical coherence tomography (OCT) and Digital Image Correlation (DIC). In the studies of the static measurements using ink printing, the experimental results showed that the apparent and the real contact area increased with load following a piecewise linear correlation function for a finger-pad in contact with paper sheets. Comparisons indicated that the OCT method is a reliable and effective method to investigate the real contact area of a finger-pad and allow micro-scale analysis. The apparent contact area (from the DIC measurements) was found to reduce with time in the transition from the static phase to the dynamic phase while the real area of contact (from OCT) increased. The results from this study enable the interaction between finger-pads and contact object surface to be better analysed, and hence improve the understanding of skin friction. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Determination of Viscosity-Average Molecular Weight of Chitosan using Intrinsic Viscosity Measurement

    International Nuclear Information System (INIS)

    Norzita Yacob; Norhashidah Talip; Maznah Mahmud

    2011-01-01

    Molecular weight of chitosan can be determined by different techniques such as Gel Permeation Chromatography (GPC), Static Light Scattering (SLS) and intrinsic viscosity measurement. Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (author)

  11. Contact angle measurement with a smartphone.

    Science.gov (United States)

    Chen, H; Muros-Cobos, Jesus L; Amirfazli, A

    2018-03-01

    In this study, a smartphone-based contact angle measurement instrument was developed. Compared with the traditional measurement instruments, this instrument has the advantage of simplicity, compact size, and portability. An automatic contact point detection algorithm was developed to allow the instrument to correctly detect the drop contact points. Two different contact angle calculation methods, Young-Laplace and polynomial fitting methods, were implemented in this instrument. The performance of this instrument was tested first with ideal synthetic drop profiles. It was shown that the accuracy of the new system with ideal synthetic drop profiles can reach 0.01% with both Young-Laplace and polynomial fitting methods. Conducting experiments to measure both static and dynamic (advancing and receding) contact angles with the developed instrument, we found that the smartphone-based instrument can provide accurate and practical measurement results as the traditional commercial instruments. The successful demonstration of use of a smartphone (mobile phone) to conduct contact angle measurement is a significant advancement in the field as it breaks the dominate mold of use of a computer and a bench bound setup for such systems since their appearance in 1980s.

  12. Contact angle measurement with a smartphone

    Science.gov (United States)

    Chen, H.; Muros-Cobos, Jesus L.; Amirfazli, A.

    2018-03-01

    In this study, a smartphone-based contact angle measurement instrument was developed. Compared with the traditional measurement instruments, this instrument has the advantage of simplicity, compact size, and portability. An automatic contact point detection algorithm was developed to allow the instrument to correctly detect the drop contact points. Two different contact angle calculation methods, Young-Laplace and polynomial fitting methods, were implemented in this instrument. The performance of this instrument was tested first with ideal synthetic drop profiles. It was shown that the accuracy of the new system with ideal synthetic drop profiles can reach 0.01% with both Young-Laplace and polynomial fitting methods. Conducting experiments to measure both static and dynamic (advancing and receding) contact angles with the developed instrument, we found that the smartphone-based instrument can provide accurate and practical measurement results as the traditional commercial instruments. The successful demonstration of use of a smartphone (mobile phone) to conduct contact angle measurement is a significant advancement in the field as it breaks the dominate mold of use of a computer and a bench bound setup for such systems since their appearance in 1980s.

  13. Direct measurement of the intrinsic ankle stiffness during standing.

    Science.gov (United States)

    Vlutters, M; Boonstra, T A; Schouten, A C; van der Kooij, H

    2015-05-01

    Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic ankle-foot stiffness to balance, and the ankle-foot stiffness amplitude dependency remain a topic of debate in the literature. We therefore developed an experimental protocol to directly measure the bilateral intrinsic ankle-foot stiffness during standing balance, and determine its amplitude dependency. By applying fast (40 ms) ramp-and-hold support surface rotations (0.005-0.08 rad) during standing, reflexive contributions could be excluded, and the amplitude dependency of the intrinsic ankle-foot stiffness was investigated. Results showed that reflexive activity could not have biased the torque used for estimating the intrinsic stiffness. Furthermore, subjects required less recovery action to restore balance after bilateral rotations in opposite directions compared to rotations in the same direction. The intrinsic ankle-foot stiffness appears insufficient to ensure balance, ranging from 0.93±0.09 to 0.44±0.06 (normalized to critical stiffness 'mgh'). This implies that changes in muscle activation are required to maintain balance. The non-linear stiffness decrease with increasing rotation amplitude supports the previous published research. With the proposed method reflexive effects can be ruled out from the measured torque without any model assumptions, allowing direct estimation of intrinsic stiffness during standing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Straylight Measurements in Contact Lens Wear

    NARCIS (Netherlands)

    van der Meulen, Ivanka J. E.; Engelbrecht, Leonore A.; van Vliet, Johannes M. J.; Lapid-Gortzak, Ruth; Nieuwendaal, Carla P.; Mourits, Maarten P.; Schlingemann, Reinier O.; van den Berg, Thomas J. T. P.

    2010-01-01

    Purpose: (1) To quantify the effect of contact lens wear on straylight in rigid and soft contact lens wearers and (2) to relate findings to morphological changes and subjective complaints. Methods: Straylight was measured using the Oculus C-Quant during contact lens wear and after contact lens

  15. Determination of viscosity-average molecular weight of chitosan using intrinsic viscosity measurement

    International Nuclear Information System (INIS)

    Norzita Yacob; Norhashidah Talip; Maznah Mahmud; Nurul Aizam Idayu Mat Sani; Nor Akma Samsuddin; Norafifah Ahmad Fabillah

    2013-01-01

    Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. To study the effect of radiation on molecular weight, chitosan was first irradiated using electron beam at different doses prior to measurement. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (Author)

  16. Measuring The Contact Resistances Of Photovoltaic Cells

    Science.gov (United States)

    Burger, D. R.

    1985-01-01

    Simple method devised to measure contact resistances of photovoltaic solar cells. Method uses readily available equipment and applicable at any time during life of cell. Enables evaluation of cell contact resistance, contact-end resistance, contact resistivity, sheet resistivity, and sheet resistivity under contact.

  17. [IOP measurement through frequent-replacement soft contact lenses].

    Science.gov (United States)

    Touboul, J

    2008-07-01

    Intraocular pressure (IOP) can be measured through soft contact lenses with an air-puff tonometer. These measurements seemed accurate for low-power negative lenses. For positive soft contact lenses, IOP is overestimated. The measurement of IOP through a soft contact lens is acceptable in clinical practice only for glaucoma screening. In glaucomatous patients or patients with ocular hypertension, IOP measurements should be performed without a contact lens. The main technique for IOP measurement remains Goldmann applanation tonometry.

  18. Characterizations of contact and sheet resistances of vertically aligned carbon nanotube forests with intrinsic bottom contacts

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yingqi; Wang Pengbo; Lin Liwei, E-mail: jiangyq99@gmail.com, E-mail: lwlin@me.berkeley.edu [Mechanical Engineering Department, University of California at Berkeley (United States)

    2011-09-07

    Comprehensive studies on the sheet and contact resistances of vertically aligned carbon nanotube (CNT) forests with as-grown bottom contacts to the metal layer have been conducted. Using microfabrication and four distinct methods: (1) the transfer length method (TLM), (2) the contact chain method, (3) the Kelvin method, and (4) the four point probe method, we have designed multiple testing devices to characterize the resistances of CNT-forest-based devices. Experimental results show that devices based on stripe-shaped CNT forests 100 {mu}m in height and 100 {mu}m in width have a sheet resistance of approximately 100{Omega}/{open_square}. The corresponding specific contact resistance to the molybdenum layer is roughly 5 x 10{sup 4} {Omega} {mu}m{sup 2}. Consistency of the results from the four different methods validates the study. After two months of storage of the CNT forest samples in open air, less than 0.9% deviations in the resistance values were observed. We further demonstrated one application of CNT forests as an NH{sub 3} gas sensor and measured 0.5 ppm of sensing resolution with a detection response time of 1 min.

  19. Extrinsic and intrinsic factors associated with non-contact injury in adult pace bowlers: a systematic review protocol.

    Science.gov (United States)

    Olivier, Benita; Stewart, Aimee; Taljaard, Tracy; Burger, Elaine; Brukner, Peter; Orchard, John; Gray, Janine; Botha, Nadine; Mckinon, Warrick

    2015-01-01

    Review question: which extrinsic and intrinsic factors are associated with non-contact injury in adult cricket pace bowlers?Review objective: the objective of this review is to determine the extrinsic and intrinsic factors associated with non-contact injury in adult pace bowlers. Cricket is generally considered to be a sport of low injury risk compared to other sports. In cricket, the pace bowler strives towards the adoption of a bowling technique with a relatively low injury threat that will, at the same time, allow for a fast (>120km/hr) and accurate delivery to the opposing batsman. However, of all the various roles of the cricket player, the pace bowler has the highest risk of injury, especially for low back and lower limb (lower quarter) injury. The reason for this high risk of injury is due to the inherent, high-load biomechanical nature of the pace bowling action. The high prevalence of injury amongst pace bowlers highlights the great need for research into factors associated with injury.Both extrinsic and intrinsic factors work in combination to predispose the bowler to injury. Extrinsic or environment-related factors include bowling workload (the numbers of overs a bowler bowls), player position (first, second or third change) and time of play (morning or afternoon). A high bowling workload has been linked with a higher risk of injury in pace bowlers. Foster et al. found in an observational study that bowling too many overs in a single spell or bowling too many spells may increase the pace bowler's risk of sustaining a low back injury. In another observational study, Dennis et al. found that an exceptionally high bowling workload as well as an uncommonly low bowling workload is associated with injury risk. The major extrinsic factors for bowling injury identified by Orchard et al. are a high number of match overs bowled in the previous week, number of days of play and bowling second (batting first) in a match. Extrinsic factors are known to make the bowler

  20. Contact area measurements on structured surfaces

    DEFF Research Database (Denmark)

    Kücükyildiz, Ömer Can; Jensen, Sebastian Hoppe Nesgaard; De Chiffre, Leonardo

    In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means.......In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means....

  1. Measurement of metal/carbon nanotube contact resistance by adjusting contact length using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Lan Chun; Srisungsitthisunti, Pornsak; Amama, Placidus B; Fisher, Timothy S; Xu Xianfan; Reifenberger, Ronald G [Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States)], E-mail: lan0@physics.purdue.edu

    2008-03-26

    A technique of measuring contact resistance between an individual nanotube and a deposited metallic film is described. Using laser ablation to sequentially shorten the contact length between a nanotube and the evaporated metallic film, the linear resistivity of the nanotube as well as the specific contact resistivity between the nanotube and metallic film can be determined. This technique can be generally used to measure the specific contact resistance that develops between a metallic film and a variety of different nanowires and nanotubes.

  2. Instrument for measuring metal-thermoelectric semiconductor contact resistence

    International Nuclear Information System (INIS)

    Lanxner, M.; Nechmadi, M.; Meiri, B.; Schildkraut, I.

    1979-02-01

    An instrument for measuring electrical, metal-thermoelectric semiconductor contact resistance is described. The expected errors of measurement are indicated. The operation of the instrument which is based on potential traversing perpendicularly to the contact plane is illustrated for the case of contacts of palladium and bismuth telluride-based thermoelectric material

  3. Development of a computational technique to measure cartilage contact area.

    Science.gov (United States)

    Willing, Ryan; Lapner, Michael; Lalone, Emily A; King, Graham J W; Johnson, James A

    2014-03-21

    Computational measurement of joint contact distributions offers the benefit of non-invasive measurements of joint contact without the use of interpositional sensors or casting materials. This paper describes a technique for indirectly measuring joint contact based on overlapping of articular cartilage computer models derived from CT images and positioned using in vitro motion capture data. The accuracy of this technique when using the physiological nonuniform cartilage thickness distribution, or simplified uniform cartilage thickness distributions, is quantified through comparison with direct measurements of contact area made using a casting technique. The efficacy of using indirect contact measurement techniques for measuring the changes in contact area resulting from hemiarthroplasty at the elbow is also quantified. Using the physiological nonuniform cartilage thickness distribution reliably measured contact area (ICC=0.727), but not better than the assumed bone specific uniform cartilage thicknesses (ICC=0.673). When a contact pattern agreement score (s(agree)) was used to assess the accuracy of cartilage contact measurements made using physiological nonuniform or simplified uniform cartilage thickness distributions in terms of size, shape and location, their accuracies were not significantly different (p>0.05). The results of this study demonstrate that cartilage contact can be measured indirectly based on the overlapping of cartilage contact models. However, the results also suggest that in some situations, inter-bone distance measurement and an assumed cartilage thickness may suffice for predicting joint contact patterns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Contact allergy and allergic contact dermatitis in adolescents: prevalence measures and associations

    DEFF Research Database (Denmark)

    Mørtz, Charlotte G; Lauritsen, Jens Martin; Bindslev-Jensen, Carsten

    2002-01-01

    The aims of this cross-sectional study were to establish the prevalence measures of contact allergy and allergic contact dermatitis in 8th grade schoolchildren (aged 12-16 years) in Odense, Denmark, and to examine the associations with atopic dermatitis, inhalant allergy and hand eczema. Contact...... allergy to a standard series allergen was found in 15.2% of schoolchildren. The point prevalence of allergic contact dermatitis was 0.7% and the lifetime prevalence 7.2%, predominantly in girls. The most common contact allergens were nickel (8.6%) and fragrance mix (1.8%). Nickel allergy was clinically...... relevant in 69% and fragrance allergy in 29% of cases. A significant association was found between contact allergy and hand eczema while no association was found between contact allergy and atopic dermatitis or inhalant allergy. In the future this cohort of schoolchildren will be followed with regard...

  5. Contact and non-contact ultrasonic measurement in the food industry: a review

    International Nuclear Information System (INIS)

    Mohd Khairi, Mohd Taufiq; Ibrahim, Sallehuddin; Md Yunus, Mohd Amri; Faramarzi, Mahdi

    2016-01-01

    The monitoring of the food manufacturing process is vital since it determines the safety and quality level of foods which directly affect the consumers’ health. Companies which produce high quality products will gain trust from consumers. This factor helps the companies to make profits. The use of efficient and appropriate sensors for the monitoring process can also reduce cost. The food assessing process based on an ultrasonic sensor has attracted the attention of the food industry due to its excellent capabilities in several applications. The utilization of low or high frequencies for the ultrasonic transducer has provided an enormous benefit for analysing, modifying and guaranteeing the quality of food. The contact and non-contact ultrasonic modes for measurement also contributed significantly to the food processing. This paper presents a review of the application of the contact and non-contact mode of ultrasonic measurement focusing on safety and quality control areas. The results from previous researches are shown and elaborated. (topical review)

  6. Contact and non-contact ultrasonic measurement in the food industry: a review

    Science.gov (United States)

    Taufiq Mohd Khairi, Mohd; Ibrahim, Sallehuddin; Yunus, Mohd Amri Md; Faramarzi, Mahdi

    2016-01-01

    The monitoring of the food manufacturing process is vital since it determines the safety and quality level of foods which directly affect the consumers’ health. Companies which produce high quality products will gain trust from consumers. This factor helps the companies to make profits. The use of efficient and appropriate sensors for the monitoring process can also reduce cost. The food assessing process based on an ultrasonic sensor has attracted the attention of the food industry due to its excellent capabilities in several applications. The utilization of low or high frequencies for the ultrasonic transducer has provided an enormous benefit for analysing, modifying and guaranteeing the quality of food. The contact and non-contact ultrasonic modes for measurement also contributed significantly to the food processing. This paper presents a review of the application of the contact and non-contact mode of ultrasonic measurement focusing on safety and quality control areas. The results from previous researches are shown and elaborated.

  7. In Vivo Measurement of Glenohumeral Joint Contact Patterns

    Directory of Open Access Journals (Sweden)

    Bey MichaelJ

    2010-01-01

    Full Text Available The objectives of this study were to describe a technique for measuring in-vivo glenohumeral joint contact patterns during dynamic activities and to demonstrate application of this technique. The experimental technique calculated joint contact patterns by combining CT-based 3D bone models with joint motion data that were accurately measured from biplane x-ray images. Joint contact patterns were calculated for the repaired and contralateral shoulders of 20 patients who had undergone rotator cuff repair. Significant differences in joint contact patterns were detected due to abduction angle and shoulder condition (i.e., repaired versus contralateral. Abduction angle had a significant effect on the superior/inferior contact center position, with the average joint contact center of the repaired shoulder 12.1% higher on the glenoid than the contralateral shoulder. This technique provides clinically relevant information by calculating in-vivo joint contact patterns during dynamic conditions and overcomes many limitations associated with conventional techniques for quantifying joint mechanics.

  8. Factors influencing accruement of contact hours for nurses.

    Science.gov (United States)

    Kubsch, Sylvia; Henniges, Amy; Lorenzoni, Nancy; Eckardt, Sally; Oleniczak, Sandra

    2003-01-01

    A decline in attendance at continuing education (CE) in nursing activities was observed in a Midwest state where CE attendance is not required. The purpose of this research study was to identify the effect of attitude, extrinsic and intrinsic reinforcement, and deterrents on contact hour accrual. A convenience sample of 282 registered nurses was surveyed using a researcher-constructed instrument determined to be valid and reliable. Registered nurses earning 0 to 15 contact hours annually reported accruing fewer contact hours in 1999 than in an average year. Registered nurses who earned 16 to 45+ contact hours annually reported earning more contact hours in 1999 than in an average year. Intrinsic reinforcement was found to be a significant motivator (r [257] = .242; p Operant Conditioning Theory has use in explaining registered nurse attendance at CE activities. CE planners should consider placing more emphasis on intrinsic rather than extrinsic reinforcement to encourage staff to attend CE activities.

  9. Intrinsic work function of molecular films

    International Nuclear Information System (INIS)

    Ivančo, Ján

    2012-01-01

    The electronic properties of molecular films are analysed with the consideration of the molecular orientation. The study demonstrates that surfaces of electroactive oligomeric molecular films can be classified—analogously to the elemental surfaces—by their intrinsic work functions. The intrinsic work function of molecular films is correlated with their ionisation energies; again, the behaviour is analogous to the correlation existing between the first ionisation energy of elements and the work function of the corresponding elemental surfaces. The proposed intrinsic work-function concept suggests that the mechanism for the energy-level alignment at the interfaces associated with molecular films is virtually controlled by work functions of materials brought into the contact. - Highlights: ► Molecular films exhibit their own (intrinsic) work function. ► Intrinsic work function is correlated with ionisation energy of molecular films. ► Intrinsic work function determines dipole at interface with a particular surface. ► Surface vacuum-level change upon film growth does not relate to interfacial dipole.

  10. Which Extrinsic and Intrinsic Factors are Associated with Non-Contact Injuries in Adult Cricket Fast Bowlers?

    Science.gov (United States)

    Olivier, Benita; Taljaard, Tracy; Burger, Elaine; Brukner, Peter; Orchard, John; Gray, Janine; Botha, Nadine; Stewart, Aimee; Mckinon, Warrick

    2016-01-01

    The high prevalence of injury amongst cricket fast bowlers exposes a great need for research into the risk factors associated with injury. Both extrinsic (environment-related) and intrinsic (person-related) risk factors are likely to be implicated within the high prevalence of non-contact injury amongst fast bowlers in cricket. Identifying and defining the relative importance of these risk factors is necessary in order to optimize injury prevention efforts. The objective of this review was to assess and summarize the scientific literature related to the extrinsic and intrinsic factors associated with non-contact injury inherent to adult cricket fast bowlers. A systematic review was performed in compliance with the PRISMA guidelines. This review considered both experimental and epidemiological study designs. Studies that included male cricket fast bowlers aged 18 years or above, from all levels of play, evaluating the association between extrinsic/intrinsic factors and injury in fast bowlers were considered for inclusion. The three-step search strategy aimed at finding both published and unpublished studies from all languages. The searched databases included MEDLINE via PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Cochrane Controlled Trials Register in the Cochrane Library, Physiotherapy Evidence Database (PEDro), ProQuest 5000 International, ProQuest Health and Medical Complete, EBSCO MegaFile Premier, Science Direct, SPORTDiscus with Full Text and SCOPUS (prior to 28 April 2015). Initial keywords used were 'cricket', 'pace', 'fast', 'bowler', and 'injury'. Papers which fitted the inclusion criteria were assessed by two independent reviewers for methodological validity prior to inclusion in the review using standardized critical appraisal instruments from the Joanna Briggs Institute Meta Analysis of Statistics Assessment and Review Instrument (JBI-MAStARI). A total of 16 studies were determined to be suitable for inclusion in this

  11. The Nature Contact Questionnaire: a measure of healthy workplace exposure.

    Science.gov (United States)

    Largo-Wight, Erin; Chen, W William; Dodd, Virginia; Weiler, Robert

    2011-01-01

    Understanding and promoting healthy workplaces is an important and growing area of interest in occupational health. Nature contact is a central component to the study of and promotion of healthy places. Previous findings suggest that nature contact influences health via stress appraisal process. Currently, there are no known comprehensive valid and reliable measures of nature contact, which presents obstacles to research and worksite health promotion. This study was designed to develop and test an instrument to measure nature contact at work, entitled the Nature Contact Questionnaire (NCQ), 16-item self-reported checklist to measure actual exposure. A sample of 503 (30% response rate) office staff completed the questionnaire. Office staff were sent an email with a link to the electronic survey twice, two weeks apart. Content and construct validity (KMO=0.68), internal consistency (Alpha=0.64), and test-retest reliability (r=0.85, pnature contact, which allows research to compare forms of nature contact to best inform practice and design of healthy places.

  12. Chasing equilibrium: measuring the intrinsic solubility of weak acids and bases.

    Science.gov (United States)

    Stuart, Martin; Box, Karl

    2005-02-15

    A novel procedure is described for rapid (20-80 min) measurement of intrinsic solubility values of organic acids, bases, and ampholytes. In this procedure, a quantity of substance was first dissolved at a pH where it exists predominantly in its ionized form, and then a precipitate of the neutral (un-ionized) species was formed by changing the pH. Subsequently, the rate of change of pH due to precipitation or dissolution was monitored and strong acid and base titrant were added to adjust the pH to discover its equilibrium conditions, and the intrinsic solubility of the neutral form of the compound could then be determined. The procedure was applied to a variety of monoprotic and diprotic pharmaceutical compounds. The results were highly repeatable and had a good correlation to available published values. Data collected during the procedure provided good diagnostic information. Kinetic solubility data were also collected but provided a poor guide to the intrinsic solubility.

  13. Intrinsic reaction kinetics of coal char combustion by direct measurement of ignition temperature

    International Nuclear Information System (INIS)

    Kim, Ryang-Gyoon; Jeon, Chung-Hwan

    2014-01-01

    A wire heating reactor that can use a synchronized experimental method was developed to obtain the intrinsic kinetics of large coal char particles ranging in size from 0.4 to 1 mm. This synchronization system consists of three parts: a thermocouple wire for both heating and direct measurement of the particle temperature, a photodetector sensor for determining ignition/burnout points by measuring the intensity of luminous emission from burning particles, and a high-speed camera–long-distance microscope for observing and recording the movement of luminous zone directly. Coal char ignition was found to begin at a spot on the particle's external surface and then moved across the entire particle. Moreover, the ignition point determined according to the minimum of dT/dt is a spot point and not a full growth point. The ignition temperature of the spot point rises as the particle diameter increases. A spot ignition model, which describes the ignition in terms of the internal conduction and external/internal oxygen diffusion, was then developed to evaluate the intrinsic kinetics and predict the ignition temperature of the coal char. Internal conduction was found to be important in large coal char particles because its effect becomes greater than that of oxygen diffusion as the particle diameter increases. In addition, the intrinsic kinetics of coal char obtained from the spot ignition model for two types of coal does not differ significantly from the results of previous investigators. -- Highlights: • A novel technique was used to measure the coal char particle temperature. • The ignition point determined from a dT/dt minimum is a spot ignition point. • A spot ignition model was suggested to analyze the intrinsic reaction kinetics of coal char. • Internal conduction has to be considered in order to evaluate the intrinsic kinetics for larger particle (above 1 mm)

  14. Clinical tonometric measurements comparing three non-contact tonometers.

    Science.gov (United States)

    Walby, M A; Augsburger, A; Polasky, M

    1975-06-01

    Three American Optical Non-contact Tonometers were used to compare readings against each other. The attempt was to determine if all three tonometers were measuring the same IOP over a wide range of pressures. The assumption in practice is that all Non-contact Tonometers are manufactured within tolerance that should allow the examiner to find that same IOP on a patient regardless of the Non-contact Tonometer used. A preliminary study found no significant difference between the instruments.

  15. Non-contact and contact measurement system for detecting projectile position in electromagnetic launch bore

    Science.gov (United States)

    Xu, Weidong; Yuan, Weiqun; Xu, Rong; Zhao, Hui; Cheng, Wenping; Zhang, Dongdong; Zhao, Ying; Yan, Ping

    2017-12-01

    This paper introduces a new measurement system for measuring the position of a projectile within a rapid fire electromagnetic launching system. The measurement system contains both non-contact laser shading and metal fiber contact measurement devices. Two projectiles are placed in the rapid fire electromagnetic launch bore, one in the main accelerating segment and the other in the pre-loading segment. The projectile placed in the main accelerating segment should be shot first, and then the other is loaded into the main segment from the pre-loading segment. The main driving current (I-main) can only be discharged again when the second projectile has arrived at the key position (the projectile position corresponds to the discharging time) in the main accelerating segment. So, it is important to be able to detect when the second projectile arrives at the key position in the main accelerating segment. The B-dot probe is the most widely used system for detecting the position of the projectile in the electromagnetic launch bore. However, the B-dot signal is affected by the driving current amplitude and the projectile velocity. There is no current in the main accelerating segment when the second projectile moves into this segment in rapid fire mode, so the B-dot signal for detecting the key position is invalid. Due to the presence of a high-intensity magnetic field, a high current, a high-temperature aluminum attachment, smoke and strong vibrations, it is very difficult to detect the projectile position in the bore accurately. So, other measurements need to be researched and developed in order to achieve high reliability. A measurement system based on a laser (non-contact) and metal fibers (contact) has been designed, and the integrated output signal based on this detector is described in the following paper.

  16. A Method to Extract the Intrinsic Mechanical Properties of Soft Metallic Thin Films Based on Nanoindentation Continuous Stiffness Measurement Technique

    International Nuclear Information System (INIS)

    Zhou, X Y; Jiang, Z D; Wang, H R; Zhu, Q

    2006-01-01

    In order to determine accurately the intrinsic hardness of the soft metallic thin film on a hard substrate using nanoindentation, a proper methodology irrespective of several important effects the Oliver-Pharr method concerns is described. First, the original analysis data such as the load, P, and contact stiffness, S, as a function of the indentation depth, h, are acquired by means of the continuous stiffness measurement (CSM) technique. By CSM, the complicating effects including indentation creep behaviour of metal materials as well as thermal drift on the measured results are avoided effectively. Then, the hardness of film-only is calculated via a material characteristic parameter, P/S 2 , which is independent of the contact area, A, based on the constant modulus assumption method. In this way, the influences of the substrate contribution and material pile-up behaviour needn't be accounted for. Guided by above ideas, moreover, a 504 nm Au film on the glass substrate system was chosen to study. The results show that the hardness of Au thin film is 1.6±1 GPa, which agree well with the literature. While the composite hardness measured by Oliver-Pharr method is between 2∼3GPa, obviously, which is overestimated. This implies the present methodology is a more accurate and simple way for extracting the true hardness of the soft metallic thin films

  17. Measuring contact angle and meniscus shape with a reflected laser beam.

    Science.gov (United States)

    Eibach, T F; Fell, D; Nguyen, H; Butt, H J; Auernhammer, G K

    2014-01-01

    Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collected on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.

  18. Direct measurement of friction of a fluctuating contact line.

    Science.gov (United States)

    Guo, Shuo; Gao, Min; Xiong, Xiaomin; Wang, Yong Jian; Wang, Xiaoping; Sheng, Ping; Tong, Penger

    2013-07-12

    We report a direct measurement of the friction coefficient of a fluctuating (and slipping) contact line using a thin vertical glass fiber of diameter d with one end glued onto a cantilever beam and the other end touching a liquid-air interface. By measuring the broadening of the resonant peak of the cantilever system with varying liquid viscosity η, we find the friction coefficient of the contact line has a universal form, ξ(c)≃0.8πdη, independent of the liquid-solid contact angle. The obtained scaling law is further supported by the numerical simulation based on the phase field model under the generalized Navier boundary conditions.

  19. Extrinsic and Intrinsic Frequency Dispersion of High-k Materials in Capacitance-Voltage Measurements

    Directory of Open Access Journals (Sweden)

    S. Taylor

    2012-06-01

    Full Text Available In capacitance-voltage (C-V measurements, frequency dispersion in high-k dielectrics is often observed. The frequency dependence of the dielectric constant (k-value, that is the intrinsic frequency dispersion, could not be assessed before suppressing the effects of extrinsic frequency dispersion, such as the effects of the lossy interfacial layer (between the high-k thin film and silicon substrate and the parasitic effects. The effect of the lossy interfacial layer on frequency dispersion was investigated and modeled based on a dual frequency technique. The significance of parasitic effects (including series resistance and the back metal contact of the metal-oxide-semiconductor (MOS capacitor on frequency dispersion was also studied. The effect of surface roughness on frequency dispersion is also discussed. After taking extrinsic frequency dispersion into account, the relaxation behavior can be modeled using the Curie-von Schweidler (CS law, the Kohlrausch-Williams-Watts (KWW relationship and the Havriliak-Negami (HN relationship. Dielectric relaxation mechanisms are also discussed.

  20. Sensing with Superconducting Point Contacts

    Directory of Open Access Journals (Sweden)

    Argo Nurbawono

    2012-05-01

    Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  1. Contact Angle Measurements Using a Simplified Experimental Setup

    Science.gov (United States)

    Lamour, Guillaume; Hamraoui, Ahmed; Buvailo, Andrii; Xing, Yangjun; Keuleyan, Sean; Prakash, Vivek; Eftekhari-Bafrooei, Ali; Borguet, Eric

    2010-01-01

    A basic and affordable experimental apparatus is described that measures the static contact angle of a liquid drop in contact with a solid. The image of the drop is made with a simple digital camera by taking a picture that is magnified by an optical lens. The profile of the drop is then processed with ImageJ free software. The ImageJ contact…

  2. Measurement of contact angle in a clearance-fit pin-loaded hole

    Science.gov (United States)

    Prabhakaran, R.; Naik, R. A.

    1986-01-01

    A technique which measures load-contact variation in a clearance-fit, pin-loaded hole is presented in detail. A steel instrumented pin, which activates a make-or-break electrical circuit in the pin-hole contact region, was inserted into one aluminum and one polycarbonate specimen. The resulting load-contact variations are indicated schematically. The ability to accurately determine the arc of contact at any load was crucial to this measurement. It is noted that this simple experimental technique is applicable to both conducting and nonconducting materials.

  3. Drop shape visualization and contact angle measurement on curved surfaces.

    Science.gov (United States)

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Contact pressure measurement in hand tool evaluation studies

    NARCIS (Netherlands)

    Kuijt-Evers, L.F.M.; Bosch, T.

    2006-01-01

    In hand tool evaluation studies, several objective measurements are used. Grip force distribution and grip force are important as they give feedback about the force which has to be performed with the hand on the handle. A measurement technique -which is related to grip force measurement- is contact

  5. Measurement accuracy of a stressed contact lens during its relaxation period

    Science.gov (United States)

    Compertore, David C.; Ignatovich, Filipp V.

    2018-02-01

    We examine the dioptric power and transmitted wavefront of a contact lens as it releases its handling stresses. Handling stresses are introduced as part of the contact lens loading process and are common across all contact lens measurement procedures and systems. The latest advances in vision correction require tighter quality control during the manufacturing of the contact lenses. The optical power of contact lenses is one of the critical characteristics for users. Power measurements are conducted in the hydrated state, where the lens is resting inside a solution-filled glass cuvette. In a typical approach, the contact lens must be subject to long settling times prior to any measurements. Alternatively, multiple measurements must be averaged. Apart from potential operator dependency of such approach, it is extremely time-consuming, and therefore it precludes higher rates of testing. Comprehensive knowledge about the settling process can be obtained by monitoring multiple parameters of the lens simultaneously. We have developed a system that combines co-aligned a Shack-Hartmann transmitted wavefront sensor and a time-domain low coherence interferometer to measure several optical and physical parameters (power, cylinder power, aberrations, center thickness, sagittal depth, and diameter) simultaneously. We monitor these parameters during the stress relaxation period and show correlations that can be used by manufacturers to devise methods for improved quality control procedures.

  6. Measurement of Capillary Radius and Contact Angle within Porous Media.

    Science.gov (United States)

    Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed

    2015-12-01

    The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.

  7. Importance of frequency dependent magnetoresistance measurements in analysing the intrinsicality of magnetodielectric effect: A case study

    Science.gov (United States)

    Rai, Hari Mohan; Saxena, Shailendra K.; Mishra, Vikash; Kumar, Rajesh; Sagdeo, P. R.

    2017-08-01

    Magnetodielectric (MD) materials have attracted considerable attention due to their intriguing physics and potential future applications. However, the intrinsicality of the MD effect is always a major concern in such materials as the MD effect may arise also due to the MR (magnetoresistance) effect. In the present case study, we report an experimental approach to analyse and separate the intrinsic and MR dominated contributions of the MD phenomenon. For this purpose, polycrystalline samples of LaGa1-xAxO3 (A = Mn/Fe) have been prepared by solid state reaction method. The purity of their structural phase (orthorhombic) has been validated by refining the X-ray diffraction data. The RTMD (room temperature MD) response has been recorded over a frequency range of 20 Hz to 10 MHz. In order to analyse the intrinsicality of the MD effect, FDMR (frequency dependent MR) by means of IS (impedance spectroscopy) and dc MR measurements in four probe geometry have been carried out at RT. A significant RTMD effect has been observed in selected Mn/Fe doped LaGaO3 (LGO) compositions. The mechanism of MR free/intrinsic MD effect, observed in Mn/Fe doped LGO, has been understood speculatively in terms of modified cell volume associated with the reorientation/retransformation of spin-coupled Mn/Fe orbitals due to the application of magnetic field. The present analysis suggests that in order to justify the intrinsic/resistive origin of the MD phenomenon, FDMR measurements are more useful than measuring only dc MR or analysing the trends of magnetic field dependent change in the dielectric constant and tanδ. On the basis of the present case study, we propose that IS (FDMR) alone can be used as an effective experimental tool to detect and analyse the resistive and intrinsic parts contributing to the MD phenomenon.

  8. Measurement properties and usability of non-contact scanners for measuring transtibial residual limb volume.

    Science.gov (United States)

    Kofman, Rianne; Beekman, Anna M; Emmelot, Cornelis H; Geertzen, Jan H B; Dijkstra, Pieter U

    2018-06-01

    Non-contact scanners may have potential for measurement of residual limb volume. Different non-contact scanners have been introduced during the last decades. Reliability and usability (practicality and user friendliness) should be assessed before introducing these systems in clinical practice. The aim of this study was to analyze the measurement properties and usability of four non-contact scanners (TT Design, Omega Scanner, BioSculptor Bioscanner, and Rodin4D Scanner). Quasi experimental. Nine (geometric and residual limb) models were measured on two occasions, each consisting of two sessions, thus in total 4 sessions. In each session, four observers used the four systems for volume measurement. Mean for each model, repeatability coefficients for each system, variance components, and their two-way interactions of measurement conditions were calculated. User satisfaction was evaluated with the Post-Study System Usability Questionnaire. Systematic differences between the systems were found in volume measurements. Most of the variances were explained by the model (97%), while error variance was 3%. Measurement system and the interaction between system and model explained 44% of the error variance. Repeatability coefficient of the systems ranged from 0.101 (Omega Scanner) to 0.131 L (Rodin4D). Differences in Post-Study System Usability Questionnaire scores between the systems were small and not significant. The systems were reliable in determining residual limb volume. Measurement systems and the interaction between system and residual limb model explained most of the error variances. The differences in repeatability coefficient and usability between the four CAD/CAM systems were small. Clinical relevance If accurate measurements of residual limb volume are required (in case of research), modern non-contact scanners should be taken in consideration nowadays.

  9. A fluorescence-based method for direct measurement of submicrosecond intramolecular contact formation in biopolymers: an exploratory study with polypeptides.

    Science.gov (United States)

    Hudgins, Robert R; Huang, Fang; Gramlich, Gabriela; Nau, Werner M

    2002-01-30

    A fluorescent amino acid derivative (Fmoc-DBO) has been synthesized, which contains 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as a small, hydrophilic fluorophore with an extremely long fluorescence lifetime (325 ns in H2O and 505 ns in D2O under air). Polypeptides containing both the DBO residue and an efficient fluorescence quencher allow the measurement of rate constants for intramolecular end-to-end contact formation. Bimolecular quenching experiments indicated that Trp, Cys, Met, and Tyr are efficient quenchers of DBO (k(q) = 20, 5.1, 4.5, and 3.6 x 10(8) M(-1) x s(-1) in D2O), while the other amino acids are inefficient. The quenching by Trp, which was selected as an intrinsic quencher, is presumed to involve exciplex-induced deactivation. Flexible, structureless polypeptides, Trp-(Gly-Ser)n-DBO-NH2, were prepared by standard solid-phase synthesis, and the rates of contact formation were measured through the intramolecular fluorescence quenching of DBO by Trp with time-correlated single-photon counting, laser flash photolysis, and steady-state fluorometry. Rate constants of 4.1, 6.8, 4.9, 3.1, 2.0, and 1.1 x 10(7) s(-1) for n = 0, 1, 2, 4, 6, and 10 were obtained. Noteworthy was the relatively slow quenching for the shortest peptide (n = 0). The kinetic data are in agreement with recent transient absorption studies of triplet probes for related peptides, but the rate constants are significantly larger. In contrast to the flexible structureless Gly-Ser polypeptides, the polyproline Trp-Pro4-DBO-NH2 showed insignificant fluorescence quenching, suggesting that a high polypeptide flexibility and the possibility of probe-quencher contact is essential to induce quenching. Advantages of the new fluorescence-based method for measuring contact formation rates in biopolymers include high accuracy, fast time range (100 ps-1 micros), and the possibility to perform measurements in water under air.

  10. Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements

    Directory of Open Access Journals (Sweden)

    Martin Alberto Masuelli

    2013-01-01

    Full Text Available The behavior of bovine serum albumin (BSA in water is scarcely studied, and the thermodynamic properties arising from the experimental measurements have not been reported. Intrinsic viscosity measurements are very useful in assessing the interaction between the solute and solvent. This work discussed in a simple determination of the enthalpy of BSA in aqueous solution when the concentration ranges from 0.2 to 36.71% wt. and the temperature from 35 to 40°C. The relationship between the concentration and intrinsic viscosity is determined according to the method of Huggins. The temperature increase reduces the ratio between inherent viscosity and concentration (ηi/c. This is reflected in the Van't Hoff curve. Furthermore, this work proposes hydrodynamic cohesion value as an indicator of the degree of affinity of protein with water and thermodynamic implications in conformational changes.

  11. Design and testing of an innovative measurement device for tyre-road contact forces

    Science.gov (United States)

    Cheli, F.; Braghin, F.; Brusarosco, M.; Mancosu, F.; Sabbioni, E.

    2011-08-01

    The measurement of tyre-road contact forces is the first step towards the development of new control systems for improving vehicle safety and performances. Tyre-road contact forces measurement systems are very expensive and significantly modify the unsprung masses of the vehicle as well as the rotational inertia of the tyres. Thus, vehicle dynamics results are significantly affected. As a consequence, the measured contact forces do not correspond to the contact forces under real working conditions. A new low-cost tyre-road contact forces measurement system is proposed in this paper that can be applied to passenger cars. Its working principle is based on the measurement of three deformations of the wheel rim through strain gauges. The tyre-rim assembly is thus turned into a sensor for tyre-road contact forces. The influence of the strain gauges position onto the measurement results has been assessed through finite element simulations and experimental tests. It has been proven that, for a large variety of rims, the strain gauge position that leads to high signal-to-noise ratios is almost the same. A dynamic calibration procedure has been developed in order to allow the reconstruction of contact force and torque components once per wheel turn. The capability of the developed device to correctly estimate tyre-road contact forces has been assessed, in a first stage, through indoor laboratory experimental test on an MTS Flat-Trac ® testing machine. Results show that the implemented measuring system allows to reconstruct contact forces once per wheel turn with a precision that is comparable to that of existing high-cost measurement systems. Subsequently, outdoor tests with a vehicle having all four wheels equipped with the developed measuring device have also been performed. Reliability of the measurements provided by the developed sensor has been assessed by comparing the global measured longitudinal/lateral forces and the product of the measured longitudinal

  12. The Effect of Various Contact Lenses on Intraocular Pressure Measurement by Goldman Tonometer

    Directory of Open Access Journals (Sweden)

    Monireh Mahjoob

    2014-06-01

    Full Text Available Background: Today, contact lenses have extensive usages. Contact lens places on cornea, so it may induce variation on cornea and these variations can influence the measurement of intraocular pressure (IOP by Goldman tonometer. The aim of this research was to study the effect of various contact lenses on measurement of intraocular pressure by Goldman tonometer. Materials and Methods: In this study, 80 subjects aged 18-25 were selected randomly among patients of Al-Zahra ophthalmology center. None of them has any eye pathological problems. Before wearing the lens, intraocular pressure was measured, and then patients were divided into two groups of soft and hard contact lenses. Soft and hard contact lenses were placed on the eye for two hours, and the intraocular pressure was measured again. Results: The mean of IOP before wearing contact lenses and two hours later was 15.96 mmHg and 13.93, s respectively. Paired test showed a significant difference between IOP before and after wearing contact lenses (p=0.001.There was no significant differences in mean of intraocular pressure decline before and after placing the contact lens in both soft and hard lenses. Conclusion: According to this study, the intraocular pressure decreases after wearing contact lenses (CL. This decline may be due to variation in properties of cornea after wearing CL that can also affect IOP measurement.

  13. The non-contact biometric identified bio signal measurement sensor and algorithms.

    Science.gov (United States)

    Kim, Chan-Il; Lee, Jong-Ha

    2018-04-25

    In these days, wearable devices have been developed for effectively measuring biological data. However, these devices have tissue allege and noise problem. To solve these problems, biometric measurement based on a non-contact method, such as face image sequencing is developed. This makes it possible to measure biometric data without any operation and side effects. However, it is impossible for a remote center to identify the person whose data are measured by the novel methods. In this paper, we propose the novel non-contact heart rate and blood pressure imaging system, Deep Health Eye. This system has authentication process at the same time as measuring bio signals, through non-contact method. In the future, this system can be convenient home bio signal monitoring system by combined with smart mirror.

  14. Impact of measurable physical phenomena on contact thermal comfort

    Science.gov (United States)

    Fojtlín, Miloš; Pokorný, Jan; Fišer, Jan; Toma, Róbert; Tuhovčák, Ján

    Cabin HVAC (Heating Ventilation and Air-conditioning) systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  15. Impact of measurable physical phenomena on contact thermal comfort

    Directory of Open Access Journals (Sweden)

    Fojtlín Miloš

    2017-01-01

    Full Text Available Cabin HVAC (Heating Ventilation and Air-conditioning systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  16. Technique to measure contact angle of micro/nanodroplets using atomic force microscopy

    International Nuclear Information System (INIS)

    Jung, Yong Chae; Bhushan, Bharat

    2008-01-01

    Contact angle is the primary parameter that characterizes wetting; however, the measurement techniques have been limited to droplets with a diameter as low as about 50 μm. The authors developed an atomic force microscopy-based technique to measure the contact angle of micro- and nanodroplets deposited using a modified nanoscale dispensing tip. The obtained contact angle results were compared with those of a macrodroplet (2.1 mm diameter). It was found that the contact angle on various surfaces decreases with decreasing the droplet size

  17. A four-probe thermal transport measurement method for nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li, E-mail: lishi@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-04-15

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models.

  18. A four-probe thermal transport measurement method for nanostructures

    International Nuclear Information System (INIS)

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li

    2015-01-01

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models

  19. The effect of electrode contact resistance and capacitive coupling on Complex Resistivity measurements

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas

    2006-01-01

    The effect of electrode contact resistance and capacitive coupling on complex resistivity (CR) measurements is studied in this paper. An equivalent circuit model for the receiver is developed to describe the effects. The model shows that CR measurements are severely affected even at relatively lo...... with the contact resistance artificially increased by resistors. The results emphasize the importance of keeping contact resistance low in CR measurements....

  20. A method to measure internal contact angle in opaque systems by magnetic resonance imaging.

    Science.gov (United States)

    Zhu, Weiqin; Tian, Ye; Gao, Xuefeng; Jiang, Lei

    2013-07-23

    Internal contact angle is an important parameter for internal wettability characterization. However, due to the limitation of optical imaging, methods available for contact angle measurement are only suitable for transparent or open systems. For most of the practical situations that require contact angle measurement in opaque or enclosed systems, the traditional methods are not effective. Based upon the requirement, a method suitable for contact angle measurement in nontransparent systems is developed by employing MRI technology. In the Article, the method is demonstrated by measuring internal contact angles in opaque cylindrical tubes. It proves that the method also shows great feasibility in transparent situations and opaque capillary systems. By using the method, contact angle in opaque systems could be measured successfully, which is significant in understanding the wetting behaviors in nontransparent systems and calculating interfacial parameters in enclosed systems.

  1. Contact Versus Non-Contact Measurement of a Helicopter Main Rotor Composite Blade

    Science.gov (United States)

    Luczak, Marcin; Dziedziech, Kajetan; Vivolo, Marianna; Desmet, Wim; Peeters, Bart; Van der Auweraer, Herman

    2010-05-01

    The dynamic characterization of lightweight structures is particularly complex as the impact of the weight of sensors and instrumentation (cables, mounting of exciters…) can distort the results. Varying mass loading or constraint effects between partial measurements may determine several errors on the final conclusions. Frequency shifts can lead to erroneous interpretations of the dynamics parameters. Typically these errors remain limited to a few percent. Inconsistent data sets however can result in major processing errors, with all related consequences towards applications based on the consistency assumption, such as global modal parameter identification, model-based damage detection and FRF-based matrix inversion in substructuring, load identification and transfer path analysis [1]. This paper addresses the subject of accuracy in the context of the measurement of the dynamic properties of a particular lightweight structure. It presents a comprehensive comparative study between the use of accelerometer, laser vibrometer (scanning LDV) and PU-probe (acoustic particle velocity and pressure) measurements to measure the structural responses, with as final aim the comparison of modal model quality assessment. The object of the investigation is a composite material blade from the main rotor of a helicopter. The presented results are part of an extensive test campaign performed with application of SIMO, MIMO, random and harmonic excitation, and the use of the mentioned contact and non-contact measurement techniques. The advantages and disadvantages of the applied instrumentation are discussed. Presented are real-life measurement problems related to the different set up conditions. Finally an analysis of estimated models is made in view of assessing the applicability of the various measurement approaches for successful fault detection based on modal parameters observation as well as in uncertain non-deterministic numerical model updating.

  2. Contact Versus Non-Contact Measurement of a Helicopter Main Rotor Composite Blade

    International Nuclear Information System (INIS)

    Luczak, Marcin; Dziedziech, Kajetan; Peeters, Bart; Van der Auweraer, Herman; Vivolo, Marianna; Desmet, Wim

    2010-01-01

    The dynamic characterization of lightweight structures is particularly complex as the impact of the weight of sensors and instrumentation (cables, mounting of exciters...) can distort the results. Varying mass loading or constraint effects between partial measurements may determine several errors on the final conclusions. Frequency shifts can lead to erroneous interpretations of the dynamics parameters. Typically these errors remain limited to a few percent. Inconsistent data sets however can result in major processing errors, with all related consequences towards applications based on the consistency assumption, such as global modal parameter identification, model-based damage detection and FRF-based matrix inversion in substructuring, load identification and transfer path analysis [1]. This paper addresses the subject of accuracy in the context of the measurement of the dynamic properties of a particular lightweight structure. It presents a comprehensive comparative study between the use of accelerometer, laser vibrometer (scanning LDV) and PU-probe (acoustic particle velocity and pressure) measurements to measure the structural responses, with as final aim the comparison of modal model quality assessment. The object of the investigation is a composite material blade from the main rotor of a helicopter. The presented results are part of an extensive test campaign performed with application of SIMO, MIMO, random and harmonic excitation, and the use of the mentioned contact and non-contact measurement techniques. The advantages and disadvantages of the applied instrumentation are discussed. Presented are real-life measurement problems related to the different set up conditions. Finally an analysis of estimated models is made in view of assessing the applicability of the various measurement approaches for successful fault detection based on modal parameters observation as well as in uncertain non-deterministic numerical model updating.

  3. Intrinsic and extrinsic mortality reunited

    DEFF Research Database (Denmark)

    Koopman, Jacob J E; Wensink, Maarten J; Rozing, Maarten P

    2015-01-01

    Intrinsic and extrinsic mortality are often separated in order to understand and measure aging. Intrinsic mortality is assumed to be a result of aging and to increase over age, whereas extrinsic mortality is assumed to be a result of environmental hazards and be constant over age. However......, allegedly intrinsic and extrinsic mortality have an exponentially increasing age pattern in common. Theories of aging assert that a combination of intrinsic and extrinsic stressors underlies the increasing risk of death. Epidemiological and biological data support that the control of intrinsic as well...... as extrinsic stressors can alleviate the aging process. We argue that aging and death can be better explained by the interaction of intrinsic and extrinsic stressors than by classifying mortality itself as being either intrinsic or extrinsic. Recognition of the tight interaction between intrinsic and extrinsic...

  4. Low resistive edge contacts to CVD-grown graphene using a CMOS compatible metal

    Energy Technology Data Exchange (ETDEWEB)

    Shaygan, Mehrdad; Otto, Martin; Sagade, Abhay A.; Neumaier, Daniel [Advanced Microelectronic Center Aachen, AMO GmbH, Aachen (Germany); Chavarin, Carlos A. [Lehrstuhl Werkstoffe der Elektrotechnik, Duisburg-Essen Univ., Duisburg (Germany); Innovations for High Performance Microelectronics, IHP GmbH, Frankfurt (Oder) (Germany); Bacher, Gerd; Mertin, Wolfgang [Lehrstuhl Werkstoffe der Elektrotechnik, Duisburg-Essen Univ., Duisburg (Germany)

    2017-11-15

    The exploitation of the excellent intrinsic electronic properties of graphene for device applications is hampered by a large contact resistance between the metal and graphene. The formation of edge contacts rather than top contacts is one of the most promising solutions for realizing low ohmic contacts. In this paper the fabrication and characterization of edge contacts to large area CVD-grown monolayer graphene by means of optical lithography using CMOS compatible metals, i.e. Nickel and Aluminum is reported. Extraction of the contact resistance by Transfer Line Method (TLM) as well as the direct measurement using Kelvin Probe Force Microscopy demonstrates a very low width specific contact resistance down to 130 Ωμm. The contact resistance is found to be stable for annealing temperatures up to 150 C enabling further device processing. Using this contact scheme for edge contacts, a field effect transistor based on CVD graphene with a high transconductance of 0.63 mS/μm at 1 V bias voltage is fabricated. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. [Effect of intraocular pressure measurement through therapeutic soft contact lenses by noncontact tonometer].

    Science.gov (United States)

    Sugimoto-Takeuchi, R; Yamamoto, R; Kuwayama, Y; Kinoshita, S

    1991-09-01

    The measurement of intraocular pressure (IOP) was compared with and without soft contact lenses by a non-contact tonometer. The soft contact lenses examined were Plano-T and Plano-B4 therapeutic contact lenses and Breath-O refractive lens. Twenty-nine eyes of 18 patients with an IOP ranging from 9 to 48mmHg were studied. The measurements of IOP were 19.7 +/- 8.6mmHg with Plano-T and 18.9 +/- 9.2mmHg with Plano-B4. Both numbers were not statistically different, when compared with controls (19.3 +/- 9.8mmHg without lens). There was, however, a significant difference significant difference with (44.7 +/- 10.7mmHg) and without the Breath-O (p less than 0.01). The results suggest that accurate IOP measurements can be obtained through therapeutic soft contact lens by a non-contact tonometer.

  6. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    Directory of Open Access Journals (Sweden)

    Collins Natalie

    2009-10-01

    Full Text Available Abstract Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years. The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p R2 = 0.76, p Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  7. Knowledge of nursing undergraduate students about the use of contact precautions measures

    Directory of Open Access Journals (Sweden)

    Julielen Salvador dos Santos

    2013-12-01

    Full Text Available Objective. To assess knowledge of nursing undergraduate students about the use of contact precautions. Methodology. There were 106 nursing undergraduate students from three universities within the state of Sao Paulo. The data collection was done between April and May 2012. A questionnaire was elaborated with questions assessing knowledge regarding contact precautions. The data were submitted to statistical procedures in the package MINITAB version 16. The knowledge were rated as adequate, partially adequate and inadequate. Results. There was a predominance of females (86% and age group between 20 and 29 years (70%. Regarding the definition of contact precaution of diseases in which these measures are used, undergraduate's knowledge was partially adequate (92% and 44%, respectively. The knowledge was considered adequate for the preventive measures used during assistance (86%. As difficulties mentioned in the use of these measures were discomfort, lack of material, personnel and time. Conclusion. Although undergraduate students know what measures to be used in contact precaution, they do not have adequate knowledge about which diseases they should use them. The three participating universities should reflect on the quality of training for nursing students regarding biosecurity and contact precautions.

  8. SOI Transistor measurement techniques using body contacted transistors

    International Nuclear Information System (INIS)

    Worley, E.R.; Williams, R.

    1989-01-01

    Measurements of body contacted SOI transistors are used to isolate parameters of the back channel and island edge transistor. Properties of the edge and back channel transistor have been measured before and after X-ray irradiation (ARACOR). The unique properties of the edge transistor are shown to be a result of edge geometry as confirmed by a two dimensional transistor simulator

  9. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    International Nuclear Information System (INIS)

    Reichel, Christian; Feldmann, Frank; Müller, Ralph; Hermle, Martin; Glunz, Stefan W.; Reedy, Robert C.; Lee, Benjamin G.; Young, David L.; Stradins, Paul

    2015-01-01

    Passivated contacts (poly-Si/SiO x /c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF 2 ), the ion implantation dose (5 × 10 14  cm −2 to 1 × 10 16  cm −2 ), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iV oc ) of 725 and 720 mV, respectively. For p-type passivated contacts, BF 2 implantations into intrinsic a-Si yield well passivated contacts and allow for iV oc of 690 mV, whereas implanted B gives poor passivation with iV oc of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved V oc of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF 2 implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with V oc of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts

  10. Intrinsic and extrinsic mortality reunited.

    Science.gov (United States)

    Koopman, Jacob J E; Wensink, Maarten J; Rozing, Maarten P; van Bodegom, David; Westendorp, Rudi G J

    2015-07-01

    Intrinsic and extrinsic mortality are often separated in order to understand and measure aging. Intrinsic mortality is assumed to be a result of aging and to increase over age, whereas extrinsic mortality is assumed to be a result of environmental hazards and be constant over age. However, allegedly intrinsic and extrinsic mortality have an exponentially increasing age pattern in common. Theories of aging assert that a combination of intrinsic and extrinsic stressors underlies the increasing risk of death. Epidemiological and biological data support that the control of intrinsic as well as extrinsic stressors can alleviate the aging process. We argue that aging and death can be better explained by the interaction of intrinsic and extrinsic stressors than by classifying mortality itself as being either intrinsic or extrinsic. Recognition of the tight interaction between intrinsic and extrinsic stressors in the causation of aging leads to the recognition that aging is not inevitable, but malleable through the environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Contact wire positions and contact forces. Measurements at high-speed lines in China; Fahrdrahtlage und Kontaktkraefte. Messungen an Hochgeschwindigkeitsstrecken in China

    Energy Technology Data Exchange (ETDEWEB)

    Heland, Joerg; Rick, Frank; Sarnes, Bernhard [DB Systemtechnik GmbH, Muenchen (Germany); Puschmann, Rainer [Siemens AG, Erlangen (Germany). Infrastructure and Cities

    2012-07-15

    The reliable energy transmission from overhead contact line to pantograph of traction units without interruption decides on the successful operation of high-speed railway lines. Measurements of contact wire position and contact forces are suited to assess interaction of overhead contact line and pantograph. Chinese Railways actually implement the biggest electrification program for high-speed lines worldwide. For these projects contact wire position and contact forces are monitored by procedures developed in Germany. The experience confirms that keeping the contact wire position within the specified limits lead to a superior energy transmission up to 350 km/h. (orig.)

  12. Fast hydrogen exchange affects 15N relaxation measurements in intrinsically disordered proteins

    International Nuclear Information System (INIS)

    Kim, Seho; Wu, Kuen-Phon; Baum, Jean

    2013-01-01

    Unprotected amide protons can undergo fast hydrogen exchange (HX) with protons from the solvent. Generally, NMR experiments using the out-and-back coherence transfer with amide proton detection are affected by fast HX and result in reduced signal intensity. When one of these experiments, 1 H– 15 N HSQC, is used to measure the 15 N transverse relaxation rate (R 2 ), the measured R 2 rate is convoluted with the HX rate (k HX ) and has higher apparent R 2 values. Since the 15 N R 2 measurement is important for analyzing protein backbone dynamics, the HX effect on the R 2 measurement is investigated and described here by multi-exponential signal decay. We demonstrate these effects by performing 15 N R 2 CPMG experiments on α-synuclein, an intrinsically disordered protein, in which the amide protons are exposed to solvent. We show that the HX effect on R 2 CPMG can be extracted by the derived equation. In conclusion, the HX effect may be pulse sequence specific and results from various sources including the J coupling evolution, the change of steady state water proton magnetization, and the D 2 O content in the sample. To avoid the HX effect on the analysis of relaxation data of unprotected amides, it is suggested that NMR experimental conditions insensitive to the HX should be considered or that intrinsic R 2 CPMG values be obtained by methods described herein.

  13. Determination of Intrinsic Magnetic Response from Local Measurements of Fringing Fields

    OpenAIRE

    Wen, Bo; Millis, Andrew J.; Pardo, Enric; Subedi, Pradeep; Kent, Andrew D.; Yeshurun, Yosi; Sarachik, Myriam P.

    2014-01-01

    Micron-sized Hall bars and micro-SQUIDs are now used routinely to measure the local static and dynamic magnetic response with micron-scale spatial resolution. While this provides a powerful new tool, determining the intrinsic magnetization presents new challenges, as it requires correcting for demagnetization fields that vary widely with position on a sample. In this paper we develop a method to correct for the demagnetization effect at local points of a rectangular prism shaped sample using ...

  14. Two-point concrete resistivity measurements: interfacial phenomena at the electrode–concrete contact zone

    International Nuclear Information System (INIS)

    McCarter, W J; Taha, H M; Suryanto, B; Starrs, G

    2015-01-01

    Ac impedance spectroscopy measurements are used to critically examine the end-to-end (two-point) testing technique employed in evaluating the bulk electrical resistivity of concrete. In particular, this paper focusses on the interfacial contact region between the electrode and specimen and the influence of contacting medium and measurement frequency on the impedance response. Two-point and four-point electrode configurations were compared and modelling of the impedance response was undertaken to identify and quantify the contribution of the electrode–specimen contact region on the measured impedance. Measurements are presented in both Bode and Nyquist formats to aid interpretation. Concretes mixes conforming to BSEN206-1 and BS8500-1 were investigated which included concretes containing the supplementary cementitious materials fly ash and ground granulated blast-furnace slag. A measurement protocol is presented for the end-to-end technique in terms of test frequency and electrode–specimen contacting medium in order to minimize electrode–specimen interfacial effect and ensure correct measurement of bulk resistivity. (paper)

  15. [Evaluation of accuracy of measuring intraocular pressure by handheld non-contact applanation tonometer].

    Science.gov (United States)

    Chen, X; Peng, D; Zhou, W; Zhong, Y

    1995-06-01

    To evaluate the accuracy of measuring intraocular pressure by handheld non-contact applanation tonometer. 58 patients' (113 eyes) intraocular pressure were measured by Keeler, non-contact tonometer and R 900 Goldmann applanation tonometer and the results of measurement of intraocular pressure by the two kinds of tonometers were compared. The mean intraocular pressure measured by non-contact is 16.31 +/- 5.59 mmHg and 17.49 +/- 6.13 mmHg (1 mmHg = 0.1333 kPa) by Goldmann applanation tonometer, respectively. There was no statistical significance to be found (P > 0.05) between the two methods. By linear correlation and regression analysis, a positive correlation was found between the two methods (r = 0.8942, b = 0.8154). The handheld non-contact tonometer has the same accuracy and reliability of measurement of intraocular pressure comparing with Goldmann applanation tonometer, and it can be used in glaucoma clinic and screening.

  16. Electrode-Skin contact impedance: In vivo measurements on an ovine model

    International Nuclear Information System (INIS)

    Nguyen, D T; Kosobrodov, R; Jin, C; McEwan, A; Barry, M A; Chik, W; Thiagalingam, A; Oh, T I

    2013-01-01

    The problem of electrical impedance between the skin and the electrode is an on-going challenge in bio-electronics. This is particularly true in the case of Electrical Impedance Tomography (EIT), which uses a large number of skin-contact electrodes and is very sensitive to noise. In the present article, contact impedance is measured and compared for a range of electrodes placed on the thorax of an ovine model. The study has been approved by the Westmead Hospital Animal Ethics Committee. The electrode models that were employed in the research are Ag/AgCl electrodes (E1), commonly used for ECG and EIT measurements in both humans and animal models, stainless steel crocodile clips (E2), typically used on animal models, and novel multi-point dry electrodes in two modifications: bronze plated (E3) and nickel plated (E4). Further, since the contact impedance is mostly attributed to the acellular outer layer of the skin, in our experiment, we attempted to study the effect of this layer by comparing the results when the skin is intact and when electrodes are introduced underneath the skin through small cuts. This boundary effect was assessed by comparison of measurements obtained during E2 skin surface contact, and sub-cutaneous contact (E5). Twelve gauge intradermal needles were also tested as an electrode (E6). The full impedance spectrum, from 500 Hz to 300 kHz, was recorded, analysed and compared. As expected, the contact impedance in the more invasive cases, i.e the electrodes under the skin, is significantly lower than in the non-invasive cases. At the frequency of 50 kHz which is commonly used in lung EIT acquisition, electrodes E3, E4 and E6 demonstrated contact impedance of less than 200 Ω, compared to more than 400 Ω measured for electrodes E1, E2 and E5. In conclusion, the novel multipoint electrodes proved to be best suited for EIT purposes, because they are non-invasive and have lower contact impedance than Ag/AgCl and crocodile clips, in both invasive and

  17. Development of 3D online contact measurement system for intelligent manufacturing based on stereo vision

    Science.gov (United States)

    Li, Peng; Chong, Wenyan; Ma, Yongjun

    2017-10-01

    In order to avoid shortcomings of low efficiency and restricted measuring range exsited in traditional 3D on-line contact measurement method for workpiece size, the development of a novel 3D contact measurement system is introduced, which is designed for intelligent manufacturing based on stereo vision. The developed contact measurement system is characterized with an intergarted use of a handy probe, a binocular stereo vision system, and advanced measurement software.The handy probe consists of six track markers, a touch probe and the associated elcetronics. In the process of contact measurement, the hand probe can be located by the use of the stereo vision system and track markers, and 3D coordinates of a space point on the workpiece can be mearsured by calculating the tip position of a touch probe. With the flexibility of the hand probe, the orientation, range, density of the 3D contact measurenent can be adptable to different needs. Applications of the developed contact measurement system to high-precision measurement and rapid surface digitization are experimentally demonstrated.

