WorldWideScience

Sample records for measured fluorescence lifetime

  1. Fluorescence lifetime measurement of radical ions

    International Nuclear Information System (INIS)

    Ichinose, Nobuyuki; Kinugasa, Jun-ichiro; Hagiri, Masahide; Nakayama, Toshihiro; Murakami, Hiroshi; Kishimoto, Maki; Daido, Hiroyuki

    2004-01-01

    One-photonic excitation of a charge transfer complex of hexamethoxybenzene (HMB) and nitrosonium tetrafluoroborate (NO + BF 4 - ) in acetonitrile afforded fluorescences emission from excited radical cation of HMB (HMB + *). Lifetime of the excited radical ion species was measured to be 7 ps by the pump-probe transient absorption technique. The lifetime was much shorter than that of free radical ion (63 ps), indicating the presence of an interaction between HMB + * and NO in the excited complex. (author)

  2. Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects.

    Science.gov (United States)

    Dysli, Chantal; Quellec, Gwénolé; Abegg, Mathias; Menke, Marcel N; Wolf-Schnurrbusch, Ute; Kowal, Jens; Blatz, Johannes; La Schiazza, Olivier; Leichtle, Alexander B; Wolf, Sebastian; Zinkernagel, Martin S

    2014-04-03

    Fundus autofluorescence (FAF) cannot only be characterized by the intensity or the emission spectrum, but also by its lifetime. As the lifetime of a fluorescent molecule is sensitive to its local microenvironment, this technique may provide more information than fundus autofluorescence imaging. We report here the characteristics and repeatability of FAF lifetime measurements of the human macula using a new fluorescence lifetime imaging ophthalmoscope (FLIO). A total of 31 healthy phakic subjects were included in this study with an age range from 22 to 61 years. For image acquisition, a fluorescence lifetime ophthalmoscope based on a Heidelberg Engineering Spectralis system was used. Fluorescence lifetime maps of the retina were recorded in a short- (498-560 nm) and a long- (560-720 nm) spectral channel. For quantification of fluorescence lifetimes a standard ETDRS grid was used. Mean fluorescence lifetimes were shortest in the fovea, with 208 picoseconds for the short-spectral channel and 239 picoseconds for the long-spectral channel, respectively. Fluorescence lifetimes increased from the central area to the outer ring of the ETDRS grid. The test-retest reliability of FLIO was very high for all ETDRS areas (Spearman's ρ = 0.80 for the short- and 0.97 for the long-spectral channel, P macula in healthy subjects. By using a custom-built software, we were able to quantify fluorescence lifetimes within the ETDRS grid. Establishing a clinically accessible standard against which to measure FAF lifetimes within the retina is a prerequisite for future studies in retinal disease.

  3. Measuring and sorting cell populations expressing isospectral fluorescent proteins with different fluorescence lifetimes.

    Directory of Open Access Journals (Sweden)

    Bryan Sands

    Full Text Available Study of signal transduction in live cells benefits from the ability to visualize and quantify light emitted by fluorescent proteins (XFPs fused to different signaling proteins. However, because cell signaling proteins are often present in small numbers, and because the XFPs themselves are poor fluorophores, the amount of emitted light, and the observable signal in these studies, is often small. An XFP's fluorescence lifetime contains additional information about the immediate environment of the fluorophore that can augment the information from its weak light signal. Here, we constructed and expressed in Saccharomyces cerevisiae variants of Teal Fluorescent Protein (TFP and Citrine that were isospectral but had shorter fluorescence lifetimes, ∼ 1.5 ns vs ∼ 3 ns. We modified microscopic and flow cytometric instruments to measure fluorescence lifetimes in live cells. We developed digital hardware and a measure of lifetime called a "pseudophasor" that we could compute quickly enough to permit sorting by lifetime in flow. We used these abilities to sort mixtures of cells expressing TFP and the short-lifetime TFP variant into subpopulations that were respectively 97% and 94% pure. This work demonstrates the feasibility of using information about fluorescence lifetime to help quantify cell signaling in living cells at the high throughput provided by flow cytometry. Moreover, it demonstrates the feasibility of isolating and recovering subpopulations of cells with different XFP lifetimes for subsequent experimentation.

  4. Standard reference for instrument response function in fluorescence lifetime measurements in visible and near infrared

    International Nuclear Information System (INIS)

    Chib, Rahul; Shah, Sunil; Gryczynski, Zygmunt; Fudala, Rafal; Borejdo, Julian; Gryczynski, Ignacy; Zelent, Bogumil; Corradini, Maria G; Ludescher, Richard D

    2016-01-01

    Allura red (AR) fluorophore, a common dye in the food industry, displays a broad emission spectrum in water (visible-to-near infrared region of the electromagnetic spectrum) and has a remarkably short fluorescence lifetime of about 10 ps. This short lifetime does not depend on the emission (observation) wavelength. We examined time responses of AR fluorescence across emission wavelengths from 550 nm to 750 nm and found that it is an ideal candidate for impulse response functions in fluorescence lifetime measurements. (technical note)

  5. Azadioxatriangulenium: exploring the effect of a 20 ns fluorescence lifetime in fluorescence anisotropy measurements

    Science.gov (United States)

    Bogh, Sidsel A.; Bora, Ilkay; Rosenberg, Martin; Thyrhaug, Erling; Laursen, Bo W.; Just Sørensen, Thomas

    2015-12-01

    Azaoxatriangulenium (ADOTA) has been shown to be highly emissive despite a moderate molar absorption coefficient of the primary electronic transition. As a result, the fluorescence lifetime is ~20 ns, longer than all commonly used red fluorescent organic probes. The electronic transitions in ADOTA are highly polarised (r 0  =  0.38), which in combination with the long fluorescence lifetime extents the size-range of biomolecular weights that can be detected in fluorescence polarisation-based experiments. Here, the rotational dynamics of bovine serum albumin (BSA) are monitored with three different ADOTA derivatives, differing only in constitution of the reactive linker. A detailed study of the degree of labelling, the steady-state anisotropy, and the time-resolved anisotropy of the three different ADOTA-BSA conjugates are reported. The fluorescence quantum yields (ϕ fl) of the free dyes in PBS solution are determined to be ~55%, which is reduced to ~20% in the ADOTA-BSA conjugates. Despite the reduction in ϕ fl, a ~20 ns intensity averaged lifetime is maintained, allowing for the rotational dynamics of BSA to be monitored for up to 100 ns. Thus, ADOTA can be used in fluorescence polarisation assays to fill the gap between commonly used organic dyes and the long luminescence lifetime transition metal complexes. This allows for efficient steady-state fluorescence polarisation assays for detecting binding of analytes with molecular weights of up to 100 kDa.

  6. Fluorescence lifetime based bioassays

    Science.gov (United States)

    Meyer-Almes, Franz-Josef

    2017-12-01

    Fluorescence lifetime (FLT) is a robust intrinsic property and material constant of fluorescent matter. Measuring this important physical indicator has evolved from a laboratory curiosity to a powerful and established technique for a variety of applications in drug discovery, medical diagnostics and basic biological research. This distinct trend was mainly driven by improved and meanwhile affordable laser and detection instrumentation on the one hand, and the development of suitable FLT probes and biological assays on the other. In this process two essential working approaches emerged. The first one is primarily focused on high throughput applications employing biochemical in vitro assays with no requirement for high spatial resolution. The second even more dynamic trend is the significant expansion of assay methods combining highly time and spatially resolved fluorescence data by fluorescence lifetime imaging. The latter approach is currently pursued to enable not only the investigation of immortal tumor cell lines, but also specific tissues or even organs in living animals. This review tries to give an actual overview about the current status of FLT based bioassays and the wide range of application opportunities in biomedical and life science areas. In addition, future trends of FLT technologies will be discussed.

  7. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin

    Science.gov (United States)

    Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander

    1999-05-01

    Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.

  8. Measurements of fluorescence lifetime of group III metalo-8-quinolinolates and their use in analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Y; Hiraki, K; Morishige, K; Takahashi, K [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology; Shigematsu, T

    1976-07-01

    8-Quinolinolates of aluminum, gallium, and indium in chloroform exhibit strong yellowish green fluorescence with an emission maximum at 510, 526, and 528 nm, respectively. The time resolved fluorescence spectra and the fluorescence lifetime properties of these chelates were measured with a time-resolved spectrofluorometer. The fluorescence intensity of these chelates decays exponentially with time t, and obeys the following equation: F=F/sub 0/e-t/tau=F/sub 0/e-k sub(f).t where F/sub 0/ and F are the fluorescence intensity when the exciting light is irradiating and shut off, respectively; tau and k sub(f) being the lifetime and the rate constant for the process of fluorescence emission. The lifetimes of these chelates in chloroform solution at the ordinary temperature were 17.8, 10.1, and 8.4 ns for Al(C/sub 9/H/sub 6/ON)/sub 3/, Ga(C/sub 9/H/sub 6/ON)/sub 3/, and In(C/sub 9/H/sub 6/ON)/sub 3/, respectively. Thus, 8-quinolinolates of group III metals emit the same type radiation with different lifetimes. Between Al-chelate and In-chelate, there were significant difference in the lifetime by 9.4 ns. Then, the logarithmic plot of the composite fluorescence intensity against time is the overlap of some straight lines with different slopes which indicate k sub(f) of various decay processes. The linear portion of the logarithmic plot of the composite fluorescence intensity corresponded to the longer lifetime component (Al-chelate), and by substracting this component from the whole one, the straight line due to the shorter lifetime component (In-chelate) is obtained. Aluminum and indium contents were then determined by comparing the fluorescence intensity of the sample with that of the standard at a definite time (extrapolated to t=0). By using this composite decay curve, the composition of mixtures of nx10/sup -4/ mol/l of Al and In-chelates in chloroform could be determined.

  9. Lifetime measurements

    International Nuclear Information System (INIS)

    Fossan, D.B.; Warburton, E.K.

    1974-01-01

    Lifetime measurements are discussed, concentrating on the electronic technique, the recoil distance method (RDM), and the Doppler shift attenuation method (DSAM). A brief review of several indirect timing techniques is given, and their specific advantages and applicability are considered. The relationship between lifetimes of nuclear states and the nuclear structure information obtained from them is examined. A short discussion of channeling and microwave methods of lifetime measurement is presented. (23 figures, 171 references) (U.S.)

  10. Fluorescence lifetime measurement with confocal endomicroscopy for direct analysis of tissue biochemistry in vivo

    Directory of Open Access Journals (Sweden)

    Youngjae Won

    2016-08-01

    Full Text Available Confocal endomicroscopy is a powerful tool for in vivo real-time imaging at cellular resolution inside a living body without tissue resection. Microscopic fluorescence lifetime measurement can provide information about localized biochemical conditions such as pH and the concentrations of oxygen and calcium. We hypothesized that combining these techniques could assist accurate cancer discrimination by providing both biochemical and morphological information. We designed a dual-mode experimental setup for confocal endomicroscopic imaging and fluorescence lifetime measurement and applied it to a mouse xenograft model of activated human pancreatic cancer generated by subcutaneous injection of AsPC-1 tumor cells. Using this method with pH-sensitive sodium fluorescein injection, we demonstrated discrimination between normal and cancerous tissues in a living mouse. With further development, this method may be useful for clinical cancer detection.

  11. Lifetime measurements

    International Nuclear Information System (INIS)

    Poletti, A.R.

    1976-01-01

    Recent developments in experimental methods of measuring the lifetimes of excited nuclear states is reviewed in three main areas. (a) Doppler Shift Attenuation Measurements (DSAM) Times: 10 -14 - 10 -11 sec.; (b) Recoil Distance Measurements (RDM) Times: 10 -9 - 10 -12 sec.; (c) Direct Electronic Timing Times: down to 10 -10 sec.; A measurement of an excited state lifetime can answer a large number of different questions. Two examples are discussed: (a) The determination of the lifetime of an isomeric transition in 93 Tc and its use in determining an upper limit for the magnitude of the parity non-conserving matrix element - /Hsub(PN)/17/2 + >. (b) The dependence of the strength of M2 transitions on isospin in nuclei in the 1dsub(3/2) -1fsub(7/2) region. (author)

  12. Fluorescence lifetime imaging of skin cancer

    Science.gov (United States)

    Patalay, Rakesh; Talbot, Clifford; Munro, Ian; Breunig, Hans Georg; König, Karsten; Alexandrov, Yuri; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Chris

    2011-03-01

    Fluorescence intensity imaging and fluorescence lifetime imaging microscopy (FLIM) using two photon microscopy (TPM) have been used to study tissue autofluorescence in ex vivo skin cancer samples. A commercially available system (DermaInspect®) was modified to collect fluorescence intensity and lifetimes in two spectral channels using time correlated single photon counting and depth-resolved steady state measurements of the fluorescence emission spectrum. Uniquely, image segmentation has been used to allow fluorescence lifetimes to be calculated for each cell. An analysis of lifetime values obtained from a range of pigmented and non-pigmented lesions will be presented.

  13. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging

    Directory of Open Access Journals (Sweden)

    Zuzana eBurdikova

    2015-03-01

    Full Text Available Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g. pH, redox potential due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM. In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening.

  14. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging.

    Science.gov (United States)

    Burdikova, Zuzana; Svindrych, Zdenek; Pala, Jan; Hickey, Cian D; Wilkinson, Martin G; Panek, Jiri; Auty, Mark A E; Periasamy, Ammasi; Sheehan, Jeremiah J

    2015-01-01

    Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g., pH, redox potential) due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM). In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening.

  15. Three-dimensional fluorescence lifetime tomography

    International Nuclear Information System (INIS)

    Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.

    2005-01-01

    Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores

  16. Characterization of a pulsed x-ray source for fluorescent lifetime measurements

    International Nuclear Information System (INIS)

    Blankespoor, S.C.; Derenzo, S.E.; Moses, W.W.; Rossington, C.S.; Ito, M.; Oba, K.

    1994-01-01

    To search for new, fast, inorganic scintillators, the authors have developed a bench-top pulsed x-ray source for determining fluorescent lifetimes and wavelengths of compounds in crystal or powdered form. This source uses a light-excited x-ray tube which produces x-rays when light from a laser diode strikes its photocathode. The x-ray tube has a tungsten anode, a beryllium exit window, a 30 kV maximum tube bias, and a 50 μA maximum average cathode current. The laser produces 3 x 10 7 photons at 650 nm per ∼100 ps pulse, with up to 10 7 pulses/sec. The time spread for the laser diode, x-ray tube, and a microchannel plate photomultiplier tube is less than 120 ps fwhm. The mean x-ray energy at tube biases of 20, 25, and 30 kV is 9.4, 10.3, and 11.1 keV, respectively. The authors measured 140, 230, and 330 x-ray photons per laser diode pulse per steradian, at tube biases of 20, 25, and 30 kV, respectively. Background x-rays due to dark current occur at a rate of 1 x 10 6 and 3 x 10 6 photons/sec/steradian at biases of 25 and 30 kV, respectively. Data characterizing the x-ray output with an aluminum filter in the x-ray beam are also presented

  17. Precision lifetime measurements

    International Nuclear Information System (INIS)

    Tanner, C.E.

    1994-01-01

    Precision measurements of atomic lifetimes provide important information necessary for testing atomic theory. The authors employ resonant laser excitation of a fast atomic beam to measure excited state lifetimes by observing the decay-in-flight of the emitted fluorescence. A similar technique was used by Gaupp, et al., who reported measurements with precisions of less than 0.2%. Their program includes lifetime measurements of the low lying p states in alkali and alkali like systems. Motivation for this work comes from a need to test the atomic many-body-perturbation theory (MBPT) that is necessary for interpretation of parity nonconservation experiments in atomic cesium. The authors have measured the cesium 6p 2 P 1/2 and 6p 2 P 3/2 state lifetimes to be 34.934±0.094 ns and 30.499±0.070 ns respectively. With minor changes to the apparatus, they have extended their measurements to include the lithium 2p 2 P 1/2 and 2p 2 P 3/2 states

  18. Time variation of fluorescence lifetime in enhanced cyan fluorescence protein

    International Nuclear Information System (INIS)

    Lee, Soonhyouk; Kim, Soo Yong; Park, Kyoungsook; Jeong, Jinyoung; Chung, Bong Hyun; Kim, Sok Won

    2010-01-01

    The lifetime variations of enhanced cyan fluorescence protein (ECFP) in relatively short integration time bins were studied via time-correlated single photon counting (TCSPC) measurement. We observed that minimum photon counts are necessary for the lifetime estimation to achieve a certain range of variance. The conditions to decrease the variance of lifetime were investigated and the channel width of the measurement of TCSPC data was found to be another important factor for the variance of lifetime. Though the lifetime of ECFP is best fit by a double exponential, a mono exponential fit for the same integration time is more stable. The results may be useful in the analysis of photophysical dynamics for ensemble molecules in short measurement time windows.

  19. Segmented frequency-domain fluorescence lifetime measurements: minimizing the effects of photobleaching within a multi-component system.

    Science.gov (United States)

    Marwani, Hadi M; Lowry, Mark; Keating, Patrick; Warner, Isiah M; Cook, Robert L

    2007-11-01

    This study introduces a newly developed frequency segmentation and recombination method for frequency-domain fluorescence lifetime measurements to address the effects of changing fractional contributions over time and minimize the effects of photobleaching within multi-component systems. Frequency segmentation and recombination experiments were evaluated using a two component system consisting of fluorescein and rhodamine B. Comparison of experimental data collected in traditional and segmented fashion with simulated data, generated using different changing fractional contributions, demonstrated the validity of the technique. Frequency segmentation and recombination was also applied to a more complex system consisting of pyrene with Suwannee River fulvic acid reference and was shown to improve recovered lifetimes and fractional intensity contributions. It was observed that photobleaching in both systems led to errors in recovered lifetimes which can complicate the interpretation of lifetime results. Results showed clear evidence that the frequency segmentation and recombination method reduced errors resulting from a changing fractional contribution in a multi-component system, and allowed photobleaching issues to be addressed by commercially available instrumentation.

  20. Fluorescence lifetime imaging using light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Gordon T; Munro, Ian; Poher, Vincent; French, Paul M W; Neil, Mark A A [Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Elson, Daniel S [Institute of Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hares, Jonathan D [Kentech Instruments Ltd, Unit 9, Hall Farm Workshops, South Moreton, Didcot, Oxfordshire, OX11 9AG (United Kingdom)], E-mail: gordon.kennedy@imperial.ac.uk

    2008-05-07

    We demonstrate flexible use of low cost, high-power light emitting diodes as illumination sources for fluorescence lifetime imaging (FLIM). Both time-domain and frequency-domain techniques have been implemented at wavelengths spanning the range 450-640 nm. Additionally, we demonstrate optically sectioned fluorescence lifetime imaging by combining structured illumination with frequency-domain FLIM.

  1. A fusion-spliced near-field optical fiber probe using photonic crystal fiber for nanoscale thermometry based on fluorescence-lifetime measurement of quantum dots.

    Science.gov (United States)

    Fujii, Takuro; Taguchi, Yoshihiro; Saiki, Toshiharu; Nagasaka, Yuji

    2011-01-01

    We have developed a novel nanoscale temperature-measurement method using fluorescence in the near-field called fluorescence near-field optics thermal nanoscopy (Fluor-NOTN). Fluor-NOTN enables the temperature distributions of nanoscale materials to be measured in vivo/in situ. The proposed method measures temperature by detecting the temperature dependent fluorescence lifetimes of Cd/Se quantum dots (QDs). For a high-sensitivity temperature measurement, the auto-fluorescence generated from a fiber probe should be reduced. In order to decrease the noise, we have fabricated a novel near-field optical-fiber probe by fusion-splicing a photonic crystal fiber (PCF) and a conventional single-mode fiber (SMF). The validity of the novel fiber probe was assessed experimentally by evaluating the auto-fluorescence spectra of the PCF. Due to the decrease of auto-fluorescence, a six- to ten-fold increase of S/N in the near-field fluorescence lifetime detection was achieved with the newly fabricated fusion-spliced near-field optical fiber probe. Additionally, the near-field fluorescence lifetime of the quantum dots was successfully measured by the fabricated fusion-spliced near-field optical fiber probe at room temperature, and was estimated to be 10.0 ns.

  2. Nuclear lifetime measurement

    International Nuclear Information System (INIS)

    Guillaume, Georges

    Three direct techniques of lifetime measurement are emphasized: electronic methods and two methods based on the Doppler effect (the recoil distance methods or RDM, the Doppler shift attenuation methods or DSAM). Said direct methods are concerned with the direct measurement of the radioactive decay constants of nuclear excited states. They allow lifetimes of nucleus bound states whose deexcitations occur by electromagnetic transitions, to be determined. Other methods for measuring lifetimes are also examined: microwave techniques and those involving the blocking effect in crystals (direct methods) and also various indirect methods of obtaining lifetimes (γ resonance scattering, capture reactions, inelastic electron and nucleus scattering, and Coulomb deexcitation) [fr

  3. Remote UV Fluorescence Lifetime Spectrometer, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop, demonstrate, and deliver to NASA an innovative, portable, and power efficient Remote UV Fluorescence Lifetime Spectrometer...

  4. In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique

    NARCIS (Netherlands)

    Mik, Egbert G.; Johannes, Tanja; Zuurbier, Coert J.; Heinen, Andre; Houben-Weerts, Judith H. P. M.; Balestra, Gianmarco M.; Stap, Jan; Beek, Johan F.; Ince, Can

    2008-01-01

    Mitochondrial oxygen tension (mitoPO(2)) is a key parameter for cellular function, which is considered to be affected under various pathophysiological circumstances. Although many techniques for assessing in vivo oxygenation are available, no technique for measuring mitoPO(2) in vivo exists. Here we

  5. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging

    OpenAIRE

    Zuzana eBurdikova; Zdenek eSvindrych; Jan ePala; Cian eHickey; Martin G. Wilkinson; Jiri ePanek; Mark A. E. Auty; Ammasi ePeriasamy; Jeremiah J. Sheehan

    2015-01-01

    Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g., pH, redox potential) due to their metabolic activity. While cheese pH may be measured at macro level there remains a signi...

  6. Fluorescence lifetime imaging of oxygen in dental biofilm

    Science.gov (United States)

    Gerritsen, Hans C.; de Grauw, Cees J.

    2000-12-01

    Dental biofilm consists of micro-colonies of bacteria embedded in a matrix of polysaccharides and salivary proteins. pH and oxygen concentration are of great importance in dental biofilm. Both can be measured using fluorescence techniques. The imaging of dental biofilm is complicated by the thickness of the biofilms that can be up to several hundred micrometers thick. Here, we employed a combination of two-photon excitation microscopy with fluorescence lifetime imaging to quantify the oxygen concentration in dental biofilm. Collisional quenching of fluorescent probes by molecular oxygen leads to a reduction of the fluorescence lifetime of the probe. We employed this mechanism to measure the oxygen concentration distribution in dental biofilm by means of fluorescence lifetime imaging. Here, TRIS Ruthenium chloride hydrate was used as an oxygen probe. A calibration procedure on buffers was use to measure the lifetime response of this Ruthenium probe. The results are in agreement with the Stern-Volmer equation. A linear relation was found between the ratio of the unquenched and the quenched lifetime and the oxygen concentration. The biofilm fluorescence lifetime imaging results show a strong oxygen gradient at the buffer - biofilm interface and the average oxygen concentration in the biofilm amounted to 50 μM.

  7. Fluorescence lifetime measurements to determine the core-shell nanostructure of FITC-doped silica nanoparticles: An optical approach to evaluate nanoparticle photostability

    International Nuclear Information System (INIS)

    Santra, Swadeshmukul; Liesenfeld, Bernd; Bertolino, Chiara; Dutta, Debamitra; Cao Zehui; Tan Weihong; Moudgil, Brij M.; Mericle, Robert A.

    2006-01-01

    In this paper, we described a novel fluorescence lifetime-based approach to determine the core-shell nanostructure of FITC-(fluorescein isothiocyanate, isomer I) doped fluorescent silica nanoparticles (FSNPs). Because of phase homogeneity between the core and the shell, electron microscopic technique could not be used to characterize such core-shell nanostructure. Our optical approach not only revealed the core-shell nanostructure of FSNPs but also evaluated photobleaching of FSNPs both in the solvated and non-solvated (dry) states. The FSNPs were produced via Stoeber's method by hydrolysis and co-condensation reaction of tetraethylorthosilicate (TEOS) and fluorescein linked (3-aminopropyl)triethoxysilane (FITC-APTS conjugate) in the presence of ammonium hydroxide catalyst. To obtain a pure silica surface coating, FSNPs were then post-coated with TEOS. The average particle size was 135 nm as determined by TEM (transmission electron microscope) measurements. Fluorescence excitation and emission spectral data demonstrated successful doping of FITC dye molecules in FSNPs. Fluorescence lifetime data revealed that approximately 62% of dye molecules remained in the solvated silica shell, while 38% of dye molecules remained in the non-solvated (dry) silica core. Photobleaching experiments of FSNPs were conducted both in DI water (solution state) and in air (dry state). Severe photobleaching of FSNPs was observed in air. However, FSNPs were moderately photostable in the solution state. Photostability of FSNPs in both solution and dry states was explained on the basis of fluorescence lifetime data

  8. A high-throughput direct fluorescence resonance energy transfer-based assay for analyzing apoptotic proteases using flow cytometry and fluorescence lifetime measurements.

    Science.gov (United States)

    Suzuki, Miho; Sakata, Ichiro; Sakai, Takafumi; Tomioka, Hiroaki; Nishigaki, Koichi; Tramier, Marc; Coppey-Moisan, Maïté

    2015-12-15

    Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput (HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are required to facilitate research. In this study, we developed a high-throughput system to profile cellular populations in terms of time- or dose-dependent responses to apoptotic stimulations because apoptotic inducers are potent anticancer drugs. We previously established assay systems involving protease to monitor live cells for apoptosis using tunable fluorescence resonance energy transfer (FRET)-based bioprobes. These assays can be used for microscopic analyses or fluorescence-activated cell sorting. In this study, we developed FRET-based bioprobes to detect the activity of the apoptotic markers caspase-3 and caspase-9 via changes in bioprobe fluorescence lifetimes using a flow cytometer for direct estimation of FRET efficiencies. Different patterns of changes in the fluorescence lifetimes of these markers during apoptosis were observed, indicating a relationship between discrete steps in the apoptosis process. The findings demonstrate the feasibility of evaluating collective cellular dynamics during apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Clinical results of fluorescence lifetime imaging in ophthalmology

    Science.gov (United States)

    Schweitzer, D.; Quick, S.; Klemm, M.; Hammer, M.; Jentsch, S.; Dawczynski, J.; Becker, W.

    2009-07-01

    A laser scanner ophthalmoscope was developed for in vivo fluorescence lifetime measurements at the human retina. Measurements were performed in 30 degree fundus images. The fundus was excited by pulses of 75 ps (FWHM). The dynamic fluorescence was detected in two spectral channels K1(490-560nm), K2(560-700 nm) by time-correlated single photon counting. The decay of fluorescence was three-exponentially. Local and global alterations in lifetimes were found between healthy subjects and patients suffering from age-related macular degeneration, diabetic retinopathy, and vessel occlusion. The lifetimes T1, T2, and T3 in both channels are changed to longer values in AMD and diabetic retinopathy in comparison with healthy subjects. The lifetime T2 in K1 is most sensitive to metabolic alterations in branch arterial vessel occlusion.

  10. Selective plane illumination microscopy (SPIM) with time-domain fluorescence lifetime imaging microscopy (FLIM) for volumetric measurement of cleared mouse brain samples

    Science.gov (United States)

    Funane, Tsukasa; Hou, Steven S.; Zoltowska, Katarzyna Marta; van Veluw, Susanne J.; Berezovska, Oksana; Kumar, Anand T. N.; Bacskai, Brian J.

    2018-05-01

    We have developed an imaging technique which combines selective plane illumination microscopy with time-domain fluorescence lifetime imaging microscopy (SPIM-FLIM) for three-dimensional volumetric imaging of cleared mouse brains with micro- to mesoscopic resolution. The main features of the microscope include a wavelength-adjustable pulsed laser source (Ti:sapphire) (near-infrared) laser, a BiBO frequency-doubling photonic crystal, a liquid chamber, an electrically focus-tunable lens, a cuvette based sample holder, and an air (dry) objective lens. The performance of the system was evaluated with a lifetime reference dye and micro-bead phantom measurements. Intensity and lifetime maps of three-dimensional human embryonic kidney (HEK) cell culture samples and cleared mouse brain samples expressing green fluorescent protein (GFP) (donor only) and green and red fluorescent protein [positive Förster (fluorescence) resonance energy transfer] were acquired. The results show that the SPIM-FLIM system can be used for sample sizes ranging from single cells to whole mouse organs and can serve as a powerful tool for medical and biological research.

  11. B meson lifetime measurement

    International Nuclear Information System (INIS)

    Piccolo, M.

    1989-01-01

    The lifetime of hadrons containing b-quark has been the subject of extensive experimental work and theoretical speculation; its importance is due to implications on some of the fundamental parameters of the Standard Model, such as the top quark mass and the mixing angles. Since the pioneer measurements of the MAC and MARK II collaborations at PEP in 1983 the progress has been impressive; but many issues still remain open and await further study. In this paper the field's present status is discussed. An overview of the theoretical motivations for this measurements in the Standard Model framework is done. Then the experimental techniques used are reviewed, emphasizing the most recent measurements. A comparison of the results obtained is done and systematic errors are discussed. In conclusion there are some remarks on the further developments foreseen in the near future

  12. Quantitative time domain analysis of lifetime-based Förster resonant energy transfer measurements with fluorescent proteins: Static random isotropic fluorophore orientation distributions

    DEFF Research Database (Denmark)

    Alexandrov, Yuriy; Nikolic, Dino Solar; Dunsby, Christopher

    2018-01-01

    Förster resonant energy transfer (FRET) measurements are widely used to obtain information about molecular interactions and conformations through the dependence of FRET efficiency on the proximity of donor and acceptor fluorophores. Fluorescence lifetime measurements can provide quantitative...... into new software for fitting donor emission decay profiles. Calculated FRET parameters, including molar population fractions, are compared for the analysis of simulated and experimental FRET data under the assumption of static and dynamic fluorophores and the intermediate regimes between fully dynamic...... analysis of FRET efficiency and interacting population fraction. Many FRET experiments exploit the highly specific labelling of genetically expressed fluorescent proteins, applicable in live cells and organisms. Unfortunately, the typical assumption of fast randomization of fluorophore orientations...

  13. Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations.

    Science.gov (United States)

    Hosny, Neveen A; Lee, David A; Knight, Martin M

    2012-01-01

    Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)(3)](2+), was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)(3)](2+) characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.

  14. A Compact Fluorescence Lifetime Excitation-Emission Spectrometer (FLEXEMS) for Detecting Trace Organics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Small Business Innovative Research (SBIR) effort, Leiden Measurement Technology (LMT) proposes to design and build the Fluorescence Lifetime Excitation...

  15. A Compact Fluorescence Lifetime Excitation-Emission Spectrometer (FLEXEMS) for Detecting Trace Organics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Small Business Innovative Research (SBIR) effort, Leiden Measurement Technology (LMT) proposes to design and build the Fluorescence Lifetime Excitation...

  16. An Automated System for the Control of, and Data Acquisition from Multiphoton Ionization and Fluorescence Lifetime Measurements.

    Science.gov (United States)

    1986-09-01

    Quanta- Ray company , which also supplied the laser used for the multiphoton work. The, burner was mounted on a translator stage from Velmex, Inc...and no longer exists as a process in the system. When the user analysis program has completed, the lifetime program is again automatically re-started...KCHAR) RETURN 100 FORMAT(I3) 101 FORMAT(F7.2) END SUBROUTINE LAB4 FODA SE"oteD C This routine puts the label "INTEGRAL FROM DATA SET" on the MDP C screen

  17. Theoretical lifetimes and fluorescence yields for multiply-ionized fluorine

    International Nuclear Information System (INIS)

    Tunnell, T.W.; Can, C.; Bhalla, C.P.

    1978-01-01

    Theoretical lifetimes and multiplet partial fluorescence yields for various fluorine ions with a single K-shell vacancy were calculated. For few-electron systems, the lifetimes and line fluorescence yields were computed in the intermediate coupling scheme with the inclusion of the effects arising from configuration interactions. 6 references

  18. Modulated electron-multiplied fluorescence lifetime imaging microscope: all-solid-state camera for fluorescence lifetime imaging.

    Science.gov (United States)

    Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted

    2012-12-01

    We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.

  19. Refractive Index Sensing of Green Fluorescent Proteins in Living Cells Using Fluorescence Lifetime Imaging Microscopy

    Science.gov (United States)

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K.; Roos, Dirk; Otto, Cees

    2008-01-01

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91phox, which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91phox are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91phox. By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91phox are ∼1.38 and ∼1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane. PMID:18223002

  20. Measurement of Charm Meson Lifetimes

    International Nuclear Information System (INIS)

    Bonvicini, G.; Cinabro, D.; Greene, R.; Perera, L.P.; Zhou, G.J.; Chan, S.; Eigen, G.; Lipeles, E.; Schmidtler, M.; Shapiro, A.; Sun, W.M.; Urheim, J.; Weinstein, A.J.; Wuerthwein, F.; Jaffe, D.E.; Masek, G.; Paar, H.P.; Potter, E.M.; Prell, S.; Sharma, V.; Asner, D.M.; Eppich, A.; Gronberg, J.; Hill, T.S.; Korte, C.M.; Lange, D.J.; Morrison, R.J.; Nelson, H.N.; Nelson, T.K.; Roberts, D.; Tajima, H.; Behrens, B.H.; Ford, W.T.; Gritsan, A.; Krieg, H.; Roy, J.; Smith, J.G.; Alexander, J.P.; Baker, R.; Bebek, C.; Berger, B.E.; Berkelman, K.; Boisvert, V.; Cassel, D.G.; Crowcroft, D.S.; Dickson, M.; Dombrowski, S. von; Drell, P.S.; Dumas, D.J.; Ecklund, K.M.; Ehrlich, R.; Foland, A.D.; Gaidarev, P.; Gibbons, L.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Henderson, S.; Hopman, P.I.; Katayama, N.; Kreinick, D.L.; Lee, T.; Liu, Y.; Meyer, T.O.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Ogg, M.; Patterson, J.R.; Peterson, D.; Riley, D.; Soffer, A.; Thayer, J.G.; Thies, P.G.; Valant-Spaight, B.; Warburton, A.; Ward, C.; Athanas, M.; Avery, P.; Jones, C.D.; Lohner, M.; Prescott, C.; Rubiera, A.I.; Yelton, J.; Zheng, J.; Brandenburg, G.; Briere, R.A.; Ershov, A.; Gao, Y.S.; Kim, D.Y.; Wilson, R.; Browder, T.E.; Li, Y.; Rodriguez, J.L.; Yamamoto, H.; Bergfeld, T.; Eisenstein, B.I.; Ernst, J.; Gladding, G.E.; Gollin, G.D

    1999-01-01

    We report measurements of the D 0 , D + , and D + s meson lifetimes using 3.7 fb -1 of e + e - annihilation data collected near the Υ(4S) resonance with the CLEO detector. The measured lifetimes of the D 0 , D + , and D + s mesons are 408.5±4.1 +3.5 -3.4 fs , 1033.6±22.1 +9.9 -12.7 fs , and 486.3±15.0 +4.9 -5.1 fs . The precision of these lifetimes are comparable to those of the best previous measurements, and the systematic errors are very different. In a single experiment we find that the ratio of the D + s and D 0 lifetimes is 1.19±0.04 . copyright 1999 The American Physical Society

  1. The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging.

    Science.gov (United States)

    Poëa-Guyon, Sandrine; Pasquier, Hélène; Mérola, Fabienne; Morel, Nicolas; Erard, Marie

    2013-05-01

    pH is an important parameter that affects many functions of live cells, from protein structure or function to several crucial steps of their metabolism. Genetically encoded pH sensors based on pH-sensitive fluorescent proteins have been developed and used to monitor the pH of intracellular compartments. The quantitative analysis of pH variations can be performed either by ratiometric or fluorescence lifetime detection. However, most available genetically encoded pH sensors are based on green and yellow fluorescent proteins and are not compatible with multicolor approaches. Taking advantage of the strong pH sensitivity of enhanced cyan fluorescent protein (ECFP), we demonstrate here its suitability as a sensitive pH sensor using fluorescence lifetime imaging. The intracellular ECFP lifetime undergoes large changes (32 %) in the pH 5 to pH 7 range, which allows accurate pH measurements to better than 0.2 pH units. By fusion of ECFP with the granular chromogranin A, we successfully measured the pH in secretory granules of PC12 cells, and we performed a kinetic analysis of intragranular pH variations in living cells exposed to ammonium chloride.

  2. Gated Detection Measurements of Phosphorescence Lifetimes

    Directory of Open Access Journals (Sweden)

    Yordan Kostov

    2004-10-01

    Full Text Available A low-cost, gated system for measurements of phosphorescence lifetimes is presented. An extensive description of the system operating principles and metrological characteristics is given. Remarkably, the system operates without optical filtering of the LED excitation source. A description of a practical system is also given and its performance is discussed. Because the device effectively suppresses high-level background fluorescence and scattered light, it is expected to find wide-spread application in bioprocess, environmental and biomedical fields.

  3. Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods

    International Nuclear Information System (INIS)

    Vishwanath, Karthik; Mycek, Mary-Ann; Pogue, Brian

    2002-01-01

    A Monte Carlo model developed to simulate time-resolved fluorescence propagation in a semi-infinite turbid medium was validated against previously reported theoretical and computational results. Model simulations were compared to experimental measurements of fluorescence spectra and lifetimes on tissue-simulating phantoms for single and dual fibre-optic probe geometries. Experiments and simulations using a single probe revealed that scattering-induced artefacts appeared in fluorescence emission spectra, while fluorescence lifetimes were unchanged. Although fluorescence lifetime measurements are generally more robust to scattering artefacts than are measurements of fluorescence spectra, in the dual-probe geometry scattering-induced changes in apparent lifetime were predicted both from diffusion theory and via Monte Carlo simulation, as well as measured experimentally. In all cases, the recovered apparent lifetime increased with increasing scattering and increasing source-detector separation. Diffusion theory consistently underestimated the magnitude of these increases in apparent lifetime (predicting a maximum increase of ∼15%), while Monte Carlo simulations and experiment were closely matched (showing increases as large as 30%). These results indicate that quantitative simulations of time-resolved fluorescence propagation in turbid media will be important for accurate recovery of fluorophore lifetimes in biological spectroscopy and imaging applications. (author)

  4. Fluorescence lifetime assays: current advances and applications in drug discovery.

    Science.gov (United States)

    Pritz, Stephan; Doering, Klaus; Woelcke, Julian; Hassiepen, Ulrich

    2011-06-01

    Fluorescence lifetime assays complement the portfolio of established assay formats available in drug discovery, particularly with the recent advances in microplate readers and the commercial availability of novel fluorescent labels. Fluorescence lifetime assists in lowering complexity of compound screening assays, affording a modular, toolbox-like approach to assay development and yielding robust homogeneous assays. To date, materials and procedures have been reported for biochemical assays on proteases, as well as on protein kinases and phosphatases. This article gives an overview of two assay families, distinguished by the origin of the fluorescence signal modulation. The pharmaceutical industry demands techniques with a robust, integrated compound profiling process and short turnaround times. Fluorescence lifetime assays have already helped the drug discovery field, in this sense, by enhancing productivity during the hit-to-lead and lead optimization phases. Future work will focus on covering other biochemical molecular modifications by investigating the detailed photo-physical mechanisms underlying the fluorescence signal.

  5. Fluorescence lifetime, dipole orientation and bilayer polymer films

    Science.gov (United States)

    Ho, Xuan Long; Chen, Po-Jui; Woon, Wei-Yen; White, Jonathon David

    2017-10-01

    Bilayer films consisting of the optically transparent polymers, polystyrene (PS) and poly(methyl methacrylate) (PMMA) were spin-cast on glass substrates. The upper 13.5 nm layer (PS) was lightly doped with Rhodamine-6 G (RH6G) or MEH-PPV. While the fluorescence of MEH-PPV was independent of PMMA thickness, the lifetime of RH6G increased 3-fold as the underlying PMMA thickness increased from 0 to 500 nm while the collected flux decreased suggesting a reorientation of the smaller molecule's dipole with respect to the air-polymer interface with PMMA thickness. This suggests lifetime may find application for nondestructive thickness measurements of transparent films with sub-micron lateral resolution and large range.

  6. Refractive index sensing using Fluorescence Lifetime Imaging (FLIM)

    International Nuclear Information System (INIS)

    Jones, Carolyn; Suhling, Klaus

    2006-01-01

    The fluorescence lifetime is a function of the refractive index of the fluorophore's environment, for example in the case of the biologically important green fluorescent protein (GFP). In order to address the question whether this effect can be exploited to image the local environment of specific proteins in cell biology, we need to determine the distance over which the fluorophore's lifetime is sensitive to the refractive index. To this end, we employ Fluorescence Lifetime Imaging (FLIM) of fluorescein in NaOH buffer at an interface. This approach allows us to map the fluorescence lifetime as a function of distance from a buffer/air and buffer/oil interface. Preliminary data show that the fluorescence lifetime of fluorescein increases near a buffer/air interface and decreases near a buffer/oil interface. The range over which this fluorescence lifetime change occurs is found to be of the order several μm which is consistent with a theoretical model based on the full width at half maximum of the emission spectrum proposed by Toptygin

  7. Fluorescence lifetime evaluation of whole soils from the Amazon rainforest.

    Science.gov (United States)

    Nicolodelli, Gustavo; Tadini, Amanda Maria; Nogueira, Marcelo Saito; Pratavieira, Sebastião; Mounier, Stephane; Huaman, Jose Luis Clabel; Dos Santos, Cléber Hilário; Montes, Célia Regina; Milori, Débora Marcondes Bastos Pereira

    2017-08-20

    Time-resolved fluorescence spectroscopy (TRFS) is a new tool that can be used to investigate processes of interaction between metal ions and organic matter (OM) in soils, providing a specific analysis of the structure and dynamics of macromolecules. To the best of our knowledge, there are no studies in the literature reporting the use of this technique applied to whole/non-fractionated soil samples, making it a potential method for use in future studies. This work describes the use of TRFS to evaluate the fluorescence lifetimes of OM of whole soils from the Amazon region. Analysis was made of pellets of soils from an oxisol-spodosol system, collected in São Gabriel da Cachoeira (Amazonas, Brazil). The fluorescence lifetimes in the oxisol-spodosol system were attributed to two different fluorophores. One was related to complexation of an OM fraction with metals, resulting in a shorter fluorophore lifetime. A short fluorescence lifetime (2-12 ns) could be associated with simpler structures of the OM, while a long lifetime (19-66 ns) was associated with more complex OM structures. This new TRFS technique for analysis of the fluorescence lifetime in whole soil samples complies with the principles of green chemistry.

  8. Fluorescence lifetime imaging microscopy using near-infrared contrast agents.

    Science.gov (United States)

    Nothdurft, R; Sarder, P; Bloch, S; Culver, J; Achilefu, S

    2012-08-01

    Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. © 2012 The Author Journal of Microscopy © 2012 Royal Microscopical Society.

  9. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection.

    Science.gov (United States)

    Lei, Rong; Jiang, Hongshan; Hu, Fan; Yan, Jin; Zhu, Shuifang

    2017-02-01

    Leaf chlorosis induced by plant virus infection has a short fluorescence lifetime, which reflects damaged photosynthetic complexes and degraded chloroplasts. Plant viruses often induce chlorosis and necrosis, which are intimately related to photosynthetic functions. Chlorophyll fluorescence lifetime measurement is a valuable noninvasive tool for analyzing photosynthetic processes and is a sensitive indicator of the environment surrounding the fluorescent molecules. In this study, our central goal was to explore the effect of viral infection on photosynthesis by employing chlorophyll fluorescence lifetime imaging (FLIM), steady-state fluorescence, non-photochemical quenching (NPQ), transmission electron microscopy (TEM), and pigment analysis. The data indicated that the chlorophyll fluorescence lifetime of chlorotic leaves was significantly shorter than that of healthy control leaves, and the fitted short lifetime component of chlorophyll fluorescence of chlorotic leaves was dominant. This dominant short lifetime component may result from damage to the structure of thylakoid, which was confirmed by TEM. The NPQ value of chlorotic leaves was slightly higher than that of healthy green leaves, which can be explained by increased neoxanthin, lutein and violaxanthin content relative to chlorophyll a. The difference in NPQ is slight, but FLIM can provide simple and direct characterization of PSII structure and photosynthetic function. Therefore, this technique shows great potential as a simple and rapid method for studying mechanisms of plant virus infection.

  10. Lifetime measurement in 144Gd

    International Nuclear Information System (INIS)

    Jensen, H.J.; Gast, W.; Georgiev, A.; Jaeger, H.M.; Lieder, R.M.; Utzelmann, S.; Gierlik, M.; Morek, T.; Przestrzelska, K.; Rzaca-Urban, T.; Dewald, A.; Kuehn, R.; Meier, C.; Ender, C.; Haertlein, T.

    1996-01-01

    The lifetime measurements of excited states in 144 Gd were carried out using the Koeln RDM-plunger together with the 2 x 3 CLUSTER detector setup in Heidelberg. The nucleus was populated in the 100 Mo( 48 Ti,4n) 144 Gd reaction at a beam energy of 205 MeV giving a recoil velocity of v/c = 2.6 %. Three and higher fold γ-ray coincidences were measured at 12 target-stopper distances ranged from 0 to 400 μm. Both the dipole and quadrupole bands in 144 Gd have been observed. The analysis is in progress

  11. Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors

    Science.gov (United States)

    Carlson, Marjorie; Watson, Adrienne L.; Anderson, Leah; Largaespada, David A.; Provenzano, Paolo P.

    2017-11-01

    Doxorubicin is a commonly used chemotherapeutic employed to treat multiple human cancers, including numerous sarcomas and carcinomas. Furthermore, doxorubicin possesses strong fluorescent properties that make it an ideal reagent for modeling drug delivery by examining its distribution in cells and tissues. However, while doxorubicin fluorescence and lifetime have been imaged in live tissue, its behavior in archival samples that frequently result from drug and treatment studies in human and animal patients, and murine models of human cancer, has to date been largely unexplored. Here, we demonstrate imaging of doxorubicin intensity and lifetimes in archival formalin-fixed paraffin-embedded sections from mouse models of human cancer with multiphoton excitation and multiphoton fluorescence lifetime imaging microscopy (FLIM). Multiphoton excitation imaging reveals robust doxorubicin emission in tissue sections and captures spatial heterogeneity in cells and tissues. However, quantifying the amount of doxorubicin signal in distinct cell compartments, particularly the nucleus, often remains challenging due to strong signals in multiple compartments. The addition of FLIM analysis to display the spatial distribution of excited state lifetimes clearly distinguishes between signals in distinct compartments such as the cell nuclei versus cytoplasm and allows for quantification of doxorubicin signal in each compartment. Furthermore, we observed a shift in lifetime values in the nuclei of transformed cells versus nontransformed cells, suggesting a possible diagnostic role for doxorubicin lifetime imaging to distinguish normal versus transformed cells. Thus, data here demonstrate that multiphoton FLIM is a highly sensitive platform for imaging doxorubicin distribution in normal and diseased archival tissues.

  12. Mesh adaptation technique for Fourier-domain fluorescence lifetime imaging

    International Nuclear Information System (INIS)

    Soloviev, Vadim Y.

    2006-01-01

    A novel adaptive mesh technique in the Fourier domain is introduced for problems in fluorescence lifetime imaging. A dynamical adaptation of the three-dimensional scheme based on the finite volume formulation reduces computational time and balances the ill-posed nature of the inverse problem. Light propagation in the medium is modeled by the telegraph equation, while the lifetime reconstruction algorithm is derived from the Fredholm integral equation of the first kind. Stability and computational efficiency of the method are demonstrated by image reconstruction of two spherical fluorescent objects embedded in a tissue phantom

  13. Lifetime measurement in 136Pm

    International Nuclear Information System (INIS)

    Toney, D.; Zhong, Q.; De Angelis, G.

    2005-01-01

    The aim of the present work is to investigate the electromagnetic transition probabilities in the doublet bands of 136 Pm. These two bands have been observed up to Iπ = (21 + ). Contrary to the case of 134 Pr, the B(M1)/B(E2) ratios take similar values within the error bars in 136 Pm. This is a strong indication that there is considerable difference between the two nuclei. However, a lifetime measurement in 136 Pm is needed to shed light on the scale and the origin of the difference

  14. An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy

    International Nuclear Information System (INIS)

    Dunsby, C; Lanigan, P M P; McGinty, J; Elson, D S; Requejo-Isidro, J; Munro, I; Galletly, N; McCann, F; Treanor, B; Oenfelt, B; Davis, D M; Neil, M A A; French, P M W

    2004-01-01

    Fluorescence imaging is used widely in microscopy and macroscopic imaging applications for fields ranging from biomedicine to materials science. A critical component for any fluorescence imaging system is the excitation source. Traditionally, wide-field systems use filtered thermal or arc-generated white light sources, while point scanning confocal microscope systems require spatially coherent (point-like) laser sources. Unfortunately, the limited range of visible wavelengths available from conventional laser sources constrains the design and usefulness of fluorescent probes in confocal microscopy. A 'hands-off' laser-like source, electronically tunable across the visible spectrum, would be invaluable for fluorescence imaging and provide new opportunities, e.g. automated excitation fingerprinting and in situ measurement of excitation cross-sections. Yet more information can be obtained using fluorescence lifetime imaging (FLIM), which requires that the light source be pulsed or rapidly modulated. We show how a white light continuum, generated by injecting femtosecond optical radiation into a micro-structured optical fibre, coupled with a simple prism-based tunable filter arrangement, can fulfil all these roles as a continuously electronically tunable (435-1150 nm) visible ultrafast light source in confocal, wide-field and FLIM systems

  15. Time-resolved laser fluorescence spectroscopy of organic ligands by europium: Fluorescence quenching and lifetime properties

    Science.gov (United States)

    Nouhi, A.; Hajjoul, H.; Redon, R.; Gagné, J. P.; Mounier, S.

    2018-03-01

    Time-resolved Laser Fluorescence Spectroscopy (TRLFS) has proved its usefulness in the fields of biophysics, life science and geochemistry to characterize the fluorescence probe molecule with its chemical environment. The purpose of this study is to demonstrate the applicability of this powerful technique combined with Steady-State (S-S) measurements. A multi-mode factor analysis, in particular CP/PARAFAC, was used to analyze the interaction between Europium (Eu) and Humic substances (HSs) extracted from Saint Lawrence Estuary in Canada. The Saint Lawrence system is a semi-enclosed water stream with connections to the Atlantic Ocean and is an excellent natural laboratory. CP/PARAFAC applied to fluorescence S-S data allows introspecting ligands-metal interactions and the one-site 1:1 modeling gives information about the stability constants. From the spectral signatures and decay lifetimes data given by TRLFS, one can deduce the fluorescence quenching which modifies the fluorescence and discuss its mechanisms. Results indicated a relatively strong binding ability between europium and humic substances samples (Log K value varies from 3.38 to 5.08 at pH 7.00). Using the Stern-Volmer plot, it has been concluded that static and dynamic quenching takes places in the case of salicylic acid and europium interaction while for HSs interaction only a static quenching is observed.

  16. Two-dimensional fluorescence lifetime correlation spectroscopy. 2. Application.

    Science.gov (United States)

    Ishii, Kunihiko; Tahara, Tahei

    2013-10-03

    In the preceding article, we introduced the theoretical framework of two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS). In this article, we report the experimental implementation of 2D FLCS. In this method, two-dimensional emission-delay correlation maps are constructed from the photon data obtained with the time-correlated single photon counting (TCSPC), and then they are converted to 2D lifetime correlation maps by the inverse Laplace transform. We develop a numerical method to realize reliable transformation, employing the maximum entropy method (MEM). We apply the developed actual 2D FLCS to two real systems, a dye mixture and a DNA hairpin. For the dye mixture, we show that 2D FLCS is experimentally feasible and that it can identify different species in an inhomogeneous sample without any prior knowledge. The application to the DNA hairpin demonstrates that 2D FLCS can disclose microsecond spontaneous dynamics of biological molecules in a visually comprehensible manner, through identifying species as unique lifetime distributions. A FRET pair is attached to the both ends of the DNA hairpin, and the different structures of the DNA hairpin are distinguished as different fluorescence lifetimes in 2D FLCS. By constructing the 2D correlation maps of the fluorescence lifetime of the FRET donor, the equilibrium dynamics between the open and the closed forms of the DNA hairpin is clearly observed as the appearance of the cross peaks between the corresponding fluorescence lifetimes. This equilibrium dynamics of the DNA hairpin is clearly separated from the acceptor-missing DNA that appears as an isolated diagonal peak in the 2D maps. The present study clearly shows that newly developed 2D FLCS can disclose spontaneous structural dynamics of biological molecules with microsecond time resolution.

  17. Nanoantenna array-induced fluorescence enhancement and reduced lifetimes

    DEFF Research Database (Denmark)

    Bakker, R. M.; Drachev, V. P.; Liu, Z.

    2008-01-01

    Enhanced fluorescence is observed from dye molecules interacting with optical nanoantenna arrays. Elliptical gold dimers form individual nanoantennae with tunable plasmon resonances depending upon the geometry of the two particles and the size of the gap between them. A fluorescent dye, Rhodamine...... 800, is uniformly embedded in a dielectric host that coats the nanoantennae. The nanoantennae act to enhance the dye absorption. In turn, emission from the dye drives the plasmon resonance of the antennae; the nanoantennae act to enhance the fluorescence signal and change the angular distribution...... of emission. These effects depend upon the overlap of the plasmon resonance with the excitation wavelength and the fluorescence emission band. A decreased fluorescence lifetime is observed along with highly polarized emission that displays the characteristics of the nanoantenna's dipole mode. Being able...

  18. Measurement of the BS lifetime

    International Nuclear Information System (INIS)

    Siccama, I.

    1996-01-01

    This thesis presents a measurement of the B s lifetime using 3 million hadronic Z decays collected by the DELPHI detector at LEP from 1991 to 1994. Decays of B s mesons are tagged by the reconstruction of a D s - →φπ - or D s - →K *0 K - decay (including the charge conjugated states of these decay modes). The decay time is obtained by reconstructing both the B s momentum and the B s flight distance. The combined result for the D s -lepton and D s -hadron samples is: τ(B s )=1.54±0.31±0.15 ps where the first error is statistical and the second is systematic. (orig./HSI)

  19. Portable fluorescence lifetime spectroscopy system for in-situ interrogation of biological tissues

    Science.gov (United States)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Teixeira Rosa, Ramon Gabriel; Salvio, Ana Gabriela; Pratavieira, Sebastião; Kurachi, Cristina

    2017-12-01

    Fluorescence spectroscopy and lifetime techniques are potential methods for optical diagnosis and characterization of biological tissues with an in-situ, fast, and noninvasive interrogation. Several diseases may be diagnosed due to differences in the fluorescence spectra of targeted fluorophores, when, these spectra are similar, considering steady-state fluorescence, others may be detected by monitoring their fluorescence lifetime. Despite this complementarity, most of the current fluorescence lifetime systems are not robust and portable, and not being feasible for clinical applications. We describe the assembly of a fluorescence lifetime spectroscopy system in a suitcase, its characterization, and validation with clinical measurements of skin lesions. The assembled system is all encased and robust, maintaining its mechanical, electrical, and optical stability during transportation, and is feasible for clinical measurements. The instrument response function measured was about 300 ps, and the system is properly calibrated. At the clinical study, the system showed to be reliable, and the achieved spectroscopy results support its potential use as an auxiliary tool for skin diagnostics.

  20. Portable fluorescence lifetime spectroscopy system for in-situ interrogation of biological tissues.

    Science.gov (United States)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Teixeira Rosa, Ramon Gabriel; Salvio, Ana Gabriela; Pratavieira, Sebastião; Kurachi, Cristina

    2017-10-01

    Fluorescence spectroscopy and lifetime techniques are potential methods for optical diagnosis and characterization of biological tissues with an in-situ, fast, and noninvasive interrogation. Several diseases may be diagnosed due to differences in the fluorescence spectra of targeted fluorophores, when, these spectra are similar, considering steady-state fluorescence, others may be detected by monitoring their fluorescence lifetime. Despite this complementarity, most of the current fluorescence lifetime systems are not robust and portable, and not being feasible for clinical applications. We describe the assembly of a fluorescence lifetime spectroscopy system in a suitcase, its characterization, and validation with clinical measurements of skin lesions. The assembled system is all encased and robust, maintaining its mechanical, electrical, and optical stability during transportation, and is feasible for clinical measurements. The instrument response function measured was about 300 ps, and the system is properly calibrated. At the clinical study, the system showed to be reliable, and the achieved spectroscopy results support its potential use as an auxiliary tool for skin diagnostics. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  1. Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy

    NARCIS (Netherlands)

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K; Roos, Dirk; Otto, Cees

    2008-01-01

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91(phox), which are both subunits of the phagocyte NADPH

  2. Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo

    Science.gov (United States)

    Dancik, Yuri; Favre, Amandine; Loy, Chong Jin; Zvyagin, Andrei V.; Roberts, Michael S.

    2013-02-01

    There is a growing body of literature showing the usefulness of multiphoton tomography (MPT) and fluorescence lifetime imaging for in situ characterization of skin constituents and the ensuing development of noninvasive diagnostic tools against skin diseases. Melanin and pigmentation-associated skin cancers constitute some of the major applications. We show that MPT and fluorescence lifetime imaging can be used to measure changes in cutaneous melanin concentration and that these can be related to the visible skin color. Melanin in the skin of African, Indian, Caucasian, and Asian volunteers is detected on the basis of its emission wavelength and fluorescence lifetimes in solution and in a melanocyte-keratinocyte cell culture. Fluorescence intensity is used to characterize the melanin content and distribution as a function of skin type and depth into the skin (stratum granulosum and stratum basale). The measured fluorescence intensities in given skin types agree with melanin amounts reported by others using biopsies. Our results suggest that spatial distribution of melanin in skin can be studied using MPT and fluorescence lifetime imaging, but further studies are needed to ascertain that the method can resolve melanin amount in smaller depth intervals.

  3. In vivo fluorescence lifetime imaging for monitoring the efficacy of the cancer treatment.

    Science.gov (United States)

    Ardeshirpour, Yasaman; Chernomordik, Victor; Hassan, Moinuddin; Zielinski, Rafal; Capala, Jacek; Gandjbakhche, Amir

    2014-07-01

    Advances in tumor biology created a foundation for targeted therapy aimed at inactivation of specific molecular mechanisms responsible for cell malignancy. In this paper, we used in vivo fluorescence lifetime imaging with HER2-targeted fluorescent probes as an alternative imaging method to investigate the efficacy of targeted therapy with 17-DMAG (an HSP90 inhibitor) on tumors with high expression of HER2 receptors. HER2-specific Affibody, conjugated to Alexafluor 750, was injected into nude mice bearing HER2-positive tumor xenograft. The fluorescence lifetime was measured before treatment and monitored after the probe injections at 12 hours after the last treatment dose, when the response to the 17-DMAG therapy was the most pronounced as well as a week after the last treatment when the tumors grew back almost to their pretreatment size. Imaging results showed significant difference between the fluorescence lifetimes at the tumor and the contralateral site (∼0.13 ns) in the control group (before treatment) and 7 days after the last treatment when the tumors grew back to their pretreatment dimensions. However, at the time frame that the treatment had its maximum effect (12 hours after the last treatment), the difference between the fluorescence lifetime at the tumor and contralateral site decreased to 0.03 ns. The results showed a good correlation between fluorescence lifetime and the efficacy of the treatment. These findings show that in vivo fluorescence lifetime imaging can be used as a promising molecular imaging tool for monitoring the treatment outcome in preclinical models and potentially in patients. ©2014 American Association for Cancer Research.

  4. In-vivo fluorescence lifetime imaging for monitoring the efficacy of the cancer treatment

    Science.gov (United States)

    Ardeshirpour, Yasaman; Chernomordik, Victor; Hassan, Moinuddin; Zielinski, Rafal; Capala, Jacek; Gandjbakhche, Amir

    2015-01-01

    Purpose Advances in tumor biology created a foundation for targeted therapy aimed at inactivation of specific molecular mechanisms responsible for cell malignancy. In this paper, we used in-vivo fluorescence lifetime imaging with HER2 targeted fluorescent probes as an alternative imaging method to investigate the efficacy of targeted therapy with 17-DMAG (an HSP90 inhibitor) on tumors with high expression of HER2 receptors. Experimental Design HER2-specific Affibody, conjugated to Alexafluor 750, was injected into nude mice, bearing HER2-positive tumor xenograft. The fluorescence lifetime was measured before treatment and monitored after the probe injections at 12 hours after the last treatment dose, when the response to the 17-DMAG therapy was the most pronounced as well as a week after the last treatment when the tumors grew back almost to their pre-treatment size. Results Imaging results showed significant difference between the fluorescence lifetimes at the tumor and the contralateral site (~0.13ns) in the control group (before treatment) and 7 days after the last treatment when the tumors grew back to their pretreatment dimensions. However, at the time frame that the treatment had its maximum effect (12 hours after the last treatment) the difference between the fluorescence lifetime at the tumor and contralateral site decreased to 0.03ns. Conclusions The results showed a good correlation between fluorescence lifetime and the efficacy of the treatment. These findings show that in-vivo fluorescence lifetime imaging can be used as a promising molecular imaging tool for monitoring the treatment outcome in preclinical models and potentially in patients. PMID:24671949

  5. Plasmonic-based instrument response function for time-resolved fluorescence: toward proper lifetime analysis

    Energy Technology Data Exchange (ETDEWEB)

    Szlazak, Radoslaw; Tutaj, Krzysztof; Grudzinski, Wojciech; Gruszecki, Wieslaw I.; Luchowski, Rafal, E-mail: rafal.luchowski@umcs.pl [Maria Curie-Sklodowska University, Department of Biophysics, Institute of Physics (Poland)

    2013-06-15

    In this report, we investigated the so-called plasmonic platforms prepared to target ultra-short fluorescence and accurate instrumental response function in a time-domain spectroscopy and microscopy. The interaction of metallic nanoparticles with nearby fluorophores results in the increase of the dye fluorescence quantum yield, photostability and decrease of the lifetime parameter. The mentioned properties of platforms were applied to achieve a picosecond fluorescence lifetime (21 ps) of erythrosin B, used later as a better choice for deconvolution of fluorescence decays measured with 'color' sensitive photo-detectors. The ultra-short fluorescence standard based on combination of thin layers of silver film, silver colloidal nanoparticles (about 60 nm in diameter), and top layer of erythrosin B embedded in 0.2 % poly(vinyl) alcohol. The response functions were monitored on two photo-detectors; microchannel plate photomultiplier and single photon avalanche photodiode as a Rayleigh scattering and ultra-short fluorescence. We demonstrated that use of the plasmonic base fluorescence standard as an instrumental response function results in the absence of systematic error in lifetime measurements and analysis.

  6. Bessel beam fluorescence lifetime tomography of live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Peng, Leilei

    2016-03-01

    Optical tomography allows isotropic 3D imaging of embryos. Scanning-laser optical tomography (SLOT) has superior light collecting efficiency than wide-field optical tomography, making it ideal for fluorescence imaging of live embryos. We previously reported an imaging system that combines SLOT with a novel Fourier-multiplexed fluorescence lifetime imaging (FmFLIM) technique named FmFLIM-SLOT. FmFLIM-SLOT performs multiplexed FLIM-FRET readout of multiple FRET sensors in live embryos. Here we report a recent effort on improving the spatial resolution of the FmFLIM-SLOT system in order to image complex biochemical processes in live embryos at the cellular level. Optical tomography has to compromise between resolution and the depth of view. In SLOT, the commonly-used focused Gaussian beam diverges quickly from the focal plane, making it impossible to achieve high resolution imaging in a large volume specimen. We thus introduce Bessel beam laser-scanning tomography, which illuminates the sample with a spatial-light-modulator-generated Bessel beam that has an extended focal depth. The Bessel beam is scanned across the whole specimen. Fluorescence projection images are acquired at equal angular intervals as the sample rotates. Reconstruction artifacts due to annular-rings of the Bessel beam are removed by a modified 3D filtered back projection algorithm. Furthermore, in combination of Fourier-multiplexing fluorescence lifetime imaging (FmFLIM) method, the Bessel FmFLIM-SLOT system is capable of perform 3D lifetime imaging of live embryos at cellular resolution. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove that Bessel FmFLIM-SLOT is a promising imaging method in development biology research.

  7. Fluorescence lifetime of emitters with broad homogeneous linewidths modified in opal photonic crystals

    DEFF Research Database (Denmark)

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2008-01-01

    We have investigated the dynamics of spontaneous emission from dye molecules embedded in opal photonic crystals. Fluorescence lifetimes of Rhodamine 6G (R6G) dye were measured as a function of both optical frequency and crystal lattice parameter of the polystyrene opals. Due to the broad...

  8. Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression

    OpenAIRE

    Dysli Chantal; Wolf Sebastian; Hatz Katja; Zinkernagel Martin

    2016-01-01

    PURPOSE The purpose of this study was to describe autofluorescence lifetime characteristics in Stargardt disease (STGD) using fluorescence lifetime imaging ophthalmoscopy (FLIO) and to investigate potential prognostic markers for disease activity and progression. METHODS Fluorescence lifetime data of 16 patients with STGD (mean age, 40 years; range, 22-56 years) and 15 age-matched controls were acquired using a fluorescence lifetime imaging ophthalmoscope based on a Heidelberg Eng...

  9. RDM lifetime measurements in 187Tl

    International Nuclear Information System (INIS)

    Chamoli, S.K.; Joshi, P.; Kumar, A.; Govil, I.M.; Mukherjee, G.; Singh, R.P.; Muralithar, S.; Bhowmik, R.K.

    2003-01-01

    The present work is an attempt to study the shape changes in 187 Tl through a measurement of electromagnetic transition probabilities of the high spin states. The Doppler shifted recoil distance technique was used to measure the lifetimes

  10. The measurement of subnanosecond nuclear lifetimes

    International Nuclear Information System (INIS)

    White, D.C.S.

    1974-01-01

    This research dealt with the measurement of subnanosecond nuclear lifetimes using the pulsed beam delayed-coincidence technique. Measurements were performed on isotopes in the f7/2 shell and specifically the isotopes of titanium and vanadium. Experimental investigations were also pursued in 59 Ni and 65 Zn. Several new lifetimes were determined and confirmation was obtained for some previous values which were measured with different techniques. More information was also obtained on certain levels where previous results are in disagreement. (author)

  11. Measurement of the Omega0(c) lifetime

    International Nuclear Information System (INIS)

    Iori, M.

    2007-01-01

    The authors report a precise measurement of the (Omega) c 0 lifetime. The data were taken by the SELEX (E781) experiment using 600 GeV/c Σ - , π - and p beams. The measurement has been made using 83 ± 19 reconstructed (Omega) c 0 in the (Omega) - π - π + π + and (Omega) - π + decay modes. The lifetime of the (Omega) c 0 is measured to be 65 ± 13(stat) ± 9(sys) fs

  12. Thermally activated delayed fluorescence organic dots for two-photon fluorescence lifetime imaging

    Science.gov (United States)

    He, Tingchao; Ren, Can; Li, Zhuohua; Xiao, Shuyu; Li, Junzi; Lin, Xiaodong; Ye, Chuanxiang; Zhang, Junmin; Guo, Lihong; Hu, Wenbo; Chen, Rui

    2018-05-01

    Autofluorescence is a major challenge in complex tissue imaging when molecules present in the biological tissue compete with the fluorophore. This issue may be resolved by designing organic molecules with long fluorescence lifetimes. The present work reports the two-photon absorption (TPA) properties of a thermally activated delayed fluorescence (TADF) molecule with carbazole as the electron donor and dicyanobenzene as the electron acceptor (i.e., 4CzIPN). The results indicate that 4CzIPN exhibits a moderate TPA cross-section (˜9 × 10-50 cm4 s photon-1), high fluorescence quantum yield, and a long fluorescence lifetime (˜1.47 μs). 4CzIPN was compactly encapsulated into an amphiphilic copolymer via nanoprecipitation to achieve water-soluble organic dots. Interestingly, 4CzIPN organic dots have been utilized in applications involving two-photon fluorescence lifetime imaging (FLIM). Our work aptly demonstrates that TADF molecules are promising candidates of nonlinear optical probes for developing next-generation multiphoton FLIM applications.

  13. A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation.

    Science.gov (United States)

    Pelet, S; Previte, M J R; Laiho, L H; So, P T C

    2004-10-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits. Copyright 2004 Biophysical Society

  14. Lifetime measurement of ATF damping ring

    International Nuclear Information System (INIS)

    Okugi, T.; Hayano, H.; Kubo, K.; Naito, T.; Terunuma, N.; Urakawa, J.; Zimmermann, F.

    1998-06-01

    The purpose of the ATF damping ring is the development of technologies for producing a low emittance beam required in future linear colliders such as JLC. The lifetime of the damping ring is very short (typically a few minutes). It is limited by elastic beam-gas scattering along with a small dynamic aperture, and by single intra-beam scattering (Touschek effect). The Touschek lifetime strongly depends upon the charge density of the beam, especially, the size of the vertical emittance. In this paper, the authors report the results of beam lifetime measurements in the ATF damping ring and the estimation of the vertical emittance from these measurements

  15. Measurements of heavy quark and lepton lifetimes

    International Nuclear Information System (INIS)

    Jaros, J.A.

    1985-02-01

    The PEP/PETRA energy range has proved to be well-suited for the study of the lifetimes of hadrons containing the b and c quarks and the tau lepton for several reasons. First, these states comprise a large fraction of the total interaction rate in e + e - annihilation and can be cleanly identified. Second, the storage rings have operated at high luminosity and so produced these exotic states copiously. And finally, thanks to the interplay of the Fermi coupling strength, the quark and lepton masses, and the beam energy, the expected decay lengths are in the 1/2 mm range and so are comparatively easy to measure. This pleasant coincidence of cleanly identified and abundant signal with potentially large effects has made possible the first measurements of two fundamental weak couplings, tau → nu/sub tau/W and b → cW. These measurements have provided a sharp test of the standard model and allowed, for the first time, the full determination of the magnitudes of the quark mixing matrix. This paper reviews the lifetime studies made at PEP during the past year. It begins with a brief review of the three detectors, DELCO, MAC and MARK II, which have reported lifetime measurements. Next it discusses two new measurements of the tau lifetime, and briefly reviews a measurement of the D 0 lifetime. Finally, it turns to measurements of the B lifetime, which are discussed in some detail. 18 references, 14 figures, 1 table

  16. Fluorescence lifetime spectroscopy in multiple-scattering environments: an application to biotechnology

    Science.gov (United States)

    Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio

    1999-07-01

    Over the past few years, there has been significant research activity devoted to the application of fluorescence spectroscopy to strongly scattering media, where photons propagate diffusely. Much of this activity focused on fluorescence as a source of contrast enhancement in optical tomography. Our efforts have emphasized the quantitative recovery of fluorescence parameters for spectroscopy. Using a frequency-domain diffusion-based model, we have successfully recovered the lifetime, the absolute quantum yield, the fluorophore concentration, and the emission spectrum of the fluorophore, as well as the absorption and the reduced scattering coefficients at the emission wavelength of the medium in different measurements. In this contribution, we present a sensitive monitor of the binding between ethidium bromide and bovine cells in fresh milk. The spectroscopic contrast was the approximately tenfold increase in the ethidium bromide lifetime upon binding to DNA. The measurement clearly demonstrated that we could quantitatively measure the density of cells in the milk, which is an application vital to the tremendous economic burden of bovine subclinical mastitis detection. Furthermore, we may in principle use the spirit of this technique as a quantitative monitor of the binding of fluorescent drugs inside tissues. This is a first step towards lifetime spectroscopy in tissues.

  17. Community detection for fluorescent lifetime microscopy image segmentation

    Science.gov (United States)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar

    2014-03-01

    Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.

  18. Online multispectral fluorescence lifetime values estimation and overlay onto tissue white-light video frames

    Science.gov (United States)

    Gorpas, Dimitris; Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Marcu, Laura

    2016-03-01

    Fluorescence lifetime imaging has been shown to be a robust technique for biochemical and functional characterization of tissues and to present great potential for intraoperative tissue diagnosis and guidance of surgical procedures. We report a technique for real-time mapping of fluorescence parameters (i.e. lifetime values) onto the location from where the fluorescence measurements were taken. This is achieved by merging a 450 nm aiming beam generated by a diode laser with the excitation light in a single delivery/collection fiber and by continuously imaging the region of interest with a color CMOS camera. The interrogated locations are then extracted from the acquired frames via color-based segmentation of the aiming beam. Assuming a Gaussian profile of the imaged aiming beam, the segmentation results are fitted to ellipses that are dynamically scaled at the full width of three automatically estimated thresholds (50%, 75%, 90%) of the Gaussian distribution's maximum value. This enables the dynamic augmentation of the white-light video frames with the corresponding fluorescence decay parameters. A fluorescence phantom and fresh tissue samples were used to evaluate this method with motorized and hand-held scanning measurements. At 640x512 pixels resolution the area of interest augmented with fluorescence decay parameters can be imaged at an average 34 frames per second. The developed method has the potential to become a valuable tool for real-time display of optical spectroscopy data during continuous scanning applications that subsequently can be used for tissue characterization and diagnosis.