  18. High-resolution measurements of face-to-face contact patterns in a primary school.

    Directory of Open Access Journals (Sweden)

    Juliette Stehlé

    Full Text Available BACKGROUND: Little quantitative information is available on the mixing patterns of children in school environments. Describing and understanding contacts between children at school would help quantify the transmission opportunities of respiratory infections and identify situations within schools where the risk of transmission is higher. We report on measurements carried out in a French school (6-12 years children, where we collected data on the time-resolved face-to-face proximity of children and teachers using a proximity-sensing infrastructure based on radio frequency identification devices. METHODS AND FINDINGS: Data on face-to-face interactions were collected on Thursday, October 1(st and Friday, October 2(nd 2009. We recorded 77,602 contact events between 242 individuals (232 children and 10 teachers. In this setting, each child has on average 323 contacts per day with 47 other children, leading to an average daily interaction time of 176 minutes. Most contacts are brief, but long contacts are also observed. Contacts occur mostly within each class, and each child spends on average three times more time in contact with classmates than with children of other classes. We describe the temporal evolution of the contact network and the trajectories followed by the children in the school, which constrain the contact patterns. We determine an exposure matrix aimed at informing mathematical models. This matrix exhibits a class and age structure which is very different from the homogeneous mixing hypothesis. CONCLUSIONS: We report on important properties of the contact patterns between school children that are relevant for modeling the propagation of diseases and for evaluating control measures. We discuss public health implications related to the management of schools in case of epidemics and pandemics. Our results can help define a prioritization of control measures based on preventive measures, case isolation, classes and school closures, that

  19. Contact angle measurements at the colemanite and realgar surfaces

    Science.gov (United States)

    Koca, Sabiha; Savas, Mehmet

    2004-03-01

    Colemanite is one of the most important boron minerals and covers an important part of Turkey's boron mineral deposits. The friable nature of the colemanite tends to produce a large amount of fines. Flotation appears to be a promising technique to recover colemanite from such fines. During flotation process, selectivity problem arises between colemanite and associated gangue minerals such as realgar. There is a close relationship between floatability of minerals and contact angle. Therefore, surface hydrophobicity of colemanite and realgar minerals were investigated by receding contact angle measurements in the absence and presence of flotation reagents. The water contact angle values at the colemanite surface remained almost unchanged at 32-35° in the solutions of potassium amyl xanthate (KAX), potassium ethyl xanthate (KEX) and petroleum sulphanate (R825) while another petroleum sulphanate (R840), sodium oleate and tallow amine (Armac-T) affected hydrophobicity of colemanite, and the contact angle values increased up to 47°. The contact angle values of 62, 63, 45, 46, 39, and 43° at the realgar surface were obtained in the solutions of KAX, KEX, sodium oleate, R825, R840 and Armac-T, respectively.

  20. Contact activation of blood-plasma coagulation

    Science.gov (United States)

    Golas, Avantika

    exhibit activator surface-area dependence. Instead, a highly-variable burst of procoagulant-enzyme yield is measured that exhibits no measurable kinetics, sensitivity to mixing, or solution-temperature dependence. Thus, FXII activation in both buffer and protein-containing solutions does not exhibit characteristics of a biochemical reaction but rather appears to be a "mechanochemical" reaction induced by FXII molecule interactions with hydrophilic activator particles that do not formally adsorb blood proteins from solution. Results strongly suggest that activator surface-area dependence observed in contact activation of plasma coagulation does not solely arise at the FXII activation step of the intrinsic pathway.

  1. Measurement of the refractive index of soft contact lenses during wear.

    Science.gov (United States)

    Varikooty, Jalaiah; Keir, Nancy; Woods, Craig A; Fonn, Desmond

    2010-01-01

    To determine whether the refractive index (RI) of a soft contact lens can be evaluated using refractometry while the lens remains on the eye and to compare this with more traditional ex vivo RI measurements. A slitlamp apparatus was modified to incorporate a customized Atago hand refractometer. With a double-masked study design, nine adapted symptomatic soft contact lens wearers wore a contact lens in each eye (lotrafilcon B and etafilcon A) in a randomized order. In vivo RI was determined from the relative Brix scale measurements immediately after lens insertion and after 1 and 10 hr of lens wear. Ex vivo refractometry was performed after 10 hr of lens wear for comparison. Means +/- standard errors of the means are reported. In vivo RI values at baseline were 1.422 +/- 0.0004 (lotrafilcon B) and 1.405 +/- 0.0021 (etafilcon A); after 1 hr of lens wear, values were 1.423 +/- 0.0006 and 1.408 +/- 0.0007, respectively; and after 10 hr of lens wear, values were 1.424 +/- 0.0004 and 1.411 +/- 0.0010, respectively. Ex vivo RI values at the end of the 10 hr wearing period were 1.424 +/- 0.0003 (lotrafilcon B) and 1.412 +/- 0.0017 (etafilcon A). The change in in vivo RI across the day was statistically significant for the etafilcon A lens (repeated-measures analysis of variance, P0.05). This novel adaptation of refractometry was able to measure the RI of soft contact lenses during wear (without lens removal). End of day RI measurements using in vivo and ex vivo refractometry were comparable with each other. Future work is required to determine whether this in vivo method can improve our understanding of the relationships between soft contact lens RI, hydration, on-eye lens performance, and symptomology.

  2. Surface contact potential patches and Casimir force measurements

    International Nuclear Information System (INIS)

    Kim, W. J.; Sushkov, A. O.; Lamoreaux, S. K.; Dalvit, D. A. R.

    2010-01-01

    We present calculations of contact potential surface patch effects that simplify previous treatments. It is shown that, because of the linearity of Laplace's equation, the presence of patch potentials does not affect an electrostatic calibration of a two-plate Casimir measurement apparatus. Using models that include long-range variations in the contact potential across the plate surfaces, a number of experimental observations can be reproduced and explained. For these models, numerical calculations show that if a voltage is applied between the plates which minimizes the force, a residual electrostatic force persists, and that the minimizing potential varies with distance. The residual force can be described by a fit to a simple two-parameter function involving the minimizing potential and its variation with distance. We show the origin of this residual force by use of a simple parallel capacitor model. Finally, the implications of a residual force that varies in a manner different from 1/d on the accuracy of previous Casimir measurements is discussed.

  3. Forefoot angle at initial contact determines the amplitude of forefoot and rearfoot eversion during running.

    Science.gov (United States)

    Monaghan, Gail M; Hsu, Wen-Hao; Lewis, Cara L; Saltzman, Elliot; Hamill, Joseph; Holt, Kenneth G

    2014-09-01

    Clinically, foot structures are assessed intrinsically - relation of forefoot to rearfoot and rearfoot to leg. We have argued that, from a biomechanical perspective, the interaction of the foot with the ground may influence forces and torques that are propagated through the lower extremity. We proposed that a more appropriate measure is an extrinsic one that may predict the angle the foot makes with ground at contact. The purposes of this study were to determine if the proposed measure predicts contact angles of the forefoot and rearfoot and assess if the magnitude of those angles influences amplitude and duration of foot eversion during running. With the individual in prone, extrinsic clinical forefoot and rearfoot angles were measured relative to the caudal edge of the examination table. Participants ran over ground while frontal plane forefoot and rearfoot contact angles, forefoot and rearfoot eversion amplitude and duration were measured. Participants were grouped twice, once based on forefoot contact inversion angle (moderatemedian) and once based on rearfoot contact inversion angle (moderatemedian). The forefoot and rearfoot extrinsic clinical angles predicted, respectively, the forefoot and rearfoot angles at ground contact. Large forefoot contact angles were associated with greater amplitudes (but not durations) of forefoot and rearfoot eversion during stance. Rearfoot contact angles, however, were associated with neither amplitudes nor durations of forefoot and rearfoot eversion. Possible mechanisms for the increased risk of running injuries associated with large forefoot angles are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Intraoral versus extraoral measurement of the height of the interproximal contact area in maxillary anterior teeth.

    Science.gov (United States)

    Sghaireen, Mohd G; Albhiran, Heyam Mobark; Alzoubi, Ibrahim A; Lynch, Edward; Al-Omiri, Mahmoud K

    2015-01-01

    This study aimed to clinically quantify the apicoincisal height of the upper interproximal areas directly in patients' mouths compared to measurements on stone models. One hundred and fifty participants (75 females and 75 males, age range 20-45 years) were recruited for this study. A digital caliper was used to measure the anterior maxillary interproximal contact areas directly in patients' mouths and on stone models. The digital caliper accuracy was up to 0.01. The Statistical Package for Social Sciences software (SPSS, version 19.0, Chicago, Ill., USA) was used for statistical analysis. Statistical significance was based on probability values contacts as well as the measurement on stone models showed that the dimensions of interproximal contacts on both sides of each tooth were significantly different (p contact point was larger than that of the distal contact point of each tooth. The largest contact point was the one between the central incisors (direct intraoral measurement = 2.9-6.49 mm; model measurement = 3.31-6.91 mm). On the other hand, the contact point between the canine and first premolar was the smallest on both sides of the arch (0.63-2.52 mm intraorally, 0.98-2.88 mm on models). The intraoral measurement of contact points was more accurate than model measurements, and the differences were statistically significant (p contact point dimensions using a digital caliper was more precise than measuring contact points on stone models; hence, it is a viable, quick and adequate method to be used routinely. © 2015 S. Karger AG, Basel.

  5. An instrumented implant for in vivo measurement of contact forces and contact moments in the shoulder joint.

    Science.gov (United States)

    Westerhoff, P; Graichen, F; Bender, A; Rohlmann, A; Bergmann, G

    2009-03-01

    To improve implant design, fixation and preclinical testing, implant manufacturers depend on realistic data of loads acting on the shoulder joint. Furthermore, these data can help to optimize physiotherapeutic treatment and to advise patients in their everyday living conditions. Calculated shoulder joint loads vary extremely among different authors [Anglin C, Wyss UP, Pichora DR. Glenohumeral contact forces. Proc Inst Mech Eng [H] 2000;214:637-44]. Additionally the moments acting in the joint caused by friction or incongruent articular surfaces, for example, are not implemented in most models. An instrumented shoulder joint implant was developed to measure the contact forces and the contact moments acting in the glenohumeral joint. This article provides a detailed description of the implant, containing a nine-channel telemetry unit, six load sensors and an inductive power supply, all hermetically sealed inside the implant. The instrumented implant is based on a clinically proven BIOMET Biomodular shoulder replacement and was calibrated before implantation by using complex mathematical calculation routines in order to achieve an average measuring precision of approximately 2%.

  6. Clinical measurement of the height of the interproximal contact area in maxillary anterior teeth.

    Science.gov (United States)

    Sghaireen, Mohd G; Al-Zarea, Bader K; Al-Shorman, Hisham M; Al-Omiri, Mahmoud K

    2013-11-01

    To clinically quantify the apicoincisal height of interproximal areas directly in patients' mouths. Thirty participants (11 females and 9 males, mean age=26±1.5 years) were recruited into this study. Measurement of interproximal contact areas was carried out directly in patients' mouths using digital caliper (TERENSA, USA) with measuring accuracy of 0.01 mm. The interproximal contact areas that were measured are: central incisor to central incisor, central incisor to lateral incisor, lateral incisor to canine, and canine to first premolar on both sides of the jaw. Statistical significance was based on probability values less than 0.05 (pcontact point was the one present between central incisors and it ranged from 2.9 to 6.5 mm. On the other hand, the contact point between canine and first premolar was the smallest on both sides of the arch and ranged from 0.6 to 2.5 mm. The dimensions of the contact points declined as we move from anterior area backwards. Statistical analysis using t-test showed that there were significant differences between the measurements of interproximal points of each tooth (Pcontact point decreased as we moved from anterior to posterior teeth. The contact area between the central incisors was largest and the one between canine and premolar was the smallest. This study is the first to report direct intra-oral clinical measurement of contact points. Clinical evaluation of contact point dimensions using digital caliber is a viable, quick and accurate method to use.

  7. A fiber-optic technique for the measurement of contact angle in a clearance-fit pin-loaded hole

    Science.gov (United States)

    Prabhakaran, R.; Naik, R. A.

    1987-01-01

    A fiber-optic technique for measuring contact angle during pin loading of a specimen is proposed. The experimental design and procedures for loading a 49.8-mm-diameter instrumented pin into an quasi-isotropic graphite-epoxy specimen are described. The optical fiber was located just above the surface of the pin outer diameter in order to obtain accurate pin-hole contact-angle measurements at increasing load levels. The movement of the optical fiber through the no-contact, contact, and no-contact regions is discussed; the photodiode output decreased monotonically as the fiber moved from the no-contact to the contact region and then decreased monotonically as the fiber moved from the contact region to the no-contact region. Variations in the contact angle measurements are examined as function of applied load level. The measurements are compared to contact angle values obtained using a finite element analysis and an electrical technique; it is determined that the data correlate well.

  8. A scanning contact probe for a micro-coordinate measuring machine (CMM)

    International Nuclear Information System (INIS)

    Fan, Kuang-Chao; Cheng, Fang; Wang, Weili; Chen, Yejin; Lin, Jia-You

    2010-01-01

    A new high precision contact scanning probe able to measure miniature components on a micro/nano-coordinate measuring machine (CMM) is proposed. This contact probe is composed of a fiber stylus with a ball tip, a floating plate and focus sensors. The stylus is attached to a floating plate, which is connected to the probe housing via four elastic wires. When the probe tip is touched and then deflected by the workpiece, the wires experience elastic deformations and the four mirrors mounted on the plate will be displaced. These displacements can be detected by four corresponding laser focus probes. To calibrate this touch trigger probe, a double-trigger method is developed for a high-speed approach and a low-speed touch. Experimental results show that the probe has a symmetric contact property in the horizontal XY plane. The contact force is found to be about 109 µN. The standard deviation of the unidirectional touch is less than 10 nm and the pre-travel distance is around 10 nm with a standard deviation of less than 3 nm

  9. Design and application of ion-implanted polySi passivating contacts for interdigitated back contact c-Si solar cells

    International Nuclear Information System (INIS)

    Yang, Guangtao; Ingenito, Andrea; Hameren, Nienke van; Isabella, Olindo; Zeman, Miro

    2016-01-01

    Ion-implanted passivating contacts based on poly-crystalline silicon (polySi) are enabled by tunneling oxide, optimized, and used to fabricate interdigitated back contact (IBC) solar cells. Both n-type (phosphorous doped) and p-type (boron doped) passivating contacts are fabricated by ion-implantation of intrinsic polySi layers deposited via low-pressure chemical vapor deposition and subsequently annealed. The impact of doping profile on the passivation quality of the polySi doped contacts is studied for both polarities. It was found that an excellent surface passivation could be obtained by confining as much as possible the implanted-and-activated dopants within the polySi layers. The doping profile in the polySi was controlled by modifying the polySi thickness, the energy and dose of ion-implantation, and the temperature and time of annealing. An implied open-circuit voltage of 721 mV for n-type and 692 mV for p-type passivating contacts was achieved. Besides the high passivating quality, the developed passivating contacts exhibit reasonable high conductivity (R sh n-type  = 95 Ω/□ and R sh p-type  = 120 Ω/□). An efficiency of 19.2% (V oc  = 673 mV, J sc  = 38.0 mA/cm 2 , FF = 75.2%, and pseudo-FF = 83.2%) was achieved on a front-textured IBC solar cell with polySi passivating contacts as both back surface field and emitter. By improving the front-side passivation, a V OC of 696 mV was also measured

  10. An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints

    International Nuclear Information System (INIS)

    Dennison, Christopher R; Wild, Peter M; Wilson, David R; Gilbart, Michael K

    2010-01-01

    We present an in-fiber Bragg grating-based sensor (240 µm diameter) for contact force/stress measurements in articular joints. The contact force sensor and another Bragg grating-based pressure sensor (400 µm diameter) are used to conduct the first simultaneous measurements of contact force/stress and fluid pressure in intact cadaveric human hips. The contact force/stress sensor addresses limitations associated with stress-sensitive films, the current standard tools for contact measurements in joints, including cartilage modulus-dependent sensitivity of films and the necessity to remove biomechanically relevant anatomy to implant the films. Because stress-sensitive films require removal of anatomy, it has been impossible to validate the mechanical rationale underlying preventive or corrective surgeries, which repair these anatomies, by conducting simultaneous stress and pressure measurements in intact hips. Methods are presented to insert the Bragg grating-based sensors into the joint, while relevant anatomy is left largely intact. Sensor performance is predicted using numerical models and the predicted sensitivity is verified through experimental calibrations. Contact force/stress and pressure measurements in cadaveric joints exhibited repeatability. With further validation, the Bragg grating-based sensors could be used to study the currently unknown relationships between contact forces and pressures in both healthy and degenerated joints

  11. Assessment on the methods of measuring the tyre-road contact patch stresses

    Science.gov (United States)

    Anghelache, G.; Moisescu, A.-R.; Buretea, D.

    2017-08-01

    The paper reviews established and modern methods for investigating tri-axial stress distributions in the tyre-road contact patch. The authors used three methods of measuring stress distributions: strain gauge method; force sensing technique; acceleration measurements. Four prototypes of instrumented pins transducers involving mentioned measuring methods were developed. Data acquisitions of the contact patch stresses distributions were performed using each transducer with instrumented pin. The results are analysed and compared, underlining the advantages and drawbacks of each method. The experimental results indicate that the three methods are valuable.

  12. Intraocular pressure measurement over soft contact lens by rebound tonometer: a comparative study.

    Science.gov (United States)

    Nacaroglu, Senay Asik; Un, Emine Seker; Ersoz, Mehmet Giray; Tasci, Yelda

    2015-01-01

    To evaluate the intraocular pressure (IOP) measurements by Icare rebound tonometer over a contact lens in comparison with Goldmann applanation tonometry (GAT). Fifty patients using contact lens were included in this study. One of the eyes of the patients was selected randomly and their IOP were measured by rebound tonometer with and without contact lens (RTCL, RT respectively) and by GAT, as well as their central corneal thickness (CCT) by optical pachymeter. The results of both methods were compared by correlation analysis, general linear method repeated measure and Bland-Altman analysis. Mean IOP values measured by RTCL, RT and GAT were 15.68±3.7, 14.50±3.4 and 14.16±2.8 (Pcontact lens by rebound tonometer was found to be higher than what was measured by GAT. Although this difference is statistically significant, it may be clinically negligible in the normal population.

  13. Block Copolymer Adhesion Measured by Contact Mechanics Methods

    Science.gov (United States)

    Falsafi, A.; Bates, S.; Tirrell, M.; Pocius, A. V.

    1997-03-01

    Adhesion measurements for a series of polyolefin diblocks and triblocks are presented. These materials have poly(ethylene-propylene) or poly(ethyl-ethylene) rubbery block, and semicrystalline polyethylene block as physical crosslinker. The experiments consist of compression and decompression profiles of contact area between the samples as a function of normal load, analyzed by the JKR Theory. The samples are prepared either by formation of caps from the bulk material in melting and subsequent cooling, and/or coating them in thin films on surface modified elastic foundations of polydimethylsiloxane caps. The latter minimizes the viscoelastic losses which are dominant in the bulk of material. The effect of molecular architecture and microstructure on adhesion energy and dynamics of separation, obtained from decompression experiments, is discussed in view of their influence on molecular arrangements at the contacting surfaces.

  14. Fast hydrogen exchange affects {sup 15}N relaxation measurements in intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seho; Wu, Kuen-Phon; Baum, Jean, E-mail: jean.baum@rutgers.edu [Rutgers University, Department of Chemistry and Chemical Biology (United States)

    2013-03-15

    Unprotected amide protons can undergo fast hydrogen exchange (HX) with protons from the solvent. Generally, NMR experiments using the out-and-back coherence transfer with amide proton detection are affected by fast HX and result in reduced signal intensity. When one of these experiments, {sup 1}H-{sup 15}N HSQC, is used to measure the {sup 15}N transverse relaxation rate (R{sub 2}), the measured R{sub 2} rate is convoluted with the HX rate (k{sub HX}) and has higher apparent R{sub 2} values. Since the {sup 15}N R{sub 2} measurement is important for analyzing protein backbone dynamics, the HX effect on the R{sub 2} measurement is investigated and described here by multi-exponential signal decay. We demonstrate these effects by performing {sup 15}N R{sub 2}{sup CPMG} experiments on {alpha}-synuclein, an intrinsically disordered protein, in which the amide protons are exposed to solvent. We show that the HX effect on R{sub 2}{sup CPMG} can be extracted by the derived equation. In conclusion, the HX effect may be pulse sequence specific and results from various sources including the J coupling evolution, the change of steady state water proton magnetization, and the D{sub 2}O content in the sample. To avoid the HX effect on the analysis of relaxation data of unprotected amides, it is suggested that NMR experimental conditions insensitive to the HX should be considered or that intrinsic R{sub 2}{sup CPMG} values be obtained by methods described herein.

  15. Cross-Bridge Kelvin resistor structures for reliable measurement of low contact resistances and contact interface characterization

    NARCIS (Netherlands)

    Stavitski, N.; Klootwijk, J.H.; van Zeijl, H.W.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2009-01-01

    The parasitic factors that strongly influence the measurement accuracy of Cross-Bridge Kelvin Resistor (CBKR) structures for low specific contact resistances (�?�c) have been extensively discussed during last few decades and the minimum of the �?�c value, which could be accurately extracted, was

  16. Liquid-solid contact measurements using a surface thermocouple temperature probe in atmospheric pool boiling water

    International Nuclear Information System (INIS)

    Lee, L.Y.W.; Chen, J.C.; Nelson, R.A.

    1984-01-01

    Objective was to apply the technique of using a microthermocouple flush-mounted at the boiling surface for the measurement of the local-surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged, local-liquid-contact fraction increased with decreasing surface superheat. Average contact duration increased monotonically with decreasing surface superheat, while frequency of liquid contact reached a maximum of approx. 50 contacts/s at a surface superheat of approx. 100 K and decreased gradually to 30 contacts/s near the critical heat flux. The liquid-solid contact duration distribution was dominated by short contacts 4 ms at low surface superheats, passing through a relatively flat contact duration distribution at about 80 0 K. Results of this paper indicate that liquid-solid contacts may be the dominant mechanism for energy transfer in the transition boiling process

  17. Contact Thermocouple Methodology and Evaluation for Temperature Measurement in the Laboratory

    Science.gov (United States)

    Brewer, Ethan J.; Pawlik, Ralph J.; Krause, David L.

    2013-01-01

    Laboratory testing of advanced aerospace components very often requires highly accurate temperature measurement and control devices, as well as methods to precisely analyze and predict the performance of such components. Analysis of test articles depends on accurate measurements of temperature across the specimen. Where possible, this task is accomplished using many thermocouples welded directly to the test specimen, which can produce results with great precision. However, it is known that thermocouple spot welds can initiate deleterious cracks in some materials, prohibiting the use of welded thermocouples. Such is the case for the nickel-based superalloy MarM-247, which is used in the high temperature, high pressure heater heads for the Advanced Stirling Converter component of the Advanced Stirling Radioisotope Generator space power system. To overcome this limitation, a method was developed that uses small diameter contact thermocouples to measure the temperature of heater head test articles with the same level of accuracy as welded thermocouples. This paper includes a brief introduction and a background describing the circumstances that compelled the development of the contact thermocouple measurement method. Next, the paper describes studies performed on contact thermocouple readings to determine the accuracy of results. It continues on to describe in detail the developed measurement method and the evaluation of results produced. A further study that evaluates the performance of different measurement output devices is also described. Finally, a brief conclusion and summary of results is provided.

  18. Measuring social contacts in the emergency department.

    Directory of Open Access Journals (Sweden)

    Douglas W Lowery-North

    Full Text Available Infectious individuals in an emergency department (ED bring substantial risks of cross infection. Data about the complex social and spatial structure of interpersonal contacts in the ED will aid construction of biologically plausible transmission risk models that can guide cross infection control.We sought to determine the number and duration of contacts among patients and staff in a large, busy ED. This prospective study was conducted between 1 July 2009 and 30 June 2010. Two 12-hour shifts per week were randomly selected for study. The study was conducted in the ED of an urban hospital. There were 81 shifts in the planned random sample of 104 (78% with usable contact data, during which there were 9183 patient encounters. Of these, 6062 (66% were approached to participate, of which 4732 (78% agreed. Over the course of the year, 88 staff members participated (84%. A radiofrequency identification (RFID system was installed and the ED divided into 89 distinct zones structured so copresence of two individuals in any zone implied a very high probability of contact <1 meter apart in space. During study observation periods, patients and staff were given RFID tags to wear. Contact events were recorded. These were further broken down with respect to the nature of the contacts, i.e., patient with patient, patient with staff, and staff with staff. 293,171 contact events were recorded, with a median of 22 contact events and 9 contacts with distinct individuals per participant per shift. Staff-staff interactions were more numerous and longer than patient-patient or patient-staff interactions.We used RFID to quantify contacts between patients and staff in a busy ED. These results are useful for studies of the spread of infections. By understanding contact patterns most important in potential transmission, more effective prevention strategies may be implemented.

  19. Complex Contact Angles Calculated from Capillary Rise Measurements on Rock Fracture Faces

    Science.gov (United States)

    Perfect, E.; Gates, C. H.; Brabazon, J. W.; Santodonato, L. J.; Dhiman, I.; Bilheux, H.; Bilheux, J. C.; Lokitz, B. S.

    2017-12-01

    Contact angles for fluids in unconventional reservoir rocks are needed for modeling hydraulic fracturing leakoff and subsequent oil and gas extraction. Contact angle measurements for wetting fluids on rocks are normally performed using polished flat surfaces. However, such prepared surfaces are not representative of natural rock fracture faces, which have been shown to be rough over multiple scales. We applied a variant of the Wilhelmy plate method for determining contact angle from the height of capillary rise on a vertical surface to the wetting of rock fracture faces by water in the presence of air. Cylindrical core samples (5.05 cm long x 2.54 cm diameter) of Mancos shale and 6 other rock types were investigated. Mode I fractures were created within the cores using the Brazilian method. Each fractured core was then separated into halves exposing the fracture faces. One fracture face from each rock type was oriented parallel to a collimated neutron beam in the CG-1D imaging instrument at ORNL's High Flux Isotope Reactor. Neutron radiography was performed using the multi-channel plate detector with a spatial resolution of 50 μm. Images were acquired every 60 s after a water reservoir contacted the base of the fracture face. The images were normalized to the initial dry condition so that the upward movement of water on the fracture face was clearly visible. The height of wetting at equilibrium was measured on the normalized images using ImageJ. Contact angles were also measured on polished flat surfaces using the conventional sessile drop method. Equilibrium capillary rise on the exposed fracture faces was up to 8.5 times greater than that predicted for polished flat surfaces from the sessile drop measurements. These results indicate that rock fracture faces are hyperhydrophilic (i.e., the height of capillary rise is greater than that predicted for a contact angle of zero degrees). The use of complex numbers permitted calculation of imaginary contact angles for

  20. Intraocular pressure measurement with the noncontact tonometer through soft contact lenses.

    Science.gov (United States)

    Liu, Yi-Chun; Huang, Jehn-Yu; Wang, I-Jong; Hu, Fung-Rong; Hou, Yu-Chih

    2011-03-01

    To assess the accuracy of measuring intraocular pressure (IOP) through a soft contact lens (SCL) with different refractive powers using a noncontact tonometer (NCT). Thirty-two healthy adult volunteers free of glaucoma or corneal disease participated in this study. IOP was measured in the right eyes without SCLs and with different lens powers, from -3.0 to -12.0 D as measured by NCT. IOP of the left eyes was also measured, as an internal control. Corneal curvature was measured in both eyes using an autokeratometer. Sixteen volunteers wore one brand of SCL (group A) and the other 16 wore a different brand, with 2 different curvatures (groups B and C). Statistical data were analyzed by SPSS using the Wilcoxon signed rank test for comparison of IOP readings and multiple linear regression analysis for the relationship among power of contact lenses, corneal power, and difference in IOP measurements. The difference in mean IOP between eyes without lenses and those with lenses was statistically significant in lens with -6.0 D and below in all 3 groups. The decrease in IOP significantly correlated with the refractive power of contact lenses in all 3 groups. The difference in IOP measurements was influenced by the mean K in group A but not in group B or C. There was no statistically significant difference in the IOP measurements in the left eyes or in the mean K between the right and left eyes. IOP measurement through myopic SCLs by NCT may be inaccurate and tends toward underestimation, especially in high myopic lenses. A strong relationship exists between IOP reduction and myopic lens power.

  1. Friction Mapping as a Tool for Measuring the Elastohydrodynamic Contact Running-in Process

    Science.gov (United States)

    2015-10-01

    ARL-TR-7501 ● OCT 2015 US Army Research Laboratory Friction Mapping as a Tool for Measuring the Elastohydrodynamic Contact...Research Laboratory Friction Mapping as a Tool for Measuring the Elastohydrodynamic Contact Running-in Process by Stephen Berkebile Vehicle...YYYY) October 2015 2. REPORT TYPE Final 3. DATES COVERED (From - To) 1 January–30 June 2015 4. TITLE AND SUBTITLE Friction Mapping as a Tool for

  2. Multiwall carbon nanotube Josephson junctions with niobium contacts

    International Nuclear Information System (INIS)

    Pallecchi, Emiliano

    2009-01-01

    The main goal of this thesis is the investigation of dissipationless supercurrent in multiwall carbon nanotubes embedded in a controlled environment. The experimental observation of a dissipationless supercurrent in gated carbon nanotubes remains challenging because of its extreme sensitivity to the environment and to noise fluctuations. We address these issues by choosing niobium as a superconductor and by designing an optimized on chip electromagnetic environment. The environment is meant to reduce the suppression of the supercurrent and allows to disentangle the effects of thermal fluctuations from the intrinsic behavior of the junction. This is crucial for the extraction of the value critical current from the measured data. When the transparency of the contacts is high enough we observed a fully developed supercurrent and we found that it depends on the gate voltage in a resonant manner. In average the critical current increases when the gate is tuned more negative, reflecting the increase of the transparency of the contacts, while the resonant behavior is due to quantum interference effects. We measured the temperature dependence of the switching current and we analyzed the data with an extended RCSJ model that allow to extract the critical current from the experimental data. The measured critical currents are very high with respect to previous reports on gated devices. At positive gate voltage the contacts transparency is lowered and Coulomb blockade is observed. This allows to use Coulomb blockade measurements to further characterize the nanotube and to study the physics of a quantum dot coupled to superconducting leads. The last part of this thesis is dedicated to the measurements of a carbon nanotube Josephson junction in the Coulomb blockade regime. (orig.)

  3. Multiwall carbon nanotube Josephson junctions with niobium contacts

    Energy Technology Data Exchange (ETDEWEB)

    Pallecchi, Emiliano

    2009-02-17

    The main goal of this thesis is the investigation of dissipationless supercurrent in multiwall carbon nanotubes embedded in a controlled environment. The experimental observation of a dissipationless supercurrent in gated carbon nanotubes remains challenging because of its extreme sensitivity to the environment and to noise fluctuations. We address these issues by choosing niobium as a superconductor and by designing an optimized on chip electromagnetic environment. The environment is meant to reduce the suppression of the supercurrent and allows to disentangle the effects of thermal fluctuations from the intrinsic behavior of the junction. This is crucial for the extraction of the value critical current from the measured data. When the transparency of the contacts is high enough we observed a fully developed supercurrent and we found that it depends on the gate voltage in a resonant manner. In average the critical current increases when the gate is tuned more negative, reflecting the increase of the transparency of the contacts, while the resonant behavior is due to quantum interference effects. We measured the temperature dependence of the switching current and we analyzed the data with an extended RCSJ model that allow to extract the critical current from the experimental data. The measured critical currents are very high with respect to previous reports on gated devices. At positive gate voltage the contacts transparency is lowered and Coulomb blockade is observed. This allows to use Coulomb blockade measurements to further characterize the nanotube and to study the physics of a quantum dot coupled to superconducting leads. The last part of this thesis is dedicated to the measurements of a carbon nanotube Josephson junction in the Coulomb blockade regime. (orig.)

  4. Measurement of stress distributions in truck tyre contact patch in real rolling conditions

    Science.gov (United States)

    Anghelache, Gabriel; Moisescu, Raluca

    2012-12-01

    Stress distributions on three orthogonal directions have been measured across the contact patch of truck tyres using the complex measuring system that contains a transducer assembly with 30 sensing elements placed in the road surface. The measurements have been performed in straight line, in real rolling conditions. Software applications for calibration, data acquisition, and data processing were developed. The influence of changes in inflation pressure and rolling speed on the shapes and sizes of truck tyre contact patch has been shown. The shapes and magnitudes of normal, longitudinal, and lateral stress distributions, measured at low speed, have been presented and commented. The effect of wheel toe-in and camber on the stress distribution results was observed. The paper highlights the impact of the longitudinal tread ribs on the shear stress distributions. The ratios of stress distributions in the truck tyre contact patch have been computed and discussed.

  5. Measurement of contact-line dissipation in a nanometer-thin soap film.

    Science.gov (United States)

    Guo, Shuo; Lee, Chun Huen; Sheng, Ping; Tong, Penger

    2015-01-01

    We report a direct measurement of the friction coefficient ξ(c) of two fluctuating contact lines formed on a fiber surface when a long glass fiber intersects the two water-air interfaces of a thin soap film. The glass fiber of diameter d in the range of 0.4-4 μm and length 100-300 μm is glued onto the front end of a rectangular cantilever used for atomic force microscopy. As a sensitive mechanical resonator, the hanging fiber probe can accurately measure a minute change of its viscous damping caused by the soap film. By measuring the broadening of the resonant peak of the hanging fiber probe with varying viscosity η of the soap film and different surface treatments of the glass fiber, we confirm that the contact line dissipation obeys a universal scaling law, ξ(c)=απdη, where the coefficient α=1.1±0.3 is insensitive to the change of liquid-solid contact angle. The experimental result is in good agreement with the numerical result based on the phase field model under the generalized Navier boundary conditions.

  6. Intrinsically safe electrical installations, auxiliary circuits and electric communication equipment

    Energy Technology Data Exchange (ETDEWEB)

    Herms, C D

    1981-11-19

    Technical progress has not stopped short of electrical systems in mining, so that three new chapters are new included in the VDE regulations leaflet No. 0118 on 'Installation of electrical systems in underground coal mining'. The regulations on intrinsically safe electric systems, auxiliary circuits and communication systems are briefly described, and grounds for the regulations are presented. The regulations already take account of European regulations on intrinsic safety which will soon be published in a European Regulation on Mine Explosions. In the chapters on auxiliary circuits and communication systems, protection against direct contact, fires, and explosions is discussed as well as the further goal of reliable signal transmission.

  7. Non-Contact Plant Growth Measurement Method and System Based on Ubiquitous Sensor Network Technologies

    Directory of Open Access Journals (Sweden)

    Intae Ryoo

    2011-04-01

    Full Text Available This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments.

  8. Radiation thermometry - non-contact temperature measurements; Strahlungsthermometrie - Temperaturen beruehrungslos messen

    Energy Technology Data Exchange (ETDEWEB)

    Hollandt, J. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Fachbereich Hochtemperatur- und Vakuumphysik; Hartmann, J. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe Hochtemperaturskala; Gutschwager, B. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe Infrarot-Strahlungsthermometrie; Struss, O. [HEITRONICS Infrarot Messtechnik GmbH (Germany)

    2007-09-15

    The temperature is one of the measurands most frequently determined, as it decisively influences physical, chemical and biological processes. To be able to evaluate, optimize, repeat and compare industrial procedures, temperatures must be measured with sufficient accuracy and worldwide uniformity. This is done with the aid of the regulations and instructions of the international temperature scale. Today, non-contact measurements of surface temperatures can be performed without problems with radiation thermometers over a temperature range from -100 C up to 3000 C. Compared to contacting measurements, radiation-thermometric temperature measurement offers a series of advantages. Radiation thermometers react very fast and the measurement is not influenced by heat supply or dissipation. This allows objects to be measured which move very fast, are energized or may experience fast temperature changes. Consequently, radiation thermometry is increasingly used for the monitoring and control of thermal processes, for maintenance and in building services engineering. The present contribution shall inform of the fundamentals of radiation-thermometric temperature measurement as well as of the construction and popular types of radiation thermometers. It will be explained how exact and worldwide uniform temperature measurement is guaranteed via the international temperature scale and the calibration of radiation thermometers. The emissivity of surfaces which is important in practical temperature measurements and some examples of industrial applications of radiation thermometers will be described. (orig.)

  9. Radiation thermometry - non-contact temperature measurements; Strahlungsthermometrie - Temperaturen beruehrungslos messen

    Energy Technology Data Exchange (ETDEWEB)

    Hollandt, J.; Hartmann, J.; Gutschwager, B. [Physikalisch-Technische Bundesanstalt, Berlin (Germany); Struss, O. [HEITRONICS Infrarot Messtechnik GmbH, Wiesbaden (Germany)

    2006-07-01

    The temperature is one of the measurands most frequently determined, as it decisively influences physical, chemical and biological processes. To be able to evaluate, optimize, repeat and compare industrial procedures, temperatures must be measured with sufficient accuracy and worldwide uniformity. This is done with the aid of the regulations and instructions of the international temperature scale. Today, non-contact measurements of surface temperatures can be performed without problems with radiation thermometers over a temperature range from -100 C up to 3000 C. Compared to contacting measurements, radiation-thermometric temperature measurement offers a series of advantages. Radiation thermometers react very fast and the measurement is not influenced by heat supply or dissipation. This allows objects to be measured which move very fast, are energized or may experience fast temperature changes. Consequently, radiation thermometry is increasingly used for the monitoring and control of thermal processes, for maintenance and in building services engineering. The present contribution shall inform of the fundamentals of radiation-thermometric temperature measurement as well as of the construction and popular types of radiation thermometers. It will be explained how exact and worldwide uniform temperature measurement is guaranteed via the international temperature scale and the calibration of radiation thermometers. The emissivity of surfaces which is important in practical temperature measurements and some examples of industrial applications of radiation thermometers will be described. (orig.)

  10. Generalization of the swelling method to measure the intrinsic curvature of lipids

    Science.gov (United States)

    Barragán Vidal, I. A.; Müller, M.

    2017-12-01

    Via computer simulation of a coarse-grained model of two-component lipid bilayers, we compare two methods of measuring the intrinsic curvatures of the constituting monolayers. The first one is a generalization of the swelling method that, in addition to the assumption that the spontaneous curvature linearly depends on the composition of the lipid mixture, incorporates contributions from its elastic energy. The second method measures the effective curvature-composition coupling between the apposing leaflets of bilayer structures (planar bilayers or cylindrical tethers) to extract the spontaneous curvature. Our findings demonstrate that both methods yield consistent results. However, we highlight that the two-leaflet structure inherent to the latter method has the advantage of allowing measurements for mixed lipid systems up to their critical point of demixing as well as in the regime of high concentration (of either species).

  11. Development and Validation of Two Instruments Measuring Intrinsic, Extraneous, and Germane Cognitive Load

    Science.gov (United States)

    Klepsch, Melina; Schmitz, Florian; Seufert, Tina

    2017-01-01

    Cognitive Load Theory is one of the most powerful research frameworks in educational research. Beside theoretical discussions about the conceptual parts of cognitive load, the main challenge within this framework is that there is still no measurement instrument for the different aspects of cognitive load, namely intrinsic, extraneous, and germane cognitive load. Hence, the goal of this paper is to develop a differentiated measurement of cognitive load. In Study 1 (N = 97), we developed and analyzed two strategies to measure cognitive load in a differentiated way: (1) Informed rating: We trained learners in differentiating the concepts of cognitive load, so that they could rate them in an informed way. They were asked then to rate 24 different learning situations or learning materials related to either high or low intrinsic, extraneous, or germane load. (2) Naïve rating: For this type of rating of cognitive load we developed a questionnaire with two to three items for each type of load. With this questionnaire, the same learning situations had to be rated. In the second study (N = between 65 and 95 for each task), we improved the instrument for the naïve rating. For each study, we analyzed whether the instruments are reliable and valid, for Study 1, we also checked for comparability of the two measurement strategies. In Study 2, we conducted a simultaneous scenario based factor analysis. The informed rating seems to be a promising strategy to assess the different aspects of cognitive load, but it seems not economic and feasible for larger studies and a standardized training would be necessary. The improved version of the naïve rating turned out to be a useful, feasible, and reliable instrument. Ongoing studies analyze the conceptual validity of this measurement with up to now promising results. PMID:29201011

  12. Development and Validation of Two Instruments Measuring Intrinsic, Extraneous, and Germane Cognitive Load.

    Science.gov (United States)

    Klepsch, Melina; Schmitz, Florian; Seufert, Tina

    2017-01-01

    Cognitive Load Theory is one of the most powerful research frameworks in educational research. Beside theoretical discussions about the conceptual parts of cognitive load, the main challenge within this framework is that there is still no measurement instrument for the different aspects of cognitive load, namely intrinsic, extraneous, and germane cognitive load. Hence, the goal of this paper is to develop a differentiated measurement of cognitive load. In Study 1 ( N = 97), we developed and analyzed two strategies to measure cognitive load in a differentiated way: (1) Informed rating: We trained learners in differentiating the concepts of cognitive load, so that they could rate them in an informed way. They were asked then to rate 24 different learning situations or learning materials related to either high or low intrinsic, extraneous, or germane load. (2) Naïve rating: For this type of rating of cognitive load we developed a questionnaire with two to three items for each type of load. With this questionnaire, the same learning situations had to be rated. In the second study ( N = between 65 and 95 for each task), we improved the instrument for the naïve rating. For each study, we analyzed whether the instruments are reliable and valid, for Study 1, we also checked for comparability of the two measurement strategies. In Study 2, we conducted a simultaneous scenario based factor analysis. The informed rating seems to be a promising strategy to assess the different aspects of cognitive load, but it seems not economic and feasible for larger studies and a standardized training would be necessary. The improved version of the naïve rating turned out to be a useful, feasible, and reliable instrument. Ongoing studies analyze the conceptual validity of this measurement with up to now promising results.

  13. Development and Validation of Two Instruments Measuring Intrinsic, Extraneous, and Germane Cognitive Load

    Directory of Open Access Journals (Sweden)

    Melina Klepsch

    2017-11-01

    Full Text Available Cognitive Load Theory is one of the most powerful research frameworks in educational research. Beside theoretical discussions about the conceptual parts of cognitive load, the main challenge within this framework is that there is still no measurement instrument for the different aspects of cognitive load, namely intrinsic, extraneous, and germane cognitive load. Hence, the goal of this paper is to develop a differentiated measurement of cognitive load. In Study 1 (N = 97, we developed and analyzed two strategies to measure cognitive load in a differentiated way: (1 Informed rating: We trained learners in differentiating the concepts of cognitive load, so that they could rate them in an informed way. They were asked then to rate 24 different learning situations or learning materials related to either high or low intrinsic, extraneous, or germane load. (2 Naïve rating: For this type of rating of cognitive load we developed a questionnaire with two to three items for each type of load. With this questionnaire, the same learning situations had to be rated. In the second study (N = between 65 and 95 for each task, we improved the instrument for the naïve rating. For each study, we analyzed whether the instruments are reliable and valid, for Study 1, we also checked for comparability of the two measurement strategies. In Study 2, we conducted a simultaneous scenario based factor analysis. The informed rating seems to be a promising strategy to assess the different aspects of cognitive load, but it seems not economic and feasible for larger studies and a standardized training would be necessary. The improved version of the naïve rating turned out to be a useful, feasible, and reliable instrument. Ongoing studies analyze the conceptual validity of this measurement with up to now promising results.

  14. Measurement of the geometric parameters of power contact wire based on binocular stereovision

    Science.gov (United States)

    Pan, Xue-Tao; Zhang, Ya-feng; Meng, Fei

    2010-10-01

    In the electrified railway power supply system, electric locomotive obtains power from the catenary's wire through the pantograph. Under the action of the pantograph, combined with various factors such as vibration, touch current, relative sliding speed, load, etc, the contact wire will produce mechanical wear and electrical wear. Thus, in electrified railway construction and daily operations, the geometric parameters such as line height, pull value, the width of wear surface must be under real-timely and non-contact detection. On the one hand, the safe operation of electric railways will be guaranteed; on the other hand, the wire endurance will be extended, and operating costs reduced. Based on the characteristics of the worn wires' image signal, the binocular stereo vision technology was applied for measurement of contact wire geometry parameters, a mathematical model of measurement of geometric parameters was derived, and the boundaries of the wound wire abrasion-point value were extracted by means of sub-pixel edge detection method based on the LOG operator with the least-squares fitting, thus measurements of the wire geometry parameters were realized. Principles were demonstrated through simulation experiments, and the experimental results show that the detection methods presented in this paper for measuring the accuracy, efficiency and convenience, etc. are close to or superior to the traditional measurements, which has laid a good foundation for the measurement system of geometric parameters for the contact wire of the development of binocular vision.

  15. Intraocular pressure measurement over soft contact lens by rebound tonometer:a comparative study

    Directory of Open Access Journals (Sweden)

    Senay Asik Nacaroglu

    2015-06-01

    Full Text Available AIM: To evaluate the intraocular pressure (IOP measurements by Icare rebound tonometer over a contact lens in comparison with Goldmann applanation tonometry (GAT.METHODS: Fifty patients using contact lens were included in this study. One of the eyes of the patients was selected randomly and their IOP were measured by rebound tonometer with and without contact lens (RTCL, RT respectively and by GAT, as well as their central corneal thickness (CCT by optical pachymeter. The results of both methods were compared by correlation analysis, general linear method repeated measure and Bland-Altman analysis.RESULTS: Mean IOP values measured by RTCL, RT and GAT were 15.68±3.7, 14.50±3.4 and 14.16±2.8 (P<0.001, respectively. Mean IOP by RTCL was significantly higher than the measurements implemented by RT and GAT (P<0.001, while there was no difference between the measurements by GAT and RT (P=0.629. There was a good level of positive correlation between GAT and RTCL as well as RT (r=0.786 P<0.001, r=0.833 P<0.001, respectively. We have observed that CCT increase did not show any correlation with the differences of the measurements between RTCL and RT (P=0.329, RTCL and GAT (P=0.07 as well as RT and GAT (P=0.189 in linear regression model.CONCLUSION: The average of the measurements over contact lens by rebound tonometer was found to be higher than what was measured by GAT. Although this difference is statistically significant, it may be clinically negligible in the normal population.

  16. New Method Developed to Measure Contact Angles of a Sessile Drop

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2002-01-01

    The spreading of an evaporating liquid on a solid surface occurs in many practical processes and is of importance in a number of practical situations such as painting, textile dyeing, coating, gluing, and thermal engineering. Typical processes involving heat transfer where the contact angle plays an important role are film cooling, boiling, and the heat transfer through heat pipes. The biological phenomenon of cell spreading also is analogous to a drop spreading (ref. 1). In the study of spreading, the dynamic contact angle describes the interfacial properties on solid substrates and, therefore, has been studied by physicists and fluid mechanics investigators. The dynamic contact angle of a spreading nonvolatile liquid drop provides a simple tool in the study of the free-boundary problem, but the study of the spreading of a volatile liquid drop is of more practical interest because the evaporation of common liquids is inevitable in practical processes. The most common method to measure the contact angle, the contact radius, and the height of a sessile drop on a solid surface is to view the drop from its edge through an optical microscope. However, this method gives only local information in the view direction. Zhang and Yang (ref. 2) developed a laser shadowgraphy method to investigate the evaporation of sessile drop on a glass plate. As described here, Zhang and Chao (refs. 3 and 4) improved the method and suggested a new optical arrangement to measure the dynamic contact angle and the instant evaporation rate of a sessile drop with much higher accuracy (less than 1 percent). With this method, any fluid motion in the evaporating drop can be visualized through shadowgraphy without using a tracer, which often affects the field under investigation.

  17. Comparison of calculated and measured spectral response and intrinsic efficiency for a boron-loaded plastic neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Kamykowski, E.A. (Grumman Corporate Research Center, Bethpage, NY (United States))

    1992-07-15

    Boron-loaded scintillators offer the potential for neutron spectrometers with a simplified, peak-shaped response. The Monte Carlo code, MCNP, has been used to calculate the detector characteristics of a scintillator made of a boron-loaded plastic, BC454, for neutrons between 1 and 7 MeV. Comparisons with measurements are made of spectral response for neutron energies between 4 and 6 MeV and of intrinsic efficiencies for neutrons up to 7 MeV. In order to compare the calculated spectra with measured data, enhancements to MCNP were introduced to generate tallies of light output spectra for recoil events terminating in a final capture by {sup 10}B. The comparison of measured and calculated spectra shows agreement in response shape, full width at half maximum, and recoil energy deposition. Intrinsic efficiencies measured to 7 MeV are also in agreement with the MCNP calculations. These results validate the code predictions and affirm the value of MCNP as a useful tool for development of sensor concepts based on boron-loaded plastics. (orig.).

  18. Role of copper oxides in contact killing of bacteria.

    Science.gov (United States)

    Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank

    2013-12-31

    The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.

  19. Hole-Collection Mechanism in Passivating Metal-Oxide Contacts on Si Solar Cells: Insights From Numerical Simulations

    KAUST Repository

    Vijayan, Ramachandran Ammapet; Essig, Stephanie; De Wolf, Stefaan; Ramanathan, Bairava Ganesh; Loper, Philipp; Ballif, Christophe; Varadharajaperumal, Muthubalan

    2018-01-01

    Silicon heterojunction solar cells enable high conversion efficiencies, thanks to their passivating contacts which consist of layered stacks of intrinsic and doped amorphous silicon. However, such contacts may reduce the photo current, when present

  20. Moving droplets : The measurement of contact lines

    NARCIS (Netherlands)

    Poelma, C.; Franken, M.J.Z.; Kim, H.; Westerweel, J.

    2014-01-01

    Contact lines are the locations where a gas, liquid and a solid meet. From everyday experience we know that such contact lines can be mobile, for example in the case of a water droplet sliding over a glass surface. However, the continuum description of the flow towards or away from a contact line

  1. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  2. Cleanability evaluation of ceramic glazes with nanometer far-infrared materials using contact angle measurement.

    Science.gov (United States)

    Wang, Lijuan; Liang, Jinsheng; Di, Xingfu; Tang, Qingguo

    2014-05-01

    The cleanability of easy-to-clean ceramic glazes doped with nanometer far-infrared materials was compared with that of some high-quality household ceramic glazes from the market. The cleanability was evaluated by the contact angle measurement using a sessile drop method with a Dataphysics OCA-30 contact angle analyzer. The results showed that the difference of contact angles of water on the glazes before soiling and after cleaning could be used as a parameter for evaluating the cleanability of the glazes. The relationship between cleanability and surface properties, such as surface free energy and surface topography, was investigated. The surface free energy of the samples and their components were calculated using van Oss acid-base approach. By measuring advancing and receding contact angles, the contact angle hysteresis of the ceramic glazes due to the surface topography was investigated. It was shown that the cleanability of ceramic glazes containing nanometer far-infrared materials (NFIM) is better than that of household ceramic glazes from market, due to a higher ratio of electron-acceptor parameter to electron-donor parameter, which led to the effect of water hydration as well as better hydrophilic property and increased smoothness. The contact angle measurement not only accurately evaluates the cleanability of the ceramic glazes, but also has a contribution to the study of cleanability theory. Moreover, this method is simple, convenient and less sample-consumption.

  3. A radioisotope dilution assay for unlabelled vitamin B12-intrinsic factor complex employing the binding intrinsic factor antibody: probable evidence for two types of binding antibody

    International Nuclear Information System (INIS)

    Jacob, E.; O'Brien, H.A.W.; Mollin, D.L.

    1977-01-01

    A new radioisotope dilution assay for vitamin B 12 -intrinsic factor complex is described. The method is based on the use of the binding type intrinsic antibody (the binding reagent), which when combined with the intrinsic factor-vitamin B 12 complex (labelled ligand), is quantitatively adsorbed onto zirconium phosphate gel pH 6.25. The new assay has been shown to provide a measure of intrinsic factor comparable with other intrinsic factor assays, but it has the important advantage of being able to measure the unlabelled vitamin B 12 -intrinsic factor complex (unlabelled ligand), and will, therefore, be valuable in the study of physiological events in the gastrointestinal tract. During the study, it was found that there is some evidence for at least two types of binding intrinsic factor antibody: One which combines preferentially with the intrinsic factor-vitamin B 12 complex and one which combines equally well with this complex or with free intrinsic factor. (author)

  4. Measurement Back-Action in Quantum Point-Contact Charge Sensing

    Directory of Open Access Journals (Sweden)

    Bruno Küng

    2010-06-01

    Full Text Available Charge sensing with quantum point-contacts (QPCs is a technique widely used in semiconductor quantum-dot research. Understanding the physics of this measurement process, as well as finding ways of suppressing unwanted measurement back-action, are therefore both desirable. In this article, we present experimental studies targeting these two goals. Firstly, we measure the effect of a QPC on electron tunneling between two InAs quantum dots, and show that a model based on the QPC’s shot-noise can account for it. Secondly, we discuss the possibility of lowering the measurement current (and thus the back-action used for charge sensing by correlating the signals of two independent measurement channels. The performance of this method is tested in a typical experimental setup.

  5. The measurement of intraocular pressure over positive soft contact lenses by rebound tonometry.

    Science.gov (United States)

    Zeri, Fabrizio; De Cusatis, Mario; Lupelli, Luigi; Swann, Peter Graham

    2016-01-01

    To investigate if the accuracy of intraocular pressure (IOP) measurements using rebound tonometry over disposable hydrogel (etafilcon A) contact lenses (CL) is affected by the positive power of the CLs. The experimental group comprised 26 subjects, (8 male, 18 female). IOP measurements were undertaken on the subjects' right eyes in random order using a Rebound Tonometer (ICare). The CLs had powers of +2.00D and +6.00D. Measurements were taken over each contact lens and also before and after the CLs had been worn. The IOP measure obtained with both CLs was significantly lower compared to the value without CLs (t test; p<0.001) but no significant difference was found between the two powers of CLs. Rebound tonometry over positive hydrogel CLs leads to a certain degree of IOP underestimation. This result did not change for the two positive lenses used in the experiment, despite their large difference in power and therefore in lens thickness. Optometrists should bear this in mind when measuring IOP with the rebound tonometer over plus power contact lenses. Copyright © 2016 The Authors. Published by Elsevier Espana.. All rights reserved.

  6. Intrinsic bioremediation of BTEX in a cold temperature environment

    International Nuclear Information System (INIS)

    Johns, C.; Biggar, K.; Foght, J.; Mullick, A.

    1999-01-01

    Investigation of Intrinsic bioremediation technology at cold temperature sites contaminated with BTEX (benzene, toluene, ethyl benzene, xylene) is discussed. Site investigation at each of the sites was carried out to delineate stratigraphy, hydrogeology, microbiological setting, level of contamination and geochemical conditions. Preferred conditions for viable sites were found to include minimal risk of contaminants coming into contact with receptors, low hydraulic gradient, and the presence of adequate nutrients and terminal electron acceptors (TEAs). Enumeration of contaminant degrading microorganisms was completed through the Most Probable Number (MPN) technique indicating viable populations of aerobic petroleum degrading, nitrogen reducing and iron reducing bacteria. The effects of cold temperatures on the rate and extent of substrate utilization was studied in the laboratory, Results to date indicate that the sites under consideration are suitable candidates for intrinsic bioremediation and that significant rates of biodegradation are possible at low temperatures. If risk analysis proves to be favorable, the intrinsic bioremediation methodology is likely to provide an effective and affordable solution. 16 refs., 3 tabs., 3 figs

  7. Direct measurement of the intrinsic ankle stiffness during standing

    NARCIS (Netherlands)

    Vlutters, Mark; Vlutters, M.; Boonstra, Tjitske; Schouten, Alfred Christiaan; van der Kooij, Herman

    2015-01-01

    Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic

  8. Simultaneous measurement of eye stiffness and contact area for living human eyes.

    Science.gov (United States)

    Kurita, Yuichi; Iida, Yoshichika; Kaneko, Makoto; Mishima, Hiromu K; Katakura, Seiki; Kiuchi, Yoshiaki

    2007-01-01

    Goldmann applanation tonometry is commonly used for measuring IOP (IntraOcular Pressure) to diagnose glaucoma. However, the measured IOP by the applanation tonometry is valid only under the assumption that all the subjects have the same structural eye stiffness. Abnormal eye stiffness makes abnormal corneal deformation and thus the current applanation tonometer misestimates the IOP. This study challenges to measure the eye stiffness in vivo with a non-invasive approach for detecting the abnormal deformation. The deformation of the cornea and the contact area between the probe and the cornea are simultaneously captured by cameras during the experiment. Experimental results show that some subjects have different relationship among the force, the displacement and the contact area even with same IOP. The proposed eye stiffness measurement can help detecting the abnormal deformation and the eyes with misestimated IOP.

  9. Sensor Prototype to Evaluate the Contact Force in Measuring with Coordinate Measuring Arms

    Directory of Open Access Journals (Sweden)

    Eduardo Cuesta

    2015-06-01

    Full Text Available This paper describes the design, development and evaluation tests of an integrated force sensor prototype for portable Coordinate Measuring Arms (CMAs or AACMMs. The development is based on the use of strain gauges located on the surface of the CMAs’ hard probe. The strain gauges as well as their cables and connectors have been protected with a custom case, made by Additive Manufacturing techniques (Polyjet 3D. The same method has been selected to manufacture an ergonomic handle that includes trigger mechanics and the electronic components required for synchronizing the trigger signal when probing occurs. The paper also describes the monitoring software that reads the signals in real time, the calibration procedure of the prototype and the validation tests oriented towards increasing knowledge of the forces employed in manual probing. Several experiments read and record the force in real time comparing different ways of probing (discontinuous and continuous contact and measuring different types of geometric features, from single planes to exterior cylinders, cones, or spheres, through interior features. The probing force is separated into two components allowing the influence of these strategies in probe deformation to be known. The final goal of this research is to improve the probing technique, for example by using an operator training programme, allowing extra-force peaks and bad contacts to be minimized or just to avoid bad measurements.

  10. Direct Measurement of Static and Dynamic Contact Angles Using a Random Micromodel Considering Geological CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Mohammad Jafari

    2017-12-01

    Full Text Available The pore-level two-phase fluids flow mechanism needs to be understood for geological CO2 sequestration as a solution to mitigate anthropogenic emission of carbon dioxide. Capillary pressure at the interface of water–CO2 influences CO2 injectability, capacity, and safety of the storage system. Wettability usually measured by contact angle is always a major uncertainty source among important parameters affecting capillary pressure. The contact angle is mostly determined on a flat surface as a representative of the rock surface. However, a simple and precise method for determining in situ contact angle at pore-scale is needed to simulate fluids flow in porous media. Recent progresses in X-ray tomography technique has provided a robust way to measure in situ contact angle of rocks. However, slow imaging and complicated image processing make it impossible to measure dynamic contact angle. In the present paper, a series of static and dynamic contact angles as well as contact angles on flat surface were measured inside a micromodel with random pattern of channels under high pressure condition. Our results showed a wide range of pore-scale contact angles, implying complexity of the pore-scale contact angle even in a highly smooth and chemically homogenous glass micromodel. Receding contact angle (RCA showed more reproducibility compared to advancing contact angle (ACA and static contact angle (SCA for repeating tests and during both drainage and imbibition. With decreasing pore size, RCA was increased. The hysteresis of the dynamic contact angle (ACA–RCA was higher at pressure of one megapascal in comparison with that at eight megapascals. The CO2 bubble had higher mobility at higher depths due to lower hysteresis which is unfavorable. CO2 bubbles resting on the flat surface of the micromodel channel showed a wide range of contact angles. They were much higher than reported contact angle values observed with sessile drop or captive bubble tests on a

  11. Beyond the Boost: Measuring the Intrinsic Dipole of the Cosmic Microwave Background Using the Spectral Distortions of the Monopole and Quadrupole.

    Science.gov (United States)

    Yasini, Siavash; Pierpaoli, Elena

    2017-12-01

    We present a general framework for the accurate spectral modeling of the low multipoles of the cosmic microwave background (CMB) as observed in a boosted frame. In particular, we demonstrate how spectral measurements of the low multipoles can be used to separate the motion-induced dipole of the CMB from a possible intrinsic dipole component. In a moving frame, the leakage of an intrinsic dipole moment into the CMB monopole and quadrupole induces spectral distortions with distinct frequency functions that, respectively, peak at 337 and 276 GHz. The leakage into the quadrupole moment also induces a geometrical distortion to the spatial morphology of this mode. The combination of these effects can be used to lift the degeneracy between the motion-induced dipole and any intrinsic dipole that the CMB might possess. Assuming the current peculiar velocity measurements, the leakage of an intrinsic dipole with an amplitude of ΔT=30  μK into the monopole and quadrupole moments will be detectable by a PIXIE-like experiment at ∼40  nK (2.5σ) and ∼130  nK (11σ) level at their respective peak frequencies.

  12. Accuracy of intraocular pressure measurements in dogs using two different tonometers and plano therapeutic soft contact lenses.

    Science.gov (United States)

    Ahn, Jeong-Taek; Jeong, Man-Bok; Park, Young-Woo; Kim, Se-Eun; Ahn, Jae-Sang; Lee, Yes-Ran; Lee, Eui-Ri; Seo, Kangmoon

    2012-03-01

    To compare and evaluate the accuracy of intraocular pressure (IOP) measured through a therapeutic contact lens, using applanation (TonoPen XL(®)) and rebound (TonoVet(®)) tonometers in enucleated dog eyes. A total of 30 enucleated eyes from 15 beagle dogs. To measure accurate IOP, the anterior chamber of each enucleated eye was cannulated with two 26-gauge needles and two polyethylene tubes were connected vertically to an adjustable reservoir bag of normal saline and a pressure transducer. IOP was measured by the TonoPen XL(®) followed by the TonoVet(®) without a contact lens. After a contact lens was applied to the cornea, IOP was re-measured in the same order. Three consecutive IOP measurements were performed using both tonometers. Without the contact lens, the IOP values obtained by both tonometers correlated well according to the regression analysis (TonoVet(®): γ(2) = 0.98, TonoPen XL(®): γ(2) = 0.97, P contact lens was applied to the cornea. Bland-Altman analysis was used to determine the lower and upper limits of agreement (TonoVet(®): -29.7 and +21.1 mmHg, TonoPen XL(®): -3.9 and +3.6 mmHg) between the two devices. This study suggests that the TonoPen XL(®) is a useful tonometer for dogs wearing therapeutic contact lenses, and importantly, contact lenses would not need to be removed prior to IOP measurement. © 2012 American College of Veterinary Ophthalmologists.