  19. Rotational multispectral fluorescence lifetime imaging and intravascular ultrasound: bimodal system for intravascular applications

    Science.gov (United States)

    Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Gorpas, Dimitris; Fatakdawala, Hussain; Marcu, Laura

    2014-01-01

    Abstract. We report the development and validation of a hybrid intravascular diagnostic system combining multispectral fluorescence lifetime imaging (FLIm) and intravascular ultrasound (IVUS) for cardiovascular imaging applications. A prototype FLIm system based on fluorescence pulse sampling technique providing information on artery biochemical composition was integrated with a commercial IVUS system providing information on artery morphology. A customized 3-Fr bimodal catheter combining a rotational side-view fiberoptic and a 40-MHz IVUS transducer was constructed for sequential helical scanning (rotation and pullback) of tubular structures. Validation of this bimodal approach was conducted in pig heart coronary arteries. Spatial resolution, fluorescence detection efficiency, pulse broadening effect, and lifetime measurement variability of the FLIm system were systematically evaluated. Current results show that this system is capable of temporarily resolving the fluorescence emission simultaneously in multiple spectral channels in a single pullback sequence. Accurate measurements of fluorescence decay characteristics from arterial segments can be obtained rapidly (e.g., 20 mm in 5 s), and accurate co-registration of fluorescence and ultrasound features can be achieved. The current finding demonstrates the compatibility of FLIm instrumentation with in vivo clinical investigations and its potential to complement conventional IVUS during catheterization procedures. PMID:24898604

  20. Lifetime measurement of the 8s level in francium

    International Nuclear Information System (INIS)

    Gomez, E.; Sprouse, G.D.; Orozco, L.A.; Galvan, A. Perez

    2005-01-01

    We measure the lifetime of the 8s level of 210 Fr atoms on a magneto-optically trapped sample with time-correlated single-photon counting. The 7P 1/2 state serves as the resonant intermediate level for two-step excitation of the 8s level completed with a 1.3-μm laser. Analysis of the fluorescence decay through the 7P 3/2 level gives 53.30±0.44 ns for the 8s level lifetime

  1. Fluorescence lifetime imaging of endogenous molecules in live mouse cancer models (Conference Presentation)

    Science.gov (United States)

    Svindrych, Zdenek; Wang, Tianxiong; Hu, Song; Periasamy, Ammasi

    2017-02-01

    NADH and FAD are important endogenous fluorescent coenzymes participating in key enzymatic reactions of cellular metabolism. While fluorescence intensities of NADH and FAD have been used to determine the redox state of cells and tissues, this simple approach breaks down in the case of deep-tissue intravital imaging due to depth- and wavelength-dependent light absorption and scattering. To circumvent this limitation, our research focuses on fluorescence lifetimes of two-photon excited NADH and FAD emission to study the metabolic state of live tissues. In our custom-built scanning microscope we combine tunable femtosecond Ti:sapphire laser (operating at 740 nm for NADH excitation and 890 nm for FAD excitation), two GaAsP hybrid detectors for registering individual fluorescence photons and two Becker and Hickl time correlator boards for high precision lifetime measurements. Together with our rigorous FLIM analysis approach (including image segmentation, multi-exponential decay fitting and detailed statistical analysis) we are able to detect metabolic changes in cancer xenografts (human pancreatic cancer MPanc96 cells injected subcutaneously into the ear of an immunodeficient nude mouse), relative to surrounding healthy tissue. Advantageously, with the same instrumentation we can also take high-resolution and high-contrast images of second harmonic signal (SHG) originating from collagen fibers of both the healthy skin and the growing tumor. The combination of metabolic measurements (NADH and FAD lifetime) and morphological information (collagen SHG) allows us to follow the tumor growth in live mouse model and the changes in tumor microenvironment.

  2. Lifetime measurements of excited Co I levels

    CERN Document Server

    Klotz, W D; Gobel, L H

    1977-01-01

    In the region of 3500 AA the lifetimes of eight excited Cobalt I levels have been measured by means of the zero field level crossing method. The measured lifetimes belong to the odd configurations 3d/sup 7/4s4p and 3d/sup 8/4p and are of the accuracy of about 5%. The hyperfine structure of levels with I not=J has to be taken into account in evaluating lifetimes from level crossing data, because the nuclear spin of the natural isotope /sup 59/Co is I=7/2. Therefore the influence of the line profile of the exciting resonance lines on the lifetimes has been investigated. The results are compared with those of other authors. Furthermore absolute oscillator strengths were calculated with known branching ratios and a new absolute scale has been established. (23 refs).

  3. Lifetime measurement in {sup 195}Po

    Energy Technology Data Exchange (ETDEWEB)

    Grahn, T.; Page, R.D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Dewald, A.; Jolie, J.; Melon, B.; Pissulla, T. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Greenlees, P.T.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nyman, M.; Peura, P.; Rahkila, P.; Saren, J.; Scholey, C.; Sorri, J.; Uusitalo, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland); Kroell, T.; Kruecken, R.; Maierbeck, P. [TU Muenchen, Physik-Department E12, Garching (Germany)

    2009-03-15

    The lifetime of the 17/2{sup +} yrast state in {sup 195}Po has been measured using the recoil distance Doppler-shift technique to be {tau}=43(11) ps. The lifetime was extracted from the singles {gamma}-ray spectra obtained by using the recoil-decay tagging method. The present work provides more information of the coupling schemes, shapes and configuration mixing in neutron-deficient odd-mass Po nuclei. (orig.)

  4. Λc photoproduction and lifetime measurement

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Bagliesi, G.; Batignani, G.; Bertolucci, E.; Bettoni, D.; Bizetti, A.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giannetti, P.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Raso, G.; Ristori, L.; Scribano, A.; Stefanini, A.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Beck, G.A.; Bologna, G.; D'Ettorre Piazzoli, B.; Picchi, P.; Budinich, M.; Liello, F.; Milotti, E.; Rolandi, L.; Carter, J.; Green, M.G.; Landon, M.P.J.; March, P.V.; Sacks, L.; Sanjari, A.H.; Strong, J.A.; Ciocci, M.A.; Enorini, M.; Fabbri, F.L.; Laurelli, P.; Mannocchi, G.; Simonelli, L.; Spillantini, P.; Zallo, A.

    1987-01-01

    A measurement of the lifetime of the Λ c baryon photoproduced coherently of a germanium-silicon target is presented. A signal of Λ c → ΔΚ * → pKππ 0 has been observed and the two different decay diagrams for this process are compared. A sample of 9 Λ c decays give a lifetime of 1.1(+0.8-0.4)10 13 s. (orig.)

  5. Permeability log using new lifetime measurements

    International Nuclear Information System (INIS)

    Dowling, D.J.; Boyd, J.F.; Fuchs, J.A.

    1975-01-01

    Comparative measurements of thermal neutron decay time are obtained for a formation after irradiation with a pulsed neutron source. Chloride ions in formation fluids are concentrated by the electrosmosis effect using charged poles on a well logging sonde. The formation is irradiated with fast neutrons and a first comparative measure of the thermal neutron decay time or neutron lifetime is taken. The chloride ions are then dispersed by acoustic pumping with a magnetostrictive transducer. The formation is then again irradiated with fast neutrons and a comparative measure of neutron lifetime is taken. The comparison is a function of the variation in chloride concentration between the two measurements which is related to formation permeability

  6. Improved b lifetime measurement from MAC

    International Nuclear Information System (INIS)

    Ford, W.T.

    1984-03-01

    Two recent publications, from the MAC and Mark II collaborations, have reported the somewhat surprising result that the lifetime of particles made up of b quarks is in the 1 to 2 picosecond range, or somewhat longer than the lifetimes of charm particles. Although the charm decays are favored transitions while those of b particles depend upon off-diagonal elements of the weak flavor mixing matrix, the smallness of the b decay rates in face of the large available phase space indicates that the off-diagonal elements are indeed very small. The possibility for complete determination of the mixing matrix was brought significantly nearer by the availability of the lifetime information; what is needed now is to reduce the uncertainty of the measurements, which was about 33% for both experiments. We describe here an extension of the b lifetime study with the MAC detector, incorporating some new data and improvements in the analysis. 12 references

  7. Lifetime measurements of hadrons containing heavy quarks

    International Nuclear Information System (INIS)

    Forden, G.E.

    1985-01-01

    Recent lifetime measurements of heavy particles at PETRA and PEP are reviewed. A comparison of the methods used is given. The world averages for the lifetimes of the D 0 and D +- mesons are found to be (tau/dub D/ 0 ) - 3.97 +/- 0.3 x 10 -13 sec and (tau/dub D +-/) = 8.6 +/- 0.7 x 10 -13 sec. This difference in lifetimes is discussed in light of recent information about exclusive decays. The world average for the lifetime of bottom hadrons is determined to be (tau/sub b/) = 11.0 +/- 1.5 x 10 -13 sec and new estimates for the b quark mixing elements, absolute value V/sub bu/ and absolute value V/sub bc/, are given

  8. Using multiphoton fluorescence lifetime imaging to characterize liver damage and fluorescein disposition in liver in vivo

    Science.gov (United States)

    Thorling, Camilla A.; Studier, Hauke; Crawford, Darrell; Roberts, Michael S.

    2016-03-01

    Liver disease is the fifth most common cause of death and unlike many other major causes of mortality, liver disease rates are increasing rather than decreasing. There is no ideal measurement of liver disease and although biopsies are the gold standard, this only allows for a spot examination and cannot follow dynamic processes of the liver. Intravital imaging has the potential to extract detailed information over a larger sampling area continuously. The aim of this project was to investigate whether multiphoton and fluorescence lifetime imaging microscopy could detect early liver damage and to assess whether it could detect changes in metabolism of fluorescein in normal and diseased livers. Four experimental groups were used in this study: 1) control; 2) ischemia reperfusion injury; 3) steatosis and 4) steatosis with ischemia reperfusion injury. Results showed that multiphoton microscopy could visualize morphological changes such as decreased fluorescence of endogenous fluorophores and the presence of lipid droplets, characteristic of steatosis. Fluorescence lifetime imaging microscopy showed increase in NADPH in steatosis with and without ischemia reperfusion injury and could detect changes in metabolism of fluorescein to fluorescein monoglurcuronide, which was impaired in steatosis with ischemia reperfusion injury. These results concluded that the combination of multiphoton microscopy and fluorescence lifetime imaging is a promising method of assessing early stage liver damage and that it can be used to study changes in drug metabolism in the liver as an indication of liver disease and has the potential to replace the traditional static liver biopsy currently used.

  9. Exciton-polaron quenching in organic thin-film transistors studied by fluorescence lifetime imaging microscopy

    DEFF Research Database (Denmark)

    Jensen, Per Baunegaard With; Leißner, Till; Osadnik, Andreas

    Organic semiconductors show great potential in electronic and optical applications. However, a major challenge is the degradation of the semiconductor materials that cause a reduction in device performance. Here, we present our investigations of Organic Thin Film Transistors (OTFT) based...... that correlates with the local charge density indicates a pronounced exciton quenching by the injected charges. Subsequent FLIM measurements on previously biased OTFT devices show a general decrease in fluorescence lifetime suggesting degradation of the organic semiconductor. This is correlated with the results...

  10. In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH.

    Science.gov (United States)

    Yaseen, Mohammad A; Sakadžić, Sava; Wu, Weicheng; Becker, Wolfgang; Kasischke, Karl A; Boas, David A

    2013-02-01

    Minimally invasive, specific measurement of cellular energy metabolism is crucial for understanding cerebral pathophysiology. Here, we present high-resolution, in vivo observations of autofluorescence lifetime as a biomarker of cerebral energy metabolism in exposed rat cortices. We describe a customized two-photon imaging system with time correlated single photon counting detection and specialized software for modeling multiple-component fits of fluorescence decay and monitoring their transient behaviors. In vivo cerebral NADH fluorescence suggests the presence of four distinct components, which respond differently to brief periods of anoxia and likely indicate different enzymatic formulations. Individual components show potential as indicators of specific molecular pathways involved in oxidative metabolism.

  11. Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, A.M.; Hazlett, T.L.; Govindjee [Univ. of Illinois, Urbana, IL (United States)

    1995-03-14

    Excess light triggers protective nonradiative dissipation of excitation energy in photosystem II through the formation of a trans-thylakoid pH gradient that in turn stimulates formation of zeaxanthin and antheraxanthin. These xanthophylls when combined with protonation of antenna pigment-protein complexes may increase nonradiative dissipation and, thus, quench chlorophyll a fluorescence. Here we measured, in parallel, the chlorophyll a fluorescence lifetime and intensity to understand the mechanism of this process. Increasing the xanthophyll concentration in the presence of a pH gradient (quenched conditions) decreases the fractional intensity of a fluorescence lifetime component centered at {approx}2 ns and increases a component at {approx}0.4 ns. Uncoupling the pH gradient (unquenched conditions) eliminates the 0.4-ns component. Changes in the xanthophyll concentration do not significantly affect the fluorescence lifetimes in either the quenched or unquenched sample conditions. However, there are differences in fluorescence lifetimes between the quenched and unquenched states that are due to pH-related, but nonxanthophyll-related, processes. Quenching of the maximal fluorescence intensity correlates with both the xanthophyll concentration and the fractional intensity of the 0.4-ns component. The unchanged fluorescence lifetimes and the proportional quenching of the maximal and dark-level fluorescence intensities indicate that the xanthophyllact on antenna, not reaction center processes. Further, the fluorescence quenching is interpreted as the combined effect of the pH gradient and xanthophyll concentration, resulting in the formation of a quenching complex with a short ({approx}0.4 ns) fluorescence lifetime. 33 refs., 6 figs., 2 tabs.

  12. Quantum system lifetimes and measurement perturbations

    International Nuclear Information System (INIS)

    Najakov, E.

    1977-05-01

    The recently proposed description of quantum system decay in terms of repeated measurement perturbations is modified. The possibility of retarded reductions to a unique quantum state, due to ineffective localization of the decay products at initial time measurements, is simply taken into account. The exponential decay law is verified again. A modified equation giving the observed lifetime in terms of unperturbed quantum decay law, measurement frequency and reduction law is derived. It predicts deviations of the observed lifetime from the umperturbed one, together with a dependence on experimental procedures. The influence of different model unperturbed decay laws and reduction laws on this effect is studied

  13. Measurement of the $\\tau$ lepton lifetime

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Fidecaro, F; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    The mean lifetime of the \\tau lepton is measured in a sample of 25700 \\tau pairs collected in 1992 with the ALEPH detector at LEP. A new analysis of the 1-1 topology events is introduced. In this analysis, the dependence of the impact parameter sum distribution on the daughter track momenta is taken into account, yielding improved precision compared to other impact parameter sum methods. Three other analyses of the one- and three-prong \\tau decays are updated with increased statistics. The measured lifetime is 293.5 \\pm 3.1 \\pm 1.7 \\fs. Including previous (1989--1991) ALEPH measurements, the combined \\tau lifetime is 293.7 \\pm 2.7 \\pm 1.6 \\fs.

  14. Updated measurement of the $\\tau$ lepton lifetime

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rizzo, G; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Stacey, A M; Williams, M D; Ghete, V M; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Lutters, G; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1997-01-01

    A new measurement of the mean lifetime of the tau lepton is presented. Three different analysis methods are applied to a sample of 90000 tau pairs, collected in 1993 and 1994 with the ALEPH detector at LEP. The average of this measurement and those previously published by ALEPH is tau_tau = 290.1 +- 1.5 +- 1.1 fs.

  15. Lifetime measurements of the rare earths

    International Nuclear Information System (INIS)

    Stahnke, H.J.

    1981-01-01

    The lifetime of excited energy levels of Praseodymium, Neodymium, Gadolinium, Holmium and Erbium are measured. The measurements were done on atomic beams excited by laser radiation. The experimental results allow an interpretation of the electronic structure of the rare earths. (BEF)

  16. Updated measurement of the τ lepton lifetime

    Science.gov (United States)

    ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Becker, U.; Bazarko, A. O.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rizzo, G.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Turnbull, R. M.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Stacey, A. M.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Schune, M.-H.; Simion, S.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.

    1997-11-01

    A new measurement of the mean lifetime of the τ lepton is presented. Three different analysis methods are applied to a sample of 90 000 τ pairs, collected in 1993 and 1994 with the ALEPH detector at LEP. The average of this measurement and those previously published by ALEPH is ττ=290.1+/-1.5+/-1.1 fs.

  17. Assessment of post-implantation integration of engineered tissues using fluorescence lifetime spectroscopy

    Science.gov (United States)

    Elahi, Sakib F.; Lee, Seung Y.; Lloyd, William R.; Chen, Leng-Chun; Kuo, Shiuhyang; Zhou, Ying; Kim, Hyungjin M.; Kennedy, Robert; Marcelo, Cynthia; Feinberg, Stephen E.; Mycek, Mary-Ann

    2018-02-01

    Clinical translation of engineered tissue constructs requires noninvasive methods to assess construct health and viability after implantation in patients. However, current practices to monitor post-implantation construct integration are either qualitative (visual assessment) or destructive (tissue histology). As label-free fluorescence lifetime sensing can noninvasively characterize pre-implantation construct viability, we employed a handheld fluorescence lifetime spectroscopy probe to quantitatively and noninvasively assess tissue constructs that were implanted in a murine model. We designed the system to be suitable for intravital measurements: portability, localization with precise maneuverability, and rapid data acquisition. Our model tissue constructs were manufactured from primary human cells to simulate patient variability and were stressed to create a range of health states. Secreted amounts of three cytokines that relate to cellular viability were measured in vitro to assess pre-implantation construct health. In vivo optical sensing assessed tissue integration of constructs at one-week and three-weeks post-implantation. At one-week post-implantation, optical parameters correlated with in vitro pre-implantation secretion levels of all three cytokines (p clinical optical diagnostic tools based on label-free fluorescence lifetime sensing of endogenous tissue fluorophores could noninvasively monitor post-implantation integration of engineered tissues.

  18. Measurement of the Bs0 lifetime

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Martinez, M.; Mattison, T.; Orteu, S.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Girone, M.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Perrodo, P.; Pusztaszeri, J.-F.; Ranjard, F.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Johnson, S. D.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Fouque, G.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Levinthal, D.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Salomone, S.; Colrain, P.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thorn, S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Karger, C.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Calvet, D.; Carr, J.; Coyle, P.; Diaconu, C.; Drinkard, J.; Etienne, F.; Nicod, D.; Payre, P.; Ross, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Janot, P.; Kimfn 19, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Valassi, A.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; Johnson, D. L.; March, P. V.; Medcalf, T.; Mir, Ll. M.; Quazi, I. S.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Pitis, L.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Shi, Z. H.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1994-02-01

    The lifetime of the Bs0 has been measured in a data sample of 8890000 hadronic events recorded with the ALEPH detector at LEP. After background subtraction 30.8 ± 6.9 events are attributed to the semileptonic decay of the Bs0 to a Ds- and an opposite-sign lepton. A maximum-likelihood fit to the distribution of the proper times of these events yields a Bs0 lifetime of τBs = 1.92 -0.35+0.45 ± 0.04 ps.

  19. A measurement of the Ds lifetime

    International Nuclear Information System (INIS)

    Braunschweig, W.; Gerhards, R.; Kirschfink, F.J.; Martyn, H.U.; Rosskamp, P.; Kolanoski, A.; Balkwill, C.; Bowler, M.G.; Burrows, P.N.; Cashmore, R.J.; Dauncey, P.; Heath, G.P.; Mellor, D.J.; Ratoff, P.; Tomalin, I.; Yelton, J.M.; Baranko, G.; Caldwell, A.; Cherney, M.; Izen, J.M.; Muller, D.; Ritz, S.; Storm, D.; Takashima, M.; Wicklung, E.; Wu Saulan; Zobernig, G.

    1987-01-01

    The lifetime of the D S meson has been measured using the TASSO detector at PETRA and found to be (5.7 (+3.6-2.6)±0.9) x 10 -13 s. The method used was to reconstruct fully the decay vertex of the channel D s → φπ ± , φ → K + K - . (orig.)

  20. A Precise Measurement of the Tau Lifetime

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, B P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W A; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M

    2004-01-01

    The tau lepton lifetime has been measured with the e+e- -> tau+tau- events collected by the DELPHI detector at LEP in the years 1991-1995. Three different methods have been exploited, using both one-prong and three-prong tau decay channels. Two measurements have been made using events in which both taus decay to a single charged particle. Combining these measurements gave tau_tau (1 prong) = 291.8 +/- 2.3 (stat) +/- 1.5 (sys) fs. A third measurement using taus which decayed to three charged particles yielded tau_tau (3 prong) = 288.6 +/- 2.4 (stat) +/- 1.3 (sys) fs. These were combined with previous DELPHI results to measure the tau lifetime, using the full LEP1 data sample, to be tau_tau = 290.9 +/- 1.4 (stat) +/- 1.0 (sys) fs.

  1. A precise measurement of the tau lifetime

    International Nuclear Information System (INIS)

    Abdallah, J.; Abreu, P.; Adam, W.

    2004-01-01

    The tau lepton lifetime has been measured with the e + e - →τ + τ - events collected by the DELPHI detector at LEP in the years 1991-1995. Three different methods have been exploited, using both one-prong and three-prong τ decay channels. Two measurements have been made using events in which both taus decay to a single charged particle. Combining these measurements gave τ τ (1 prong) = 291.8±2.3 stat ±1.5 sys fs. A third measurement using taus which decayed to three charged particles yielded τ τ (3 prong) = 288.6±.4 stat ±1.3 sys fs. These were combined with previous DELPHI results to measure the tau lifetime, using the full LEP1 data sample, to be τ τ = 290.9±1.4 stat ±1.0 sys fs. (orig.)

  2. Lifetime and spin measurements in 40Ar

    International Nuclear Information System (INIS)

    Southon, J.

    1976-01-01

    Lifetimes of levels in 40 Ar populated by the 40 Ar(p,p') reaction have been measured using the Doppler shift attenuation method with a p-γ coincidence technique. A solid argon target was used. The lifetimes determined were (in psec.): 1461 keV level, 1.95 +- 0.15; 2121 keV, >25; 2524 keV, 0.53 +- 0.06; 2893 keV, 4.4 [+2.6,-1.3]; 3208 keV, 0.27. A comprehensive set of branching ratios was also derived and the spins and parities of the 3208 and 4481 keV states were determined to be 2 + and 1 +- respectively. Some of these results suggest that 2 particle -2 hole and 4 particle - 4 hole components are strongly mixed in the low-lying positive parity states in a manner similar to the 2 particle and 4 particle - 2 hole mixing that occurs in 42 Ca. An additional lifetime measurement for the recently discovered high spin state at 3464 keV was carried out using direct electronic timing. The level was excited by the 37 Cl(α,p) reaction and was found to have a lifetime of 1.00 +- 0.03 nsec, which taken together with other evidence indicates that its spin and parity are 6 + . The E2 transition strengths of the 40 Ar 6 + - 4 + - 2 + - 0 + cascade can be simply interpreted in terms of a weak coupling model. (author)

  3. Fluorescence lifetime microscopy for monitoring cell adhesion using metal induced energy transfer

    Science.gov (United States)

    Hwang, Wonsang; Seo, JinWon; Song, Jun ho; Kim, DongEun; Won, YoungJae; Choi, In-Hong; Yoo, Kyung-Hwa; Kim, Dug Young

    2018-02-01

    A precise control and a reliable monitoring tool for the adhesion properties of a cell are very important in atherosclerosis studies. If endothelial cells in contact with the intracellular membrane are not attached securely, low-density lipoprotein (LDL) particles can enter into the inner membrane. It is therefore necessary to measure conditions under which endothelial cell detachment occurs. When a cell is attached to a metal thin film, the lifetime of a fluorescence probe attached to the membrane of the cell is reduced by the metal-induced energy transfer (MIET). Fluorescence lifetime imaging microscopy (FLIM) is used to monitor the attachment condition of a cell to a metal surface using FRET. However, this requires high numerical aperture (NA) objective lens because axial confocal resolution must be smaller than the cell thickness. This requirement limits the field of view of the measurement specimen. In this study we provides a new method which can measure adhesion properties of endothelial cells even with a low NA objective lens by resolving two lifetime components in FLIM.

  4. Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination

    Science.gov (United States)

    Zhong, Xin; Wang, Xinwei; Zhou, Yan

    2018-01-01

    A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.

  5. The LB Films of Dansyl Chloride Labeled Octadecylamine and Its Fluorescence Lifetime

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Octadecylamine was derivatized with dansyl chloride (5-dimethylaminonaphthalene-1-sulfonyl chloride) in order to simplify and understand the LB films of fluorescent probe labeling proteins.Its monolayer and multilayers in the absence and presence of stearic acid were deposited by LB technique.Fluorescence spectra and lifetimes of the fluorescent products were studied to elucidate the microenvironment of molecules in the LB films.

  6. Generation of a new spectral format, the lifetime synchronous spectrum (LiSS), using phase-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Shaver, J.M.; McGown, L.B.

    1994-01-01

    A new fluorescence spectral format is introduced in which fluorescence lifetime is shown as a function of synchronously scanned wavelength to generate a Lifetime Synchronous Spectrum (LiSS). Lifetimes are determined in the frequency domain with the use of Phase-Resolved Fluorescence Spectroscopy (PRFS) to obtain the phase of the fluorescence signal. Theory and construction of the LiSS are presented and experimental results are shown for solutions of single components and simple binary and ternary mixtures. These results show how the lifetime information in the LiSS augments the steady-state intensity information of a standard synchronous spectrum, providing unique information for identification of components and resolution of overlapping spectral peaks. The LiSS technique takes advantage of noise reduction inherent in the extraction of lifetime from PRFS in addition to standard spectral smoothing techniques. The precision of phase determination through PRFS is found to be comparable to that of direct phase measurements at normal fluorescence intensities and superior for low-intensity signals

  7. Non-invasive imaging of skin cancer with fluorescence lifetime imaging using two photon tomography

    Science.gov (United States)

    Patalay, Rakesh; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Breunig, Hans Georg; König, Karsten; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Christopher

    2011-07-01

    Multispectral fluorescence lifetime imaging (FLIM) using two photon microscopy as a non-invasive technique for the diagnosis of skin lesions is described. Skin contains fluorophores including elastin, keratin, collagen, FAD and NADH. This endogenous contrast allows tissue to be imaged without the addition of exogenous agents and allows the in vivo state of cells and tissues to be studied. A modified DermaInspect® multiphoton tomography system was used to excite autofluorescence at 760 nm in vivo and on freshly excised ex vivo tissue. This instrument simultaneously acquires fluorescence lifetime images in four spectral channels between 360-655 nm using time-correlated single photon counting and can also provide hyperspectral images. The multispectral fluorescence lifetime images were spatially segmented and binned to determine lifetimes for each cell by fitting to a double exponential lifetime model. A comparative analysis between the cellular lifetimes from different diagnoses demonstrates significant diagnostic potential.

  8. RDM lifetime measurements in 107Cd

    International Nuclear Information System (INIS)

    Andgren, K; Ashley, S F; Regan, P H

    2005-01-01

    Lifetimes for decays linking near-yrast states in 107 Cd have been measured using the recoil distance method (RDM). The nucleus of interest was populated via the 98 Mo( 12 C,3n) 107 Cd fusion-evaporation reaction at an incident beam energy of 60 MeV. From the measured lifetimes, transition probabilities have been deduced and compared with the theoretical B(E2) values for limiting cases of harmonic vibrational and axially deformed rotational systems. Our initial results suggest a rotor-like behaviour for the structure based on the unnatural-parity, h 11/2 orbital in 107 Cd, providing further evidence for the role of this 'shape-polarizing' orbital in stabilizing the nuclear deformation in the A ∼ 100 transitional region

  9. RDM lifetime measurements in 107Cd

    Science.gov (United States)

    Andgren, K.; Ashley, S. F.; Regan, P. H.; McCutchan, E. A.; Zamfir, N. V.; Amon, L.; Cakirli, R. B.; Casten, R. F.; Clark, R. M.; Gürdal, G.; Keyes, K. L.; Meyer, D. A.; Erduran, M. N.; Papenberg, A.; Pietralla, N.; Plettner, C.; Rainovski, G.; Ribas, R. V.; Thomas, N. J.; Vinson, J.; Warner, D. D.; Werner, V.; Williams, E.

    2005-10-01

    Lifetimes for decays linking near-yrast states in 107Cd have been measured using the recoil distance method (RDM). The nucleus of interest was populated via the 98Mo(12C,3n)107Cd fusion-evaporation reaction at an incident beam energy of 60 MeV. From the measured lifetimes, transition probabilities have been deduced and compared with the theoretical B(E2) values for limiting cases of harmonic vibrational and axially deformed rotational systems. Our initial results suggest a rotor-like behaviour for the structure based on the unnatural-parity, h11/2 orbital in 107Cd, providing further evidence for the role of this 'shape-polarizing' orbital in stabilizing the nuclear deformation in the A ~ 100 transitional region.

  10. Fluorescence lifetime microscopy of NADH distinguishes alterations in cerebral metabolism in vivo.

    Science.gov (United States)

    Yaseen, Mohammad A; Sutin, Jason; Wu, Weicheng; Fu, Buyin; Uhlirova, Hana; Devor, Anna; Boas, David A; Sakadžić, Sava

    2017-05-01

    Evaluating cerebral energy metabolism at microscopic resolution is important for comprehensively understanding healthy brain function and its pathological alterations. Here, we resolve specific alterations in cerebral metabolism in vivo in Sprague Dawley rats utilizing minimally-invasive 2-photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence. Time-resolved fluorescence lifetime measurements enable distinction of different components contributing to NADH autofluorescence. Ostensibly, these components indicate different enzyme-bound formulations of NADH. We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in glycolytic and oxidative metabolism. Classification models were developed with the experimental data and used to predict the metabolic impairments induced during separate experiments involving bicuculline-induced seizures. The models consistently predicted that prolonged focal seizure activity results in impaired activity in the electron transport chain, likely the consequence of inadequate oxygen supply. 2P-FLIM observations of cerebral NADH will help advance our understanding of cerebral energetics at a microscopic scale. Such knowledge will aid in our evaluation of healthy and diseased cerebral physiology and guide diagnostic and therapeutic strategies that target cerebral energetics.

  11. Lifetime measurement of trapped staus using ATLAS

    CERN Document Server

    Sibley, Logan

    I study the creation of long-lived staus at a 14 TeV centre of mass energy in proton-proton collisions at the LHC using both the ATLAS and ACME detectors. The ATLAS overburden or underburden, or even ATLAS itself, may trap the semi-stable staus at that place where they will remain until the time at which they decay, where the stau lifetime ranges between seven days and one year. Using a novel method, one may count the number of muons and pions originating from the stau decay using the standard ATLAS cosmic ray trigger. Using an idealized detector model, I find that this method can lead to measurements of the stau lifetime and SUSY cross-section to within statistical uncertainties of 6% and 1% of their actual values, respectively.

  12. Differentiation of ocular fundus fluorophores by fluorescence lifetime imaging using multiple excitation and emission wavelengths

    Science.gov (United States)

    Hammer, M.; Schweitzer, D.; Schenke, S.; Becker, W.; Bergmann, A.

    2006-10-01

    Ocular fundus autofluorescence imaging has been introduced into clinical diagnostics recently. It is in use for the observation of the age pigment lipofuscin, a precursor of age - related macular degeneration (AMD). But other fluorophores may be of interest too: The redox pair FAD - FADH II provides information on the retinal energy metabolism, advanced glycation end products (AGE) indicate protein glycation associated with pathologic processes in diabetes as well as AMD, and alterations in the fluorescence of collagen and elastin in connective tissue give us the opportunity to observe fibrosis by fluorescence imaging. This, however, needs techniques able to differentiate particular fluorophores despite limited permissible ocular exposure as well as excitation wavelength (limited by the transmission of the human ocular lens to >400 nm). We present an ophthalmic laser scanning system (SLO), equipped with picosecond laser diodes (FWHM 100 ps, 446 nm or 468 nm respectively) and time correlated single photon counting (TCSPC) in two emission bands (500 - 560 nm and 560 - 700 nm). The decays were fitted by a bi-exponential model. Fluorescence spectra were measured by a fluorescence spectrometer fluorolog. Upon excitation at 446 nm, the fluorescence of AGE, FAD, and lipofuscin were found to peak at 503 nm, 525 nm, and 600 nm respectively. Accordingly, the statistical distribution of the fluorescence decay times was found to depend on the different excitation wavelengths and emission bands used. The use of multiple excitation and emission wavelengths in conjunction with fluorescence lifetime imaging allows us to discriminate between intrinsic fluorophores of the ocular fundus. Taken together with our knowledge on the anatomical structure of the fundus, these findings suggest an association of the short, middle and long fluorescence decay time to the retinal pigment epithelium, the retina, and connective tissue respectively.

  13. Application of time-correlated single photon counting and stroboscopic detection methods with an evanescent-wave fibre-optic sensor for fluorescence-lifetime-based pH measurements

    International Nuclear Information System (INIS)

    Henning, Paul E; Geissinger, Peter

    2012-01-01

    Quasi-distributed optical fibre sensor arrays containing luminescent sensor molecules can be read out spatially resolved utilizing optical time-of-flight detection (OTOFD) methods, which employ pulsed laser interrogation of the luminosensors and time-resolved detection of the sensor signals. In many cases, sensing is based on a change in sensor luminescence intensity; however, sensing based on luminescence lifetime changes is preferable because it reduces the need for field calibration. Because in OTOFD detection is time-resolved, luminescence-lifetime information is already available through the signal pulses, although in practise applications were restricted to sensors with long luminescence lifetimes (hundreds of ns). To implement lifetime-based sensing in crossed-optical-fibre-sensor arrays for sensor molecules with lifetimes less than 10 ns, two time-domain methods, time-correlated single photon counting and stroboscopic detection, were used to record the pH-dependent emission of a fluorescein derivative covalently attached to a highly-porous polymer. A two-term nonexponential decay function yielded both a good fit for experimental lifetime data during reconvolution and a pH response that matches Henderson–Hasselbalch behaviour, yielding a sensor accuracy of 0.02 pH units. Moreover, strong agreement was obtained for the two lifetime determination methods and with intensity-based measurements taken previously. (paper)

  14. RDM lifetime measurement in 167Lu

    International Nuclear Information System (INIS)

    Rohilla, Aman; Gupta, C.K.; Chamoli, S.K.; Singh, R.P.; Muralithar, S.; Ashok Kumar; Govil, I.M.

    2014-01-01

    In this paper we are presenting the experiment performed for measuring lifetime in 167 Lu, which provides the measurement of the structural behavior of the nuclei due to single particle excitation. The enhanced γ-ray detection GDA setup present at IUAC was used and the data was acquired in the singles mode with the condition when any two of the BGO's element fire in coincidence with a Ge detector. The online data acquisition program CANDLE was used for data acquire in conjunction with CAMAC based data acquisition hardware

  15. Carrier Lifetimes in Fluorescent 6H-SiC for LEDs Application

    DEFF Research Database (Denmark)

    Grivickas, Vytautas; Gulbinas, Karolis; Jokubavičius, Valdas

    Recently it was shown a new approach based on all-semiconductor material technology which is composed with a near ultra-violet GaN LED excitation source and fluorescent silicon carbide (f-6H-SiC) substrate which generates a visible broad spectral light by N and B dopants and an efficient donor...... to acceptor pair recombination [1,2]. This combination can achieve higher electric-light conversion efficiency and high color rendering in comparison with today’s used blue GaN LED based and phosphors. The devices are promising candidates for general lightning applications and may obtain stability...... under co-linear and orthogonal probe geometry was used to measure carrier lifetimes in the layers under variable injection conditions. Same results are shown in Fig. 1 exaggerating the fact that longer electron lifetime responsible for higher emission and n-type doping should prevail the p-type doping...

  16. A Fast Global Fitting Algorithm for Fluorescence Lifetime Imaging Microscopy Based on Image Segmentation

    OpenAIRE

    Pelet, S.; Previte, M.J.R.; Laiho, L.H.; So, P.T. C.

    2004-01-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained ana...

  17. RDM lifetimes measurements in 179Re

    International Nuclear Information System (INIS)

    Chamoli, S.; Joshi, P.; Kumar, A.; Govil, I.M.; Singh, R.P.; Chatturvedi, L.

    2001-01-01

    The study of Re nuclei in the mass region from 170-190 is of particular interest as they lie in a region where the Nilsson orbitals exhibit large driving effects on the nuclear shape, presenting the strong possibility of shape coexistence. To see the variation of the deformation driving property of different bands and the other related phenomena like delay in band crossing frequency for intruder configuration h 92 in these nuclei with increasing in neutron number the lifetime measurement in 179 Re nucleus is done

  18. Level Lifetime Measurements in ^150Sm

    Science.gov (United States)

    Barton, C. J.; Krücken, R.; Beausang, C. W.; Caprio, M. A.; Casten, R. F.; Cooper, J. R.; Hecht, A. A.; Newman, H.; Novak, J. R.; Pietralla, N.; Wolf, A.; Zyromski, K. E.; Zamfir, N. V.; Börner, H. G.

    2000-10-01

    Shape/phase coexistence and the evolution of structure in the region around ^152Sm have recently been of great interest. Experiments performed at WNSL, Yale University, measured the lifetime of low spin states in a target of ^150Sm with the recoil distance method (RDM) and the Doppler-shift attenuation method (DSAM). The low spin states, both yrast and non-yrast, were populated via Coulomb excitation with a beam of ^16O. The experiments were performed with the NYPD plunger in conjunction with the SPEEDY γ-ray array. The SCARY array of solar cells was used to detect backward scattered projectiles, selecting forward flying Coulomb excited target nuclei. The measured lifetimes yield, for example, B(E2) values for transitions such as the 2^+2 arrow 2^+1 and the 2^+3 arrow 0^+_1. Data from the RDM measurment and the DSAM experiment will be presented. This work was supported by the US DOE under grants DE-FG02-91ER-40609 and DE-FG02-88ER-40417.

  19. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  20. Two-photon excitation with pico-second fluorescence lifetime imaging to detect nuclear association of flavanols

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Harvey, Irene, E-mail: i.mueller-harvey@reading.ac.uk [Chemistry and Biochemistry Laboratory, Food Production and Quality Research Division, School of Agriculture, Policy and Development, University of Reading, P O Box 236, Reading RG6 6AT (United Kingdom); Feucht, Walter, E-mail: walter.feucht@gmail.com [Department of Plant Sciences, Technical University of Munich (TUM), Wissenschaftszentrum Weihenstephan (WZW), D-85354 Freising (Germany); Polster, Juergen, E-mail: j.polster@wzw.tum.de [Department of Physical Biochemistry, Technical University of Munich (TUM), Wissenschaftszentrum Weihenstephan (WZW), D-85354 Freising (Germany); Trnkova, Lucie, E-mail: lucie.trnkova@uhk.cz [University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 50003 Hradec Kralove (Czech Republic); Burgos, Pierre, E-mail: pierre.burgos@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Parker, Anthony W., E-mail: tony.parker@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Botchway, Stanley W., E-mail: stan.botchway@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer This fluorescence lifetime imaging microscopy (FLIM) technique for flavanols overcomes autofluorescence interference in cells. Black-Right-Pointing-Pointer Plant flavanols differed in their lifetimes. Black-Right-Pointing-Pointer Dissolved and bound flavanols revealed contrasting lifetime changes. Black-Right-Pointing-Pointer This technique will allow studying of flavanol trafficking in live cells. - Abstract: Two-photon excitation enabled for the first time the observation and measurement of excited state fluorescence lifetimes from three flavanols in solution, which were {approx}1.0 ns for catechin and epicatechin, but <45 ps for epigallocatechin gallate (EGCG). The shorter lifetime for EGCG is in line with a lower fluorescence quantum yield of 0.003 compared to catechin (0.015) and epicatechin (0.018). In vivo experiments with onion cells demonstrated that tryptophan and quercetin, which tend to be major contributors of background fluorescence in plant cells, have sufficiently low cross sections for two-photon excitation at 630 nm and therefore do not interfere with detection of externally added or endogenous flavanols in Allium cepa or Taxus baccata cells. Applying two-photon excitation to flavanols enabled 3-D fluorescence lifetime imaging microscopy and showed that added EGCG penetrated the whole nucleus of onion cells. Interestingly, EGCG and catechin showed different lifetime behaviour when bound to the nucleus: EGCG lifetime increased from <45 to 200 ps, whilst catechin lifetime decreased from 1.0 ns to 500 ps. Semi-quantitative measurements revealed that the relative ratios of EGCG concentrations in nucleoli associated vesicles: nucleus: cytoplasm were ca. 100:10:1. Solution experiments with catechin, epicatechin and histone proteins provided preliminary evidence, via the appearance of a second lifetime ({tau}{sub 2} = 1.9-3.1 ns), that both flavanols may be interacting with histone proteins. We conclude that there

  1. Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy.

    Science.gov (United States)

    Sauer, Lydia; Peters, Sven; Schmidt, Johanna; Schweitzer, Dietrich; Klemm, Matthias; Ramm, Lisa; Augsten, Regine; Hammer, Martin

    2017-08-01

    To investigate the impact of macular pigment (MP) on fundus autofluorescence (FAF) lifetimes in vivo by characterizing full-thickness idiopathic macular holes (MH) and macular pseudo-holes (MPH). A total of 37 patients with MH and 52 with MPH were included. Using the fluorescence lifetime imaging ophthalmoscope (FLIO), based on a Heidelberg Engineering Spectralis system, a 30° retinal field was investigated. FAF decays were detected in a short (498-560 nm; ch1) and long (560-720 nm; ch2) wavelength channel. τ m , the mean fluorescence lifetime, was calculated from a three-exponential approximation of the FAF decays. Macular coherence tomography scans were recorded, and macular pigment's optical density (MPOD) was measured (one-wavelength reflectometry). Two MH subgroups were analysed according to the presence or absence of an operculum above the MH. A total of 17 healthy fellow eyes were included. A longitudinal FAF decay examination was conducted in nine patients, which were followed up after surgery and showed a closed MH. In MH without opercula, significant τ m differences (p hole area (MHa) and surrounding areas (MHb) (ch1: MHa 238 ± 64 ps, MHb 181 ± 78 ps; ch2: MHa 275 ± 49 ps, MHb 223 ± 48 ps), as well as between MHa and healthy eyes or closed MH. Shorter τ m , adjacent to the hole, can be assigned to areas with equivalently higher MPOD. Opercula containing MP also show short τ m . In MPH, the intactness of the Hele fibre layer is associated with shortest τ m . Shortest τ m originates from MP-containing retinal layers, especially from the Henle fibre layer. Fluorescence lifetime imaging ophthalmoscope (FLIO) provides information on the MP distribution, the pathogenesis and topology of MH. Macular pigment (MP) fluorescence may provide a biomarker for monitoring pathological changes in retinal diseases. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  2. Time gated fluorescence lifetime imaging and micro-volume spectroscopy using two-photon excitation

    NARCIS (Netherlands)

    Sytsma, J.; Vroom, J.M.; de Grauw, C.J.; Gerritsen, H.C.

    A scanning microscope utilizing two-photon excitation in combination with fluorescence lifetime contrast is presented. The microscope makes use of a tunable femtosecond titanium:sapphire laser enabling the two-photon excitation of a broad range of fluorescent molecules, including UV probes.

  3. Fluorophore:dendrimer ratio impacts cellular uptake and intracellular fluorescence lifetime.

    Science.gov (United States)

    Dougherty, Casey A; Vaidyanathan, Sriram; Orr, Bradford G; Banaszak Holl, Mark M

    2015-02-18

    G5-NH2-TAMRAn (n = 1-4, 5+, and 1.5(avg)) were prepared with n = 1-4 as a precise dye:dendrimer ratio, 5+ as a mixture of dendrimers with 5 or more dye per dendrimer, and 1.5(avg) as a Poisson distribution of dye:dendrimer ratios with a mean of 1.5 dye per dendrimer. The absorption intensity increased sublinearly with n whereas the fluorescence emission and lifetime decreased with an increasing number of dyes per dendrimer. Flow cytometry was employed to quantify uptake into HEK293A cells. Dendrimers with 2-4 dyes were found to have greater uptake than dendrimer with a single dye. Fluorescence lifetime imaging microscopy (FLIM) showed that the different dye:dendrimer ratio alone was sufficient to change the fluorescence lifetime of the material observed inside cells. We also observed that the lifetime of G5-NH2-TAMRA5+ increased when present in the cell as compared to solution. However, cells treated with G5-NH2-TAMRA1.5(avg) did not exhibit the high lifetime components present in G5-NH2-TAMRA1 and G5-NH2-TAMRA5+. In general, the effects of the dye:dendrimer ratio on fluorescence lifetime were of similar magnitude to environmentally induced lifetime shifts.

  4. FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye.

    Directory of Open Access Journals (Sweden)

    Matthias Klemm

    Full Text Available Fluorescence lifetime imaging ophthalmoscopy (FLIO is a new technique for measuring the in vivo autofluorescence intensity decays generated by endogenous fluorophores in the ocular fundus. Here, we present a software package called FLIM eXplorer (FLIMX for analyzing FLIO data. Specifically, we introduce a new adaptive binning approach as an optimal tradeoff between the spatial resolution and the number of photons required per pixel. We also expand existing decay models (multi-exponential, stretched exponential, spectral global analysis, incomplete decay to account for the layered structure of the eye and present a method to correct for the influence of the crystalline lens fluorescence on the retina fluorescence. Subsequently, the Holm-Bonferroni method is applied to FLIO measurements to allow for group comparisons between patients and controls on the basis of fluorescence lifetime parameters. The performance of the new approaches was evaluated in five experiments. Specifically, we evaluated static and adaptive binning in a diabetes mellitus patient, we compared the different decay models in a healthy volunteer and performed a group comparison between diabetes patients and controls. An overview of the visualization capabilities and a comparison of static and adaptive binning is shown for a patient with macular hole. FLIMX's applicability to fluorescence lifetime imaging microscopy is shown in the ganglion cell layer of a porcine retina sample, obtained by a laser scanning microscope using two-photon excitation.

  5. FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye.

    Science.gov (United States)

    Klemm, Matthias; Schweitzer, Dietrich; Peters, Sven; Sauer, Lydia; Hammer, Martin; Haueisen, Jens

    2015-01-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique for measuring the in vivo autofluorescence intensity decays generated by endogenous fluorophores in the ocular fundus. Here, we present a software package called FLIM eXplorer (FLIMX) for analyzing FLIO data. Specifically, we introduce a new adaptive binning approach as an optimal tradeoff between the spatial resolution and the number of photons required per pixel. We also expand existing decay models (multi-exponential, stretched exponential, spectral global analysis, incomplete decay) to account for the layered structure of the eye and present a method to correct for the influence of the crystalline lens fluorescence on the retina fluorescence. Subsequently, the Holm-Bonferroni method is applied to FLIO measurements to allow for group comparisons between patients and controls on the basis of fluorescence lifetime parameters. The performance of the new approaches was evaluated in five experiments. Specifically, we evaluated static and adaptive binning in a diabetes mellitus patient, we compared the different decay models in a healthy volunteer and performed a group comparison between diabetes patients and controls. An overview of the visualization capabilities and a comparison of static and adaptive binning is shown for a patient with macular hole. FLIMX's applicability to fluorescence lifetime imaging microscopy is shown in the ganglion cell layer of a porcine retina sample, obtained by a laser scanning microscope using two-photon excitation.

  6. Fluorescence Lifetime Correlation Spectroscopy (FLCS): Concepts, Applications and Outlook

    Czech Academy of Sciences Publication Activity Database

    Kapusta, Peter; Macháň, Radek; Benda, A.; Hof, Martin

    2012-01-01

    Roč. 13, č. 10 (2012), s. 12890-12910 E-ISSN 1422-0067 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : fluorescence correlation spectroscopy (FCS) * time correlated single photon counting (TCSPC) * fluorescence cross-correlation spectroscopy (FCCS) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.464, year: 2012

  7. Miniaturized side-viewing imaging probe for fluorescence lifetime imaging (FLIM): validation with fluorescence dyes, tissue structural proteins and tissue specimens

    OpenAIRE

    Elson, DS; Jo, JA; Marcu, L

    2007-01-01

    We report a side viewing fibre-based endoscope that is compatible with intravascular imaging and fluorescence lifetime imaging microscopy (FLIM). The instrument has been validated through testing with fluorescent dyes and collagen and elastin powders using the Laguerre expansion deconvolution technique to calculate the fluorescence lifetimes. The instrument has also been tested on freshly excised unstained animal vascular tissues.

  8. Alterations in cerebral metabolism observed in living rodents using fluorescence lifetime microscopy of intrinsic NADH (Conference Presentation)

    Science.gov (United States)

    Yaseen, Mohammad A.; Sakadžić, Sava; Sutin, Jason; Wu, Weicheng; Fu, Buyin; Boas, David A.

    2017-02-01

    Monitoring cerebral energy metabolism at a cellular level is essential to improve our understanding of healthy brain function and its pathological alterations. In this study, we resolve specific alterations in cerebral metabolism utilizing minimally-invasive 2-Photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence, collected in vivo from anesthetized rats and mice. Time-resolved lifetime measurements enables distinction of different components contributing to NADH autofluorescence. These components reportedly represent different enzyme-bound formulations of NADH. Our observations from this study confirm the hypothesis that NADH FLIM can identify specific alterations in cerebral metabolism. Using time-correlated single photon counting (TCSPC) equipment and a custom-built multimodal imaging system, 2-photon fluorescence lifetime imaging (FLIM) was performed in cerebral tissue with high spatial and temporal resolution. Multi-exponential fits for NADH fluorescence lifetimes indicate 4 distinct components, or 'species.' We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in anaerobic glycolysis and aerobic oxidative metabolism. Classification models developed with experimental data correctly predict the metabolic impairments associated with bicuculline-induced focal seizures in separate experiments. Compared to traditional intensity-based NADH measurements, lifetime imaging of NADH is less susceptible to the adverse effects of overlying blood vessels. Evaluating NADH measurements will ultimately lead to a deeper understanding of cerebral energetics and its pathology-related alterations. Such knowledge will likely aid development of therapeutic strategies for neurodegenerative diseases such as Alzheimer's Disease, Parkinson's disease, and stroke.

  9. Monitoring by fluorescence measurements

    International Nuclear Information System (INIS)

    Malcolme-Lawes, D.J.; Gifford, L.A.

    1981-01-01

    A fluorimetric detector is described in which the fluorescence excitation source may be 3 H, 14 C, 35 S, 147 Pm or 63 Ni. Such a detector can be adapted for use with flowing liquid systems especially liquid chromatography systems. (U.K.)

  10. Distribution of diffusion times determined by fluorescence (lifetime) correlation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Pánek, Jiří; Loukotová, Lenka; Hrubý, Martin; Štěpánek, Petr

    2018-01-01

    Roč. 51, č. 8 (2018), s. 2796-2804 ISSN 0024-9297 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer solution * fluorescence correlation spectroscopy * diffusion time distribution Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 5.835, year: 2016

  11. Radiative lifetime measurements of rubidium Rydberg states

    International Nuclear Information System (INIS)

    Branden, D B; Juhasz, T; Mahlokozera, T; Vesa, C; Wilson, R O; Zheng, M; Tate, D A; Kortyna, A

    2010-01-01

    We have measured the radiative lifetimes of ns, np and nd Rydberg states of rubidium in the range 28 ≤ n ≤ 45. To enable long-lived states to be measured, our experiment uses slow-moving (∼100 μK) 85 Rb atoms in a magneto-optical trap (MOT). Two experimental techniques have been adopted to reduce random and systematic errors. First, a narrow-bandwidth pulsed laser is used to excite the target nl Rydberg state, resulting in minimal shot-to-shot variation in the initial state population. Second, we monitor the target state population as a function of time delay from the laser pulse using a short-duration, millimetre-wave pulse that is resonant with a one- or two-photon transition to a higher energy 'monitor state', n'l'. We then selectively field ionize the monitor state, and detect the resulting electrons with a micro-channel plate. This signal is an accurate mirror of the nl target state population, and is uncontaminated by contributions from other states which are populated by black body radiation. Our results are generally consistent with other recent experimental results obtained using a method which is more prone to systematic error, and are also in excellent agreement with theory.

  12. Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: New perspectives in supported phospholipid bilayer research

    Czech Academy of Sciences Publication Activity Database

    Benda, Aleš; Fagulová, Veronika; Deyneka, Alexander; Enderlain, J.; Hof, Martin

    2006-01-01

    Roč. 22, č. 23 (2006), s. 9580-9585 ISSN 0743-7463 R&D Projects: GA ČR GA203/05/2308; GA MŠk LC06063 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100522 Keywords : spectroscopy * fluorescence * FLCS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.902, year: 2006

  13. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine

    Directory of Open Access Journals (Sweden)

    Alexander Boreham

    2016-12-01

    Full Text Available The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  14. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine.

    Science.gov (United States)

    Boreham, Alexander; Brodwolf, Robert; Walker, Karolina; Haag, Rainer; Alexiev, Ulrike

    2016-12-24

    The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM) for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  15. Multiphoton Laser Microscopy and Fluorescence Lifetime Imaging for the Evaluation of the Skin

    Directory of Open Access Journals (Sweden)

    Stefania Seidenari

    2012-01-01

    Full Text Available Multiphoton laser microscopy is a new, non-invasive technique providing access to the skin at a cellular and subcellular level, which is based both on autofluorescence and fluorescence lifetime imaging. Whereas the former considers fluorescence intensity emitted by epidermal and dermal fluorophores and by the extra-cellular matrix, fluorescence lifetime imaging (FLIM, is generated by the fluorescence decay rate. This innovative technique can be applied to the study of living skin, cell cultures and ex vivo samples. Although still limited to the clinical research field, the development of multiphoton laser microscopy is thought to become suitable for a practical application in the next few years: in this paper, we performed an accurate review of the studies published so far, considering the possible fields of application of this imaging method and providing high quality images acquired in the Department of Dermatology of the University of Modena.

  16. Magnetic field and temperature dependence of the fluorescence lifetime of Cr sup(3+) in GdA103

    International Nuclear Information System (INIS)

    Helman, J.S.; Caride, A.O.; Basso, H.C.; Terrile, M.C.; Carvalho, R.A.

    1991-01-01

    The fluorescence lifetime of Cr sup(3+) in GdA10 sub(3) was measured in the range 1.8 - 4.2 K in magnetic fields up to 6 T. The results show a remarkable dependence of the transition probabilities on magnetic order. A model based on the exchange interaction between Cr sup(3+) in highly excited states and the Gd sup(3+) ions is proposed. (author)

  17. Fluorescence life-time imaging and steady state polarization for examining binding of fluorophores to gold nanoparticles.

    Science.gov (United States)

    Schwartz, Shmulik; Fixler, Dror; Popovtzer, Rachela; Shefi, Orit

    2015-11-01

    Nanocomposites as multifunctional agents are capable of combing imaging and cell biology technologies. The conventional methods used for validation of the conjugation process of nanoparticles (NPs) to fluorescent molecules such as spectroscopy analysis and surface potential measurements, are not sufficient. In this paper we present a new and highly sensitive procedure that uses the combination of (1) fluorescence spectrum, (2) fluorescence lifetime, and (3) steady state fluorescence polarization measurements. We characterize and analyze gold NPs with Lucifer yellow (LY) surface coating as a model. We demonstrate the ability to differentiate between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes. We suggest the approach for neuroscience applications where LY is used for detecting and labeling cells, studying morphology and intracellular communications. Histograms of Fluorescence lifetime imaging (FLIM) of free LY dye (Left) in comparison to the conjugated dye to gold nanoparticles, LY-GNP (Middle) enable the differentiation between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes (Right). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Lifetime measurement of excited atomic and ionic states of some

    Indian Academy of Sciences (India)

    High-frequency deflection (HFD) technique with a delayed coincidence single photon counting arrangement is an efficient technique for radiative lifetime measurement. An apparatus for measurement of the radiative lifetime of atoms and molecules has been developed in our laboratory and measurements have been ...

  19. LHCb: Measurement of $b$-hadron lifetimes at LHCb

    CERN Multimedia

    Amhis, Y

    2014-01-01

    Lifetimes are among the most fundamental properties of elementary particles. Precision Measurements of $b$-hadron lifetimes are an important tool to test theoretical models such as HQET. These models allow to predict various observables related to B-mixing. Using data collected during Run 1 at the LHC, LHCb measured the lifetime of B-decays including a $J/\\psi$ in the final state.

  20. Magnetic moments and lifetime measurements with a piezoelectrically driven plunger

    International Nuclear Information System (INIS)

    Rutten, A.J.

    1980-01-01

    Experiments are described leading to precise values for magnetic dipole moments of excited nuclear states and their mean lifetimes. A plunger system is described especially developed for g-factor and lifetime measurements with the coincidence time-differential recoil-into-vacuum technique. Measurements of the g-factors and lifetimes for the 2 1 + state of 20 O and the 5/2 1 + state of 13 C are described. (Auth.)

  1. Measurements of b-hadron lifetimes with the Delphi detector

    International Nuclear Information System (INIS)

    Demaria, N.

    1996-01-01

    The Delphi collaboration has measured the lifetime of b-hadrons using several different methods. In this talk those exploited only by Delphi and that employ original ideas are presented: for the b-baryons lifetime the p-μ correlation; for the B 0 s the φ-μ, D s -h correlations and D s inclusive analysis. The measurement of the average lifetime of b- hadrons using the impact parameters and the vertices of hadronic final states is also presented. (orig.)

  2. Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation

    Science.gov (United States)

    Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young

    2014-03-01

    Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.

  3. Towards sensitive, high-throughput, biomolecular assays based on fluorescence lifetime

    Science.gov (United States)

    Ioanna Skilitsi, Anastasia; Turko, Timothé; Cianfarani, Damien; Barre, Sophie; Uhring, Wilfried; Hassiepen, Ulrich; Léonard, Jérémie

    2017-09-01

    Time-resolved fluorescence detection for robust sensing of biomolecular interactions is developed by implementing time-correlated single photon counting in high-throughput conditions. Droplet microfluidics is used as a promising platform for the very fast handling of low-volume samples. We illustrate the potential of this very sensitive and cost-effective technology in the context of an enzymatic activity assay based on fluorescently-labeled biomolecules. Fluorescence lifetime detection by time-correlated single photon counting is shown to enable reliable discrimination between positive and negative control samples at a throughput as high as several hundred samples per second.

  4. Fluorescence lifetime FRET imaging of receptor-ligand complexes in tumor cells in vitro and in vivo

    Science.gov (United States)

    Rudkouskaya, Alena; Sinsuebphon, Nattawut; Intes, Xavier; Mazurkiewicz, Joseph E.; Barroso, Margarida

    2017-02-01

    To guide the development of targeted therapies with improved efficacy and accelerated clinical acceptance, novel imaging methodologies need to be established. Toward this goal, fluorescence lifetime Förster resonance energy transfer (FLIM-FRET) imaging assays capitalize on the ability of antibodies or protein ligands to bind dimerized membrane bound receptors to measure their target engagement levels in cancer cells. Conventional FLIM FRET microscopy has been widely applied at visible wavelengths to detect protein-protein interactions in vitro. However, operation at these wavelengths restricts imaging quality and ability to quantitate lifetime changes in in vivo small animal optical imaging due to high auto-fluorescence and light scattering. Here, we have analyzed the uptake of iron-bound transferrin (Tf) probes into human breast cancer cells using FLIM-FRET microscopy in the visible and near-infrared (NIR) range. The development of NIR FLIM FRET microscopy allows for the use of quantitative lifetime-based molecular assays to measure drug-target engagement levels at multiple scales: from in vitro microscopy to in vivo small animal optical imaging (macroscopy). This novel approach can be extended to other receptors, currently targeted in oncology. Hence, lifetime-based molecular imaging can find numerous applications in drug delivery and targeted therapy assessment and optimization.

  5. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Robert K. Henderson

    2012-05-01

    Full Text Available We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD-based cameras for fluorescence lifetime imaging microscopy (FLIM by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast.

  6. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging.

    Science.gov (United States)

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-05-05

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

  7. Enhancement of early cervical cancer diagnosis with epithelial layer analysis of fluorescence lifetime images.

    Directory of Open Access Journals (Sweden)

    Jun Gu

    Full Text Available This work reports the use of layer analysis to aid the fluorescence lifetime diagnosis of cervical intraepithelial neoplasia (CIN from H&E stained cervical tissue sections. The mean and standard deviation of lifetimes in single region of interest (ROI of cervical epithelium were previously shown to correlate to the gold standard histopathological classification of early cervical cancer. These previously defined single ROIs were evenly divided into layers for analysis. A 10-layer model revealed a steady increase in fluorescence lifetime from the inner to the outer epithelial layers of healthy tissue sections, suggesting a close association with cellular maturity. The shorter lifetime and minimal lifetime increase towards the epithelial surface of CIN-affected regions are in good agreement with the absence of cellular maturation in CIN. Mean layer lifetimes in the top-half cervical epithelium were used as feature vectors for extreme learning machine (ELM classifier discriminations. It was found that the proposed layer analysis technique greatly improves the sensitivity and specificity to 94.6% and 84.3%, respectively, which can better supplement the traditional gold standard cervical histopathological examinations.

  8. Second-harmonic generation and fluorescence lifetime imaging microscopy through a rodent mammary imaging window

    Science.gov (United States)

    Young, Pamela A.; Nazir, Muhammad; Szulczewski, Michael J.; Keely, Patricia J.; Eliceiri, Kevin W.

    2012-03-01

    Tumor-Associated Collagen Signatures (TACS) have been identified that manifest in specific ways during breast tumor progression and that correspond to patient outcome. There are also compelling metabolic changes associated with carcinoma invasion and progression. We have characterized the difference in the autofluorescent properties of metabolic co-factors, NADH and FAD, between normal and carcinoma breast cell lines. Also, we have shown in vitro that increased collagen density alters metabolic genes which are associated with glycolysis and leads to a more invasive phenotype. Establishing the relationship between collagen density, cellular metabolism, and metastasis in physiologically relevant cancer models is crucial for developing cancer therapies. To study cellular metabolism with respect to collagen density in vivo, we use multiphoton fluorescence excitation microscopy (MPM) in conjunction with a rodent mammary imaging window implanted in defined mouse cancer models. These models are ideal for the study of collagen changes in vivo, allowing determination of corresponding metabolic changes in breast cancer invasion and progression. To measure cellular metabolism, we collect fluorescence lifetime (FLIM) signatures of NADH and FAD, which are known to change based on the microenvironment of the cells. Additionally, MPM systems are capable of collecting second harmonic generation (SHG) signals which are a nonlinear optical property of collagen. Therefore, MPM, SHG, and FLIM are powerful tools with great potential for characterizing key features of breast carcinoma in vivo. Below we present the current efforts of our collaborative group to develop intravital approaches based on these imaging techniques to look at defined mouse mammary models.

  9. The Lifetime of a beautiful and charming meson: Bc lifetime measured using the D0 detector

    International Nuclear Information System (INIS)

    Welty-Rieger, Leah Christine

    2008-01-01

    Using approximately 1.3 fb -1 of data collected by the D0 detector between 2002 and 2006, the lifetime of the B c ± meson is studied in the B c ± → J/ψμ ± + X final state. Using an unbinned likelihood simultaneous fit to J/ψ + μ invariant mass and lifetime distributions, a signal of 810 ± 80(stat.) candidates is estimated and a lifetime measurement made of: τ(B c ± ) = 0.448 -0.036 +0.038 (stat) ± 0.032(sys) ps

  10. A measurement of the Omega /sup -/ lifetime

    CERN Document Server

    Bourquin, M; Chatelus, Y; Chollet, J C; Degré, A; Froidevaux, D; Fyfe, A R; Gaillard, J M; Gee, C N P; Gibson, W M; Igo-Kemenes, P; Jeffreys, P W; Merkel, B; Morand, R; Plothow, H; Repellin, J P; Saunders, B J; Sauvage, G; Schiby, B; Siebert, H W; Smith, V J; Streit, K P; Strub, R; Tovey, Stuart N; Tresher, J J

    1979-01-01

    In an experiment at the CERN-SPS charged-hyperon beam, a sample of 2500 Omega /sup -/ to Lambda K/sup -/ decays has been collected at Omega /sup -/ momenta at 98.5 and 115 GeV/c. The Omega /sup -/ lifetime is found to be tau /sub Omega /=(0.822+or-0.028)*10/sup -10/ s. (15 refs).

  11. Measurement of the $\\Omega_{c}^{0}$ lifetime

    CERN Document Server

    Adamovich, M.I.; Alexandrov, Yu.A.; Barberis, D.; Beck, M.; Berat, C.; Beusch, W.; Boss, M.; Brons, S.; Bruckner, W.; Buenerd, M.; Buscher, C.; Charignon, F.; Chauvin, J.; Chudakov, E.A.; Dropmann, F.; Engelfried, J.; Faller, F.; Fournier, A.; Gerasimov, S.; Godbersen, M.; Grafstrom, P.; Haller, T.; Heidrich, M.; Hurst, R.B.; Konigsmann, Kay; Konorov, I.; Martens, K.; Martin, P.; Masciocchi, S.; Michaels, R.; Muller, U.; Newsom, C.; Paul, S.; Povh, B.; Ren, Z.; Rey-Campagnolle, M.; Rosner, G.; Rossi, L.; Rudolph, H.; Schmitt, L.; Siebert, H.W.; Simon, A.; Smith, V.J.; Thilmann, O.; Trombini, A.; Vesin, E.; Volkemer, B.; Vorwalter, K.; Walcher, T.; Walder, G.; Werding, R.; Wittmann, E.; Zavertyaev, M.V.

    1995-01-01

    We present the measurement of the lifetime of the Omega_c we have performed using three independent data samples from two different decay modes. Using a Sigma- beam of 340 GeV/c we have obtained clean signals for the Omega_c decaying into Xi- K- pi+ pi+ and Omega- pi+ pi- pi+, avoiding topological cuts normally used in charm analysis. The short but measurable lifetime of the Omega_c is demonstrated by a clear enhancement of the signals at short but finite decay lengths. Using a continuous maximum likelihood method we determined the lifetime to be tau(Omega_c) = 55 +13-11(stat) +18-23(syst) fs. This makes the Omega_c the shortest living weakly decaying particle observed so far. The short value of the lifetime confirms the predicted pattern of the charmed baryon lifetimes and demonstrates that the strong interaction plays a vital role in the lifetimes of charmed hadrons.

  12. Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay

    International Nuclear Information System (INIS)

    Sørensen, Thomas Just; Thyrhaug, Erling; Szabelski, Mariusz; Gryczynski, Ignacy; Gryczynski, Zygmunt; Luchowski, Rafal; Laursen, Bo W

    2013-01-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy has great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation, as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is on the order of 20–200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatic dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecule assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red-emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immunoglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time of more than 75%, and an increase in the steady-state anisotropy of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay to detect binding events involving biomolecules of far larger size than what is possible with most other red-emitting organic dyes. (paper)

  13. Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay

    Science.gov (United States)

    Just Sørensen, Thomas; Thyrhaug, Erling; Szabelski, Mariusz; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Laursen, Bo W.

    2013-06-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy has great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation, as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is on the order of 20-200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatic dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecule assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red-emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immunoglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time of more than 75%, and an increase in the steady-state anisotropy of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay to detect binding events involving biomolecules of far larger size than what is possible with most other red-emitting organic dyes.

  14. Azadioxatriangulenium (ADOTA+): A long fluorescence lifetime fluorophore for large biomolecule binding assay

    Science.gov (United States)

    Sørensen, Thomas Just; Thyrhaug, Erling; Szabelski, Mariusz; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Laursen, Bo W.

    2013-01-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy have great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is in the order of 20–200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatics dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecules assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immuniglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time by more than 75 %, and a change in the steady-state anisotropy increase of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay for detecting binding events involving biomolecules of far larger size than what is possible with the other red emitting organic dyes. PMID:24058730

  15. Fluorescence lifetime imaging of induced pluripotent stem cells

    Science.gov (United States)

    Uchugonova, Aisada; Batista, Ana; König, Karsten

    2014-02-01

    The multiphoton FLIM tomograph MPTflex with its flexible scan head, articulated arm, and the tunable femtosecond laser source was employed to study cell monolayers and 3D cell clusters. FLIM was performed with 250 ps temporal resolution and submicron special resolution using time-correlated single photon counting. The autofluorescence based on NAD(P)H and flavins/flavoproteins has been measured in mouse embryonic fibroblasts, induced pluripotent stem cells (iPS cells) originated from mouse embryonic fibroblasts and non-proliferative mouse embryonic fibroblasts.

  16. In Vivo Fluorescence Lifetime Imaging Monitors Binding of Specific Probes to Cancer Biomarkers

    Science.gov (United States)

    Ardeshirpour, Yasaman; Chernomordik, Victor; Zielinski, Rafal; Capala, Jacek; Griffiths, Gary; Vasalatiy, Olga; Smirnov, Aleksandr V.; Knutson, Jay R.; Lyakhov, Ilya; Achilefu, Samuel; Gandjbakhche, Amir; Hassan, Moinuddin

    2012-01-01

    One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB) as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR) fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu)-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the “image and treat” concept, especially for early evaluation of the efficacy of the therapy. PMID:22384092

  17. In vivo fluorescence lifetime imaging monitors binding of specific probes to cancer biomarkers.

    Directory of Open Access Journals (Sweden)

    Yasaman Ardeshirpour

    Full Text Available One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the "image and treat" concept, especially for early evaluation of the efficacy of the therapy.

  18. Efficacy of photodynamic therapy against larvae of Aedes aegypti: confocal microscopy and fluorescence-lifetime imaging

    Science.gov (United States)

    de Souza, L. M.; Pratavieira, S.; Inada, N. M.; Kurachi, C.; Corbi, J.; Guimarães, F. E. G.; Bagnato, V. S.

    2014-03-01

    Recently a few demonstration on the use of Photodynamic Reaction as possibility to eliminate larvae that transmit diseases for men has been successfully demonstrated. This promising tool cannot be vastly used due to many problems, including the lake of investigation concerning the mechanisms of larvae killing as well as security concerning the use of photosensitizers in open environment. In this study, we investigate some of the mechanisms in which porphyrin (Photogem) is incorporated on the Aedes aegypti larvae previously to illumination and killing. Larvae at second instar were exposed to the photosensitizer and after 30 minutes imaged by a confocal fluorescence microscope. It was observed the presence of photosensitizer in the gut and at the digestive tract of the larva. Fluorescence-Lifetime Imaging showed greater photosensitizer concentration in the intestinal wall of the samples, which produces a strong decrease of the Photogem fluorescence lifetime. For Photodynamic Therapy exposition to different light doses and concentrations of porphyrin were employed. Three different light sources (LED, Fluorescent lamp, Sun light) also were tested. Sun light and fluorescent lamp shows close to 100% of mortality after 24 hrs. of illumination. These results indicate the potential use of photodynamic effect against the LARVAE of Aedes aegypti.

  19. Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Alfonso-García, Alba; Smith, Tim D.; Datta, Rupsa; Luu, Thuy U.; Gratton, Enrico; Potma, Eric O.; Liu, Wendy F.

    2016-04-01

    Macrophages adopt a variety of phenotypes that are a reflection of the many functions they perform as part of the immune system. In particular, metabolism is a phenotypic trait that differs between classically activated, proinflammatory macrophages, and alternatively activated, prohealing macrophages. Inflammatory macrophages have a metabolism based on glycolysis while alternatively activated macrophages generally rely on oxidative phosphorylation to generate chemical energy. We employ this shift in metabolism as an endogenous marker to identify the phenotype of individual macrophages via live-cell fluorescence lifetime imaging microscopy (FLIM). We demonstrate that polarized macrophages can be readily discriminated with the aid of a phasor approach to FLIM, which provides a fast and model-free method for analyzing fluorescence lifetime images.

  20. Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.

    Science.gov (United States)

    Eibl, Matthias; Karpf, Sebastian; Weng, Daniel; Hakert, Hubertus; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert

    2017-07-01

    Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.

  1. Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging

    Science.gov (United States)

    Fan, Shunping; Peng, Xiao; Liu, Lixin; Liu, Shaoxiong; Lu, Yuan; Qu, Junle

    2014-02-01

    Basal cell carcinoma (BCC) is the most common type of human skin cancer. The traditional diagnostic procedure of BCC is histological examination with haematoxylin and eosin staining of the tissue biopsy. In order to reduce complexity of the diagnosis procedure, a number of noninvasive optical methods have been applied in skin examination, for example, multiphoton tomography (MPT) and fluorescence lifetime imaging microscopy (FLIM). In this study, we explored two-photon optical tomography of human skin specimens using two-photon excited autofluorescence imaging and FLIM. There are a number of naturally endogenous fluorophores in skin sample, such as keratin, melanin, collagen, elastin, flavin and porphyrin. Confocal microscopy was used to obtain structures of the sample. Properties of epidermic and cancer cells were characterized by fluorescence emission spectra, as well as fluorescence lifetime imaging. Our results show that two-photon autofluorescence lifetime imaging can provide accurate optical biopsies with subcellular resolution and is potentially a quantitative optical diagnostic method in skin cancer diagnosis.