  13. A portable non-contact displacement sensor and its application of lens centration error measurement

    Science.gov (United States)

    Yu, Zong-Ru; Peng, Wei-Jei; Wang, Jung-Hsing; Chen, Po-Jui; Chen, Hua-Lin; Lin, Yi-Hao; Chen, Chun-Cheng; Hsu, Wei-Yao; Chen, Fong-Zhi

    2018-02-01

    We present a portable non-contact displacement sensor (NCDS) based on astigmatic method for micron displacement measurement. The NCDS are composed of a collimated laser, a polarized beam splitter, a 1/4 wave plate, an aspheric objective lens, an astigmatic lens and a four-quadrant photodiode. A visible laser source is adopted for easier alignment and usage. The dimension of the sensor is limited to 115 mm x 36 mm x 56 mm, and a control box is used for dealing with signal and power control between the sensor and computer. The NCDS performs micron-accuracy with +/-30 μm working range and the working distance is constrained in few millimeters. We also demonstrate the application of the NCDS for lens centration error measurement, which is similar to the total indicator runout (TIR) or edge thickness difference (ETD) of a lens measurement using contact dial indicator. This application has advantage for measuring lens made in soft materials that would be starched by using contact dial indicator.

  14. Measurement and understanding of single-molecule break junction rectification caused by asymmetric contacts

    International Nuclear Information System (INIS)

    Wang, Kun; Zhou, Jianfeng; Hamill, Joseph M.; Xu, Bingqian

    2014-01-01

    The contact effects of single-molecule break junctions on rectification behaviors were experimentally explored by a systematic control of anchoring groups of 1,4-disubstituted benzene molecular junctions. Single-molecule conductance and I-V characteristic measurements reveal a strong correlation between rectifying effects and the asymmetry in contacts. Analysis using energy band models and I-V calculations suggested that the rectification behavior is mainly caused by asymmetric coupling strengths at the two contact interfaces. Fitting of the rectification ratio by a modified Simmons model we developed suggests asymmetry in potential drop across the asymmetric anchoring groups as the mechanism of rectifying I-V behavior. This study provides direct experimental evidence and sheds light on the mechanisms of rectification behavior induced simply by contact asymmetry, which serves as an aid to interpret future single-molecule electronic behavior involved with asymmetric contact conformation

  15. Contact sponge water absorption test implemented for in situ measures

    Science.gov (United States)

    Gaggero, Laura; Scrivano, Simona

    2016-04-01

    The contact sponge method is a non-destructive in-situ methodology used to estimate a water uptake coefficient. The procedure, unlike other in-situ measurement was proven to be directly comparable to the water uptake laboratory measurements, and was registered as UNI 11432:2011. The UNI Normal procedure requires to use a sponge with known density, soaked in water, weighed, placed on the material for 1 minute (UNI 11432, 2011; Pardini & Tiano, 2004), then weighed again. Difficulties arise in operating on test samples or on materials with porosity varied for decay. While carrying on the test, fluctuations in the bearing of the environmental parameters were negligible, but not the pressure applied to the surface, that induced the release of different water amounts towards the material. For this reason we designed a metal piece of the same diameter of the plate carrying the sponge, to be screwed at the tip of a pocket penetrometer. With this instrument the sponge was kept in contact with the surface for 1 minute applying two different loads, at first pushed with 0.3 kg/cm2 in order to press the sponge, but not its holder, against the surface. Then, a load of 1.1 kg/ cm2 was applied, still avoiding deviating the load to the sponge holder. We applied both the current and our implemented method to determine the water absorption by contact sponge on 5 fresh rock types (4 limestones: Fine - and Coarse grained Pietra di Vicenza, Rosso Verona, Breccia Aurora, and the silicoclastic Macigno sandstone). The results show that 1) the current methodology imply manual skill and experience to produce a coherent set of data; the variable involved are in fact not only the imposed pressure but also the compression mechanics. 2) The control on the applied pressure allowed reproducible measurements. Moreover, 3) the use of a thicker sponge enabled to apply the method even on rougher surfaces, as the device holding the sponge is not in contact with the tested object. Finally, 4) the

  16. Surface mobility and structural transitions of poly(n-alkyl methacrylates) probed by dynamic contact angle measurements

    NARCIS (Netherlands)

    van Damme, H.S.; Hogt, A.H.; Feijen, Jan

    1986-01-01

    Dynamic contact angles and contact-angle hysteresis of a series of poly(n-alkyl methacrylates) (PAMA) were investigated using the Wilhelmy plate technique. The mobility of polymer surface chains, segments, and side groups affected the measured contact angles and their hysteresis. A model is

  17. Contact-free measurement of the flow field of a liquid metal inside a closed container

    OpenAIRE

    Heinicke Christiane

    2014-01-01

    The measurement of flow velocities inside metal melts is particularly challenging. Due to the high temperatures of the melts it is impossible to employ measurement techniques that require either mechanical contact with the melt or are only adaptable to translucent fluids. In the past years a number of electromagnetic techniques have been developed that allows a contact-free measurement of volume flows. One of these techniques is the so-called Lorentz Force Velocimetry (LFV) in which the metal...

  18. Non-Contact Thermal Properties Measurement with Low-Power Laser and IR Camera System

    Science.gov (United States)

    Hudson, Troy L.; Hecht, Michael H.

    2011-01-01

    As shown by the Phoenix Mars Lander's Thermal and Electrical Conductivity Probe (TECP), contact measurements of thermal conductivity and diffusivity (using a modified flux-plate or line-source heat-pulse method) are constrained by a number of factors. Robotic resources must be used to place the probe, making them unavailable for other operations for the duration of the measurement. The range of placement is also limited by mobility, particularly in the case of a lander. Placement is also subject to irregularities in contact quality, resulting in non-repeatable heat transfer to the material under test. Most important from a scientific perspective, the varieties of materials which can be measured are limited to unconsolidated or weakly-cohesive regolith materials, rocks, and ices being too hard for nominal insertion strengths. Accurately measuring thermal properties in the laboratory requires significant experimental finesse, involving sample preparation, controlled and repeatable procedures, and, practically, instrumentation much more voluminous than the sample being tested (heater plates, insulation, temperature sensors). Remote measurements (infrared images from orbiting spacecraft) can reveal composite properties like thermal inertia, but suffer both from a large footprint (low spatial resolution) and convolution of the thermal properties of a potentially layered medium. In situ measurement techniques (the Phoenix TECP is the only robotic measurement of thermal properties to date) suffer from problems of placement range, placement quality, occupation of robotic resources, and the ability to only measure materials of low mechanical strength. A spacecraft needs the ability to perform a non-contact thermal properties measurement in situ. Essential components include low power consumption, leveraging of existing or highly-developed flight technologies, and mechanical simplicity. This new in situ method, by virtue of its being non-contact, bypasses all of these

  19. An Intrinsic Fiber-Optic Sensor for Structure Lightning Current Measurement

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.

    2014-01-01

    An intrinsic optical-fiber sensor based on Faraday Effect is developed that is highly suitable for measuring lightning current on aircraft, towers and complex structures. Originally developed specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on lightning towers, the sensor can help validate other sensors and lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a lightning tower. High current capabilities were demonstrated up to 200 kA at a lightning test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered lightning at the International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for lightning current measurement where low weight

  20. An investigation of highly accurate and precise robotic hole measurements using non-contact devices

    Directory of Open Access Journals (Sweden)

    Usman Zahid

    2016-01-01

    Full Text Available Industrial robots arms are widely used in manufacturing industry because of their support for automation. However, in metrology, robots have had limited application due to their insufficient accuracy. Even using error compensation and calibration methods, robots are not effective for micrometre (μm level metrology. Non-contact measurement devices can potentially enable the use of robots for highly accurate metrology. However, the use of such devices on robots has not been investigated. The research work reported in this paper explores the use of different non-contact measurement devices on an industrial robot. The aim is to experimentally investigate the effects of robot movements on the accuracy and precision of measurements. The focus has been on assessing the ability to accurately measure various geometric and surface parameters of holes despite the inherent inaccuracies of industrial robot. This involves the measurement of diameter, roundness and surface roughness. The study also includes scanning of holes for measuring internal features such as start and end point of a taper. Two different non-contact measurement devices based on different technologies are investigated. Furthermore, effects of eccentricity, vibrations and thermal variations are also assessed. The research contributes towards the use of robots for highly accurate and precise robotic metrology.

  1. Prediction of giant intrinsic spin-Hall effect in strained p-GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Christoph; Kubis, Tillmann; Vogl, Peter [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany)

    2009-07-01

    We present a systematic study of the intrinsic spin-Hall effect and its inverse effect in various two dimensional nanostructures using the non-equilibrium Green's function technique. We include elastic impurity scattering as well as inelastic acoustical phonon scattering. The parameters for the Dresselhaus and Rashba spin-orbit coupling are obtained from an atomistic tight binding calculation. We predict exceptionally large spin polarization effects in specially band engineered and geometrically designed nanostructures. In strained p-GasAs, we find a k-linear spin splitting that is enhanced by a factor of 50 compared to the unstrained case. We propose a T shaped three-terminal device that acts as a spin polarizer without external magnetic field. Optimizing the geometry with respect to the spin-precession length results in a spin accumulation at the drain contacts of up to 25%. We also study the inverse intrinsic spin-Hall effect. In a four-terminal ''H'' shaped structure it can be used to measure the direct spin-Hall effect by simply applying a gate voltage. For such a measurement, we predict a threshold value for the spin-orbit coupling strength that cannot be met by simple n-GaAs systems.

  2. Contact lenses and the rate of evaporation measured in vitro; the influence of wear, squalene and wax.

    Science.gov (United States)

    Vishnubhatla, Sravya; Borchman, Douglas; Foulks, Gary N

    2012-12-01

    Accelerated evaporation of tears may contribute to dry eye symptoms. It is not clear whether contact lenses decrease or increase the rate of evaporation of tears. In this study, the rates of evaporation through contact lenses (ERTCL) were measured in vitro to gain insight to this question. Contact lenses were equilibrated with various solutions to determine if they influenced ERTCL in vitro. ERTCL was measured gravimetrically. ERTCL measured in vitro for used contact lenses was about 20% faster than for buffer alone suggesting that natural tear components bound to the lenses changed the ERTCL. One natural tear component that binds to contact lenses is waxes. Equilibration of contact lenses with wax increased the ERTCL by about 30% suggesting that waxes might potentially increase ERTCL in vivo. Squalene, found in sebum and possibly meibum was infused into the contact lenses as a step toward decreasing the ERTCL. Squalene decreased ERTCL by over 60% in vitro. Soaking a contact lens in DuraSite(®) with benzalkonium chloride (BAK) did not alter the ERTCL. ERTCL were about 40% higher than the evaporation rate of DuraSite(®) alone or without BAK. In addition to lowering the ERTCL, the squalene in contact lenses could be a source of terpenoids to replace the terpenoids deficient in patients with MGD. If the ERTCL could be minimized in vivo, contact lenses could potentially be used to relieve dry eye symptoms in patients with evaporative dry eye. Copyright © 2012 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  3. The effects of the modulus of the lens material on intraocular pressure measurement through soft contact lenses.

    Science.gov (United States)

    Boyraz, S; Güngör, I

    2013-09-01

    To investigate the effects of the modulus of the lens material on the intraocular pressure measurement using the Tono-Pen XL applanation tonometer through soft contact lenses. Thirty eyes of 15 patients with myopia were evaluated. Intraocular pressure (IOP) measurements were performed using Tono-Pen XL directly over cornea, and subsequently through three soft contact lenses made up of different lens materials. All were -3.00 diopter soft contact lenses: lotrafilcon A with a low water content (24%) and high modulus (1.4 MPa) (CL-I), balafilcon A with a moderate water content (36%) and moderate modulus (1.1 MPa) (CL-II), and vifilcon A with a moderate water content (55%) and low modulus (0.79 MPa) (CL-III). IOP measurements through contact lenses were compared with each other, and with direct corneal measurements. The mean age of the patients (11 males and 4 females) was 26.86±5.62 years. All measurements obtained through CLs were significantly higher than the direct corneal measurements. The measurements through CLs differed by 4.61±0.54 mmHg (P=0,001), 2.9±0.46 mmHg (P=0.001), and 1.94±0.51 mmHg (P=0,003) for CL-I, CL-II and CL-III, respectively. In the paired comparisons of measurements through CLs, all comparisons were significant except the comparison of measurements through CL-II and CL-III (P=0.128). IOP measurements through silicone-hydrogel contact lenses with a high modulus and low water content were higher compared to the other contact lenses. While measuring IOP through CLs, the clinicians should consider the effect of the lens material and the features of the device used.

  4. Cross-bidge Kelvin resistor (CBKR) structures for measurement of low contact resistances

    NARCIS (Netherlands)

    Stavitski, N.; Klootwijk, J.H.; van Zeijl, H.W.; Boksteen, B.K.; Boksteen, B.K.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2007-01-01

    A convenient test structure for measurement of the specific contact resistance (�?c) of metal-semiconductor junctions is the CBKR structure. During last few decades the parasitic factors which may strongly affect the measurements accuracy for �?c < 10-6 Ω • cm2 have been sufficiently discussed and

  5. Time-related contact angle measurements with human plasma on biomaterial surfaces

    NARCIS (Netherlands)

    Rakhorst, G; Van der Mei, HC; van Oeveren, W; Spijker, HT; Busscher, HJ

    Axisymmetric drop shape analysis by profile (ADSA-P) was used to assess in time contact angle changes of human plasma drops placed on four different biomaterials. Results were related with conventional blood compatibility measurements: albumin adsorption, fibrinogen adsorption and platelet adhesion.

  6. Non-Contact Conductivity Measurement for Automated Sample Processing Systems

    Science.gov (United States)

    Beegle, Luther W.; Kirby, James P.

    2012-01-01

    A new method has been developed for monitoring and control of automated sample processing and preparation especially focusing on desalting of samples before analytical analysis (described in more detail in Automated Desalting Apparatus, (NPO-45428), NASA Tech Briefs, Vol. 34, No. 8 (August 2010), page 44). The use of non-contact conductivity probes, one at the inlet and one at the outlet of the solid phase sample preparation media, allows monitoring of the process, and acts as a trigger for the start of the next step in the sequence (see figure). At each step of the muti-step process, the system is flushed with low-conductivity water, which sets the system back to an overall low-conductivity state. This measurement then triggers the next stage of sample processing protocols, and greatly minimizes use of consumables. In the case of amino acid sample preparation for desalting, the conductivity measurement will define three key conditions for the sample preparation process. First, when the system is neutralized (low conductivity, by washing with excess de-ionized water); second, when the system is acidified, by washing with a strong acid (high conductivity); and third, when the system is at a basic condition of high pH (high conductivity). Taken together, this non-contact conductivity measurement for monitoring sample preparation will not only facilitate automation of the sample preparation and processing, but will also act as a way to optimize the operational time and use of consumables

  7. Fuel rod-to-support contact pressure and stress measurement for CHASNUPP-1(PWR) fuel

    International Nuclear Information System (INIS)

    Waseem; Elahi, N.; Siddiqui, A.; Murtaza, G.

    2011-01-01

    Research highlights: → A detailed finite element model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. → The spring hold-down force is calculated using the contact pressure obtained from the FE model. → Experiment has also been conducted in the same environment for the measurement of this force. → The spring hold-down force values obtained from both studies confirm the validation of this analysis. → The stress obtained through this analysis is less than the yield strength of spacer grid material, thus fulfils the structural integrity criteria of grid. - Abstract: This analysis has been made in an attempt to measure the contact pressure of the PWR fuel assembly spacer grid spring and to verify its structural integrity at room temperature in air. A detailed finite element (FE) model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. The FE model of a fuel rod-to-support system is produced with shell and contact elements. The spring hold-down force is calculated using the contact pressure obtained from the FE model. Experiment has also been conducted in the same environment for the measurement of this force. The spring hold-down force values obtained from both studies are compared, which show good agreement, and in turn confirm the validation of this analysis. The Stress obtained through this analysis is less than the yield strength of spacer grid material (Inconel-718), thus fulfils the structural integrity criteria of grid.

  8. Fuel rod-to-support contact pressure and stress measurement for CHASNUPP-1(PWR) fuel

    Energy Technology Data Exchange (ETDEWEB)

    Waseem, E-mail: wazim_me@hotmail.co [Directorate General Nuclear Power Fuel, Pakistan Atomic Energy Commission, P.O. Box No. 1847, Islamabad 44000 (Pakistan); Elahi, N.; Siddiqui, A.; Murtaza, G. [Directorate General Nuclear Power Fuel, Pakistan Atomic Energy Commission, P.O. Box No. 1847, Islamabad 44000 (Pakistan)

    2011-01-15

    Research highlights: A detailed finite element model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. The spring hold-down force is calculated using the contact pressure obtained from the FE model. Experiment has also been conducted in the same environment for the measurement of this force. The spring hold-down force values obtained from both studies confirm the validation of this analysis. The stress obtained through this analysis is less than the yield strength of spacer grid material, thus fulfils the structural integrity criteria of grid. - Abstract: This analysis has been made in an attempt to measure the contact pressure of the PWR fuel assembly spacer grid spring and to verify its structural integrity at room temperature in air. A detailed finite element (FE) model of spacer grid cell with fuel rod-to-support has been developed to determine the contact pressure between the supports of the grid and fuel rod cladding. The FE model of a fuel rod-to-support system is produced with shell and contact elements. The spring hold-down force is calculated using the contact pressure obtained from the FE model. Experiment has also been conducted in the same environment for the measurement of this force. The spring hold-down force values obtained from both studies are compared, which show good agreement, and in turn confirm the validation of this analysis. The Stress obtained through this analysis is less than the yield strength of spacer grid material (Inconel-718), thus fulfils the structural integrity criteria of grid.

  9. Intrinsic and extrinsic motivation for smoking cessation.

    Science.gov (United States)

    Curry, S; Wagner, E H; Grothaus, L C

    1990-06-01

    An intrinsic-extrinsic model of motivation for smoking cessation was evaluated with 2 samples (ns = 1.217 and 151) of smokers who requested self-help materials for smoking cessation. Exploratory and confirmatory principal components analysis on a 36-item Reasons for Quitting (RFQ) scale supported the intrinsic-extrinsic motivation distinction. A 4-factor model, with 2 intrinsic dimensions (concerns about health and desire for self-control) and 2 extrinsic dimensions (immediate reinforcement and social influence), was defined by 20 of the 36 RFQ items. The 20-item measure demonstrated moderate to high levels of internal consistency and convergent and discriminant validity. Logistic regression analyses indicated that smokers with higher levels of intrinsic relative to extrinsic motivation were more likely to achieve abstinence from smoking.

  10. Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices.

    Science.gov (United States)

    Cheng, Zengguang; Zhou, Qiaoyu; Wang, Chenxuan; Li, Qiang; Wang, Chen; Fang, Ying

    2011-02-09

    By combining atomic force microscopy and trans-port measurements, we systematically investigated effects of thermal annealing on surface morphologies and electrical properties of single-layer graphene devices fabricated by electron beam lithography on silicon oxide (SiO(2)) substrates. Thermal treatment above 300 °C in vacuum was required to effectively remove resist residues on graphene surfaces. However, annealing at high temperature was found to concomitantly bring graphene in close contact with SiO(2) substrates and induce increased coupling between them, which leads to heavy hole doping and severe degradation of mobilities in graphene devices. To address this problem, a wet-chemical approach employing chloroform was developed in our study, which was shown to enable both intrinsic surfaces and enhanced electrical properties of graphene devices. Upon the recovery of intrinsic surfaces of graphene, the adsorption and assisted fibrillation of amyloid β-peptide (Aβ1-42) on graphene were electrically measured in real time.

  11. VELOCITY EVOLUTION AND THE INTRINSIC COLOR OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Sanders, Nathan E.; Kirshner, Robert P.

    2011-01-01

    To understand how best to use observations of Type Ia supernovae (SNe Ia) to obtain precise and accurate distances, we investigate the relations between spectra of SNe Ia and their intrinsic colors. Using a sample of 1630 optical spectra of 255 SNe, based primarily on data from the CfA Supernova Program, we examine how the velocity evolution and line strengths of Si II λ6355 and Ca II H and K are related to the B – V color at peak brightness. We find that the maximum-light velocity of Si II λ6355 and Ca II H and K and the maximum-light pseudo-equivalent width of Si II λ6355 are correlated with intrinsic color, with intrinsic color having a linear relation with the Si II λ6355 measurements. Ca II H and K does not have a linear relation with intrinsic color, but lower-velocity SNe tend to be intrinsically bluer. Combining the spectroscopic measurements does not improve intrinsic color inference. The intrinsic color scatter is larger for higher-velocity SNe Ia—even after removing a linear trend with velocity—indicating that lower-velocity SNe Ia are more 'standard crayons'. Employing information derived from SN Ia spectra has the potential to improve the measurements of extragalactic distances and the cosmological properties inferred from them.

  12. Contact resistance measurement structures for high frequencies

    NARCIS (Netherlands)

    Roy, Deepu; Pijper, Ralf M.T.; Tiemeijer, Luuk F.; Wolters, Robertus A.M.

    2011-01-01

    Knowledge of the interfacial contact impedance offered by the device at its operating frequency range is crucial for accurate modelling and understanding of the device. In this article, a novel modified TLM test-structure has been devised to extract interfacial contact parameters at frequencies upto

  13. Multiple structure-intrinsic disorder interactions regulate and coordinate Hox protein function

    Science.gov (United States)

    Bondos, Sarah

    During animal development, Hox transcription factors determine fate of developing tissues to generate diverse organs and appendages. Hox proteins are famous for their bizarre mutant phenotypes, such as replacing antennae with legs. Clearly, the functions of individual Hox proteins must be distinct and reliable in vivo, or the organism risks malformation or death. However, within the Hox protein family, the DNA-binding homeodomains are highly conserved and the amino acids that contact DNA are nearly invariant. These observations raise the question: How do different Hox proteins correctly identify their distinct target genes using a common DNA binding domain? One possible means to modulate DNA binding is through the influence of the non-homeodomain protein regions, which differ significantly among Hox proteins. However genetic approaches never detected intra-protein interactions, and early biochemical attempts were hindered because the special features of ``intrinsically disordered'' sequences were not appreciated. We propose the first-ever structural model of a Hox protein to explain how specific contacts between distant, intrinsically disordered regions of the protein and the homeodomain regulate DNA binding and coordinate this activity with other Hox molecular functions.

  14. Comparison of intraocular pressure measurement between rebound, non-contact and Goldmann applanation tonometry in treated glaucoma patients.

    Science.gov (United States)

    Vincent, Stephen J; Vincent, Roslyn A; Shields, David; Lee, Graham A

    2012-01-01

    To compare the intraocular pressure readings obtained with the iCare rebound tonometer and the 7CR non-contact tonometer with those measured by Goldmann applanation tonometry in treated glaucoma patients. A prospective, cross-sectional study was conducted in a private tertiary glaucoma clinic. One hundred nine (54 males : 55 females) patients including only eyes under medical treatment for glaucoma. Measurement by Goldmann applanation tonometry, iCare rebound tonometry and 7CR non-contact tonometry. Intraocular pressure. There were strong correlations between the intraocular pressure measurements obtained with Goldmann and both the rebound and non-contact tonometers (Spearman r-values ≥ 0.79, P tonometer. For the rebound tonometer, the mean intraocular pressure was slightly higher compared with the Goldmann applanation tonometer in the right eyes (P = 0.02), and similar in the left eyes (P = 0.93); however, these differences did not reach statistical significance. The Goldmann correlated measurements from the non-contact tonometer were lower than the average Goldmann reading for both right (P 0.01) eyes. The corneal compensated measurements from the non-contact tonometer were significantly higher compared with the other tonometers (P ≤ 0.001). The iCare rebound tonometer and the 7CR non-contact tonometer measure intraocular pressure in fundamentally different ways to the Goldmann applanation tonometer. The resulting intraocular pressure values vary between the instruments and will need to be considered when comparing clinical versus home acquired measurements. © 2011 The Authors. Clinical and Experimental Ophthalmology © 2011 Royal Australian and New Zealand College of Ophthalmologists.

  15. Nano-indentation at the surface contact level: applying a harmonic frequency for measuring contact stiffness of self-assembled monolayers adsorbed on Au

    International Nuclear Information System (INIS)

    Chang, C.-W.; Liao, J.-D.

    2008-01-01

    In this study, the well-ordered alkanethiolate self-assembled monolayers (SAMs) of varied chain lengths and tail groups were employed as examples for nano-characterization on their mechanical properties. A novel nano-indentation technique with a constant harmonic frequency was applied on SAMs chemically adsorbed on Au to explore their contact mechanics, and furthermore to interpret how SAM molecules respond to an infinitesimal oscillation force without pressing them. Experimental results demonstrated that the harmonic contact stiffness along with the measured displacement of SAMs/Au was distinguishable using a dynamic contact modulus with the distinct feature of phase angles. Phase angles resulted from the relaxing continuation of an applied harmonic frequency and mostly influenced by the outermost tail group of SAM molecules. The harmonic contact stiffness of SAM molecules obviously increased with the densely packed alkyl chains and relatively intense agglomeration of the head group at the anchoring site. As a consequence, the result of this work is relevant to contact mechanics at the surface contact level for the distinction of molecular substances attached on a solid surface. Furthermore it is particularly anticipated to identify biological molecules of variable qualities under a fluid-like micro-environment

  16. Nano-indentation at the surface contact level: applying a harmonic frequency for measuring contact stiffness of self-assembled monolayers adsorbed on Au

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.-W.; Liao, J.-D. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)], E-mail: jdliao@mail.ncku.edu.tw

    2008-08-06

    In this study, the well-ordered alkanethiolate self-assembled monolayers (SAMs) of varied chain lengths and tail groups were employed as examples for nano-characterization on their mechanical properties. A novel nano-indentation technique with a constant harmonic frequency was applied on SAMs chemically adsorbed on Au to explore their contact mechanics, and furthermore to interpret how SAM molecules respond to an infinitesimal oscillation force without pressing them. Experimental results demonstrated that the harmonic contact stiffness along with the measured displacement of SAMs/Au was distinguishable using a dynamic contact modulus with the distinct feature of phase angles. Phase angles resulted from the relaxing continuation of an applied harmonic frequency and mostly influenced by the outermost tail group of SAM molecules. The harmonic contact stiffness of SAM molecules obviously increased with the densely packed alkyl chains and relatively intense agglomeration of the head group at the anchoring site. As a consequence, the result of this work is relevant to contact mechanics at the surface contact level for the distinction of molecular substances attached on a solid surface. Furthermore it is particularly anticipated to identify biological molecules of variable qualities under a fluid-like micro-environment.

  17. submitter Measurement of LYSO Intrinsic Light Yield Using Electron Excitation

    CERN Document Server

    Martinez Turtos, Rosana; Pizzichemi, Marco; Ghezzi, Alessio; Pauwels, Kristof; Auffray, Etiennette; Lecoq, Paul; Paganoni, Marco

    2016-01-01

    The determination of the intrinsic light yield $(LY_{int})$ of scintillating crystals, i.e. number of optical photons created per amount of energy deposited, constitutes a key factor in order to characterize and optimize their energy and time resolution. However, until now measurements of this quantity are affected by large uncertainties and often rely on corrections for bulk absorption and surface/edge state. The novel idea presented in this contribution is based on the confinement of the scintillation emission in the central upper part of a 10 mm cubic crystal using a 1.5 MeV electron beam with diameter of 1 mm. A black non-reflective pinhole aligned with the excitation point is used to fix the light extraction solid angle (narrower than total reflection angle), which then sets a light cone travel path through the crystal. The final number of photoelectrons detected using a Hamamatsu R2059 photomultiplier tube (PMT) was corrected for the extraction solid angle, the Fresnel reflection coefficient and quantum...

  18. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations

    DEFF Research Database (Denmark)

    Holm, René; Borkenfelt, Simon; Allesø, Morten

    2016-01-01

    for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.......g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed......, however for six out of seven compounds similar results were obtained by applying a standard pressure (866MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle...

  19. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements

    Energy Technology Data Exchange (ETDEWEB)

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland [Institute of Materials Physics, Graz University of Technology, A-8010 Graz (Austria)

    2016-07-15

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.

  20. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  1. Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer

    Science.gov (United States)

    Matilainen, Mika; Tuononen, Ari

    2015-02-01

    We determined the tyre contact length on dry and wet roads by measuring the accelerations of the inner liner with a three-axial accelerometer. The influence of the tyre pressure, driving velocity, and tread depth on the contact length was studied in both types of road surface conditions. On dry asphalt the contact length was almost constant, regardless of the driving velocity. On wet asphalt the presence of water could be detected even at low driving velocities (e.g. 20 km/h for a worn tyre) as the contact length began to decrease from that found in the dry asphalt situation. In addition to improving the performance of active safety systems and driver warning systems, the contact length information could be beneficial for classifying and studying the aquaplaning behaviour of tyres.

  2. Quantifying team cooperation through intrinsic multi-scale measures: respiratory and cardiac synchronization in choir singers and surgical teams.

    Science.gov (United States)

    Hemakom, Apit; Powezka, Katarzyna; Goverdovsky, Valentin; Jaffer, Usman; Mandic, Danilo P

    2017-12-01

    A highly localized data-association measure, termed intrinsic synchrosqueezing transform (ISC), is proposed for the analysis of coupled nonlinear and non-stationary multivariate signals. This is achieved based on a combination of noise-assisted multivariate empirical mode decomposition and short-time Fourier transform-based univariate and multivariate synchrosqueezing transforms. It is shown that the ISC outperforms six other combinations of algorithms in estimating degrees of synchrony in synthetic linear and nonlinear bivariate signals. Its advantage is further illustrated in the precise identification of the synchronized respiratory and heart rate variability frequencies among a subset of bass singers of a professional choir, where it distinctly exhibits better performance than the continuous wavelet transform-based ISC. We also introduce an extension to the intrinsic phase synchrony (IPS) measure, referred to as nested intrinsic phase synchrony (N-IPS), for the empirical quantification of physically meaningful and straightforward-to-interpret trends in phase synchrony. The N-IPS is employed to reveal physically meaningful variations in the levels of cooperation in choir singing and performing a surgical procedure. Both the proposed techniques successfully reveal degrees of synchronization of the physiological signals in two different aspects: (i) precise localization of synchrony in time and frequency (ISC), and (ii) large-scale analysis for the empirical quantification of physically meaningful trends in synchrony (N-IPS).

  3. Effects of contact resistance on electrical conductivity measurements of SiC-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Thomsen, E.C.; Henager, C.H., E-mail: chuck.henager@pnnl.gov

    2013-11-15

    A combination 2/4-probe method was used to measure electrical resistances across a pure, monolithic CVD-SiC disc sample with contact resistance at the SiC/metallic electrode interfaces. By comparison of the almost simultaneous 2/4-probe measurements, the specific contact resistance (R{sub c}) and its temperature dependence were determined for two types (sputtered gold and porous nickel) electrodes from room temperature (RT) to ∼973 K. The R{sub c}-values behaved similarly for each type of metallic electrode: R{sub c} > ∼1000 Ω cm{sup 2} at RT, decreasing continuously to ∼1–10 Ω cm{sup 2} at 973 K. The temperature dependence of the inverse R{sub c} indicated thermally activated electrical conduction across the SiC/metallic interface with an apparent activation energy of ∼0.3 eV. For the flow channel insert application in a fusion reactor blanket, contact resistance potentially could reduce the transverse electrical conductivity by about 50%.

  4. On the uniqueness of the receding contact angle: effects of substrate roughness and humidity on evaporation of water drops.

    Science.gov (United States)

    Pittoni, Paola G; Lin, Chia-Hui; Yu, Teng-Shiang; Lin, Shi-Yow

    2014-08-12

    Could a unique receding contact angle be indicated for describing the wetting properties of a real gas-liquid-solid system? Could a receding contact angle be defined if the triple line of a sessile drop is not moving at all during the whole measurement process? To what extent is the receding contact angle influenced by the intrinsic properties of the system or the measurement procedures? In order to answer these questions, a systematic investigation was conducted in this study on the effects of substrate roughness and relative humidity on the behavior of pure water drops spreading and evaporating on polycarbonate (PC) surfaces characterized by different morphologies. Dynamic, advancing, and receding contact angles were found to be strongly affected by substrate roughness. Specifically, a receding contact angle could not be measured at all for drops evaporating on the more rugged PC surfaces, since the drops were observed strongly pinning to the substrate almost until their complete disappearance. Substrate roughness and system relative humidity were also found responsible for drastic changes in the depinning time (from ∼10 to ∼60 min). Thus, for measurement observations not sufficiently long, no movement of the triple line could be noted, with, again, the failure to find a receding contact angle. Therefore, to keep using concepts such as the receding contact angle as meaningful specifications of a given gas-liquid-solid system, the imperative to carefully investigate and report the inner characteristics of the system (substrate roughness, topography, impurities, defects, chemical properties, etc.) is pointed out in this study. The necessity of establishing methodological standards (drop size, measurement method, system history, observation interval, relative humidity, etc.) is also suggested.

  5. Electrical Contacts in Monolayer Arsenene Devices.

    Science.gov (United States)

    Wang, Yangyang; Ye, Meng; Weng, Mouyi; Li, Jingzhen; Zhang, Xiuying; Zhang, Han; Guo, Ying; Pan, Yuanyuan; Xiao, Lin; Liu, Junku; Pan, Feng; Lu, Jing

    2017-08-30

    Arsenene, arsenic analogue of graphene, as an emerging member of two-dimensional semiconductors (2DSCs), is quite promising in next-generation electronic and optoelectronic applications. The metal electrical contacts play a vital role in the charge transport and photoresponse processes of nanoscale 2DSC devices and even can mask the intrinsic properties of 2DSCs. Here, we present a first comprehensive study of the electrical contact properties of monolayer (ML) arsenene with different electrodes by using ab initio electronic calculations and quantum transport simulations. Schottky barrier is always formed with bulk metal contacts owing to the Fermi level pinning (pinning factor S = 0.33), with electron Schottky barrier height (SBH) of 0.12, 0.21, 0.25, 0.35, and 0.50 eV for Sc, Ti, Ag, Cu, and Au contacts and hole SBH of 0.75 and 0.78 eV for Pd and Pt contacts, respectively. However, by contact with 2D graphene, the Fermi level pinning effect can be reduced due to the suppression of metal-induced gap states. Remarkably, a barrier free hole injection is realized in ML arsenene device with graphene-Pt hybrid electrode, suggestive of a high device performance in such a ML arsenene device. Our study provides a theoretical foundation for the selection of favorable electrodes in future ML arsenene devices.

  6. Investigation of human body potential measured by a non-contact measuring system.

    Science.gov (United States)

    Ichikawa, Norimitsu

    2016-12-07

    A human body is occasionally electrified in a room. This charged object will be a source of electrostatic accidents, including the malfunction of electronic equipment. Hence, prevention of these accidents is required. Accidents occasionally occur, even though antistatic clothes and shoes are used. One of the causes for these accidents is that there is a lack of the preventive measures. This situation occurs when using, for example, unconductive wax. In this study, human body potential (voltage) is measured using a non-contact measuring system. An investigation of the human body's voltage when using this system is conducted. The result demonstrates that the voltage of a human body wearing antistatic clothes and shoes or light clothes and slippers exceeds a malfunctioning voltage of a microelectronics device when the body walks on floors. Thus, accidents may occur even if a human body wearing the antistatic clothes walks on flooring. These results will be useful in estimating determination whether electrostatic accidents occur or not.

  7. Atopic dermatitis results in intrinsic barrier and immune abnormalities: Implications for contact dermatitis

    Science.gov (United States)

    Gittler, Julia K.; Krueger, James G.; Guttman-Yassky, Emma

    2014-01-01

    Atopic dermatitis (AD), as well as irritant contact dermatitis (ICD) and allergic contact dermatitis (ACD), are common skin diseases. These diseases are characterized by skin inflammation mediated by activated innate immunity or acquired immune mechanisms. Although AD, ICD, and ACD can be encountered in pure forms by allergists and dermatologists, patients with AD often present with increased frequency of ICD and ACD. Although a disturbed barrier alone could potentiate immune reactivity in patients with AD through increased antigen penetration, additional immune mechanisms might explain the increased susceptibility of atopic patients to ICD and ACD. This review discusses cellular pathways associated with increased skin inflammation in all 3 conditions and presents mechanisms that might contribute to the increased rate of ICD and ACD in patients with AD. PMID:22939651

  8. Temperature dependence of contact resistance at metal/MWNT interface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Eui; Moon, Kyoung-Seok; Sohn, Yoonchul, E-mail: yoonchul.son@samsung.com [Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 443-803 (Korea, Republic of)

    2016-07-11

    Although contact resistance of carbon nanotube (CNT) is one of the most important factors for practical application of electronic devices, a study regarding temperature dependence on contact resistance of CNTs with metal electrodes has not been found. Here, we report an investigation of contact resistance at multiwalled nanotube (MWNT)/Ag interface as a function of temperature, using MWNT/polydimethylsiloxane (PDMS) composite. Electrical resistance of MWNT/PDMS composite revealed negative temperature coefficient (NTC). Excluding the contact resistance with Ag electrode, the NTC effect became less pronounced, showing lower intrinsic resistivity with the activation energy of 0.019 eV. Activation energy of the contact resistance of MWNT/Ag interface was determined to be 0.04 eV, two times larger than that of MWNT-MWNT network. The increase in the thermal fluctuation assisted electron tunneling is attributed to conductivity enhancement at both MWNT/MWNT and MWNT/Ag interfaces with increasing temperature.

  9. Contact Angle of Drops Measured on Nontransparent Surfaces and Capillary Flow Visualized

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2003-01-01

    The spreading of a liquid on a solid surface is important for various practical processes, and contact-angle measurements provide an elegant method to characterize the interfacial properties of the liquid with the solid substrates. The complex physical processes occurring when a liquid contacts a solid play an important role in determining the performance of chemical processes and materials. Applications for these processes are in printing, coating, gluing, textile dyeing, and adhesives and in the pharmaceutical industry, biomedical research, adhesives, flat panel display manufacturing, surfactant chemistry, and thermal engineering.

  10. Evaluation of the nanotube intrinsic resistance across the tip-carbon nanotube-metal substrate junction by Atomic Force Microscopy.

    Science.gov (United States)

    Dominiczak, Maguy; Otubo, Larissa; Alamarguy, David; Houzé, Frédéric; Volz, Sebastian; Noël, Sophie; Bai, Jinbo

    2011-04-14

    Using an atomic force microscope (AFM) at a controlled contact force, we report the electrical signal response of multi-walled carbon nanotubes (MWCNTs) disposed on a golden thin film. In this investigation, we highlight first the theoretical calculation of the contact resistance between two types of conductive tips (metal-coated and doped diamond-coated), individual MWCNTs and golden substrate. We also propose a circuit analysis model to schematize the «tip-CNT-substrate» junction by means of a series-parallel resistance network. We estimate the contact resistance R of each contribution of the junction such as Rtip-CNT, RCNT-substrate and Rtip-substrate by using the Sharvin resistance model. Our final objective is thus to deduce the CNT intrinsic radial resistance taking into account the calculated electrical resistance values with the global resistance measured experimentally. An unwished electrochemical phenomenon at the tip apex has also been evidenced by performing measurements at different bias voltages with diamond tips. For negative tip-substrate bias, a systematic degradation in color and contrast of the electrical cartography occurs, consisting of an important and non-reversible increase of the measured resistance. This effect is attributed to the oxidation of some amorphous carbon areas scattered over the diamond layer covering the tip. For a direct polarization, the CNT and substrate surface can in turn be modified by an oxidation mechanism.

  11. Self-perception of intrinsic and extrinsic motivation.

    Science.gov (United States)

    Calder, B J; Staw, B M

    1975-04-01

    Self-perception theory predicts that intrinsic and extrinsic motivation do not combine additively but rather interact. To test this predicted interaction, intrinsic and extrinsic motivation were both manipulated as independent variables. The results revealed a significant interaction for task satisfaction and a trend for the interaction on a behavioral measure. These results are discussed in terms of a general approach to the self-perception of motivation.

  12. Analysis of non-contact and contact probe-to-sample thermal exchange for quantitative measurements of thin film and nanostructure thermal conductivity by the scanning hot probe method

    Science.gov (United States)

    Wilson, Adam A.

    The ability to measure thermal properties of thin films and nanostructured materials is an important aspect of many fields of academic study. A strategy especially well-suited for nanoscale investigations of these properties is the scanning hot probe technique, which is unique in its ability to non-destructively interrogate the thermal properties with high resolution, both laterally as well as through the thickness of the material. Strategies to quantitatively determine sample thermal conductivity depend on probe calibration. State of the art calibration strategies assume that the area of thermal exchange between probe and sample does not vary with sample thermal conductivity. However, little investigation has gone into determining whether or not that assumption is valid. This dissertation provides a rigorous study into the probe-to-sample heat transfer through the air gap at diffusive distances for a variety of values of sample thermal conductivity. It is demonstrated that the thermal exchange radius and gap/contact thermal resistance varies with sample thermal conductivity as well as tip-to-sample clearance in non-contact mode. In contact mode, it is demonstrated that higher thermal conductivity samples lead to a reduction in thermal exchange radius for Wollaston probe tips. Conversely, in non-contact mode and in contact mode for sharper probe tips where air contributes the most to probe-to-sample heat transfer, the opposite trend occurs. This may be attributed to the relatively strong solid-to-solid conduction occurring between probe and sample for the Wollaston probes. A three-dimensional finite element (3DFE) model was developed to investigate how the calibrated thermal exchange parameters vary with sample thermal conductivity when calibrating the probe via the intersection method in non-contact mode at diffusive distances. The 3DFE model was then used to explore the limits of sensitivity of the experiment for a range of simulated experimental conditions. It

  13. Temperature dependence of annealing on the contact resistance of MoS2 with graphene electrodes observed

    Science.gov (United States)

    Lu, Qin; Fang, Cizhe; Liu, Yan; Shao, Yao; Han, Genquan; Zhang, Jincheng; Hao, Yue

    2018-04-01

    Two-dimensional (2D) materials are promising candidates for atomically thin nanoelectronics. Among them, MoS2 has attracted considerable attention in the nanoscience and nanotechnology community owing to its unique characteristics including high electron mobility and intrinsic band gap. In this study, we experimentally explored the contact resistances of MoS2 films based on much layered graphene films as electrodes using the circular transmission line model (CTLM). The variation in the chemical composition of the material is thoroughly analyzed by Raman and X-ray photoelectric spectroscopy (XPS) measurements. Experimental results demonstrate that annealing followed by oxygen plasma treatment can effectively improve the contact resistance. Furthermore, the current-voltage curves measured after different annealing temperatures indicate good linear characteristics, which means a marked improvement in electrical property. Calculations show that a relatively low contact resistance of ˜4.177 kΩ (ignoring its size) without back gate voltage in a single-layer graphene/MoS2 structure at an optimal annealing temperature of 500 °C is achieved. This work about the effect of annealing temperature on contact resistance can also be employed for other 2D materials, which lays a foundation for further development of novel 2D material devices.

  14. Role of Firing Temperature, Sheet Resistance, and Contact Area in Contact Formation on Screen-Printed Metal Contact of Silicon Solar Cell

    Science.gov (United States)

    Ahmad, Samir Mahmmod; Leong, Cheow Siu; Sopian, K.; Zaidi, Saleem H.

    2018-03-01

    Formation of an Ohmic contact requires a suitable firing temperature, appropriate doping profile, and contact dimensions within resolution limits of the screen-printing process. In this study, the role of the peak firing temperature in standard rapid thermal annealing (RTA) six-zone conveyor belt furnace (CBF) and two inexpensive alternate RTA systems [a custom-designed, three-zone, 5″-diameter quartz tube furnace (QTF) and a tabletop, 3″-diameter rapid thermal processing (RTP)] has been investigated. In addition, the role of sheet resistance and contact area in achieving low-resistance ohmic contacts has been examined. Electrical measurements of ohmic contacts between silver paste/ n +-emitter layer with varying sheet resistances and aluminum paste/ p-doped wafer were carried out in transmission line method configuration. Experimental measurements of the contact resistivity ( ρ c) exhibited the lowest values for CBF at 0.14 mΩ cm2 for Ag and 100 mΩ cm2 for Al at a peak firing temperature of 870°C. For the QTF configuration, lowest measured contact resistivities were 3.1 mΩ cm2 for Ag and 74.1 mΩ cm2 for Al at a peak firing temperature of 925°C. Finally, for the RTP configuration, lowest measured contact resistivities were 1.2 mΩ cm2 for Ag and 68.5 mΩ cm2 for Al at a peak firing temperature of 780°C. The measured contact resistivity exhibits strong linear dependence on sheet resistance. The contact resistivity for Ag decreases with contact area, while for Al the opposite behavior is observed.

  15. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.

    Science.gov (United States)

    Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B-H; Bao, Zhenan

    2018-03-01

    Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable-like human skin-would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a

  16. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array

    Science.gov (United States)

    Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R.; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M.; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B.-H.; Bao, Zhenan

    2018-03-01

    Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable—like human skin—would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a

  17. The Benefits of Mouse Keeping—an Empirical Study on Students' Flow and Intrinsic Motivation in Biology Lessons

    Science.gov (United States)

    Meyer, Annika; Klingenberg, Konstantin; Wilde, Matthias

    2016-02-01

    Contact with living animals is an exceptional possibility within biology education to facilitate an intense immersion into the study topic and even allow for a flow experience (Csikszentmihalyi 2000). Further, it might affect the perceptions of the students' basic needs for autonomy and competence and thereby their quality of motivation (Deci and Ryan 1985, 2002). Still, there is little empirical evidence about the duration of the exposure with living animals that is required. We investigated the students' flow experience, and the students' motivation, reported retrospectively in three different treatments: lessons involving short-term or long-term contact with living harvest mice and a control group without living animals. Our sample consisted of 156 fifth graders (10.76 years, SD = 0.513). The test instruments were adapted versions of the Flow Short Scale (FSS, Rheinberg et al. 2003) and of the Intrinsic Motivation Inventory (IMI, Ryan 1982). As expected, the control group produced significantly lower scores for both FSS and IMI. In addition, we found a significant difference between students with short-term versus long-term contact. Whereas the flow experience was indistinguishable for all pupils who had contact with living animals, those with long-term experience reported significantly higher intrinsic motivation.

  18. Intrinsic motivation and sportsmanship: mediating role of interpersonal relationships.

    Science.gov (United States)

    Núñez, Juan L; Martín-Albo, José; Navarro, José G; Sánchez, Juana M; González-Cutre, David

    2009-06-01

    This study analyzed the mediating role of interpersonal relations between intrinsic motivation and sportsmanship. Athletes (98 men, 97 women), ages 11 to 43 years, completed measures of intrinsic motivation toward sports, self-concept of social and family relations, and sportsmanship orientation. A structural equation model indicated that self-concept of interpersonal relations mediated the relation between intrinsic motivation and sportsmanship. Also, intrinsic motivation was directly and positively associated with self-concept of interpersonal relations, which, in turn, was positively and significantly related to sportsmanship. Variances explained by self-concept of interpersonal relations and by sportsmanship were 32 and 56%, respectively. The motivational interaction between the context of interpersonal relations and the sports context proposed in the hierarchical model of intrinsic and extrinsic motivation was discussed.

  19. Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency

    Science.gov (United States)

    Platt, Michael; Jagodnik, John

    2011-01-01

    A system for turbo machinery blade vibration has been developed that combines time-of-arrival sensors for blade vibration amplitude measurement and radar sensors for vibration frequency and mode identification. The enabling technology for this continuous blade monitoring system is the radar sensor, which provides a continuous time series of blade displacement over a portion of a revolution. This allows the data reduction algorithms to directly calculate the blade vibration frequency and to correctly identify the active modes of vibration. The work in this project represents a significant enhancement in the mode identification and stress calculation accuracy in non-contacting stress measurement system (NSMS) technology when compared to time-of-arrival measurements alone.

  20. Determination of a Wear Initiation Cycle by using a Contact Resistance Measurement in Nuclear Fuel Fretting

    International Nuclear Information System (INIS)

    Lee, Young Ho; Kim, Hyung Kyu

    2008-01-01

    In nuclear fuel fretting, the improving of the contact condition with a modified spring shape is a useful method for increasing the wear resistance of the nuclear fuel rod. This is because the fretting wear resistance between the fuel rod and grid spring is mainly affected by the grid spring shape rather than the environment, the contact modes, etc. In addition, the wear resistance is affected by the wear debris behavior between contact surfaces. So, it is expected that the wear initiation of each spring shape should be determined in order to evaluate a wear resistance. However, it is almost impossible to measure the wear behavior in contact surfaces on a real time basis because the contact surfaces are always hidden. Besides, the results of the worn surface observation after the fretting wear tests are restricted to archive the information on the wear debris behavior and the formation mechanism of the wear scar. In order to evaluate the wear behavior during the fretting wear tests, it is proposed that the contact resistance measurement is a useful method for examining the wear initiation cycle and modes. Generally, fretting wear damages are rapidly progressed by a localized plastic deformation between the contact surfaces, crack initiation and fracture of the deformed surface with a strain hardening difference between a surface and a subsurface and finally a detachment of wear debris. After this, wear debris is easily oxidized by frictional heat, test environment, etc. At this time, a small amount of electric current applied between the contact surfaces will be influenced by the wear debris, which could be an obstacle to an electric current flow. So, it is possible to archive the information on the wear behavior by measuring the contact resistance. In order to determine the wear initiation cycle during the fretting wear tests, in this study, fretting wear tests have been performed by applying a constant electric current in room temperature air

  1. Studies of non-contact methods for roughness measurements on wood surfaces

    International Nuclear Information System (INIS)

    Lundberg, I.A.S.; Porankiewicz, B.

    1995-01-01

    The quality of wood surfaces after different kinds of machining processes is a property of great importance for the wood processing industries. Present work is a study, whose objective was to evaluate different non-contact methods, for measurement of the quality of the wood surfaces by correlating them with stylus tracing. A number of Scots Pine samples were prepared by different kinds of wood machining processing. Surface roughness measurements were performed, utilizing two optical noncontact methods. The results indicate that the laser scan method can measure surface roughness on sawn wood with a sufficient degree of accuracy. (author) [de

  2. Intrinsic and Extrinsic Motivation for Stereotypic and Repetitive Behavior

    Science.gov (United States)

    Joosten, Annette V.; Bundy, Anita C.; Einfeld, Stewart L.

    2009-01-01

    This study provides evidence for intrinsic and extrinsic motivators for stereotypical and repetitive behavior in children with autism and intellectual disability and children with intellectual disability alone. We modified the Motivation Assessment Scale (MAS) (1988b); dividing it into intrinsic and extrinsic measures and adding items to assess…

  3. The measurement of the intrinsic impurities of molybdenum and carbon in the Alcator C-Mod tokamak plasma using low resolution spectroscopy

    Science.gov (United States)

    May, M. J.; Finkenthal, M.; Regan, S. P.; Moos, H. W.; Terry, J. L.; Goetz, J. A.; Graf, M. A.; Rice, J. E.; Marmar, E. S.; Fournier, K. B.; Goldstein, W. H.

    1997-06-01

    The intrinsic impurity content of molybdenum and carbon was measured in the Alcator C-Mod tokamak using low resolution, multilayer mirror (MLM) spectroscopy ( Delta lambda ~1-10 AA). Molybdenum was the dominant high-Z impurity and originated from the molybdenum armour tiles covering all of the plasma facing surfaces (including the inner column, the poloidal divertor plates and the ion cyclotron resonant frequency (ICRF) limiter) at Alcator C-Mod. Despite the all metal first wall, a carbon concentration of 1 to 2% existed in the plasma and was the major low-Z impurity in Alcator C-Mod. Thus, the behaviour of intrinsic molybdenum and carbon penetrating into the main plasma and the effect on the plasma must be measured and characterized during various modes of Alcator C-Mod operation. To this end, soft X-ray extreme ultraviolet (XUV) emission lines of charge states, ranging from hydrogen-like to helium-like lines of carbon (radius/minor radius, r/a~1) at the plasma edge to potassium to chlorine-like (0.4Data Nucl. Data Tables 33 (1985) 149), which were incorporated into the collisional radiative model. The intrinsic i

  4. ON MEASURING AMPLITUDES AND PERIODS OF PHYSICAL PENDULUM MICRO-SWINGS WITH ROLLING-CONTACT BEARING

    Directory of Open Access Journals (Sweden)

    N. N. Riznookaya

    2011-01-01

    Full Text Available The paper considers a method and an instrument for measuring amplitudes and  periods of physical pendulum oscillations with rolling-contact bearing in the regime of micro-swings when the oscillation amplitude is significantly less of an elastic contact angle. It has been established that the main factors limiting a measuring accuracy are noises of the measuring circuit, base vibration and analog-digital conversion. A new measuring methodology based on original algorithms of data processing and application of the well-known methods for statistic processing of a measuring signal is  proposed in the paper. The paper contains error estimations for measuring oscillation amplitudes justified by discreteness of a signal conversion in a photoelectric receptor and also by the influence of measuring circuit noise. The paper reveals that the applied methodologies make it possible to ensure measuring of amplitudes with an error of 0.2 second of arc and measuring of a period with an error of 10–4 s. The original measuring instrument including mechanical and optical devices and also an electric circuit of optical-to-electrical measuring signal conversion is described in the paper. 

  5. A method for the measurement of the intrinsic dead time of a counting system

    International Nuclear Information System (INIS)

    Wyllie, H.A.

    1989-01-01

    Equations are derived for (a) the determination of the intrinsic dead time of a counting system in the components preceding the paralysis unit which imposes the set dead time, and (b) a more accurate correction of count rates in a single-channel system, taking into account the extension of the set dead time by the intrinsic dead time. (author)

  6. The effect of homework choices on achievement and intrinsic motivation

    Science.gov (United States)

    Christensen, Emily Fast

    The purpose of this research was to test an intervention of choices in homework on the achievement and intrinsic motivation of seventh-grade science students at a middle school. The intervention was based on concepts from the cognitive evaluation theory of Edward L. Deci and Richard M. Ryan (1985). The subjects were sixteen heterogeneous classes of seventh-grade students, who were divided among four teachers. Two randomly chosen classes from each teacher received choices in their homework and the remaining two classes of each teacher received similar homework assignments without choices. Two hypotheses were developed for this study: (1) Seventh-grade science students given choices in their homework would show an increase in intrinsic motivation as measured on a motivation orientation measure, compared to students not given choices in their homework, and (2) Seventh-grade science students given choices in their homework would show an increase in achievement on an achievement measure, compared to students not given choices in their homework. Having choices in homework did not increase intrinsic motivation or achievement. However, students who did their homework did significantly better on the posttest, and students who were more intrinsically motivated did significantly better on the posttest. Just doing the homework was important for achievement, and intrinsic motivation was linked to achievement.

  7. The effect of hydrogel and silicone hydrogel contact lenses on the measurement of intraocular pressure with rebound tonometry.

    Science.gov (United States)

    Zeri, Fabrizio; Calcatelli, Paolo; Donini, Bernardo; Lupelli, Luigi; Zarrilli, Luciana; Swann, Peter G

    2011-12-01

    To assess the accuracy of intraocular pressure (IOP) measurements using rebound tonometry over disposable hydrogel (etafilcon A) and silicone hydrogel (senofilcon A) contact lenses (CLs) of different powers. The experimental group comprised 36 subjects (19 male, 17 female). IOP measurements were undertaken on the subject's right eyes in random order using a rebound tonometer (ICare). The CLs had powers of +2.00D, -2.00D and -6.00D. Six measurements were taken over each contact lens and also before and after the CLs had been worn. A good correlation was found between IOP measurements with and without CLs (all r≥0.80; pContact Lens Association. Published by Elsevier Ltd. All rights reserved.

  8. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis.

    Science.gov (United States)

    Xu, Z N

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop

  9. Extrinsic and intrinsic motivation at 30: Unresolved scientific issues.

    Science.gov (United States)

    Reiss, Steven

    2005-01-01

    The undermining effect of extrinsic reward on intrinsic motivation remains unproven. The key unresolved issues are construct invalidity (all four definitions are unproved and two are illogical); measurement unreliability (the free-choice measure requires unreliable, subjective judgments to infer intrinsic motivation); inadequate experimental controls (negative affect and novelty, not cognitive evaluation, may explain "undermining" effects); and biased metareviews (studies with possible floor effects excluded, but those with possible ceiling effects included). Perhaps the greatest error with the undermining theory, however, is that it does not adequately recognize the multifaceted nature of intrinsic motivation (Reiss, 2004a). Advice to limit the use of applied behavior analysis based on "hidden" undermining effects is ideologically inspired and is unsupported by credible scientific evidence.

  10. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations.

    Science.gov (United States)

    Holm, René; Borkenfelt, Simon; Allesø, Morten; Andersen, Jens Enevold Thaulov; Beato, Stefania; Holm, Per

    2016-02-10

    Compounds wettability is critical for a number of central processes including disintegration, dispersion, solubilisation and dissolution. It is therefore an important optimisation parameter both in drug discovery but also as guidance for formulation selection and optimisation. Wettability for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed, however for six out of seven compounds similar results were obtained by applying a standard pressure (866 MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle. Only for special cases where compounds have poor compressibility would there be a need for a surface-quality-control step before the contact angle determination. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Dynamic Contact Angle at the Nanoscale: A Unified View.

    Science.gov (United States)

    Lukyanov, Alex V; Likhtman, Alexei E

    2016-06-28

    Generation of a dynamic contact angle in the course of wetting is a fundamental phenomenon of nature. Dynamic wetting processes have a direct impact on flows at the nanoscale, and therefore, understanding them is exceptionally important to emerging technologies. Here, we reveal the microscopic mechanism of dynamic contact angle generation. It has been demonstrated using large-scale molecular dynamics simulations of bead-spring model fluids that the main cause of local contact angle variations is the distribution of microscopic force acting at the contact line region. We were able to retrieve this elusive force with high accuracy. It has been directly established that the force distribution can be solely predicted on the basis of a general friction law for liquid flow at solid surfaces by Thompson and Troian. The relationship with the friction law provides both an explanation of the phenomenon of dynamic contact angle and a methodology for future predictions. The mechanism is intrinsically microscopic, universal, and irreducible and is applicable to a wide range of problems associated with wetting phenomena.

  12. Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines

    Science.gov (United States)

    Manara, J.; Zipf, M.; Stark, T.; Arduini, M.; Ebert, H.-P.; Tutschke, A.; Hallam, A.; Hanspal, J.; Langley, M.; Hodge, D.; Hartmann, J.

    2017-01-01

    The objective of the EU project "Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines (acronym STARGATE)" is the development of a suite of advanced sensors, instrumentation and related systems in order to contribute to the developing of the next generation of green and efficient gas turbine engines. One work package of the project deals with the design and development of a long wavelength infrared (LWIR) radiation thermometer for the non-contact measurement of the surface temperature of thermal barrier coatings (TBCs) during the operation of gas turbine engines. For opaque surfaces (e.g. metals or superalloys) radiation thermometers which are sensitive in the near or short wavelength infrared are used as state-of-the-art method for non-contact temperature measurements. But this is not suitable for oxide ceramic based TBCs (e.g. partially yttria stabilized zirconia) as oxide ceramics are semi-transparent in the near and short wavelength infrared spectral region. Fortunately the applied ceramic materials are non-transparent in the long wavelength infrared and additionally exhibit a high emittance in this wavelength region. Therefore, a LWIR pyrometer can be used for non-contact temperature measurements of the surfaces of TBCs as such pyrometers overcome the described limitation of existing techniques. For performing non-contact temperature measurements in gas turbines one has to know the infrared-optical properties of the applied TBCs as well as of the hot combustion gas in order to properly analyse the measurement data. For reaching a low uncertainty on the one hand the emittance of the TBC should be high (>0.9) in order to reduce reflections from the hot surrounding and on the other hand the absorbance of the hot combustion gas should be low (<0.1) in order to decrease the influence of the gas on the measured signal. This paper presents the results of the work performed by the authors with focus on the implementation of the LWIR pyrometer and the

  13. Elastic moduli of faceted aluminum nitride nanotubes measured by contact resonance atomic force microscopy

    International Nuclear Information System (INIS)

    Stan, G; Cook, R F; Ciobanu, C V; Thayer, T P; Wang, G T; Creighton, J R; Purushotham, K P; Bendersky, L A

    2009-01-01

    A new methodology for determining the radial elastic modulus of a one-dimensional nanostructure laid on a substrate has been developed. The methodology consists of the combination of contact resonance atomic force microscopy (AFM) with finite element analysis, and we illustrate it for the case of faceted AlN nanotubes with triangular cross-sections. By making precision measurements of the resonance frequencies of the AFM cantilever-probe first in air and then in contact with the AlN nanotubes, we determine the contact stiffness at different locations on the nanotubes, i.e. on edges, inner surfaces, and outer facets. From the contact stiffness we have extracted the indentation modulus and found that this modulus depends strongly on the apex angle of the nanotube, varying from 250 to 400 GPa for indentation on the edges of the nanotubes investigated.

  14. Dynamic strain measurements in a sliding microstructured contact

    International Nuclear Information System (INIS)

    Bennewitz, Roland; David, Jonathan; Lannoy, Charles-Francois de; Drevniok, Benedict; Hubbard-Davis, Paris; Miura, Takashi; Trichtchenko, Olga

    2008-01-01

    A novel experiment is described which measures the tangential strain development across the contact between a PDMS (polydimethylsiloxane) block and a glass surface during the initial stages of sliding. The surface of the PDMS block has been microfabricated to take the form of a regular array of pyramidal tips at 20 μm separation. Tangential strain is measured by means of light scattering from the interface between the block and surface. Three phases are observed in all experiments: initial shear deformation of the whole PDMS block, a pre-sliding tangential compression of the tip array with stepwise increase of the compressive strain, and sliding in stick-slip movements as revealed by periodic variation of the strain. The stick-slip sliding between the regular tip array and the randomly rough counter surface always takes on the periodicity of the tip array. The fast slip can cause either a sudden increase or a sudden decrease in compressive strain

  15. Investigation of intrinsic toroidal rotation scaling in KSTAR

    Science.gov (United States)

    Yoo, J. W.; Lee, S. G.; Ko, S. H.; Seol, J.; Lee, H. H.; Kim, J. H.

    2017-07-01

    The behaviors of an intrinsic toroidal rotation without any external momentum sources are investigated in KSTAR. In these experiments, pure ohmic discharges with a wide range of plasma parameters are carefully selected and analyzed to speculate an unrevealed origin of toroidal rotation excluding any unnecessary heating sources, magnetic perturbations, and strong magneto-hydrodynamic activities. The measured core toroidal rotation in KSTAR is mostly in the counter-current direction and its magnitude strongly depends on the ion temperature divided by plasma current (Ti/IP). Especially the core toroidal rotation in the steady-state is well fitted by Ti/IP scaling with a slope of ˜-23, and the possible explanation of the scaling is compared with various candidates. As a result, the calculated offset rotation could not explain the measured core toroidal rotation since KSTAR has an extremely low intrinsic error field. For the stability conditions for ion and electron turbulences, it is hard to determine a dominant turbulence mode in this study. In addition, the intrinsic toroidal rotation level in ITER is estimated based on the KSTAR scaling since the intrinsic rotation plays an important role in stabilizing resistive wall modes for future reference.