  2. Fluorescence intensity and lifetime-based cyanide sensitive probes for physiological safeguard

    International Nuclear Information System (INIS)

    Badugu, Ramachandram; Lakowicz, Joseph R.; Geddes, Chris D.

    2004-01-01

    We characterize six new fluorescent probes that show both intensity and lifetime changes in the presence of free uncomplexed aqueous cyanide, allowing for fluorescence based cyanide sensing up to physiological safeguard levels, i.e. 2 to the anionic R-B - (CN) 3 form, a new cyanide binding mechanism which we have recently reported. The presence of an electron deficient quaternary heterocyclic nitrogen nucleus, and the electron rich cyanide bound form, provides for the intensity changes observed. We have determined the disassociation constants of the probes to be in the range ∼15-84 μM 3 . In addition we have synthesized control compounds which do not contain the boronic acid moiety, allowing for a rationale of the cyanide responses between the probe isomers to be made. The lifetime of the cyanide bound probes are significantly shorter than the free R-B(OH) 2 probe forms, providing for the opportunity of lifetime based cyanide sensing up to physiologically lethal levels. Finally, while fluorescent probes containing the boronic acid moiety have earned a well-deserved reputation for monosaccharide sensing, we show that strong bases such as CN - and OH - preferentially bind as compared to glucose, enabling the potential use of these probes for cyanide safeguard and determination in physiological fluids, especially given that physiologies do not experience any notable changes in pH

  3. Recoil distance lifetime measurements in 122,124Xe

    Science.gov (United States)

    Govil, I. M.; Kumar, A.; Iyer, H.; Li, H.; Garg, U.; Ghugre, S. S.; Johnson, T.; Kaczarowski, R.; Kharraja, B.; Naguleswaran, S.; Walpe, J. C.

    1998-02-01

    Lifetimes of the lower-excited states in 122,124Xe are measured using the recoil-distance Doppler-shift technique. The reactions 110Pd(16O,4n)122Xe and 110Pd(18O,4n)124Xe at a beam energy of 66 MeV were used for this experiment. The lifetimes of the 2+, 4+, 6+, and 8+ states of the ground state band were extracted using the computer code LIFETIME including the corrections due to the side feeding and the nuclear deorientation effects. The lifetime of the 2+ state in 122Xe agrees with the recoil distance method (RDM) measurements but for the 124Xe it does not agree with the RDM measurements but agrees with the Coulomb-excitation experiment. The measured B(E2) values for both the nuclei are compared with the standard algebraic and the multishell models.

  4. Fabrication of 94Zr thin target for RDM lifetime measurement

    International Nuclear Information System (INIS)

    Gupta, Chandan Kumar; Rohilla, Aman; Chamoli, S.K.; Abhilash, S.R.; Kabiraj, D.; Singh, R.P.; Mehta, D.

    2013-01-01

    The aim of the activity was to make a thin target of isotopically enriched 94 Zr for lifetime measurement experiment to be done with the plunger setup at the Inter University Accelerator Center (IUAC) Delhi

  5. Measurement of radiative lifetime in atomic samarium using ...

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... gations of radiative lifetime measurement of odd-parity energy level at ... introduced by an electronic delay generator between the two ... cascade repopulation and depopulation, Zeeman and hyperfine quantum beats [6]. The.

  6. A novel experimental technique of nuclear lifetime measurements

    International Nuclear Information System (INIS)

    Yuminov, O.A.; D'Arrigo, A.; Giardina, G.; Taccone, A.; Vannini, G.; Moroni, A.; Ricci, R.A.; Vannucci, L.

    1995-01-01

    In the present paper a new experimental method to measure nuclear reaction time in the 10 -15 -10 -10 s region is presented. Measurements of the lifetimes of low-lying and long-lived states of 19 F and 20 Ne decaying via α-channel were carried out with the aim of checking the feasibility of the method. The results obtained in this way are compared with the lifetimes known from different techniques. ((orig.))

  7. Measurement of the lifetime difference between Bs mass eigenstates

    International Nuclear Information System (INIS)

    Acosta, D.; The CDF Collaboration

    2005-01-01

    We present measurements of the lifetimes and polarization amplitudes for B s 0 → J/ψφ and B d 0 → J/ψ K* 0 decays. Lifetimes of the heavy (H) and light (L) mass eigenstates in the B s 0 system are separately measured for the first time by determining the relative contributions of amplitudes with definite CP as a function of the decay time

  8. Measurement of the tau lifetime with the DELPHI detector

    International Nuclear Information System (INIS)

    Andreazza, A.

    2005-01-01

    The tau lepton lifetime has been measured with the e + e → τ + τ - events collected by the DELPHI detector at LEP in the years 1991-1995. Three different methods have been exploited, using both one-prong and three-prong τ decay channels. These are combined with previously published DELPHI results to provide a tau lifetime measurement of τ τ =290.9+/-1.4 stat +/-1.0 sys fs, using the full LEP1 data sample

  9. Lifetime measurements in the picosecond range: Achievements and Perspectives

    International Nuclear Information System (INIS)

    Kruecken, Reiner

    1999-01-01

    This contribution will review the recoil distance method (RDM), its current range of applications as well as future perspectives for the measurement of lifetimes in the picosecond range of excited nuclear levels. Recent Doppler-shift lifetime experiments with large gamma-ray spectrometers have achieved a new level of precision and sensitivity, providing new insights into nuclear structure physics. High precision RDM measurements of near-yrast states in various mass regions have revealed dynamic shape effects beyond the framework of collective models and have also allowed to study the interaction between coexisting shapes. The measurement of lifetimes in superdeformed bands has shown that lifetimes can be measured for nuclear excitations, which are only populated with a few percent of the production cross-section of a nucleus. These experiments have also enabled us to study the mechanism of the decay-out of superdeformed bands. Another example for the need of precise lifetime measurements is the recent verifications of the concept of 'magnetic rotation' in nuclei by the experimental observation of the characteristic drop of B(M1) values as a function of angular momentum. These recent breakthroughs have also opened new perspectives for the use of the RDM technique for more exotic regions of nuclei and nuclear excitations. Here the measurement of lifetimes in neutron rich nuclei, which are not accessible with conventional nuclear reactions using stable beams and targets, is of special interest. Possible experimental approaches and simple estimates for the feasibility of such experiments will be presented. (author)

  10. Multimodal optical coherence tomography and fluorescence lifetime imaging with interleaved excitation sources for simultaneous endogenous and exogenous fluorescence.

    Science.gov (United States)

    Shrestha, Sebina; Serafino, Michael J; Rico-Jimenez, Jesus; Park, Jesung; Chen, Xi; Zhaorigetu, Siqin; Walton, Brian L; Jo, Javier A; Applegate, Brian E

    2016-09-01

    Multimodal imaging probes a variety of tissue properties in a single image acquisition by merging complimentary imaging technologies. Exploiting synergies amongst the data, algorithms can be developed that lead to better tissue characterization than could be accomplished by the constituent imaging modalities taken alone. The combination of optical coherence tomography (OCT) with fluorescence lifetime imaging microscopy (FLIM) provides access to detailed tissue morphology and local biochemistry. The optical system described here merges 1310 nm swept-source OCT with time-domain FLIM having excitation at 355 and 532 nm. The pulses from 355 and 532 nm lasers have been interleaved to enable simultaneous acquisition of endogenous and exogenous fluorescence signals, respectively. The multimodal imaging system was validated using tissue phantoms. Nonspecific tagging with Alexa Flour 532 in a Watanbe rabbit aorta and active tagging of the LOX-1 receptor in human coronary artery, demonstrate the capacity of the system for simultaneous acquisition of OCT, endogenous FLIM, and exogenous FLIM in tissues.

  11. Measurement of the b hadron lifetime with the dipole method

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Levinthal, D.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Walther, S. M.; Wanke, R.; Wolf, B.; Zimmermann, A.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; St. Denis, R.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Valassi, A.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barbeiro, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Shi, Z. H.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Sau Lan Wu; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-09-01

    A measurement of the average lifetime of b hadrons has been performed with dipole method on a sample of 260 000 hadronic Z decays recorded with the ALEPH detector during 1991. The dipole is the distance between the vertices built in the opposite hemispheres. The mean dipole is extracted from all the events without attempting b enrichment. Comparing the average of the data dipole distribution with a Monte Carlo calibration curve obtained with different b lifetimes, an average b hadron lifetime of 1.51±0.08 ps is extracted.

  12. The increase of NADH fluorescence lifetime is associated with the metabolic change during osteogenic differentiation of human mesenchymal stem cells (hMSCs)

    Science.gov (United States)

    Guo, Han Wen; Yu, Jia Sin; Hsu, Shu Han; Wei, Yau Huei; Lee, Oscar K.; Wang, Hsing Wen

    2011-03-01

    Fluorescence lifetime of NADH had been used as an optical marker for monitoring cellular metabolism. In our pervious studies, we have demonstrated that NADH lifetime of hMSCs increase gradually with time of osteogenic differentiation. In this study, we measured NADH lifetime of hMSCs from a different donor as well as the corresponding metabolic indices such as ATP level, oxygen consumption and lactate release. We also measure the quantity of Complex I, III, IV and V. The results show that during differentiation more oxygen consumed, higher ATP level expressed and less lactate released, and the increase of NADH lifetime was associated with ATP level. Higher expression of the total Complex protein was observed at 3 and 4 weeks after differentiation than controls. However, Complex I expression did not show significant correlation with the increase of NADH fluorescence lifetime. In summary, we demonstrated that the change of NADH lifetime was associated with the metabolic change during osteogenic differentiation of hMSCs. The increase of NADH lifetime was in part due to the increased Complex protein interaction in mitochondria after differentiation.

  13. A precise measurement of the average b hadron lifetime

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Meinhard, H; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Stierlin, U; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Duarte, H; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Si Mohand, D; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, P; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    An improved measurement of the average b hadron lifetime is performed using a sample of 1.5 million hadronic Z decays, collected during the 1991-1993 runs of ALEPH, with the silicon vertex detector fully operational. This uses the three-dimensional impact parameter distribution of lepton tracks coming from semileptonic b decays and yields an average b hadron lifetime of 1.533 \\pm 0.013 \\pm 0.022 ps.

  14. Direct measurements of the lifetime of medium-heavy hypernuclei

    Science.gov (United States)

    Qiu, X.; Tang, L.; Chen, C.; Margaryan, A.; Wood, S. A.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Badui, R.; Baturin, P.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chen, X.; Chiba, A.; Christy, M. E.; Dalton, M. M.; Danagoulian, S.; De Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fenker, H.; Fujii, Y.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Gogami, T.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed V.; Jones, M.; Kanda, H.; Kaneta, M.; Kawama, D.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Markowitz, P.; Marikyan, G.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman; Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Yamamoto, T.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.; HKS (JLab E02-017) Collaboration

    2018-05-01

    The lifetime of a Λ particle embedded in a nucleus (hypernucleus) decreases from that of free Λ decay mainly due to the opening of the ΛN → NN weak decay channel. However, it is generally believed that the lifetime of a hypernucleus attains a constant value (saturation) for medium to heavy hypernuclear masses, yet this hypothesis has been difficult to verify. This paper presents a direct measurement of the lifetime of medium-heavy hypernuclei that were hyper-fragments produced by fission or break-up from heavy hypernuclei initially produced with a 2.34 GeV photon-beam incident on thin Fe, Cu, Ag, and Bi target foils. For each event, fragments were detected in coincident pairs by a low-pressure multi-wire proportional chamber system. The lifetime was extracted from decay time spectrum formed by the difference of the time zeros between the pairs. The measured lifetime from each target is actually a statistical average over a range of mass with mean about 1/2 of the target mass and appears to be a constant of about 200 ps. Although this result cannot exclude unexpected shorter or longer lifetimes for some specific hypernuclei or hypernuclear states, it shows that a systematic decrease in lifetime as hypernuclear mass increases is not a general feature for hypernuclei with mean mass up to A ≈ 130. On the other hand, the success of this experiment and its technique shows that the time delayed fissions observed and used by all the lifetime measurements done so far on heavy hypernuclei could likely have originated from hyper-fragments lighter than the assumed masses.

  15. Lifetime-based optical sensor for high-level pCO2 detection employing fluorescence resonance energy transfer

    International Nuclear Information System (INIS)

    Bueltzingsloewen, Christoph von; McEvoy, Aisling K.; McDonagh, Colette; MacCraith, Brian D.

    2003-01-01

    An optical sensor for the measurement of high levels of carbon dioxide in gas phase has been developed. It is based on fluorescence resonance energy transfer (FRET) between a long-lifetime ruthenium polypyridyl complex and the pH-active disazo dye Sudan III. The donor luminophore and the acceptor dye are both immobilised in a hydrophobic silica sol-gel/ethyl cellulose hybrid matrix material. Tetraoctylammonium hydroxide (TOA-OH) is used as an internal buffering system. Fluorescence lifetime is measured in the frequency domain, using low-cost phase modulation measurement technology. The use of Sudan III as an acceptor dye has enabled the sensor to have a dynamic range up to 100% carbon dioxide. The sensor displays 11.2 deg. phase shift between the limit of detection (LOD) of 0.06 and 100% CO 2 with a resolution of better than 2%. The encapsulation in the silica/polymer hybrid material has provided the sensor with good mechanical and chemical stability. The effect of molecular oxygen, humidity and temperature on the sensor performance was studied in detail

  16. A measurement of the neutron lifetime by counting trapped protons

    CERN Document Server

    Snow, W M; Dewey, M S; Fei, X; Gilliam, D M; Greene, G L; Nico, J S; Wietfeldt, F E

    2000-01-01

    A measurement of the neutron lifetime tau sub n performed by trapping and counting decay protons from in-beam neutron decays in a Penning trap is in progress at the National Institute of Standards and Technology (NIST). A description of the measurement technique, the status of the data analysis, and prospects for improvements in the measurement are discussed.

  17. Lifetime measurements using the recoil distance method - achievements and perspectives

    International Nuclear Information System (INIS)

    Kruecken, R.

    2001-01-01

    The recoil distance method (RDM) for measuring pico-second nuclear level lifetimes and its use in nuclear structure studies is reviewed and perspectives for the future are presented. High precision measurements in the mass-130 region, studies of multi-phonon states in rare earth nuclei, the investigation of shape coexistence and the recently discovered phenomenon of 'magnetic rotation' are reviewed. Prospects for lifetime measurements in exotic regions of nuclei such as the measurement of lifetimes in neutron rich nuclei populated via spontaneous and heavy-ion induced fission are discussed. Other prospects include the use of the RDM technique in conjunction with recoil separators. The relevance of these techniques for experiments with radioactive ion beams will be discussed

  18. Fluorescence lifetime imaging of microviscosity changes during ER autophagy in live cells

    Science.gov (United States)

    He, Ying; Samanta, Soham; Gong, Wanjun; Liu, Wufan; Pan, Wenhui; Yang, Zhigang; Qu, Junle

    2018-02-01

    Unfolded or misfolded protein accumulation inside Endoplasmic Reticulum (ER) will cause ER stress and subsequently will activate cellular autophagy to release ER stress, which would ultimately result in microviscosity changes. However, even though, it is highly significant to gain a quantitative assessment of microviscosity changes during ER autophagy to study ER stress and autophagy behaviors related diseases, it has rarely been reported yet. In this work, we have reported a BODIPY based fluorescent molecular rotor that can covalently bind with vicinal dithiols containing nascent proteins in ER and hence can result in ER stress through the inhibition of the folding of nascent proteins. The change in local viscosity, caused by the release of the stress in cells through autophagy, was quantified by the probe using fluorescence lifetime imaging. This work basically demonstrates the possibility of introducing synthetic chemical probe as a promising tool to diagnose ER-viscosity-related diseases.

  19. Fluorescence lifetime components reveal kinetic intermediate states upon equilibrium denaturation of carbonic anhydrase II.

    Science.gov (United States)

    Nemtseva, Elena V; Lashchuk, Olesya O; Gerasimova, Marina A; Melnik, Tatiana N; Nagibina, Galina S; Melnik, Bogdan S

    2017-12-21

    In most cases, intermediate states of multistage folding proteins are not 'visible' under equilibrium conditions but are revealed in kinetic experiments. Time-resolved fluorescence spectroscopy was used in equilibrium denaturation studies. The technique allows for detecting changes in the conformation and environment of tryptophan residues in different structural elements of carbonic anhydrase II which in its turn has made it possible to study the intermediate states of carbonic anhydrase II under equilibrium conditions. The results of equilibrium and kinetic experiments using wild-type bovine carbonic anhydrase II and its mutant form with the substitution of leucine for alanine at position 139 (L139A) were compared. The obtained lifetime components of intrinsic tryptophan fluorescence allowed for revealing that, the same as in kinetic experiments, under equilibrium conditions the unfolding of carbonic anhydrase II ensues through formation of intermediate states.

  20. Beam lifetime measurement and analysis in Indus-2 electron ...

    Indian Academy of Sciences (India)

    In this paper, the beam lifetime measurement and its theoretical analysis are presented using measured vacuum pressure and applied radio frequency (RF) cavity voltage in Indus-2 electron storage ring at 2 GeV beam energy. Experimental studies of the effect of RF cavity voltage and bunched beam filling pattern on beam ...

  1. From morphology to clinical pathophysiology: multiphoton fluorescence lifetime imaging at patients' bedside

    Science.gov (United States)

    Mess, Christian; Zens, Katharina; Gorzelanny, Christian; Metze, Dieter; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.; Huck, Volker

    2017-02-01

    Application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of skin diseases. By means of multiphoton excitation, endogenous biomolecules like NADH, collagen or elastin show autofluorescence or second harmonic generation. Thus, these molecules provide information about the subcellular morphology, epidermal architecture and physiological condition of the skin. To gain a deeper understanding of the linkage between cellular structure and physiological processes, non-invasive multiphotonbased intravital tomography (MPT) and fluorescence lifetime imaging (FLIM) were combined within the scopes of inflammatory skin, chronic wounds and drug delivery in clinical application. The optical biopsies generated via MPT were morphologically analyzed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Independent morphometric algorithms reliably showed a perinuclear accumulation in lesional skin in contrast to an even distribution in healthy skin. Confirmatively, MPT-FLIM showed an obvious metabolic shift in lesions. Moreover, detection of the onset and progression of inflammatory processes could be achieved. The feasibility of primary in vivo tracking of applied therapeutic agents further broadened our scope: We examined the permeation and subsequent distribution of agents directly visualized in patientś skin in short-term repetitive measurements. Furthermore, we performed MPT-FLIM follow-up investigations in the long-term course of therapy. Therefore, clinical MPT-FLIM application offers new insights into the pathophysiology and the individual therapeutic course of skin diseases, facilitating a better understanding of the processes of inflammation and wound healing.

  2. Photoluminescence decay lifetime measurements of hemicyanine derivatives of different alkyl chain lengths

    International Nuclear Information System (INIS)

    Shim, Taekyu; Lee, Myounghee; Kim, Sungho; Sung, Jaeho; Rhee, Bum Ku; Kim, Doseok; Kim, Hyunsung; Yoon, Kyung Byung

    2004-01-01

    The fluorescence upconversion setup for the detection of photoluminescence (PL) decay lifetime with subpicosecond time resolution was constructed, and the photoluminescence phenomena of several hemicyanine dyes with alkyl chains of different chain lengths tethered to the N atom of the pyridine moiety (HC-n, n=6, 15, 22) in methanol were investigated. The average decay lifetimes of the solutions determined from the measured data by multi-order exponential decay curve fitting were ∼27 ps at the PL peak wavelength. It was found that the PL decay properties did not depend on the alkyl chain length in the molecule, implying that the twist of the alkylpyridinium ring of the molecule is not possible as a nonfluorescing relaxation pathway. The time-dependent PL spectra constructed from the PL lifetime data showed the dynamic Stokes shift of ∼1000 cm -1

  3. CVD grown 2D MoS{sub 2} layers: A photoluminescence and fluorescence lifetime imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Oezden, Ayberk; Madenoglu, Buesra [Department of Materials Science and Engineering, Faculty of Engineering, Anadolu University, Eskisehir (Turkey); Sar, Hueseyin; Ay, Feridun; Perkgoez, Nihan Kosku [Department of Electrical and Electronics Engineering, Faculty of Engineering, Anadolu University, Eskisehir (Turkey); Yeltik, Aydan [Department of Physics, UNAM Institute of Materials Science and Nanotechnology, Bilkent University, Ankara (Turkey); Sevik, Cem [Department of Mechanical Engineering, Faculty of Engineering, Anadolu University, Eskisehir (Turkey)

    2016-11-15

    In this letter, we report on the fluorescence lifetime imaging and accompanying photoluminescence properties of a chemical vapour deposition (CVD) grown atomically thin material, MoS{sub 2}. μ-Raman, μ-photoluminescence (PL) and fluorescence lifetime imaging microscopy (FLIM) are utilized to probe the fluorescence lifetime and photoluminescence properties of individual flakes of MoS{sub 2} films. Usage of these three techniques allows identification of the grown layers, grain boundaries, structural defects and their relative effects on the PL and fluorescence lifetime spectra. Our investigation on individual monolayer flakes reveals a clear increase of the fluorescence lifetime from 0.3 ns to 0.45 ns at the edges with respect to interior region. On the other hand, investigation of the film layer reveals quenching of PL intensity and lifetime at the grain boundaries. These results could be important for applications where the activity of edges is important such as in photocatalytic water splitting. Finally, it has been demonstrated that PL mapping and FLIM are viable techniques for the investigation of the grain-boundaries. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Lifetime measurements of excited states in 196Pt

    International Nuclear Information System (INIS)

    Bolotin, H.H.; Katayama, Ichiro; Sakai, Hideyuki; Fujita, Yoshitaka; Fujiwara, Mamoru

    1979-01-01

    The lifetimes of six excited states in 196 Pt up to an excitation energy of 1525 keV were measured by the recoil-distance method (RDM). These levels were populated by Coulomb excitation using both 90 MeV 20 Ne and 220 MeV 58 Ni ion beams. The measured lifetimes of the 2 1 + , 4 1 + , 6 1 + , 2 2 + , 4 2 + and 0 2 + states and the B(E2) values inferred for the depopulating transitions from these levels are presented. With the exception of the 2 1 + state, the meanlives of all other levels are the first such direct experimental determinations to be reported. (author)

  5. A new measurement of the Ξc+ lifetime

    Science.gov (United States)

    FOCUS Collaboration; Link, J. M.; Reyes, M.; Yager, P. M.; Anjos, J. C.; Bediaga, I.; Göbel, C.; Magnin, J.; Massafferri, A.; de Miranda, J. M.; Pepe, I. M.; Dos Reis, A. C.; Carrillo, S.; Casimiro, E.; Sánchez-Hernández, A.; Uribe, C.; Vázquez, F.; Cinquini, L.; Cumalat, J. P.; O'Reilly, B.; Ramirez, J. E.; Vaandering, E. W.; Butler, J. N.; Cheung, H. W. K.; Gaines, I.; Garbincius, P. H.; Garren, L. A.; Gottschalk, E.; Kasper, P. H.; Kreymer, A. E.; Kutschke, R.; Bianco, S.; Fabbri, F. L.; Zallo, A.; Cawlfield, C.; Kim, D. Y.; Rahimi, A.; Wiss, J.; Gardner, R.; Kryemadhi, A.; Chung, Y. S.; Kang, J. S.; Ko, B. R.; Kwak, J. W.; Lee, K. B.; Park, H.; Alimonti, G.; Boschini, M.; Chiodini, G.; D'Angelo, P.; DiCorato, M.; Dini, P.; Giammarchi, M.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Milazzo, L.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport, T. F.; Agostino, L.; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Segoni, I.; Vitulo, P.; Hernandez, H.; Lopez, A. M.; Mendez, H.; Mendez, L.; Mirles, A.; Montiel, E.; Olaya, D.; Paris, A.; Quinones, J.; Rivera, C.; Xiong, W.; Zhang, Y.; Wilson, J. R.; Cho, K.; Handler, T.; Mitchell, R.; Engh, D.; Hosack, M.; Johns, W. E.; Nehring, M.; Sheldon, P. D.; Stenson, K.; Webster, M.; Sheaff, M.

    2001-12-01

    A precise determination of the charm-strange baryon Ξc+ lifetime is presented. The data were accumulated by the Fermilab high-energy photoproduction experiment FOCUS. The measurement is made with 300Ξc+-->Ξ- π+π+ decays, 130Ξc+-->Σ+K- π+ decays, 45Ξc+-->pK-π+ decays and 58Ξc+-->Λ0K- π+π+ decays. The Ξc+ lifetime is measured to be 0.439+/-0.022+/-0.009 ps.

  6. A measurement of Rb using a lifetime-mass tag

    Science.gov (United States)

    Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Miquel, R.; Mir, Ll. M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Becker, U.; Bazarko, A. O.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rizzo, G.; Rolandi, L.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Turnbull, R. M.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Ghete, V. M.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Coyle, P.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Berlich, R.; Blum, W.; Brown, D.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Schune, M.-H.; Simion, S.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A.; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.

    1997-02-01

    ALEPH's published measurement of Rb = Γ(Z -> bb)/Γ(Z -> hadrons) using a lifetime tag is updated using the full LEP 1 data sample. Considerable effort has been devoted to understanding systematic effects. Charm background is better controlled by combining the lifetime tag with a tag based on the b/c hadron mass difference. Furthermore, the algorithm used to reconstruct the event primary vertex is designed so as to reduce correlations between the two hemispheres of an event. The value of Rb is measured to be 0.2167 +/- 0.0011 (stat) +/- 0.0013 (syst).

  7. Measurement of the tau lifetime with the DELPHI detector

    CERN Document Server

    Andreazza, Attilio

    2005-01-01

    The tau lepton lifetime has been measured with the $e^{+}e^{-}$ to tau /sup +/ tau /sup -/ events collected by the DELPHI detector at LEP in the years 1991-1995. Three different methods have been exploited, using both one-prong and three-prong tau decay channels. These are combined with previously published DELPHI results to provide a tau lifetime measurement of tau /sub tau /=290.9+or-1.4/sub stat/+or-1.0/sub sys/ fs, using the full LEP1 data sample.

  8. Fluorescence Lifetime Readouts of Troponin-C-Based Calcium FRET Sensors: A Quantitative Comparison of CFP and mTFP1 as Donor Fluorophores

    Science.gov (United States)

    Laine, Romain; Stuckey, Daniel W.; Manning, Hugh; Warren, Sean C.; Kennedy, Gordon; Carling, David

    2012-01-01

    We have compared the performance of two Troponin-C-based calcium FRET sensors using fluorescence lifetime read-outs. The first sensor, TN-L15, consists of a Troponin-C fragment inserted between CFP and Citrine while the second sensor, called mTFP-TnC-Cit, was realized by replacing CFP in TN-L15 with monomeric Teal Fluorescent Protein (mTFP1). Using cytosol preparations of transiently transfected mammalian cells, we have measured the fluorescence decay profiles of these sensors at controlled concentrations of calcium using time-correlated single photon counting. These data were fitted to discrete exponential decay models using global analysis to determine the FRET efficiency, fraction of donor molecules undergoing FRET and calcium affinity of these sensors. We have also studied the decay profiles of the donor fluorescent proteins alone and determined the sensitivity of the donor lifetime to temperature and emission wavelength. Live-cell fluorescence lifetime imaging (FLIM) of HEK293T cells expressing each of these sensors was also undertaken. We confirmed that donor fluorescence of mTFP-TnC-Cit fits well to a two-component decay model, while the TN-L15 lifetime data was best fitted to a constrained four-component model, which was supported by phasor analysis of the measured lifetime data. If the constrained global fitting is employed, the TN-L15 sensor can provide a larger dynamic range of lifetime readout than the mTFP-TnC-Cit sensor but the CFP donor is significantly more sensitive to changes in temperature and emission wavelength compared to mTFP and, while the mTFP-TnC-Cit solution phase data broadly agreed with measurements in live cells, this was not the case for the TN-L15 sensor. Our titration experiment also indicates that a similar precision in determination of calcium concentration can be achieved with both FRET biosensors when fitting a single exponential donor fluorescence decay model to the fluorescence decay profiles. We therefore suggest that m

  9. Measurement of the Lifetime of the $\\tau$ Lepton

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alpat, B; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Antreasyan, D; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banicz, K; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Borgia, B; Boucham, A; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Buytenhuijs, A O; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Caria, M; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chan, A; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Choi, M T; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; De Boeck, H; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dorne, I; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Fernández, D; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hangarter, K; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Janssen, H; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamyshkov, Yu A; Kapinos, P; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kuijten, H; Kunin, A; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee Jae Sik; Lee, K Y; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lieb, E H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Nagy, E; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nippe, A; Nowak, H; Organtini, G; Ostonen, R; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riemers, B C; Riles, K; Rind, O; Ro, S; Robohm, A; Rodin, J; Rodríguez-Calonge, F J; Roe, B P; Röhner, S; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Rykaczewski, H; Salicio, J; Sánchez, E; Santocchia, A; Sarakinos, M E; Sarkar, S; Sassowsky, M; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Schneegans, M; Schöneich, B; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Sens, Johannes C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonisch, F; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino

    1996-01-01

    The lifetime of the tau lepton is measured using data collected in 1994 by the L3 detector at LEP. The precise track position information of the Silicon Microvertex Detector is exploited. The tau lepton lifetime is determined from the signed impact parameter distribution for 30 322 tau decays into one charged particle and from the decay length distribution for 3891 tau decays into three charged particles. Combining the two methods we obtain $\\tau_{\\tau}$ = 290.1 $\\pm$ 4.0 fs.

  10. Measurement of b-flavoured hadron lifetimes at LHCb

    CERN Document Server

    Ilieva, Simona Ilieva

    2016-01-01

    The aim of this Student Project Note is to describe precise lifetime measurements of b-flavored hadrons at LHCb. The analysis is based on Monte Carlo data simulating Run2 2015 conditions. Decay-time biases introduced at every step of the reconstruction, trigger and selection of candidates are studied. Several methods to correct for Lower acceptance are presented.

  11. Precision lifetime measurements of Ar II 4p doublet levels

    International Nuclear Information System (INIS)

    Marger, D.; Schmoranzer, H.

    1990-01-01

    The lifetimes of the Ar II 4p doublet fine-structure levels 4p 2 D 0 5/2 , 4p' 2 F 0 5/2 and 4p' 2 F 0 7/2 were measured by beam-dye laser spectroscopy. The experimental uncertainty was reduced to below 1%. (orig.)

  12. Measurement of b hadron lifetimes in pp collisions at CMS

    CERN Document Server

    Mejia Guisao, Jhovanny Andres

    2018-01-01

    Precise measurements of the lifetimes of the $B^0$, $B_s^0$, $\\Lambda_b^0$, and $B_c^+$ hadrons using the decay channels $B^0 \\to J/\\psi K^{*}(892)^0$, $B^0 \\to J/\\psi K_s^{0}$, $B_s^0 \\to J/\\psi \\pi^+ \\pi^-$, $B_s^0 \\to J/\\psi \\phi(1020)$, $\\Lambda_b^0 \\to J/\\psi \\Lambda^0$, and $B_c^+ \\to J/\\psi \\pi^+$ were performed. The data sample, corresponding to an integrated luminosity of 19.7 fb$^{-1}$, was collected by the CMS detector at the LHC in proton-proton collisions at $\\sqrt{s}=8$ $\\textrm{TeV}$. The $B^0$ lifetime is measured to be $453.0 \\pm 1.6\\textrm{(stat)} \\pm 1.5\\textrm{(syst)} $ $\\mu\\textrm{m}$ in $J/\\psi K^{*}(892)^0$ and $457.8 \\pm 2.7\\textrm{(stat)} \\pm 2.7\\textrm{(syst)} $ $\\mu\\textrm{m}$ in $J/\\psi K_s^{0}$. The effective lifetime of the $B_s^0$ meson is measured in two decay modes, with contributions from different amounts of the heavy and light eigenstates. This results in two different measured lifetimes: $c\\tau_{B_s^0 \\to J/\\psi \\pi^+ \\pi^-} = 502.7 \\pm 10.2\\textrm{(stat)} \\pm 3.2\\textrm{(...

  13. Positron lifetime measurements on electron irradiated amorphous alloys

    International Nuclear Information System (INIS)

    Moser, P.; Hautojaervi, P.; Chamberod, A.; Yli-Kauppila, J.; Van Zurk, R.

    1981-08-01

    Great advance in understanding the nature of point defects in crystalline metals has been achieved by employing positron annihilation technique. Positrons detect vacancy-type defects and the lifetime value of trapped positrons gives information on the size of submicroscopic vacancy aglomerates and microvoids. In this paper it is shown that low-temperature electron irradiations can result in a considerable increase in the positron lifetimes in various amorphous alloys because of the formation of vacancy-like defects which, in addition of the pre-existing holes, are able to trap positrons. Studied amorphous alloys were Fe 80 B 20 , Pd 80 Si 20 , Cu 50 Ti 50 , and Fe 40 Ni 40 P 14 B 6 . Electron irradiations were performed with 3 MeV electrons at 20 K to doses around 10 19 e - /cm 2 . After annealing positron lifetime spectra were measured at 77 K

  14. Measurement of the neutron lifetime by counting trapped protons

    International Nuclear Information System (INIS)

    Byrne, J.; Dawber, P.G.; Spain, J.A.; Williams, A.P.; Dewey, M.S.; Gilliam, D.M.; Greene, G.L.; Lamaze, G.P.; Scott, R.D.; Pauwels, J.; Eykens, R.; Lamberty, A.

    1990-01-01

    The neutron lifetime τ n has been measured by counting decay protons stored in a Penning trap whose magnetic axis coincided with a neutron-beam axis. The result of the measurement is τ n =893.6±5.3 s, which agrees well with the value predicted by precise measurements of the β-decay asymmetry parameter A and the standard model

  15. Interpretation of measurements of dynamic fluorescence of the eye

    Science.gov (United States)

    Schweitzer, Dietrich; Hammer, Martin; Jentsch, Susanne; Schenke, Stefan

    2007-09-01

    First pathological alterations occur at cellular level, most in metabolism. An indirect estimation of metabolic activity in cells is measurement of microcirculation. Measurements of tissue autofluorescence are potentially suited for direct investigation of cellular metabolism. Besides redox pairs of co-enzymes (NADH-NAD, FADH2-FAD) several other fluorophores are excited in tissue. In addition, a number of anatomical structures are simultaneously excited, when investigating the eye-ground. In this study, spectral and time resolved comparison was performed between purified substances, single ocular structures and in vivo measurements of the time-resolved autofluorescence at the human eye. In human eyes, the ageing pigment lipofuscin covers other fluorophores at the fundus in long - wave visible range. Applying lifetime measurements, weakly emitting fluorophores can be detected, when the lifetimes are different from the strongly emitting fluorophore. For this, the autofluorescence was excited at 468 nm and detected in two spectral ranges (500 nm-560 nm, 560 nm-700 nm). In tri-exponential fitting, the short lifetime corresponds to retinal pigment epithelium, the mean lifetime corresponds probably to neural retina and the long lifetime is caused by fluorescence of connective tissue.

  16. Lifetime measurements of the excited states in {sup 145} Sm

    Energy Technology Data Exchange (ETDEWEB)

    El-Badry, A M; Abdel Samie, Sh; Ahmad, A A [Depatment of Physics, Faculty of Science, ElMinia University, ElMinia, (Egypt); Kuroyanagi, T; Odahara, A; Gono, Y; Morinobu, S [Tandem Accelerator Laboratory, Department of Physics, Kyushu University, (Japan)

    1997-12-31

    Lifetime of the excited levels in {sup 145} Sm has been measured through the {sup 139} La ({sup 10} B, 4 n){sup 145} Sm nuclear reaction. The optimal beam energy of 49 MeV was determined from the measurements of the excitation function and Cascade program. With the possibility of studying lifetime of this nucleus a conventional plunger system have been designed and constructed at kyushu University tandem accelerator laboratory. A La target of 0.22 mg/cm{sup 2} thickness which was evaporated onto a Au foil of 2 mg/cm{sup 2} thickness was used. Since the recoil velocity was estimated to be 1.76 mm/ns (beta 0.00585), the measurable time range resulted in the range from 5 Ps to 5 ns. The single spectra measurements were performed at the 20 plunger positions in the range from 10 {mu} to 10 mm. Analyses of the data were carried using hypermet and/or GF2 program to obtain the lifetimes. A new list of lifetimes for 12 excited states up to 3.922 MeV excitations for {sup 145} Sm were determined for the first time. Decay curves of the these transitions are discussed. The new lifetimes of excited states in {sup 145} Sm enabled us to understand the electromagnetic properties. The deduced transition probabilities were established and compared with that of N = 83 isotones and the closed shell nucleus {sup 144} Sm. In addition, a nuclear structure of {sup 145} Sm have been discussed and proposed in framework of the shell model. 4 figs., 1 tab.

  17. Precision measurement of the $\\Lambda_b^0$ baryon lifetime

    CERN Document Server

    INSPIRE-00258707; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; Mc Skelly, B; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palczewski, T; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    The ratio of the $\\Lambda_b^0$ baryon lifetime to that of the $\\overline{B}^0$ meson is measured using 1.0 fb$^{-1}$ of integrated luminosity in 7 TeV center-of-mass energy $pp$ collisions at the LHC. The $\\Lambda_b^0$ baryon is observed for the first time in the decay mode $\\Lambda_b^0 \\to J/\\psi p K^-$, while the $\\overline{B}^0$ meson decay used is the well known $\\overline{B}^0 \\to J/\\psi \\pi^+ K^-$ mode, where the $\\pi^+K^-$ mass is consistent with that of the $\\bar{K}^{*0}(892)$ meson. The ratio of lifetimes is measured to be $0.976\\pm0.012\\pm0.006$, in agreement with theoretical expectations based on the heavy quark expansion. Using previous determinations of the $\\overline{B}^0$ meson lifetime, the $\\Lambda_b^0$ lifetime is found to be $1.482 \\pm 0.018 \\pm 0.012$ ps. In both cases the first uncertainty is statistical and the second systematic.

  18. Precision measurement of the Λb(0) baryon lifetime.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; Mc Skelly, B; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palczewski, T; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-09-06

    The ratio of the Λb(0) baryon lifetime to that of the B(0) meson is measured using 1.0  fb(-1) of integrated luminosity in 7 TeV center-of-mass energy pp collisions at the LHC. The Λb(0) baryon is observed for the first time in the decay mode Λb(0)→J/ψpK-, while the B(0) meson decay used is the well known B(0)→J/ψπ+ K- mode, where the π+ K- mass is consistent with that of the K(*0)(892) meson. The ratio of lifetimes is measured to be 0.976±0.012±0.006, in agreement with theoretical expectations based on the heavy quark expansion. Using previous determinations of the B(0) meson lifetime, the Λb(0) lifetime is found to be 1.482±0.018±0.012  ps. In both cases, the first uncertainty is statistical and the second systematic.

  19. RDM Lifetime measurement in "1"0"0Ru

    International Nuclear Information System (INIS)

    Gupta, C.K.; Rohilla, Aman; Chamoli, S.K.; Singh, R.P.; Murlithar, S.; Chakraborty, S.; Sharma, H.P.; Rai, S.; Kumar, A.; Govil, I.M.

    2016-01-01

    The energy level sequences of nuclei in A ∼ 100 mass region show an interesting interplay between single-particle and collective degrees of freedom. The measured transition probabilities in "9"8Ru suggest that the nucleus has both single-particle and vibrational character. To see how the nature of this nucleus changes with addition of 2 neutrons, we performed RDM lifetime measurement in yrast sequence of "1"0"0Ru at Inter University Accelerator Center (IUAC), New Delhi

  20. Updated measurement of the tau lifetime at SLD

    International Nuclear Information System (INIS)

    1996-01-01

    We present an updated measurement of the tau lifetime at SLD. 4316 τ-pair events, selected from a 150k Z 0 data sample, are analyzed using three techniques: decay length, impact parameter, and impact parameter difference methods. The measurement benefits from the small and stable interaction region at the SLC and the precision CCD pixel vertex detector of the SLD. The combined result is: τ τ = 288.1 ± 6.1(stat) ± 3.3(syst) fs

  1. A Measurement of the Bs Lifetime at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Farrington, Sinead [Boston Univ., MA (United States)

    2004-01-01

    This thesis describes a measurement of the proper lifetime of the B$0\\atop{s}$ mesons produced in proton-antiproton collisions at a center of mass energy of 1.96 TeV, collected by the CDF experiment at Fermilab. The B$0\\atop{s}$ meson lifetime is measured in its semileptonic decay mode, B$0\\atop{s}$ → ℓ+vD$-\\atop{s}$. The D$-\\atop{s}$ meson candidates are reconstructed in the decay mode D$-\\atop{s}$ → Φπ, with Φ → K+K-, in a trigger sample which requires a muon or an electron and another track which has a large impact parameters. The large impact parameter track is required by the silicon vertex trigger which is an innovative triggering device which has not previously been used in lifetime measurements. A total of 905 ± B$0\\atop{s}$ candidates are reconstructed in a sample which has an integrated luminosity of 140 pb-1 using data gathered between February 2002 and August 2003. The pseudo-proper lifetime distribution of these candidates is fitted with an unbinned maximum likelihood fit. This fit takes into account the missing momentum carried by the neutrino and the bias caused by requiring a track with large impact parameter by modeling these effects in simulations. The fit yields the result for the B$0\\atop{s}$ proper lifetime: cτ(B$0\\atop{s}$) = 419 ± 28$+16\\atop{-13}$ μm and τ(B$0\\atop{s}$) = 1.397 ± 0.093$+0.053\\atop{-0.043}$ ps where the first error is statistical and the second is systematic.

  2. Lifetime measurement in neutron-rich A ∝ 100 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Saba; Jolie, Jan; Regis, Jean-Marc; Saed-Samii, Nima; Warr, Nigel [Institute for Nuclear Physics, University of Cologne, Cologne (Germany); Collaboration: EXILL-FATIMA-Collaboration

    2016-07-01

    Rapid shape changes are observed in the region of neutron rich nuclei with a mass around A=100. Precise lifetime measurements are a key ingredient in the systematic study of the evolution of nuclear deformation and the degree of collectivity in this region. Nuclear lifetimes of excited states can be obtained using the fast-timing technique with LaBr{sub 3}(Ce)-scintillators. We used neutron induced fission of {sup 241}Pu in order to study lifetimes of excited states of fission fragments in the A∝100 region. The EXILL-FATIMA array located at the PF1B cold neutron beam line at the Institut Laue-Langevin comprises of 8 BGO-shielded EXOGAM clover detectors and 16 very fast LaBr{sub 3}(Ce)-scintillator detectors, which were installed around the fission target. We have studied the lifetimes of low lying states for the nuclei {sup 98}Zr, {sup 100}Zr and {sup 102}Zr by applying the generalized centroid difference method. In this contribution we report on the used fast-timing setup and present preliminary results for the studied isotopes.

  3. GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method

    Science.gov (United States)

    Kim, Byungyeon; Park, Byungjun; Lee, Seungrag; Won, Youngjae

    2016-01-01

    We demonstrated GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method. Our algorithm was verified for various fluorescence lifetimes and photon numbers. The GPU processing time was faster than the physical scanning time for images up to 800 × 800, and more than 149 times faster than a single core CPU. The frame rate of our system was demonstrated to be 13 fps for a 200 × 200 pixel image when observing maize vascular tissue. This system can be utilized for observing dynamic biological reactions, medical diagnosis, and real-time industrial inspection. PMID:28018724

  4. Measurement of the average lifetime of hadrons containing bottom quarks

    International Nuclear Information System (INIS)

    Klem, D.E.

    1986-06-01

    This thesis reports a measurement of the average lifetime of hadrons containing bottom quarks. It is based on data taken with the DELCO detector at the PEP e + e - storage ring at a center of mass energy of 29 GeV. The decays of hadrons containing bottom quarks are tagged in hadronic events by the presence of electrons with a large component of momentum transverse to the event axis. Such electrons are identified in the DELCO detector by an atmospheric pressure Cherenkov counter assisted by a lead/scintillator electromagnetic shower counter. The lifetime measured is 1.17 psec, consistent with previous measurements. This measurement, in conjunction with a limit on the non-charm branching ratio in b-decay obtained by other experiments, can be used to constrain the magnitude of the V/sub cb/ element of the Kobayashi-Maskawa matrix to the range 0.042 (+0.005 or -0.004 (stat.), +0.004 or -0.002 (sys.)), where the errors reflect the uncertainty on tau/sub b/ only and not the uncertainties in the calculations which relate the b-lifetime and the element of the Kobayashi-Maskawa matrix

  5. Lifetime measurement in {sup 74}Kr and {sup 76}Kr

    Energy Technology Data Exchange (ETDEWEB)

    Goergen, A.; Clement, E.; Chatillon, A.; Korten, W.; Le Coz, Y.; Theisen, Ch. [DAPNIA/SPhN, CEA Saclay, Gif-sur-Yvette Cedex (France); Dewald, A.; Melon, B.; Moeller, O.; Zell, K.O. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Marginean, N.; Tonev, D. [INFN-Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy); Menegazzo, R.; Ur, C.A. [Universita di Padova and INFN Sezione di Padova, Dipartimento di Fisica, Padova (Italy)

    2005-11-01

    Lifetimes of excited states in the ground-state bands of {sup 74}Kr and {sup 76}Kr were measured using the recoil-distance Doppler-shift and the differential decay curve methods. The states were populated in the {sup 40}Ca({sup 40}Ca,{alpha}2p) and {sup 40}Ca({sup 40}Ca,4p) reactions. Gamma rays were detected with the GASP array which was coupled to the Cologne Plunger device. The results resolve discrepancies between earlier lifetime measurements and a recent Coulomb excitation experiment. Experimental transition rates are compared to theoretical calculations. The results support a strong mixing between prolate and oblate configurations for the low-spin states, and represent an important basis for the interpretation and understanding of the shape coexistence phenomenon in this mass region. (orig.)

  6. Improved measurement of the B 0 and B + meson lifetimes

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J. P.; Lucotte, A.; Minard, M. N.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palla, F.; Pater, J. R.; Pusztaszeri, J. F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Wildish, T.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J. M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H. G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H. G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J. F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A. M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M. H.; Simion, S.; Veillet, J. J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J. F.; Roussarie, A.; Schuller, J. P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.

    1996-03-01

    The lifetimes of the B 0 and B + mesons have been measured with the Aleph detector at LEP, using approximately 3 million hadronic Z decays collected in the period 1991 1994. In the first of three methods, semileptonic decays of B 0 and B + mesons were partially reconstructed by identifying events containing a lepton with an associated D*- orbar D^0 meson. The second method used fully reconstructed B 0 and B + mesons. The third method, used to measure the B 0 lifetime, employed a partial reconstruction technique to identify B 0→ D*- π + X decays. The combined results are begin{gathered} tau _0 = 1.55 ± 0.06 ± 0.03 ps, \\ tau _ + = 1.58 ± 0.09 ± 0.03 ps, \\ tfrac{{tau _ + }}{{tau _0 }} = 1.03 ± 0.08 ± 0.02. \\ .

  7. LEP measurements on production, mass, lifetime of beauty particles

    International Nuclear Information System (INIS)

    Wormser, G.

    1993-10-01

    Present knowledge about the individual properties of the different beauty particles is discussed using the results of the LEP experiments. Individual lifetimes for B d 0 and B + are found to be equal within 10% whilst a 15% precision is reached for B s 0 and Λ b . The Λ b lifetime is found to be smaller than τ B + with a 2.7 σ significance. The production rate of each of these particles is measured at the 20% level. Preliminary evidence for Ξ b production has been reported. Finally, the B s 0 meson mass has been measured to be 5373 ± 4 MeV/c 2 . (author) 24 refs., 9 figs., 5 tabs

  8. Direct Vpr-Vpr Interaction in Cells monitored by two Photon Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Imaging

    Directory of Open Access Journals (Sweden)

    Mély Yves

    2008-09-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1 (HIV-1 encodes several regulatory proteins, notably Vpr which influences the survival of the infected cells by causing a G2/M arrest and apoptosis. Such an important role of Vpr in HIV-1 disease progression has fuelled a large number of studies, from its 3D structure to the characterization of specific cellular partners. However, no direct imaging and quantification of Vpr-Vpr interaction in living cells has yet been reported. To address this issue, eGFP- and mCherry proteins were tagged by Vpr, expressed in HeLa cells and their interaction was studied by two photon fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. Results Results show that Vpr forms homo-oligomers at or close to the nuclear envelope. Moreover, Vpr dimers and trimers were found in the cytoplasm and in the nucleus. Point mutations in the three α helices of Vpr drastically impaired Vpr oligomerization and localization at the nuclear envelope while point mutations outside the helical regions had no effect. Theoretical structures of Vpr mutants reveal that mutations within the α-helices could perturb the leucine zipper like motifs. The ΔQ44 mutation has the most drastic effect since it likely disrupts the second helix. Finally, all Vpr point mutants caused cell apoptosis suggesting that Vpr-mediated apoptosis functions independently from Vpr oligomerization. Conclusion We report that Vpr oligomerization in HeLa cells relies on the hydrophobic core formed by the three α helices. This oligomerization is required for Vpr localization at the nuclear envelope but not for Vpr-mediated apoptosis.

  9. Measurement of the D/sub s/ lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Braunschweig, W; Gerhards, R; Kirschfink, F J; Martyn, H U; Rosskamp, P; Bock, B; Eisenmann, J; Fischer, H M; Hartmann, H; Hilger, E

    1987-07-01

    The lifetime of the D/sub S/ meson has been measured using the TASSO detector at PETRA and found to be (5.7 (+3.6-2.6)+-0.9) x 10/sup -13/s. The method used was to reconstruct fully the decay vertex of the channel D/sub s/ -> phi..pi../sup +-/, phi -> K/sup +/K/sup -/.

  10. Lifetime Measurement in the Yrast Band of 119I

    Science.gov (United States)

    Lobach, Yu. N.; Pasternak, A. A.; Srebrny, J.; Droste, Ch.; Hagemann, G. B.; Juutinen, S.; Morek, T.; Piiparinen, M.; Podsvirova, E. O.; Toermaenen, S.; Starosta, K.; Virtanen, A.; Wasilewski, A. A.

    1999-05-01

    The lifetime of levels in the yrast band of 119I were measured by DSAM and RDM using the 109Ag (13C,3n) reaction at E=54 MeV. The detailed description of data analysis including the stopping power determination and estimation of side feeding time is given. A modified method of RDM data analysis --- Recoil Distance Doppler Shape Attenuation (RDDSA) is used.

  11. Lifetime measurement in the yrast band of {sup 119}I

    Energy Technology Data Exchange (ETDEWEB)

    Lobach, Yu.N. [Institute for Nuclear Research UAS, Kiev (Ukraine); Pasternak, A.A. [A.F. Ioffe Physical Technical Institute RAS, St. Petersbourg (Russian Federation); Srebrny, J. [Nuclear Physics Division, IEP, University of Warsaw, Warsaw (Poland)] [and others

    1999-05-01

    The lifetime of levels in the yrast band of {sup 119}I were measured by DSAM and RDM using the {sup 109}Ag({sup 13}C,3n) reaction at E = 54 MeV. The detailed description of data analysis including the stopping power determination and estimation of side feeding time is given. A modified method of RDM data analysis - Recoil Distance Doppler Shape Attenuation (RDDSA) is used. (author) 17 refs, 4 figs, 1 tab

  12. Lifetime measurement in the yrast band of 119I

    International Nuclear Information System (INIS)

    Lobach, Yu.N.; Pasternak, A.A.; Srebrny, J.

    1999-01-01

    The lifetime of levels in the yrast band of 119 I were measured by DSAM and RDM using the 109 Ag( 13 C,3n) reaction at E = 54 MeV. The detailed description of data analysis including the stopping power determination and estimation of side feeding time is given. A modified method of RDM data analysis - Recoil Distance Doppler Shape Attenuation (RDDSA) is used. (author)

  13. Lifetime measurements of charmed mesons with high resolution silicon detectors

    International Nuclear Information System (INIS)

    Rijk, G.A.F. de.

    1986-01-01

    In this thesis an experiment is described to measure the lifetimes of pseudoscalar charmed mesons. The experiment uses a negatively charged unseparated hadron beam of 200 GeV. The experiment is carried out with a magnetic spectrometer preceded by a beam telescope, an active target and a vertex telescope, all consisting of Si microstrip detectors. The spectrometer consists of two spectrometer magnets, 48 planes of drift chambers and 3 Cerenkov hodoscopes for the determination and identification of charged secondaries. The lifetimes of the charmed mesons are determined by measuring the length of their flight path, their momentum and their mass. The results, which are described in the thesis, are based on the analysis of part of the collected data. The production rates in the K - beam and in the π - beam are found to be in the same order of magnitude within the x F range covered. Previous experimental data on the lifetimes of charmed particles are reviewed. A theoretical interpretation is presented of the measured decay properties. (Auth.)

  14. In vivo multiphoton and fluorescence lifetime imaging microscopy of the healthy and cholestatic liver

    Science.gov (United States)

    Kuznetsova, Daria S.; Dudenkova, Varvara V.; Rodimova, Svetlana A.; Bobrov, Nikolai V.; Zagainov, Vladimir E.; Zagaynova, Elena V.

    2018-02-01

    A cholestatic liver disease presents one of the most common liver diseases and can potentially progress to cirrhosis or even cholangiocarcinoma. Conventional techniques are insufficient to precisely describe the complex internal structure, heterogeneous cell populations and the dynamics of biological processes of the liver. Currently, the methods of multiphoton and fluorescence lifetime imaging microscopy are actively introducing to biomedical research. Those methods are extremely informative and non-destructive that allows studying of a large number of processes occurring inside cells and tissues, analyzing molecular cellular composition, as well as evaluating the state of connective tissue fibers due to their ability to generate a second optical harmonic. Multiphoton and FLIM microscopy do not need additional staining of samples or the incorporation of any markers to study metabolism, lipid composition, microstructure analysis, evaluation of fibrous structures. These parameters have pronounced changes in hepatocytes of liver with common pathological diseases. Thereby in this study we investigated metabolic changes in the healthy and cholestatic liver based on the fluorescence of the metabolic co-factors NAD(P)H and FAD by multiphoton microscopy combined with FLIM. To estimate the contribution of energy metabolism and lipogenesis in the observed changes of the metabolic profile, a separate analysis of NADH and NADPH was presented. The data can be used to develop new criteria for the identification of hepatic pathology at the level of hepatocyte changes directed to personalized medicine in the future.

  15. Lifetime measurements in the picosecond range: achievements and perspectives

    International Nuclear Information System (INIS)

    Kruecken, R.

    2000-01-01

    Recent developments in the measurement of lifetimes in the picosecond range using the recoil distance method (RDM) are reviewed. Results from recent RDM experiments on superdeformed bands in the mass-190 region, shears, bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. New experimental devices for lifetime experiments at Yale, such as the New Yale Plunger Device (N.Y.P.D.), the SPEctrometer for Doppler-shift Experiments at Yale (SPEEDY) and the plans for the gas-filled recoil separator SASSYER are presented. Perspectives for the use of the RDM technique in the study of exotic nuclei and its potential use with radioactive beams are discussed. (author)

  16. RDM Lifetime measurements in ^191Hg using the Gammasphere Plunger

    Science.gov (United States)

    Jin, H.; Kharraja, B.; Garg, U.; Ghugre, S. S.; Carpenter, M. P.; Fischer, S.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Nisius, D.; Kaczarowski, R.; Govil, I. M.; Kruecken, R.; Machiavelli, A.; MacLeod, R.

    1998-10-01

    Recoil Distance Lifetime Measurements have been performed for the nucleus ^191Hg at Gammasphere with a view to further investigate the prolate non-collective structure (ɛ2 = 0.1 - 0.15, γ ~= - 120^circ) reported several years ago by D. Ye et al. (D. Ye et al.,) Phys. Lett. B236, 7 (1990) The ^174Yb(^22Ne, 5n) reaction was employed at a beam energy of 120 MeV. In this experiment the new Gammasphere Plunger was used for the first time. Data were collected at 7 distances ranging from 50 μm to 1070 μm. The extracted lifetimes for the level sequence of interest are in the range of ~ 7 ps to 120 ps, leading to transition probabilities that indeed correspond to a non-collective nature.

  17. Measurement of the B+ and B0 meson lifetimes

    International Nuclear Information System (INIS)

    Abe, F.; Albrow, M.; Amidei, D.; Anway-Wiese, C.; Apollinari, G.; Areti, H.; Auchincloss, P.; Azfar, F.; Azzi, P.; Bacchetta, N.; Badgett, W.; Bailey, M.W.; Bao, J.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Bartalini, P.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Benton, D.; Beretvas, A.; Berge, J.P.; Bertolucci, S.; Bhatti, A.; Biery, K.; Binkley, M.; Bird, F.; Bisello, D.; Blair, R.E.; Blocker, C.; Bodek, A.; Bolognesi, V.; Bortoletto, D.; Boswell, C.; Boulos, T.; Brandenburg, G.; Buckley-Geer, E.; Budd, H.S.; Burkett, K.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Campagnari, C.; Campbell, M.; Caner, A.; Carithers, W.; Carlsmith, D.; Castro, A.; Cen, Y.; Cervelli, F.; Chapman, J.; Chiarelli, G.; Chikamatsu, T.; Cihangir, S.; Clark, A.G.; Cobal, M.; Contreras, M.; Cooper, J.; Cordelli, M.; Coupal, D.P.; Crane, D.; Cunningham, J.D.; Daniels, T.; DeJongh, F.; Dell'Agnello, S.; Dell'Orso, M.; Demortier, L.; Denby, B.; Deninno, M.; Derwent, P.F.; Devlin, T.; Dickson, M.; Donati, S.; Done, J.P.; Drucker, R.B.; Dunn, A.; Einsweiler, K.; Elias, J.E.; Ely, R.; Engels, E. Jr.; Eno, S.; Errede, D.; Errede, S.; Etchegoyen, A.; Fan, Q.; Farhat, B.; Fiori, I.; Flaugher, B.; Foster, G.W.; Franklin, M.; Frautschi, M.; Freeman, J.; Friedman, J.; Frisch, H.; Fry, A.; Fuess, T.A.; Fukui, Y.; Funaki, S.; Gagliardi, G.; Gallinaro, M.; Garfinkel, A.F.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Glenzinski, D.; Gold, M.; Gonzalez, J.; Gordon, A.; Goshaw, A.T.; Goulianos, K.; Grassmann, H.; Grewal, A.; Grieco, G.; Groer, L.; Grosso-Pilcher, C.; Haber, C.; Hahn, S.R.; Hamilton, R.; Handler, R.; Hans, R.M.; Hara, K.; Harral, B.; Harris, R.M.; Hauger, S.A.; Hauser, J.; Hawk, C.; Heinrich, J.; Hennessy, D.; Hollebeek, R.; Holloway, L.; Hoelscher, A.; Hong, S.; Houk, G.; Hu, P.; Huffman, B.T.; Hughes, R.; Hurst, P.; Huston, J.; Huth, J.

    1994-01-01

    The lifetimes of the B + and B 0 mesons have been measured using fully reconstructed decays. In a sample of ∼49 600J/ψ→μ + μ - decays recorded with the Collider Detector at Fermilab, 148±16 B + and 121±16B 0 mesons have been reconstructed using the silicon vertex detector. Unbinned likelihood fits to the proper lifetime distributions of these B mesons give τ + =1.61±0.16 (stat)±0.05 (syst) ps, τ 0 =1.57±0.18 (stat) ±0.08 (syst) ps, and τ + /τ 0 =1.02±0.16 (stat) ±0.05 (syst)

  18. Lifetime measurements in Crsub(I) by laser excitation from the metastable states

    International Nuclear Information System (INIS)

    Kwiatkowski, M.; Micali, G.; Werner, K.; Zimmermann, P.

    1981-01-01

    A combination of collisional and laser excitation was used to measure radiative lifetimes in Cr I. By a discharge an atomic beam of metastable atoms in the 3d 5 4sa 5 S, a 5 G, b 5 D, a 3 I, b 1 I and 3d 4 4s 2 a 5 D terms was produced. Spatially separated from the place of collisional excitation laser radiation selectively populated levels belonging to the 3d 5 4p z 5 P, y 5 P, u 5 F, u 5 D, x 3 I, y 1 I, 3d 5 5pz 5 G and 3d 4 4s4px 5 G terms. Time-resolved observation of the reemitted resonance fluorescence yielded the lifetimes of 28 levels. The values are compared with other experimental and theoretical results. (orig.)

  19. FastFLIM, the all-in-one engine for measuring photoluminescence lifetime of 100 picoseconds to 100 milliseconds

    Science.gov (United States)

    Sun, Yuansheng; Coskun, Ulas; Liao, Shih-Chu Jeff; Barbieri, Beniamino

    2018-02-01

    Photoluminescence (PL) refers to light emission initiated by any form of photon excitation. PL spectroscopy and microscopy imaging has been widely applied in material, chemical and life sciences. Measuring its lifetime yields a new dimension of the PL imaging and opens new opportunities for many PL applications. In solar cell research, quantification of the PL lifetime has become an important evaluation for the characteristics of the Perovskite thin film. Depending upon the PL process (fluorescence, phosphorescence, photon upconversion, etc.), the PL lifetimes to be measured can vary in a wide timescale range (e.g. from sub-nanoseconds to microseconds or even milliseconds) - it is challenging to cover this wide range of lifetime measurements by a single technique efficiently. Here, we present a novel digital frequency domain (DFD) technique named FastFLIM, capable of measuring the PL lifetime from 100 ps to 100 ms at the high data collection efficiency (up to 140-million counts per second). Other than the traditional nonlinear leastsquare fitting analysis, the raw data acquired by FastFLIM can be directly processed by the model-free phasor plots approach for instant and unbiased lifetime results, providing the ideal routine for the PL lifetime microscopy imaging.

  20. Measuring fluorescence polarization with a dichrometer.

    Science.gov (United States)

    Sutherland, John C

    2017-09-01

    A method for obtaining fluorescence polarization data from an instrument designed to measure circular and linear dichroism is compared with a previously reported approach. The new method places a polarizer between the sample and a detector mounted perpendicular to the direction of the incident beam and results in determination of the fluorescence polarization ratio, whereas the previous method does not use a polarizer and yields the fluorescence anisotropy. A similar analysis with the detector located axially with the excitation beam demonstrates that there is no frequency modulated signal due to fluorescence polarization in the absence of a polarizer. Copyright © 2017. Published by Elsevier Inc.

  1. Precision lifetime measurements using the recoil distance method

    International Nuclear Information System (INIS)

    Kruecken, R.

    2000-01-01

    The recoil distance method (RDM) for the measurements of lifetimes of excited nuclear levels in the range from about 1 ps to 1,000 ps is reviewed. The New Yale Plunger Device for RDM experiments is introduced and the Differential Decay Curve Method for their analysis is reviewed. Results from recent RDM experiments on SD bands in the mass-190 region, shears bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. Perspectives for the use of RDM measurements in the study of neutron-rich nuclei are discussed

  2. Precision Lifetime Measurements Using the Recoil Distance Method

    Science.gov (United States)

    Krücken, R.

    2000-01-01

    The recoil distance method (RDM) for the measurements of lifetimes of excited nuclear levels in the range from about 1 ps to 1000 ps is reviewed. The New Yale Plunger Device for RDM experiments is introduced and the Differential Decay Curve Method for their analysis is reviewed. Results from recent RDM experiments on SD bands in the mass-190 region, shears bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. Perspectives for the use of RDM measurements in the study of neutron-rich nuclei are discussed. PMID:27551587

  3. Angular correlation and lifetime measurements in /sup 154/Gd

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A K; Verma, H R; Kaur, R; Sooch, S S; Trehan, P N

    1982-03-01

    Multipole admixtures in 591.80, 692.51, 723.38, 756.84, 873.27, 1004.74, 1274.50, 1494.22 and 1596.65 keV transitions have been measured by investigating nine gamma-gamma angular correlations in /sup 154/Gd. The present study confirms very small Ml admixtures in the transitions from ..beta..- and ..gamma..-vibrational bands to ground state band in /sup 154/Gd which is a transitional nucleus. In addition, lifetime of an excited level at 123.04 keV has been measured to be 1.19 +- 0.03 nsec.

  4. Long-term fluorescence lifetime imaging of a genetically encoded sensor for caspase-3 activity in mouse tumor xenografts

    Science.gov (United States)

    Zherdeva, Victoria; Kazachkina, Natalia I.; Shcheslavskiy, Vladislav; Savitsky, Alexander P.

    2018-03-01

    Caspase-3 is known for its role in apoptosis and programmed cell death regulation. We detected caspase-3 activation in vivo in tumor xenografts via shift of mean fluorescence lifetimes of a caspase-3 sensor. We used the genetically encoded sensor TR23K based on the red fluorescent protein TagRFP and chromoprotein KFP linked by 23 amino acid residues (TagRFP-23-KFP) containing a specific caspase cleavage DEVD motif to monitor the activity of caspase-3 in tumor xenografts by means of fluorescence lifetime imaging-Forster resonance energy transfer. Apoptosis was induced by injection of paclitaxel for A549 lung adenocarcinoma and etoposide and cisplatin for HEp-2 pharynx adenocarcinoma. We observed a shift in lifetime distribution from 1.6 to 1.9 ns to 2.1 to 2.4 ns, which indicated the activation of caspase-3. Even within the same tumor, the lifetime varied presumably due to the tumor heterogeneity and the different depth of tumor invasion. Thus, processing time-resolved fluorescence images allows detection of both the cleaved and noncleaved states of the TR23K sensor in real-time mode during the course of several weeks noninvasively. This approach can be used in drug screening, facilitating the development of new anticancer agents as well as improvement of chemotherapy efficiency and its adaptation for personal treatment.

  5. Band structure in 83Rb from lifetime measurements

    International Nuclear Information System (INIS)

    Ganguly, S.; Banerjee, P.; Ray, I.; Kshetri, R.; Bhattacharya, S.; Saha-Sarkar, M.; Goswami, A.; Muralithar, S.; Singh, R.P.; Kumar, R.; Bhowmik, R.K.

    2006-01-01

    Excited states of 83 Rb, populated in the 76 Ge( 11 B,-bar 4nγ) reaction at a beam energy of 50 MeV, have been studied. The unfavoured signature partner (α=-1/2) of the πg 9/2 yrast band is proposed up to an excitation energy of 6669.4 keV and spin (31/2 + ). Lifetimes have been estimated for three states belonging to the favoured α=+1/2 band. The B(E2) values deduced from these lifetimes indicate a moderate quadrupole deformation of β 2 =0.20. Theoretical calculations within the framework of the particle-rotor-model suggest that low energy states before the onset of the νg 9/2 alignment at a rotational frequency of ∼0.5 MeV are prolate while those above this frequency have an oblate shape. The excited ΔI=1 band has been extended up to 5422.7 keV and spin 25/2 - . The B(M1) rates derived from the measured lifetimes decrease with spin. The results are in general agreement with an earlier TAC calculation, suggesting the interpretation of these states as arising from magnetic rotation

  6. Band structure in {sup 83}Rb from lifetime measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, S. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Banerjee, P. [Saha Institute of Nuclear Physics, Kolkata 700064 (India)]. E-mail: polash.banerjee@saha.ac.in; Ray, I. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, R. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Saha-Sarkar, M. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Goswami, A. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Muralithar, S. [Nuclear Science Centre, Post Box 10502, New Delhi 110067 (India); Singh, R.P. [Nuclear Science Centre, Post Box 10502, New Delhi 110067 (India); Kumar, R. [Nuclear Science Centre, Post Box 10502, New Delhi 110067 (India); Bhowmik, R.K. [Nuclear Science Centre, Post Box 10502, New Delhi 110067 (India)

    2006-03-20

    Excited states of {sup 83}Rb, populated in the {sup 76}Ge({sup 11}B,-bar 4n{gamma}) reaction at a beam energy of 50 MeV, have been studied. The unfavoured signature partner ({alpha}=-1/2) of the {pi}g{sub 9/2} yrast band is proposed up to an excitation energy of 6669.4 keV and spin (31/2{sup +}). Lifetimes have been estimated for three states belonging to the favoured {alpha}=+1/2 band. The B(E2) values deduced from these lifetimes indicate a moderate quadrupole deformation of {beta}{sub 2}=0.20. Theoretical calculations within the framework of the particle-rotor-model suggest that low energy states before the onset of the {nu}g{sub 9/2} alignment at a rotational frequency of {approx}0.5 MeV are prolate while those above this frequency have an oblate shape. The excited {delta}I=1 band has been extended up to 5422.7 keV and spin 25/2{sup -}. The B(M1) rates derived from the measured lifetimes decrease with spin. The results are in general agreement with an earlier TAC calculation, suggesting the interpretation of these states as arising from magnetic rotation.

  7. New procedures for analyzing Doppler-shift attenuation lifetime measurements

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, P., E-mail: petkov@inrne.bas.bg [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, 1784 Sofia (Bulgaria); Dewald, A. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Tonev, D.; Goutev, N.; Asova, G.; Dimitrov, B.; Gavrilov, G.; Mineva, M.N.; Yavahchova, M.S. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, 1784 Sofia (Bulgaria)

    2015-05-21

    A generalization of an earlier proposed version of the Differential decay curve method is presented for the analysis of Doppler-shift attenuation lifetime measurements. The lifetime is derived directly from the line shapes of the depopulating and feeding transitions without any assumptions about or fitting of the time dependence of the population of the corresponding levels except for unobserved feeding when relevant. Fitting of the line shapes is also not necessary. The only approximation involved is related to the continuous treatment of the nuclear scattering events in the Monte Carlo simulation needed. Tests with simulated and real data reveal good reliability of this method. We propose also a new precise procedure where the lifetime is derived by fitting the time dependence of the population of the level of interest using the line shape of the depopulating transition and the difference of the spectra of the depopulating and feeding transitions. Practical application to simulated and real data proves the applicability of the new procedure.

  8. Determination of lifetimes and nonadiabatic correlations from measured dipole polarizabilities

    International Nuclear Information System (INIS)

    Curtis, Lorenzo J

    2007-01-01

    In atomic systems for which the total oscillator strength of excitations from the ground state is dominated by the transition to the lowest resonance level, the f-sum rule provides a bracketing inequality connecting the lifetime τ of that level to the dipole polarizability α d . This relationship has been used previously to deduce α d from τ. It is shown here that improved spectroscopic accuracies now permit this procedure to be inverted, with τ deduced from a value for α d obtained spectroscopically using the core polarization model. A similar quantitative relationship exists connecting the nonadiabatic correlation factor β to τ, and thus also to α d . The method is applied to a recent measurement of α d for Kr 6+ to obtain the values τ(4s4p 1 P 1 ) 0.096 ± 0.003 ns and β(Kr 6+ ) = 1.71 ± 0.03a 5 0 . It is shown that the use of this method to make precision lifetime determinations for a small number of ions in an isoelectronic sequence permits the exploitation of observed semiempirical regularities to specify the lifetimes of all ions in that sequence

  9. Using non-empirically tuned range-separated functionals with simulated emission bands to model fluorescence lifetimes.

    Science.gov (United States)

    Wong, Z C; Fan, W Y; Chwee, T S; Sullivan, Michael B

    2017-08-09

    Fluorescence lifetimes were evaluated using TD-DFT under different approximations for the emitting molecule and various exchange-correlation functionals, such as B3LYP, BMK, CAM-B3LYP, LC-BLYP, M06, M06-2X, M11, PBE0, ωB97, ωB97X, LC-BLYP*, and ωB97X* where the range-separation parameters in the last two functionals were tuned in a non-empirical fashion. Changes in the optimised molecular geometries between the ground and electronically excited states were found to affect the quality of the calculated lifetimes significantly, while the inclusion of vibronic features led to further improvements over the assumption of a vertical electronic transition. The LC-BLYP* functional was found to return the most accurate fluorescence lifetimes with unsigned errors that are mostly within 1.5 ns of experimental values.

  10. Actin cytoskeleton-dependent Rab GTPase-regulated angiotensin type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Li, Hewang; Yu, Peiying; Sun, Yuansheng; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.