  16. Intrinsic Cell Stress is Independent of Organization in Engineered Cell Sheets.

    Science.gov (United States)

    van Loosdregt, Inge A E W; Dekker, Sylvia; Alford, Patrick W; Oomens, Cees W J; Loerakker, Sandra; Bouten, Carlijn V C

    2018-06-01

    Understanding cell contractility is of fundamental importance for cardiovascular tissue engineering, due to its major impact on the tissue's mechanical properties as well as the development of permanent dimensional changes, e.g., by contraction or dilatation of the tissue. Previous attempts to quantify contractile cellular stresses mostly used strongly aligned monolayers of cells, which might not represent the actual organization in engineered cardiovascular tissues such as heart valves. In the present study, therefore, we investigated whether differences in organization affect the magnitude of intrinsic stress generated by individual myofibroblasts, a frequently used cell source for in vitro engineered heart valves. Four different monolayer organizations were created via micro-contact printing of fibronectin lines on thin PDMS films, ranging from strongly anisotropic to isotropic. Thin film curvature, cell density, and actin stress fiber distribution were quantified, and subsequently, intrinsic stress and contractility of the monolayers were determined by incorporating these data into sample-specific finite element models. Our data indicate that the intrinsic stress exerted by the monolayers in each group correlates with cell density. Additionally, after normalizing for cell density and accounting for differences in alignment, no consistent differences in intrinsic contractility were found between the different monolayer organizations, suggesting that the intrinsic stress exerted by individual myofibroblasts is independent of the organization. Consequently, this study emphasizes the importance of choosing proper architectural properties for scaffolds in cardiovascular tissue engineering, as these directly affect the stresses in the tissue, which play a crucial role in both the functionality and remodeling of (engineered) cardiovascular tissues.

  17. Certification of contact probe measurement of surface wave of Li jet for IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Okita, Takafumi, E-mail: okita@stu.nucl.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka (Japan); Hoashi, Eiji; Yoshihashi, Sachiko [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka (Japan); Kondo, Hiroo; Kanemura, Takuji [Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki (Japan); Yamaoka, Nobuo; Horiike, Hiroshi [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka (Japan)

    2015-10-15

    Highlights: • We have conducted experiments of liquid lithium free-surface flow for IFMIF. • In the experiment using electro-contact probe apparatus, a droplet of liquid Li on the middle of measurement probe was observed. • Behavior of a droplet and false detections were observed by using HSV camera. • The error of the statistical result was roughly evaluated about 1%. • From results of numerical simulations, we obtained the detailed information about the behavior of a Li droplet. - Abstract: The international fusion material irradiation facility (IFMIF) is a neutron source for developing fusion reactor materials. A liquid lithium (Li) jet with free surface is planned as a target to generate intense neutron field. It is important to obtain information on the surface wave characteristic for safety of the facility and efficient neutron generation. Surface wave characteristics experiment using the liquid Li circulation facility is carried out at Osaka University. In our studies, measurement using an electro-contact probe apparatus is conducted and many data about surface wave height were taken. In this experiment, a liquid Li droplet was observed on the probe. To see effect due to droplets on the probe needle, images near the surface of the Li jet including the Li droplet were taken by HSV camera synchronized with probe contact signals, and correlation between the behavior of the Li droplet and signals was evaluated. From the results, when the droplet on the probe contacts of the droplet with the surface, signals obviously different from the regular signal were observed. The influence on the result of frequency was estimated and is approximately <1%. Accuracy of measurement using probe could be increased by carefully deleting false signals.

  18. Evaluation of the nanotube intrinsic resistance across the tip-carbon nanotube-metal substrate junction by Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Alamarguy David

    2011-01-01

    Full Text Available Abstract Using an atomic force microscope (AFM at a controlled contact force, we report the electrical signal response of multi-walled carbon nanotubes (MWCNTs disposed on a golden thin film. In this investigation, we highlight first the theoretical calculation of the contact resistance between two types of conductive tips (metal-coated and doped diamond-coated, individual MWCNTs and golden substrate. We also propose a circuit analysis model to schematize the «tip-CNT-substrate» junction by means of a series-parallel resistance network. We estimate the contact resistance R of each contribution of the junction such as R tip-CNT, R CNT-substrate and R tip-substrate by using the Sharvin resistance model. Our final objective is thus to deduce the CNT intrinsic radial resistance taking into account the calculated electrical resistance values with the global resistance measured experimentally. An unwished electrochemical phenomenon at the tip apex has also been evidenced by performing measurements at different bias voltages with diamond tips. For negative tip-substrate bias, a systematic degradation in color and contrast of the electrical cartography occurs, consisting of an important and non-reversible increase of the measured resistance. This effect is attributed to the oxidation of some amorphous carbon areas scattered over the diamond layer covering the tip. For a direct polarization, the CNT and substrate surface can in turn be modified by an oxidation mechanism.

  19. Comparative measurement of intraocular pressure by Icare tonometry and Airpuff tonometry in healthy subjects and patients wearing therapeutic soft contact lenses.

    Science.gov (United States)

    Anton, Alexandra; Neuburger, Matthias; Böhringer, Daniel; Jordan, Jens F

    2013-07-01

    The aim of the present study was to compare the measurement of intraocular pressure (IOP) through a therapeutic soft contact lens with the "native" measurement. We additionally investigate whether a rebound tonometer (RT) or non-contact tonometer (NCT) is more suitable to measure IOP through a bandage contact lens. The IOP was determined using each of the two methods, three times successively with (lens measurement) and without (native measurement) a soft contact lens. The Icare tonometer (Icare® TA01i, Icare Finland Oy, 23 subjects) and the Airpuff tonometer (Nidek NT 53OP, Nidek CO., LTD, Hiroishi Gamagori, Aichi, Japan, 16 subjects) were used. We compared the mean values (validity parameter) and standard deviation (precision parameter) of the three individual measurements in each case using the paired t-test. In addition, we conducted a power analysis to estimate the maximum error in the measurement caused by the contact lens (power level set to 0.8). With the Airpuff tonometer we detected no statistically significant between the lens and the native measurement (15.6 ± 2.6 vs. 15.3 ± 2.6 mmHg; p = 0.42). The power analysis revealed that the maximum error caused by the contact lens was 1.2 mmHg. The Icare tonometry, however, trended toward higher values in the contact lens measurements (17.5 ± 4.3 vs. 16.4 ± 3.5 mmHg in the native measurements; p = 0.05). Interestingly, this difference exhibited a statistically significant correlation with the corneal thickness (0.03 mmHg per μm corneal thickness; p = 0.04). The use of NCT and RT for IOP measurement over a soft contact lens is feasible. The accuracy appears to be sufficient for the most common clinical applications.

  20. Elastic-properties measurement at high temperatures through contact resonance atomic force microscopy

    DEFF Research Database (Denmark)

    Marinello, Francesco; Pezzuolo, Andrea; Carmignato, Simone

    2015-01-01

    fast direct and non-destructive measurement of Young's modulus and related surface parameters.In this work an instrument set up for Contact Resonance Atomic Force Microscopy is proposed, where the sample with is coupled to a heating stage and a piezoelectric transducer directly vibrate the cantilever...

  1. High performance MoS2 TFT using graphene contact first process

    Directory of Open Access Journals (Sweden)

    Chih-Shiang Chang Chien

    2017-08-01

    Full Text Available An ohmic contact of graphene/MoS2 heterostructure is determined by using ultraviolet photoelectron spectroscopy (UPS. Since graphene shows a great potential to replace metal contact, a direct comparison of Cr/Au contact and graphene contact on the MoS2 thin film transistor (TFT is made. Different from metal contacts, the work function of graphene can be modulated. As a result, the subthreshold swing can be improved. And when Vgintrinsic graphene changes into p-type, so graphene contact can achieve lower off current by lowering the Fermi level. To further improve the performance of MoS2 TFT, a new method using graphene contact first and MoS2 layer last process that can avoid PMMA residue and high processing temperature is applied. MoS2 TFT using this method shows on/off current ratio up to 6×106 order of magnitude, high mobility of 116 cm2/V-sec, and subthreshold swing of only 0.515 V/dec.

  2. Flow Visualization in Evaporating Liquid Drops and Measurement of Dynamic Contact Angles and Spreading Rate

    Science.gov (United States)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.

  3. ChemCam-like Spectrometer for Non-Contact Measurements of Key Isotopes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses the need for a non-contact instrument capable of measuring the isotopic ratios O-18/O-16 and D/H from water ice and other solid materials...

  4. Motivation for social contact in horses measured by operant conditioning

    DEFF Research Database (Denmark)

    Søndergaard, Eva; Jensen, Margit Bak; Nicol, Christine J.

    2011-01-01

    and muzzle contact, respectively, to a familiar companion horse. Horses were housed individually next to their companion horse and separations between pens prevented physical contact. During daily test sessions horses were brought to a test area where they could access an arena allowing social contact. Arena......Although horses are social animals they are often housed individually with limited social contact to other horses and this may compromise their welfare. The present study included eight young female horses and investigated the strength of motivation for access to full social contact, head contact...... test session was recorded. All horses could access all three types of social contact in a cross-over design, and an empty arena was used as control. Motivational strength was assessed using elasticity of demand functions, which were estimated based on the number of rewards earned and FR. Elasticities...

  5. Contact angle and surface tension measurements of a five-ring polyphenyl ether

    Science.gov (United States)

    Jones, W. R., Jr.

    1986-01-01

    Contact angle measurements were performed for a five-ring polyphenyl ether isomeric mixture on M-50 steel in a dry nitrogen atmosphere. Two different techniques were used: (1) a tilting plate apparatus, and (2) a sessile drop apparatus. Measurements were made for the temperature range 25 to 190 C. Surface tension was measured by a differential maximum bubble pressure technique over the range 23 to 220 C in room air. The critical surface energy of spreading (gamma /sub c/) was determined for the polyphenyl ether by plotting the cosine of the contact angle (theta) versus the surface tension (gamma /sub LV/). The straight line intercept at cosine theta = 1 is defined as gamma (sub c). Gamma (sub c) was found to be 30.1 dyn/cm for the tilting plate technique and 31.3 dyn/cm for the sessile drop technique. These results indicate that the polyphenyl ether is inherently autophobic (i.e., it will not spread on its own surface film until its surface tension is less than gamma /sub c/). This phenomenon is discussed in light of the wettability and wear problems encountered with this fluid.

  6. Evaluation of a contact lens-embedded sensor for intraocular pressure measurement.

    Science.gov (United States)

    Twa, Michael D; Roberts, Cynthia J; Karol, Huikai J; Mahmoud, Ashraf M; Weber, Paul A; Small, Robert H

    2010-08-01

    To evaluate a novel contact lens-embedded pressure sensor for continuous measurement of intraocular pressure (IOP). Repeated measurements of IOP and ocular pulse amplitude (OPA) were recorded in 12 eyes of 12 subjects in sitting and supine positions using 3 configurations of the dynamic contour tonometer: slit-lamp mounted (DCT), hand-held (HH), and contact lens-embedded sensor (CL). The IOP and OPA for each condition were compared using repeated measures ANOVA and the 95% limits of agreement were calculated. The sitting IOP (mean and 95% CI) for each configuration was DCT: 16.3 mm Hg (15.6 to 17.1 mm Hg), HH: 16.6 mm Hg (15.6 to 17.6 mm Hg), and CL: 15.7 mm Hg (15 to 16.3 mm Hg). The sitting OPA for each configuration was DCT: 2.4 mm Hg (2.1 to 2.6 mm Hg), HH: 2.4 mm Hg (2.1 to 2.7 mm Hg), and CL: 2.1 mm Hg (1.8 to 2.3 mm Hg). Supine IOP and OPA measurements with the CL and HH sensors were both greater than their corresponding sitting measurements, but were significantly less with the CL sensor than the HH sensor. The mean difference and 95% Limits of Agreement were smallest for the DCT and CL sensor comparisons (0.7+/-3.9 mm Hg) and widest for the CL and HH sensors (-1.9+/-7.25 mm Hg); these wider limits were attributed to greater HH measurement variability. The CL sensor was comparable to HH and DCT sensors with sitting subjects and is a viable method for measuring IOP and OPA. Supine measurements of IOP and OPA were greater than sitting conditions and were comparatively lower with the CL sensor. HH measurements were more variable than CL measurements and this influenced the Limits of Agreement for both sitting and supine conditions.

  7. Strong intrinsic motivation

    OpenAIRE

    Dessi, Roberta; Rustichini, Aldo

    2015-01-01

    A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...

  8. A non-contact shape measuring system using an artificial neural network

    International Nuclear Information System (INIS)

    Jeon, Woo Tae; Lee, Myung Chan; Koh, Duck Joon; Cho, Hyung Suck

    1996-01-01

    We developed a non-contact shape measuring device using computer image processing technology. We present a method of calibrating a CCD video camera and a laser range finder which is the most important step toward making an accurate shape measuring system. An artificial neural network is used for the calibration. Our measurement system is composed of a semiconductor laser, a CCD video camera, a personal computer, and a linear motion table. We think that the developed system could be used for measuring the change in shape of the spent nuclear fuel rod before and after irradiation which is one of the most important tasks for developing a better nuclear fuel. A radiation shield is suggested for the possible utilization of the range finder in radioactive environment

  9. Intraocular pressure measurement: Goldmann Applanation Tonometer vs non contact airpuff tonometer.

    Science.gov (United States)

    Shah, Masood Alam; Bin Saleem, Khalid; Mehmood, Talat

    2012-01-01

    An accurate assessment of Intraocular pressure (IOP) is vital in establishing diagnosis of Glaucoma and decision making regarding various treatment modalities available. The purpose of this study is to compare Goldmann Applanation Tonometer (GAT) with Air puff tonometer. Cross-sectional comparative study conducted. 73 eyes from 73 patients were included in this study and intraocular pressure (IOP) was measured by GAT and PT100 at Sheikh Khalifa Bin Zayed Hospital, Muzaffarabad, Benazir Shaheed Teaching Hospital, Abbottabad. Mean age of the patients was 53.17 +/- 13.80 years. Mean IOP measurements showed significant differences in measurements performed by the two tonometers (p contact air-puff tonometer, the Goldmann applanation tonometer is a reliable and consistent technique for measurement of intraocular pressure.

  10. Intrinsic and extrinsic motivation for stereotypic and repetitive behavior.

    Science.gov (United States)

    Joosten, Annette V; Bundy, Anita C; Einfeld, Stewart L

    2009-03-01

    This study provides evidence for intrinsic and extrinsic motivators for stereotypical and repetitive behavior in children with autism and intellectual disability and children with intellectual disability alone. We modified the Motivation Assessment Scale (MAS) (1988b); dividing it into intrinsic and extrinsic measures and adding items to assess anxiety as an intrinsic motivator. Rasch analysis of data from 279 MASs (74 children) revealed that the items formed two unidimensional scales. Anxiety was a more likely intrinsic motivator than sensory seeking for children with dual diagnoses; the reverse was true for children with intellectual disability only. Escape and gaining a tangible object were the most common extrinsic motivators for those with dual diagnoses and attention and escape for children with intellectual disability.

  11. AlGaN channel field effect transistors with graded heterostructure ohmic contacts

    Science.gov (United States)

    Bajaj, Sanyam; Akyol, Fatih; Krishnamoorthy, Sriram; Zhang, Yuewei; Rajan, Siddharth

    2016-09-01

    We report on ultra-wide bandgap (UWBG) Al0.75Ga0.25N channel metal-insulator-semiconductor field-effect transistors (MISFETs) with heterostructure engineered low-resistance ohmic contacts. The low intrinsic electron affinity of AlN (0.6 eV) leads to large Schottky barriers at the metal-AlGaN interface, resulting in highly resistive ohmic contacts. In this work, we use a reverse compositional graded n++ AlGaN contact layer to achieve upward electron affinity grading, leading to a low specific contact resistance (ρsp) of 1.9 × 10-6 Ω cm2 to n-Al0.75Ga0.25N channels (bandgap ˜5.3 eV) with non-alloyed contacts. We also demonstrate UWBG Al0.75Ga0.25N channel MISFET device operation employing the compositional graded n++ ohmic contact layer and 20 nm atomic layer deposited Al2O3 as the gate-dielectric.

  12. Intrinsic Motivation.

    Science.gov (United States)

    Deci, Edward L.

    The paper draws together a wide variety of research which relates to the topic of intrinsic motivation; intrinsically motivated activities are defined as those which a person does for no apparent reward except the activity itself or the feelings which result from the activity. Most of this research was not originally reported within the framework…

  13. Categorization of fragrance contact allergens for prioritization of preventive measures

    DEFF Research Database (Denmark)

    Uter, Wolfgang; Johansen, Jeanne D; Börje, Anna

    2013-01-01

    Contact allergy to fragrances is still relatively common, affecting ∼ 16% of patients patch tested for suspected allergic contact dermatitis, considering all current screening allergens. The objective of the review is to systematically retrieve, evaluate and classify evidence on contact allergy...... to fragrances, in order to arrive at recommendations for targeting of primary and secondary prevention. Besides published evidence on contact allergy in humans, animal data (local lymph node assay), annual use volumes and structure-activity relationships (SARs) were considered for an algorithmic categorization...... are considered to be of special concern, owing to the high absolute number of reported cases of contact allergy (> 100). Additionally, 18 single substances and one natural mixture are categorized as established contact allergens in animals. SARs, combined with limited human evidence, contributed...

  14. Measuring Pulse Rate Variability using Long-Range, Non-Contact Imaging Photoplethysmography

    Science.gov (United States)

    2016-08-20

    contains color . 14. ABSTRACT Camera-based measurement of the blood volume pulse via non-contact, imaging photoplethysmography is a very popular approach...ECG) for each window were calculated in beats per minute (bpm). The periodogram method with a Hamming window was used to estimate mean pulse...11 Hz. Independent component analysis (ICA) was then used to decompose the normalized, bandpass-filtered, color -channel signals into independent

  15. Intrinsic contractures of the hand.

    Science.gov (United States)

    Paksima, Nader; Besh, Basil R

    2012-02-01

    Contractures of the intrinsic muscles of the fingers disrupt the delicate and complex balance of intrinsic and extrinsic muscles, which allows the hand to be so versatile and functional. The loss of muscle function primarily affects the interphalangeal joints but also may affect etacarpophalangeal joints. The resulting clinical picture is often termed, intrinsic contracture or intrinsic-plus hand. Disruption of the balance between intrinsic and extrinsic muscles has many causes and may be secondary to changes within the intrinsic musculature or the tendon unit. This article reviews diagnosis, etiology, and treatment algorithms in the management of intrinsic contractures of the fingers. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. A Rotational Crofton Formula for Flagged Intrinsic Volumes of Sets of Positive Reach

    DEFF Research Database (Denmark)

    Auneau, Jeremy Michel

    A rotational Crofton formula is derived relating the flagged intrinsic volumes of a compact set of positive reach with the flagged intrinsic volumes measured on sections passing through a fixed point. In particular cases, the flagged intrinsic volumes defined in the present paper are identical...

  17. [Comparative pressure measurements with the non-contact tonometer and the Goldmann applanation tonometer].

    Science.gov (United States)

    Langmann, G; Schuhmann, G; Schwaiger, W

    1985-11-01

    The intraocular pressure of 400 patients was measured with both the Non-Contact Tonometer II (NCT II) and the Goldmann applanation tonometer (GAT) and was statistically evaluated. The clinical experience gained, as well as advantages and limitations in application, are discussed.

  18. A hierarchy of intrinsic timescales across primate cortex.

    Science.gov (United States)

    Murray, John D; Bernacchia, Alberto; Freedman, David J; Romo, Ranulfo; Wallis, Jonathan D; Cai, Xinying; Padoa-Schioppa, Camillo; Pasternak, Tatiana; Seo, Hyojung; Lee, Daeyeol; Wang, Xiao-Jing

    2014-12-01

    Specialization and hierarchy are organizing principles for primate cortex, yet there is little direct evidence for how cortical areas are specialized in the temporal domain. We measured timescales of intrinsic fluctuations in spiking activity across areas and found a hierarchical ordering, with sensory and prefrontal areas exhibiting shorter and longer timescales, respectively. On the basis of our findings, we suggest that intrinsic timescales reflect areal specialization for task-relevant computations over multiple temporal ranges.

  19. An improved in situ measurement of offset phase shift towards quantitative damping-measurement with AFM

    International Nuclear Information System (INIS)

    Minary-Jolandan, Majid; Yu Minfeng

    2008-01-01

    An improved approach is introduced in damping measurement with atomic force microscope (AFM) for the in situ measurement of the offset phase shift needed for determining the intrinsic mechanical damping in nanoscale materials. The offset phase shift is defined and measured at a point of zero contact force according to the deflection part of the AFM force plot. It is shown that such defined offset phase shift is independent of the type of sample material, varied from hard to relatively soft materials in this study. This improved approach allows the self-calibrated and quantitative damping measurement with AFM. The ability of dynamic mechanical analysis for the measurement of damping in isolated one-dimensional nanostructures, e.g. individual multiwalled carbon nanotubes, was demonstrated

  20. A New Approach to Measure Contact Angle and Evaporation Rate with Flow Visualization in a Sessile Drop

    Science.gov (United States)

    Zhang, Nengli; Chao, David F.

    1999-01-01

    The contact angle and the spreading process of sessile droplet are very crucial in many technological processes, such as painting and coating, material processing, film-cooling applications, lubrication, and boiling. Additionally, as it is well known that the surface free energy of polymers cannot be directly, measured for their elastic and viscous restraints. The measurements of liquid contact angle on the polymer surfaces become extremely important to evaluate the surface free energy of polymers through indirect methods linked with the contact angle data. Due to the occurrence of liquid evaporation is inevitable, the effects of evaporation on the contact angle and the spreading become very important for more complete understanding of these processes. It is of interest to note that evaporation can induce Marangoni-Benard convection in sessile drops. However, the impacts of the inside convection on the wetting and spreading processes are not clear. The experimental methods used by previous investigators cannot simultaneously measure the spreading process and visualize the convection inside. Based on the laser shadowgraphic system used by the present author, a very simple optical procedure has been developed to measure the contact angle, the spreading speed, the evaporation rate, and to visualize inside convection of a sessile drop simultaneously. Two CCD cameras were used to synchronously record the real-time diameter of the sessile drop, which is essential for determination of both spreading speed and evaporation rate, and the shadowgraphic image magnified by the sessile drop acting as a thin plano-convex lens. From the shadowgraph, the inside convection of the drop can be observed if any and the image outer diameter, which linked to the drop profile, can be measured. Simple equations have been derived to calculate the drop profile, including the instantaneous contact angle, height, and volume of the sessile drop, as well as the evaporation rate. The influence of

  1. Determination of intrinsic spin Hall angle in Pt

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng; Kwon, Jae Hyun; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 117576 (Singapore)

    2014-10-13

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  2. Determination of intrinsic spin Hall angle in Pt

    International Nuclear Information System (INIS)

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng; Kwon, Jae Hyun; Yang, Hyunsoo

    2014-01-01

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  3. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects

    International Nuclear Information System (INIS)

    Chiodarelli, Nicolo'; Li, Yunlong; Arstila, Kai; Richard, Olivier; Cott, Daire J; Heyns, Marc; De Gendt, Stefan; Groeseneken, Guido; Vereecken, Philippe M; Masahito, Sugiura; Kashiwagi, Yusaku

    2011-01-01

    Carbon nanotubes (CNT) are known to be materials with potential for manufacturing sub-20 nm high aspect ratio vertical interconnects in future microchips. In order to be successful with respect to contending against established tungsten or copper based interconnects, though, CNT must fulfil their promise of also providing low electrical resistance in integrated structures using scalable integration processes fully compatible with silicon technology. Hence, carefully engineered growth and integration solutions are required before we can fully exploit their potentialities. This work tackles the problem of optimizing a CNT integration process from the electrical perspective. The technique of measuring the CNT resistance as a function of the CNT length is here extended to CNT integrated in vertical contacts. This allows extracting the linear resistivity and the contact resistance of the CNT, two parameters to our knowledge never reported separately for vertical CNT contacts and which are of utmost importance, as they respectively measure the quality of the CNT and that of their metal contacts. The technique proposed allows electrically distinguishing the impact of each processing step individually on the CNT resistivity and the CNT contact resistance. Hence it constitutes a powerful technique for optimizing the process and developing CNT contacts of superior quality. This can be of relevant technological importance not only for interconnects but also for all those applications that rely on the electrical properties of CNT grown with a catalytic chemical vapor deposition method at low temperature.

  4. Effect of Contact Pressure on the Resistance Contact Value and Temperature Changes in Copper Busbar Connection

    Directory of Open Access Journals (Sweden)

    Agus Risdiyanto

    2012-12-01

    Full Text Available This paper discussed the influence of tightness or contacts pressure on copper busbar joints to determine changes in the value of the initial contact resistance and the maximum temperature at the joint due to high current load. The test sample was copper busbar 3 x 30 mm with configuration of bolted overlapping joint. Increasing contact pressure at the joint was measured to find out its effect on the value of contact resistance. The applied pressure was 6 to 36 MPa. Procedure of contact resistance measurement refer to the ASTM B539 standard using four-wire method. The sample subsequently loaded with the current of 350 A for 60 minutes and the maximum temperature at the joint was measured. The result showed that increasing contact pressure at the busbar joint will reduce the contact resistance and maximum temperature. The increase of contact pressure from 6 to 30 MPa causes decreasing contact resistance from 16 μΩ to 11 μΩ. Further increasing of contact pressure more than 30 MPa did not affect the contact resistance significantly. The lowest temperatur of busbar joint of 54°C was reached at a contact pressure of 36 Mpa.

  5. Characteristics of an intrinsic germanium detector for measurement of soft x-rays from high-temperature plasmas

    International Nuclear Information System (INIS)

    Kumagai, Katsuaki; Matoba, Tohru; Funahashi, Akimasa; Kawakami, Tomohide

    1976-09-01

    An intrinsic germanium (Ge(I)) detector has been prepared for measurement of soft X-ray spectra from high-temperature tokamak plasmas. Its characteristics of photo-peak efficiency, escape-peak and Compton scattering were calibrated with standard radioisotopes and soft X-rays from the JFT-2a plasma, and compared with those of a lithium-drifted silicon (Si(Li)) detector. Features of the Ge(I) detector are as follows: (i) high detection efficiency in the high energy range, (ii) wide energy range for measurement of soft X-ray spectra, and (iii) low Compton scattering effect in measurement of continuous spectra. Its dead-layer depth is about 0.06μm, and the minimum detectable energies in the Ge(I) detector are similar to those in the Si(Li) detector. The Ge(I) detector is effective for measuring soft X-ray spectra from high-temperature tokamak plasmas. (auth.)

  6. Profile measurement of a bent neutron mirror using an ultrahigh precision non-contact measurement system with an auto focus laser probe

    International Nuclear Information System (INIS)

    Morita, S; Guo, J; Yamagata, Y; Yamada, N L; Torikai, N; Takeda, S; Furusaka, M

    2016-01-01

    A bent neutron mirror has been considered as one of the best solutions for focusing neutron beams from the viewpoint of cost-benefit performance. Although the form deviation of the bent profile is expected because of the large spot size, it is difficult to measure due to its geometric limitation. Here, we propose a non-contact measurement system using an auto focus (AF) laser probe on an ultrahigh precision machine tool to precisely evaluate the form deviation of the bent mirror. The AF laser probe is composed of a diode laser, a position sensitive sensor, a charge-coupled device (CCD) camera and a microscope objective lens which is actuated by an electromagnetic motor with 1 nm resolution for position sensing and control. The sensor enables a non-contact profile measurement of a high precision surface without any surface damage in contrast with contact-type ultrahigh precision coordinate measurement machines with ruby styli. In the on-machine measurement system, a personal computer simultaneously acquires a displacement signal from the AF laser probe and 3-axis positional coordinates of the ultrahigh machine tool branched between the linear laser scales and the numerical controller. The acquisition rate of the 4-axis positional data in 1 nm resolution is more than 10 Hz and the simultaneity between the axes is negligible. The profile of a neutron bent mirror was measured from a transparent side using the developed system, and the result proves that the form deviation of the mirror enlarged the the spot size of focused neuron beam. (paper)

  7. Reduction of anisotropy influence and contacting effects in in-vitro bioimpedance measurements

    International Nuclear Information System (INIS)

    Guermazi, M; Kanoun, O; Derbel, N

    2013-01-01

    Experimental procedure is a decisive part in in-vitro bioimpedance measurement in order to get reproducible measurements. An electrode configuration is proposed to avoid several disadvantages produced by needle electrodes and circular non-penetrating electrode. The proposed electrode geometry reduces the influence of anisotropy and allows simultaneously a good probe contacting. We propose an experimental method to avoid the appearance of bacteria and to reduce water loss in meat during experiment post-mortem. The results show that electrode configuration with the developed experimental method have ensured reproducible measurements during a long period of 14 days post-mortem.

  8. Reduction of anisotropy influence and contacting effects in in-vitro bioimpedance measurements

    Science.gov (United States)

    Guermazi, M.; Kanoun, O.; Derbel, N.

    2013-04-01

    Experimental procedure is a decisive part in in-vitro bioimpedance measurement in order to get reproducible measurements. An electrode configuration is proposed to avoid several disadvantages produced by needle electrodes and circular non-penetrating electrode. The proposed electrode geometry reduces the influence of anisotropy and allows simultaneously a good probe contacting. We propose an experimental method to avoid the appearance of bacteria and to reduce water loss in meat during experiment post-mortem. The results show that electrode configuration with the developed experimental method have ensured reproducible measurements during a long period of 14 days post-mortem.

  9. Intrinsic to extrinsic phonon lifetime transition in a GaAs–AlAs superlattice

    International Nuclear Information System (INIS)

    Hofmann, F; Garg, J; Chen, G; Maznev, A A; Nelson, K A; Jandl, A; Bulsara, M; Fitzgerald, E A

    2013-01-01

    We have measured the lifetimes of two zone-center longitudinal acoustic phonon modes, at 320 and 640 GHz, in a 14 nm GaAs/2 nm AlAs superlattice structure. By comparing measurements at 296 and 79 K we separate the intrinsic contribution to phonon lifetime determined by phonon–phonon scattering from the extrinsic contribution due to defects and interface roughness. At 296 K, the 320 GHz phonon lifetime has approximately equal contributions from intrinsic and extrinsic scattering, whilst at 640 GHz it is dominated by extrinsic effects. These measurements are compared with intrinsic and extrinsic scattering rates in the superlattice obtained from first-principles lattice dynamics calculations. The calculated room-temperature intrinsic lifetime of longitudinal phonons at 320 GHz is in agreement with the experimentally measured value of 0.9 ns. The model correctly predicts the transition from predominantly intrinsic to predominantly extrinsic scattering; however the predicted transition occurs at higher frequencies. Our analysis indicates that the ‘interfacial atomic disorder’ model is not entirely adequate and that the observed frequency dependence of the extrinsic scattering rate is likely to be determined by a finite correlation length of interface roughness. (paper)

  10. Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice.

    Science.gov (United States)

    Hofmann, F; Garg, J; Maznev, A A; Jandl, A; Bulsara, M; Fitzgerald, E A; Chen, G; Nelson, K A

    2013-07-24

    We have measured the lifetimes of two zone-center longitudinal acoustic phonon modes, at 320 and 640 GHz, in a 14 nm GaAs/2 nm AlAs superlattice structure. By comparing measurements at 296 and 79 K we separate the intrinsic contribution to phonon lifetime determined by phonon-phonon scattering from the extrinsic contribution due to defects and interface roughness. At 296 K, the 320 GHz phonon lifetime has approximately equal contributions from intrinsic and extrinsic scattering, whilst at 640 GHz it is dominated by extrinsic effects. These measurements are compared with intrinsic and extrinsic scattering rates in the superlattice obtained from first-principles lattice dynamics calculations. The calculated room-temperature intrinsic lifetime of longitudinal phonons at 320 GHz is in agreement with the experimentally measured value of 0.9 ns. The model correctly predicts the transition from predominantly intrinsic to predominantly extrinsic scattering; however the predicted transition occurs at higher frequencies. Our analysis indicates that the 'interfacial atomic disorder' model is not entirely adequate and that the observed frequency dependence of the extrinsic scattering rate is likely to be determined by a finite correlation length of interface roughness.

  11. Establishing an upper bound on contact resistivity of ohmic contacts to n-GaN nanowires

    International Nuclear Information System (INIS)

    Blanchard, Paul; Bertness, Kris A; Harvey, Todd; Sanford, Norman

    2014-01-01

    Contact resistivity ρ c is an important figure of merit in evaluating and improving the performance of electronic and optoelectronic devices. Due to the small size, unique morphology, and uncertain transport properties of semiconductor nanowires (NWs), measuring ρ c of contacts to NWs can be particularly challenging. In this work, Si-doped n-GaN NWs were grown by molecular beam epitaxy. Four-contact structures with 20 nm Ti/200 nm Al contacts were fabricated on individual NWs by photolithography, and the contacts were annealed to achieve ohmic behavior. Two-point resistances R 23  and four-point collinear resistances R 23collinear  were measured between the middle two contacts on each NW. These resistances were then modeled by taking into account the non-uniform distribution of current flow along the length of each contact. Contrary to the assumption that the resistance difference R 23 −R 23collinear  is equal to the total contact resistance R c , the distributed-current-flow contact model shows that R 23 −R 23collinear  ≪ R c when ρ c is sufficiently small. Indeed, the measured R 23 −R 23collinear  was so small in these devices that it was within the measurement uncertainty, meaning that it was not possible to directly calculate ρ c from these data. However, it was possible to calculate an upper bound on ρ c for each device based on the largest possible value of R 23 −R 23collinear . In addition, we took into account the large uncertainties in the NW transport properties by numerically maximizing ρ c with respect to the uncertainty range of each measured and assumed parameter in the contact model. The resulting upper limits on ρ c ranged from 4.2 × 10 −6  to 7.6 × 10 −6  Ω cm 2 , indicating that 20 nm Ti/200 nm Al is a good choice of ohmic contact for moderately-doped n-GaN NWs. The measurement and numerical analysis demonstrated here offer a general approach to modeling ohmic contact resistivity via NW four

  12. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy

    Science.gov (United States)

    Rosenberger, Matthew R.; Chen, Sihan; Prater, Craig B.; King, William P.

    2017-01-01

    This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m-1. To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.

  13. Nd:YAG-laser-based time-domain reflectometry measurements of the intrinsic reflection signature from PMMA fiber splices

    Science.gov (United States)

    Lawson, Christopher M.; Michael, Robert R., Jr.; Dressel, Earl M.; Harmony, David W.

    1991-12-01

    Optical time domain reflectometry (OTDR) measurements have been performed on polished polymethylmethacrylate (PMMA) plastic fiber splices. After the dominant splice reflection sources due to surface roughness, inexact index matching, and fiber core misalignment were eliminated, an intrinsic OTDR signature 3 - 8 dB above the Rayleigh backscatter floor remained with all tested fibers. This minimum splice reflectivity exhibits characteristics that are consistent with sub-surface polymer damage and can be used for detection of PMMA fiber splices.

  14. Intrinsic Motivation and Engagement as "Active Ingredients" in Garden-Based Education: Examining Models and Measures Derived from Self-Determination Theory

    Science.gov (United States)

    Skinner, Ellen A.; Chi, Una

    2012-01-01

    Building on self-determination theory, this study presents a model of intrinsic motivation and engagement as "active ingredients" in garden-based education. The model was used to create reliable and valid measures of key constructs, and to guide the empirical exploration of motivational processes in garden-based learning. Teacher- and…

  15. Intrinsic motivation, neurocognition and psychosocial functioning in schizophrenia: testing mediator and moderator effects.

    Science.gov (United States)

    Nakagami, Eri; Xie, Bin; Hoe, Maanse; Brekke, John S

    2008-10-01

    This study examined the nature of the relationships among neurocognition, intrinsic motivation, and psychosocial functioning for persons with schizophrenia. Hypotheses concerning both mediator and moderator mechanisms were tested. 120 individuals diagnosed with schizophrenia were recruited as they entered outpatient psychosocial rehabilitation programs. Measures of psychosocial functioning and intrinsic motivation were administered at baseline. Measures of neurocognition were administered at baseline by testers blind to scores on other study variables. Data were analyzed using latent construct modeling to test for mediator and moderator effects. There were strong bivariate relationships between neurocognition, intrinsic motivation, and psychosocial functioning. The results demonstrated that intrinsic motivation strongly mediated the relationship between neurocognition and psychosocial functioning. This mediation was evidenced by: (i) the direct path from neurocognition to functional outcome no longer being statistically significant after the introduction of motivation into the model, (ii) the statistical significance of the indirect path from neurocognition through motivation to functional outcome. There was no support for the two moderation hypotheses: the level of neurocognition did not influence the relationship between intrinsic motivation and psychosocial functioning, nor did the level of intrinsic motivation influence the relationship between neurocognition and psychosocial functioning. Neurocognition influences psychosocial functioning through its relationship with intrinsic motivation. Intrinsic motivation is a critical mechanism for explaining the relationship between neurocognition and psychosocial functioning. Implications for the theoretical understanding and psychosocial treatment of intrinsic motivation in schizophrenia are discussed.

  16. Low frequency noise in the unstable contact region of Au-to-Au microcontact for microelectromechanical system switches

    Science.gov (United States)

    Qiu, Haodong; Wang, Hong; Ke, Feixiang

    2014-06-01

    The noise behavior of Au-to-Au microcontact for microelectromechanical system switches has been experimentally studied in the unstable contact region. The results suggest that the electrical conduction remains nonmetallic at the initial stage during contact formation due to the existence of alien films, and traps in the alien layer located at the contact interface could play an important role in determining the conduction noise. The conduction fluctuation induced by electron trapping-detrapping associated with the hydrocarbon layer is found to be an intrinsic noise source contributing to the low frequency noise in the unstable contact region.

  17. Low frequency noise in the unstable contact region of Au-to-Au microcontact for microelectromechanical system switches

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Haodong; Wang, Hong, E-mail: ewanghong@ntu.edu.sg [NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ke, Feixiang [Temasek Laboratories at Nanyang Technological University, Research Techno Plaza, Singapore 637553 (Singapore)

    2014-06-23

    The noise behavior of Au-to-Au microcontact for microelectromechanical system switches has been experimentally studied in the unstable contact region. The results suggest that the electrical conduction remains nonmetallic at the initial stage during contact formation due to the existence of alien films, and traps in the alien layer located at the contact interface could play an important role in determining the conduction noise. The conduction fluctuation induced by electron trapping-detrapping associated with the hydrocarbon layer is found to be an intrinsic noise source contributing to the low frequency noise in the unstable contact region.

  18. Low frequency noise in the unstable contact region of Au-to-Au microcontact for microelectromechanical system switches

    International Nuclear Information System (INIS)

    Qiu, Haodong; Wang, Hong; Ke, Feixiang

    2014-01-01

    The noise behavior of Au-to-Au microcontact for microelectromechanical system switches has been experimentally studied in the unstable contact region. The results suggest that the electrical conduction remains nonmetallic at the initial stage during contact formation due to the existence of alien films, and traps in the alien layer located at the contact interface could play an important role in determining the conduction noise. The conduction fluctuation induced by electron trapping-detrapping associated with the hydrocarbon layer is found to be an intrinsic noise source contributing to the low frequency noise in the unstable contact region.

  19. Intrinsic rewards and work engagement in the South African retail industry

    Directory of Open Access Journals (Sweden)

    Sara Jacobs

    2014-11-01

    Research purpose: The purpose of this research was to determine whether there is a relationship between intrinsic rewards and work engagement in the South African retail industry. Furthermore, it sought to validate an instrument to measure intrinsic rewards within the South African context. Motivation for the study: There is currently a paucity of research exploring intrinsic rewards, specifically their importance for work engagement. Furthermore, there is a lack of instruments validated in South Africa that can be used to measure intrinsic rewards. Research approach, design and method: This quantitative study was conducted using a cross-sectional design and non-probability sampling of 181 employees from a South African retail organisation. The questionnaire included a demographic section, the Utrecht Work Engagement Scale and the Work Engagement Profile. Main findings: Statistically significant, positive relationships were found between all subscales of the two instruments. There were significant differences in the means for intrinsic rewards and work engagement for gender and age. Notably, the exploratory factor analysis for both instruments did not support the factor structure indicated in the literature. Practical/managerial implications: South African retail organisations should create work environments that provide intrinsic rewards as part of their reward package, to encourage work engagement. Contribution/value-add: These findings add to the current body of literature regarding intrinsic rewards and work engagement and provide insight into variables that promote work engagement within the South African retail context.

  20. Effect of implanted doses of N+-ions on the contact resistance of copper contacts

    International Nuclear Information System (INIS)

    Dubravec, B.; Kovac, P.; Lipka, F.; Padysak, M.

    1997-01-01

    The paper deals with the effect of implanted doses of N + ions on the contact resistance. Dependencies of the contact resistance versus contact force R c =f(F c ) and microhardness of implanted surfaces were measured for three implanted profiles. The influence of the aggressive environs on the contact resistance of implanted contact is given too

  1. Intrinsic-density functionals

    International Nuclear Information System (INIS)

    Engel, J.

    2007-01-01

    The Hohenberg-Kohn theorem and Kohn-Sham procedure are extended to functionals of the localized intrinsic density of a self-bound system such as a nucleus. After defining the intrinsic-density functional, we modify the usual Kohn-Sham procedure slightly to evaluate the mean-field approximation to the functional, and carefully describe the construction of the leading corrections for a system of fermions in one dimension with a spin-degeneracy equal to the number of particles N. Despite the fact that the corrections are complicated and nonlocal, we are able to construct a local Skyrme-like intrinsic-density functional that, while different from the exact functional, shares with it a minimum value equal to the exact ground-state energy at the exact ground-state intrinsic density, to next-to-leading order in 1/N. We briefly discuss implications for real Skyrme functionals

  2. In Situ Local Contact Angle Measurement in a CO2-Brine-Sand System Using Microfocused X-ray CT.

    Science.gov (United States)

    Lv, Pengfei; Liu, Yu; Wang, Zhe; Liu, Shuyang; Jiang, Lanlan; Chen, Junlin; Song, Yongchen

    2017-04-11

    The wettability of porous media is of major interest in a broad range of natural and engineering applications. The wettability of a fluid on a solid surface is usually evaluated by the contact angle between them. While in situ local contact angle measurements are complicated by the topology of porous media, which can make it difficult to use traditional methods, recent advances in microfocused X-ray computed tomography (micro-CT) and image processing techniques have made it possible to measure contact angles on the scale of the pore sizes in such media. However, the effects of ionic strength, CO 2 phase, and flow pattern (drainage or imbibition) on pore-scale contact angle distribution are still not clear and have not been reported in detail in previous studies. In this study, we employed a micro-CT scanner for in situ investigation of local contact angles in a CO 2 -brine-sand system under various conditions. The effects of ionic strength, CO 2 phase, and flow pattern on the local contact-angle distribution were examined in detail. The results showed that the local contact angles vary over a wide range as a result of the interaction of surface contaminants, roughness, pore topology, and capillarity. The wettability of a porous surface could thus slowly weaken with increasing ionic strength, and the average contact angle could significantly increase when gaseous CO 2 (gCO 2 ) turns into supercritical CO 2 (scCO 2 ). Contact angle hysteresis also occurred between drainage and imbibition procedures, and the hysteresis was more significant under gCO 2 condition.

  3. Development and applicability estimation of the tire contact pressure measurement system; Tire secchiatsukei no kaihatsu to oyosei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, Y.; Amago, T.; Takahashi, T.; Sakuma, S.; Mori, N. [Toyota Central R and D Laboratories, Inc., Aichi (Japan); Nagae, A. [Toyota Motor Corp., Aichi (Japan); Yasuoka, M. [Toyo Tire and Rubber Co. Ltd., Osaka (Japan)

    1995-04-20

    A pressure sensor more reliable than the conventional types and a tire pressure measurement system using a plurality of sensors of the said reliable type have been developed. The sensor is an inverted T in shape, the upper surface of the vertical beam thereof receives the pressure, and the two ends of the horizontal beam are fixed. The load per unit area imposed on the pressure receiving surface is separated into three components, the X and Y components in the tangential direction are sensed by the vertical beam while the Z component in the vertical direction is sensed by a distortion gauge attached to the horizontal beam. For the measurement of the contact pressure distribution for the entire contact surface, a measuring device was developed, comprising a multiple point contact pressure gauge with 30 sensors of the reliable type discussed here embedded therein, a tire rolling tester, and a data processing unit. A tire wear estimation test was conducted using this pressure sensor and a contact probe type slip sensor, and it was found that a tire of a greater friction energy ratio is easier to experience abnormal abrasion and that the new pressure sensor is useful in estimating abnormal abrasion. Further, it was indicated that the present measuring device is applicable to the analysis of the mechanism wherein shaft force results from contact pressure on the soil. 3 refs., 11 figs., 3 tabs.

  4. Intrinsic and extrinsic motivation and intention to breast-feed.

    Science.gov (United States)

    Wells, Kristen J; Thompson, Nancy J; Kloeblen-Tarver, Amy S

    2002-01-01

    To examine the feasibility of using the cognitive evaluation theory to examine pregnant women's intention to breast-feed. A questionnaire designed to measure intrinsic and extrinsic motivation was administered to 228 pregnant women. Results provide evidence for reliability and validity of the revised instrument in this population. A factor analysis suggests the instrument measures 2 types of intrinsic motivation, one type of extrinsic motivation, and motivation related to the baby. The instrument distinguished differences in motivation between women who intend to breast-feed and those who intend to formula feed. This study helps elucidate motivational factors involved in infant-feeding decisions.

  5. Lifetime of charge carriers in intrinsic indium antimonide

    International Nuclear Information System (INIS)

    Bruhns, H.; Kruse, H.

    1980-01-01

    The lifetime of additional photoinjected electron-hole pairs in intrinsic InSb at 291 K is investigated by measuring the photoconductive (PC) decay. Apart from studying the usual PC-decay an arangement is used with superimposed magnetic field transverse to the electric field. Depending on the direction of the magnetic field the photoinjected plasma is either driven into the sample's bulk or travels parallel to the illuminated surface. The Auger-lifetime is evaluated from the measurements by a numerical magnetohydrodynamical simulation taking into account surface recombination as well as the Suhl profile of the intrinsic plasma. A lifetime of tau = (57+-3) ns is found which is independent of the magnetic field up to 2.3 T. (author)

  6. Contact sensitization and allergic contact dermatitis in patients with eczematous lesions

    Directory of Open Access Journals (Sweden)

    Perpetua U Ibekwe

    2018-01-01

    Conclusions: Most ACD patients showed contact sensitization to leather products, metal, and perfume use. This knowledge is important when considering preventive measures. However, further studies are needed to provide more insight into contact allergy in Nigeria.

  7. Development of laser-fired contacts for amorphous silicon layers obtained by Hot-Wire CVD

    International Nuclear Information System (INIS)

    Munoz, D.; Voz, C.; Blanque, S.; Ibarz, D.; Bertomeu, J.; Alcubilla, R.

    2009-01-01

    In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances (ρ c ∼ 10 mΩ cm 2 ) have been obtained on 2.8 Ω cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.

  8. Intrinsic and extrinsic measurement for Brownian motion

    International Nuclear Information System (INIS)

    Castro-Villarreal, Pavel

    2014-01-01

    Based upon the Smoluchowski equation on curved manifolds, three physical observables are considered for Brownian displacement, namely geodesic displacement s, Euclidean displacement δR, and projected displacement δR ⊥ . The Weingarten–Gauss equations are used to calculate the mean-square Euclidean displacements in the short-time regime. Our findings show that from an extrinsic point of view the geometry of the space affects the Brownian motion in such a way that the particle’s diffusion is decelerated, contrasting with the intrinsic point of view where dynamics is controlled by the sign of the Gaussian curvature (Castro-Villarreal, 2010 J. Stat. Mech. P08006). Furthermore, it is possible to give exact formulas for 〈δR〉 and 〈δR 2 〉 on spheres and minimal surfaces, which are valid for all values of time. In the latter case, surprisingly, Brownian motion corresponds to the usual diffusion in flat geometries, albeit minimal surfaces have non-zero Gaussian curvature. Finally, the two-dimensional case is emphasized due to its close relation to surface self-diffusion in fluid membranes. (paper)

  9. Measure of synchrony in the activity of intrinsic cardiac neurons

    International Nuclear Information System (INIS)

    Longpré, Jean-Philippe; Salavatian, Siamak; Jacquemet, Vincent; Beaumont, Eric; Armour, J Andrew; Ardell, Jeffrey L

    2014-01-01

    Recent multielectrode array recordings in ganglionated plexi of canine atria have opened the way to the study of population dynamics of intrinsic cardiac neurons. These data provide critical insights into the role of local processing that these ganglia play in the regulation of cardiac function. Low firing rates, marked non-stationarity, interplay with the cardiovascular and pulmonary systems and artifacts generated by myocardial activity create new constraints not present in brain recordings for which almost all neuronal analysis techniques have been developed. We adapted and extended the jitter-based synchrony index (SI) to (1) provide a robust and computationally efficient tool for assessing the level and statistical significance of SI between cardiac neurons, (2) estimate the bias on SI resulting from neuronal activity possibly hidden in myocardial artifacts, (3) quantify the synchrony or anti-synchrony between neuronal activity and the phase in the cardiac and respiratory cycles. The method was validated on firing time series from a total of 98 individual neurons identified in 8 dog experiments. SI ranged from −0.14 to 0.66, with 23 pairs of neurons with SI > 0.1. The estimated bias due to artifacts was typically <1%. Strongly cardiovascular- and pulmonary-related neurons (SI > 0.5) were found. Results support the use of jitter-based SI in the context of intrinsic cardiac neurons. (paper)

  10. American Contact Dermatitis Society Contact Allergy Management Program: An Epidemiologic Tool to Determine Relative Prevalence of Contact Allergens.

    Science.gov (United States)

    Scheman, Andrew; Severson, David

    2016-01-01

    Data on the prevalence of contact allergy in North America are currently reported by groups of academic contact allergy specialists at select academic centers. Sampling of data from numerous centers across North America, including practices performing more limited patch testing, would provide a broader perspective of contact allergen prevalence in North America. The American Contact Dermatitis Society Contact Allergy Management Program is an ideal tool for collection of epidemiologic data regarding contact allergy prevalence in North America. The aim of the study was to identify the relative prevalence of contact allergy to common contact allergens in North America. Mapping of Contact Allergy Management Program (CAMP) data was performed to allow analysis of how frequently searches were performed for various contact allergens. The number of searches performed for specific allergens provides a measure of the relative prevalence of contact allergy to these allergens. The top 35 allergens for the period from November 18, 2012 to November 18, 2013 are reported. Although these data are useful, specific recommendations for minor alterations to CAMP are discussed, which will allow future CAMP data to be stratified and more powerful. With minor modifications, CAMP can provide a quantum leap in the reporting of contact allergy epidemiologic data in North America.

  11. HTSC-Josephson step contacts

    International Nuclear Information System (INIS)

    Herrmann, K.

    1994-03-01

    In this work the properties of josephson step contacts are investigated. After a short introduction into Josephson step contacts the structure, properties and the Josphson contacts of YBa 2 Cu 3 O 7-x high-T c superconductors is presented. The fabrication of HTSC step contacts and the microstructure is discussed. The electric properties of these contacts are measured together with the Josephson emission and the magnetic field dependence. The temperature dependence of the stationary transport properties is given. (WL)

  12. Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis

    DEFF Research Database (Denmark)

    Koppes, Sjors A.; Engebretsen, Kristiane A.; Agner, Tove

    2017-01-01

    Contact sensitization is common and affects up to 20% of the general population. The clinical manifestation of contact sensitization is allergic contact dermatitis. This is a clinical expression that is sometimes difficult to distinguish from other types of dermatitis, for example irritant...... and atopic dermatitis. Several studies have examined the pathogenesis and severity of allergic contact dermatitis by measuring the absence or presence of various biomarkers. In this review, we provide a non-systematic overview of biomarkers that have been studied in allergic contact dermatitis. These include...... genetic variations and mutations, inflammatory mediators, alarmins, proteases, immunoproteomics, lipids, natural moisturizing factors, tight junctions, and antimicrobial peptides. We conclude that, despite the enormous amount of data, convincing specific biomarkers for allergic contact dermatitis are yet...

  13. Contact Dermatitis in Pediatrics.

    Science.gov (United States)

    Pelletier, Janice L; Perez, Caroline; Jacob, Sharon E

    2016-08-01

    Contact dermatitis is an umbrella term that describes the skin's reaction to contacted noxious or allergenic substances. The two main categories of contact dermatitis are irritant type and allergic type. This review discusses the signs, symptoms, causes, and complications of contact dermatitis. It addresses the testing, treatment, and prevention of contact dermatitis. Proper management of contact dermatitis includes avoidance measures for susceptible children. Implementation of a nickel directive (regulating the use of nickel in jewelry and other products that come into contact with the skin) could further reduce exposure to the most common allergens in the pediatric population. [Pediatr Ann. 2016;45(8):e287-e292.]. Copyright 2016, SLACK Incorporated.

  14. Informationally administered reward enhances intrinsic motivation in schizophrenia.

    Science.gov (United States)

    Lee, Hyeon-Seung; Jang, Seon-Kyeong; Lee, Ga-Young; Park, Seon-Cheol; Medalia, Alice; Choi, Kee-Hong

    2017-10-01

    Even when individuals with schizophrenia have an intact ability to enjoy rewarding moments, the means to assist them to translate rewarding experiences into goal-directed behaviors is unclear. The present study sought to determine whether informationally administered rewards enhance intrinsic motivation to foster goal-directed behaviors in individuals with schizophrenia (SZ) and healthy controls (HCs). Eighty-four participants (SZ=43, HCs=41) were randomly assigned to conditions involving either a performance-contingent reward with an informationally administered reward or a task-contingent reward with no feedback. Participants were asked to play two cognitive games of equalized difficulty. Accuracy, self-reported intrinsic motivation, free-choice intrinsic motivation (i.e., game play during a free-choice observation period), and perceived competency were measured. Intrinsic motivation and perceived competency in the cognitive games were similar between the two participant groups. The informationally administered reward significantly enhanced self-reported intrinsic motivation and perceived competency in both the groups. The likelihood that individuals with schizophrenia would play the game during the free-choice observation period was four times greater in the informationally administered reward condition than that in the no-feedback condition. Our findings suggest that, in the context of cognitive remediation, individuals with schizophrenia would benefit from informationally administered rewards. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Design, Fabrication and Experimental Validation of a Novel Dry-Contact Sensor for Measuring Electroencephalography Signals without Skin Preparation

    Directory of Open Access Journals (Sweden)

    Chin-Teng Lin

    2011-05-01

    Full Text Available In the present study, novel dry-contact sensors for measuring electro-encephalography (EEG signals without any skin preparation are designed, fabricated by an injection molding manufacturing process and experimentally validated. Conventional wet electrodes are commonly used to measure EEG signals; they provide excellent EEG signals subject to proper skin preparation and conductive gel application. However, a series of skin preparation procedures for applying the wet electrodes is always required and usually creates trouble for users. To overcome these drawbacks, novel dry-contact EEG sensors were proposed for potential operation in the presence or absence of hair and without any skin preparation or conductive gel usage. The dry EEG sensors were designed to contact the scalp surface with 17 spring contact probes. Each probe was designed to include a probe head, plunger, spring, and barrel. The 17 probes were inserted into a flexible substrate using a one-time forming process via an established injection molding procedure. With these 17 spring contact probes, the flexible substrate allows for high geometric conformity between the sensor and the irregular scalp surface to maintain low skin-sensor interface impedance. Additionally, the flexible substrate also initiates a sensor buffer effect, eliminating pain when force is applied. The proposed dry EEG sensor was reliable in measuring EEG signals without any skin preparation or conductive gel usage, as compared with the conventional wet electrodes.

  16. Contact angle distribution of particles at fluid interfaces.

    Science.gov (United States)

    Snoeyink, Craig; Barman, Sourav; Christopher, Gordon F

    2015-01-27

    Recent measurements have implied a distribution of interfacially adsorbed particles' contact angles; however, it has been impossible to measure statistically significant numbers for these contact angles noninvasively in situ. Using a new microscopy method that allows nanometer-scale resolution of particle's 3D positions on an interface, we have measured the contact angles for thousands of latex particles at an oil/water interface. Furthermore, these measurements are dynamic, allowing the observation of the particle contact angle with high temporal resolution, resulting in hundreds of thousands of individual contact angle measurements. The contact angle has been found to fit a normal distribution with a standard deviation of 19.3°, which is much larger than previously recorded. Furthermore, the technique used allows the effect of measurement error, constrained interfacial diffusion, and particle property variation on the contact angle distribution to be individually evaluated. Because of the ability to measure the contact angle noninvasively, the results provide previously unobtainable, unique data on the dynamics and distribution of the adsorbed particles' contact angle.

  17. Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements

    DEFF Research Database (Denmark)

    Garcia-Fernandez, Pedro David; Javadi, Alisa; Nielsen, Henri Thyrrestrup

    2013-01-01

    Residual disorder due to fabrication imperfections has important impact in nanophotonics where it may degrade device performance by increasing radiation loss or spontaneously trap light by Anderson localization. We propose and demonstrate experimentally a method of quantifying the intrinsic amount...... of disorder in state-of-the-art photonic-crystal waveguides from far-field measurements of the Anderson-localized modes. This is achieved by comparing the spectral range where Anderson localization is observed to numerical simulations, and the method offers sensitivity down to 1nm....

  18. Non-contact procedure to measure heart and lung activities in preterm pediatric patients with skin disorders

    Science.gov (United States)

    Marchionni, P.; Scalise, L.; Antognoli, L.; Nobile, S.; Carnielli, V. P.

    2018-04-01

    Preterm patients can have an higher risk of fatalities and can be subjected to long-term disability. With many organs still in the phase of development, the earlier the delivery, the higher the risk and they are therefore hospitalized in specialized neonatal intensive care units) where heart rate and lungs activity are continuously assessed. These are mostly monitored by set of electrodes placed in contact with skin (two in thorax area and one in abdominal area). This paper address the problem of preterm cardiac and respiratory monitoring in a patient with severe skin disorders who can not monitored with standard electrodes because of his dry, thickened, scaly skin. As a solution, we propose a fully non-contact measurement method, based on laser Doppler vibrometry, able to continuously record the movements of wall-chest and extract from this signal, the heart rate and the respiratory activity of the patient. The results show a good agreement between the standard contact measurement methods and the proposed one (no statistical difference between data) with a data uncertainty of 2.9% for the heart rate data and of 9.5% for the respiration rate (k=2), in line with the classical measurement methods.

  19. Carrier accumulation and depletion in point-contact capacitance-voltage measurements

    Science.gov (United States)

    Naitou, Yuichi

    2017-11-01

    Scanning capacitance microscopy (SCM) is a variation of atomic force microscopy in which a conductive probe tip detects the bias modulated capacitance for the purpose of measuring the nanoscale semiconductor carrier concentration. SCM can be regarded as a point-contact capacitance-voltage system, and its capacitance-voltage properties are different from those of a conventional parallel-plate capacitor. In this study, the charge accumulation and depletion behavior of a semiconductor sample were closely investigated by SCM. By analyzing the tip-sample approach curve, the effective probe tip area and charge depletion depth could be quantitatively determined.

  20. Contact-type displacement measuring mechanism for fuel assembly in reactor

    International Nuclear Information System (INIS)

    Yokota, Yoshio; Ko, Kuniaki.

    1995-01-01

    The measuring mechanism of the present invention, which is used in a lmfbr type reactor, is suspended by a gripper of a fuel handing machine, and it comprises a combination of a displacement amount measuring jig allowed to be inserted into a handling head of a fuel assembly and a displacement amount measuring ring disposed at the lower portion in the handling head. The displacement amount measuring jig has a structure comprising a releasable handle and a columnar or cylindrical measuring portion allowable to be inserted into the handling head formed at the lower portion of the handle, which are connected with each other. When an interference (contact) occurred between the displacement amount measuring jig and the stepwise displacement amount measuring ring during the measurement, change of load and a phenomenon that the fuel handing machine can not be lowered are recognized, so that core displacement amount can be recognized based on the stroke of the gripper portion. Then, remote measurement is possible for displacement and deformation of the fuel assembly in the reactor container, and the measurement can be conducted by the same procedures and in the same period of time as in a case of ordinary fuel exchange operation. A flow channel for coolants passing through the fuel assembly can be ensured, thereby enabling to measure the amount of core displacement which is closer to an actual value in the reactor. (N.H.)

  1. Electrical contacts principles and applications

    CERN Document Server

    Slade, Paul G

    2013-01-01

    Covering the theory, application, and testing of contact materials, Electrical Contacts: Principles and Applications, Second Edition introduces a thorough discussion on making electric contact and contact interface conduction; presents a general outline of, and measurement techniques for, important corrosion mechanisms; considers the results of contact wear when plug-in connections are made and broken; investigates the effect of thin noble metal plating on electronic connections; and relates crucial considerations for making high- and low-power contact joints. It examines contact use in switch

  2. In reactor measurements, modeling and assessments to predict liquid injection shutdown system nozzle to Calandria tube time to contact

    International Nuclear Information System (INIS)

    Kirstein, K.; Kalenchuk, D.

    2011-01-01

    Over the past few years there has been an expanding effort to assess the potential for Calandria Tubes (CTs) coming into contact with Liquid Injection Shutdown System (LISS) Nozzles to ensure continued contact-free operation as required by CSA N285.4. LISS Nozzles (LINs), which run perpendicular to and between rows of fuel channels, sag at a slower rate than the fuel channels. As a result certain LINs may come in contact with CTs above them. The CT/LIN gaps can be predicted from calculated CT sag, LIN sag and a number of component and installation tolerances. This method however results in very conservative predictions when compared to measurements, confirmed with the in reactor measurements initiated in 2000, when gaps were successfully measured the first time using images obtained from a camera-assisted measurement tool inserted into the calandria. To reduce the conservatism of the CT/LIN gap predictions, statistical CT/LIN gap models are used instead. They are derived from a comparison between calculated gaps based on nominal dimensions and the visual image based measured gaps. These reactor specific (typically 95% confidence level) CT/LIN gap models account for all uncertainties and deviations from nominal values. Prediction error margins reduce as more in-reactor gap measurements become available. Each year more measurements are being made using this standardized visual CT/LIN proximity method. The subsequently prepared reactor-specific models have been used to provide time to contact for every channel above the LINs at these stations. In a number of cases it has been used to demonstrate that the reactor can be operated to its end of life before refurbishment with no predicted contact, or specific at-risk channels have been identified for which appropriate remedial actions could be implemented in a planned manner. (author)

  3. Estimating intrinsic and extrinsic noise from single-cell gene expression measurements

    Science.gov (United States)

    Fu, Audrey Qiuyan; Pachter, Lior

    2017-01-01

    Gene expression is stochastic and displays variation (“noise”) both within and between cells. Intracellular (intrinsic) variance can be distinguished from extracellular (extrinsic) variance by applying the law of total variance to data from two-reporter assays that probe expression of identically regulated gene pairs in single cells. We examine established formulas [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): “Stochastic gene expression in a single cell,” Science, 297, 1183–1186.] for the estimation of intrinsic and extrinsic noise and provide interpretations of them in terms of a hierarchical model. This allows us to derive alternative estimators that minimize bias or mean squared error. We provide a geometric interpretation of these results that clarifies the interpretation in [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): “Stochastic gene expression in a single cell,” Science, 297, 1183–1186.]. We also demonstrate through simulation and re-analysis of published data that the distribution assumptions underlying the hierarchical model have to be satisfied for the estimators to produce sensible results, which highlights the importance of normalization. PMID:27875323

  4. Explanation of the barrier heights of graphene Schottky contacts by the MIGS-and-electronegativity concept

    Science.gov (United States)

    Mönch, Winfried

    2016-09-01

    Graphene-semiconductor contacts exhibit rectifying properties and, in this respect, they behave in exactly the same way as a "conventional" metal-semiconductor or Schottky contacts. It will be demonstrated that, as often assumed, the Schottky-Mott rule does not describe the reported barrier heights of graphene-semiconductor contacts. With "conventional" Schottky contacts, the same conclusion was reached already in 1940. The physical reason is that the Schottky-Mott rule considers no interaction between the metal and the semiconductor. The barrier heights of "conventional" Schottky contacts were explained by the continuum of metal-induced gap states (MIGSs), where the differences of the metal and semiconductor electronegativities describe the size and the sign of the intrinsic electric-dipoles at the interfaces. It is demonstrated that the MIGS-and-electronegativity concept unambiguously also explains the experimentally observed barrier heights of graphene Schottky contacts. This conclusion includes also the barrier heights reported for MoS2 Schottky contacts with "conventional" metals as well as with graphene.