    2010-09-01

    The dynamic regulation of the cellular trafficking of human angiotensin (Ang) type 1 receptor (AT1R) is not well understood. Therefore, we investigated the cellular trafficking of AT1R-enhanced green fluorescent protein (EGFP) (AT1R-EGFP) heterologously expressed in HEK293 cells by determining the change in donor lifetime (AT1R-EGFP) in the presence or absence of acceptor(s) using fluorescence lifetime imaging-fluorescence resonance energy transfer (FRET) microscopy. The average lifetime of AT1R-EGFP in our donor-alone samples was ~2.33 ns. The basal state lifetime was shortened slightly in the presence of Rab5 (2.01+/-0.10 ns) or Rab7 (2.11+/-0.11 ns) labeled with Alexa 555, as the acceptor fluorophore. A 5-min Ang II treatment markedly shortened the lifetime of AT1R-EGFP in the presence of Rab5-Alexa 555 (1.78+/-0.31 ns) but was affected minimally in the presence of Rab7-Alexa 555 (2.09+/-0.37 ns). A 30-min Ang II treatment further decreased the AT1R-EGFP lifetime in the presence of both Rab5- and Rab7-Alexa 555. Latrunculin A but not nocodazole pretreatment blocked the ability of Ang II to shorten the AT1R-EGFP lifetime. The occurrence of FRET between AT1R-EGFP (donor) and LAMP1-Alexa 555 (acceptor) with Ang II stimulation was impaired by photobleaching the acceptor. These studies demonstrate that Ang II-induced AT1R lysosomal degradation through its association with LAMP1 is regulated by Rab5/7 via mechanisms that are dependent on intact actin cytoskeletons.

  11. Lifetime measurements in shape transition nucleus 188Pt

    Science.gov (United States)

    Rohilla, Aman; Gupta, C. K.; Singh, R. P.; Muralithar, S.; Chakraborty, S.; Sharma, H. P.; Kumar, A.; Govil, I. M.; Biswas, D. C.; Chamoli, S. K.

    2017-04-01

    Nuclear level lifetimes of high spin states in yrast and non-yrast bands of 188Pt nucleus have been measured using recoil distance plunger setup present at IUAC, Delhi. In the experiment nuclear states of interest were populated via 174Yb(18O,4 n)188Pt reaction at a beam energy of 79MeV provided by 15 UD Pelletron accelerator. The extracted B(E2\\downarrow) values show an initial rise up to 4+ state and then a nearly constant behavior with spin along yrast band, indicating change of nuclear structure in 188Pt at low spins. The good agreement between experimental and TPSM model B(E2\\downarrow) values up to 4^+ state suggests an increase in axial deformation of the nucleus. The average absolute β2 = 0.20 (3) obtained from measured B(E2\\downarrow) values matches well the values predicted by CHFB and IBM calculations for oblate ( β2 ˜ -0.19) and prolate (β2 ˜ 0.22) shapes. As the lifetime measurements do not yield the sign of β2, no definite conclusion can be drawn on the prolate or oblate collectivity of 188Pt on the basis of present measurements.

  12. Influence of instrument design on neutron lifetime measurements

    International Nuclear Information System (INIS)

    Youmans, A.H.; Hopkinson, E.C.

    1975-01-01

    Commercially available logging services provide a measurement of the lifetime of thermal neutrons in formations adjacent to a borehole. This lifetime provides a measure of the macroscopic thermal neutron-capture cross-section Σ of the formation, which in turn is functionally related to the abundance and constituency of the rock matrix and contained fluids. Because the measurement is extremely sensitive to an abundance of trace elements like boron and gadolinium, it is very difficult to find rock formations with an accurately known value of Σ, which is required for the accuracy of the measuring system to be experimentally tested. Various theoretical studies published suggest that errors in the determination of Σ may occur because of the influence of borehole parameters and the effects of neutron diffusion. Experimental results are reported that demonstrate that the design of the instrument is crucial to the validity of any theoretical treatment of the subject. The influence of neutron diffusion and borehole effects can be overcome by optimal selection of spacing and shielding parameters

  13. Lifetime measurements in shape transition nucleus {sup 188}Pt

    Energy Technology Data Exchange (ETDEWEB)

    Rohilla, Aman; Gupta, C.K.; Chamoli, S.K. [University of Delhi, Department of Physics and Astrophysics, New Delhi (India); Singh, R.P.; Muralithar, S. [Inter University Accelerator Centre, New Delhi (India); Chakraborty, S.; Sharma, H.P. [Banaras Hindu University, Department of Physics, Varanasi (India); Kumar, A.; Govil, I.M. [Panjab University, Department of Physics, Chandigarh (India); Biswas, D.C. [Bhabha Atomic Research Center, Nuclear Physics Division, Trombay, Mumbai (India)

    2017-04-15

    Nuclear level lifetimes of high spin states in yrast and non-yrast bands of {sup 188}Pt nucleus have been measured using recoil distance plunger setup present at IUAC, Delhi. In the experiment nuclear states of interest were populated via {sup 174}Yb({sup 18}O,4n){sup 188}Pt reaction at a beam energy of 79MeV provided by 15 UD Pelletron accelerator. The extracted B(E2 ↓) values show an initial rise up to 4{sup +} state and then a nearly constant behavior with spin along yrast band, indicating change of nuclear structure in {sup 188}Pt at low spins. The good agreement between experimental and TPSM model B(E2 ↓) values up to 4{sup +} state suggests an increase in axial deformation of the nucleus. The average absolute β{sub 2} = 0.20 (3) obtained from measured B(E2 ↓) values matches well the values predicted by CHFB and IBM calculations for oblate (β{sub 2} ∝ -0.19) and prolate (β{sub 2} ∝ 0.22) shapes. As the lifetime measurements do not yield the sign of β{sub 2}, no definite conclusion can be drawn on the prolate or oblate collectivity of {sup 188}Pt on the basis of present measurements. (orig.)

  14. A Superconducting Magnet UCN Trap for Precise Neutron Lifetime Measurements.

    Science.gov (United States)

    Picker, R; Altarev, I; Bröcker, J; Gutsmiedl, E; Hartmann, J; Müller, A; Paul, S; Schott, W; Trinks, U; Zimmer, O

    2005-01-01

    Finite-element methods along with Monte Carlo simulations were used to design a magnetic storage device for ultracold neutrons (UCN) to measure their lifetime. A setup was determined which should make it possible to confine UCN with negligible losses and detect the protons emerging from β-decay with high efficiency: stacked superconducting solenoids create the magnetic storage field, an electrostatic extraction field inside the storage volume assures high proton collection efficiency. Alongside with the optimization of the magnetic and electrostatic design, the properties of the trap were investigated through extensive Monte Carlo simulation.

  15. Measurement of Beauty Particle Lifetimes and Hadroproduction Cross-Section

    CERN Multimedia

    2002-01-01

    We propose an experimental search for beauty particles produced in fixed target hadronic interactions. The essential feature of the proposed experimental technique is the use of two specially designed pieces of hardware~-~a high precision ``decay detector'' and a fast secondary vertex trigger processor. If these devices perform to our expectations, we should be able to obtain sufficient data sample to address several important physics issues, including measurements of the lifetimes of charged and neutral B~mesons, the B~hadroproduction cross-section, and possibly B$^0$- $ \\bar{B} ^0 $ mixing.

  16. Updated precision measurement of the average lifetime of B hadrons

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barate, R; Barbi, M S; Barbiellini, Guido; Bardin, Dimitri Yuri; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gibbs, M; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neumann, W; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Novák, M; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Pindo, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Ronjin, V M; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G; Belokopytov, Yu; Charpentier, Ph; Gavillet, Ph; Gouz, Yu; Jarlskog, Ch; Khokhlov, Yu; Papadopoulou, Th D

    1996-01-01

    The measurement of the average lifetime of B hadrons using inclusively reconstructed secondary vertices has been updated using both an improved processing of previous data and additional statistics from new data. This has reduced the statistical and systematic uncertainties and gives \\tau_{\\mathrm{B}} = 1.582 \\pm 0.011\\ \\mathrm{(stat.)} \\pm 0.027\\ \\mathrm{(syst.)}\\ \\mathrm{ps.} Combining this result with the previous result based on charged particle impact parameter distributions yields \\tau_{\\mathrm{B}} = 1.575 \\pm 0.010\\ \\mathrm{(stat.)} \\pm 0.026\\ \\mathrm{(syst.)}\\ \\mathrm{ps.}

  17. Radiative-lifetime measurements and calculations of odd-parity highly excited levels in Ba i

    International Nuclear Information System (INIS)

    Zhang Wei; Du Shan; Palmeri, Patrick; Quinet, Pascal; Biemont, Emile; Dai Zhenwen

    2010-01-01

    Natural radiative lifetime measurements have been performed for 70 odd-parity highly excited levels of neutral barium in the energy range from 308 15.512 to 417 59.93 cm -1 by a time-resolved laser-induced fluorescence technique in a laser-produced plasma. The lifetime values measured in this paper are in the range from 11.3 to 901 ns. They are compared with the published lifetimes of four levels. Two of them are in good agreement, whereas for the other two our measurements are slightly longer than the published data. The reasons for the discrepancies are discussed. Comparisons with theoretical results of the Hartree-Fock method with relativistic corrections illustrate the difficulties associated with the use of Cowan's codes for obtaining accurate branching fractions for transitions depopulating highly excited levels along the Rydberg series of heavy neutral elements. This work will be useful to extend the set of oscillator strengths available in Ba i.

  18. Study on the effect of deposition rate and concentration of Eu on the fluorescent lifetime of CsI: Tl thin film

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yijun; Guo, Lina [University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, Chengdu 610054 (China); Liu, Shuang, E-mail: shuangliu@uestc.edu.cn [University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, Chengdu 610054 (China); Wang, Qianfeng; Zhang, Shangjian; Liu, Yong [University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, Chengdu 610054 (China); Zhong, Zhiyong [University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, Chengdu 610054 (China)

    2017-06-21

    Although there are many new scintillators being developed recently, CsI: Tl is still very efficient among them. The fluorescent lifetime is a very important parameter of CsI: Tl thin film and two series of experiments have been conducted to learn about it. Our experiments, however, have demonstrated that the deposition rate and the codoping of Eu{sup 2+} will significantly influence its fluorescent lifetime. In order to increase the efficiency of the imaging system, we intend to obtain a higher fluorescent lifetime for CsI: Tl thin film by controlling these two conditions. - Highlights: • We used vacuum vapor deposition method to grow the high-quality thin films. • The relationship between the deposition rate and the fluorescent lifetime of CsI: Tl thin film was tested. • Concentration of Eu on fluorescent lifetime of the CsI: Tl thin film was studied.

  19. Automated detection of breast cancer in resected specimens with fluorescence lifetime imaging

    Science.gov (United States)

    Phipps, Jennifer E.; Gorpas, Dimitris; Unger, Jakob; Darrow, Morgan; Bold, Richard J.; Marcu, Laura

    2018-01-01

    Re-excision rates for breast cancer lumpectomy procedures are currently nearly 25% due to surgeons relying on inaccurate or incomplete methods of evaluating specimen margins. The objective of this study was to determine if cancer could be automatically detected in breast specimens from mastectomy and lumpectomy procedures by a classification algorithm that incorporated parameters derived from fluorescence lifetime imaging (FLIm). This study generated a database of co-registered histologic sections and FLIm data from breast cancer specimens (N  =  20) and a support vector machine (SVM) classification algorithm able to automatically detect cancerous, fibrous, and adipose breast tissue. Classification accuracies were greater than 97% for automated detection of cancerous, fibrous, and adipose tissue from breast cancer specimens. The classification worked equally well for specimens scanned by hand or with a mechanical stage, demonstrating that the system could be used during surgery or on excised specimens. The ability of this technique to simply discriminate between cancerous and normal breast tissue, in particular to distinguish fibrous breast tissue from tumor, which is notoriously challenging for optical techniques, leads to the conclusion that FLIm has great potential to assess breast cancer margins. Identification of positive margins before waiting for complete histologic analysis could significantly reduce breast cancer re-excision rates.

  20. From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin

    Science.gov (United States)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Getova, Valentina; Niemeyer, Verena; Zens, Katharina; Unnerstall, Tim R.; Feger, Julia S.; Fallah, Mohammad A.; Metze, Dieter; Ständer, Sonja; Luger, Thomas A.; Koenig, Karsten; Mess, Christian; Schneider, Stefan W.

    2016-03-01

    The application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of inflammatory skin diseases. In the present study, we combined multiphoton-based intravital tomography (MPT) and fluorescence lifetime imaging (MPT-FLIM) within the scope of a clinical trial of atopic dermatitis with the aim of providing personalised data on the aetiopathology of inflammation in a non-invasive manner at patients’ bedsides. These ‘optical biopsies’ generated via MPT were morphologically analysed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Two independent morphometric algorithms reliably showed an even distribution in healthy skin and a perinuclear accumulation in inflamed skin. Moreover, using MPT-FLIM, detection of the onset and progression of inflammatory processes could be achieved. In conclusion, the change in the distribution of mitochondria upon inflammation and the verification of an altered cellular metabolism facilitate a better understanding of inflammatory skin diseases and may permit early diagnosis and therapy.

  1. Containerless high temperature property measurements by atomic fluorescence

    Science.gov (United States)

    Schiffman, R. A.; Walker, C. A.

    1984-01-01

    Laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties was studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in earth-based containerless high temperature experiments. Included are the development of an apparatus and its use in the studies of (1) chemical reactions on Al2O3, molybdenum, tungsten and LaB6 specimens, (2) methods for noncontact specimen temperature measurement, (3) levitation jet properties and (4) radiative lifetime and collisional energy transfer rates for electronically excited atoms.

  2. A preparation of thin flat target for RD lifetime measurements

    Energy Technology Data Exchange (ETDEWEB)

    El-Badry, A M; Abdel Samie, Sh; Ahmed, A A [Department of Physics, Faculty of Science, El Minia University, Minia (Egypt); Kuroyanagi, T; Morinobu, S [Tandem Accelerator Laboratory, Department of Physics, Kyushu University, (Japan)

    1997-12-31

    An extreme flatness for a target surface is the most necessary in recoil distance method (RDM). A suitable technique was used for preparing a La target. The {sup 139} La target of thickness 0.22 mg/cm{sup 2} was evaporated onto a very flat soft Au foil of thickness 2 mg/cm{sup 2}. This target was successively used for lifetime measurements of the excited nuclear states in {sup 145} Sm nucleus through the nuclear reaction {sup 139} La ({sup 10} B, 4 n) {sup 145} Sm. Background {gamma} rays produced by the {sup 10} B irradiation for the Au backing and the Pb stopper without the La target were measured. Besides that, the {gamma} rays from residual activities were also measured. 3 figs.

  3. A precise measurement of the $\\tau$ lepton lifetime

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; De Boeck, H; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gibbs, M; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Krammer, Manfred; Kreuter, C; Królikowski, J; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Lokajícek, M; Loken, J G; López, J M; López-Fernandez, A; López-Aguera, M A; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Maocun, C; Marco, J; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Meroni, C; Meyer, S; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Némécek, S; Neumann, W; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Pindo, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zacharatou-Jarlskog, C; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G

    1996-01-01

    The tau lepton lifetime has been measured using three different methods with the DELPHI detector. Two measurements of one-prong decays are combined, accounting for correlations, giving a result of \\tau_\\tau = 291.8 \\pm 3.3 \\mbox{ (stat.)} \\pm 2.0 \\mbox{(sys.) fs} while the decay length distribution of three-prong decays gives the result \\tau_{\\tau} = 286.7 \\pm 4.9 \\mbox{ (stat.)} \\pm 3.3 \\mbox{ (sys.) fs}. Combining the results presented here with previous DELPHI measurements, we get \\tau_{\\tau} = 291.4 \\pm 3.0 fs and find that the ratio of the coupling constant for tau decay relative to that for muon decay is 0.990 \\pm 0.009, compatible with lepton universality.

  4. Mass and lifetime measurements of exotic nuclei in storage rings

    International Nuclear Information System (INIS)

    Franzke, B.; Geissel, H.; Muenzenberg, G.

    2007-11-01

    Mass and lifetime measurements lead to the discovery and understanding of basic properties of matter. The isotopic nature of the chemical elements, nuclear binding, and the location and strength of nuclear shells are the most outstanding examples leading to the development of the first nuclear models. More recent are the discoveries of new structures of nuclides far from the valley of stability. A new generation of direct mass measurements which allows the exploration of extended areas of the nuclear mass surface with high accuracy has been opened up with the combination of the Experimental Storage Ring ESR and the FRragment Separator FRS at GSI Darmstadt. In-flight separated nuclei are stored in the ring. Their masses are directly determined from the revolution frequency. Dependent on the half-life two complementary methods are applied. Schottky Mass Spectrometry SMS relies on the measurement of the revolution frequency of electron cooled stored ions. The cooling time determines the lower half-life limit to the order of seconds. For Isochronous Mass Spectrometry IMS the ring is operated in an isochronous ion-optical mode. The revolution frequency of the individual ions coasting in the ring is measured using a time-of-flight method. Nuclides with lifetimes down to microseconds become accessible. With SMS masses of several hundreds nuclides have been measured simultaneously with an accuracy in the 2 x 10 -7 -range. This high accuracy and the ability to study large areas of the mass surface are ideal tools to discover new nuclear structure properties and to guide improvements for theoretical mass models. In addition, nuclear half-lives of stored bare and highly-charged ions have been measured. This new experimental development is a significant progress since nuclear decay characteristics are mostly known for neutral atoms. For bare and highly-charged ions new nuclear decay modes become possible, such as bound-state beta decay. Dramatic changes in the nuclear lifetime

  5. CONSTRAINING THE LIFETIME AND OPENING ANGLE OF QUASARS USING FLUORESCENT Ly α EMISSION: THE CASE OF Q0420–388

    International Nuclear Information System (INIS)

    Borisova, Elena; Lilly, Simon J.; Cantalupo, Sebastiano; Prochaska, J. Xavier; Rakic, Olivera; Worseck, Gabor

    2016-01-01

    A toy model is developed to understand how the spatial distribution of fluorescent emitters in the vicinity of bright quasars could be affected by the geometry of the quasar bi-conical radiation field and by its lifetime. The model is then applied to the distribution of high-equivalent-width Ly α emitters (with rest-frame equivalent widths above 100 Å, threshold used in, e.g., Trainor and Steidel) identified in a deep narrow-band 36 × 36 arcmin 2 image centered on the luminous quasar Q0420–388. These emitters are found near the edge of the field and show some evidence of an azimuthal asymmetry on the sky of the type expected if the quasar is radiating in a bipolar cone. If these sources are being fluorescently illuminated by the quasar, the two most distant objects require a lifetime of at least 15 Myr for an opening angle of 60° or more, increasing to more than 40 Myr if the opening angle is reduced to a minimum of 30°. However, some other expected signatures of boosted fluorescence are not seen at the current survey limits, e.g., a fall off in Ly α brightness, or equivalent width, with distance. Furthermore, to have most of the Ly α emission of the two distant sources to be fluorescently boosted would require the quasar to have been significantly brighter in the past. This suggests that these particular sources may not be fluorescent, invalidating the above lifetime constraints. This would cast doubt on the use of this relatively low equivalent width threshold and thus also on the lifetime analysis in Trainor and Steidel.

  6. CONSTRAINING THE LIFETIME AND OPENING ANGLE OF QUASARS USING FLUORESCENT Ly α EMISSION: THE CASE OF Q0420–388

    Energy Technology Data Exchange (ETDEWEB)

    Borisova, Elena; Lilly, Simon J.; Cantalupo, Sebastiano [Institute for Astronomy, ETH Zurich, Zurich, CH-8093 (Switzerland); Prochaska, J. Xavier [UCO/Lick Observatory, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Rakic, Olivera; Worseck, Gabor, E-mail: borisova@phys.ethz.ch [Max-Planck-Institut für Astronomie, Heidelberg, D-69117 (Germany)

    2016-10-20

    A toy model is developed to understand how the spatial distribution of fluorescent emitters in the vicinity of bright quasars could be affected by the geometry of the quasar bi-conical radiation field and by its lifetime. The model is then applied to the distribution of high-equivalent-width Ly α emitters (with rest-frame equivalent widths above 100 Å, threshold used in, e.g., Trainor and Steidel) identified in a deep narrow-band 36 × 36 arcmin{sup 2} image centered on the luminous quasar Q0420–388. These emitters are found near the edge of the field and show some evidence of an azimuthal asymmetry on the sky of the type expected if the quasar is radiating in a bipolar cone. If these sources are being fluorescently illuminated by the quasar, the two most distant objects require a lifetime of at least 15 Myr for an opening angle of 60° or more, increasing to more than 40 Myr if the opening angle is reduced to a minimum of 30°. However, some other expected signatures of boosted fluorescence are not seen at the current survey limits, e.g., a fall off in Ly α brightness, or equivalent width, with distance. Furthermore, to have most of the Ly α emission of the two distant sources to be fluorescently boosted would require the quasar to have been significantly brighter in the past. This suggests that these particular sources may not be fluorescent, invalidating the above lifetime constraints. This would cast doubt on the use of this relatively low equivalent width threshold and thus also on the lifetime analysis in Trainor and Steidel.

  7. Lifetime measurements and decay spectroscopy of 132I

    Directory of Open Access Journals (Sweden)

    Bhattacharyya S.

    2014-03-01

    Full Text Available The low-lying states of odd-odd 132I, the 3p-3h nucleus with respect to the doubly magic 132Sn, have been characterized from decay spectroscopy. The neutron rich Iodine and Tellurium isotopes have been produced as fission product of alpha-induced fission of 235U and radiochemically separated. The life-time of the first excited state of 132I have been precisely measured using LaBr3(Ce scintillators from the decay of 132Te. The IT decay of the high spin isomer (8- in 132I has been measured with a Low Energy Photon Spectrometer (LEPS of segmented planar Ge detector.

  8. Lifetime and g-factor measurements in 44Sc

    International Nuclear Information System (INIS)

    Chevallier, A.; Chavallier, J.; Gross, J.L.; Haas, B.; Schulz, N.; Styczen, J.; Toulemonde, M.

    1975-01-01

    The lifetimes of the 235 keV, 2 - state and 350 keV, 4 + state in 44 Sc have been measured via the 44 Ca(p, n) 44 Sc reaction with a pulsed proton beam. The time integral perturbed angular distribution technique with an external field was used to measure the precession angles of the 2 - and 4 + states populated by the 30 Si( 16 O, pnγ) 44 Sc reaction. The following values for the mean-lives and g-factors were obtained: π(2 - ) = 8.83(33) ns, g(2 - ) = 0.30(13) and π(4 + ) = 4.52(27)ns, g(4 + ) = 0.90(12). The results for the 2 - state support a rotational description of the negative parity states in 44 Sc. The magnetic moment of the 4 + state is compared to shell model predictions. (orig.) [de

  9. Lifetime measurements in the 10-13 s range

    International Nuclear Information System (INIS)

    Bellini, Dzh.; Foa, L.; Dzhordzhi, M.

    1984-01-01

    Semiconducting detectors used in experimental high energy physics are described. Performances of Ge- and Si detectors and telescopes developed on their base as well as some problems associated with separation of coherent and incoherent events are described in detail. New fields are considered of semiconductor detector application: lifetime measurements of heavy particles decaying via weak interaction, such as D-mesons as well as the procedure of determination of the meson production and disintegration point with a space resolution enabling one to measure the length of meson path. The space resolution of detectors operating as proportional chambeps approaches 10-20 μm. Principles of devising the electronics for active target processors are described, solid state detectors being used for the latter

  10. Lifetime measurements of excited states in 73As

    International Nuclear Information System (INIS)

    Singh, K.P.; Kavakand, T.; Hajivaliei, M.

    2004-01-01

    The excited states of 73 As have been investigated via the 73 Ge(p, nγ) 73 As reaction with proton beam energies from 2.5–4.3 MeV. The lifetimes of the levels at 769.6, 860.5, 1177.8, 1188.7, 1274.9, 1344.1, 1557.1 and 1975.2 keV excitation energies have been measured for the first time using the Doppler shift attenuation method. The angular distributions have been used to assign the spins and the multipole mixing ratios using statistical theory for compound nuclear reactions. The ambiguity in the spin values for the various levels has been removed. The multipole mixing ratios for eight γ-transitions have been newly measured. (author)

  11. Excited-state lifetime measurement of silicon vacancy centers in diamond by single-photon frequency upconversion

    Science.gov (United States)

    Rong, Youying; Ma, Jianhui; Chen, Lingxiao; Liu, Yan; Siyushev, Petr; Wu, Botao; Pan, Haifeng; Jelezko, Fedor; Wu, E.; Zeng, Heping

    2018-05-01

    We report a method with high time resolution to measure the excited-state lifetime of silicon vacancy centers in bulk diamond avoiding timing jitter from the single-photon detectors. Frequency upconversion of the fluorescence emitted from silicon vacancy centers was achieved from 738 nm to 436 nm via sum frequency generation with a short pump pulse. The excited-state lifetime can be obtained by measuring the intensity of upconverted light while the pump delay changes. As a probe, a pump laser with pulse duration of 11 ps provided a high temporal resolution of the measurement. The lifetime extracted from the pump–probe curve was 0.755 ns, which was comparable to the timing jitter of the single-photon detectors.

  12. Lifetime measurements in transitional nuclei by fast electronic scintillation timing

    Science.gov (United States)

    Caprio, M. A.; Zamfir, N. V.; Casten, R. F.; Amro, H.; Barton, C. J.; Beausang, C. W.; Cooper, J. R.; Gürdal, G.; Hecht, A. A.; Hutter, C.; Krücken, R.; McCutchan, E. A.; Meyer, D. A.; Novak, J. R.; Pietralla, N.; Ressler, J. J.; Berant, Z.; Brenner, D. S.; Gill, R. L.; Regan, P. H.

    2002-10-01

    A new generation of experiments studying nuclei in spherical-deformed transition regions has been motivated by the introduction of innovative theoretical approaches to the treatment of these nuclei. The important structural signatures in the transition regions, beyond the basic yrast level properties, involve γ-ray transitions between low-spin, non-yrast levels, and so information on γ-ray branching ratios and absolute matrix elements (or level lifetimes) for these transitions is crucial. A fast electronic scintillation timing (FEST) system [H. Mach, R. L. Gill, and M. Moszyński, Nucl. Instrum. Methods A 280, 49 (1989)], making use of BaF2 and plastic scintillation detectors, has been implemented at the Yale Moving Tape Collector for the measurement of lifetimes of states populated in β^ decay. Experiments in the A100 (Pd, Ru) and A150 (Dy, Yb) regions have been carried out, and a few examples will be presented. Supported by the US DOE under grants and contracts DE-FG02-91ER-40609, DE-FG02-88ER-40417, and DE-AC02-98CH10886 and by the German DFG under grant Pi 393/1.

  13. Lifetime measurements and the nonaxial deformation in 119I

    International Nuclear Information System (INIS)

    Srebrny, J.; Droste, Ch.; Morek, T.; Starosta, K.; Juutinen, S.; Piiparinen, M.; Toermaenen, S.; Virtanen, A.

    2000-01-01

    Complete text of publication follows. Lifetimes in four negative parity bands of 119 I were measured using DSAM and RDM. 119 I nuclei were produced in the 109 Ag( 13 C,3n) reaction, γγ coincidences were collected using the NORDBALL array. The detailed description of experiment is given in (1,2,3). Information about electromagnetic properties of four negative parity bands, originating from the h 11/2 quasiproton coupled to an axially asymmetric core, was obtained. The lifetimes of 31 negative parity levels were determined. That is one of the largest sets of electromagnetic transition probabilities for an odd - A nucleus from the 50 119 I nucleus. We see that the 53-rd proton added to the 118 Te nucleus, through the polarisation effect, changes the properties of the even-even core. The β-deformation becomes at least as large as that of 120 Xe (β ∼ 0.28), whereas the γ-deformation is around 30 deg. Comparison of experimental data with calculation within Core Quasiparticle Coupling Model indicates the advantage of the γ- soft model over the γ-rigid one in the description of h 11/2 band structure in 119 I. One can see, that the most valuable information concerning the shape of 119 I is based on the properties of the unfavoured states, especially those belonging to band 9, with their regular energy spacing and fast intraband transitions. (author)

  14. Fluorescence lifetime spectroscopy: potential for in-vivo estimation of skin fluorophores changes after low power laser treatment

    Science.gov (United States)

    Ferulova, Inesa; Lihachev, Alexey; Spigulis, Janis

    2013-11-01

    The impact of visible cwlaser irradiation on skin autofluorescence lifetimes was investigated in spectral range from 450 nm to 600 nm. Skin optical provocations were performed during 1 min by 405 nm low power cw laser with power density up to 20 mW/cm2. Autofluorescence lifetimes were measured before and immediately after the optical provocation.

  15. Lifetime measurements by open circuit voltage decay in GaAs and InP diodes

    International Nuclear Information System (INIS)

    Bhimnathwala, H.G.; Tyagi, S.D.; Bothra, S.; Ghandhi, S.K.; Borrego, J.M.

    1990-01-01

    Minority carrier lifetimes in the base of solar cells made in GaAs and InP are measured by open circuit voltage decay method. This paper describes the measurement technique and the conditions under which the minority carrier lifetimes can be measured. Minority carrier lifetimes ranging from 1.6 to 34 ns in InP of different doping concentrations are measured. A minority carrier lifetime of 6 ns was measured in n-type GaAs which agrees well with the lifetime of 5.7 ns measured by transient microwave reflection

  16. Lifetime measurements of beauty hadrons at the LHCb experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dordei, Francesca

    2015-05-19

    This thesis presents several lifetime measurements of b-flavoured hadrons at the LHCb experiment. They represent an important test of the theoretical approach to b-hadron observables known as Heavy Quark Expansion (HQE). This analysis uses data corresponding to an integrated luminosity of 1 fb{sup -1} collected in proton-proton collisions at a centre-of-mass energy of √(s)=7 TeV. For the decays B{sup +}→J/ψK{sup +}, B{sup 0}→J/ψK{sup *0}, B{sup 0}→J/ψK{sup 0}{sub S}, Λ{sup 0}{sub b}→J/ψΛ and B{sup 0}{sub s}→J/ψφ the lifetimes are measured to be τ{sub B{sup +}→J/ψK{sup +}}=1.637±0.004±0.003 ps, τ{sub B{sup 0}→J/ψK}{sup {sub *}{sub 0}}=1.524±0.006±0.004 ps, τ{sub B{sup 0}→J/ψK{sup 0}{sub S}}=1.499±0.013±0.005 ps, τ{sub Λ{sup 0}{sub b}} {sub →} {sub J/ψΛ}=1.415±0.027±0.006 ps, τ{sub B{sup 0}{sub s}} {sub →} {sub J/ψφ}=1.480±0.011±0.005 ps, where the first uncertainty is statistical and the second is systematic. These are the most precise lifetime measurements in these decay modes to date. Ratios of these lifetimes also are reported in this thesis, as they are well-defined quantities where many theoretical or experimental uncertainties cancel. The ratio of the decay width difference, ΔΓ{sub d}, to the average width, Γ{sub d}, in the B{sup 0} system is found to be ΔΓ{sub d}/Γ{sub d}=-0.044±0.025±0.011. Using data corresponding to an integrated luminosity of 3 fb{sup -1} collected at centre-of-mass energies of 7 TeV and 8 TeV, the measurements of the decay width difference, ΔΓ{sub s}, and the average width, Γ{sub s}, in the B{sup 0}{sub s} system are performed. Using the decay B{sup 0}{sub s}→J/ψφ, they are measured to be ΔΓ{sub s}=0.0805±0.0091±0.0033 ps{sup -1}, Γ{sub s}=0.6603±0.0027±0.0015 ps{sup -1}. These are the most precise determinations of these observables ot date. All measurements are consistent with HQE predictions.

  17. Imaging Amyloid Tissues Stained with Luminescent Conjugated Oligothiophenes by Hyperspectral Confocal Microscopy and Fluorescence Lifetime Imaging.

    Science.gov (United States)

    Nyström, Sofie; Bäck, Marcus; Nilsson, K Peter R; Hammarström, Per

    2017-10-20

    Proteins that deposit as amyloid in tissues throughout the body can be the cause or consequence of a large number of diseases. Among these we find neurodegenerative diseases such as Alzheimer's and Parkinson's disease afflicting primarily the central nervous system, and systemic amyloidosis where serum amyloid A, transthyretin and IgG light chains deposit as amyloid in liver, carpal tunnel, spleen, kidney, heart, and other peripheral tissues. Amyloid has been known and studied for more than a century, often using amyloid specific dyes such as Congo red and Thioflavin T (ThT) or Thioflavin (ThS). In this paper, we present heptamer-formyl thiophene acetic acid (hFTAA) as an example of recently developed complements to these dyes called luminescent conjugated oligothiophenes (LCOs). hFTAA is easy to use and is compatible with co-staining in immunofluorescence or with other cellular markers. Extensive research has proven that hFTAA detects a wider range of disease associated protein aggregates than conventional amyloid dyes. In addition, hFTAA can also be applied for optical assignment of distinct aggregated morphotypes to allow studies of amyloid fibril polymorphism. While the imaging methodology applied is optional, we here demonstrate hyperspectral imaging (HIS), laser scanning confocal microscopy and fluorescence lifetime imaging (FLIM). These examples show some of the imaging techniques where LCOs can be used as tools to gain more detailed knowledge of the formation and structural properties of amyloids. An important limitation to the technique is, as for all conventional optical microscopy techniques, the requirement for microscopic size of aggregates to allow detection. Furthermore, the aggregate should comprise a repetitive β-sheet structure to allow for hFTAA binding. Excessive fixation and/or epitope exposure that modify the aggregate structure or conformation can render poor hFTAA binding and hence pose limitations to accurate imaging.

  18. Plunger lifetime measurements after Coulomb excitation at intermediate beam energies

    Energy Technology Data Exchange (ETDEWEB)

    Hackstein, Matthias; Dewald, Alfred; Fransen, Christoph; Ilie, Gabriela; Jolie, Jan; Melon, Barbara; Pissulla, Thomas; Rother, Wolfram; Zell, Karl-Oskar [University of Cologne (Germany); Petkov, Pavel [University of Cologne (Germany); INRNE (Bulgaria); Chester, Aaron; Adrich, Przemyslaw; Bazin, Daniel; Bowen, Matt; Gade, Alexandra; Glasmacher, Thomas; Miller, Dave; Moeller, Victoria; Starosta, Krzysztof; Stolz, Andreas; Vaman, Constantin; Voss, Philip; Weissharr, Dirk [Michigan State Univerity (United States); Moeller, Oliver [TU Darmstadt (Germany)

    2008-07-01

    Two recoil-distance-doppler-shift (RDDS) experiments were performed at the NSCL/MSU using Coulomb excitations of the projectile nuclei {sup 110}Pd, {sup 114}Pd at beam energies of 54 MeV/u in order to investigate the evolution of deformation of neutron rich paladium isotopes. The experimental set-up consisted of a dedicated plunger device, developed at the University of Cologne, the SEGA Ge-array and the S800 spectrometer. Lifetimes of the 2{sub 1}{sup +}-states in {sup 110}Pd and {sup 114}Pd were derived from the analysis of the {gamma}-line-shapes as well as from the measured decay-curves. Special features of the data analysis, e.g. features originating from the very high recoil velocities, are discussed.

  19. Lifetime measurements in N=Z 72Kr

    Science.gov (United States)

    Andreoiu, C.; Svensson, C. E.; Austin, R. A. E.; Carpenter, M. P.; Dashdorj, D.; Finlay, P.; Freeman, S. J.; Garrett, P. E.; Görgen, A.; Greene, J.; Grinyer, G. F.; Hyland, B.; Jenkins, D.; Johnston-Theasby, F.; Joshi, P.; Machiavelli, A. O.; Moore, F.; Mukherjee, G.; Phillips, A. A.; Reviol, W.; Sarantites, D. G.; Schumaker, M. A.; Seweryniak, D.; Smith, M. B.; Valiente-Dobón, J. J.; Wadsworth, R.

    2006-07-01

    High-spin states in the N=Z nucleus 72Kr have been populated in the 40Ca(40Ca, 2α)72Kr fusion-evaporation reaction at a beam energy of 165 MeV and using a thin isotopically enriched 40Ca target. The experiment, performed at Argonne National Laboratory close to Chicago, USA, employed the Gammasphere array for γ-ray detection coupled to the Microball array for charged particle detection. The previously observed bands in 72Kr were extended to a higher excitation energy of ~24 MeV and higher angular momentum of 30planck. Using the Doppler-shift attenuation method, the lifetimes of high-spin states were measured for the first time in order to investigate deformation changes associated with the g9/2 proton and neutron alignments in this N=Z nucleus. An excellent agreement with theoretical calculations including only standard t=1 np pairing was observed.

  20. TR-LIF LIFETIME MEASUREMENTS AND HFR+CPOL CALCULATIONS OF RADIATIVE PARAMETERS IN VANADIUM ATOM (V I)

    International Nuclear Information System (INIS)

    Wang, Q.; Jiang, L. Y.; Shang, X.; Tian, Y. S.; Dai, Z. W.; Quinet, P.; Palmeri, P.; Zhang, W.