  5. Procedure of non-contacting local mass density and mass density distribution measurements

    International Nuclear Information System (INIS)

    Menzel, M.; Winkler, K.

    1985-01-01

    The invention has been aimed at a procedure of non-contacting local mass density and/or mass density distribution measurements i.e. without the interfering influence of sensors or probes. It can be applied to installations, apparatuses and pipings of chemical engineering, to tank constructions and transportation on extreme temperature and/or pressure conditions and aggressive media influences respectively. The procedure has utilized an ionizing quantum radiation whereby its unknown weakening and scattering is compensated by a suitable combination of scattering and transmission counter rate measurements in such a way that the local mass densities and the mass density distribution respectively are determinable

  6. Non-Contact Thickness and Profile Measurements of Rolled Aluminium Strip Using EMAT

    International Nuclear Information System (INIS)

    Hobbis, A.; Aruleswaran, A.

    2006-01-01

    Accurate measurement of strip thickness is a very high priority for the aluminium rolled product industry. This paper presents the findings of trials to measure the thickness of aluminium strip using a send-receive, radially polarised Electromagnetic Acoustic Transducer (EMAT). A broadband EMAT system, developed at Warwick University, UK with a centre frequency of approximately 5 MHz and frequency content up to 12 MHz was used. The resultant ultrasonic waveforms have been processed using Fourier analysis. Static measurements of aluminium alloy samples in the thickness range between 0.28 mm to 2.8 mm have been measured using this non-contact approach at stand-offs of up to 2 mm. Measurements across the aluminium strip width to evaluate its profile for quality control was also carried out successfully. Some of the experiments and results obtained are described in detail

  7. Measurement and visualization of file-to-wall contact during ultrasonically activated irrigation in simulated canals.

    Science.gov (United States)

    Boutsioukis, C; Verhaagen, B; Walmsley, A D; Versluis, M; van der Sluis, L W M

    2013-11-01

    (i) To quantify in a simulated root canal model the file-to-wall contact during ultrasonic activation of an irrigant and to evaluate the effect of root canal size, file insertion depth, ultrasonic power, root canal level and previous training, (ii) To investigate the effect of file-to-wall contact on file oscillation. File-to-wall contact was measured during ultrasonic activation of the irrigant performed by 15 trained and 15 untrained participants in two metal root canal models. Results were analyzed by two 5-way mixed-design anovas. The level of significance was set at P root canal (P root canal (P irrigant activation. Therefore, the term 'Passive Ultrasonic Irrigation' should be amended to 'Ultrasonically Activated Irrigation'. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Contact Angle Measurements: an Alternative Approach Towards Understanding the Mechanism of Increased Drug Dissolution from Ethylcellulose Tablets Containing Surfactant and Exploring the Relationship Between Their Contact Angles and Dissolution Behaviors.

    Science.gov (United States)

    Liu, Tiaotiao; Hao, Jingqiang; Yang, Baixue; Hu, Beibei; Cui, Zhixiang; Li, Sanming

    2018-05-01

    The addition of surfactant in tablet was a well-defined approach to improve drug dissolution rate. While the selected surfactant played a vital role in improving the wettability of tablet by medium, it was equally important to improve the dissolution rate by permeation effect due to production of pores or the reduced inter-particle adhesion. Furthermore, understanding the mechanism of dissolution rate increased was significant. In this work, contact angle measurement was taken up as an alternative approach for understanding the dissolution rate enhancement for tablet containing surfactant. Ethylcellulose, as a substrate, was used to prepare tablet. Four surfactants, sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), dodecyltrimethylammonium bromide (DTAB), and sodium lauryl sulfonate (SLS), were used. Berberine hydrochloride, metformin hydrochloride, and rutin were selected as model drugs. The contact angle of tablet in the absence and presence of surfactant was measured to explore the mechanism. The dissolution test was investigated to verify the mechanism and to establish a correlation with the contact angle. The result showed that the mechanism was the penetration effect rather than the wetting effect. The dissolution increased with a reduction in the contact angle. DTAB was found to obtain the highest level of dissolution enhancement and the lowest contact angle, while SDS, SDBS, and SLS were found to be the less effective in both dissolution enhancement and contact angle decrease. Therefore, contact angle was a good indicator for dissolution behavior besides exploring the mechanism of increased dissolution, which shows great potential in formula screening.

  9. Intraocular pressure measurements in relation to head position and through soft contact lenses: comparison of three portable instruments.

    Science.gov (United States)

    Klein, Ainat; Shemesh, Gabi; Loewenstein, Anat; Kurtz, Shimon

    2011-01-01

    to compare the reproducibility of three portable instruments-the Tono-Pen tonometer (Reichert Ophthalmic Instruments, Depew, NY), the Phosphene tonometer (Bausch & Lomb, Rochester, NY), and the TERT (Through Eyelid Russian Tonometer; Rjazan State Instrument Making, Rjazan, Russia)-in the measurement of intraocular pressure (IOP) with and without soft contact lenses and in different head positions. twenty-six eyes of healthy volunteers were examined by the three instruments while the subjects were sitting, recumbent, and hyperextending their heads, and with and without contact lenses. IOP measurements were compared and the effects of head position and presence of contact lenses on the resultant values were analyzed. the average difference between the recumbent and sitting positions was 3.56, 2.68, and 2.62 mm Hg for the Tono-Pen tonometer, Phosphene tonometer, and TERT, respectively. There was an increase of 5.60, 2.78, and 2.63 mm Hg in hyperextension compared to sitting for the Tono-Pen tonometer, Phosphene tonometer, and TERT, respectively. The difference in the IOP values obtained in the presence and absence of therapeutic contact lens for the three instruments in the three positions was between -1.23 and +1.47 mm Hg. IOP measurements of bedridden patients are only slightly higher than those of sitting patients except for the Tono-Pen tonometer in the hyperextension position. The presence of contact lenses does not affect IOP values obtained by the three evaluated instruments.

  10. Development of a New Monomer for the Synthesis of Intrinsic Antimicrobial Polymers with Enhanced Material Properties.

    Science.gov (United States)

    Brodkorb, Florian; Fischer, Björn; Kalbfleisch, Katrin; Robers, Oliver; Braun, Carina; Dohlen, Sophia; Kreyenschmidt, Judith; Lorenz, Reinhard; Kreyenschmidt, Martin

    2015-08-24

    The use of biocidal compounds in polymers is steadily increasing because it is one solution to the need for safety and hygiene. It is possible to incorporate an antimicrobial moiety to a polymer. These polymers are referred to as intrinsic antimicrobial. The biocidal action results from contact of the polymer to the microorganisms, with no release of active molecules. This is particularly important in critical fields like food technology, medicine and ventilation technology, where migration or leaching is crucial and undesirable. The isomers N-(1,1-dimethylethyl)-4-ethenyl-benzenamine and N-(1,1-dimethyl-ethyl)-3-ethenyl-benzenamine (TBAMS) are novel (Co-)Monomers for intrinsic anti-microbial polymers. The secondary amines were prepared and polymerized to the corresponding water insoluble polymer. The antimicrobial activity was analyzed by the test method JIS Z 2801:2000. Investigations revealed a high antimicrobial activity against Staphylococcus aureus and Escherichia coli with a reduction level of >4.5 log10 units. Furthermore, scanning electron microscopy (SEM) of E. coli. in contact with the polymer indicates a bactericidal action which is caused by disruption of the bacteria cell membranes, leading to lysis of the cells.

  11. Contact angle measurements of a polyphenyl ether to 190 C on M-50 steel

    Science.gov (United States)

    Jones, W. R., Jr.

    1981-01-01

    Contact angle measurements were performed for a polyphenyl ether on steel in nitrogen. A tilting plate and a sessile drop apparatus were used. Surface tension was measured with a maximum bubble pressure apparatus. Critical surface energies of spreading were found to be 30.1 and 31.3 dynes/cm. It was concluded that the polyphenyl ether is inherently autophobic and will not spread on its own surface film.

  12. Perceived Motivational Climate as a Predictor of Intrinsic Motivation in Medical Students

    Directory of Open Access Journals (Sweden)

    Saiideh Norouzi

    2016-06-01

    Full Text Available Introduction: Motivational climate is the situational structure of goals through which success or failure is judged in the social environment. This study aimed at examining the relationship between perceived motivational climate and intrinsic motivation of medical students. It was hypothesized that perceived mastery climate predicted medical students’ intrinsic motivation positively and perceived performance climate predicted it negatively. Methods: The design was a cross-sectional study. The Iranian version of two instruments for measuring intrinsic motivation and perceived motivational climate were completed by 232 medical students. In order to identify the predictability relationship between the research variables, structure equation modeling was adopted. Results: Investigations revealed that perceived mastery climate positively and meaningfully predicted medical students’ intrinsic motivation (0/85. Perceived performance climate negatively predicted medical students’ intrinsic motivation (-0/47. Conclusion: Building mastery climate in a learning environment promotes medicine students’ intrinsic motivation.

  13. Influence of the transition region between p- and n-type polycrystalline silicon passivating contacts on the performance of interdigitated back contact silicon solar cells

    Science.gov (United States)

    Reichel, Christian; Müller, Ralph; Feldmann, Frank; Richter, Armin; Hermle, Martin; Glunz, Stefan W.

    2017-11-01

    Passivating contacts based on thin tunneling oxides (SiOx) and n- and p-type semi-crystalline or polycrystalline silicon (poly-Si) enable high passivation quality and low contact resistivity, but the integration of these p+/n emitter and n+/n back surface field junctions into interdigitated back contact silicon solar cells poses a challenge due to high recombination at the transition region from p-type to n-type poly-Si. Here, the transition region was created in different configurations—(a) p+ and n+ poly-Si regions are in direct contact with each other ("pn-junction"), using a local overcompensation (counterdoping) as a self-aligning process, (b) undoped (intrinsic) poly-Si remains between the p+ and n+ poly-Si regions ("pin-junction"), and (c) etched trenches separate the p+ and n+ poly-Si regions ("trench")—in order to investigate the recombination characteristics and the reverse breakdown behavior of these solar cells. Illumination- and injection-dependent quasi-steady state photoluminescence (suns-PL) and open-circuit voltage (suns-Voc) measurements revealed that non-ideal recombination in the space charge regions with high local ideality factors as well as recombination in shunted regions strongly limited the performance of solar cells without a trench. In contrast, solar cells with a trench allowed for open-circuit voltage (Voc) of 720 mV, fill factor of 79.6%, short-circuit current (Jsc) of 41.3 mA/cm2, and a conversion efficiencies (η) of 23.7%, showing that a lowly conducting and highly passivating intermediate layer between the p+ and n+ poly-Si regions is mandatory. Independent of the configuration, no hysteresis was observed upon multiple stresses in reverse direction, indicating a controlled and homogeneously distributed breakdown, but with different breakdown characteristics.

  14. The measurement of intraocular pressure over positive soft contact lenses by rebound tonometry

    Directory of Open Access Journals (Sweden)

    Fabrizio Zeri

    2016-07-01

    Conclusions: Rebound tonometry over positive hydrogel CLs leads to a certain degree of IOP underestimation. This result did not change for the two positive lenses used in the experiment, despite their large difference in power and therefore in lens thickness. Optometrists should bear this in mind when measuring IOP with the rebound tonometer over plus power contact lenses.

  15. High frequency measurements of shot noise suppression in atomic-scale metal contacts

    Science.gov (United States)

    Wheeler, Patrick J.; Evans, Kenneth; Russom, Jeffrey; King, Nicholas; Natelson, Douglas

    2009-03-01

    Shot noise provides a means of assessing the number and transmission coefficients of transmitting channels in atomic- and molecular-scale junctions. Previous experiments at low temperatures in metal and semiconductor point contacts have demonstrated the expected suppression of shot noise when junction conductance is near an integer multiple of the conductance quantum, G0≡2e^2/h. Using high frequency techniques, we demonstrate the high speed acquisition of such data at room temperature in mechanical break junctions. In clean Au contacts conductance histograms with clear peaks at G0, 2G0, and 3G0 are acquired within hours, and histograms of simultaneous measurements of the shot noise show clear suppression at those conductance values. We describe the dependence of the noise on bias voltage and analyze the noise vs. conductance histograms in terms of a model that averages over transmission coefficients.

  16. Protective capping of topological surface states of intrinsically insulating Bi2Te3

    Directory of Open Access Journals (Sweden)

    Katharina Hoefer

    2015-09-01

    Full Text Available We have identified epitaxially grown elemental Te as a capping material that is suited to protect the topological surface states of intrinsically insulating Bi2Te3. By using angle-resolved photoemission, we were able to show that the Te overlayer leaves the dispersive bands of the surface states intact and that it does not alter the chemical potential of the Bi2Te3 thin film. From in-situ four-point contact measurements, we observed that the conductivity of the capped film is still mainly determined by the metallic surface states and that the contribution of the capping layer is minor. Moreover, the Te overlayer can be annealed away in vacuum to produce a clean Bi2Te3 surface in its pristine state even after the exposure of the capped film to air. Our findings will facilitate well-defined and reliable ex-situ experiments on the properties of Bi2Te3 surface states with nontrivial topology.

  17. Detection of the local sliding in the tyre-road contact by measuring vibrations on the inner liner of the tyre

    Science.gov (United States)

    Niskanen, Arto J.; Tuononen, Ari J.

    2017-04-01

    Intelligent tyres can provide vital information from the tyre-road contact, especially for autonomous cars and intelligent infrastructure. In this paper, the acceleration measured on the inner liner of a tyre is used to detect the local sliding in the tyre-road contact. The Hilbert-Huang transform is utilized to extract the relevant vibration components and localize them in the wheel rotation angle domain. The energy of the vibration in the trailing part of the contact is shown to increase in low-friction conditions which can be related to the sliding of the tread part as a result of the shear stresses exceeding the local friction limit. To separate the effect of the surface roughness and the friction, different road surfaces were used in the measurements. In addition, the effects of different driving manoeuvres on the measured accelerations and the propagation of the sliding zone in the contact patch during braking are illustrated.

  18. Detection of the local sliding in the tyre-road contact by measuring vibrations on the inner liner of the tyre

    International Nuclear Information System (INIS)

    Niskanen, Arto J; Tuononen, Ari J

    2017-01-01

    Intelligent tyres can provide vital information from the tyre-road contact, especially for autonomous cars and intelligent infrastructure. In this paper, the acceleration measured on the inner liner of a tyre is used to detect the local sliding in the tyre-road contact. The Hilbert–Huang transform is utilized to extract the relevant vibration components and localize them in the wheel rotation angle domain. The energy of the vibration in the trailing part of the contact is shown to increase in low-friction conditions which can be related to the sliding of the tread part as a result of the shear stresses exceeding the local friction limit. To separate the effect of the surface roughness and the friction, different road surfaces were used in the measurements. In addition, the effects of different driving manoeuvres on the measured accelerations and the propagation of the sliding zone in the contact patch during braking are illustrated. (paper)

  19. Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis.

    Science.gov (United States)

    Koppes, Sjors A; Engebretsen, Kristiane A; Agner, Tove; Angelova-Fischer, Irena; Berents, Teresa; Brandner, Johanna; Brans, Richard; Clausen, Maja-Lisa; Hummler, Edith; Jakasa, Ivone; Jurakić-Tončic, Ružica; John, Swen M; Khnykin, Denis; Molin, Sonja; Holm, Jan O; Suomela, Sari; Thierse, Hermann-Josef; Kezic, Sanja; Martin, Stefan F; Thyssen, Jacob P

    2017-07-01

    Contact sensitization is common and affects up to 20% of the general population. The clinical manifestation of contact sensitization is allergic contact dermatitis. This is a clinical expression that is sometimes difficult to distinguish from other types of dermatitis, for example irritant and atopic dermatitis. Several studies have examined the pathogenesis and severity of allergic contact dermatitis by measuring the absence or presence of various biomarkers. In this review, we provide a non-systematic overview of biomarkers that have been studied in allergic contact dermatitis. These include genetic variations and mutations, inflammatory mediators, alarmins, proteases, immunoproteomics, lipids, natural moisturizing factors, tight junctions, and antimicrobial peptides. We conclude that, despite the enormous amount of data, convincing specific biomarkers for allergic contact dermatitis are yet to be described. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. The relationship between risk attitude and strength of preference: A test of intrinsic risk attitude

    NARCIS (Netherlands)

    A. Smidts (Ale)

    1997-01-01

    textabstractIn a field study, the concept of intrinsic, risk attitude is investigated. Intrinsic risk attitude concerns the relationship between risk attitude, measured by the utility function u(x), and strength of preference, measured by the value function v(x). We study farmers' decision-making

  1. Comparative assessment of intrinsic mechanical stimuli on knee cartilage and compressed agarose constructs.

    Science.gov (United States)

    Completo, A; Bandeiras, C; Fonseca, F

    2017-06-01

    A well-established cue for improving the properties of tissue-engineered cartilage is mechanical stimulation. However, the explicit ranges of mechanical stimuli that correspond to favorable metabolic outcomes are elusive. Usually, these outcomes have only been associated with the applied strain and frequency, an oversimplification that can hide the fundamental relationship between the intrinsic mechanical stimuli and the metabolic outcomes. This highlights two important key issues: the firstly is related to the evaluation of the intrinsic mechanical stimuli of native cartilage; the second, assuming that the intrinsic mechanical stimuli will be important, deals with the ability to replicate them on the tissue-engineered constructs. This study quantifies and compares the volume of cartilage and agarose subjected to a given magnitude range of each intrinsic mechanical stimulus, through a numerical simulation of a patient-specific knee model coupled with experimental data of contact during the stance phase of gait, and agarose constructs under direct-dynamic compression. The results suggest that direct compression loading needs to be parameterized with time-dependence during the initial culture period in order to better reproduce each one of the intrinsic mechanical stimuli developed in the patient-specific cartilage. A loading regime which combines time periods of low compressive strain (5%) and frequency (0.5Hz), in order to approach the maximal principal strain and fluid velocity stimulus of the patient-specific cartilage, with time periods of high compressive strain (20%) and frequency (3Hz), in order to approach the pore pressure values, may be advantageous relatively to a single loading regime throughout the full culture period. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    International Nuclear Information System (INIS)

    Heib, F.; Hempelmann, R.; Munief, W.M.; Ingebrandt, S.; Fug, F.; Possart, W.; Groß, K.; Schmitt, M.

    2015-01-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ a and the receding θ r contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple line dis

  3. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heib, F., E-mail: f.heib@mx.uni-saarland.de [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Hempelmann, R. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Munief, W.M.; Ingebrandt, S. [Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibrücken (Germany); Fug, F.; Possart, W. [Department of Adhesion and Interphases in Polymers, Saarland University, 66123 Saarbrücken (Germany); Groß, K.; Schmitt, M. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany)

    2015-07-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ{sub a} and the receding θ{sub r} contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple

  4. Measurement of contact-angle hysteresis for droplets on nanopillared surface and in the Cassie and Wenzel states: a molecular dynamics simulation study.

    Science.gov (United States)

    Koishi, Takahiro; Yasuoka, Kenji; Fujikawa, Shigenori; Zeng, Xiao Cheng

    2011-09-27

    We perform large-scale molecular dynamics simulations to measure the contact-angle hysteresis for a nanodroplet of water placed on a nanopillared surface. The water droplet can be in either the Cassie state (droplet being on top of the nanopillared surface) or the Wenzel state (droplet being in contact with the bottom of nanopillar grooves). To measure the contact-angle hysteresis in a quantitative fashion, the molecular dynamics simulation is designed such that the number of water molecules in the droplets can be systematically varied, but the number of base nanopillars that are in direct contact with the droplets is fixed. We find that the contact-angle hysteresis for the droplet in the Cassie state is weaker than that in the Wenzel state. This conclusion is consistent with the experimental observation. We also test a different definition of the contact-angle hysteresis, which can be extended to estimate hysteresis between the Cassie and Wenzel state. The idea is motivated from the appearance of the hysteresis loop typically seen in computer simulation of the first-order phase transition, which stems from the metastability of a system in different thermodynamic states. Since the initial shape of the droplet can be controlled arbitrarily in the computer simulation, the number of base nanopillars that are in contact with the droplet can be controlled as well. We show that the measured contact-angle hysteresis according to the second definition is indeed very sensitive to the initial shape of the droplet. Nevertheless, the contact-angle hystereses measured based on the conventional and new definition seem converging in the large droplet limit. © 2011 American Chemical Society

  5. Propagation-of-uncertainty from contact angle and streaming potential measurements to XDLVO model assessments of membrane-colloid interactions.

    Science.gov (United States)

    Muthu, Satish; Childress, Amy; Brant, Jonathan

    2014-08-15

    Membrane fouling assessed from a fundamental standpoint within the context of the Derjaguin-Landau-Verwey-Overbeek (DLVO) model. The DLVO model requires that the properties of the membrane and foulant(s) be quantified. Membrane surface charge (zeta potential) and free energy values are characterized using streaming potential and contact angle measurements, respectively. Comparing theoretical assessments for membrane-colloid interactions between research groups requires that the variability of the measured inputs be established. The impact that such variability in input values on the outcome from interfacial models must be quantified to determine an acceptable variance in inputs. An interlaboratory study was conducted to quantify the variability in streaming potential and contact angle measurements when using standard protocols. The propagation of uncertainty from these errors was evaluated in terms of their impact on the quantitative and qualitative conclusions on extended DLVO (XDLVO) calculated interaction terms. The error introduced into XDLVO calculated values was of the same magnitude as the calculated free energy values at contact and at any given separation distance. For two independent laboratories to draw similar quantitative conclusions regarding membrane-foulant interfacial interactions the standard error in contact angle values must be⩽2.5°, while that for the zeta potential values must be⩽7 mV. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Intrinsic Diophantine approximation on general polynomial surfaces

    DEFF Research Database (Denmark)

    Tiljeset, Morten Hein

    2017-01-01

    We study the Hausdorff measure and dimension of the set of intrinsically simultaneously -approximable points on a curve, surface, etc, given as a graph of integer polynomials. We obtain complete answers to these questions for algebraically “nice” manifolds. This generalizes earlier work done...

  7. Local Void Fractions and Bubble Velocity in Vertical Air-Water Two-Phase Flows Measured by Needle-Contact Capacitance Probe

    Directory of Open Access Journals (Sweden)

    Shanfang Huang

    2018-01-01

    Full Text Available Multiphase flow measurements have become increasingly important in a wide range of industrial fields. In the present study, a dual needle-contact capacitance probe was newly designed to measure local void fractions and bubble velocity in a vertical channel, which was verified by digital high-speed camera system. The theoretical analyses and experiments show that the needle-contact capacitance probe can reliably measure void fractions with the readings almost independent of temperature and salinity for the experimental conditions. In addition, the trigger-level method was chosen as the signal processing method for the void fraction measurement, with a minimum relative error of −4.59%. The bubble velocity was accurately measured within a relative error of 10%. Meanwhile, dynamic response of the dual needle-contact capacitance probe was analyzed in detail. The probe was then used to obtain raw signals for vertical pipe flow regimes, including plug flow, slug flow, churn flow, and bubbly flow. Further experiments indicate that the time series of the output signals vary as the different flow regimes and are consistent with each flow structure.

  8. Biometric Changes After Trabeculectomy with Contact and Non-contact Biometry.

    Science.gov (United States)

    Alvani, Azam; Pakravan, Mohammad; Esfandiari, Hamed; Yaseri, Mehdi; Yazdani, Shahin; Ghahari, Elham

    2016-02-01

    To compare biometric changes measured with contact and noncontact methods after mitomycin-C-augmented trabeculectomy. In this prospective study, 31 eyes from 31 glaucoma patients scheduled for primary trabeculectomy were enrolled. Biometric parameters including axial length (AL), anterior chamber depth (ACD), and lens thickness (LT) were measured using contact ultrasound biometry (UD-6000 Ultrasonic A/B scanner biometer; Tomey Corporation, Nagoya, Japan) and a noncontact optical biometry device (Lenstar; Haag-Streit AG, Koeniz, Switzerland). Measurements were taken the day before trabeculectomy and then compared with measurements obtained 3 and 6 months after surgery. The AL and ACD were significantly decreased at 3 and 6 months compared with baseline values taken with each biometry method. There was a significant increase in LT measured by the Lenstar device at the 3- and 6-month follow-up. At both the 3- and 6-month follow-up, the mean AL measurement reduction with the Lenstar device was significantly lower than that of the A-scan ultrasound measurements. The mean ACD changes between the two devices were not significantly different. There is a small but significant decrease in the AL and ACD after trabeculectomy as measured with both the contact and noncontact methods. The amount of AL reduction measured is significantly smaller using the noncontact method, making it the preferable method for intraocular lens power calculation for patients who need cataract surgery combined with or after trabeculectomy. The LT measured by the Lenstar device increased significantly after the operation, which can be an early sign of the progression of cataractous changes after trabeculectomy.

  9. Geometry-Dependent Electrostatics near Contact Lines

    International Nuclear Information System (INIS)

    Chou, Tom

    2001-01-01

    Long-ranged electrostatic interactions in electrolytes modify contact angles on charged substrates in a scale and geometry-dependent manner. For angles measured at scales smaller than the typical Debye screening length, the wetting geometry near the contact line must be explicitly considered. Using variational and asymptotic methods, we derive new transcendental equations for the contact angle as functions of the electrostatic potential only at the three phase contact line. Analytic expressions are found in certain limits and compared with predictions for contact angles measured with lower resolution. An estimate for electrostatic contributions to line tension is also given

  10. Mathematical diagnosis of pediatric echocardiograms with fractal dimension measures evaluated through intrinsic mathematical harmony

    International Nuclear Information System (INIS)

    Rodriguez V, Javier O; Prieto, Signed E; Ortiz, Liliana

    2010-01-01

    Geometry allows the objective mathematical characterization of forms. Fractal geometry characterizes irregular objects. The left ventricle dynamical states form observed through echocardiography can be objectively evaluated through fractal dimension measures. Methods: A measurement of fractal dimension was performed using the Box-counting method of three defined objects in 28 echocardiographic images, 16 from normal children (group A) and 12 ill children (group B), in order to establish differences between health and illness from its comparison with the fractal dimensions of 2 normality prototypes and 2 disease prototypes. Results: A new diagnostic, clinical application methodology was developed based in the intrinsic mathematical harmony (IMH) concept, and it was observed that the fractal dimensions of the defined objects for an abnormal echocardiogram show similarity to its fourth significant number, thus demonstrating the possibility of following up the evolution from normality towards disease. According to the performed calculations, 68.75% of the cases in group A could be better evaluated with the developed diagnostic methodology, and the ill ones could be diagnosed more effectively. Conclusions: The pediatric echocardiography images can be objectively characterized with fractal dimension measurements, thus enabling the development of a clinical diagnostic methodology of echocardiography in children from the IMH concept.

  11. Human dignity: intrinsic or relative value?

    Science.gov (United States)

    Thiel, Marie-Jo

    2010-09-01

    Is human dignity an intrinsic value? Or is it a relative value, depending on the perception or assessment of quality of life? History had delineated some of its key features, but the advent of human rights and the Holocaust put special emphasis on this notion, particularly in the field of bioethics. But if modern medicine regards human dignity as crucial, it tends to support this notion while assessing and measuring it. The quality of life becomes the gauge for measuring human dignity, starting from a distinction between a viable and a non-viable existence, which may eventually lead to assisted death, or to letting die. This article argues that the concept of quality of life is of great relevant for medical practice, but on the condition of not being used as a standard to measure the dignity of the individual. Rather, the quality of life should be regarded as an imperative posed by human dignity, which is necessarily intrinsic. If the quality of life measures dignity, humankind is divided into two categories: lives worthy of living, and lives unworthy of living, and society becomes a jungle. Raising the quality of life as a requirement of the inherent human dignity does not solve automatically all problems and does not eliminate a feeling of unworthiness. But it ensures its 'human' value: the equal respect for every human being.

  12. The relation of mothers' controlling vocalizations to children's intrinsic motivation.

    Science.gov (United States)

    Deci, E L; Driver, R E; Hotchkiss, L; Robbins, R J; Wilson, I M

    1993-04-01

    Twenty-six mother-child dyads played together in a laboratory setting. Play sessions were surreptitiously videotaped (with mothers' permission), and each maternal vocalization was transcribed and coded, first into 1 of 24 categories and then ipso facto into one of three supercategories--namely, controlling, autonomy supportive, and neutral. The degree of mothers' controllingness was calculated as the percentage of vocalizations coded as controlling. This index was correlated with the intrinsic motivation of their 6- or 7-year-old children, as assessed primarily by the free-choice behavioral measure and secondarily by a child self-report measure of interest and liking for the task. Both correlations were significantly negative, thereby suggesting that the robust laboratory findings of a negative relation between controlling contexts and individuals' intrinsic motivation are directly generalizable to the domain of parenting. Results are discussed in terms of the processes that undermine intrinsic motivation and the means through which parental controllingness is communicated.

  13. Intrinsic and Extrinsic Motivation among Collegiate Instrumentalists

    Science.gov (United States)

    Diaz, Frank M.

    2010-01-01

    The purpose of this study was to gather and compare information on measures of intrinsic and extrinsic motivation among instrumentalists enrolled in collegiate ensembles. A survey instrument was developed to gather information concerning demographic data and responses to questions on motivational preference. Participants were undergraduate and…

  14. A Feasibility Study on the Worn Area Estimation by Measuring a Contact Resistance (I)

    International Nuclear Information System (INIS)

    Lee, Young-Ho; Kim, Hyung-Kyu

    2007-01-01

    In order to improve the fretting wear resistance of the nuclear fuel rod with considering the effect of the contacting spring shape, it is necessary to examine the formation procedure of the worn area during the fretting wear experiments with including its shape, size and the debris removal path. This is because the wear volume and the maximum wear depth are dominantly affected by the worn area and the wear resistance of the nuclear fuel rod was dominantly affected by the spring shape rather than the test environment and the contact mode (i.e. impact, sliding, rubbing, etc.). Unfortunately, it is almost impossible to archive the size and shape of the worn area on real-time basis because the contact surfaces are always hidden. If we could measure the worn area properties during fretting wear tests, it enables us to promptly estimate the wear resistance or behavior with various contacting spring shapes. Generally, fretting wear degradation is generated by the localized plastic deformation, fracture and finally detachment of wear debris. Generally, wear debris easily oxidized by frictional heat, test environment, etc. From the previous studies, most of the wear debris was detached from the worn surface in the distilled water condition while the wear debris in the dry condition remained on or adhered to the worn surface. At this time, it is reasonable that the accumulated wear debris on the worn surface is existed in the form of oxide. If small amount of electric current was applied between the contacting surfaces, wear debris could be an obstacle to flow the electric current. This means that the variation of the contact resistance under constant electric current during the fretting wear tests has much information on the formation of the worn area even though the applying current could accelerate the oxidation of the generated wear debris. So, in this study, fretting wear tests have been performed with applying an electric current in room temperature air in order to

  15. Correction for intrinsic and set dead-time losses in radioactivity counting

    International Nuclear Information System (INIS)

    Wyllie, H.A.

    1992-12-01

    Equations are derived for the determination of the intrinsic dead time of the components which precede the paralysis unit in a counting system for measuring radioactivity. The determination depends on the extension of the set dead time by the intrinsic dead time. Improved formulae are given for the dead-time correction of the count rate of a radioactive source in a single-channel system. A variable in the formulae is the intrinsic dead time which is determined concurrently with the counting of the source. The only extra equipment required in a conventional system is a scaler. 5 refs., 2 tabs., 21 figs

  16. Applanation tonometry in silicone hydrogel contact lens wearers.

    Science.gov (United States)

    Allen, R J; Dev Borman, A; Saleh, G M

    2007-12-01

    Previous studies have investigated intraocular pressure (IOP) measurements through conventional soft (hydrogel) therapeutic contact lenses, and have found that an accurate IOP can be recorded in normal eyes, and in eyes with abnormal anterior segments. The IOP measurement through soft contact lenses may be affected by the water content and centre thickness of the lens. Silicone hydrogel contact lenses are now being used as therapeutic contact lenses due to their high oxygen permeability. The purpose of this study is to investigate if IOP can be accurately measured in a subject wearing a silicone hydrogel contact lens. In a cohort study, the IOP was measured with a Goldmann applanation tonometer without a contact lens and then repeated with a hydrogel contact lens in situ. The IOP of 20 eyes of 10 volunteers with no ocular pathology was measured. The mean difference (+/-S.D.) found between IOP measurement with (mean 15.55+/-1.70 mmHg) and without (mean 16.05+/-1.90 mmHg) contact lens was found to be -0.5+/-0.89 mmHg. Statistical analysis was performed which revealed a correlation coefficient of 0.89. No significant statistical difference was found between the two groups with paired t-test (p=0.19). Accurate measurement of IOP by applanation tonometry can be achieved through a silicone hydrogel contact lens.

  17. Physics of Intrinsic Rotation in Flux-Driven ITG Turbulence

    International Nuclear Information System (INIS)

    Ku, S.; Abiteboul, J.; Dimond, P.H.; Dif-Pradalier, G.; Kwon, J.M.; Sarazin, Y.; Hahm, T.S.; Garbet, X.; Chang, C.S.; Latu, G.; Yoon, E.S.; Ghendrih, Ph.; Yi, S.; Strugarek, A.; Solomon, W.; Grandgirard, V.

    2012-01-01

    Global, heat flux-driven ITG gyrokinetic simulations which manifest the formation of macroscopic, mean toroidal flow profiles with peak thermal Mach number 0.05, are reported. Both a particle-in-cell (XGC1p) and a semi-Lagrangian (GYSELA) approach are utilized without a priori assumptions of scale-separation between turbulence and mean fields. Flux-driven ITG simulations with different edge flow boundary conditions show in both approaches the development of net unidirectional intrinsic rotation in the co-current direction. Intrinsic torque is shown to scale approximately linearly with the inverse scale length of the ion temperature gradient. External momentum input is shown to effectively cancel the intrinsic rotation profile, thus confirming the existence of a local residual stress and intrinsic torque. Fluctuation intensity, intrinsic torque and mean flow are demonstrated to develop inwards from the boundary. The measured correlations between residual stress and two fluctuation spectrum symmetry breakers, namely E x B shear and intensity gradient, are similar. Avalanches of (positive) heat flux, which propagate either outwards or inwards, are correlated with avalanches of (negative) parallel momentum flux, so that outward transport of heat and inward transport of parallel momentum are correlated and mediated by avalanches. The probability distribution functions of the outward heat flux and the inward momentum flux show strong structural similarity

  18. The Intrinsic Shape of Galaxies in SDSS/Galaxy Zoo

    OpenAIRE

    Rodríguez, Silvio; Padilla, Nelson D.

    2013-01-01

    By modelling the axis ratio distribution of SDSS DR8 galaxies we find the intrinsic 3D shapes of spirals and ellipticals. We use morphological information from the Galaxy Zoo project and assume a non-parametric distribution intrinsic of shapes, while taking into account dust extinction. We measure the dust extinction of the full sample of spiral galaxies and find a smaller value than previous estimations, with an edge-on extinction of $E_0 = 0.284^{+0.015}_{-0.026}$ in the SDSS r band. We als...

  19. Electrical Resistance Measurements and Microstructural Characterization of the Anode/Interconnect Contact in Simulated Anode-Side SOFC Conditions

    DEFF Research Database (Denmark)

    Harthøj, Anders; Alimadadi, Hossein; Holt, Tobias

    2015-01-01

    in phase transformation of the steel and in formation of oxides with a poor electrical conductivity in the anode. In this study, the area specific resistance (ASR) of the steel Crofer 22 APU, in contact with a Ni/YSZ anode with and without a tape casted CeO2 barrier layer was measured in simulated SOFC...... anode conditions at 800◦C. The microstructure in the contact area was characterized using scanning electron microscopy techniques. The ASR was low for the steel in direct contact with the Ni/YSZ anode. Nickel diffusion into the steel resulted in a fine grained zone, which was identified as ferrite...

  20. Genome-Wide Prediction of Intrinsic Disorder; Sequence Alignment of Intrinsically Disordered Proteins

    Science.gov (United States)

    Midic, Uros

    2012-01-01

    Intrinsic disorder (ID) is defined as a lack of stable tertiary and/or secondary structure under physiological conditions in vitro. Intrinsically disordered proteins (IDPs) are highly abundant in nature. IDPs possess a number of crucial biological functions, being involved in regulation, recognition, signaling and control, e.g. their functional…

  1. Separation of extrinsic and intrinsic plasmon excitations in Ge KLL Auger spectra

    International Nuclear Information System (INIS)

    Berenyi, Z.; Aszalos-Kiss, B.; Csik, A.; Toth, J.; Koever, L.; Varga, D.

    2002-01-01

    The nature of the Ge satellite structure and the contributions from extrinsic and intrinsic processes were investigated using the ESA-31 electron spectrometer. These measurements are providing the first high energy resolution Ge KLL data. The intensity ratio of the plasmon peaks induced by intrinsic and extrinsic excitation processes is found. (R.P.)

  2. Deconvolving instrumental and intrinsic broadening in core-shell x-ray spectroscopies

    International Nuclear Information System (INIS)

    Fister, T. T.; Seidler, G. T.; Rehr, J. J.; Kas, J. J.; Nagle, K. P.; Elam, W. T.; Cross, J. O.

    2007-01-01

    Intrinsic and experimental mechanisms frequently lead to broadening of spectral features in core-shell spectroscopies. For example, intrinsic broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy elements where the core-hole lifetime is very short. On the other hand, nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are more limited by instrumental resolution. Here, we demonstrate that the Richardson-Lucy (RL) iterative algorithm provides a robust method for deconvolving instrumental and intrinsic resolutions from typical XAS and XRS data. For the K-edge XAS of Ag, we find nearly complete removal of ∼9.3 eV full width at half maximum broadening from the combined effects of the short core-hole lifetime and instrumental resolution. We are also able to remove nearly all instrumental broadening in an XRS measurement of diamond, with the resulting improved spectrum comparing favorably with prior soft x-ray XAS measurements. We present a practical methodology for implementing the RL algorithm in these problems, emphasizing the importance of testing for stability of the deconvolution process against noise amplification, perturbations in the initial spectra, and uncertainties in the core-hole lifetime

  3. Client Motivation for Therapy Scale: a measure of intrinsic motivation, extrinsic motivation, and amotivation for therapy.

    Science.gov (United States)

    Pelletier, L G; Tuson, K M; Haddad, N K

    1997-04-01

    The purpose of this study was to examine the psychometric properties of a new measure of client motivation for therapy, the Client Motivation for Therapy Scale. This scale is designed to measure client's Intrinsic Motivation, four forms of regulation for Extrinsic Motivation (integrated, identified, introjected, and external regulation), and Amotivation for therapy. These subscales correspond to different forms of motivation identified by Deci and Ryan (1985) and fall along a self-determination continuum. An experimental version of the scale, along with related scales, was distributed to a total sample of 138 clients involved in therapy. The results supported the factor structure of the scale and revealed a satisfactory level of internal consistency. Correlations among the subscales revealed a simplex pattern that, in general, provides support for the self-determination continuum and the construct validity of the scale. Implications for research on client motivation for therapy are discussed.

  4. Quantitative Study of Nanoscale Contact and Pre-Contact Mechanics Using Force Modulation

    National Research Council Canada - National Science Library

    Syed Asif, S. A; Wahl, K. J; Colton, R. J

    1999-01-01

    .... However cantilever instability, conventional force detection and displacement sensing make contact area measurement difficult, hence the measured mechanical properties are usually only qualitative...

  5. Measurement of Critical Contact Angle in a Microgravity Space Experiment

    Science.gov (United States)

    Concus, P.; Finn, R.; Weislogel, M.

    1998-01-01

    Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the Interface Configuration Experiment on board the USMT,2 Space Shuttle flight. The experiment's "double proboscis" containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium.

  6. [News on occupational contact dermatitis].

    Science.gov (United States)

    Crépy, Marie-Noëlle; Bensefa-Colas, Lynda

    2014-03-01

    Contact dermatitis--irritant contact dermatitis, allergic contact dermatitis and protein contact dermatitis--are the most common occupational skin diseases, most often localized to the hands. Contact urticaria is rarer The main occupational irritants are wet work, detergents and disinfectants, cutting oils, and solvents. The main occupational allergens are rubber additives, metals (chromium, nickel, cobalt), plastics (epoxy resins, acrylic), biocides and plants. Diagnosis is based on clinical examination, medical history and allergy testing. For a number of irritating or sensitizing agents, irritant or allergic dermatitis can be notified as occupational diseases. The two main prevention measures are reducing skin contact with irritants and complete avoidance of skin contact with offending allergens.

  7. Wetting and adhesion evaluation of cosmetic ingredients and products: correlation of in vitro-in vivo contact angle measurements.

    Science.gov (United States)

    Capra, P; Musitelli, G; Perugini, P

    2017-08-01

    The aim of this work was to use the contact angle measurement in order to predict the behaviour of ingredients and finished cosmetic products on skin to improve skin feel and product texture. Different classes of cosmetic ingredients and formulations were evaluated. The contact angle measurements were carried out by the sessile drop method using an apparatus, designed and set up in laboratory. Glass, Teflon and human skin were the reference substrates. In a preliminary phase, TEWL parameter, sebum content and hydration of human skin were measured to set up method. Data demonstrated that glass substrate may be used as replacement of the skin:critical surface tension of skin and glass were about of 27 and 31 dyne cm -1 , respectively. Non-ionic surfactant with increasing HLB was evaluated: a correlation between contact angle measured and HLB was not observed because of different and complex molecular structure. In detail, ethylhexyl hydroxystearate (θ glass = 17.1°) showed lower contact angle value with respect to Polysorbate 20 (θ glass = 28.1°). Sodium laureth sulphate and stearalkonium chloride were also evaluated: anionic molecule showed more affinity for glass with respect to Teflon (θ glass = 21.7° and θ Teflon = 52.3°). Lipids and silicones showed different affinity for substrate according to hydrophilic groups and hydrocarbon chain: contact angles of silicones remained unchanged independently from substrate. Finished cosmetic products (O/W, W/O emulsions, cleansing oil, dry skin oil) showed different profiles according to surfactant and its affinity for continuous phase of the formulation. Comparing the values of the contact angle on skin of non-ionic surfactants, as ethylhexyl hydroxystearate and Polysorbate 20, they showed values lower (near to zero) than ones of sodium laureth sulphate and Stearalkonium Chloride (21.7° and 66.8°, respectively). Finally, finished cosmetic products tested on human skin showed different profile: corresponded contact

  8. Structural, Functional, and Metabolic Brain Markers Differentiate Collision versus Contact and Non-Contact Athletes.

    Science.gov (United States)

    Churchill, Nathan W; Hutchison, Michael G; Di Battista, Alex P; Graham, Simon J; Schweizer, Tom A

    2017-01-01

    There is growing concern about how participation in contact sports affects the brain. Retrospective evidence suggests that contact sports are associated with long-term negative health outcomes. However, much of the research to date has focused on former athletes with significant health problems. Less is known about the health of current athletes in contact and collision sports who have not reported significant medical issues. In this cross-sectional study, advanced magnetic resonance imaging (MRI) was used to evaluate multiple aspects of brain physiology in three groups of athletes participating in non-contact sports ( N  = 20), contact sports ( N  = 22), and collision sports ( N  = 23). Diffusion tensor imaging was used to assess white matter microstructure based on measures of fractional anisotropy (FA) and mean diffusivity (MD); resting-state functional MRI was used to evaluate global functional connectivity; single-voxel spectroscopy was used to compare ratios of neural metabolites, including N -acetyl aspartate (NAA), creatine (Cr), choline, and myo-inositol. Multivariate analysis revealed structural, functional, and metabolic measures that reliably differentiated between sport groups. The collision group had significantly elevated FA and reduced MD in white matter, compared to both contact and non-contact groups. In contrast, the collision group showed significant reductions in functional connectivity and the NAA/Cr metabolite ratio, relative to only the non-contact group, while the contact group overlapped with both non-contact and collision groups. For brain regions associated with contact sport participation, athletes with a history of concussion also showed greater alterations in FA and functional connectivity, indicating a potential cumulative effect of both contact exposure and concussion history on brain physiology. These findings indicate persistent differences in brain physiology for athletes participating in contact and collision sports

  9. Measurement of contact angle of copper-bearing shales using the captive bubble method

    Directory of Open Access Journals (Sweden)

    Danuta Szyszka

    2014-09-01

    Full Text Available This paper describes the measurement of contact angle of the natural surface of copper-bearing shales immersed in solutions of selected reagents of various concentrations using captive bubble method. It demonstrates that the copper-bearing shales coming from Legnicko-Głogwski Copper Region develop natural hydrophobic properties in surfactant (frother solutions and its hydrophobicity decreases from 82⁰ contact angle in distilled water, 78⁰ in C4E1 solutions, 76⁰ in C4E2 solutions, to 75⁰ in dodecylphenol solutions. These data show that the addition of frother causes a decrease of shale hydrophobicity but it can reduce stability of the thin film between the grain and air bubble. It means that flotation of copperbearing shales in the presence of frother will only be possible provided specific concentrations.

  10. Full area covered 3D profile measurement of special-shaped optics based on a new prototype non-contact profiler.

    Science.gov (United States)

    Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu

    2017-06-01

    A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.

  11. Contact mechanics: contact area and interfacial separation from small contact to full contact

    International Nuclear Information System (INIS)

    Yang, C; Persson, B N J

    2008-01-01

    We present a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. The numerical calculations mainly focus on the contact area and the interfacial separation from small contact (low load) to full contact (high load). For a small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For a high load the contact area approaches the nominal contact area (i.e. complete contact), and the interfacial separation approaches zero. The numerical results have been compared with analytical theory and experimental results. They are in good agreement with each other. The present findings may be very important for soft solids, e.g. rubber, or for very smooth surfaces, where complete contact can be reached at moderately high loads without plastic deformation of the solids

  12. Neural Basis of Intrinsic Motivation: Evidence from Event-Related Potentials.

    Science.gov (United States)

    Jin, Jia; Yu, Liping; Ma, Qingguo

    2015-01-01

    Human intrinsic motivation is of great importance in human behavior. However, although researchers have focused on this topic for decades, its neural basis was still unclear. The current study employed event-related potentials to investigate the neural disparity between an interesting stop-watch (SW) task and a boring watch-stop task (WS) to understand the neural mechanisms of intrinsic motivation. Our data showed that, in the cue priming stage, the cue of the SW task elicited smaller N2 amplitude than that of the WS task. Furthermore, in the outcome feedback stage, the outcome of the SW task induced smaller FRN amplitude and larger P300 amplitude than that of the WS task. These results suggested that human intrinsic motivation did exist and that it can be detected at the neural level. Furthermore, intrinsic motivation could be quantitatively indexed by the amplitude of ERP components, such as N2, FRN, and P300, in the cue priming stage or feedback stage. Quantitative measurements would also be convenient for intrinsic motivation to be added as a candidate social factor in the construction of a machine learning model.

  13. Wireless and Non-contact ECG Measurement System – the “Aachen SmartChair”

    Directory of Open Access Journals (Sweden)

    A. Aleksandrowicz

    2007-01-01

    Full Text Available This publication describes a measurement system that obtains an electrocardiogram (ECG by capacitively coupled electrodes. Fordemonstration purposes, this measurement system was integrated into an off-the-shelf office chair (so-called “Aachen SmartChair”.Whereas in usual clinical applications adhesive, conductively-coupled electrodes have to be attached to the skin, the described system is able to measure an ECG without direct skin contact through the cloth. A wireless communication module was integrated for transmitting theECG data to a PC or to an ICU patient monitor. For system validation, a classical ECG with conductive electrodes and an oxygensaturation signal (SpO2 were obtained simultaneously. Finally, system-specific problems of the presented device are discussed.

  14. Does the Position or Contact Pressure of the Stethoscope Make Any Difference to Clinical Blood Pressure Measurements

    Science.gov (United States)

    Pan, Fan; Zheng, Dingchang; He, Peiyu; Murray, Alan

    2014-01-01

    Abstract This study aimed to investigate the effect of stethoscope position and contact pressure on auscultatory blood pressure (BP) measurement. Thirty healthy subjects were studied. Two identical stethoscopes (one under the cuff, the other outside the cuff) were used to simultaneously and digitally record 2 channels of Korotkoff sounds during linear cuff pressure deflation. For each subject, 3 measurements with different contact pressures (0, 50, and 100 mm Hg) on the stethoscope outside the cuff were each recorded at 3 repeat sessions. The Korotkoff sounds were replayed twice on separate days to each of 2 experienced listeners to determine systolic and diastolic BPs (SBP and DBP). Variance analysis was performed to study the measurement repeatability and the effect of stethoscope position and contact pressure on BPs. There was no significant BP difference between the 3 repeat sessions, between the 2 determinations from each listener, between the 2 listeners and between the 3 stethoscope contact pressures (all P > 0.06). There was no significant SBP difference between the 2 stethoscope positions at the 2 lower stethoscope pressures (P = 0.23 and 0.45), but there was a small (0.4 mm Hg, clinically unimportant) significant difference (P = 0.005) at the highest stethoscope pressure. The key result was that, DBP from the stethoscope under the cuff was significantly lower than that from outside the cuff by 2.8 mm Hg (P stethoscope outside the cuff, tends to give a higher DBP than the true intra-arterial pressure, this study could suggest that the stethoscope position under the cuff, and closer to the arterial occlusion, might yield measurements closer to the actual invasive DBP. PMID:25546675

  15. Intrinsic motivation as a predictor of work outcome after vocational rehabilitation in schizophrenia.

    Science.gov (United States)

    Saperstein, Alice M; Fiszdon, Joanna M; Bell, Morris D

    2011-09-01

    Intrinsic motivation is a construct commonly used in explaining goal-directed behavior. In people with schizophrenia, intrinsic motivation is usually subsumed as a feature of negative symptoms or underlying neurocognitive dysfunction. A growing literature reflects an interest in defining and measuring motivational impairment in schizophrenia and in delineating the specific role of intrinsic motivation as both an independent predictor and a mediator of psychosocial functioning. This cross-sectional study examined intrinsic motivation as a predictor of vocational outcomes for 145 individuals with schizophrenia and schizoaffective disorder participating in a 6-month work rehabilitation trial. Correlation and mediation analyses examined baseline intrinsic motivation and negative symptoms in relation to work hours and work performance. Data support a significant relationship between intrinsic motivation and negative symptoms and significant correlations with outcome variables, such that lower negative symptoms and greater intrinsic motivation were associated with better work functioning. Moreover, in this sample, intrinsic motivation fully mediated the relationships between negative symptoms, work productivity, and work performance. These results have significant implications on the design of work rehabilitation interventions for people with schizophrenia and support a role for targeting intrinsic motivation directly to influence vocational functioning. Future directions for research and intervention are discussed.

  16. Feasibility on Ultrasonic Velocity using Contact and Non-Contact Nondestructive Techniques for Carbon/Carbon Composites

    Science.gov (United States)

    Im, K. H.; Chang, M.; Hsu, D. K.; Song, S. J.; Cho, H.; Park, J. W.; Kweon, Y. S.; Sim, J. K.; Yang, I. Y.

    2007-03-01

    Advanced materials are to be required to have specific functions associated with extremely environments. One of them is carbon/carbon(C/C) composite material, which has obvious advantages over conventional materials. The C/Cs have become to be utilized as parts of aerospace applications and its low density, high thermal conductivity and excellent mechanical properties at elevated temperatures make it an ideal material for aircraft brake disks. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. In this work, a C/C composite material was characterized with non-contact and contact ultrasonic methods using a scanner with automatic-data acquisition function. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake were compared and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude of the ultrasonic pulse was used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the dry-coupling ultrasonic UT system and through transmission method in immersion. Finally, feasibility has been found to measure and compare ultrasonic velocities of C/C composites with using the contact/noncontact peak-delay measurement method based on the pulse overlap method.

  17. A study of cross-bridge kelvin resistor structures for reliable measurement of low contact resistances

    NARCIS (Netherlands)

    Stavitski, N.; Klootwijk, J.H.; van Zeijl, H.W.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2008-01-01

    The parasitic factors that strongly influence the measurement accuracy of Cross-Bridge Kelvin Resistor (CBKR) structures for low specific contact resistances (�?c) have been extensively discussed during last few decades and the minimum of the �?c value, which could be accurately extracted, was

  18. Effects of internal friction on contact formation dynamics of polymer chain

    Science.gov (United States)

    Bian, Yukun; Li, Peng; Zhao, Nanrong

    2018-04-01

    A theoretical framework is presented to study the contact formation dynamics of polymer chains, in accompany with an electron-transfer quenching. Based on a non-Markovian Smoluchowski equation supplemented with an exponential sink term, we derive the mean time of contact formation under Wilemski-Fixman approximation. Our particular attentions are paid to the effect of internal friction. We find out that internal friction induces a novel fractional viscosity dependence, which will become more remarkable as internal friction increases. Furthermore, we clarify that internal friction inevitably promotes a diffusion-controlled mechanism by slowing the chain relaxation. Finally, we apply our theory to rationalise the experimental investigation for contact formation of a single-stranded DNA. The theoretical results can reproduce the experimental data very well with quite reasonable estimation for the intrinsic parameters. Such good agreements clearly demonstrate the validity of our theory which has appropriately addressed the very role of internal friction to the relevant dynamics.

  19. Comparison of four-probe thermal and thermoelectric transport measurements of thin films and nanostructures with microfabricated electro-thermal transducers

    Science.gov (United States)

    Kim, Jaehyun; Fleming, Evan; Zhou, Yuanyuan; Shi, Li

    2018-03-01

    Two different four-probe thermal and thermoelectric measurement methods have been reported for measuring the thermal conductivity, Seebeck coefficient, and electrical conductivity of suspended thin films and nanostructures with microfabricated electro-thermal transducers. The thermal contact resistance was extracted from the measured thermoelectric voltage drop at the contacts in the earlier four-probe method based on the assumption of constant thermal and thermoelectric properties along the sample. In comparison, the latter four-probe method can directly obtain the contact thermal resistance together with the intrinsic sample thermal resistance without making this assumption. Here, the measurement theory and data reduction processes of the latter four-probe measurement method are re-examined and improved. The measured thermal conductivity result of this improved method on representative thin film samples are found to agree with those obtained from the earlier four-probe method, which has obtained similar Seebeck coefficient and electrical conductivity as those measured with a different method for a supported thin film. The agreement provides further validation of the latest four-probe thermal transport measurement method of thin films and nanostructures.

  20. The Roles of Competence Beliefs and Goal Orientations for Change in Intrinsic Motivation

    Science.gov (United States)

    Spinath, Birgit; Steinmayr, Ricarda

    2012-01-01

    The present study investigated 3 theoretically plausible explanations for changes in school-related intrinsic motivation. A sample of 348 German 11th-grade students was followed for 1 year. At 2 measurement occasions, students completed self-reports regarding their school-related intrinsic motivation, goal orientations, and competence beliefs. In…

  1. Adsorption of natural surfactants present in sea waters at surfaces of minerals: contact angle measurements

    Directory of Open Access Journals (Sweden)

    Katarzyna Boniewicz-Szmyt

    2009-09-01

    Full Text Available The wetting properties of solid mineral samples (by contact angles in original surfactant-containing sea water (Gulf of Gdańsk, Baltic were characterised under laboratory conditions on a large set (31 samples of well-classified stones of diverse hydrophobicity using the sessile drop (ADSA-P approach, captive bubble and inclined plate methods. An experimental relation between the static contact angle θeq and stone density ρ was obtained in the form θeq = Bρ + C, where B = 12.23 ± 0.92, C = - (19.17 ± 0.77, and r2 = 0.92. The histogram of θeq distribution for polished stone plates exhibited a multimodal feature indicating that the most abundant solid materials (hydrophilic in nature have contact angles θeq = 7.2, 10.7, 15.7 and 19.2º, which appear to be applicable to unspecified field stones as well. The contact angle, a pH-dependent quantity, appears to be a sensitive measure of stone grain size, e.g. granite. The captive bubble method gives reproducible results in studies of porous and highly hydrophilic surfaces such as stones and wood. The authors consider the adsorption of natural sea water surfactants on stone surfaces to be the process responsible for contact angle hysteresis. In the model, an equation was derived for determining the solid surface free energy from the liquid's surface tension γLV it also enabled the advancing θA and receding θR contact angles of this liquid to be calculated. Measurements of contact angle hysteresis Δθ (=θA - θR with surfactant-containing sea water and distilled water (reference on the same stone surfaces allowed the film pressure ΔΠ (1.22 to 8.80 mJ m-2, solid surface free energy ΔγS (-17.03 to -23.61 mJ m-2 and work done by spreading ΔWS (-1.23 to -11.52 mJ m-2 to be determined. The variability in these parameters is attributed to autophobing, an effect operative on a solid surface covered with an adsorptive layer of surfactants. The wetting behaviour of solid particles is of great

  2. The measurement of the intrinsic impurities of molybdenum and carbon in the Alcator C-Mod tokamak plasma using low resolution spectroscopy

    International Nuclear Information System (INIS)

    May, M.J.; Finkenthal, M.; Regan, S.P.

    1997-01-01

    The intrinsic impurity content of molybdenum and carbon was measured in the Alcator C-Mod tokamak using low resolution, multilayer mirror (MLM) spectroscopy (Δλ ∼ 1-10 A). Molybdenum was the dominant high-Z impurity and originated from the molybdenum armour tiles covering all the plasma facing surfaces (including the inner column, the poloidal divertor plates and the ion cyclotron resonant frequency (ICRF) limiter) at Alcator C-Mod. Soft X ray extreme ultraviolet (XUV) emission, lines of charge states, ranging from hydrogen-like to helium-like lines of carbon (radius/minor radius, r/a ∼ 1) at the plasma edge to potassium- to chlorine-like (0.4 eff value, and the power losses through line radiation were estimated. For the diverted ohmically heated plasma examined, the intrinsic molybdenum and carbon concentrations in the core plasma were found to be ∼ 1.2 x 10 10 and ∼ 1.7 x 10 12 cm -3 , respectively. These measurements were obtained before the plasma facing components were boronized. The calculated radiated power from molybdenum was 170 kW; for carbon it was 45 kW. The contribution to the measured Z eff - 1 value of ∼ 0.8 was ∼ 0.11 for molybdenum and ∼ 0.5 for carbon. (author). 36 refs, 11 figs, 3 tabs

  3. A measurement method for distinguishing the real contact area of rough surfaces of transparent solids using improved Otsu technique

    International Nuclear Information System (INIS)

    Song Bao-Jiang; Yan Shao-Ze; Xiang Wu-Wei-Kai

    2015-01-01

    An experimental method of measuring the real contact area of transparent blocks based on the principle of total internal reflection is presented, intending to support the investigation of friction characteristics, heat conduction, and energy dissipation at the contact interface. A laser sheet illuminates the contact interface, and the transmitted laser sheet is projected onto a screen. Then the contact information is acquired from the screen by a camera. An improved Otsu method is proposed to process the data of experimental images. It can compute the threshold of the overall image and filter out all the pixels one by one. Through analyzing the experimental results, we describe the relationship between the real contact area and the positive pressure during a continuous loading process, at different loading rates, with the polymethyl methacrylate (PMMA) material. A hysteresis phenomenon in the relationship between the real contact area and the positive pressure is found and explained. (paper)

  4. Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Patrick R. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2010-01-07

    Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current or leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.

  5. Intrinsic Chevrolets at the SSC

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Collins, J.C.; Ellis, S.D.; Gunion, J.F.; Mueller, A.H.

    1984-01-01

    The possibility of the production at high energy of heavy quarks, supersymmetric particles and other large mass colored systems via the intrinsic twist-six components in the proton wave function is discussed. While the existing data do not rule out the possible relevance of intrinsic charm production at present energies, the extrapolation of such intrinsic contributions to very high masses and energies suggests that they will not play an important role at the SSC

  6. Literature review of intrinsic actinide colloids related to spent fuel waste package release rates

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P.; Steward, S.A.

    1997-01-01

    Existence of actinide colloids provides an important mechanism in the migration of radionuclides and will be important in performance of a geologic repository for high-level nuclear waste. Actinide colloids have been formed during long-term unsaturated dissolution of spent fuel by groundwater. This article summarizes a literature search of actinide colloids. This report emphasizes the formation of intrinsic actinide colloids, because they would have the opportunity to form soon after groundwater contact with the spent fuel and before actinide-bearing groundwater reaches the surrounding geologic formations.

  7. Literature review of intrinsic actinide colloids related to spent fuel waste package release rates

    International Nuclear Information System (INIS)

    Zhao, P.; Steward, S.A.

    1997-01-01

    Existence of actinide colloids provides an important mechanism in the migration of radionuclides and will be important in performance of a geologic repository for high-level nuclear waste. Actinide colloids have been formed during long-term unsaturated dissolution of spent fuel by groundwater. This article summarizes a literature search of actinide colloids. This report emphasizes the formation of intrinsic actinide colloids, because they would have the opportunity to form soon after groundwater contact with the spent fuel and before actinide-bearing groundwater reaches the surrounding geologic formations

  8. Quantitative assessment of hemodynamic and structural characteristics of in vivo brain tissue using total diffuse reflectance spectrum measured in a non-contact fashion.

    Science.gov (United States)

    Song, Yinchen; Garcia, Sarahy; Frometa, Yisel; Ramella-Roman, Jessica C; Soltani, Mohammad; Almadi, Mohamed; Riera, Jorge J; Lin, Wei-Chiang

    2017-01-01

    Here we present a new methodology that investigates the intrinsic structural and hemodynamic characteristics of in vivo brain tissue, in a non-contact fashion, and can be easily incorporated in an intra-operative environment. Within this methodology, relative total diffuse reflectance spectra (R TD (λ)) were acquired from targets using a hybrid spectroscopy imaging system. A spectral interpretation algorithm was subsequently applied to R TD (λ) to retrieve optical properties related to the compositional and structural characteristics of each target. Estimation errors of the proposed methodology were computationally evaluated using a Monte Carlo simulation model for photon migration under various conditions. It was discovered that this new methodology could handle moderate noise and achieve very high accuracy, but only if the refractive index of the target is known. The accuracy of the technique was also validated using a series of tissue phantom studies, and consistent and accurate estimates of μ s '(λ)/μ a (λ) were obtained from all the phantoms tested. Finally, a small-scale animal study was conducted to demonstrate the clinical utility of the reported method, wherein a forepaw stimulation model was utilized to induce transient hemodynamic responses in somatosensory cortices. With this approach, significant stimulation-related changes (p < 0.001) in cortical hemodynamic and structural characteristics were successfully measured.

  9. Measuring the human psychophysiological conditions without contact

    Science.gov (United States)

    Scalise, L.; Casacanditella, L.; Cosoli, G.

    2017-08-01

    Heart Rate Variability, HRV, studies the variations of cardiac rhythm caused by the autonomic regulation. HRV analysis can be applied to the study of the effects of mental or physical stressors on the psychophysiological conditions. The present work is a pilot study performed on a 23-year-old healthy subject. The measurement of HRV was performed by means of two sensors, that is an electrocardiograph and a Laser Doppler Vibrometer, which is a non-contact device able to detect the skin vibrations related to the cardiac activity. The present study aims to evaluate the effects of a physical task on HRV parameters (in both time and frequency domain), and consequently on the autonomic regulation, and the capability of Laser Doppler Vibrometry in correctly detecting the effects of stress on the Heart Variability. The results show a significant reduction of HRV parameters caused by the execution of the physical task (i.e. variations of 25-40% for parameters in time domain, also higher in frequency domain); this is consistent with the fact that stress causes a reduced capability of the organism in varying the Heart Rate (and, consequently, a limited HRV). LDV was able to correctly detect this phenomenon in the time domain, while the parameters in the frequency domain show significant deviations with respect to the gold standard technique (i.e. ECG). This may be due to the movement artefacts that have consistently modified the shape of the vibration signal measured by means of LDV, after having performed the physical task. In the future, in order to avoid this drawback, the LDV technique could be used to evaluate the effects of a mental task on HRV signals (i.e. the evaluation of mental stress).

  10. Intrinsic and Extrinsic Motivational Orientations in the Classroom: Age Differences and Academic Correlates

    Science.gov (United States)

    Lepper, Mark R.; Corpus, Jennifer Henderlong; Iyengar, Sheena S.

    2005-01-01

    Age differences in intrinsic and extrinsic motivation and the relationships of each to academic outcomes were examined in an ethnically diverse sample of 797 3rd-grade through 8th-grade children. Using independent measures, the authors found intrinsic and extrinsic motivation to be only moderately correlated, suggesting that they may be largely…

  11. Fluxons in long and annular intrinsic Josephson junction stacks

    CERN Document Server

    Clauss, T; Moessle, M; Müller, A; Weber, A; Kölle, D; Kleiner, R

    2002-01-01

    A promising approach towards a THz oscillator based on intrinsic Josephson junctions in high-temperature superconductors is based on the collective motion of Josephson fluxons, which are predicted to form various configurations ranging from a triangular to a quadratic lattice. Not only for this reason, but certainly also for the sake of basic physics, several experimental and theoretical investigations have been done on the subject of collective fluxon dynamics in stacked intrinsic Josephson junctions. In this paper we will present some experimental results on the fluxon dynamics of long intrinsic Josephson junction stacks made of Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8. The stacks were formed either in an open or in an annular geometry, and clear resonant fluxon modes were observed. Experiments discussed include measurements of current-voltage characteristics in external magnetic fields and in external microwave fields.

  12. Intrinsic and extrinsic motivation among adolescent ten-pin bowlers in kuala lumpur, malaysia.

    Science.gov (United States)

    Teo, Eng-Wah; Khoo, Selina; Wong, Rebecca; Wee, Eng-Hoe; Lim, Boon-Hooi; Rengasamy, Shabesan Sit

    2015-03-29

    Motivation has long been associated with sports engagement. However, to date no research has been performed to understand the domain of motivation among ten-pin bowlers. The purpose of this study was to investigate different types of motivation (i.e., intrinsic vs. extrinsic) based on self-determination theory from the perspective of gender and the bowler type (competitive vs. casual). A total of 240 bowlers (104 male, 136 female; 152 competitive, 88 casual) with a mean age of 16.61 ± 0.78 years were recruited in Kuala Lumpur. The Sport Motivation Scale, a 28-item self-report questionnaire measuring seven subscales (i.e., intrinsic motivation to know, intrinsic motivation to accomplish, intrinsic motivation to experience stimulation, extrinsic motivation to identify regulation, extrinsic motivation for introjection regulation, extrinsic motivation to external regulation, and amotivation) was administered. Results showed significant differences (t=10.43, df=239, p=0.01) between total scores of intrinsic and extrinsic motivation among ten-pin bowlers. There were significant gender differences with respect to intrinsic motivation to know, intrinsic motivation to accomplish, intrinsic motivation to experience stimulation, and extrinsic motivation to identify regulation. However, no significant bowler type differences were found for either the intrinsic (t=-1.15, df=238, p=0.25) or extrinsic (t=-0.51, df=238, p=0.61) motivation dimensions. In conclusion, our study demonstrated substantial intrinsic motivation for gender effects, but no bowler type effects among adolescent ten-pin bowlers.

  13. Intrinsic and Extrinsic Motivation Among Adolescent Ten-Pin Bowlers in Kuala Lumpur, Malaysia

    Directory of Open Access Journals (Sweden)

    Teo Eng-Wah

    2015-03-01

    Full Text Available Motivation has long been associated with sports engagement. However, to date no research has been performed to understand the domain of motivation among ten-pin bowlers. The purpose of this study was to investigate different types of motivation (i.e., intrinsic vs. extrinsic based on self-determination theory from the perspective of gender and the bowler type (competitive vs. casual. A total of 240 bowlers (104 male, 136 female; 152 competitive, 88 casual with a mean age of 16.61 ± 0.78 years were recruited in Kuala Lumpur. The Sport Motivation Scale, a 28-item self-report questionnaire measuring seven subscales (i.e., intrinsic motivation to know, intrinsic motivation to accomplish, intrinsic motivation to experience stimulation, extrinsic motivation to identify regulation, extrinsic motivation for introjection regulation, extrinsic motivation to external regulation, and amotivation was administered. Results showed significant differences (t=10.43, df=239, p=0.01 between total scores of intrinsic and extrinsic motivation among tenpin bowlers. There were significant gender differences with respect to intrinsic motivation to know, intrinsic motivation to accomplish, intrinsic motivation to experience stimulation, and extrinsic motivation to identify regulation. However, no significant bowler type differences were found for either the intrinsic (t=-1.15, df=238, p=0.25 or extrinsic (t=-0.51, df=238, p=0.61 motivation dimensions. In conclusion, our study demonstrated substantial intrinsic motivation for gender effects, but no bowler type effects among adolescent ten-pin bowlers.

  14. Intrinsic and Extrinsic Motivation Among Adolescent Ten-Pin Bowlers in Kuala Lumpur, Malaysia

    Science.gov (United States)

    Teo, Eng-Wah; Khoo, Selina; Wong, Rebecca; Wee, Eng-Hoe; Lim, Boon-Hooi; Rengasamy, Shabesan Sit

    2015-01-01

    Motivation has long been associated with sports engagement. However, to date no research has been performed to understand the domain of motivation among ten-pin bowlers. The purpose of this study was to investigate different types of motivation (i.e., intrinsic vs. extrinsic) based on self-determination theory from the perspective of gender and the bowler type (competitive vs. casual). A total of 240 bowlers (104 male, 136 female; 152 competitive, 88 casual) with a mean age of 16.61 ± 0.78 years were recruited in Kuala Lumpur. The Sport Motivation Scale, a 28-item self-report questionnaire measuring seven subscales (i.e., intrinsic motivation to know, intrinsic motivation to accomplish, intrinsic motivation to experience stimulation, extrinsic motivation to identify regulation, extrinsic motivation for introjection regulation, extrinsic motivation to external regulation, and amotivation) was administered. Results showed significant differences (t=10.43, df=239, p=0.01) between total scores of intrinsic and extrinsic motivation among ten-pin bowlers. There were significant gender differences with respect to intrinsic motivation to know, intrinsic motivation to accomplish, intrinsic motivation to experience stimulation, and extrinsic motivation to identify regulation. However, no significant bowler type differences were found for either the intrinsic (t=−1.15, df=238, p=0.25) or extrinsic (t=−0.51, df=238, p=0.61) motivation dimensions. In conclusion, our study demonstrated substantial intrinsic motivation for gender effects, but no bowler type effects among adolescent ten-pin bowlers. PMID:25964827

  15. Intrinsic motivation and amotivation in first episode and prolonged psychosis.

    Science.gov (United States)

    Luther, Lauren; Lysaker, Paul H; Firmin, Ruth L; Breier, Alan; Vohs, Jenifer L

    2015-12-01

    The deleterious functional implications of motivation deficits in psychosis have generated interest in examining dimensions of the construct. However, there remains a paucity of data regarding whether dimensions of motivation differ over the course of psychosis. Therefore, this study examined two motivation dimensions, trait-like intrinsic motivation, and the negative symptom of amotivation, and tested the impact of illness phase on the 1) levels of these dimensions and 2) relationship between these dimensions. Participants with first episode psychosis (FEP; n=40) and prolonged psychosis (n=66) completed clinician-rated measures of intrinsic motivation and amotivation. Analyses revealed that when controlling for group differences in gender and education, the FEP group had significantly more intrinsic motivation and lower amotivation than the prolonged psychosis group. Moreover, intrinsic motivation was negatively correlated with amotivation in both FEP and prolonged psychosis, but the magnitude of the relationship did not statistically differ between groups. These findings suggest that motivation deficits are more severe later in the course of psychosis and that low intrinsic motivation may be partially independent of amotivation in both first episode and prolonged psychosis. Clinically, these results highlight the importance of targeting motivation in early intervention services. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Avian influenza transmission risks: analysis of biosecurity measures and contact structure in Dutch poultry farming.

    Science.gov (United States)

    Ssematimba, A; Hagenaars, T J; de Wit, J J; Ruiterkamp, F; Fabri, T H; Stegeman, J A; de Jong, M C M

    2013-04-01

    In the 2003 epidemic of highly pathogenic avian influenza in Dutch poultry, between-farm virus transmission continued for considerable time despite control measures. Gaining more insight into the mechanisms of this spread is necessary for the possible development of better control strategies. We carried out an in-depth interview study aiming to systematically explore all the poultry production activities to identify the activities that could potentially be related to virus introduction and transmission. One of the between-farm contact risks that were identified is the movement of birds between farms during thinning with violations of on-farm biosecurity protocols. In addition, several other risky management practices, risky visitor behaviours and biosecurity breaches were identified. They include human and fomite contacts that occurred without observing biosecurity protocols, poor waste management practices, presence of other animal species on poultry farms, and poor biosecurity against risks from farm neighbourhood activities. Among the detailed practices identified, taking cell phones and jewellery into poultry houses, not observing shower-in protocols and the exchange of unclean farm equipment were common. Also, sometimes certain protocols or biosecurity facilities were lacking. We also asked the interviewed farmers about their perception of transmission risks and found that they had divergent opinions about the visitor- and neighbourhood-associated risks. We performed a qualitative assessment of contact risks (as transmission pathways) based on contact type, corresponding biosecurity practices, and contact frequency. This assessment suggests that the most risky contact types are bird movements during thinning and restocking, most human movements accessing poultry houses and proximity to other poultry farms. The overall risk posed by persons and equipment accessing storage rooms and the premises-only contacts was considered to be medium. Most of the exposure

  17. Intrinsic honesty and the prevalence of rule violations across societies.

    Science.gov (United States)

    Gächter, Simon; Schulz, Jonathan F

    2016-03-24

    Deception is common in nature and humans are no exception. Modern societies have created institutions to control cheating, but many situations remain where only intrinsic honesty keeps people from cheating and violating rules. Psychological, sociological and economic theories suggest causal pathways to explain how the prevalence of rule violations in people's social environment, such as corruption, tax evasion or political fraud, can compromise individual intrinsic honesty. Here we present cross-societal experiments from 23 countries around the world that demonstrate a robust link between the prevalence of rule violations and intrinsic honesty. We developed an index of the 'prevalence of rule violations' (PRV) based on country-level data from the year 2003 of corruption, tax evasion and fraudulent politics. We measured intrinsic honesty in an anonymous die-rolling experiment. We conducted the experiments with 2,568 young participants (students) who, due to their young age in 2003, could not have influenced PRV in 2003. We find individual intrinsic honesty is stronger in the subject pools of low PRV countries than those of high PRV countries. The details of lying patterns support psychological theories of honesty. The results are consistent with theories of the cultural co-evolution of institutions and values, and show that weak institutions and cultural legacies that generate rule violations not only have direct adverse economic consequences, but might also impair individual intrinsic honesty that is crucial for the smooth functioning of society.

  18. Does Aerobic Exercise Influence Intrinsic Brain Activity?

    DEFF Research Database (Denmark)

    Flodin, Pär; Jonasson, Lars S; Riklund, Katrin

    2017-01-01

    exercise group or an active control group. Both groups recieved supervised training, 3 days a week for 6 months. Multimodal brain imaging data was acquired before and after the intervention, including 10 min of resting state brain functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling......Previous studies have indicated that aerobic exercise could reduce age related decline in cognition and brain functioning. Here we investigated the effects of aerobic exercise on intrinsic brain activity. Sixty sedentary healthy males and females (64-78 years) were randomized into either an aerobic...... group improved more. Contrary to our hypothesis, we did not observe any significant group by time interactions with regard to any measure of intrinsic activity. To further probe putative relationships between fitness and brain activity, we performed post hoc analyses disregarding group belongings...

  19. Relationship between the real contact area and contact force in pre-sliding regime

    International Nuclear Information System (INIS)

    Song Baojiang; Yan Shaoze

    2017-01-01

    The pre-sliding regime is typically neglected in the dynamic modelling of mechanical systems. However, the change in contact state caused by static friction may decrease positional accuracy and control precision. To investigate the relationship between contact status and contact force in pre-sliding friction, an optical experimental method is presented in this paper. With this method, the real contact state at the interface of a transparent material can be observed based on the total reflection principle of light by using an image processing technique. A novel setup, which includes a pair of rectangular trapezoidal blocks, is proposed to solve the challenging issue of accurately applying different tangential and normal forces to the contact interface. The improved Otsu’s method is used for measurement. Through an experimental study performed on polymethyl methacrylate (PMMA), the quantity of contact asperities is proven to be the dominant factor that affects the real contact area. The relationship between the real contact area and the contact force in the pre-sliding regime is studied, and the distribution of static friction at the contact interface is qualitatively discussed. New phenomena in which the real contact area expands along with increasing static friction are identified. The aforementioned relationship is approximately linear at the contact interface under a constant normal pressure, and the distribution of friction stress decreases from the leading edge to the trailing edge. (paper)

  20. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    Science.gov (United States)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  1. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    International Nuclear Information System (INIS)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-01-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants

  2. Estimating the Contact Endurance of the AISI 321 Stainless Steel Under Contact Gigacycle Fatigue Tests

    Science.gov (United States)

    Savrai, R. A.; Makarov, A. V.; Osintseva, A. L.; Malygina, I. Yu.

    2018-02-01

    Mechanical testing of the AISI 321 corrosion resistant austenitic steel for contact gigacycle fatigue has been conducted with the application of a new method of contact fatigue testing with ultrasonic frequency of loading according to a pulsing impact "plane-to-plane" contact scheme. It has been found that the contact endurance (the ability to resist the fatigue spalling) of the AISI 321 steel under contact gigacycle fatigue loading is determined by its plasticity margin and the possibility of additional hardening under contact loading. It is demonstrated that the appearance of localized deep and long areas of spalling on a material surface can serve as a qualitative characteristic for the loss of the fatigue strength of the AISI 321 steel under impact contact fatigue loading. The value of surface microhardness measured within contact spots and the maximum depth of contact damages in the peripheral zone of contact spots can serve as quantitative criteria for that purpose.

  3. Nanolithography based contacting method for electrical measurements on single template synthesized nanowires

    DEFF Research Database (Denmark)

    Fusil, S.; Piraux, L.; Mátéfi-Tempfli, Stefan

    2005-01-01

    A reliable method enabling electrical measurements on single nanowires prepared by electrodeposition in an alumina template is described. This technique is based on electrically controlled nanoindentation of a thin insulating resist deposited on the top face of the template filled by the nanowires....... We show that this method is very flexible, allowing us to electrically address single nanowires of controlled length down to 100 nm and of desired composition. Using this approach, current densities as large as 10 A cm were successfully injected through a point contact on a single magnetic...

  4. Quantifying intrinsic and extrinsic variability in stochastic gene expression models.

    Science.gov (United States)

    Singh, Abhyudai; Soltani, Mohammad

    2013-01-01

    Genetically identical cell populations exhibit considerable intercellular variation in the level of a given protein or mRNA. Both intrinsic and extrinsic sources of noise drive this variability in gene expression. More specifically, extrinsic noise is the expression variability that arises from cell-to-cell differences in cell-specific factors such as enzyme levels, cell size and cell cycle stage. In contrast, intrinsic noise is the expression variability that is not accounted for by extrinsic noise, and typically arises from the inherent stochastic nature of biochemical processes. Two-color reporter experiments are employed to decompose expression variability into its intrinsic and extrinsic noise components. Analytical formulas for intrinsic and extrinsic noise are derived for a class of stochastic gene expression models, where variations in cell-specific factors cause fluctuations in model parameters, in particular, transcription and/or translation rate fluctuations. Assuming mRNA production occurs in random bursts, transcription rate is represented by either the burst frequency (how often the bursts occur) or the burst size (number of mRNAs produced in each burst). Our analysis shows that fluctuations in the transcription burst frequency enhance extrinsic noise but do not affect the intrinsic noise. On the contrary, fluctuations in the transcription burst size or mRNA translation rate dramatically increase both intrinsic and extrinsic noise components. Interestingly, simultaneous fluctuations in transcription and translation rates arising from randomness in ATP abundance can decrease intrinsic noise measured in a two-color reporter assay. Finally, we discuss how these formulas can be combined with single-cell gene expression data from two-color reporter experiments for estimating model parameters.

  5. Instrumental, Integrative, and Intrinsic Orientations Towards Language: Deconstructing the Dichotomy in a Puerto Rican Community

    Directory of Open Access Journals (Sweden)

    Elaine Shenk

    2011-06-01

    Full Text Available Abstract Using a critical discourse analytical approach, this paper applies self-determination theory to the analysis of orientations towards language acquisition in data collected through interviews with 26 participants from Puerto Rico. In light of significant Spanish-English contact on the island, the paper considers how the participants’ discourses construct overlapping instrumental, integrative, and intrinsic orientations towards the presence of English in their community and, more broadly, towards language acquisition. The data suggest that both instrumental and integrative orientations are present, and that specific factors in this community’s history and experience do not predispose the participants towards a clear distinction between these two but rather contribute to a melding of both with a third way, that of intrinsic motivation, which validates and promotes bi- or even multilingualism on a broader scale without being focused on any one particular language or group of speakers.

  6. Determination of oral mucosal Poisson's ratio and coefficient of friction from in-vivo contact pressure measurements.

    Science.gov (United States)

    Chen, Junning; Suenaga, Hanako; Hogg, Michael; Li, Wei; Swain, Michael; Li, Qing

    2016-01-01

    Despite their considerable importance to biomechanics, there are no existing methods available to directly measure apparent Poisson's ratio and friction coefficient of oral mucosa. This study aimed to develop an inverse procedure to determine these two biomechanical parameters by utilizing in vivo experiment of contact pressure between partial denture and beneath mucosa through nonlinear finite element (FE) analysis and surrogate response surface (RS) modelling technique. First, the in vivo denture-mucosa contact pressure was measured by a tactile electronic sensing sheet. Second, a 3D FE model was constructed based on the patient CT images. Third, a range of apparent Poisson's ratios and the coefficients of friction from literature was considered as the design variables in a series of FE runs for constructing a RS surrogate model. Finally, the discrepancy between computed in silico and measured in vivo results was minimized to identify the best matching Poisson's ratio and coefficient of friction. The established non-invasive methodology was demonstrated effective to identify such biomechanical parameters of oral mucosa and can be potentially used for determining the biomaterial properties of other soft biological tissues.

  7. Transfer characteristics and contact resistance in Ni- and Ti-contacted graphene-based field-effect transistors

    International Nuclear Information System (INIS)

    Di Bartolomeo, A; Giubileo, F; Iemmo, L; Romeo, F; Santandrea, S; Gambardella, U

    2013-01-01

    We produced graphene-based field-effect transistors by contacting mono- and bi-layer graphene by sputtering Ni or Ti as metal electrodes. We performed electrical characterization of the devices by measuring their transfer and output characteristics. We clearly observed the presence of a double-dip feature in the conductance curve for Ni-contacted transistors, and we explain it in terms of charge transfer and graphene doping under the metal contacts. We also studied the contact resistance between the graphene and the metal electrodes with larger values of ∼30 kΩμm 2 recorded for Ti contacts. Importantly, we prove that the contact resistance is modulated by the back-gate voltage. (paper)

  8. Effect of intrinsic motivation on affective responses during and after exercise: latent curve model analysis.

    Science.gov (United States)

    Shin, Myoungjin; Kim, Inwoo; Kwon, Sungho

    2014-12-01

    Understanding the relationship between affect and exercise is helpful in predicting human behavior with respect to exercise participation. The goals of the present study were to investigate individual differences in affective response during and after exercise and to identify the role of intrinsic motivation in affective changes. 30 active male college students (M age = 21.4 yr.) who regularly participated in sports activities volunteered to answer a questionnaire measuring intrinsic motivation toward running activities and performed a 20-min. straight running protocol at heavy intensity (about 70% of VO2max). Participants' affective responses were measured every 5 min. from the beginning of the run to 10 min. after completing the run. Latent curve model analysis indicated that individuals experienced different changes in affective state during exercise, moderated by intrinsic motivation. Higher intrinsic motivation was associated with more positive affect during exercise. There were no significant individual differences in the positive tendency of the participants' affective responses after exercise over time. Intrinsic motivation seems to facilitate positive feelings during exercise and encourages participation in exercise.

  9. Intrinsic strength of sodium borosilicate glass fibers by using a two-point bending technique

    International Nuclear Information System (INIS)

    Nishikubo, Y; Yoshida, S; Sugawara, T; Matsuoka, J

    2011-01-01

    Flaws existing on glass surface can be divided into two types, extrinsic and intrinsic. Although the extrinsic flaws are generated during processing and using, the intrinsic flaws are regarded as structural defects which result from thermal fluctuation. It is known that the extrinsic flaws determine glass strength, but effects of the intrinsic flaws on the glass strength are still unclear. Since it is considered that the averaged bond-strength and the intrinsic flaw would affect the intrinsic strength, the intrinsic strength of glass surely depends on the glass composition. In this study, the intrinsic failure strain of the glass fibers with the compositions of 20Na 2 O-40xB 2 O 3 -(80-40x)SiO 2 (mol%, x = 0, 0.5, 1.0, 1.5) were measured by using a two-point bending technique. The failure strength was estimated from the failure strain and Young's modulus of glass. It is elucidated that two-point bending strength of glass fiber decreases with increasing B 2 O 3 content in glass. The effects of the glass composition on the intrinsic strength are discussed in terms of elastic and inelastic deformation behaviors prior to fracture.

  10. Error analysis for intrinsic quality factor measurement in superconducting radio frequency resonators.

    Science.gov (United States)

    Melnychuk, O; Grassellino, A; Romanenko, A

    2014-12-01

    In this paper, we discuss error analysis for intrinsic quality factor (Q0) and accelerating gradient (Eacc) measurements in superconducting radio frequency (SRF) resonators. The analysis is applicable for cavity performance tests that are routinely performed at SRF facilities worldwide. We review the sources of uncertainties along with the assumptions on their correlations and present uncertainty calculations with a more complete procedure for treatment of correlations than in previous publications [T. Powers, in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27]. Applying this approach to cavity data collected at Vertical Test Stand facility at Fermilab, we estimated total uncertainty for both Q0 and Eacc to be at the level of approximately 4% for input coupler coupling parameter β1 in the [0.5, 2.5] range. Above 2.5 (below 0.5) Q0 uncertainty increases (decreases) with β1 whereas Eacc uncertainty, in contrast with results in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27], is independent of β1. Overall, our estimated Q0 uncertainty is approximately half as large as that in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27].

  11. Non-Contact Measurements of Creep Properties of Refractory Materials

    Science.gov (United States)

    Lee, Jonghyun; Bradshaw, Richard C.; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Wall, James J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    State-of-the-art technologies for hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines are driving ever more demanding needs for high-temperature (>2000 C) materials. At such high temperatures, creep rises as one of the most important design factors to be considered. Since conventional measurement techniques for creep resistance are limited to about 17OO0C, a new technique is in demand for higher temperatures. This paper presents a non-contact method using electrostatic levitation (ESL) which is applicable to both metallic and non-metallic materials. The samples were rotated quickly enough to cause creep deformation by centrifugal acceleration. The deformation of the samples was captured with a high speed camera and then the images were analyzed to estimate creep resistance. Finite element analyses were performed and compared to the experiments to verify the new method. Results are presented for niobium and tungsten, representative refractory materials at 2300 C and 2700 C respectively.

  12. Symmetries of collective models in intrinsic frame

    International Nuclear Information System (INIS)

    Gozdz, A.; Pedrak, A.; Szulerecka, A.; Dobrowolski, A.; Dudek, J.

    2013-01-01

    In the paper a very general definition of intrinsic frame, by means of group theoretical methods, is introduced. It allows to analyze nuclear properties which are invariant in respect to the group which defines the intrinsic frame. For example, nuclear shape is a well determined feature in the intrinsic frame defined by the Euclidean group. It is shown that using of intrinsic frame gives an opportunity to consider intrinsic nuclear symmetries which are independent of symmetries observed in the laboratory frame. An importance of the notion of partial symmetries is emphasized. (author)

  13. Intrinsic thermal expansion of crystal defects

    International Nuclear Information System (INIS)

    Ganne, J.-P.

    1981-02-01

    Although the phenomenon of thermal expansion has long been known, the intrinsic thermal expansion coefficient (ITEC) βsub(d) of a point defect, derived from its formation volume vsub(d), has never been measured directly. The differential dilatometer by interferometry built by ASTY and GILDER is described. It has allowed βsub(d) to be measured for several defects. Vacancies and small interstitial loops were produced in aluminium by low temperature (20 K) fast neutron irradiation followed by an anneal up to the beginning of stage III (160 K). The very high value of the measured ratio βsub(d)/β 0 (12+-4) is comparable with a lattice statics calculated (42) value (11.5 0 [fr

  14. A comparison of South African and German extrinsic and intrinsic motivation

    Directory of Open Access Journals (Sweden)

    Robin Snelgar

    2017-04-01

    Aim: The main objective of this study was to investigate similarities and differences concerning extrinsic and intrinsic motivation in the workplace between German and South African cultures by examining individuals with working experience and tertiary education specifically. In addition, the research investigated differences in the motivation of respondents with regard to demographics such as gender, age and income. Setting: The setting took place in South Africa and Germany. Methods: In the study, exploratory factor analysis was utilised to prove validity of Cinar, Bektas and Aslan’s two-dimensional measure of extrinsic and intrinsic motivation. Moreover, analysis of variance and t-tests were used to show differences among demographic variables. Descriptive statistics such as means, central tendency and Cronbach’s alpha were also utilised. Results: The results revealed preferences for intrinsic motivational factors for the whole sample with higher levels of intrinsic motivation for the South African respondents compared to German respondents. Demographic characteristics played a minor role in determining levels of intrinsic motivation within individuals. Culture, however, played the biggest role in determining one’s levels of intrinsic or extrinsic motivation. Conclusion: These findings play an important role in explaining differences in motivation between the two countries Germany and South Africa. It highlights the important role that cultural differences play in shaping one’s form of motivation.

  15. Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator

    Directory of Open Access Journals (Sweden)

    Laura Aulbach

    2017-03-01

    Full Text Available The surface structure, especially the roughness, has a significant influence on numerous parameters, such as friction and wear, and therefore estimates the quality of technical systems. In the last decades, a broad variety of surface roughness measurement methods were developed. A destructive measurement procedure or the lack of feasibility of online monitoring are the crucial drawbacks of most of these methods. This article proposes a new non-contact method for measuring the surface roughness that is straightforward to implement and easy to extend to online monitoring processes. The key element is a liquid-crystal-based spatial light modulator, integrated in an interferometric setup. By varying the imprinted phase of the modulator, a correlation between the imprinted phase and the fringe visibility of an interferogram is measured, and the surface roughness can be derived. This paper presents the theoretical approach of the method and first simulation and experimental results for a set of surface roughnesses. The experimental results are compared with values obtained by an atomic force microscope and a stylus profiler.

  16. Correlation of Cell Surface Biomarker Expression Levels with Adhesion Contact Angle Measured by Lateral Microscopy.

    Science.gov (United States)

    Walz, Jenna A; Mace, Charles R

    2018-06-05

    Immunophenotyping is typically achieved using flow cytometry, but any influence a biomarker may have on adhesion or surface recognition cannot be determined concurrently. In this manuscript, we demonstrate the utility of lateral microscopy for correlating cell surface biomarker expression levels with quantitative descriptions of cell morphology. With our imaging system, we observed single cells from two T cell lines and two B cell lines adhere to antibody-coated substrates and quantified this adhesion using contact angle measurements. We found that SUP-T1 and CEM CD4+ cells, both of which express similar levels of CD4, experienced average changes in contact angle that were not statistically different from one another on surfaces coated in anti-CD4. However, MAVER-1 and BJAB K20 cells, both of which express different levels of CD20, underwent average changes in contact angle that were significantly different from one another on surfaces coated in anti-CD20. Our results indicate that changes in cell contact angles on antibody-coated substrates reflect the expression levels of corresponding antigens on the surfaces of cells as determined by flow cytometry. Our lateral microscopy approach offers a more reproducible and quantitative alternative to evaluate adhesion compared to commonly used wash assays and can be extended to many additional immunophenotyping applications to identify cells of interest within heterogeneous populations.

  17. Exact complexity: The spectral decomposition of intrinsic computation

    International Nuclear Information System (INIS)

    Crutchfield, James P.; Ellison, Christopher J.; Riechers, Paul M.

    2016-01-01

    We give exact formulae for a wide family of complexity measures that capture the organization of hidden nonlinear processes. The spectral decomposition of operator-valued functions leads to closed-form expressions involving the full eigenvalue spectrum of the mixed-state presentation of a process's ϵ-machine causal-state dynamic. Measures include correlation functions, power spectra, past-future mutual information, transient and synchronization informations, and many others. As a result, a direct and complete analysis of intrinsic computation is now available for the temporal organization of finitary hidden Markov models and nonlinear dynamical systems with generating partitions and for the spatial organization in one-dimensional systems, including spin systems, cellular automata, and complex materials via chaotic crystallography. - Highlights: • We provide exact, closed-form expressions for a hidden stationary process' intrinsic computation. • These include information measures such as the excess entropy, transient information, and synchronization information and the entropy-rate finite-length approximations. • The method uses an epsilon-machine's mixed-state presentation. • The spectral decomposition of the mixed-state presentation relies on the recent development of meromorphic functional calculus for nondiagonalizable operators.

  18. GAS-FOVEAL CONTACT

    DEFF Research Database (Denmark)

    Alberti, Mark; la Cour, Morten

    2018-01-01

    PURPOSE: To compare gas-foveal contact in face-down positioning (FDP) and nonsupine positioning (NSP), to analyze causes of gas-foveal separation and to determine how gas-foveal contact affects clinical outcome after idiopathic macular hole repair. METHODS: Single center, randomized controlled...... study. Participants with an idiopathic macular hole were allocated to either FDP or NSP. Primary outcome was gas-foveal contact, calculated by analyzing positioning in relation to intraocular gas fill. Positioning was measured with an electronic device recording positioning for 72 hours postoperatively....... RESULTS: Positioning data were available for 33/35 in the FDP group and 35/37 in the NSP group, thus results are based on 68 analyzed participants. Median gas-foveal contact was 99.82% (range 73.6-100.0) in the FDP group and 99.57% (range 85.3-100.0) in the NSP group (P = 0.22). In a statistical model...

  19. Development of a contact probe incorporating a Bragg grating strain sensor for nano coordinate measuring machines

    International Nuclear Information System (INIS)

    Ji, H; Hsu, H-Y; Kong, L X; Wedding, A B

    2009-01-01

    This paper presents a novel optical fibre based micro contact probe system with high sensitivity and repeatability. In this optical fibre probe with a fused spherical tip, a fibre Bragg grating has been utilized as a strain sensor in the probe stem. When the probe tip contacts the surface of the part, a strain will be induced along the probe stem and will produce a Bragg wavelength shift. The contact signal can be issued once the wavelength shift signal is produced and demodulated. With the fibre grating sensor element integrated into the probe directly, the probe system shows a high sensitivity. In this work, the strain distributions along the probe stem with the probe under axial and lateral load are analysed. A simulation of the strain distribution was performed using the finite element package ANSYS 11. Performance tests using a piezoelectric transducer stage with a displacement resolution of 1.5 nm yielded a measurement resolution of 60 nm under axial loading

  20. A Study on non-contact measurements of laser-generated lamb waves

    International Nuclear Information System (INIS)

    Jang, Tae Seong; Lee, Jung Ju; Lee, Seung Seok

    2002-01-01

    Generation and detection of Lamb waves offer an effective non-destructive testing technique that will detect defects quickly and reliably. Lamb waves are generated in a thin plate by Q-switched Nd:YAG pulsed laser. Symmetric and antisymmetric Lamb modes in low-frequency-thickness regime are excited by illuminating a thin plate with an array of laser-generated line sources. The propagation of laser-generated Lamb waves is detected by measuring the out-of-plane displacements in a non-contact manner using the fiber optic Sagnac interferometer and all commercial adaptive reference-beam interferometer. The characteristics of laser-generated Lamb wave due to its frequency are investigated. Fundamental understanding of laser-generated Lamb modes is presented.

  1. Intrinsic motivation, extrinsic motivation, and learning English as a foreign language.

    Science.gov (United States)

    Shaikholeslami, Razieh; Khayyer, Mohammad

    2006-12-01

    The objective of this study was to examine the relationships of amotivation, extrinsic motivation, and intrinsic motivation with learning the English language. The 230 Iranian students at Shiraz University were tested using the Language Learning Orientations Scales to measure Amotivation, Extrinsic Motivation, and Intrinsic Motivation as explanatory variables. Grade point average in English exams was selected as a measure of English learning Achievement. Multiple regression analysis revealed that learning Achievement scores were predicted by scores on the Amotivation subscale, Introjected Regulation subscale, Knowledge subscale, and Stimulation subscale, whereas, the External and Identified Regulation and Accomplishment subscales did not have a significant relationship with Achievement. The results are discussed in terms of differences in Iranian context and culture.

  2. Influence of corneal thickness on comparative intraocular pressure measurements with Goldmann and non-contact tonometers in keratoconus.

    Science.gov (United States)

    Stabuc Silih, Mirna; Hawlina, Marko

    2003-12-01

    The influence of corneal thickness and curvature on the difference between intraocular pressure (IOP) measurements obtained with non-contact (NCT) and those with the Goldmann applanation tonometer (GAT) was studied in patients with keratoconus. We examined 113 patients with keratoconus. IOP was measured by the Canon TX 10 non-contact tonometer and the Goldmann tonometer, corneal curvature and thickness were obtained by Humphrey Automatic Refractometer Keratometer and Orbscan Version 3.0 Bausch & Lomb Surgical. The IOP measured by NCT was significantly lower than that measured by GAT. The mean pachymetry of the thinnest point was 423.15 +/- 98.43 microm for the right eyes and 426.7 +/- 93.88 microm for the left eyes. The difference between NCT-GAT and corneal thickness showed a significant negative correlation (r = - 0.427, p < 0.0001; t = - 3.677, p < 0.0001). Values of NCT measurements were significantly increasing with corneal thickness (F = 6.505, p < 0.0001 for right eyes and F = 4.37, p = 0.004 for left eyes), whilst GAT measurements did not show a significant influence of the corneal thickness. The keratometry had no effect on the difference between NCT-GAT measurements (t = 1.090, p = 0.278). The thin cornea has more influence on the measurement with NCT than GAT. The relative precision of NCT compared with GAT seems to be influenced by the corneal thickness.

  3. Projecting social contact matrices in 152 countries using contact surveys and demographic data.

    Directory of Open Access Journals (Sweden)

    Kiesha Prem

    2017-09-01

    Full Text Available Heterogeneities in contact networks have a major effect in determining whether a pathogen can become epidemic or persist at endemic levels. Epidemic models that determine which interventions can successfully prevent an outbreak need to account for social structure and mixing patterns. Contact patterns vary across age and locations (e.g. home, work, and school, and including them as predictors in transmission dynamic models of pathogens that spread socially will improve the models' realism. Data from population-based contact diaries in eight European countries from the POLYMOD study were projected to 144 other countries using a Bayesian hierarchical model that estimated the proclivity of age-and-location-specific contact patterns for the countries, using Markov chain Monte Carlo simulation. Household level data from the Demographic and Health Surveys for nine lower-income countries and socio-demographic factors from several on-line databases for 152 countries were used to quantify similarity of countries to estimate contact patterns in the home, work, school and other locations for countries for which no contact data are available, accounting for demographic structure, household structure where known, and a variety of metrics including workforce participation and school enrolment. Contacts are highly assortative with age across all countries considered, but pronounced regional differences in the age-specific contacts at home were noticeable, with more inter-generational contacts in Asian countries than in other settings. Moreover, there were variations in contact patterns by location, with work-place contacts being least assortative. These variations led to differences in the effect of social distancing measures in an age structured epidemic model. Contacts have an important role in transmission dynamic models that use contact rates to characterize the spread of contact-transmissible diseases. This study provides estimates of mixing patterns for

  4. Projecting social contact matrices in 152 countries using contact surveys and demographic data.

    Science.gov (United States)

    Prem, Kiesha; Cook, Alex R; Jit, Mark

    2017-09-01

    Heterogeneities in contact networks have a major effect in determining whether a pathogen can become epidemic or persist at endemic levels. Epidemic models that determine which interventions can successfully prevent an outbreak need to account for social structure and mixing patterns. Contact patterns vary across age and locations (e.g. home, work, and school), and including them as predictors in transmission dynamic models of pathogens that spread socially will improve the models' realism. Data from population-based contact diaries in eight European countries from the POLYMOD study were projected to 144 other countries using a Bayesian hierarchical model that estimated the proclivity of age-and-location-specific contact patterns for the countries, using Markov chain Monte Carlo simulation. Household level data from the Demographic and Health Surveys for nine lower-income countries and socio-demographic factors from several on-line databases for 152 countries were used to quantify similarity of countries to estimate contact patterns in the home, work, school and other locations for countries for which no contact data are available, accounting for demographic structure, household structure where known, and a variety of metrics including workforce participation and school enrolment. Contacts are highly assortative with age across all countries considered, but pronounced regional differences in the age-specific contacts at home were noticeable, with more inter-generational contacts in Asian countries than in other settings. Moreover, there were variations in contact patterns by location, with work-place contacts being least assortative. These variations led to differences in the effect of social distancing measures in an age structured epidemic model. Contacts have an important role in transmission dynamic models that use contact rates to characterize the spread of contact-transmissible diseases. This study provides estimates of mixing patterns for societies for which

  5. Development of a baby friendly non-contact method for measuring vital signs: First results of clinical measurements in an open incubator at a neonatal intensive care unit

    Science.gov (United States)

    Klaessens, John H.; van den Born, Marlies; van der Veen, Albert; Sikkens-van de Kraats, Janine; van den Dungen, Frank A.; Verdaasdonk, Rudolf M.

    2014-02-01

    For infants and neonates in an incubator vital signs, such as heart rate, breathing, skin temperature and blood oxygen saturation are measured by sensors and electrodes sticking to the skin. This can damage the vulnerable skin of neonates and cause infections. In addition, the wires interfere with the care and hinder the parents in holding and touching the baby. These problems initiated the search for baby friendly 'non-contact' measurement of vital signs. Using a sensitive color video camera and specially developed software, the heart rate was derived from subtle repetitive color changes. Potentially also respiration and oxygen saturation could be obtained. A thermal camera was used to monitor the temperature distribution of the whole body and detect small temperature variations around the nose revealing the respiration rate. After testing in the laboratory, seven babies were monitored (with parental consent) in the neonatal intensive care unit (NICU) simultaneously with the regular monitoring equipment. From the color video recordings accurate heart rates could be derived and the thermal images provided accurate respiration rates. To correct for the movements of the baby, tracking software could be applied. At present, the image processing was performed off-line. Using narrow band light sources also non-contact blood oxygen saturation could be measured. Non-contact monitoring of vital signs has proven to be feasible and can be developed into a real time system. Besides the application on the NICU non-contact vital function monitoring has large potential for other patient groups.

  6. Relationship Between Intrinsic Motivation and Undergraduate Students' Depression and Stress: The Moderating Effect of Interpersonal Conflict.

    Science.gov (United States)

    Huang, Yunhui; Lv, Wei; Wu, Jiang

    2016-10-01

    This study examined the effect of intrinsic academic motivation and interpersonal conflict on the perceived depression and stress. Participants were 537 Chinese undergraduate students (191 males and 346 females; M age = 20.4 years, SD age = 1.3). They completed four scales measuring intrinsic academic motivation, interpersonal conflict, stress, and depression. Linear regressions were conducted with intrinsic academic motivation, interpersonal conflict, and their interaction as independent variables to predict depression and stress. Results showed that intrinsic academic motivation was negatively, while interpersonal conflict was positively, associated with depression and stress. Moreover, the interaction was significant: negative association of "intrinsic academic motivation and depression" and that of "intrinsic academic motivation and stress" was weaker among participants who reported higher (vs. lower) levels of interpersonal conflict. © The Author(s) 2016.

  7. Intrinsic Time Quantum Geometrodynamics

    OpenAIRE

    Ita III, Eyo Eyo; Soo, Chopin; Yu, Hoi-Lai

    2015-01-01

    Quantum Geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl Curvature Hypothesis, and thermodynamic and gravitational `arrows of tim...

  8. Intrinsic fluorescence of protein in turbid media using empirical relation based on Monte Carlo lookup table

    Science.gov (United States)

    Einstein, Gnanatheepam; Udayakumar, Kanniyappan; Aruna, Prakasarao; Ganesan, Singaravelu

    2017-03-01

    Fluorescence of Protein has been widely used in diagnostic oncology for characterizing cellular metabolism. However, the intensity of fluorescence emission is affected due to the absorbers and scatterers in tissue, which may lead to error in estimating exact protein content in tissue. Extraction of intrinsic fluorescence from measured fluorescence has been achieved by different methods. Among them, Monte Carlo based method yields the highest accuracy for extracting intrinsic fluorescence. In this work, we have attempted to generate a lookup table for Monte Carlo simulation of fluorescence emission by protein. Furthermore, we fitted the generated lookup table using an empirical relation. The empirical relation between measured and intrinsic fluorescence is validated using tissue phantom experiments. The proposed relation can be used for estimating intrinsic fluorescence of protein for real-time diagnostic applications and thereby improving the clinical interpretation of fluorescence spectroscopic data.

  9. Intrinsic reading motivation of Chinese preschoolers and its relationships with home literacy.

    Science.gov (United States)

    Zhou, Hui; Salili, Farideh

    2008-10-01

    The relationship between intrinsic motivation and home literacy of preschoolers was explored. One hundred and seventy-seven preschool children (3.8 to 6.6 years old) in Mainland China and one of the parents who primarily took care of each child participated in the study. Six indicators were considered as a measure of home literacy. Results showed that after controlling for parents' education level and children's age, three home literacy indicators-parental model of reading behaviour, number of books, and years of character teaching-could explain children's intrinsic reading motivation. Contrary to previous Western studies, Chinese children's freedom of book choice was not related to their intrinsic reading motivation. Results are discussed in the context of culture differences.

  10. Contact-free measurement of the flow field of a liquid metal inside a closed container

    Directory of Open Access Journals (Sweden)

    Heinicke Christiane

    2014-03-01

    Full Text Available The measurement of flow velocities inside metal melts is particularly challenging. Due to the high temperatures of the melts it is impossible to employ measurement techniques that require either mechanical contact with the melt or are only adaptable to translucent fluids. In the past years a number of electromagnetic techniques have been developed that allows a contact-free measurement of volume flows. One of these techniques is the so-called Lorentz Force Velocimetry (LFV in which the metal flow is exposed to an external, permanent magnetic field. The interaction between the metal and the magnet not only leads to a force on the fluid, but also on the magnet. The force can be measured and is proportional to the velocity of the melt. Moreover, by using a small permanent magnet it is possible to resolve spatial structures inside the flow.We will demonstrate this using a model experiment that has been investigated with different reference techniques previously. The experimental setup is a cylindrical vessel filled with a eutectic alloy which is liquid at room temperature. The liquid metal can be set into motion by means of a propeller at the top of the liquid. Depending on the direction of rotation of the propeller, the flow inside the vessel takes on different states. Beside the vessel, we place a Lorentz Force Flowmeter (LFF equipped with a small permanent magnet. By measuring the force on the magnet at different positions and different rotation speeds, we demonstrate that we can qualitatively and quantitatively reconstruct the flow field inside the vessel.

  11. A pressure plate study on fore and hindlimb loading and the association with hoof contact area in sound ponies at the walk and trot.

    Science.gov (United States)

    Oosterlinck, M; Pille, F; Back, W; Dewulf, J; Gasthuys, F

    2011-10-01

    The aim of this study was to evaluate the association between fore- and hind-hoof contact area and limb loading. Data from a previous study on forelimb loading and symmetry were compared with data on hindlimb kinetics, and the fore- and hind-hoof contact area at the walk and trot was evaluated. Five sound ponies, selected for symmetrical feet, were walked and trotted over a pressure plate embedded in a custom-made runway. The hindlimb peak vertical force (PVF) and vertical impulse (VI) were found to be significantly lower than in the forelimb, whereas their high symmetry ratios (>95%) did not show a significant difference from forelimb data. Hindlimb PVF in ponies was found to be slightly higher when compared to data reported for horses even though the ponies moved at a similar or lower relative velocity. The contact area had low intra-individual variability and was significantly smaller in the hind- than in the fore-hooves. A larger contact area was significantly associated with lower peak vertical pressure (PVP) but higher PVF and VI. No significant differences between left and right sides were found for contact area or loading variables. Pressure plate measurements demonstrated a significant association between hoof contact area and limb loading, in addition to intrinsic differences between fore and hindlimb locomotor function. The pressure plate provides the clinician with a tool to quantify simultaneously contralateral differences in hoof contact area and limb loading. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Patterns of intrinsic bioremediation at two U.S. Air Force bases

    International Nuclear Information System (INIS)

    Wiedemeier, T.H.; Swanson, M.A.; Wilson, J.T.; Kampbell, D.H.

    1995-01-01

    Intrinsic bioremediation of benzene, toluene, ethylbenzene, and xylenes (BTEX) occurs when indigenous microorganisms work to reduce the total mass of contamination in the subsurface without the addition of nutrients. A conservative tracer, such as trimethylbenzene, found commingled with the contaminant plume can be used to distinguish between attenuation caused by dispersion, dilution from recharge, volatilization, and sorption and attenuation caused by biodegradation. Patterns of intrinsic bioremediation can vary markedly from site to site depending on governing physical, biological, and chemical processes. Intrinsic bioremediation causes measurable changes in groundwater chemistry. Specifically, concentrations of contaminants, dissolved oxygen, nitrate, ferrous iron, sulfate, and methane in groundwater change both temporally and spatially as biodegradation proceeds Operations at Hill Air Force Base (AFB) and Patrick AFB resulted in fuel-hydrocarbon contamination of soil and groundwater. In both cases, trimethylbenzene data confirm that dissolved BTEX is biodegrading. Geochemical evidence from the Hill AFB site suggests that aerobic respiration, denitrification, iron reduction, sulfate reduction, and methanogenesis all are contributing to intrinsic bioremediation of dissolved BTEX. Sulfate reduction is the dominant biodegradation mechanism at this site. Geochemical evidence from Patrick AFB suggests that aerobic respiration, iron reduction, and methanogenesis are contributing to intrinsic bioremediation of dissolved BTEX. Methanogenesis is the dominant biodegradation mechanism at this site

  13. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials

    International Nuclear Information System (INIS)

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-01-01

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  14. Response of gadolinium doped liquid scintillator to charged particles: measurement based on intrinsic U/Th contamination

    Science.gov (United States)

    Du, Q.; Lin, S. T.; He, H. T.; Liu, S. K.; Tang, C. J.; Wang, L.; Wong, H. T.; Xing, H. Y.; Yue, Q.; Zhu, J. J.

    2018-04-01

    A measurement is reported for the response to charged particles of a liquid scintillator named EJ-335 doped with 0.5% gadolinium by weight. This liquid scintillator was used as the detection medium in a neutron detector. The measurement is based on the in-situ α-particles from the intrinsic Uranium and Thorium contamination in the scintillator. The β–α and the α–α cascade decays from the U/Th decay chains were used to select α-particles. The contamination levels of U/Th were consequently measured to be (5.54±0.15)× 10‑11 g/g, (1.45±0.01)× 10‑10 g/g and (1.07±0.01)× 10‑11 g/g for 232Th, 238U and 235U, respectively, assuming secular equilibrium. The stopping power of α-particles in the liquid scintillator was simulated by the TRIM software. Then the Birks constant, kB, of the scintillator for α-particles was determined to be (7.28±0.23) mg/(cm2ṡMeV) by Birks' formulation. The response for protons is also presented assuming the kB constant is the same as for α-particles.

  15. The intrinsic resistome of bacterial pathogens.

    Science.gov (United States)

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B Sanchez, Maria; Martinez, Jose L

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  16. The intrinsic resistome of bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Jorge Andrés Olivares Pacheco

    2013-04-01

    Full Text Available Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally a low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyse recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  17. Incentives and intrinsic motivation in healthcare.

    Science.gov (United States)

    Berdud, Mikel; Cabasés, Juan M; Nieto, Jorge

    It has been established in the literature that workers within public organisations are intrinsically motivated. This paper is an empirical study of the healthcare sector using methods of qualitative analysis research, which aims to answer the following hypotheses: 1) doctors are intrinsically motivated; 2) economic incentives and control policies may undermine doctors' intrinsic motivation; and 3) well-designed incentives may encourage doctors' intrinsic motivation. We conducted semi-structured interviews à-la-Bewley with 16 doctors from Navarre's Healthcare Service (Servicio Navarro de Salud-Osasunbidea), Spain. The questions were based on current theories of intrinsic motivation and incentives to test the hypotheses. Interviewees were allowed to respond openly without time constraints. Relevant information was selected, quantified and analysed by using the qualitative concepts of saturation and codification. The results seem to confirm the hypotheses. Evidence supporting hypotheses 1 and 2 was gathered from all interviewees, as well as indications of the validity of hypothesis 3 based on interviewees' proposals of incentives. The conclusions could act as a guide to support the optimal design of incentive policies and schemes within health organisations when healthcare professionals are intrinsically motivated. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Concordance between self-reported pre-pregnancy body mass index (BMI) and BMI measured at the first prenatal study contact.

    Science.gov (United States)

    Natamba, Barnabas K; Sanchez, Sixto E; Gelaye, Bizu; Williams, Michelle A

    2016-07-26

    The 2009 Institute of Medicine (IOM) gestational weight recommendations are tailored to women's pre-pregnancy body mass index (BMI). Limited evidence exists on methods for estimating women's pre-pregnancy BMI, particularly for women living in low and middle income countries. Using data from collected among Peruvian pregnant women, we compared the concordance between self-reported pre-pregnancy BMI with BMI measured at the earliest prenatal study visit. Data were from the Pregnancy Outcomes Maternal and Infant Study (PrOMIS), a cohort of pregnant women at the Instituto Nacional Materno Perinatal (INMP) in Lima, Peru. 2605 women aged 18 to 49 years (mean ± SD gestational age = 10.9 ± 3.3 weeks) were included in the study. Self-reported pre-pregnancy weight and height and measured weight and height were collected at the first prenatal study contact. We assessed the concordance between measured and self-reported BMI; and, the agreement among indicators of nutritional status obtained using measured and self-reported BMI. On average, weight measured at the first prenatal study visit was 0.27 kg higher than self-reported pre-pregnancy weight (p overweight or obese BMI categories tended to be lower when using self-reported BMI (38.2 %) than when using measured BMI (47.7 %). Self-reported pre-pregnancy BMI was strongly correlated with BMI measured at the first prenatal study contact. The findings potentially suggest that, in this context, there is minimal change between pre-pregnancy BMI and BMI measured at the first prenatal study contact; or, that women in this study just recalled their most recent measured anthropometrics (including values obtained during the index pregnancy but before enrollment in the PrOMIS study).

  19. Effect of repeated contact on adhesion measurements involving polydimethylsiloxane structural material

    International Nuclear Information System (INIS)

    Kroner, E; Arzt, E; Maboudian, R

    2009-01-01

    During the last few years several research groups have focused on the fabrication of artificial gecko inspired adhesives. For mimicking these structures, different polymers are used as structure material, such as polydimethylsiloxanes (PDMS), polyurethanes (PU), and polypropylene (PP). While these polymers can be structured easily and used for artificial adhesion systems, the effects of repeated adhesion testing have never been investigated closely. In this paper we report on the effect of repeated adhesion measurements on the commercially available poly(dimethylsiloxane) polymer kit Sylgard 184 (Dow Corning). We show that the adhesion force decreases as a function of contact cycles. The rate of change and the final value of adhesion are found to depend on the details of the PDMS synthesis and structuring.

  20. Contact and contagion: Probability of transmission given contact varies with demographic state in bighorn sheep.

    Science.gov (United States)

    Manlove, Kezia R; Cassirer, E Frances; Plowright, Raina K; Cross, Paul C; Hudson, Peter J

    2017-07-01

    Understanding both contact and probability of transmission given contact are key to managing wildlife disease. However, wildlife disease research tends to focus on contact heterogeneity, in part because the probability of transmission given contact is notoriously difficult to measure. Here, we present a first step towards empirically investigating the probability of transmission given contact in free-ranging wildlife. We used measured contact networks to test whether bighorn sheep demographic states vary systematically in infectiousness or susceptibility to Mycoplasma ovipneumoniae, an agent responsible for bighorn sheep pneumonia. We built covariates using contact network metrics, demographic information and infection status, and used logistic regression to relate those covariates to lamb survival. The covariate set contained degree, a classic network metric describing node centrality, but also included covariates breaking the network metrics into subsets that differentiated between contacts with yearlings, ewes with lambs, and ewes without lambs, and animals with and without active infections. Yearlings, ewes with lambs, and ewes without lambs showed similar group membership patterns, but direct interactions involving touch occurred at a rate two orders of magnitude higher between lambs and reproductive ewes than between any classes of adults or yearlings, and one order of magnitude higher than direct interactions between multiple lambs. Although yearlings and non-reproductive bighorn ewes regularly carried M. ovipneumoniae, our models suggest that a contact with an infected reproductive ewe had approximately five times the odds of producing a lamb mortality event of an identical contact with an infected dry ewe or yearling. Consequently, management actions targeting infected animals might lead to unnecessary removal of young animals that carry pathogens but rarely transmit. This analysis demonstrates a simple logistic regression approach for testing a priori

  1. Intrinsic and extrinsic mechanisms of vortex formation in superfluid 3He-B

    International Nuclear Information System (INIS)

    Ruutu, V.M.H.; Parts, Ue.; Krusius, M.

    1997-01-01

    The authors report on the first comprehensive measurements of critical superflow velocities in 3 He-B which allow different mechanisms of vortex formation to be identified. As a function of temperature T and pressure P, they measure the critical angular velocity Ω c (T,P) at which vortices start to form in slowly accelerating rotation in a cylindrical container filled with 3 He-B. Owing to the long coherence length ξ(T,P) ∼ 10-100 nm, either trapped remanent vorticity or intrinsic nucleation may dominate vortex formation, depending on the roughness of the container wall and the presence of loaded traps. NMR measurement with a resolution of one single vortex line allows the authors to distinguish between different processes: (1) Three extrinsic mechanisms of vortex formation have been observed. One of them is the vortex mill, a continuous periodic source which is activated in a rough-walled container well below the limit for intrinsic nucleation. (2) In a closed smooth-walled container intrinsic nucleation is the only mechanism available, with a critical velocity v c (T,P) = Ω c (T,P) R, where R is the radius of the container. The authors find v c (T,P) to be related to the calculated intrinsic stability limit v c (T,P) of homogeneous superflow. The existence of this connection in the form of a scaling law implies that nucleation takes place at an instability, rather than by thermal activation or quantum tunneling which become impossible because of an inaccessibly high energy barrier

  2. Intrinsic densitometry: In-plant evaluation

    International Nuclear Information System (INIS)

    Nishida, K.; Kurosawa, A.; Masui, J.; Hsue, S.T.

    1994-11-01

    A measurement of the plutonium concentration in a sample is always necessary for nuclear material control and accounting. This report describes the testing of the intrinsic densitometry (ID) technique for implant applications. The authors found that the ID method can determine the plutonium concentrations to between 2 and 3% at concentrations of 100 g/l to 200 g/l with quartz cells and a measurement time of 3600 s. The precision can be improved to 1 to 2% with a higher counting rate. The authors also found that nitric acid concentration and the impurity level of uranium in the product plutonium solution do not affect the concentration measurement. When this technique is applied to plutonium solutions in stainless steel pipes, they found that similar precision in plutonium concentration can be achieved using a high-count-rate detector. The precision, however, is reduced with aged plutonium solutions

  3. The Neuroscience of Growth Mindset and Intrinsic Motivation.

    Science.gov (United States)

    Ng, Betsy

    2018-01-26

    Our actions can be triggered by intentions, incentives or intrinsic values. Recent neuroscientific research has yielded some results about the growth mindset and intrinsic motivation. With the advances in neuroscience and motivational studies, there is a global need to utilize this information to inform educational practice and research. Yet, little is known about the neuroscientific interplay between growth mindset and intrinsic motivation. This paper attempts to draw on the theories of growth mindset and intrinsic motivation, together with contemporary ideas in neuroscience, outline the potential for neuroscientific research in education. It aims to shed light on the relationship between growth mindset and intrinsic motivation in terms of supporting a growth mindset to facilitate intrinsic motivation through neural responses. Recent empirical research from the educational neuroscience perspective that provides insights into the interplay between growth mindset and intrinsic motivation will also be discussed.

  4. Thermal contact resistance measurement of conduction cooled binary current lead joint block in cryocooler based self field I-V characterization facility

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Ananya, E-mail: ananya@ipr.res.in; Das, Subrat Kumar; Agarwal, Anees Bano Pooja; Pradhan, Subrata [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2016-05-23

    In the present study thermal resistance of conduction cooled current lead joint block employing two different interfacial material namely AlN sheet and Kapton Film have been studied in the temperature range 5K-35K. In each case, the performance of different interlayer materials e.g. Indium foil for moderately pressurized contacts (contact pressure <1 MPa), and Apiezon N Grease, GE varnish for low pressurized contact (contact pressure <1 MPa) is studied. The performances of AlN joint with Indium foil and with Apeizon N Grease are studied and it is observed that the contact resistance reduces more with indium foil as compared to greased contact. The contact resistance measurements of Kapton film with Apiezon N grease and with GE varnish were also carried out in the same temperature range. A comparative study of AlN joint with Indium foil and Kapton with GE varnish as filler material is carried out to demonstrate better candidate material among Kapton and AlN for a particular filler material in the same temperature range.

  5. Tuning the Schottky contacts in the phosphorene and graphene heterostructure by applying strain.

    Science.gov (United States)

    Liu, Biao; Wu, Li-Juan; Zhao, Yu-Qing; Wang, Lin-Zhi; Caii, Meng-Qiu

    2016-07-20

    The structures and electronic properties of the phosphorene and graphene heterostructure are investigated by density functional calculations using the hybrid Heyd-Scuseria-Ernzerhof (HSE) functional. The results show that the intrinsic properties of phosphorene and graphene are preserved due to the weak van der Waals contact. But the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure can be tuned from p-type to n-type by the in-plane compressive strains from -2% to -4%. After analyzing the total band structure and density of states of P atom orbitals, we find that the Schottky barrier height (SBH) is determined by the P-pz orbitals. What is more, the variation of the work function of the phosphorene monolayer and the graphene electrode and the Fermi level shift are the nature of the transition of Schottky barrier from n-type Schottky contact to p-type Schottky contact in the phosphorene and graphene heterostructure under different in-plane strains. We speculate that these are general results of tuning of the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure by controlling the in-plane compressive strains to obtain a promising method to design and fabricate a phosphorene-graphene based field effect transistor.

  6. Intrinsic Motivation and Achievement in Mathematics in Elementary School: A Longitudinal Investigation of Their Association

    Science.gov (United States)

    Garon-Carrier, Gabrielle; Boivin, Michel; Guay, Frédéric; Kovas, Yulia; Dionne, Ginette; Lemelin, Jean-Pascal; Séguin, Jean R.; Vitaro, Frank; Tremblay, Richard E.

    2016-01-01

    This study examined the associations between intrinsic motivation and achievement in mathematics in a sample of 1,478 Canadian school-age children followed from Grades 1 to 4 (ages 7-10). Children self-reported their intrinsic motivation toward mathematics, whereas achievement was measured through direct assessment of mathematics abilities.…

  7. Measurements of heat transfer coefficients at low contact pressures for actively cooled bolted armour concepts in Tore Supra

    International Nuclear Information System (INIS)

    Lipa, M.; Chappuis, Ph.; Dufayet, A.

    2000-01-01

    For the future upgrade of inner vessel components (CIEL project) a guard limiter for plasma ramp-up and disruption protection will be installed on the high field side of the vacuum vessel. Among transient heat loads, this structure has to sustain a moderate heat flux in the range of ≤0.5 MW/m 2 during quasi steady state operation (1000 s). A bolted carbon-carbon (C-C) tile is preferred compared with a brazed tile solution due to the expected moderate heat fluxes, costs and the possibility of rapid replacement of individual tiles. Large flat tile assemblies require a sufficient soft and conductive compliant layer enclosed between tile and heat sink in order to avoid thermal contact loss of the assembly during heat loads and therefore minimising the tile surface temperature. The global heat transfer coefficient (H gl ) under vacuum at low contact pressures (0.5-1.5 MPa) between C-C and CuCrZr heat sink substrata has been measured in the experimental device, installation of contact heat transfer measurements (ITTAC), using different compliant materials. It appears that the best compliant layer is a graphite sheet (PAPYEX), compared with copper-felt/foam material. As an example, a H gl number of ∼10 4 W/m 2 K at an average contact pressure of 0.5 MPa has been measured near room temperature between C-C (SEP N11) and CuCrZr substrata using a 0.5-mm thick PAPYEX layer. Thermohydraulic calculations (2D) of the guard limiter design show an expected tile surface temperature of about 550 deg. C in steady state regime for an incident heat flux of 0.5 MW/m 2

  8. Condom use by Dutch men with commercial heterosexual contacts: determinants and considerations.

    Science.gov (United States)

    de Graaf, R; van Zessen, G; Vanwesenbeeck, I; Straver, C J; Visser, J H

    1997-10-01

    We report responses from 559 clients of female prostitutes, with a view to determining to what extent previously identified factors play a part in condom use. To increase the response rate to advertisements in daily and weekly newspapers, interviews were held by phone. This procedure had the advantage of ensuring the anonymity many clients demanded. Of those clients having vaginal or anal contact (91%), 14% had not always used condoms in the previous year. Compared with consistent condom users, these men were less highly educated, had twice as many commercial contacts, and had more contacts with "steady" prostitutes. They were either more emotionally motivated to visit prostitutes than were consistent condom users or exhibited a stronger need for sexual variation. They showed a more compulsive attitude toward visiting prostitutes, had a more negative attitude toward prostitution in general, evaluated condoms more negatively, had a higher personal efficacy to achieve unsafe contacts, and had a higher general risk assessment, commensurate with their behavior. Men with only safe contacts had either an intrinsic or an extrinsic motivation for condom use. Among extrinsically motivated men, their behavior change was more recent and had not yet taken root: They still envisioned unsafe commercial sex to be possible in the future. Education aimed at the small group of men practicing unsafe contacts will not easily and directly lead to behavior change. But these educational activities may support prostitutes to persist in (consistent) condom use, regardless of clients' pressure to do otherwise.

  9. Surface potential measurement on contact resistance of amorphous-InGaZnO thin film transistors by Kelvin probe force microscopy

    Science.gov (United States)

    Han, Zhiheng; Xu, Guangwei; Wang, Wei; Lu, Congyan; Lu, Nianduan; Ji, Zhuoyu; Li, Ling; Liu, Ming

    2016-07-01

    Contact resistance plays an important role in amorphous InGaZnO (a-IGZO) thin film transistors (TFTs). In this paper, the surface potential distributions along the channel have been measured by using Kelvin probe force microscopy (KPFM) on operating a-IGZO TFTs, and sharp potential drops at the edges of source and drain were observed. The source and drain contact resistances can be extracted by dividing sharp potential drops with the corresponding drain to source current. It is found that the contact resistances could not be neglected compared with the whole channel resistances in the a-IGZO TFT, and the contact resistances decrease remarkably with increasing gate biased voltage. Our results suggest that the contact resistances can be controlled by tuning the gate biased voltage. Moreover, a transition from gradual channel approximation to space charge region was observed through the surface potential map directly when TFT operating from linear regime to saturation regime.

  10. Defining the Intrinsic Cardiac Risks of Operations to Improve Preoperative Cardiac Risk Assessments.

    Science.gov (United States)

    Liu, Jason B; Liu, Yaoming; Cohen, Mark E; Ko, Clifford Y; Sweitzer, Bobbie J

    2018-02-01

    Current preoperative cardiac risk stratification practices group operations into broad categories, which might inadequately consider the intrinsic cardiac risks of individual operations. We sought to define the intrinsic cardiac risks of individual operations and to demonstrate how grouping operations might lead to imprecise estimates of perioperative cardiac risk. Elective operations (based on Common Procedural Terminology codes) performed from January 1, 2010 to December 31, 2015 at hospitals participating in the American College of Surgeons National Surgical Quality Improvement Program were studied. A composite measure of perioperative adverse cardiac events was defined as either cardiac arrest requiring cardiopulmonary resuscitation or acute myocardial infarction. Operations' intrinsic cardiac risks were derived from mixed-effects models while controlling for patient mix. Resultant risks were sorted into low-, intermediate-, and high-risk categories, and the most commonly performed operations within each category were identified. Intrinsic operative risks were also examined using a representative grouping of operations to portray within-group variation. Sixty-six low, 30 intermediate, and 106 high intrinsic cardiac risk operations were identified. Excisional breast biopsy had the lowest intrinsic cardiac risk (overall rate, 0.01%; odds ratio, 0.11; 95% CI, 0.02 to 0.25) relative to the average, whereas aorto-bifemoral bypass grafting had the highest (overall rate, 4.1%; odds ratio, 6.61; 95% CI, 5.54 to 7.90). There was wide variation in the intrinsic cardiac risks of operations within the representative grouping (median odds ratio, 1.40; interquartile range, 0.88 to 2.17). A continuum of intrinsic cardiac risk exists among operations. Grouping operations into broad categories inadequately accounts for the intrinsic cardiac risk of individual operations.

  11. Factors Affecting Intrinsic Motivation among University Students in Taiwan.

    Science.gov (United States)

    Tang, Li-Ping Thomas

    1990-01-01

    Studies the effects of the Protestant work ethic and performance feedback on intrinsic motivation in a sample of Taiwanese university students. Divides subjects into three groups according to work ethic measurement: high, intermediate, and low. Suggests students with a low work ethic exert more effort when challenged. (NL)

  12. Chimpanzees and bonobos differ in intrinsic motivation for tool use.

    Science.gov (United States)

    Koops, Kathelijne; Furuichi, Takeshi; Hashimoto, Chie

    2015-06-16

    Tool use in nonhuman apes can help identify the conditions that drove the extraordinary expansion of hominin technology. Chimpanzees and bonobos are our closest living relatives. Whereas chimpanzees are renowned for their tool use, bonobos use few tools and none in foraging. We investigated whether extrinsic (ecological and social opportunities) or intrinsic (predispositions) differences explain this contrast by comparing chimpanzees at Kalinzu (Uganda) and bonobos at Wamba (DRC). We assessed ecological opportunities based on availability of resources requiring tool use. We examined potential opportunities for social learning in immature apes. Lastly, we investigated predispositions by measuring object manipulation and object play. Extrinsic opportunities did not explain the tool use difference, whereas intrinsic predispositions did. Chimpanzees manipulated and played more with objects than bonobos, despite similar levels of solitary and social play. Selection for increased intrinsic motivation to manipulate objects likely also played an important role in the evolution of hominin tool use.

  13. Intrinsic Motivation and Achievement in Mathematics in Elementary School: A Longitudinal Investigation of Their Association.

    Science.gov (United States)

    Garon-Carrier, Gabrielle; Boivin, Michel; Guay, Frédéric; Kovas, Yulia; Dionne, Ginette; Lemelin, Jean-Pascal; Séguin, Jean R; Vitaro, Frank; Tremblay, Richard E

    2016-01-01

    This study examined the associations between intrinsic motivation and achievement in mathematics in a sample of 1,478 Canadian school-age children followed from Grades 1 to 4 (ages 7-10). Children self-reported their intrinsic motivation toward mathematics, whereas achievement was measured through direct assessment of mathematics abilities. Cross-lagged models showed that achievement predicted intrinsic motivation from Grades 1 to 2, and from Grades 2 to 4. However, intrinsic motivation did not predict achievement at any time. This developmental pattern of association was gender invariant. Contrary to the hypothesis that motivation and achievement are reciprocally associated over time, our results point to a directional association from prior achievement to subsequent intrinsic motivation. Results are discussed in light of their theoretical and practical implications. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.

  14. The Neuroscience of Growth Mindset and Intrinsic Motivation

    Directory of Open Access Journals (Sweden)

    Betsy Ng

    2018-01-01

    Full Text Available Our actions can be triggered by intentions, incentives or intrinsic values. Recent neuroscientific research has yielded some results about the growth mindset and intrinsic motivation. With the advances in neuroscience and motivational studies, there is a global need to utilize this information to inform educational practice and research. Yet, little is known about the neuroscientific interplay between growth mindset and intrinsic motivation. This paper attempts to draw on the theories of growth mindset and intrinsic motivation, together with contemporary ideas in neuroscience, outline the potential for neuroscientific research in education. It aims to shed light on the relationship between growth mindset and intrinsic motivation in terms of supporting a growth mindset to facilitate intrinsic motivation through neural responses. Recent empirical research from the educational neuroscience perspective that provides insights into the interplay between growth mindset and intrinsic motivation will also be discussed.

  15. Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation.

    Science.gov (United States)

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Maxwell, Adam; Warnez, Matthew T; Mancia, Lauren; Singh, Rahul; Putnam, Andrew J; Fowlkes, Brian; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-06-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Previous work has indicated that a cavitation cloud can be formed by a single pulse with one high-amplitude negative cycle, when the negative pressure amplitude directly exceeds a pressure threshold intrinsic to the medium. We hypothesize that the intrinsic threshold in water-based tissues is determined by the properties of the water inside the tissue, and changes in tissue stiffness or ultrasound frequency will have a minimal impact on the histotripsy intrinsic threshold. To test this hypothesis, the histotripsy intrinsic threshold was investigated both experimentally and theoretically. The probability of cavitation was measured by subjecting tissue phantoms with adjustable mechanical properties and ex vivo tissues to a histotripsy pulse of 1-2 cycles produced by 345-kHz, 500-kHz, 1.5-MHz and 3-MHz histotripsy transducers. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured versus pressure amplitude. The results revealed that the intrinsic threshold (the negative pressure at which probability = 0.5) is independent of stiffness for Young's moduli (E) ultrasound frequency in the hundreds of kilohertz to megahertz range. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Perceptions of teachers' general and informational feedback and intrinsic motivation in physical education: two-year effects.

    Science.gov (United States)

    Koka, Andre; Hein, Vello

    2006-10-01

    Relative change or stability of perceived positive general feedback and perceived informational feedback and their influence on students' intrinsic motivation in physical education over two years were examined. 302 students, ages 11 to 15 years, responded to the Perception of Teacher's Feedback questionnaire. Two years later, these students filled out the questionnaire again, along with a modified version of the Sport Motivation Scale. Analysis showed that both types of perceived feedback exhibited moderate stability over the two years. Perceived positive general feedback demonstrated a significant direct effect on students' intrinsic motivation measured concurrently in physical education. Further, fixing to zero the effect of perceived positive general feedback on intrinsic motivation measured concurrently, an effect emerged over the two years.

  17. Beyond the evoked/intrinsic neural process dichotomy

    Directory of Open Access Journals (Sweden)

    Taylor Bolt

    2018-03-01

    Full Text Available Contemporary functional neuroimaging research has increasingly focused on characterization of intrinsic or “spontaneous” brain activity. Analysis of intrinsic activity is often contrasted with analysis of task-evoked activity that has traditionally been the focus of cognitive neuroscience. But does this evoked/intrinsic dichotomy adequately characterize human brain function? Based on empirical data demonstrating a close functional interdependence between intrinsic and task-evoked activity, we argue that the dichotomy between intrinsic and task-evoked activity as unobserved contributions to brain activity is artificial. We present an alternative picture of brain function in which the brain’s spatiotemporal dynamics do not consist of separable intrinsic and task-evoked components, but reflect the enaction of a system of mutual constraints to move the brain into and out of task-appropriate functional configurations. According to this alternative picture, cognitive neuroscientists are tasked with describing both the temporal trajectory of brain activity patterns across time, and the modulation of this trajectory by task states, without separating this process into intrinsic and task-evoked components. We argue that this alternative picture of brain function is best captured in a novel explanatory framework called enabling constraint. Overall, these insights call for a reconceptualization of functional brain activity, and should drive future methodological and empirical efforts.

  18. Measurement of inter-strand contact resistance in epoxy impregnated Nb3Sn Rutherford cables

    International Nuclear Information System (INIS)

    Giorgio Ambrosio

    2003-01-01

    An apparatus for the measurement, under transverse pressure, of the inter-strand contact resistance in epoxy-impregnated Nb 3 Sn Rutherford cables has been recently assembled at Fermilab. Procedures have been developed to instrument and measure samples extracted from Nb 3 Sn coils. Samples were extracted from coils fabricated with the Wind-and-React and the React-and-Wind technology, both presently under development at Fermilab. A ceramic binder is used to improve the insulation and to simplify the fabrication of coils using the Wind-and-React technology. Synthetic oil is used to prevent sintering during the heat treatment of coils to be wound after reaction. In order to evaluate the effects of the ceramic binder and of the synthetic oil on the inter-strand resistance, measurements of samples extracted from coils were compared with measurements of cable stacks with varying characteristics. In this paper we describe the apparatus, the sample preparation, the measurement procedure, and the results of the first series of tests

  19. Acoustic resonance spectroscopy intrinsic seals

    International Nuclear Information System (INIS)

    Olinger, C.T.; Burr, T.; Vnuk, D.R.

    1994-01-01

    We have begun to quantify the ability of acoustic resonance spectroscopy (ARS) to detect the removal and replacement of the lid of a simulated special nuclear materials drum. Conceptually, the acoustic spectrum of a container establishcs a baseline fingerprint, which we refer to as an intrinsic seal, for the container. Simply removing and replacing the lid changes some of the resonant frequencies because it is impossible to exactly duplicate all of the stress patterns between the lid and container. Preliminary qualitative results suggested that the ARS intrinsic seal could discriminate between cases where a lid has or has not been removed. The present work is directed at quantifying the utility of the ARS intrinsic seal technique, including the technique's sensitivity to ''nuisance'' effects, such as temperature swings, movement of the container, and placement of the transducers. These early quantitative tests support the potential of the ARS intrinsic seal application, but also reveal a possible sensitivity to nuisance effects that could limit environments or conditions under which the technique is effective

  20. Development of method for experimental determination of wheel–rail contact forces and contact point position by using instrumented wheelset

    International Nuclear Information System (INIS)

    Bižić, Milan B; Petrović, Dragan Z; Tomić, Miloš C; Djinović, Zoran V

    2017-01-01

    This paper presents the development of a unique method for experimental determination of wheel–rail contact forces and contact point position by using the instrumented wheelset (IWS). Solutions of key problems in the development of IWS are proposed, such as the determination of optimal locations, layout, number and way of connecting strain gauges as well as the development of an inverse identification algorithm (IIA). The base for the solution of these problems is the wheel model and results of FEM calculations, while IIA is based on the method of blind source separation using independent component analysis. In the first phase, the developed method was tested on a wheel model and a high accuracy was obtained (deviations of parameters obtained with IIA and really applied parameters in the model are less than 2%). In the second phase, experimental tests on the real object or IWS were carried out. The signal-to-noise ratio was identified as the main influential parameter on the measurement accuracy. Тhе obtained results have shown that the developed method enables measurement of vertical and lateral wheel–rail contact forces Q and Y and their ratio Y / Q with estimated errors of less than 10%, while the estimated measurement error of contact point position is less than 15%. At flange contact and higher values of ratio Y / Q or Y force, the measurement errors are reduced, which is extremely important for the reliability and quality of experimental tests of safety against derailment of railway vehicles according to the standards UIC 518 and EN 14363. The obtained results have shown that the proposed method can be successfully applied in solving the problem of high accuracy measurement of wheel–rail contact forces and contact point position using IWS. (paper)

  1. Does the position or contact pressure of the stethoscope make any difference to clinical blood pressure measurements: an observational study.

    Science.gov (United States)

    Pan, Fan; Zheng, Dingchang; He, Peiyu; Murray, Alan

    2014-12-01

    This study aimed to investigate the effect of stethoscope position and contact pressure on auscultatory blood pressure (BP) measurement. Thirty healthy subjects were studied. Two identical stethoscopes (one under the cuff, the other outside the cuff) were used to simultaneously and digitally record 2 channels of Korotkoff sounds during linear cuff pressure deflation. For each subject, 3 measurements with different contact pressures (0, 50, and 100 mm Hg) on the stethoscope outside the cuff were each recorded at 3 repeat sessions. The Korotkoff sounds were replayed twice on separate days to each of 2 experienced listeners to determine systolic and diastolic BPs (SBP and DBP). Variance analysis was performed to study the measurement repeatability and the effect of stethoscope position and contact pressure on BPs. There was no significant BP difference between the 3 repeat sessions, between the 2 determinations from each listener, between the 2 listeners and between the 3 stethoscope contact pressures (all P > 0.06). There was no significant SBP difference between the 2 stethoscope positions at the 2 lower stethoscope pressures (P = 0.23 and 0.45), but there was a small (0.4 mm Hg, clinically unimportant) significant difference (P = 0.005) at the highest stethoscope pressure. The key result was that, DBP from the stethoscope under the cuff was significantly lower than that from outside the cuff by 2.8 mm Hg (P stethoscope outside the cuff, tends to give a higher DBP than the true intra-arterial pressure, this study could suggest that the stethoscope position under the cuff, and closer to the arterial occlusion, might yield measurements closer to the actual invasive DBP.

  2. The effect of professional culture on intrinsic motivation among physicians in an academic medical center.

    Science.gov (United States)

    Janus, Katharina

    2014-01-01

    Today, most healthcare organizations aim to manage professionals' motivation through monetary incentives, such as pay for performance. However, addressing motivation extrinsically can involve negative effects, such as disturbed teamwork, gaming the system, and crowd-out of intrinsic motivation. To offset these side effects, it is crucial to support professionals' intrinsic motivation actively, which is largely determined by enjoyment- and obligation-based social norms that derive from professionals' culture. For this study, a professional culture questionnaire was designed and validated, the results of which uncovered three factors: relationship to work, relationship to colleagues, and relationship to organization. These factors served as independent variables for regression analyses. Second, Amabile's validated work preference inventory was used to measure intrinsic motivation as a dependent variable. The regression analysis was controlled for sex, age, and experience. The study revealed that relationship to work had the strongest (and a positive) impact on intrinsic motivation in general and on Amabile's intrinsic subscales, enjoyment and challenge. Relationship to organization had a negative impact on intrinsic motivation and both subscales, and relationship to colleagues showed a low positive significance for the intrinsic scale only. Healthcare organizations have mostly focused on targeting professionals' extrinsic motivation. However, managing dimensions of professional culture can help support professionals' intrinsic motivation without incurring the side effects of monetary incentives.

  3. Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires

    Science.gov (United States)

    Yan, Jie-Yun

    2018-06-01

    Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires is studied. Based on the excitonic theory, the numerical method to calculate the photoconductivity spectrum in the nanowires is developed, which can simulate optical pump terahertz-probe spectroscopy measurements on real nanowires and thereby calculate the typical photoconductivity spectrum. With the help of the energetic structure deduced from the calculated linear absorption spectrum, the numerically observed shift of the resonant peak in the photoconductivity spectrum is found to result from the dominant exciton transition between excited or continuum states to the ground state, and the quantitative analysis is in good agreement with the quantum plasmon model. Besides, the dependence of the photoconductivity on the polarization of the terahertz field is also discussed. The numerical method and supporting theoretical analysis provide a new tool for experimentalists to understand the terahertz photoconductivity in intrinsic semiconductor nanowires at low temperatures or for nanowires subjected to below bandgap photoexcitation, where excitonic effects dominate.

  4. Pervasive negative effects of rewards on intrinsic motivation: The myth continues.

    Science.gov (United States)

    Cameron, J; Banko, K M; Pierce, W D

    2001-01-01

    A major concern in psychology and education is that rewards decrease intrinsic motivation to perform activities. Over the past 30 years, more than 100 experimental studies have been conducted on this topic. In 1994, Cameron and Pierce conducted a meta-analysis of this literature and concluded that negative effects of reward were limited and could be easily prevented in applied settings. A more recent meta-analysis of the literature by Deci, Koestner, and Ryan (1999) shows pervasive negative effects of reward. The purpose of the present article is to resolve differences in previous meta-analytic findings and to provide a meta-analysis of rewards and intrinsic motivation that permits tests of competing theoretical explanations. Our results suggest that in general, rewards are not harmful to motivation to perform a task. Rewards given for low-interest tasks enhance free-choice intrinsic motivation. On high-interest tasks, verbal rewards produce positive effects on free-choice motivation and self-reported task interest. Negative effects are found on high-interest tasks when the rewards are tangible, expected (offered beforehand), and loosely tied to level of performance. When rewards are linked to level of performance, measures of intrinsic motivation increase or do not differ from a nonrewarded control group. Overall, the pattern of results indicates that reward contingencies do not have pervasive negative effects on intrinsic motivation. Theoretical and practical implications of the findings are addressed.

  5. Intrinsic motivation as a mediator between metacognition deficits and impaired functioning in psychosis.

    Science.gov (United States)

    Luther, Lauren; Firmin, Ruth L; Vohs, Jenifer L; Buck, Kelly D; Rand, Kevin L; Lysaker, Paul H

    2016-09-01

    Poor functioning has long been observed in individuals with psychosis. Recent studies have identified metacognition - one's ability to form complex ideas about oneself and others and to use that information to respond to psychological and social challenges-as being an important determinant of functioning. However, the exact process by which deficits in metacognition lead to impaired functioning remains unclear. This study first examined whether low intrinsic motivation, or the tendency to pursue novel experiences and to engage in self-improvement, mediates the relationship between deficits in metacognition and impaired functioning. We then examined whether intrinsic motivation significantly mediated the relationship when controlling for age, education, symptoms, executive functioning, and social cognition. Mediation models were examined in a cross-sectional data set. One hundred and seventy-five individuals with a psychotic disorder completed interview-based measures of metacognition, intrinsic motivation, symptoms, and functioning and performance-based measures of executive functioning and social cognition. Analyses revealed that intrinsic motivation mediated the relationship between metacognition deficits and impaired functioning (95% CI of indirect effect [0.12-0.43]), even after controlling for the aforesaid variables (95% CI of indirect effect [0.04-0.29]). Results suggest that intrinsic motivation may be a mechanism that underlies the link between deficits in metacognition and impaired functioning and indicate that metacognition and intrinsic motivation may be important treatment targets to improve functioning in individuals with psychosis. The findings of this study suggest that deficits in metacognition may indirectly lead to impaired functioning through their effect on intrinsic motivation in individuals with psychosis. Psychological treatments that target deficits in both metacognition and intrinsic motivation may help to alleviate impaired functioning in

  6. Characterizing Facial Skin Ageing in Humans: Disentangling Extrinsic from Intrinsic Biological Phenomena

    Science.gov (United States)

    Trojahn, Carina; Dobos, Gabor; Lichterfeld, Andrea; Blume-Peytavi, Ulrike; Kottner, Jan

    2015-01-01

    Facial skin ageing is caused by intrinsic and extrinsic mechanisms. Intrinsic ageing is highly related to chronological age. Age related skin changes can be measured using clinical and biophysical methods. The aim of this study was to evaluate whether and how clinical characteristics and biophysical parameters are associated with each other with and without adjustment for chronological age. Twenty-four female subjects of three age groups were enrolled. Clinical assessments (global facial skin ageing, wrinkling, and sagging), and biophysical measurements (roughness, colour, skin elasticity, and barrier function) were conducted at both upper cheeks. Pearson's correlations and linear regression models adjusted for age were calculated. Most of the measured parameters were correlated with chronological age (e.g., association with wrinkle score, r = 0.901) and with each other (e.g., residual skin deformation and wrinkle score, r = 0.606). After statistical adjustment for age, only few associations remained (e.g., mean roughness (R z) and luminance (L *),  β = −0.507, R 2 = 0.377). Chronological age as surrogate marker for intrinsic ageing has the most important influence on most facial skin ageing signs. Changes in skin elasticity, wrinkling, sagging, and yellowness seem to be caused by additional extrinsic ageing. PMID:25767806

  7. Characterizing Facial Skin Ageing in Humans: Disentangling Extrinsic from Intrinsic Biological Phenomena

    Directory of Open Access Journals (Sweden)

    Carina Trojahn

    2015-01-01

    Full Text Available Facial skin ageing is caused by intrinsic and extrinsic mechanisms. Intrinsic ageing is highly related to chronological age. Age related skin changes can be measured using clinical and biophysical methods. The aim of this study was to evaluate whether and how clinical characteristics and biophysical parameters are associated with each other with and without adjustment for chronological age. Twenty-four female subjects of three age groups were enrolled. Clinical assessments (global facial skin ageing, wrinkling, and sagging, and biophysical measurements (roughness, colour, skin elasticity, and barrier function were conducted at both upper cheeks. Pearson’s correlations and linear regression models adjusted for age were calculated. Most of the measured parameters were correlated with chronological age (e.g., association with wrinkle score, r=0.901 and with each other (e.g., residual skin deformation and wrinkle score, r=0.606. After statistical adjustment for age, only few associations remained (e.g., mean roughness (Rz and luminance (L*,  β=-0.507, R2=0.377. Chronological age as surrogate marker for intrinsic ageing has the most important influence on most facial skin ageing signs. Changes in skin elasticity, wrinkling, sagging, and yellowness seem to be caused by additional extrinsic ageing.

  8. Ohmic contacts to semiconducting diamond

    Science.gov (United States)

    Zeidler, James R.; Taylor, M. J.; Zeisse, Carl R.; Hewett, C. A.; Delahoussaye, Paul R.

    1990-10-01

    Work was carried out to improve the electron beam evaporation system in order to achieve better deposited films. The basic system is an ion pumped vacuum chamber, with a three-hearth, single-gun e-beam evaporator. Four improvements were made to the system. The system was thoroughly cleaned and new ion pump elements, an e-gun beam adjust unit, and a more accurate crystal monitor were installed. The system now has a base pressure of 3 X 10(exp -9) Torr, and can easily deposit high-melting-temperature metals such as Ta with an accurately controlled thickness. Improved shadow masks were also fabricated for better alignment and control of corner contacts for electrical transport measurements. Appendices include: A Thermally Activated Solid State Reaction Process for Fabricating Ohmic Contacts to Semiconducting Diamond; Tantalum Ohmic Contacts to Diamond by a Solid State Reaction Process; Metallization of Semiconducting Diamond: Mo, Mo/Au, and Mo/Ni/Au; Specific Contact Resistance Measurements of Ohmic Contracts to Diamond; and Electrical Activation of Boron Implanted into Diamond.

  9. Non-contact measurements of creep properties of niobium at 1985 °C

    Science.gov (United States)

    Lee, J.; Wall, J. J.; Rogers, J. R.; Rathz, T. J.; Choo, H.; Liaw, P. K.; Hyers, R. W.

    2015-01-01

    The stress exponent in the power-law creep of niobium at 1985 °C was measured by a non-contact technique using an electrostatic levitation facility at NASA MSFC. This method employs a distribution of stress to allow the stress exponent to be determined from each test, rather than from the curve fit through measurements from multiple samples that is required by conventional methods. The sample is deformed by the centripetal acceleration from the rapid rotation, and the deformed shapes are analyzed to determine the strain. Based on a mathematical proof, which revealed that the stress exponent was determined uniquely by the ratio of the polar to equatorial strains, a series of finite-element analyses with the models of different stress exponents were also performed to determine the stress exponent corresponding to the measured strain ratio. The stress exponent from the ESL experiment showed a good agreement with those from the literature and the conventional creep test.

  10. A practical method for measuring the ion exchange capacity decrease of hydroxide exchange membranes during intrinsic degradation

    Science.gov (United States)

    Kreuer, Klaus-Dieter; Jannasch, Patric

    2018-01-01

    In this work we present a practical thermogravimetric method for quantifying the IEC (ion exchange capacity) decrease of hydroxide exchange membranes (HEMs) during intrinsic degradation mainly occurring through nucleophilic attack of the anion exchanging group by hydroxide ions. The method involves measuring weight changes under controlled temperature and relative humidity. These conditions are close to these in a fuel cell, i.e. the measured degradation rate includes all effects originating from the polymeric structure, the consumption of hydroxide ions and the release of water. In particular, this approach involves no added solvents or base, thereby avoiding inaccuracies that may arise in other methods due to the presence of solvents (other than water) or co-ions (such as Na+ or K+). We demonstrate the method by characterizing the decomposition of membranes consisting of poly(2,6-dimethyl-1,4-phenylene oxide) functionalized with trimethyl-pentyl-ammonium side chains. The decomposition rate is found to depend on temperature, relative humidity RH (controlling the hydration number λ) and the total water content (controlled by the actual IEC and RH).

  11. Neural Correlates for Intrinsic Motivational Deficits of Schizophrenia; Implications for Therapeutics of Cognitive Impairment

    Science.gov (United States)

    Takeda, Kazuyoshi; Sumiyoshi, Tomiki; Matsumoto, Madoka; Murayama, Kou; Ikezawa, Satoru; Matsumoto, Kenji; Nakagome, Kazuyuki

    2018-01-01

    The ultimate goal of the treatment of schizophrenia is recovery, a notion related to improvement of cognitive and social functioning. Cognitive remediation therapies (CRT), one of the most effective cognition enhancing methods, have been shown to moderately improve social functioning. For this purpose, intrinsic motivation, related to internal values such as interest and enjoyment, has been shown to play a key role. Although the impairment of intrinsic motivation is one of the characteristics of schizophrenia, its neural mechanisms remain unclear. This is related to the lack of feasible measures of intrinsic motivation, and its response to treatment. According to the self-determination theory (SDT), not only intrinsic motivation, but extrinsic motivation has been reported to enhance learning and memory in healthy subjects to some extent. This finding suggests the contribution of different types of motivation to potentiate the ability of the CRT to treat cognitive impairment of schizophrenia. In this paper, we provide a review of psychological characteristics, assessment methods, and neural correlates of intrinsic motivation in healthy subjects and patients with schizophrenia. Particularly, we focus on neuroimaging studies of intrinsic motivation, including our own. These considerations are relevant to enhancement of functional outcomes of schizophrenia. PMID:29922185

  12. Neural Correlates for Intrinsic Motivational Deficits of Schizophrenia; Implications for Therapeutics of Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Takeda

    2018-06-01

    Full Text Available The ultimate goal of the treatment of schizophrenia is recovery, a notion related to improvement of cognitive and social functioning. Cognitive remediation therapies (CRT, one of the most effective cognition enhancing methods, have been shown to moderately improve social functioning. For this purpose, intrinsic motivation, related to internal values such as interest and enjoyment, has been shown to play a key role. Although the impairment of intrinsic motivation is one of the characteristics of schizophrenia, its neural mechanisms remain unclear. This is related to the lack of feasible measures of intrinsic motivation, and its response to treatment. According to the self-determination theory (SDT, not only intrinsic motivation, but extrinsic motivation has been reported to enhance learning and memory in healthy subjects to some extent. This finding suggests the contribution of different types of motivation to potentiate the ability of the CRT to treat cognitive impairment of schizophrenia. In this paper, we provide a review of psychological characteristics, assessment methods, and neural correlates of intrinsic motivation in healthy subjects and patients with schizophrenia. Particularly, we focus on neuroimaging studies of intrinsic motivation, including our own. These considerations are relevant to enhancement of functional outcomes of schizophrenia.

  13. Toward High Carrier Mobility and Low Contact Resistance:Laser Cleaning of PMMA Residues on Graphene Surfaces

    Institute of Scientific and Technical Information of China (English)

    Yuehui Jia; Xin Gong; Pei Peng; Zidong Wang; Zhongzheng Tian; Liming Ren; Yunyi Fu; Han Zhang

    2016-01-01

    Poly(methyl methacrylate)(PMMA) is widely used for graphene transfer and device fabrication.However,it inevitably leaves a thin layer of polymer residues after acetone rinsing and leads to dramatic degradation of device performance.How to eliminate contamination and restore clean surfaces of graphene is still highly demanded.In this paper,we present a reliable and position-controllable method to remove the polymer residues on graphene films by laser exposure.Under proper laser conditions,PMMA residues can be substantially reduced without introducing defects to the underlying graphene.Furthermore,by applying this laser cleaning technique to the channel and contacts of graphene fieldeffect transistors(GFETs),higher carrier mobility as well as lower contact resistance can be realized.This work opens a way for probing intrinsic properties of contaminant-free graphene and fabricating high-performance GFETs with both clean channel and intimate graphene/metal contact.

  14. Intrinsic gray-matter connectivity of the brain in adults with autism spectrum disorder.

    Science.gov (United States)

    Ecker, Christine; Ronan, Lisa; Feng, Yue; Daly, Eileen; Murphy, Clodagh; Ginestet, Cedric E; Brammer, Michael; Fletcher, Paul C; Bullmore, Edward T; Suckling, John; Baron-Cohen, Simon; Williams, Steve; Loth, Eva; Murphy, Declan G M

    2013-08-06

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions that are accompanied by atypical brain connectivity. So far, in vivo evidence for atypical structural brain connectivity in ASD has mainly been based on neuroimaging studies of cortical white matter. However, genetic studies suggest that abnormal connectivity in ASD may also affect neural connections within the cortical gray matter. Such intrinsic gray-matter connections are inherently more difficult to describe in vivo but may be inferred from a variety of surface-based geometric features that can be measured using magnetic resonance imaging. Here, we present a neuroimaging study that examines the intrinsic cortico-cortical connectivity of the brain in ASD using measures of "cortical separation distances" to assess the global and local intrinsic "wiring costs" of the cortex (i.e., estimated length of horizontal connections required to wire the cortex within the cortical sheet). In a sample of 68 adults with ASD and matched controls, we observed significantly reduced intrinsic wiring costs of cortex in ASD, both globally and locally. Differences in global and local wiring cost were predominantly observed in fronto-temporal regions and also significantly predicted the severity of social and repetitive symptoms (respectively). Our study confirms that atypical cortico-cortical "connectivity" in ASD is not restricted to the development of white-matter connections but may also affect the intrinsic gray-matter architecture (and connectivity) within the cortical sheet. Thus, the atypical connectivity of the brain in ASD is complex, affecting both gray and white matter, and forms part of the core neural substrates underlying autistic symptoms.

  15. Extrinsic versus intrinsic factors in the decline and extinction of Australian marsupials.

    Science.gov (United States)

    Fisher, Diana O; Blomberg, Simon P; Owens, Ian P F

    2003-09-07

    Recent attempts to explain the susceptibility of vertebrates to declines worldwide have largely focused on intrinsic factors such as body size, reproductive potential, ecological specialization, geographical range and phylogenetic longevity. Here, we use a database of 145 Australian marsupial species to test the effects of both intrinsic and extrinsic factors in a multivariate comparative approach. We model five intrinsic (body size, habitat specialization, diet, reproductive rate and range size) and four extrinsic (climate and range overlap with introduced foxes, sheep and rabbits) factors. We use quantitative measures of geographical range contraction as indices of decline. We also develop a new modelling approach of phylogenetically independent contrasts combined with imputation of missing values to deal simultaneously with phylogenetic structuring and missing data. One extrinsic variable-geographical range overlap with sheep-was the only consistent predictor of declines. Habitat specialization was independently but less consistently associated with declines. This suggests that extrinsic factors largely determine interspecific variation in extinction risk among Australian marsupials, and that the intrinsic factors that are consistently associated with extinction risk in other vertebrates are less important in this group. We conclude that recent anthropogenic changes have been profound enough to affect species on a continent-wide scale, regardless of their intrinsic biology.

  16. Crowding out intrinsic motivation in the public sector

    OpenAIRE

    Georgellis, Y; Iossa, E; Tabvuma, V

    2011-01-01

    Employing intrinsically motivated individuals has been proposed as a means of improving public sector performance. In this article, we investigate whether intrinsic motivation affects the sorting of employees between the private and the public sectors, paying particular attention to whether extrinsic rewards crowd out intrinsic motivation. Using British longitudinal data, we find that individuals are attracted to the public sector by the intrinsic rather than the extrinsic rewards that the se...

  17. Intrinsic motivation and learning in a schizophrenia spectrum sample.

    Science.gov (United States)

    Choi, Jimmy; Medalia, Alice

    2010-05-01

    A motivation is a telling hallmark of negative symptomatology in schizophrenia, and it impacts nearly every facet of behavior, including inclination to attempt the difficult cognitive tasks involved in cognitive remediation therapy. Experiences of external reward, reinforcement, and hedonic anticipatory enjoyment are diminished in psychosis, so therapeutics which instead target intrinsic motivation for cognitive tasks may enhance task engagement, and subsequently, remediation outcome. We examined whether outpatients could attain benefits from an intrinsically motivating instructional approach which (a) presents learning materials in a meaningful game-like context, (b) personalizes elements of the learning materials into themes of high interest value, and (c) offers choices so patients can increase their control over the learning process. We directly compared one learning method that incorporated the motivational paradigm into an arithmetic learning program against another method that carefully manipulated out the motivational variables in the same learning program. Fifty-seven subjects with schizophrenia or schizoaffective disorder were randomly assigned to one of the two learning programs for 10 thirty-minute sessions while an intent-to-treat convenience subsample (n=15) was used to account for practice effect. Outcome measures were arithmetic learning, attention, motivation, self competency, and symptom severity. Results showed the motivational group (a) acquired more arithmetic skill, (b) possessed greater intrinsic motivation for the task, (c) reported greater feelings of self competency post-treatment, and (d) demonstrated better post-test attention. Interestingly, baseline perception of self competency was a significant predictor of post-test arithmetic scores. Results demonstrated that incorporating intrinsically motivating instructional techniques into a difficult cognitive task promoted greater learning of the material, higher levels of intrinsic

  18. Determination of Retardation Effects in the High Tc Cuprates from Sharvin Contact Measurements

    International Nuclear Information System (INIS)

    Deutscher, G.

    1995-01-01

    It is well known that retardation effects are essential to allow the attractive part of the electron-electron interaction (for instance, phonon mediated) to overcome the Coulomb repulsion. In new superconductors such as the cuprates for which the interaction is a priori unknown, it is therefore essential to determine the retarded and non retarded parts of the interaction. We show how this can be achieved by an analysis of Sharvin contact measurements between a noble metal tip and a cuprate. It turns out that both the retarded and non retarded parts are large, the former being however larger than the later

  19. Iron-59 absorption from soy hulls: intrinsic vs extrinsic labeling

    International Nuclear Information System (INIS)

    Lykken, G.I.; Mahalko, J.R.; Nielsen, E.J.; Dintzis, F.R.

    1986-01-01

    As part of an evaluation of the validity of the extrinsic labeling technique for measuring iron absorption, absorption from soy hulls extrinsically labeled ( 59 Fe added to bread dough) was compared with that from soy hulls intrinsically labeled ( 59 Fe incorporated into the soy plant during growth). Century soybeans were grown in a greenhouse. After pods had formed and were filling, each plant was stem injected twice, at 3 day intervals, with 22 μCi 59 Fe as FeCl 2 in 25 μl of 0.5 M HCl solution. After the plants had senesced, the soybeans were harvested, dried, shelled and the hulls removed. Standard meals containing 3.5 mg Fe/meal and up to 0.06 μCi 59 Fe in a soy hull bun were fed on 2 consecutive days to free-living volunteers in a crossover design. Absorption of 59 Fe was greater from intrinsically labeled soy hulls than from extrinsically labeled soy hulls, 20 +/- 20% vs 15 +/- 11% (n=14, p > 0.05 by paired t-test). Apparent absorption ranged from 1.3% to 77% from intrinsically labeled soy hulls and .5% to 29% from extrinsically labeled soy hulls with the highest absorption occurring in persons with low serum ferritin (S.F. < 8 ng/ml). These findings provide additional evidence that the extrinsic labeling method is a valid measure of iron bioavailability to humans

  20. The effect of metallization contact resistance on the measurement of the field effect mobility of long-channel unannealed amorphous In–Zn–O thin film transistors

    International Nuclear Information System (INIS)

    Lee, Sunghwan; Park, Hongsik; Paine, David C.

    2012-01-01

    The effect of contact resistance on the measurement of the field effect mobility of compositionally homogeneous channel indium zinc oxide (IZO)/IZO metallization thin film transistors (TFTs) is reported. The TFTs studied in this work operate in depletion mode as n-channel field effect devices with a field effect mobility calculated in the linear regime (μ FE ) of 20 ± 1.9 cm 2 /Vs and similar of 18 ± 1.3 cm 2 /Vs when calculated in the saturation regime (μ FE sat ). These values, however, significantly underestimate the channel mobility since a large part of the applied drain voltage is dropped across the source/drain contact interface. The transmission line method was employed to characterize the contact resistance and it was found that the conducting-IZO/semiconducting-IZO channel contact is highly resistive (specific contact resistance, ρ C > 100 Ωcm 2 ) and, further, this contact resistance is modulated with applied gate voltage. Accounting for the contact resistance (which is large and modulated by gate voltage), the corrected μ FE is shown to be 39 ± 2.6 cm 2 /Vs which is consistent with Hall mobility measurements of high carrier density IZO.

  1. 3D Blade Vibration Measurements on an 80 m Diameter Wind Turbine by Using Non-contact Remote Measurement Systems

    Science.gov (United States)

    Ozbek, Muammer; Rixen, Daniel J.

    Non-contact optical measurement systems photogrammetry and laser interferometry are introduced as cost efficient alternatives to the conventional wind turbine/farm monitoring systems that are currently in use. The proposed techniques are proven to provide an accurate measurement of the dynamic behavior of a 2.5 MW—80 m diameter—wind turbine. Several measurements are taken on the test turbine by using 4 CCD cameras and 1 laser vibrometer and the response of the turbine is monitored from a distance of 220 m. The results of the infield tests and the corresponding analyses show that photogrammetry (also can be called as videogrammetry or computer vision technique) enable the 3D deformations of the rotor to be measured at 33 different points simultaneously with an average accuracy of ±25 mm, while the turbine is rotating. Several important turbine modes can also be extracted from the recorded data. Similarly, laser interferometry (used for the parked turbine only) provides very valuable information on the dynamic properties of the turbine structure. Twelve different turbine modes can be identified from the obtained response data.

  2. Copper-65-absorption by men fed intrinsically and extrinsically labeled whole wheat bread

    International Nuclear Information System (INIS)

    Johnson, P.E.; Lykken, G.I.

    1988-01-01

    Six men were fed a diet composed of conventional foods with all bread as whole wheat bread. Intrinsically labeled 65 Cu bread (containing 6.5 ppm Cu and 48 atom % 65 Cu) was substituted for unlabeled bread for 3 days, and stools were collected for 24 days. Extrinsically labeled bread was then substituted for 3 days and another 24-day stool collection made. 65 Cu excretion was measured by mass spectrometry. Mean Cu intake was 1.10 mg of Cu/day. Average Cu balance was /minus/0.06 /+-/ 0.08 mg/day. Average absorption of the intrinsic copper was 72.2 /+-/ 9.3% and of extrinsic Cu 64.2 /+-/ 5.8%. The ratio of extrinsic to intrinsic absorption was 0.906 /+-/ 0.164. Absorption of intrinsic and extrinsic tracers did not differ significantly (p > 0.05) by a paired t-test, and the ratio (E/I) was not significantly different from 1. Use of extrinsic Cu tracers to assess Cu absorption is supported by these results

  3. CORRELATION OF INTRAOCULAR PRESSURE MEASUREMENTS WITH NON CONTACT TONOMETER AND GOLDMANN APPLANATION TONOMETRY

    Directory of Open Access Journals (Sweden)

    Leya Sara George

    2017-07-01

    Full Text Available BACKGROUND A complete ophthalmologic examination includes intraocular pressure (IOP measurement, which is a routine procedure and is important for diagnosis and monitoring of glaucoma. IOP measurement is most commonly done using Goldmann Applanation tonometer and Non-Contact tonometer. MATERIALS AND METHODS In this study IOP measurements of 500 eyes (glaucomatous and non-glaucomatous were performed using GAT and NCT on patients visiting the outpatient clinic of Department of Ophthalmology at Christian Medical College and Hospital, Ludhiana. This was a cross sectional and observational study. Comparison of IOP values was done in different IOP ranges. CCT was measured and analysis of its correlation with GAT and NCT was done. RESULTS Both methods of tonometry correlated significantly in patients with IOP <24 mm Hg. The mean IOP measured by NCT, was 16.06 ± 5.85 mm Hg and the mean IOP measurement by GAT was 16.61 ± 6.94 mm Hg. Intraocular pressure readings with GAT and NCT positively correlated with CCT. CONCLUSION NCT may be useful for screening in clinical settings but borderline high IOP readings should be confirmed with GAT. Our findings, also suggest that CCT is an essential variable to consider in interpreting IOP readings.

  4. Caustics and Caustic-Interference in Measurements of Contact Angle and Flow Visualization Through Laser Shadowgraphy

    Science.gov (United States)

    Chao, David F.; Zhang, Neng-Li

    2002-01-01

    As one of the basic elements of the shadowgraphy optical system, the image of the far field from the droplet implicates plentiful information on the droplet profile. An analysis of caustics by wave theory shows that a droplet with a cylindrically symmetric Gaussian-hill-type profile produces a circular directional caustic in far field, which arises from the singularities (inflection line on the surface). The sessile liquid droplets, which profiles are restricted by surface tension, usually have a 'protruding foot' where the surface inflects. Simple geometrical optics indicates that the circular caustic stemming from the surface inflection at the protruding-foot takes the shape of the outmost ring on the image of the far field. It is the diameter of the outmost ring that is used as one of the key parameters in the measurements of contact angle through the laser shadowgraphic method. Different surface characteristics of the droplets produce different type of caustics, and therefore, the shape of the caustics can be used to determine the surface property of the sessile droplets. The present paper describes the measurement method of contact angIe using the circular caustics and the estimation of the protruding-foot height through the caustic interference.

  5. Separating intrinsic alignment and galaxy-galaxy lensing

    International Nuclear Information System (INIS)

    Blazek, Jonathan; Seljak, Uroš; Mandelbaum, Rachel; Nakajima, Reiko

    2012-01-01

    The coherent physical alignment of galaxies is an important systematic for gravitational lensing studies as well as a probe of the physical mechanisms involved in galaxy formation and evolution. We develop a formalism for treating this intrinsic alignment (IA) in the context of galaxy-galaxy lensing and present an improved method for measuring IA contamination, which can arise when sources physically associated with the lens are placed behind the lens due to photometric redshift scatter. We apply the technique to recent Sloan Digital Sky Survey (SDSS) measurements of Luminous Red Galaxy lenses and typical ( ∼ L * ) source galaxies with photometric redshifts selected from the SDSS imaging data. Compared to previous measurements, this method has the advantage of being fully self-consistent in its treatment of the IA and lensing signals, solving for the two simultaneously. We find an IA signal consistent with zero, placing tight constraints on both the magnitude of the IA effect and its potential contamination to the lensing signal. While these constraints depend on source selection and redshift quality, the method can be applied to any measurement that uses photometric redshifts. We obtain a model-independent upper-limit of roughly 10% IA contamination for projected separations of r p ≈ 0.1–10 h −1 Mpc. With more stringent photo-z cuts and reasonable assumptions about the physics of intrinsic alignments, this upper limit is reduced to 1–2%. These limits are well below the statistical error of the current lensing measurements. Our results suggest that IA will not present intractable challenges to the next generation of galaxy-galaxy lensing experiments, and the methods presented here should continue to aid in our understanding of alignment processes and in the removal of IA from the lensing signal

  6. The Mast Cell, Contact, and Coagulation System Connection in Anaphylaxis

    Directory of Open Access Journals (Sweden)

    Mar Guilarte

    2017-07-01

    Full Text Available Anaphylaxis is the most severe form of allergic reaction, resulting from the effect of mediators and chemotactic substances released by activated cells. Mast cells and basophils are considered key players in IgE-mediated human anaphylaxis. Beyond IgE-mediated activation of mast cells/basophils, further mechanisms are involved in the occurrence of anaphylaxis. New insights into the potential relevance of pathways other than mast cell and basophil degranulation have been unraveled, such as the activation of the contact and the coagulation systems. Mast cell heparin released upon activation provides negatively charged surfaces for factor XII (FXII binding and auto-activation. Activated FXII, the initiating serine protease in both the contact and the intrinsic coagulation system, activates factor XI and prekallikrein, respectively. FXII-mediated bradykinin (BK formation has been proven in the human plasma of anaphylactic patients as well as in experimental models of anaphylaxis. Moreover, the severity of anaphylaxis is correlated with the increase in plasma heparin, BK formation and the intensity of contact system activation. FXII also activates plasminogen in the fibrinolysis system. Mast cell tryptase has been shown to participate in fibrinolysis through plasmin activation and by facilitating the degradation of fibrinogen. Some usual clinical manifestations in anaphylaxis, such as angioedema or hypotension, or other less common, such as metrorrhagia, may be explained by the direct effect of the activation of the coagulation and contact system driven by mast cell mediators.

  7. Intrinsic noise of a superheated droplet detector for neutron background measurements in massively shielded facilities

    Directory of Open Access Journals (Sweden)

    Fernandes Ana C.

    2017-01-01

    Full Text Available Superheated droplet detectors are a promising technique to the measurement of low-intensity neutron fields, as detectors can be rendered insensitive to minimum ionizing radiations. We report on the intrinsic neutron-induced signal of C2ClF5 devices fabricated by our group that originate from neutron- and alpha-emitting impurities in the detector constituents. The neutron background was calculated via Monte Carlo simulations using the MCNPX-PoliMi code in order to extract the recoil distributions following neutron interaction with the atoms of the superheated liquid. Various nuclear techniques were employed to characterise the detector materials with respect to source isotopes (238U, 232Th and 147Sm for the normalisation of the simulations and also light elements (B, Li having high (α, n neutron production yields. We derived a background signal of ~10-3 cts/day in a 1 liter detector of 1-3 wt.% C2ClF5, corresponding to a detection limit in the order of 10-8 n cm-2s-1. Direct measurements in a massively shielded underground facility for dark matter search have confirmed this result. With the borosilicate detector containers found to be the dominant background source in current detectors, possibilities for further noise reduction by ~2 orders of magnitude based on selected container materials are discussed.

  8. Intrinsic gettering of nickel impuriy deep levels in silicon substrate ...

    African Journals Online (AJOL)

    The intrinsic gettering of nickel impurity in p-type silicon substrate has been investigated. The density of electrically active nickel in intentionally contaminated silicon was determined before and after oxygen precipitation by means of resistivity measurements. These data, coupled with minority carrier lifetime and infrared ...

  9. Defining intrinsic vs. extrinsic atopic dermatitis.

    Science.gov (United States)

    Karimkhani, Chante; Silverberg, Jonathan I; Dellavalle, Robert P

    2015-06-16

    Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin condition characterized by eczematous lesions, i.e. ill-demarcated erythematous patches and plaques. AD is commonly associated with elevated immunoglobulin E (IgE) and atopic disorders, such as asthma, hay fever, and food allergies. Rackemann and Mallory were some of the first to distinguish between asthma based on the presence ("extrinsic") or absence ("intrinsic") of allergy. This distinction has subsequently been applied to AD based on the presence ("extrinsic") or absence ("intrinsic") of increased IgE and atopic disease. Although the distinction between intrinsic and extrinsic AD is widely used, it remains controversial.

  10. Intrinsic Tunneling in Phase Separated Manganites

    Science.gov (United States)

    Singh-Bhalla, G.; Selcuk, S.; Dhakal, T.; Biswas, A.; Hebard, A. F.

    2009-02-01

    We present evidence of direct electron tunneling across intrinsic insulating regions in submicrometer wide bridges of the phase-separated ferromagnet (La,Pr,Ca)MnO3. Upon cooling below the Curie temperature, a predominantly ferromagnetic supercooled state persists where tunneling across the intrinsic tunnel barriers (ITBs) results in metastable, temperature-independent, high-resistance plateaus over a large range of temperatures. Upon application of a magnetic field, our data reveal that the ITBs are extinguished resulting in sharp, colossal, low-field resistance drops. Our results compare well to theoretical predictions of magnetic domain walls coinciding with the intrinsic insulating phase.

  11. Occupational contact urticaria and protein contact dermatitis.

    Science.gov (United States)

    Doutre, Marie-Sylvie

    2005-01-01

    Irritant dermatitis and eczema are the most prevalent occupational skin diseases. Less common are immediate contact reactions such as contact urticaria and protein contact dermatitis. Occupational contact urticaria can be subdivided into two categories, immunological and non immunological. However, some agents can induce these two types of reactions. Contact urticaria to natural rubber latex is particularly frequent among health care personnel, but contact urticaria to a wide variety of other substances occurs in many other occupations. Among those at risk are cooks, bakers, butchers, restaurant personnel, veterinarians, hairdressers, florists, gardeners, and forestry workers. Protein contact dermatitis in some of these occupations is caused principally by proteins of animal or plant origin, especially among individuals with a history of atopic dermatitis. Diagnosis requires careful interrogation, clinical examination and skin tests (open tests and prick tests with immediate lecture) to identify a particular contact allergen.

  12. Intrinsic-extrinsic factors in sport motivation.

    Science.gov (United States)

    Pedersen, Darhl M

    2002-10-01

    Participants were 83 students (36 men and 47 women). 10 intrinsic-extrinsic factors involved in sport motivation were obtained. The factors were generated from items obtained from the participants rather than items from the experimenter. This was done to avoid the possible influence of preconceptions on the part of the experimenter regarding what the final dimensions may be. Obtained motivational factors were Social Reinforcement, Fringe Benefits, Fame and Fortune, External Forces, Proving Oneself, Social Benefits, Mental Enrichment, Expression of Self, Sense of Accomplishment, and Self-enhancement. Each factor was referred to an intrinsic-extrinsic dimension to describe its relative position on that dimension. The order of the factors as listed indicates increasing intrinsic motivation. i.e., the first four factors were rated in the extrinsic range, whereas the remaining six were rated to be in the intrinsic range. Next, the participants rated the extent to which each of the various factors was involved in their decision to participate in sport activities. The pattern of use of the motivational factors was the same for both sexes except that men indicated greater use of the Fringe Benefits factor. Overall, the more intrinsic a sport motivation factor was rated, the more likely it was to be rated as a factor in actual sport participation.

  13. Charge Saturation and Intrinsic Doping in Electrolyte-Gated Organic Semiconductors.

    Science.gov (United States)

    Atallah, Timothy L; Gustafsson, Martin V; Schmidt, Elliot; Frisbie, C Daniel; Zhu, X-Y

    2015-12-03

    Electrolyte gating enables low voltage operation of organic thin film transistors, but little is known about the nature of the electrolyte/organic interface. Here we apply charge-modulation Fourier transform infrared spectroscopy, in conjunction with electrical measurements, on a model electrolyte gated organic semiconductor interface: single crystal rubrene/ion-gel. We provide spectroscopic signature for free-hole like carriers in the organic semiconductor and unambiguously show the presence of a high density of intrinsic doping of the free holes upon formation of the rubrene/ion-gel interface, without gate bias (Vg = 0 V). We explain this intrinsic doping as resulting from a thermodynamic driving force for the stabilization of free holes in the organic semiconductor by anions in the ion-gel. Spectroscopy also reveals the saturation of free-hole like carrier density at the rubrene/ion-gel interface at Vg < -0.5 V, which is commensurate with the negative transconductance seen in transistor measurements.

  14. Anomalous intrinsic viscosity of octadecylamine-functionalised carbon nanotubes in suspension.

    Science.gov (United States)

    Donovan, K J; Scott, K

    2013-06-28

    Single walled carbon nanotubes, SWCNTs, are used as a model cylinder of nanoscopic dimensions for testing rheological theories of how addition of cylindrical particles affects the viscosity of a suspension of such particles. Using the rate of growth of the accompanying induced linear dichroism following application of an applied electric field, the dynamics of carbon nanotube alignment is studied in suspensions of octadecylamine functionalised single walled carbon nanotubes, ODA-SWCNTs, in 1,2 dichloroethane. From such measurements the viscosity of the suspension is measured as the concentration of the suspension is varied. While working within the dilute limit the viscosity is found to increase linearly with concentration and the intrinsic viscosity of the suspension is found to be 8000. This anomalously high intrinsic viscosity is compared with the predictions of various models for a rigid cylinder and found to be incompatible with any of the current models. Some suggestions are made as to the way this ODA-SWCNT result may be eventually accommodated within other models.

  15. Dose estimation and radiation control measures for individuals having close contact with patients administered in vivo nuclear medicine

    International Nuclear Information System (INIS)

    Konishi, E.; Abe, K.; Kusama, T.

    1993-01-01

    Patients who have been administered radiopharmaceuticals become a source of exposure to a non-occupational individual helping in support and comfort of these patients. We measured external dose rates at several distances from 84 adult patients administered radiopharmaceuticals, and urinary excretion of radioactivity in their patients. And we estimated the maximal dose for persons having close contact with patients administered radiopharmaceuticals from the combination of these measurement data and scenarios of contact with patients. On the basis of the estimated values, we proposed the following dose constraint for care givers. (1) The dose constraint for a non-occupational care givers to an adult nuclear medicine patient should in no case exceed 300 μSv per patient per examination of any kind. (2) The dose constraint in ordinary examinations employing a radionuclide should not be greater than 15 μSv per patient per examination. (3 tabs.)

  16. Intrinsic motivation towards sports in Singaporean students: the role of sport ability beliefs.

    Science.gov (United States)

    Wang, C K John; Biddle, Stuart J H

    2003-09-01

    This study investigated determinants of active lifestyles in Singaporean university students. Using confirmatory factor analysis, a measure of lay beliefs concerning athletic ability was confirmed. Other results confirmed hypotheses that beliefs reflecting that athletic ability can be developed over time (incremental beliefs) predict an achievement task (self-referenced) orientation, while beliefs reflecting that athletic ability is relatively stable (entity beliefs) predict an ego (other-person, comparative) orientation. Goal orientations directly affect perceived competence which, in turn, influence intrinsic motivation to be physically active. A task orientation had a direct link to intrinsic motivation. Results suggest that intrinsic motivation towards sport and physical activity might be enhanced through interventions that focus on self-referenced and self-improvement notions of ability as well as perceived competence.

  17. PREFACE: Non-contact AFM Non-contact AFM

    Science.gov (United States)

    Giessibl, Franz J.; Morita, Seizo

    2012-02-01

    This special issue is focussed on high resolution non-contact atomic force microscopy (AFM). Non-contact atomic force microscopy was established approximately 15 years ago as a tool to image conducting and insulating surfaces with atomic resolution. Since 1998, an annual international conference has taken place, and although the proceedings of these conferences are a useful source of information, several key developments warrant devoting a special issue to this subject. In the theoretic field, the possibility of supplementing established techniques such as scanning tunneling microscopy (STM) and Kelvin probe microscopy with atomically resolved force micrsoscopy poses many challenges in the calculation of contrast and contrast reversal. The surface science of insulators, self-assembled monolayers and adsorbates on insulators is a fruitful field for the application of non-contact AFM: several articles in this issue are devoted to these subjects. Atomic imaging and manipulation have been pioneered using STM, but because AFM allows the measurement of forces, AFM has had a profound impact in this field as well. Three-dimensional force spectroscopy has allowed many important insights into surface science. In this issue a combined 3D tunneling and force microscopy is introduced. Non-contact AFM typically uses frequency modulation to measure force gradients and was initially used mainly in a vacuum. As can be seen in this issue, frequency modulation is now also used in ambient conditions, allowing better spatial and force resolution. We thank all of the contributors for their time and efforts in making this special issue possible. We are also very grateful to the staff of IOP Publishing for handling the administrative aspects and for steering the refereeing process. Non-contact AFM contents Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model Pavel Jelínek, Martin Ondrácek and Fernando Flores Theoretical simulation of

  18. Visual method for detecting critical damage in railway contact strips

    Science.gov (United States)

    Judek, S.; Skibicki, J.

    2018-05-01

    Ensuring an uninterrupted supply of power in the electric traction is vital for the safety of this important transport system. For this purpose, monitoring and diagnostics of the technical condition of the vehicle’s power supply elements are becoming increasingly common. This paper presents a new visual method for detecting contact strip damage, based on measurement and analysis of the movement of the overhead contact line (OCL) wire. A measurement system configuration with a 2D camera was proposed. The experimental method has shown that contact strips damage can be detected by transverse displacement signal analysis. It has been proven that the velocity signal numerically established on that basis has a comparable level in the case of identical damage, regardless of its location on the surface of the contact strip. The proposed method belongs to the group of contact-less measurements, so it does not require interference with the structure of the catenary network nor the mounting of sensors in its vicinity. Measurement of displacements of the contact wire in 2D space makes it possible to combine the functions of existing diagnostic stands assessing the correctness of the mean contact force control adjustment of the current collector with the elements of the contact strip diagnostics, which involves detecting their damage which may result in overhead contact line rupture.

  19. Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces

    KAUST Repository

    Domingues, Eddy

    2017-06-05

    Omniphobic surfaces, i.e. which repel all known liquids, have proven of value in applications ranging from membrane distillation to underwater drag reduction. A limitation of currently employed omniphobic surfaces is that they rely on perfluorinated coatings, increasing cost and environmental impact, and preventing applications in harsh environments. There is, thus, a keen interest in rendering conventional materials, such as plastics, omniphobic by micro/nano-texturing rather than via chemical make-up, with notable success having been achieved for silica surfaces with doubly reentrant micropillars. However, we found a critical limitation of microtextures comprising of pillars that they undergo catastrophic wetting transitions (apparent contact angles, θr → 0° from θr > 90°) in the presence of localized physical damages/defects or on immersion in wetting liquids. In response, a doubly reentrant cavity microtexture is introduced, which can prevent catastrophic wetting transitions in the presence of localized structural damage/defects or on immersion in wetting liquids. Remarkably, our silica surfaces with doubly reentrant cavities could exhibited apparent contact angles, θr ≈ 135° for mineral oil, where the intrinsic contact angle, θo ≈ 20°. Further, when immersed in mineral oil or water, doubly reentrant microtextures in silica (θo ≈ 40° for water) were not penetrated even after several days of investigation. Thus, microtextures comprising of doubly reentrant cavities might enable applications of conventional materials without chemical modifications, especially in scenarios that are prone to localized damages or immersion in wetting liquids, e.g. hydrodynamic drag reduction and membrane distillation.

  20. Automated setpoint adjustment for biological contact mode atomic force microscopy imaging

    International Nuclear Information System (INIS)

    Casuso, Ignacio; Scheuring, Simon

    2010-01-01

    Contact mode atomic force microscopy (AFM) is the most frequently used AFM imaging mode in biology. It is about 5-10 times faster than oscillating mode imaging (in conventional AFM setups), and provides topographs of biological samples with sub-molecular resolution and at a high signal-to-noise ratio. Unfortunately, contact mode imaging is sensitive to the applied force and intrinsic force drift: inappropriate force applied by the AFM tip damages the soft biological samples. We present a methodology that automatically searches for and maintains high resolution imaging forces. We found that the vertical and lateral vibrations of the probe during scanning are valuable signals for the characterization of the actual applied force by the tip. This allows automated adjustment and correction of the setpoint force during an experiment. A system that permanently performs this methodology steered the AFM towards high resolution imaging forces and imaged purple membrane at molecular resolution and live cells at high signal-to-noise ratio for hours without an operator.

  1. Math grades and intrinsic motivation in elementary school: A longitudinal investigation of their association.

    Science.gov (United States)

    Weidinger, Anne F; Steinmayr, Ricarda; Spinath, Birgit

    2017-06-01

    It is often argued that the negative development of intrinsic motivation in elementary school strongly depends on the presence of school grades because grades represent extrinsic consequences and achievement feedback that are supposed to influence intrinsically motivated behaviour. However, only a few studies have tested this hypothesis. Therefore, we investigated the role of school grades in inter- and intra-individual changes in elementary school students' intrinsic motivation from when grades were first introduced until the end of elementary school, when students in Germany receive recommendations for a secondary school type on the basis of their prior performance in school. A sample of 542 German elementary school students (t 1 : M = 7.95 years, SD = 0.57) was followed for 2 years from the end of Grade 2 to the end of Grade 4. At seven measurement occasions, children's math grades and their domain-specific intrinsic motivation were assessed. Latent growth curve models showed differences in trajectories of intrinsic motivation across students rather than uniform development. Moreover, students' trajectories of grades and intrinsic motivation were only weakly associated. A latent cross-lagged model revealed that reciprocal effects between the two constructs over time were small at best. Contrary to theoretical considerations, our results indicate that negative performance feedback in the form of grades does not necessarily lead to a decrease in intrinsic motivation. This calls into question the common opinion that a perception of being less competent, as reflected by poor grades, is responsible for weakening students' intrinsic motivation. © 2017 The British Psychological Society.

  2. Airborne non-contact and contact broadband ultrasounds for frequency attenuation profile estimation of cementitious materials.

    Science.gov (United States)

    Gosálbez, J; Wright, W M D; Jiang, W; Carrión, A; Genovés, V; Bosch, I

    2018-08-01

    In this paper, the study of frequency-dependent ultrasonic attenuation in strongly heterogeneous cementitious materials is addressed. To accurately determine the attenuation over a wide frequency range, it is necessary to have suitable excitation techniques. We have analysed two kinds of ultrasound techniques: contact ultrasound and airborne non-contact ultrasound. The mathematical formulation for frequency-dependent attenuation has been established and it has been revealed that each technique may achieve similar results but requires specific different calibration processes. In particular, the airborne non-contact technique suffers high attenuation due to energy losses at the air-material interfaces. Thus, its bandwidth is limited to low frequencies but it does not require physical contact between transducer and specimen. In contrast, the classical contact technique can manage higher frequencies but the measurement depends on the pressure between the transducer and the specimen. Cement specimens have been tested with both techniques and frequency attenuation dependence has been estimated. Similar results were achieved at overlapping bandwidth and it has been demonstrated that the airborne non-contact ultrasound technique could be a viable alternative to the classical contact technique. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Type Ia Supernova Intrinsic Magnitude Dispersion and the Fitting of Cosmological Parameters

    Science.gov (United States)

    Kim, A. G.

    2011-02-01

    I present an analysis for fitting cosmological parameters from a Hubble diagram of a standard candle with unknown intrinsic magnitude dispersion. The dispersion is determined from the data, simultaneously with the cosmological parameters. This contrasts with the strategies used to date. The advantages of the presented analysis are that it is done in a single fit (it is not iterative), it provides a statistically founded and unbiased estimate of the intrinsic dispersion, and its cosmological-parameter uncertainties account for the intrinsic-dispersion uncertainty. Applied to Type Ia supernovae, my strategy provides a statistical measure to test for subtypes and assess the significance of any magnitude corrections applied to the calibrated candle. Parameter bias and differences between likelihood distributions produced by the presented and currently used fitters are negligibly small for existing and projected supernova data sets.

  4. Maximum toe flexor muscle strength and quantitative analysis of human plantar intrinsic and extrinsic muscles by a magnetic resonance imaging technique.

    Science.gov (United States)

    Kurihara, Toshiyuki; Yamauchi, Junichiro; Otsuka, Mitsuo; Tottori, Nobuaki; Hashimoto, Takeshi; Isaka, Tadao

    2014-01-01

    The aims of this study were to investigate the relationships between the maximum isometric toe flexor muscle strength (TFS) and cross-sectional area (CSA) of the plantar intrinsic and extrinsic muscles and to identify the major determinant of maximum TFS among CSA of the plantar intrinsic and extrinsic muscles. Twenty six young healthy participants (14 men, 12 women; age, 20.4 ± 1.6 years) volunteered for the study. TFS was measured by a specific designed dynamometer, and CSA of plantar intrinsic and extrinsic muscles were measured using magnetic resonance imaging (MRI). To measure TFS, seated participants optimally gripped the bar with their toes and exerted maximum force on the dynamometer. For each participant, the highest force produced among three trials was used for further analysis. To measure CSA, serial T1-weighted images were acquired. TFS was significantly correlated with CSA of the plantar intrinsic and extrinsic muscles. Stepwise multiple linear regression analyses identified that the major determinant of TFS was CSA of medial parts of plantar intrinsic muscles (flexor hallucis brevis, flexor digitorum brevis, quadratus plantae, lumbricals and abductor hallucis). There was no significant difference between men and women in TFS/CSA. CSA of the plantar intrinsic and extrinsic muscles is one of important factors for determining the maximum TFS in humans.

  5. Sub-Angstrom oscillation amplitude non-contact atomic force microscopy for lateral force gradient measurement

    International Nuclear Information System (INIS)

    Atabak, Mehrdad; Unverdi, Ozhan; Ozer, H. Ozguer; Oral, Ahmet

    2009-01-01

    We report the first results from novel sub-Angstrom oscillation amplitude non-contact atomic force microscopy developed for lateral force gradient measurements. Quantitative lateral force gradients between a tungsten tip and Si(1 1 1)-(7 x 7) surface can be measured using this microscope. Simultaneous lateral force gradient and scanning tunnelling microscope images of single and multi atomic steps are obtained. In our measurement, tunnel current is used as feedback. The lateral stiffness contrast has been observed to be 2.5 N/m at single atomic step, in contrast to 13 N/m at multi atomic step on Si(1 1 1) surface. We also carried out a series of lateral stiffness-distance spectroscopy. We observed lateral stiffness-distance curves exhibit sharp increase in the stiffness as the sample is approached towards the surface. We usually observed positive stiffness and sometimes going into slightly negative region.

  6. Contact-resonance atomic force microscopy for nanoscale elastic property measurements: Spectroscopy and imaging

    International Nuclear Information System (INIS)

    Stan, G.; Krylyuk, S.; Davydov, A.V.; Vaudin, M.D.; Bendersky, L.A.; Cook, R.F.

    2009-01-01

    Quantitative measurements of the elastic modulus of nanosize systems and nanostructured materials are provided with great accuracy and precision by contact-resonance atomic force microscopy (CR-AFM). As an example of measuring the elastic modulus of nanosize entities, we used the CR-AFM technique to measure the out-of-plane indentation modulus of tellurium nanowires. A size-dependence of the indentation modulus was observed for the investigated tellurium nanowires with diameters in the range 20-150 nm. Over this diameter range, the elastic modulus of the outer layers of the tellurium nanowires experienced significant enhancement due to a pronounced surface stiffening effect. Quantitative estimations for the elastic moduli of the outer and inner parts of tellurium nanowires of reduced diameter are made with a core-shell structure model. Besides localized elastic modulus measurements, we have also developed a unique CR-AFM imaging capability to map the elastic modulus over a micrometer-scale area. We used this CR-AFM capability to construct indentation modulus maps at the junction between two adjacent facets of a tellurium microcrystal. The clear contrast observed in the elastic moduli of the two facets indicates the different surface crystallography of these facets.

  7. Authentic Leadership Style and Academia’s Creativity in Higher Education Institutions: Intrinsic Motivation and Mood as Mediators

    Directory of Open Access Journals (Sweden)

    Ifzal AHMAD

    2015-10-01

    Full Text Available Using multisource data of 302 paired responses (supervisor-employee dyads, this study examined the effect of Authentic Leadership Style (ALS on academia’s creativity with mediating role of their intrinsic motivation and mood in higher education institutions (HEIs of Pakistan. Heads of departments (HoDs in HEIs were asked to report their leadership style and creativity of their academic staff, whereas academia rated their intrinsic motivation and mood at work. ALS was regressed with creativity, intrinsic motivation and mood of academia to measure the direct relationships, whereas mediations were tested using bootstrapping technique. A strong infl uence of ALS on academic staff’s creativity, their intrinsic motivation and mood were found. Additionally, a partial mediating role of intrinsic motivation and mood was found between ALS and creativity of academic staff.

  8. Experiences matter: Positive emotions facilitate intrinsic motivation

    OpenAIRE

    Løvoll, Helga Synnevåg; Røysamb, Espen; Vittersø, Joar

    2017-01-01

    This paper has two major aims. First, to investigate how positive emotions and intrinsic motivation affect each other over time. Second, to test the effect of positive emotions and intrinsic motivation on subsequent educational choices. Through two ordinary study semesters, 64 sport students in Norway reported on their intrinsic motivation for outdoor activities (twice) as well as positive emotions after two three-day outdoor events (four times). Next autumn, students study choice was collect...

  9. Experiences matter: Positive emotions facilitate intrinsic motivation

    OpenAIRE

    Løvoll, Helga Synnevåg; Røysamb, Espen; Vittersø, Joar

    2017-01-01

    https://doi.org/10.1080/23311908.2017.1340083 This paper has two major aims. First, to investigate how positive emotions and intrinsic motivation affect each other over time. Second, to test the effect of positive emotions and intrinsic motivation on subsequent educational choices. Through two ordinary study semesters, 64 sport students in Norway reported on their intrinsic motivation for outdoor activities (twice) as well as positive emotions after two three-day outdoor e...

  10. Intrinsic and extrinsic geometry of random surfaces

    International Nuclear Information System (INIS)

    Jonsson, T.

    1992-01-01

    We prove that the extrinsic Hausdorff dimension is always greater than or equal to the intrinsic Hausdorff dimension in models of triangulated random surfaces with action which is quadratic in the separation of vertices. We furthermore derive a few naive scaling relations which relate the intrinsic Hausdorff dimension to other critical exponents. These relations suggest that the intrinsic Hausdorff dimension is infinite if the susceptibility does not diverge at the critical point. (orig.)

  11. Magnetic order in graphite: Experimental evidence, intrinsic and extrinsic difficulties

    International Nuclear Information System (INIS)

    Esquinazi, P.; Barzola-Quiquia, J.; Spemann, D.; Rothermel, M.; Ohldag, H.; Garcia, N.; Setzer, A.; Butz, T.

    2010-01-01

    We discuss recently obtained data using different experimental methods including magnetoresistance measurements that indicate the existence of metal-free high-temperature magnetic order in graphite. Intrinsic as well as extrinsic difficulties to trigger magnetic order by irradiation of graphite are discussed in view of recently published theoretical work.

  12. Contact angle of unset elastomeric impression materials.

    Science.gov (United States)

    Menees, Timothy S; Radhakrishnan, Rashmi; Ramp, Lance C; Burgess, John O; Lawson, Nathaniel C

    2015-10-01

    Some elastomeric impression materials are hydrophobic, and it is often necessary to take definitive impressions of teeth coated with some saliva. New hydrophilic materials have been developed. The purpose of this in vitro study was to compare contact angles of water and saliva on 7 unset elastomeric impression materials at 5 time points from the start of mixing. Two traditional polyvinyl siloxane (PVS) (Aquasil, Take 1), 2 modified PVS (Imprint 4, Panasil), a polyether (Impregum), and 2 hybrid (Identium, EXA'lence) materials were compared. Each material was flattened to 2 mm and a 5 μL drop of distilled water or saliva was dropped on the surface at 25 seconds (t0) after the start of mix. Contact angle measurements were made with a digital microscope at initial contact (t0), t1=2 seconds, t2=5 seconds, t3=50% working time, and t4=95% working time. Data were analyzed with a generalized linear mixed model analysis, and individual 1-way ANOVA and Tukey HSD post hoc tests (α=.05). For water, materials grouped into 3 categories at all time-points: the modified PVS and one hybrid material (Identium) produced the lowest contact angles, the polyether material was intermediate, and the traditional PVS materials and the other hybrid (EXA'lence) produced the highest contact angles. For saliva, Identium, Impregum, and Imprint 4 were in the group with the lowest contact angle at most time points. Modified PVS materials and one of the hybrid materials are more hydrophilic than traditional PVS materials when measured with water. Saliva behaves differently than water in contact angle measurement on unset impression material and produces a lower contact angle on polyether based materials. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Intra-hemispheric intrinsic connectivity asymmetry and its relationships with handedness and language Lateralization.

    Science.gov (United States)

    Joliot, M; Tzourio-Mazoyer, N; Mazoyer, B

    2016-12-01

    Asymmetry in intra-hemispheric intrinsic connectivity, and its association with handedness and hemispheric dominance for language, were investigated in a sample of 290 healthy volunteers enriched in left-handers (52.7%). From the resting-state FMRI data of each participant, we derived an intra-hemispheric intrinsic connectivity asymmetry (HICA) matrix as the difference between the left and right intra-hemispheric matrices of intrinsic correlation computed for each pair of the AICHA atlas ROIs. We defined a similarity measure between the HICA matrices of two individuals as the correlation coefficient of their corresponding elements, and computed for each individual an index of intra-hemispheric intrinsic connectivity asymmetry as the average similarity measure of his HICA matrix to those of the other subjects of the sample (HICAs). Gaussian-mixture modeling of the age-corrected HICAs sample distribution revealed that two types of HICA patterns were present, one (Typical_HICA) including 92.4% of the participants while the other (Atypical_HICA) included only 7.6% of them, mostly left-handers. In addition, we investigated the relationship between asymmetry in intra-hemispheric intrinsic connectivity and language hemispheric dominance, including a potential effect of handedness on this relationship, thanks to an FMRI acquisition during language production from which an hemispheric functional lateralization index for language (HFLI) and a type of hemispheric dominance for language, namely leftward, ambilateral, or rightward, were derived for each individual. There was a significant association between the types of language hemispheric dominance and of intra-hemispheric intrinsic connectivity asymmetry, occurrence of Atypical_HICAs individuals being very high in the group of individuals rightward-lateralized for language (80%), reduced in the ambilateral group (19%) and rare in individuals leftward-lateralized for language (less than 3%). Quantitatively, we found a

  14. Intrinsic Motivation: An Overlooked Component for Student Success

    Science.gov (United States)

    Augustyniak, Robert A.; Ables, Adrienne Z.; Guilford, Philip; Lujan, Heidi L.; Cortright, Ronald N.; DiCarlo, Stephen E.

    2016-01-01

    Intrinsic motivation to learn involves engaging in learning opportunities because they are seen as enjoyable, interesting, or relevant to meeting one's core psychological needs. As a result, intrinsic motivation is associated with high levels of effort and task performance. Students with greater levels of intrinsic motivation demonstrate strong…

  15. The value of nature: Economic, intrinsic, or both?

    Science.gov (United States)

    There has been a long standing argument that ecosystems have intrinsic value and therefore there is no need to put a price tag on Mother Nature. The concept of intrinsic value reflects the perspective that nature has value in its own right, independent of human uses. Intrinsic va...

  16. Measurement and Analysis of the Temperature Gradient of Blackbody Cavities, for Use in Radiation Thermometry

    Science.gov (United States)

    De Lucas, Javier; Segovia, José Juan

    2018-05-01

    Blackbody cavities are the standard radiation sources widely used in the fields of radiometry and radiation thermometry. Its effective emissivity and uncertainty depend to a large extent on the temperature gradient. An experimental procedure based on the radiometric method for measuring the gradient is followed. Results are applied to particular blackbody configurations where gradients can be thermometrically estimated by contact thermometers and where the relationship between both basic methods can be established. The proposed procedure may be applied to commercial blackbodies if they are modified allowing secondary contact temperature measurement. In addition, the established systematic may be incorporated as part of the actions for quality assurance in routine calibrations of radiation thermometers, by using the secondary contact temperature measurement for detecting departures from the real radiometrically obtained gradient and the effect on the uncertainty. On the other hand, a theoretical model is proposed to evaluate the effect of temperature variations on effective emissivity and associated uncertainty. This model is based on a gradient sample chosen following plausible criteria. The model is consistent with the Monte Carlo method for calculating the uncertainty of effective emissivity and complements others published in the literature where uncertainty is calculated taking into account only geometrical variables and intrinsic emissivity. The mathematical model and experimental procedure are applied and validated using a commercial type three-zone furnace, with a blackbody cavity modified to enable a secondary contact temperature measurement, in the range between 400 °C and 1000 °C.

  17. Environmental applications for an intrinsic germanium well detector

    International Nuclear Information System (INIS)

    Stegnar, P.; Eldridge, J.S.; Teasley, N.A.; Oakes, T.W.

    1984-01-01

    The overall performance of an intrinsic germanium well detector for 125 I measurements was investigated in a program of environmental surveillance. Concentrations of 125 I and 131 I were determined in thyroids of road-killed deer showing the highest activities of 125 I in the animals from the near vicinity of Oak Ridge National Laboratory. This demonstrates the utility of road-killed deer as a bioindicator for radioiodine around nuclear facilities

  18. Deuterium NMR, induced and intrinsic cholesteric lyomesophases

    International Nuclear Information System (INIS)

    Alcantara, M.R.

    1982-01-01

    Induced and intrinsic cholesteric lyotropic mesophases were studied. Induced cholesteric lyomesophases based on potassium laurate (KL) system, with small amounts of cholesterol added, were studied by deuterium NMR and by polarizing microscopy. Order profiles obtained from deuterium NMR of KL perdenderated chains in both induced cholesteric and normal mesophases were compared. The intrinsic cholesteric lyotropic mesophases were based on the amphiphile potassium N-lauroyl serinate (KLNS) in the resolved levo form. The study of the type I intrinsic cholesteric mesophase was made by optical microscopy under polarized light and the type II intrinsic cholesteric lyomesophase was characterized by deuterium NMR. The new texture was explained by the use of the theory of disclinations developed for thermotropic liquid crystals, specially for cholesteric type. (M.J.C.) [pt

  19. Intrinsic bioremediation of landfills interim report

    International Nuclear Information System (INIS)

    Brigmon, R.L.; Fliermans, C.B.

    1997-01-01

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP)

  20. Intrinsic bioremediation of landfills interim report

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L. [Westinghouse Savannah River Company, Aiken, SC (United States); Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  1. Expressing intrinsic volumes as rotational integrals

    DEFF Research Database (Denmark)

    Auneau, Jeremy Michel; Jensen, Eva Bjørn Vedel

    2010-01-01

    A new rotational formula of Crofton type is derived for intrinsic volumes of a compact subset of positive reach. The formula provides a functional defined on the section of X with a j-dimensional linear subspace with rotational average equal to the intrinsic volumes of X. Simplified forms of the ...

  2. Non-contact temperature Raman measurement in YSZ and alumina ceramics

    Science.gov (United States)

    Thapa, Juddha; Chorpening, Benjamin T.; Buric, Michael P.

    2018-02-01

    Yttria-stabilized zirconia (YSZ: ZrO2 + Y2O3) and alumina (Al2O3) are widely used in high-temperature applications due to their high-temperature stability, low thermal conductivity, and chemical inertness. Alumina is used extensively in engineered ceramic applications such as furnace tubes and thermocouple protection tubes, while YSZ is commonly used in thermal barrier coatings on turbine blades. Because they are already often found in high temperature and combustion applications, these two substances have been compared as candidates for Raman thermometry in high-temperature energy-related applications. Both ceramics were used with as-received rough surfaces, i.e., without polishing or modification. This closely approximates surface conditions in practical high-temperature situations. A single-line argon ion laser at 488nm was used to excite the materials inside a cylindrical furnace while measuring Raman spectra with a fixed-grating spectrometer. The shift in the peak positions of the most intense A1g peak at 418cm-1 (room temperature position) of alumina ceramic and relatively more symmetric Eg peak at 470cm-1 (room temperature position) of YSZ were measured and reported along with a thermocouple-derived reference temperature up to about 1000°C. This study showed that alumina and YSZ ceramics can be used in high-temperature Raman thermometry with an accuracy of 4.54°C and 10.5°C average standard deviations respectively over the range of about 1000°C. We hope that this result will guide future researchers in selecting materials and utilizing Raman non-contact temperature measurements in harsh environments.

  3. Robust, accurate, and non-contacting vibration measurement systems: Summary of comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 1

    International Nuclear Information System (INIS)

    Goodenow, T.C.; Shipman, R.L.; Holland, H.M.

    1995-06-01

    Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits of the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies

  4. Nature Contacts: Employee Wellness in Healthcare.

    Science.gov (United States)

    Trau, Deborah; Keenan, Kimberly A; Goforth, Meggan; Large, Vernon

    2016-04-01

    This study was designed to ascertain the amount of outdoor, indoor, and indirect nature contact exposures hospital employees have in a workweek. Hospital employees have been found particularly vulnerable to work-related stress. Increasing the nature contact exposure for hospital employees can reduce perceived stress; stress-related health behaviors; and stress-related health outcomes from outdoor, indoor, and indirect exposures to nature. Staff on the fourth floor postsurgical unit of a large hospital (N = 42) were ask to participate in an employee questionnaire "nature contact questionnaire". This 16-item nature environment questionnaire measures the amount and types of nature contact exposures employees have during a workweek. Majority of employees reported few, if any, nature contact exposures, specifically in the area of outdoor nature contacts with limited indoor and indirect contacts. These results indicated that employees on the fourth floor postsurgical floor have limited ability to reduce stress through nature contact exposures which could impact their perceived levels of work stress and stress-related behaviors and health outcomes. Nature contact exposures are both a relatively easy and an inexpensive way to improve employee stress. These findings indicate limitations to employees' exposure to nature contacts. Healthcare environments would benefit from a concerted effort to provide increased outdoor, indoor, and indirect nature contact exposures for employees. © The Author(s) 2015.

  5. Quantized conductance in an atom-sized point contact

    DEFF Research Database (Denmark)

    Olesen, L.; Laegsgaard, E.; Stensgaard, I.

    1994-01-01

    We present direct measurements at room temperature of the conductance of a point contact between a scanning tunneling microscope tip and Ni, Cu, and Pt surfaces. As the contact is stretched the conductance jumps in units of 2e2/h. Atomistic simulations of the stretch of the contact combined...

  6. IOP measurement in silicone oil tamponade eyes by Corvis ST tonometer, Goldmann applanation tonometry and non-contact tonometry.

    Science.gov (United States)

    Zhang, Yang; Zheng, Lin; Bian, Ailing; Zhou, Qi

    2018-04-01

    To compare the postoperative intraocular pressure (IOP) of eyes following pars plana vitrectomy (PPV) combined with intravitreal silicone oil (SO) tamponade by Corneal Visualization Scheimpflug Technology (CST), Goldmann applanation tonometry (GAT) and non-contact tonometry (NCT). Thirty-eight participants who had undergone PPV combined with SO tamponade to treat vitreoretinal diseases were enrolled. Postoperative IOP measurements were obtained using CST, NCT and GAT. Inter-device agreement was assessed by Bland-Altman analysis. The correlation coefficient was used to describe the potential postoperative factors affecting the postoperative IOP differences between each device. Bland-Altman analysis revealed the bias between CST and GAT, between CST and NCT, and between GAT and NCT to be -0.2, 2.1 and 2.4 mmHg, respectively. CST and GAT correlated well with each other. NCT values were lower than those of GAT and CST (all p contact method for measuring postoperative IOP in SO tamponade eyes.

  7. Identifying the neural substrates of intrinsic motivation during task performance.

    Science.gov (United States)

    Lee, Woogul; Reeve, Johnmarshall

    2017-10-01

    Intrinsic motivation is the inherent tendency to seek out novelty and challenge, to explore and investigate, and to stretch and extend one's capacities. When people imagine performing intrinsically motivating tasks, they show heightened anterior insular cortex (AIC) activity. To fully explain the neural system of intrinsic motivation, however, requires assessing neural activity while people actually perform intrinsically motivating tasks (i.e., while answering curiosity-inducing questions or solving competence-enabling anagrams). Using event-related functional magnetic resonance imaging, we found that the neural system of intrinsic motivation involves not only AIC activity, but also striatum activity and, further, AIC-striatum functional interactions. These findings suggest that subjective feelings of intrinsic satisfaction (associated with AIC activations), reward processing (associated with striatum activations), and their interactions underlie the actual experience of intrinsic motivation. These neural findings are consistent with the conceptualization of intrinsic motivation as the pursuit and satisfaction of subjective feelings (interest and enjoyment) as intrinsic rewards.

  8. Measuring dynamic social contacts in a rehabilitation hospital: effect of wards, patient and staff characteristics.

    Science.gov (United States)

    Duval, Audrey; Obadia, Thomas; Martinet, Lucie; Boëlle, Pierre-Yves; Fleury, Eric; Guillemot, Didier; Opatowski, Lulla; Temime, Laura

    2018-01-26

    Understanding transmission routes of hospital-acquired infections (HAI) is key to improve their control. In this context, describing and analyzing dynamic inter-individual contact patterns in hospitals is essential. In this study, we used wearable sensors to detect Close Proximity Interactions (CPIs) among patients and hospital staff in a 200-bed long-term care facility over 4 months. First, the dynamic CPI data was described in terms of contact frequency and duration per individual status or activity and per ward. Second, we investigated the individual factors associated with high contact frequency or duration using generalized linear mixed-effect models to account for inter-ward heterogeneity. Hospital porters and physicians had the highest daily number of distinct contacts, making them more likely to disseminate HAI among individuals. Conversely, contact duration was highest between patients, with potential implications in terms of HAI acquisition risk. Contact patterns differed among hospital wards, reflecting varying care patterns depending on reason for hospitalization, with more frequent contacts in neurologic wards and fewer, longer contacts in geriatric wards. This study is the first to report proximity-sensing data informing on inter-individual contacts in long-term care settings. Our results should help better understand HAI spread, parameterize future mathematical models, and propose efficient control strategies.

  9. Applicability of contact angle techniques used in the analysis of contact lenses, part 1: comparative methodologies.

    Science.gov (United States)

    Campbell, Darren; Carnell, Sarah Maria; Eden, Russell John

    2013-05-01

    Contact angle, as a representative measure of surface wettability, is often employed to interpret contact lens surface properties. The literature is often contradictory and can lead to confusion. This literature review is part of a series regarding the analysis of hydrogel contact lenses using contact angle techniques. Here we present an overview of contact angle terminology, methodology, and analysis. Having discussed this background material, subsequent parts of the series will discuss the analysis of contact lens contact angles and evaluate differences in published laboratory results. The concepts of contact angle, wettability and wetting are presented as an introduction. Contact angle hysteresis is outlined and highlights the advantages in using dynamic analytical techniques over static methods. The surface free energy of a material illustrates how contact angle analysis is capable of providing supplementary surface characterization. Although single values are able to distinguish individual material differences, surface free energy and dynamic methods provide an improved understanding of material behavior. The frequently used sessile drop, captive bubble, and Wilhelmy plate techniques are discussed. Their use as both dynamic and static methods, along with the advantages and disadvantages of each technique, is explained. No single contact angle technique fully characterizes the wettability of a material surface, and the application of complimenting methods allows increased characterization. At present, there is not an ISO standard method designed for soft materials. It is important that each contact angle technique has a standard protocol, as small protocol differences between laboratories often contribute to a variety of published data that are not easily comparable.

  10. Refining the intrinsic chimera flap: a review.

    Science.gov (United States)

    Agarwal, Jayant P; Agarwal, Shailesh; Adler, Neta; Gottlieb, Lawrence J

    2009-10-01

    Reconstruction of complex tissue deficiencies in which each missing component is in a different spatial relationship to each other can be particularly challenging, especially in patients with limited recipient vessels. The chimera flap design is uniquely suited to reconstruct these deformities. Chimera flaps have been previously defined in many ways with 2 main categories: prefabricated or intrinsic. Herein we attempt to clarify the definition of a true intrinsic chimeric flap and provide examples of how these constructs provide a method for reconstruction of complex defects. The versatility of the intrinsic chimera flap and its procurement from 7 different vascular systems is described. A clarification of the definition of a true intrinsic chimera flap is described. In addition, construction of flaps from the lateral femoral circumflex, deep circumflex iliac, inferior gluteal, peroneal, subscapular, thoracodorsal, and radial arterial systems is described to showcase the versatility of these chimera flaps. A true intrinsic chimera flap must consist of more than a single tissue type. Each of the tissue components receives its blood flow from separate vascular branches or perforators that are connected to a single vascular source. These vascular branches must be of appropriate length to allow for insetting with 3-dimensional spatial freedom. There are a multitude of sites from which true intrinsic chimera flaps may be harvested.

  11. Intrinsically Disordered Side of the Zika Virus Proteome

    Directory of Open Access Journals (Sweden)

    Rajanish Giri

    2016-11-01

    Full Text Available Over the last few decades, concepts of protein intrinsic disorder have been implicated in different biological processes. Recent studies have suggested that intrinsically disordered proteins (IDPs provide structural plasticity and functional diversity to viral proteins that are involved in rapid replication and immune evasion in host cells. In case of Zika virus, the roles of protein intrinsic disorder in mechanisms of pathogenesis are not completely understood. In this study, we have analyzed the prevalence of intrinsic disorder in Zika virus proteome (strain MR 766. Our analyses revealed that Zika virus polyprotein is enriched with intrinsically disordered protein regions (IDPRs and this finding is consistent with previous reports on the involvement of IDPs in shell formation and virulence of the Flaviviridae family. We found abundant IDPRs in Capsid, NS2B, NS3, NS4A, and NS5 proteins that are involved in mature particle formation and replication. In our view, the intrinsic disorder-focused analysis of ZIKV proteins could be important for the development of new disorder-based drugs.

  12. An assay for serum vitamin-B12 and for intrinsic factor antibody type I by means of hog intrinsic factor

    International Nuclear Information System (INIS)

    Hudak, J.; Berger, Z.; Varga, L.

    1980-01-01

    A new radioassay method was elaborated for the determination of the plasma level of vitamin B 12 and of the intrinsic factor antibody type I. The assay applies vitamin-B 12 labelled with 58 Co, but replaces human intrinsic factor by hog intrinsic factor. 124 cases were investigated by both the original and this modified method, and the results were in very good agreement. (L.E.)

  13. Non-Contact Laser Based Ultrasound Evaluation of Canned Foods

    Science.gov (United States)

    Shelton, David

    2005-03-01

    Laser-Based Ultrasound detection was used to measure the velocity of compression waves transmitted through canned foods. Condensed broth, canned pasta, and non-condensed soup were evaluated in these experiments. Homodyne adaptive optics resulted in measurements that were more accurate than the traditional heterodyne method, as well as yielding a 10 dB gain in signal to noise. A-Scans measured the velocity of ultrasound sent through the center of the can and were able to distinguish the quantity of food stuff in its path, as well as distinguish between meat and potato. B-Scans investigated the heterogeneity of the sample’s contents. The evaluation of canned foods was completely non-contact and would be suitable for continuous monitoring in production. These results were verified by conducting the same experiments with a contact piezo transducer. Although the contact method yields a higher signal to noise ratio than the non-contact method, Laser-Based Ultrasound was able to detect surface waves the contact transducer could not.

  14. Fluorescence Intrinsic Characterization of Excitation-Emission Matrix Using Multi-Dimensional Ensemble Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Tzu-Chien Hsiao

    2013-11-01

    Full Text Available Excitation-emission matrix (EEM fluorescence spectroscopy is a noninvasive method for tissue diagnosis and has become important in clinical use. However, the intrinsic characterization of EEM fluorescence remains unclear. Photobleaching and the complexity of the chemical compounds make it difficult to distinguish individual compounds due to overlapping features. Conventional studies use principal component analysis (PCA for EEM fluorescence analysis, and the relationship between the EEM features extracted by PCA and diseases has been examined. The spectral features of different tissue constituents are not fully separable or clearly defined. Recently, a non-stationary method called multi-dimensional ensemble empirical mode decomposition (MEEMD was introduced; this method can extract the intrinsic oscillations on multiple spatial scales without loss of information. The aim of this study was to propose a fluorescence spectroscopy system for EEM measurements and to describe a method for extracting the intrinsic characteristics of EEM by MEEMD. The results indicate that, although PCA provides the principal factor for the spectral features associated with chemical compounds, MEEMD can provide additional intrinsic features with more reliable mapping of the chemical compounds. MEEMD has the potential to extract intrinsic fluorescence features and improve the detection of biochemical changes.

  15. Intention to Be Physically Active after School Graduation and Its Relationship to Three Types of Intrinsic Motivation

    Science.gov (United States)

    Hein, Vello; Muur, Maret; Koka, Andre

    2004-01-01

    In this article the relationships between three different types of intrinsic motivation and students' intention to be physically active after school graduation were examined. The participants were 400 school children aged 14-18 years. The modified version of SMS was used to measure the three different types of intrinsic motivation. The intention…

  16. A two-stage approach for improved prediction of residue contact maps

    Directory of Open Access Journals (Sweden)

    Pollastri Gianluca

    2006-03-01

    Full Text Available Abstract Background Protein topology representations such as residue contact maps are an important intermediate step towards ab initio prediction of protein structure. Although improvements have occurred over the last years, the problem of accurately predicting residue contact maps from primary sequences is still largely unsolved. Among the reasons for this are the unbalanced nature of the problem (with far fewer examples of contacts than non-contacts, the formidable challenge of capturing long-range interactions in the maps, the intrinsic difficulty of mapping one-dimensional input sequences into two-dimensional output maps. In order to alleviate these problems and achieve improved contact map predictions, in this paper we split the task into two stages: the prediction of a map's principal eigenvector (PE from the primary sequence; the reconstruction of the contact map from the PE and primary sequence. Predicting the PE from the primary sequence consists in mapping a vector into a vector. This task is less complex than mapping vectors directly into two-dimensional matrices since the size of the problem is drastically reduced and so is the scale length of interactions that need to be learned. Results We develop architectures composed of ensembles of two-layered bidirectional recurrent neural networks to classify the components of the PE in 2, 3 and 4 classes from protein primary sequence, predicted secondary structure, and hydrophobicity interaction scales. Our predictor, tested on a non redundant set of 2171 proteins, achieves classification performances of up to 72.6%, 16% above a base-line statistical predictor. We design a system for the prediction of contact maps from the predicted PE. Our results show that predicting maps through the PE yields sizeable gains especially for long-range contacts which are particularly critical for accurate protein 3D reconstruction. The final predictor's accuracy on a non-redundant set of 327 targets is 35

  17. a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base

    Energy Technology Data Exchange (ETDEWEB)

    Rostan, Philipp Johannes

    2010-07-01

    This thesis reports on low temperature amorphous silicon back and front contacts for high-efficiency crystalline silicon solar cells with a p-type base. The back contact uses a sequence of intrinsic amorphous (i-a-Si:H) and boron doped microcrystalline (p-{mu}c-Si:H) silicon layers fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) and a magnetron sputtered ZnO:Al layer. The back contact is finished by evaporating Al onto the ZnO:Al and altogether prepared at a maximum temperature of 220 C. Analysis of the electronic transport of mobile charge carriers at the back contact shows that the two high-efficiency requirements low back contact series resistance and high quality c-Si surface passivation are in strong contradiction to each other, thus difficult to achieve at the same time. The preparation of resistance- and effective lifetime samples allows one to investigate both requirements independently. Analysis of the majority charge carrier transport on complete Al/ZnO:Al/a-Si:H/c-Si back contact structures derives the resistive properties. Measurements of the effective minority carrier lifetime on a-Si:H coated wafers determines the back contact surface passivation quality. Both high-efficiency solar cell requirements together are analyzed in complete photovoltaic devices where the back contact series resistance mainly affects the fill factor and the back contact passivation quality mainly affects the open circuit voltage. The best cell equipped with a diffused emitter with random texture and a full-area a-Si:H/c-Si back contact has an independently confirmed efficiency {eta} = 21.0 % with an open circuit voltage V{sub oc} = 681 mV and a fill factor FF = 78.7 % on an area of 1 cm{sup 2}. An alternative concept that uses a simplified a-Si:H layer sequence combined with Al-point contacts yields a confirmed efficiency {eta} = 19.3 % with an open circuit voltage V{sub oc} = 655 mV and a fill factor FF = 79.5 % on an area of 2 cm{sup 2}. Analysis of the

  18. Flavor Structure of Intrinsic Nucleon Sea

    International Nuclear Information System (INIS)

    Peng, Jen-Chieh; Chang, Wen-Chen; Cheng, Hai-Yang; Liu, Keh-Fei

    2015-01-01

    The concept of intrinsic charm suggested by Brodsky et al. is extended to lighter quarks. Extraction of the intrinsic ū, d-macron, and s-macron seas is obtained from an analysis of the d-macron − ū, s + s-macron, and ū + d-macron − s −s-macron distributions. The connection between the intrinsic/extrinsic seas and the connected/disconnected seas in lattice QCD is also examined. It is shown that the connected and disconnected components for the ū(x) + d-macron(x) sea can be separated. The striking x-dependence of the [s(x) + s-macron(x)]/[ū(x) + d-macron(x)] ratio is interpreted as an interplay between the connected and disconnected seas. (author)

  19. Neocortical layers I and II of the hedgehog (Erinaceus europaeus). I. Intrinsic organization.

    Science.gov (United States)

    Valverde, F; Facal-Valverde, M V

    1986-01-01

    The intrinsic organization and interlaminar connections in neocortical layers I and II have been studied in adult hedgehogs (Erinaceus europaeus) using the Golgi method. Layer I contains a dense plexus of horizontal fibers, the terminal dendritic bouquets of pyramidal cells of layer II and of underlying layers, and varieties of intrinsic neurons. Four main types of cells were found in layer I. Small horizontal cells represent most probably persisting foetal horizontal cells described for other mammals. Large horizontal cells, tufted cells, and spinous horizontal cells were also found in this layer. Layer II contains primitive pyramidal cells representing the most outstanding feature of the neocortex of the hedgehog. Most pyramidal cells in layer II have two, three or more apical dendrites, richly covered by spines predominating over the basal dendrites. These cells resemble pyramidal cells found in the piriform cortex, hippocampus and other olfactory areas. It is suggested that the presence of these neurons reflects the retention of a primitive character in neocortical evolution. Cells with intrinsic axons were found among pyramidal cells in layer II. These have smooth dendrites penetrating layer I and local axons forming extremely complex terminal arborizations around the bodies and proximal dendritic portions of pyramidal cells. They most probably effect numerous axo-somatic contacts resembling basket cells. The similarity of some axonal terminals with the chandelier type of axonal arborization is discussed. Other varieties of cells located in deep cortical layers and having ascending axons for layers I and II were also studied. It is concluded that the two first neocortical layers represent a level of important integration in this primitive mammal.

  20. Differential MS2 Interaction with Food Contact Surfaces Determined by Atomic Force Microscopy and Virus Recovery.

    Science.gov (United States)

    Shim, J; Stewart, D S; Nikolov, A D; Wasan, D T; Wang, R; Yan, R; Shieh, Y C

    2017-12-15

    Enteric viruses are recognized as major etiologies of U.S. foodborne infections. These viruses are easily transmitted via food contact surfaces. Understanding virus interactions with surfaces may facilitate the development of improved means for their removal, thus reducing transmission. Using MS2 coliphage as a virus surrogate, the strength of virus adhesion to common food processing and preparation surfaces of polyvinyl chloride (PVC) and glass was assessed by atomic force microscopy (AFM) and virus recovery assays. The interaction forces of MS2 with various surfaces were measured from adhesion peaks in force-distance curves registered using a spherical bead probe preconjugated with MS2 particles. MS2 in phosphate-buffered saline (PBS) demonstrated approximately 5 times less adhesion force to glass (0.54 nN) than to PVC (2.87 nN) ( P force for PVC (∼0 nN) and consistently increased virus recovery by 19%. With direct and indirect evidence of virus adhesion, this study illustrated a two-way assessment of virus adhesion for the initial evaluation of potential means to mitigate virus adhesion to food contact surfaces. IMPORTANCE The spread of foodborne viruses is likely associated with their adhesive nature. Virus attachment on food contact surfaces has been evaluated by quantitating virus recoveries from inoculated surfaces. This study aimed to evaluate the microenvironment in which nanometer-sized viruses interact with food contact surfaces and to compare the virus adhesion differences using AFM. The virus surrogate MS2 demonstrated less adhesion force to glass than to PVC via AFM, with the force-contributing factors including the intrinsic nature and the topography of the contact surfaces. This adhesion finding is consistent with the virus recoveries, which were determined indirectly. Greater numbers of viruses were recovered from glass than from PVC, after application at the same levels. The stronger MS2 adhesion onto PVC could be interrupted by incorporating a

  1. The non-contact tonometer. Its value and limitations.

    Science.gov (United States)

    Shields, M B

    1980-01-01

    A review of the literature and a comparative study against Goldmann applanation tonometers suggest that the non-contact tonometer is reliable for measuring intraocular pressures within the normal range. In addition, the non-contact tonometer eliminates the need for corneal contact and topical anesthesia, thereby avoiding the potential problems of corneal abrasion, spread of infection, and drug reactions. The instrument can be used reliably by paramedical personnel and has particular value in mass screening and possibly in studies of topical antiglaucoma drugs. The non-contact tonometer is less reliable in patients with elevated intraocular pressure, since comparative studies against the Goldmann applanation tonometers have shown poorer correlations in the higher pressure ranges. The instrument is also limited by an abnormal cornea or poor fixation, which may interfere with accurate pressure measurements. Furthermore, the non-contact tonometer is less portable than many tonometers and more expensive than most.

  2. Inferring epidemic contact structure from phylogenetic trees.

    Directory of Open Access Journals (Sweden)

    Gabriel E Leventhal

    Full Text Available Contact structure is believed to have a large impact on epidemic spreading and consequently using networks to model such contact structure continues to gain interest in epidemiology. However, detailed knowledge of the exact contact structure underlying real epidemics is limited. Here we address the question whether the structure of the contact network leaves a detectable genetic fingerprint in the pathogen population. To this end we compare phylogenies generated by disease outbreaks in simulated populations with different types of contact networks. We find that the shape of these phylogenies strongly depends on contact structure. In particular, measures of tree imbalance allow us to quantify to what extent the contact structure underlying an epidemic deviates from a null model contact network and illustrate this in the case of random mixing. Using a phylogeny from the Swiss HIV epidemic, we show that this epidemic has a significantly more unbalanced tree than would be expected from random mixing.

  3. Contact Patterns in a High School: A Comparison between Data Collected Using Wearable Sensors, Contact Diaries and Friendship Surveys.

    Directory of Open Access Journals (Sweden)

    Rossana Mastrandrea

    Full Text Available Given their importance in shaping social networks and determining how information or transmissible diseases propagate in a population, interactions between individuals are the subject of many data collection efforts. To this aim, different methods are commonly used, ranging from diaries and surveys to decentralised infrastructures based on wearable sensors. These methods have each advantages and limitations but are rarely compared in a given setting. Moreover, as surveys targeting friendship relations might suffer less from memory biases than contact diaries, it is interesting to explore how actual contact patterns occurring in day-to-day life compare with friendship relations and with online social links. Here we make progresses in these directions by leveraging data collected in a French high school and concerning (i face-to-face contacts measured by two concurrent methods, namely wearable sensors and contact diaries, (ii self-reported friendship surveys, and (iii online social links. We compare the resulting data sets and find that most short contacts are not reported in diaries while long contacts have a large reporting probability, and that the durations of contacts tend to be overestimated in the diaries. Moreover, measured contacts corresponding to reported friendship can have durations of any length but all long contacts do correspond to a reported friendship. On the contrary, online links that are not also reported in the friendship survey correspond to short face-to-face contacts, highlighting the difference of nature between reported friendships and online links. Diaries and surveys suffer moreover from a low sampling rate, as many students did not fill them, showing that the sensor-based platform had a higher acceptability. We also show that, despite the biases of diaries and surveys, the overall structure of the contact network, as quantified by the mixing patterns between classes, is correctly captured by both networks of self

  4. Contact Patterns in a High School: A Comparison between Data Collected Using Wearable Sensors, Contact Diaries and Friendship Surveys.

    Science.gov (United States)

    Mastrandrea, Rossana; Fournet, Julie; Barrat, Alain

    2015-01-01

    Given their importance in shaping social networks and determining how information or transmissible diseases propagate in a population, interactions between individuals are the subject of many data collection efforts. To this aim, different methods are commonly used, ranging from diaries and surveys to decentralised infrastructures based on wearable sensors. These methods have each advantages and limitations but are rarely compared in a given setting. Moreover, as surveys targeting friendship relations might suffer less from memory biases than contact diaries, it is interesting to explore how actual contact patterns occurring in day-to-day life compare with friendship relations and with online social links. Here we make progresses in these directions by leveraging data collected in a French high school and concerning (i) face-to-face contacts measured by two concurrent methods, namely wearable sensors and contact diaries, (ii) self-reported friendship surveys, and (iii) online social links. We compare the resulting data sets and find that most short contacts are not reported in diaries while long contacts have a large reporting probability, and that the durations of contacts tend to be overestimated in the diaries. Moreover, measured contacts corresponding to reported friendship can have durations of any length but all long contacts do correspond to a reported friendship. On the contrary, online links that are not also reported in the friendship survey correspond to short face-to-face contacts, highlighting the difference of nature between reported friendships and online links. Diaries and surveys suffer moreover from a low sampling rate, as many students did not fill them, showing that the sensor-based platform had a higher acceptability. We also show that, despite the biases of diaries and surveys, the overall structure of the contact network, as quantified by the mixing patterns between classes, is correctly captured by both networks of self-reported contacts and

  5. Lactobacilli require physical contact to reduce staphylococcal TSST-1 secretion and vaginal epithelial inflammatory response.

    Science.gov (United States)

    Younes, Jessica A; Reid, Gregor; van der Mei, Henny C; Busscher, Henk J

    2016-06-01

    ITALIC! Staphylococcus aureusbiofilms can be found on vaginal epithelia, secreting toxins and causing inflammation. The co-vaginal species ITALIC! Lactobacilluscan alter staphylococcal-induced epithelial secretion of inflammatory cytokines and quench staphylococcal toxic shock syndrome toxin-1 secretion. It is hypothesized that these effects of lactobacilli require direct physical contact between lactobacilli, staphylococci and the epithelium. Indeed, lactobacilli only reduced ITALIC! S. aureus-induced inflammatory cytokine expression when allowed physical contact with vaginal epithelial cells. Furthermore, a reduction in toxic shock syndrome toxin-1 secretion only occurred when a probiotic ITALIC! Lactobacillusstrain was allowed contact, but not when being physically separated from ITALIC! S. aureus Bacterial-probe atomic force microscopy demonstrated that lactobacilli and staphylococci strongly adhere to epithelial cells, while lactobacilli adhere stronger to staphylococci than staphylococci to each other, giving lactobacilli opportunity to penetrate and reside in staphylococcal biofilms, as visualized using confocal laser scanning microscopy with fluorescence ITALIC! in situhybridization probes. These results identify that physical contact and biochemical signaling by lactobacilli are intrinsically linked mechanisms that reduce virulence of ITALIC! S. aureusbiofilm. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Relationship between cognitive function and prevalence of decrease in intrinsic academic motivation in adolescents

    Science.gov (United States)

    2011-01-01

    Background Decrease in intrinsic motivation is a common complaint among elementary and junior high school students, and is related to poor academic performance. Since grade-dependent development of cognitive functions also influences academic performance by these students, we examined whether cognitive functions are related to the prevalence of decrease in intrinsic academic motivation. Methods The study group consisted of 134 elementary school students from 4th to 6th grades and 133 junior high school students from 7th to 9th grades. Participants completed a questionnaire on intrinsic academic motivation. They also performed paper-and-pencil and computerized cognitive tests to measure abilities in motor processing, spatial construction, semantic fluency, immediate memory, short-term memory, delayed memory, spatial working memory, and selective, alternative, and divided attention. Results In multivariate logistic regression analyses adjusted for grade and gender, scores of none of the cognitive tests were correlated with the prevalence of decrease in intrinsic academic motivation in elementary school students. However, low digit span forward test score and score for comprehension of the story in the kana pick-out test were positively correlated with the prevalence of decrease in intrinsic academic motivation in junior high school students. Conclusions The present findings suggest that decrease in capacity for verbal memory is associated with the prevalence of decrease in intrinsic academic motivation among junior high school students. PMID:21235802

  7. Relationship between cognitive function and prevalence of decrease in intrinsic academic motivation in adolescents

    Directory of Open Access Journals (Sweden)

    Fukuda Sanae

    2011-01-01

    Full Text Available Abstract Background Decrease in intrinsic motivation is a common complaint among elementary and junior high school students, and is related to poor academic performance. Since grade-dependent development of cognitive functions also influences academic performance by these students, we examined whether cognitive functions are related to the prevalence of decrease in intrinsic academic motivation. Methods The study group consisted of 134 elementary school students from 4th to 6th grades and 133 junior high school students from 7th to 9th grades. Participants completed a questionnaire on intrinsic academic motivation. They also performed paper-and-pencil and computerized cognitive tests to measure abilities in motor processing, spatial construction, semantic fluency, immediate memory, short-term memory, delayed memory, spatial working memory, and selective, alternative, and divided attention. Results In multivariate logistic regression analyses adjusted for grade and gender, scores of none of the cognitive tests were correlated with the prevalence of decrease in intrinsic academic motivation in elementary school students. However, low digit span forward test score and score for comprehension of the story in the kana pick-out test were positively correlated with the prevalence of decrease in intrinsic academic motivation in junior high school students. Conclusions The present findings suggest that decrease in capacity for verbal memory is associated with the prevalence of decrease in intrinsic academic motivation among junior high school students.

  8. Relationship between cognitive function and prevalence of decrease in intrinsic academic motivation in adolescents.

    Science.gov (United States)

    Mizuno, Kei; Tanaka, Masaaki; Fukuda, Sanae; Imai-Matsumura, Kyoko; Watanabe, Yasuyoshi

    2011-01-14

    Decrease in intrinsic motivation is a common complaint among elementary and junior high school students, and is related to poor academic performance. Since grade-dependent development of cognitive functions also influences academic performance by these students, we examined whether cognitive functions are related to the prevalence of decrease in intrinsic academic motivation. The study group consisted of 134 elementary school students from 4th to 6th grades and 133 junior high school students from 7th to 9th grades. Participants completed a questionnaire on intrinsic academic motivation. They also performed paper-and-pencil and computerized cognitive tests to measure abilities in motor processing, spatial construction, semantic fluency, immediate memory, short-term memory, delayed memory, spatial working memory, and selective, alternative, and divided attention. In multivariate logistic regression analyses adjusted for grade and gender, scores of none of the cognitive tests were correlated with the prevalence of decrease in intrinsic academic motivation in elementary school students. However, low digit span forward test score and score for comprehension of the story in the kana pick-out test were positively correlated with the prevalence of decrease in intrinsic academic motivation in junior high school students. The present findings suggest that decrease in capacity for verbal memory is associated with the prevalence of decrease in intrinsic academic motivation among junior high school students.

  9. Intrinsic motivation and metacognition as predictors of learning potential in patients with remitted schizophrenia.

    Science.gov (United States)

    Tas, Cumhur; Brown, Elliot C; Esen-Danaci, Aysen; Lysaker, Paul H; Brüne, Martin

    2012-08-01

    Previous research has suggested that neurocognitive functioning predicts best the potential of patients with schizophrenia to acquire newly learned material, which, in turn may impact patients' social functioning. Recent studies have also shown that intrinsic motivation and metacognitive abilities play a decisive role in social functioning in schizophrenia. Accordingly, the present study sought to examine the relationship between intelligence, motivation, metacognition, and learning during a cognitive remediation experimental training. We hypothesized that metacognition and intrinsic motivation would have a strong relationship and independently predict learning potential. Thirty-two patients with schizophrenia who fulfilled the criteria of functional remission were recruited. In a pre-training-post experimental design, patients' learning potential was assessed using previously defined cognitive remediation training for WCST. Intrinsic motivation was examined using Intrinsic Motivation Inventory for schizophrenia; mastery, a domain of metacognition, was measured using the Metacognitive Assessment Scale. Metacognition significantly correlated with subdomains of intrinsic motivation. Patients with higher intrinsic motivation and preserved metacognition improved more in the learning paradigm compared to poorly motivated patients and patients with reduced metacognitive abilities. In particular, "mastery" was determined as an independent predictor of learning potential. Motivation and metacognition are important predictors of learning in schizophrenia. Psychological interventions in schizophrenia may therefore consider incorporating techniques to stimulate metacognitive and motivational abilities as well as developing individualized training programs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Spin transport in ferromagnetically contacted carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Morgan, C.; Schneider, C.M. [Peter Gruenberg Institut, PGI-6, Forschungszentrum Juelich and JARA Juelich Aachen Research Alliance, 52425 Juelich (Germany)

    2011-11-15

    We present magnetoresistance (MR) measurements on carbon nanotubes (CNTs) with different ferromagnetic leads. A sample with permalloy (Ni{sub 80}Fe{sub 20}) contacts shows the expected tunneling-type MR effect. Measurements on devices with CoPd contacts show a larger change of resistance with magnetic field. However, only minor loops are observed, which is explained with domain wall pinning. This is supported by magnetic force microscopy (MFM) measurements, which reveal a complicated bubble and stripe domain pattern. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Knowledge of nursing undergraduate students about the use of contact precautions measures

    OpenAIRE

    Julielen Salvador dos Santos; Ione Corrêa; Manoel Henrique Salgado

    2013-01-01

    Objective. To assess knowledge of nursing undergraduate students about the use of contact precautions. Methodology. There were 106 nursing undergraduate students from three universities within the state of Sao Paulo. The data collection was done between April and May 2012. A questionnaire was elaborated with questions assessing knowledge regarding contact precautions. The data were submitted to statistical procedures in the package MINITAB version 16. The knowledge were rated as adequate, par...

  12. Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact

    OpenAIRE

    Yang, C.; Persson, B. N. J.

    2007-01-01

    We report a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. We study the contact area and the interfacial separation from small contact (low load) to full contact (high load). For small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For high load the contact area approaches to the nominal contact area (i.e., complete contact), and the i...

  13. Direct Laser Writing of Nanophotonic Structures on Contact Lenses.

    Science.gov (United States)

    AlQattan, Bader; Yetisen, Ali K; Butt, Haider

    2018-04-24

    Contact lenses are ubiquitous biomedical devices used for vision correction and cosmetic purposes. Their application as quantitative analytical devices is highly promising for point-of-care diagnostics. However, it is a challenge to integrate nanoscale features into commercial contact lenses for application in low-cost biosensors. A neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (1064 nm, 3 ns pulse, 240 mJ) in holographic interference patterning mode was utilized to produce optical nanostructures over the surface of a hydrogel contact lens. One-dimensional (925 nm) and two-dimensional (925 nm × 925 nm) nanostructures were produced on contact lenses and analyzed by spectroscopy and angle-resolve measurements. The holographic properties of these nanostructures were tested in ambient moisture, fully hydrated, and artificial tear conditions. The measurements showed a rapid tuning of optical diffraction from these nanostructures from 41 to 48°. The nanostructures were patterned near the edges of the contact lens to avoid any interference and obstruction to the human vision. The formation of 2D nanostructures on lenses increased the diffraction efficiency by more than 10%. The versatility of the holographic laser ablation method was demonstrated by producing four different 2D nanopattern geometries on contact lenses. Hydrophobicity of the contact lens was characterized by contact angle measurements, which increased from 59.0° at pristine condition to 62.5° at post-nanofabrication. The holographic nanostructures on the contact lens were used to sense the concentration of Na + ions. Artificial tear solution was used to simulate the conditions in dry eye syndrome, and nanostructures on the contact lenses were used to detect the electrolyte concentration changes (±47 mmol L -1 ). Nanopatterns on a contact lens may be used to sense other ocular diseases in early stages at point-of-care settings.

  14. Single-atom contacts with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Kroeger, J; Neel, N; Sperl, A; Wang, Y F; Berndt, R

    2009-01-01

    The tip of a cryogenic scanning tunnelling microscope is used to controllably contact single atoms adsorbed on metal surfaces. The transition between tunnelling and contact is gradual for silver, while contact to adsorbed gold atoms is abrupt. The single-atom junctions are stable and enable spectroscopic measurements of, e.g., the Abrikosov-Suhl resonance of single Kondo impurities.

  15. Thermal annealing behaviour of Pd Schottky contacts on melt-grown single crystal ZnO studied by IV and CV measurements

    International Nuclear Information System (INIS)

    Mtangi, W.; Auret, F.D.; Chawanda, A.; Janse van Rensburg, P.J.; Coelho, S.M.M.; Nel, J.M.; Diale, M.; Schalkwyk, L. van; Nyamhere, C.

    2012-01-01

    Highlights: ► Highly rectifying Pd/ZnO contacts have been fabricated. ► The rectification behaviour decrease with annealing temperature. ► The surface donor concentration increases with increase in annealing temperature. ► The depletion layer width at a specific reverse voltage decreases with increase in annealing temperature. - Abstract: Current–voltage (IV) and capacitance–voltage (CV) measurement techniques have successfully been employed to study the effects of annealing highly rectifying Pd/ZnO Schottky contacts. IV results reveal a decrease in the contact quality with increasing annealing temperature as confirmed by a decrease in the zero bias barrier height and an increase in the reverse current measured at −1.5 V. An average barrier height of (0.77 ± 0.02) eV has been calculated by assuming pure thermionic emission for the as-deposited material and as (0.56 ± 0.03) eV after annealing at 550 °C. The reverse current has been measured as (2.10 ± 0.01) × 10 −10 A for the as-deposited and increases by 5 orders of magnitude after annealing at 550 °C to (1.56 ± 0.01) × 10 −5 A. The depletion layer width measured at −2.0 V has shown a strong dependence on thermal annealing as it decreases from 1.09 μm after annealing at 200 °C to 0.24 μm after annealing at 500 °C, resulting in the modification of the dopant concentration within the depletion region and hence the current flowing through the interface from pure thermionic emission to thermionic field emission with the donor concentrations increasing from 6.90 × 10 15 cm −3 at 200 °C to 6.06 × 10 16 cm −3 after annealing at 550 °C. This increase in the volume concentration has been explained as an effect of a conductive channel that shifts closer to the surface after sample annealing. The series resistance has been observed to decrease with increase in annealing temperature. The Pd contacts have shown high stability up to an annealing temperature of 250 °C as revealed by the IV

  16. Thermal annealing behaviour of Pd Schottky contacts on melt-grown single crystal ZnO studied by IV and CV measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mtangi, W., E-mail: wilbert.mtangi@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Auret, F.D.; Chawanda, A.; Janse van Rensburg, P.J.; Coelho, S.M.M.; Nel, J.M.; Diale, M.; Schalkwyk, L. van [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Nyamhere, C. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Highly rectifying Pd/ZnO contacts have been fabricated. Black-Right-Pointing-Pointer The rectification behaviour decrease with annealing temperature. Black-Right-Pointing-Pointer The surface donor concentration increases with increase in annealing temperature. Black-Right-Pointing-Pointer The depletion layer width at a specific reverse voltage decreases with increase in annealing temperature. - Abstract: Current-voltage (IV) and capacitance-voltage (CV) measurement techniques have successfully been employed to study the effects of annealing highly rectifying Pd/ZnO Schottky contacts. IV results reveal a decrease in the contact quality with increasing annealing temperature as confirmed by a decrease in the zero bias barrier height and an increase in the reverse current measured at -1.5 V. An average barrier height of (0.77 {+-} 0.02) eV has been calculated by assuming pure thermionic emission for the as-deposited material and as (0.56 {+-} 0.03) eV after annealing at 550 Degree-Sign C. The reverse current has been measured as (2.10 {+-} 0.01) Multiplication-Sign 10{sup -10} A for the as-deposited and increases by 5 orders of magnitude after annealing at 550 Degree-Sign C to (1.56 {+-} 0.01) Multiplication-Sign 10{sup -5} A. The depletion layer width measured at -2.0 V has shown a strong dependence on thermal annealing as it decreases from 1.09 {mu}m after annealing at 200 Degree-Sign C to 0.24 {mu}m after annealing at 500 Degree-Sign C, resulting in the modification of the dopant concentration within the depletion region and hence the current flowing through the interface from pure thermionic emission to thermionic field emission with the donor concentrations increasing from 6.90 Multiplication-Sign 10{sup 15} cm{sup -3} at 200 Degree-Sign C to 6.06 Multiplication-Sign 10{sup 16} cm{sup -3} after annealing at 550 Degree-Sign C. This increase in the volume concentration has been explained as an effect of a conductive channel

  17. Quantum qubit measurement by a quantum point contact with a quantum Langevin equation approach

    International Nuclear Information System (INIS)

    Dong, Bing; Lei, X.L.; Horing, N.J.M.; Cui, H.L.

    2007-01-01

    We employ a microscopic quantum Heisenberg-Langevin equation approach to establish a set of quantum Bloch equations for a two-level system (coupled quantum dots) capacitively coupled to a quantum point contact (QPC). The resulting Bloch equations facilitate our analysis of qubit relaxation and decoherence in coupled quantum dots induced by measurement processes at arbitrary bias-voltage and temperature. We also examine the noise spectrum of the meter output current for a symmetric qubit. These results help resolve a recent debate about a quantum oscillation peak in the noise spectrum. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. A multi-state coarse grained modeling approach for an intrinsically disordered peptide

    Science.gov (United States)

    Ramezanghorbani, Farhad; Dalgicdir, Cahit; Sayar, Mehmet

    2017-09-01

    Many proteins display a marginally stable tertiary structure, which can be altered via external stimuli. Since a majority of coarse grained (CG) models are aimed at structure prediction, their success for an intrinsically disordered peptide's conformational space with marginal stability and sensitivity to external stimuli cannot be taken for granted. In this study, by using the LKα 14 peptide as a test system, we demonstrate a bottom-up approach for constructing a multi-state CG model, which can capture the conformational behavior of this peptide in three distinct environments with a unique set of interaction parameters. LKα 14 is disordered in dilute solutions; however, it strictly adopts the α -helix conformation upon aggregation or when in contact with a hydrophobic/hydrophilic interface. Our bottom-up approach combines a generic base model, that is unbiased for any particular secondary structure, with nonbonded interactions which represent hydrogen bonds, electrostatics, and hydrophobic forces. We demonstrate that by using carefully designed all atom potential of mean force calculations from all three states of interest, one can get a balanced representation of the nonbonded interactions. Our CG model behaves intrinsically disordered in bulk water, folds into an α -helix in the presence of an interface or a neighboring peptide, and is stable as a tetrameric unit, successfully reproducing the all atom molecular dynamics simulations and experimental results.

  19. An intrinsic robust rank-one-approximation approach for currencyportfolio optimization

    Directory of Open Access Journals (Sweden)

    Hongxuan Huang

    2018-03-01

    Full Text Available A currency portfolio is a special kind of wealth whose value fluctuates with foreignexchange rates over time, which possesses 3Vs (volume, variety and velocity properties of big datain the currency market. In this paper, an intrinsic robust rank one approximation (ROA approachis proposed to maximize the value of currency portfolios over time. The main results of the paperinclude four parts: Firstly, under the assumptions about the currency market, the currency portfoliooptimization problem is formulated as the basic model, in which there are two types of variablesdescribing currency amounts in portfolios and the amount of each currency exchanged into another,respectively. Secondly, the rank one approximation problem and its variants are also formulated toapproximate a foreign exchange rate matrix, whose performance is measured by the Frobenius normor the 2-norm of a residual matrix. The intrinsic robustness of the rank one approximation is provedtogether with summarizing properties of the basic ROA problem and designing a modified powermethod to search for the virtual exchange rates hidden in a foreign exchange rate matrix. Thirdly,a technique for decision variables reduction is presented to attack the currency portfolio optimization.The reduced formulation is referred to as the ROA model, which keeps only variables describingcurrency amounts in portfolios. The optimal solution to the ROA model also induces a feasible solutionto the basic model of the currency portfolio problem by integrating forex operations from the ROAmodel with practical forex rates. Finally, numerical examples are presented to verify the feasibility ande ciency of the intrinsic robust rank one approximation approach. They also indicate that there existsan objective measure for evaluating and optimizing currency portfolios over time, which is related tothe virtual standard currency and independent of any real currency selected specially for measurement.

  20. Towards nanometer-spaced silicon contacts to proteins

    Science.gov (United States)

    Schukfeh, Muhammed I.; Sepunaru, Lior; Behr, Pascal; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David; Tornow, Marc

    2016-03-01

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p+ silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices’ electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes’ edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current-voltage measurements performed after protein deposition exhibited an increase in the junctions’ conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein’s denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si-protein-Si configuration.