    2014-01-01

    Radiative lifetimes of 79 levels belonging to the 3d 3 4s4p, 3d 4 4p, 3d 3 4s5p, 3d 4 5p, and 3d 3 4s4d configurations of V I with energy from 26,604.807 to 46,862.786 cm –1 have been measured using time-resolved laser-induced fluorescence (TR-LIF) spectroscopy in laser-produced plasma. The lifetime values reported in this paper are in the range of 3.3-494 ns, and the uncertainties of these measurements are within ±10%. A good agreement was obtained with previous data. HFR+CPOL calculations have been performed and used to combine the calculated branching fractions with the available experimental lifetimes to determine semi-empirical transition probabilities for 784 V I transitions

  1. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    Science.gov (United States)

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-05-01

    Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs.

  2. Non-Euclidean phasor analysis for quantification of oxidative stress in ex vivo human skin exposed to sun filters using fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Osseiran, Sam; Roider, Elisabeth M.; Wang, Hequn; Suita, Yusuke; Murphy, Michael; Fisher, David E.; Evans, Conor L.

    2017-12-01

    Chemical sun filters are commonly used as active ingredients in sunscreens due to their efficient absorption of ultraviolet (UV) radiation. Yet, it is known that these compounds can photochemically react with UV light and generate reactive oxygen species and oxidative stress in vitro, though this has yet to be validated in vivo. One label-free approach to probe oxidative stress is to measure and compare the relative endogenous fluorescence generated by cellular coenzymes nicotinamide adenine dinucleotides and flavin adenine dinucleotides. However, chemical sun filters are fluorescent, with emissive properties that contaminate endogenous fluorescent signals. To accurately distinguish the source of fluorescence in ex vivo skin samples treated with chemical sun filters, fluorescence lifetime imaging microscopy data were processed on a pixel-by-pixel basis using a non-Euclidean separation algorithm based on Mahalanobis distance and validated on simulated data. Applying this method, ex vivo samples exhibited a small oxidative shift when exposed to sun filters alone, though this shift was much smaller than that imparted by UV irradiation. Given the need for investigative tools to further study the clinical impact of chemical sun filters in patients, the reported methodology may be applied to visualize chemical sun filters and measure oxidative stress in patients' skin.

  3. In vivo detection of oral epithelial cancer using endogenous fluorescence lifetime imaging: a pilot human study (Conference Presentation)

    Science.gov (United States)

    Jo, Javier A.; Hwang, Dae Yon; Palma, Jorge; Cheng, Shuna; Cuenca, Rodrigo; Malik, Bilal; Jabbour, Joey; Cheng, Lisa; Wright, John; Maitland, Kristen

    2016-03-01

    Endogenous fluorescence lifetime imaging (FLIM) provides direct access to the concomitant functional and biochemical changes accompanying tissue transition from benign to precancerous and cancerous. Since FLIM can noninvasively measure different and complementary biomarkers of precancer and cancer, we hypothesize that it will aid in clinically detecting early oral epithelial cancer. Our group has recently demonstrated the detection of benign from premalignant and malignant lesions based on endogenous multispectral FLIM in the hamster cheek-pouch model. Encouraged by these positive preliminary results, we have developed a handheld endoscope capable of acquiring multispectral FLIM images in real time from the oral mucosa. This novel FLIM endoscope is being used for imaging clinically suspicious pre-malignant and malignant lesions from patients before undergoing tissue biopsy for histopathological diagnosis of oral epithelial cancer. Our preliminary results thus far are already suggesting the potential of endogenous FLIM for distinguishing a variety of benign lesions from advanced dysplasia and squamous cell carcinoma (SCC). To the best of out knowledge, this is the first in vivo human study aiming to demonstrate the ability to predict the true malignancy of clinically suspicious lesions using endogenous FLIM. If successful, the resulting clinical tool will allow noninvasive real-time detection of epithelial precancerous and cancerous lesions in the oral mucosa and could potentially be used to assist at every step involved on the clinical management of oral cancer patients, from early screening and diagnosis, to treatment and monitoring of recurrence.

  4. Lifetime Measurement of Nickel-58 Using RDM with GRETINA

    Science.gov (United States)

    Loelius, Charles

    2014-09-01

    The structure of nuclei near the doubly magic 56Ni has provided a sensitive probe of configuration mixing across the N=Z=28 shell gap. The shell model description of nuclei in this region is well established, with the gxpf1 interaction accurately reproducing the energy levels and transition strengths of Nuclei in the vicinity of 56Ni. However, there remain open questions as to the effects of higher lying orbitals beyond the pf shell. These can be addressed by a study of the B(E2)'s of nuclei in near the shell gap, particularly the B(E2;4+ -->2+) where effects of high l orbitals may be enhanced. 58Ni provides a strong candidate for study, as the only previous B(E2;4+ -->2+) measurement using the Doppler Shift Attenuation Method resulted in a B(E2) three times larger than that predicted by theory. In order to determine the possible effects of higher lying orbitals, a second measurement of the lifetime of 58Ni was undertaken at the National Superconducting Cyclotron Laboratory using the the Gamma-Ray Energy Tracking in Beam Nuclear Array (GRETINA) and the Recoil Distance Method (RDM). Preliminary results of this measurement will be presented.

  5. Quantitative multi-color FRET measurements by Fourier lifetime excitation-emission matrix spectroscopy

    Science.gov (United States)

    Zhao, Ming; Huang, Run; Peng, Leilei

    2012-01-01

    Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium. PMID:23187535

  6. A new high rate positron lifetime measurement system

    International Nuclear Information System (INIS)

    Bedwell, M.O.; Paulus, T.J.

    1979-01-01

    Positron lifetime measuring system, a technique to perform non-destructive studies on the internal structure of materials, has many components common to those used for nuclear time spectroscopy systems. In each case, a timing coincidence curve is measured for the energy range of interest, and this is accomplished in a typical timing coincidence system. The paper first describes the conventional timing coincidence system, then a new fast timing system is introduced. Comparing to the conventional fast/slow timing system, the fast timing technique offers reduced complexity, lower system cost, and improved high data rate capability. Experimental results show that the FWHM timing resolution ranges from 190 ps for a 1.1 : 1 dynamic range to 337 ps for a 100 : 1 dynamic range of signals with 60 Co. As for the timing resolution as a function of energy, the FWHM resolution for each channel ranges from 124 ps at 1 MeV to 400 ps at 100 keV. Since the excellent timing performance is maintained even at very high input rate, the experimenters can use much more active sources to increase the true coincidence rate and reduce data accumulation time. This method has the added advantage of minimizing long term drift effects since the experiments can be conducted in less time. (Wakatsuki, Y.)

  7. The Lifetime of a beautiful and charming meson: Bc lifetime measured using the D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Welty-Rieger, Leah Christine [Indiana Univ., Bloomington, IN (United States)

    2008-09-01

    Using approximately 1.3 fb-1 of data collected by the D0 detector between 2002 and 2006, the lifetime of the Bc± meson is studied in the Bc± → J/Ψμ± + X final state. Using an unbinned likelihood simultaneous fit to J/Ψ + μ invariant mass and lifetime distributions, a signal of 810 ± 80(stat.) candidates is estimated and a lifetime measurement made of: τ(Bc±) = 0.448-0.036+0.038(stat) ± 0.032(sys) ps.

  8. Determination of absolute Ba densities during dimming operation of fluorescent lamps by laser-induced fluorescence measurements

    International Nuclear Information System (INIS)

    Hadrath, S; Beck, M; Garner, R C; Lieder, G; Ehlbeck, J

    2007-01-01

    Investigations of fluorescent lamps (FL) are often focused on the electrodes, since the lifetime of the lamps is typically limited by the electrode lifetime and durability. During steady state operation, the work function lowering emitter material, in particular, barium, is lost. Greater barium losses occur under dimming conditions, in which reduced discharge currents lead to increased cathode falls, the result of the otherwise diminished heating of the electrode by the bombarding plasma ions. In this work the barium density near the electrodes of (FL), operating in high frequency dimming mode is investigated using the high-sensitivity method of laser-induced fluorescence. From these measurements we infer barium loss for a range of discharge currents and auxiliary coil heating currents. We show that the Ba loss can very easily be reduced by moderate auxiliary coil heating

  9. Probing the photoluminescence properties of gold nanoclusters by fluorescence lifetime correlation spectroscopy

    International Nuclear Information System (INIS)

    Yuan, C. T.; Lin, T. N.; Shen, J. L.; Lin, C. A.; Chang, W. H.; Cheng, H. W.; Tang, J.

    2013-01-01

    Gold nanoclusters (Au NCs) have attracted much attention for promising applications in biological imaging owing to their tiny sizes and biocompatibility. So far, most efforts have been focused on the strategies for fabricating high-quality Au NCs and then characterized by conventional ensemble measurement. Here, a fusion single-molecule technique combining fluorescence correlation spectroscopy and time-correlated single-photon counting can be successfully applied to probe the photoluminescence (PL) properties for sparse Au NCs. In this case, the triplet-state dynamics and diffusion process can be observed simultaneously and the relevant time constants can be derived. This work provides a complementary insight into the PL mechanism at the molecular levels for Au NCs in solution

  10. Measurement of the D/sup 0/ lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Althoff, M; Braunschweig, W; Gerhards, R; Kirschfink, F J; Martyn, H U; Rosskamp, P; Wallraff, W; Bock, B; Eisenmann, J; Fischer, H M

    1986-04-01

    We have determined the D/sup 0/ lifetime from reconstructed vertices of D/sup 0/ mesons produced in e/sup +/e/sup -/ annihilations at an average center of mass energy of 42.2 GeV. From fifteen events the D/sup 0/ lifetime was determined to be (4.3/sup +2.0//sub -1.4/ +- 0.8) . 10/sup -13/s.

  11. Measurement of the D/sup 0/ lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Althoff, M; Braunschweig, W; Gerhards, R; Kirschfink, F J; Martyn, H U; Rosskamp, R; Wallraff, W; Bock, B; Eisenmann, J; Fischer, H M

    1986-10-01

    We have determined the D/sup 0/ lifetime from reconstructed vertices of D/sup 0/ mesons produced in e/sup +/e/sup -/ annihilations at an average center of mass energy of 42.2 GeV. From fifteen events the D/sup 0/ lifetime was determined to be (4.3+-1.7+-0.8)x10/sup -13/s.

  12. c, b, and tau lifetime measurements in e+e- interactions

    International Nuclear Information System (INIS)

    Jaros, J.A.

    1983-01-01

    Experiments at e + e - storage rings have successfully measured the tau and D 0 lifetimes and set interesting limits on the B lifetime. So far, the conventional wisdom has prevailed. The tau lifetime is consistent with prediction; there is no sign (but little sensitivity) of a violation of universality. The charmed particle lifetimes are roughly as expected, but richer in their phenomenology than anticipated. The B lifetime is still unknown. The experimental art is developing rapidly. Several experiments have by now installed vertex detectors. Measurements of charmed particle lifetimes from e + e - experiments will complement the work that has been done at fixed target machines. Measurements of tau and B lifetimes may be the exclusive province of e + e - experiments for the next few years

  13. Design, construction, and validation of a rotary multifunctional intravascular diagnostic catheter combining multispectral fluorescence lifetime imaging and intravascular ultrasound.

    Science.gov (United States)

    Bec, Julien; Xie, Hongtao; Yankelevich, Diego R; Zhou, Feifei; Sun, Yang; Ghata, Narugopal; Aldredge, Ralph; Marcu, Laura

    2012-10-01

    We report the development and validation of an intravascular rotary catheter for bimodal interrogation of arterial pathologies. This is based on a point-spectroscopy scanning time-resolved fluorescence spectroscopy technique enabling reconstruction of fluorescence lifetime images (FLIm) and providing information on arterial intima composition and intravascular ultrasound (IVUS) providing information on arterial wall morphology. The catheter design allows for independent rotation of the ultrasonic and optical channels within an 8 Fr outer diameter catheter sheath and integrates a low volume flushing channel for blood removal in the optical pathways. In the current configuration, the two channels consist of (a) a standard 3 Fr IVUS catheter with single element transducer (40 MHz) and (b) a side-viewing fiber optic (400 μm core). Experiments conducted in tissue phantoms showed the ability of the catheter to operate in an intraluminal setting and to generate coregistered FLIm and IVUS in one pull-back scan. Current results demonstrate the feasibility of the catheter for simultaneous bimodal interrogation of arterial lumen and for generation of robust fluorescence lifetime data under IVUS guidance. These results facilitate further development of a FLIm-IVUS technique for intravascular diagnosis of atherosclerotic cardiovascular diseases including vulnerable plaques.

  14. Effect of calcinations temperature on the luminescence intensity and fluorescent lifetime of Tb3+-doped hydroxyapatite (Tb-HA nanocrystallines

    Directory of Open Access Journals (Sweden)

    Hairong Yin

    2017-06-01

    Full Text Available Hydroxyapatite luminescent nanocrystallines doped with 6 mol.% Tb3+ (Tb-HA were prepared via chemical deposition method and calcined at different temperature, and the effects of calcinations temperature on the luminescence intensity and fluorescent lifetime were studied. TEM image of Tb-HA revealed that the shape of nanocrystallines changed from needle-like to short rod-like and sphere-like with the increase of calcinations temperature; while the particles sizes decreased from 190 nm to 110 nm. The crystallinity degree increased. The typical emission peaks attributed to Tb3+ ions were observed in emission spectra of 6 mol.% Tb-HA under 378 nm excitation. The luminescent intensity of Tb-HA, which showed the fluorescence quenching, firstly enhanced and then decreased at 700 °C; while the fluorescent lifetime increased firstly and then decreased after 600 °C. Furthermore, the ratio of intensity between 545 nm and 490 nm corresponding to electric-dipole and magnetic-dipole transition (IR: IO increases firstly and then decreases, which revealed that the proportion of substitute type and site of Ca2+ ions by Tb3+ ions were helpful to realize the substitute process and functional structure design.

  15. The fluorescence lifetime of BRI1-GFP as probe for the noninvasive determination of the membrane potential in living cells

    Science.gov (United States)

    Elgass, K.; Caesar, K.; Schleifenbaum, F.; Meixner, A. J.; Harter, K.

    2010-02-01

    As the excited state lifetime of a fluorescent molecule depends on its environment, it is possible to use it as a probe for physico-chemical parameters of the surrounding medium. Whereas this is well known for many solid guest/host systems, only few reports of quantitative, temporal resolved in vivo studies to monitor the nano-environment for a protein-coupled chromophore such as GFP are known from literature. Here we present a novel approach to determine the membrane potential of living (plant) cells based on the fluorescence lifetime (FLT) analysis of membrane-located GFP. By using confocal sample scanning microscopy (CSSM) combined with fluorescence lifetime imaging microscopy, we recently showed that the phytohormone brassinolide (BL) induces cell wall expansion and a decrease in the FLT of the BRI1-GFP in living cells of Arabidopsis thaliana seedlings. BRI1 is the dominant functional receptor for BL in Arabidopsis and locates to the plasma membrane. Although the dependence of the FLT of GFP on its physico-chemical environment such as pH-value, refractive index and pressure has been reported, the observed FLT decrease of BRI1-GFP in response to BL application could not be explained by these parameters. However, our in vivo FLT and CSSM analyses indicate that the BLinduced change in the FLT of BRI1-GFP is caused by hyperpolarisation of the plasma membrane (Em). Thus, our results indicate that BRI1-GFP serves as sensitive and non-invasive probe for recording the Em of the plasma membrane in living plant cells with high spatio-temporal resolution.

  16. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    International Nuclear Information System (INIS)

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-01-01

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''

  17. An improved $\\pi$K atom lifetime measurement

    CERN Document Server

    Yazkov, V

    2016-01-01

    This note describes details of analysis of data samples collected by DIRAC experiment on a Pt target in 2007 and Ni targets in 2008–2010 in order to estimate the lifetime of πK atoms. Experimental results consist of eight distinct data samples: both charge combinations ( π + K − and K + π − atoms) obtained in different experimental conditions corresponding to each year of data taking. Estimations of systematic errors are presented. Taking into account both statistical and systematic uncertainties, the lifetime of πK atoms is estimated by the maximum likelihood method. The above sample comprises the total statistics, available for the analysis, thus the improvement over the previous estimation [1,3] of the πK atom lifetime is achieved.

  18. Reliability and Validity of an Internet-based Questionnaire Measuring Lifetime Physical Activity

    OpenAIRE

    De Vera, Mary A.; Ratzlaff, Charles; Doerfling, Paul; Kopec, Jacek

    2010-01-01

    Lifetime exposure to physical activity is an important construct for evaluating associations between physical activity and disease outcomes, given the long induction periods in many chronic diseases. The authors' objective in this study was to evaluate the measurement properties of the Lifetime Physical Activity Questionnaire (L-PAQ), a novel Internet-based, self-administered instrument measuring lifetime physical activity, among Canadian men and women in 2005–2006. Reliability was examined u...

  19. Lifetime measurements and the nonaxial deformation in 119I

    International Nuclear Information System (INIS)

    Srebrny, J.; Droste, Ch.; Morek, T.; Starosta, K.; Juutinen, S.; Piiparinen, M.

    2000-01-01

    Lifetimes of negative parity levels in four bands in 119 I were determined by RDM and DSAM. The 119 I nuclei were produced in the 109 Ag( 13 C,3n) reaction. Calculations in the frame of the CQPC model show that the model of γ-soft nucleus better describes 119 I than the γ-rigid one. (author)

  20. Beam lifetime measurement and analysis in Indus-2 electron ...

    Indian Academy of Sciences (India)

    was gradually reduced (at 100 mA stored current, average pressure: 1.2 × 10. −9. Torr) due ... of all working beamlines (open for synchrotron radiation users) were kept closed to avoid any variation in ... Beam lifetime (hours). Beam current (mA).

  1. Lifetime measurements of the strange beauty meson and beauty baryons at LEP

    International Nuclear Information System (INIS)

    Romero, A.

    1994-01-01

    Last experimental results on the lifetimes of B s 0 mesons and beauty baryons from the LEP experiments ALEPH, DELPHI and OPAL are presented. LEP averages for the lifetimes of B s 0 and Λ b are compared to lifetimes of B d 0 and B + and to the average b hadron lifetime. The precision of these measurements begins to be suitable to test the theoretical predictions of 10-15% differences between the lifetimes of b baryons and mesons, but does not allow a test of the few percent difference expected between B d 0 and B + lifetimes. The data show a significant evidence (3 σ) for lifetime differences between b mesons and b baryons. (author). 4 refs., 9 figs

  2. Mercury effects on Thalassiosira weissflogii: Applications of two-photon excitation chlorophyll fluorescence lifetime imaging and flow cytometry

    International Nuclear Information System (INIS)

    Wu Yun; Zeng Yan; Qu, Jianan Y.; Wang Wenxiong

    2012-01-01

    The toxic effects of inorganic mercury [Hg(II)] and methylmercury (MeHg) on the photosynthesis and population growth in a marine diatom Thalassiosira weissflogii were investigated using two methods: two-photon excitation fluorescence lifetime imaging (FLIM) and flow cytometry (FCM). For photosynthesis, Hg(II) exposure increased the average chlorophyll fluorescence lifetime, whereas such increment was not found under MeHg stress. This may be caused by the inhibitory effect of Hg(II) instead of MeHg on the electron transport chain. For population growth, modeled specific growth rate data showed that the reduction in population growth by Hg(II) mainly resulted from an increased number of injured cells, while the live cells divided at the normal rates. However, MeHg inhibitory effects on population growth were contributed by the reduced division rates of all cells. Furthermore, the cell images and the FCM data reflected the morphological changes of diatom cells under Hg(II)/MeHg exposure vividly and quantitatively. Our results demonstrated that the toxigenicity mechanisms between Hg(II) and MeHg were different in the algal cells.

  3. DSA lifetime measurements in 21Ne at high recoil velocity

    International Nuclear Information System (INIS)

    Grawe, H.; Heidinger, F.; Kaendler, K.

    1977-01-01

    States in 21 Ne up to 5 MeV excitation energy have been populated using the inverted reaction 2 H( 20 Ne,pγ). The Doppler shift attenuation (DSA) analysis of the pγ coincidence spectra taken in a Ge(Li) detector at 45 0 and 135 0 and an annular silicon surface barrier detector near 0 0 yielded the lifetimes of 8 states in 21 Ne. Due to the large recoil of vi/c approximately equal to 4% three new lifetimes were determined for the short lived levels at 2.80, 4.68 and 4.73 MeV, namely 10 +- 4 fs, 16 +- 4 fs and 10 +- 4 fs, respectively. The results are compared with rotational and shell model calculations. (orig.) [de

  4. Storing keV negative ions for hours: Lifetime measurements in new time domains

    International Nuclear Information System (INIS)

    Kaminska, M; Bäckström, E; Hole, O M; Nascimento, R F; Blom, M; Björkhage, M; Källberg, A; Löfgren, P; Reinhed, P; Rosèn, S; Thomas, R D; Mannervik, S; Schmidt, H T; Cederquist, H; Hanstorpt, D

    2015-01-01

    We have used one of the cryogenic ion storage rings of DESIREE to measure the lifetime of the 2 P° 1/2 level in the sulfur anion to be 503 ± 43 seconds. This is orders of magnitude longer than any previously measured lifetime in a negatively charged ion. (paper)

  5. Measurement of the τ lifetime with the DELPHI detector at LEP

    International Nuclear Information System (INIS)

    Gross, E.

    1993-01-01

    The τ lepton lifetime is measured using four different methods with the DELPHI detector. In addition to the classical three prong vertex reconstruction and one prong impact parameter methods, the two impact parameters in an one vs one prong events are summed and substracted providing two weakly correlated methods to measure the lifetime. 4 refs

  6. Laser-excited fluorescence for measuring atmospheric pollution

    Science.gov (United States)

    Menzies, R. T.

    1975-01-01

    System measures amount of given pollutant at specific location. Infrared laser aimed at location has wavelength that will cause molecules of pollutant to fluoresce. Detector separates fluorescence from other radiation and measures its intensity to indicate concentration of pollutant.

  7. Lifetime measurements and oscillator strengths in singly ionized scandium and the solar abundance of scandium

    Science.gov (United States)

    Pehlivan Rhodin, A.; Belmonte, M. T.; Engström, L.; Lundberg, H.; Nilsson, H.; Hartman, H.; Pickering, J. C.; Clear, C.; Quinet, P.; Fivet, V.; Palmeri, P.

    2017-12-01

    The lifetimes of 17 even-parity levels (3d5s, 3d4d, 3d6s and 4p2) in the region 57 743-77 837 cm-1 of singly ionized scandium (Sc II) were measured by two-step time-resolved laser induced fluorescence spectroscopy. Oscillator strengths of 57 lines from these highly excited upper levels were derived using a hollow cathode discharge lamp and a Fourier transform spectrometer. In addition, Hartree-Fock calculations where both the main relativistic and core-polarization effects were taken into account were carried out for both low- and high-excitation levels. There is a good agreement for most of the lines between our calculated branching fractions and the measurements of Lawler & Dakin in the region 9000-45 000 cm-1 for low excitation levels and with our measurements for high excitation levels in the region 23 500-63 100 cm-1. This, in turn, allowed us to combine the calculated branching fractions with the available experimental lifetimes to determine semi-empirical oscillator strengths for a set of 380 E1 transitions in Sc II. These oscillator strengths include the weak lines that were used previously to derive the solar abundance of scandium. The solar abundance of scandium is now estimated to logε⊙ = 3.04 ± 0.13 using these semi-empirical oscillator strengths to shift the values determined by Scott et al. The new estimated abundance value is in agreement with the meteoritic value (logεmet = 3.05 ± 0.02) of Lodders, Palme & Gail.

  8. Fluorescence lifetime studies of MeV erbium implanted silica glass

    International Nuclear Information System (INIS)

    Lidgard, A.; Polman, A.; Jacobsen, D.C.; Blonder, G.E.; Kistler, R.; Poate, J.M.; Becker, P.C.

    1991-01-01

    MeV erbium ion implantation into various SiO 2 glasses has been studied with the aim of incorporating the rare-earth dopant as an optically active ion in the silica network. The lifetime of the excited state ranges from 1.6 to 12.8 ms, depending on base material and implantation fluence. These results have positive implications for silica-based integrated optical technology. (Author)

  9. Fluorescence lifetime studies of MeV erbium implanted silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Lidgard, A.; Polman, A.; Jacobsen, D.C.; Blonder, G.E.; Kistler, R.; Poate, J.M.; Becker, P.C. (AT and T Bell Labs., Murray Hill, NJ (USA))

    1991-05-23

    MeV erbium ion implantation into various SiO{sub 2} glasses has been studied with the aim of incorporating the rare-earth dopant as an optically active ion in the silica network. The lifetime of the excited state ranges from 1.6 to 12.8 ms, depending on base material and implantation fluence. These results have positive implications for silica-based integrated optical technology. (Author).

  10. Nuclear lifetimes

    International Nuclear Information System (INIS)

    Caraca, J.M.G.

    1976-01-01

    The importance of the results obtained in experiments of measurement of lifetimes for a detailed knowledge of nuclear structure is referred. Direct methods of measurement of nuclear lifetimes are described, namely, electronic methods, recoil-distance method, doppler shift atenuation method and blocking-method. A brief reference is made to indirect methods for measurement of life-times

  11. Contactless Spectral-dependent Charge Carrier Lifetime Measurements in Silicon Photovoltaic Materials

    Science.gov (United States)

    Roller, John; Hamadani, Behrang; Dagenais, Mario

    Charge carrier lifetime measurements in bulk or unfinished photovoltaic (PV) materials allow for a more accurate estimate of power conversion efficiency in completed solar cells. In this work, carrier lifetimes in PV-grade silicon wafers are obtained by way of quasi-steady state photoconductance measurements. These measurements use a contactless RF system coupled with varying narrow spectrum input LEDs, ranging in wavelength from 460 nm to 1030 nm. Spectral dependent lifetime measurements allow for determination of bulk and surface properties of the material, including the intrinsic bulk lifetime and the surface recombination velocity. The effective lifetimes are fit to an analytical physics-based model to determine the desired parameters. Passivated and non-passivated samples are both studied and are shown to have good agreement with the theoretical model.

  12. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  13. Lifetime measurements of odd-parity high-excitation levels of Sn I by time-resolved laser spectroscopy

    International Nuclear Information System (INIS)

    Zhang, Wei; Feng, Yanyan; Xu, Jiaxin; Dai, Zhenwen; Palmeri, Patrick; Quinet, Pascal; Biemont, Emile

    2010-01-01

    Natural radiative lifetimes of 38 odd-parity highly excited levels in neutral tin in the energy range from 43 682.737 to 56 838.68 cm -1 have been measured by a time-resolved laser-induced fluorescence technique in an atomic beam produced by laser ablation on a solid tin sample. All the levels were excited from the metastable 3 P 1, 2 and 1 D 2 levels in the ground configuration. The second and third harmonics of a dye laser were adopted as the tunable exciting source (207-250 nm). The lifetime results obtained in this paper are in the range from 4.6 to 292 ns and will be useful in extending the set of oscillator strengths available in Sn I.

  14. Lifetime measurements of odd-parity high-excitation levels of Sn I by time-resolved laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Feng, Yanyan; Xu, Jiaxin; Dai, Zhenwen [College of Physics, Jilin University and Key Lab of Coherent Light, Atomic and Molecular Spectroscopy, Ministry of Education, Changchun 130021 (China); Palmeri, Patrick; Quinet, Pascal; Biemont, Emile, E-mail: dai@jlu.edu.c [Astrophysique et Spectroscopie, Universite de Mons-UMONS, B-7000 Mons (Belgium)

    2010-10-28

    Natural radiative lifetimes of 38 odd-parity highly excited levels in neutral tin in the energy range from 43 682.737 to 56 838.68 cm{sup -1} have been measured by a time-resolved laser-induced fluorescence technique in an atomic beam produced by laser ablation on a solid tin sample. All the levels were excited from the metastable {sup 3}P{sub 1,} {sub 2} and {sup 1}D{sub 2} levels in the ground configuration. The second and third harmonics of a dye laser were adopted as the tunable exciting source (207-250 nm). The lifetime results obtained in this paper are in the range from 4.6 to 292 ns and will be useful in extending the set of oscillator strengths available in Sn I.

  15. Measurement of minority carrier lifetime in silicon solar cells using an a. c. light source

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, A.; Gupta, R.S.; Srivastava, G.P. (Delhi Univ., New Delhi (India). Dept. of Electronic Sciences); Jain, V.K. (Solid State Physics Lab., Delhi (India)); Chilana, G.S. (Delhi Univ. (India). Dept. of Physics and Astrophysics)

    1990-06-01

    A simple technique for the measurement of minority carriers lifetimes is proposed. It is based on the modification of the junction structure by the addition of a d.c. bias to the a.c. source. This always keeps the solar cell in the forward biased condition and also keeps it in the operating range. This method provides a direct measurement of minority carriers lifetimes. The lifetime is found to increase from 2.89 {mu}s at 30deg C to 4.55 {mu}s at 120deg C. The lifetime reduces to 1.45 {mu}s at liquid air temperature. Based on these lifetime measurements, the diffusion length of the carriers has also been calculated. (orig.).

  16. Lifetimes Measurements in 160Yb,162Yb,164Yb,166Yb,168Yb

    International Nuclear Information System (INIS)

    Araddad, S. Y.; El-barouni, A. M.; Rateb, G. M.; Mosbah, D. S.; Elahrash, M. S.; Sergiwa, S. M.

    2004-01-01

    From our measurements of the lifetimes of high spin states in 168 Yb along with the published lifetime data for the nearby even even ytterbium isotopes, 160-168 Yb using the Recoil Distance Method (RDM) and the Doppler Shift Attenuation Method (DSAM) present a great opportunity to probe systematically the relationship between the nuclear shape changes and the reduction in collectivity. (authors)

  17. Measurement of the electromagnetic lifetimes of the first four excited states of /sup 192/Pt

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D K; Raoof, M A; Raoof, S A [Birkbeck Coll., London (UK)

    1976-11-01

    Measurements of the electromagnetic lifetimes of the first four excited states of /sup 192/Pt have been made by the self-comparison method using electron-electron coincidences. The partial lifetimes of the gamma transitions involved have been interpreted in terms of the pairing-plus-quadrupole model of Kumar and Baranger.

  18. Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots.

    Science.gov (United States)

    Sylak-Glassman, Emily J; Malnoë, Alizée; De Re, Eleonora; Brooks, Matthew D; Fischer, Alexandra Lee; Niyogi, Krishna K; Fleming, Graham R

    2014-12-09

    The photosystem II (PSII) protein PsbS and the enzyme violaxanthin deepoxidase (VDE) are known to influence the dynamics of energy-dependent quenching (qE), the component of nonphotochemical quenching (NPQ) that allows plants to respond to fast fluctuations in light intensity. Although the absence of PsbS and VDE has been shown to change the amount of quenching, there have not been any measurements that can detect whether the presence of these proteins alters the type of quenching that occurs. The chlorophyll fluorescence lifetime probes the excited-state chlorophyll relaxation dynamics and can be used to determine the amount of quenching as well as whether two different genotypes with the same amount of NPQ have similar dynamics of excited-state chlorophyll relaxation. We measured the fluorescence lifetimes on whole leaves of Arabidopsis thaliana throughout the induction and relaxation of NPQ for wild type and the qE mutants, npq4, which lacks PsbS; npq1, which lacks VDE and cannot convert violaxanthin to zeaxanthin; and npq1 npq4, which lacks both VDE and PsbS. These measurements show that although PsbS changes the amount of quenching and the rate at which quenching turns on, it does not affect the relaxation dynamics of excited chlorophyll during quenching. In addition, the data suggest that PsbS responds not only to ΔpH but also to the Δψ across the thylakoid membrane. In contrast, the presence of VDE, which is necessary for the accumulation of zeaxanthin, affects the excited-state chlorophyll relaxation dynamics.

  19. Precision measurement of the K{sub S} meson lifetime with the KLOE detector

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosino, F.; Massarotti, P.; Meola, S.; Napolitano, M. [Dipt. di Scienze Fisiche dell' Univ. ' Federico II' , Napoli (Italy); INFN Sezione di Napoli (Italy); Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bloise, C.; Bossi, F.; Capon, G.; Capussela, T.; Ciambrone, P.; De Lucia, E.; De Simone, P.; Dreucci, M.; Felici, G.; Gatti, C.; Giovannella, S.; Jacewicz, M.; Miscetti, S.; Moulson, M.; Murtas, F.; Palutan, M.; Santangelo, P.; Sciascia, B.; Sibidanov, A.; Spadaro, T.; Venanzoni, G. [Lab. Nazionali di Frascati dell' INFN (Italy); Archilli, F. [Dipt. di Fisica dell' Universita ' Tor Vergata' , Roma (Italy); INFN Sezione di Roma Tor Vergata, Roma (Italy); Bini, C.; De Santis, A.; De Zorzi, G.; Di Domenico, A.; Fiore, S.; Franzini, P.; Gauzzi, P. [Dipt. di Fisica dell' Univ. ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Bocchetta, S.; Ceradini, F.; Di Micco, B.; Nguyen, F.; Taccini, C. [Dipt. di Fisica dell' Univ. Roma Tre, Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Branchini, P.; Graziani, E.; Passeri, A.; Tortora, L. [INFN Sezione di Roma Tre, Roma (Italy); De Angelis, A. [Univ. of Udine (Italy); LIP/IST, INFN Sezione di Trieste, Trieste (Italy); De Maria, M. [Univ. di Udine (Italy); IUAV, Venezia (Italy); Denig, A.; Mueller, S. [Johannes Gutenberg - Univ. Mainz, Inst. fuer Kernphysik, Mainz (Germany); Di Donato, C. [INFN Sezione di Napoli (Italy); Kulikov, V. [Inst. for Theoretical and Experimental Physics, Moscow (Russian Federation); Lee-Franzini, J. [Lab. Nazionali di Frascati dell' INFN (Italy); State Univ. of New York, Physics Dept., Stony Brook, NY (United States); Martini, M. [Lab. Nazionali di Frascati dell' INFN, Frascati (Italy); Dipt. di Energetica dell' Universita ' La Sapienza' , Roma (Italy); Univ. Guglielmo Marconi, Dipt. di Scienza e Tecnologie applicate, Roma (Italy); Patera, V. [Lab. Nazionali di Frascati dell' INFN, Frascati (Italy); Dipt. di Energetica dell' Universita ' La Sapienza' , Roma (Italy)] [and others

    2011-03-15

    Using a large sample of pure, slow, short lived K{sup 0} mesons collected with KLOE detector at DA{phi}NE, we have measured the K{sub S} lifetime. From a fit to the proper time distribution we find {tau}(K{sub S})=(89.562 {+-}0.029{sub stat}{+-}0.043{sub syst}) ps. This is the most precise measurement to date of the short lived K{sup 0} meson lifetime, in good agreement with the world average derived from previous measurements. We observe no dependence of the lifetime on the direction of the K{sub S} in galactic coordinates. (orig.)

  20. Study of lifetimes of fluorescence levels of tetravalent uranium in the incommensurate phase of thorium tetrabromide and tetrachloride

    International Nuclear Information System (INIS)

    Milicic, A.

    1989-01-01

    The lifetimes of radiative levels of tetravalent uranium in the incommensurate phase of thorium tetrahalides have been measured as a function of different parameters: site symmetry, temperature and concentration. The incommensurate phase of thorium tetrabromide and tetrachloride is characterized by a continuous distribution of site symmetries induced by a continuous and weak displacement of the halides around the thorium (uranium) ions. At low temperature, 4.2 K, the lifetime variation as a function of excited classes of symmetry is governed by the radiative process probability as well as the energy transfer between uranium ions in different sites. At higher temperature, a model based on a Boltzmann equilibrium between closed energy levels is able to reproduce the experimental lifetime variation as a function of the temperature, for a given class of symmetry. For the variation of lifetime as a function of uranium ion concentrations, at high dilution and in the case of U 4+ : ThBr 4 , there is a competition between the energy transfer and thermal population of excited states [fr

  1. Lifetime measurements on fission fragments in the A ∼ 100 region

    International Nuclear Information System (INIS)

    Grente, L.; Salsac, M. D.; Korten, W.; Goergen, A.; Hagen, T. W.; Braunroth, T.; Bruyneel, B.; Celikovic, I.; Clement, E.; Delaune, O.; Dijon, A.; Drouart, A.; Ertuerk, S.; Farget, F.; De France, G.; Gottardo, A.; Hackstein, M.; Jacquot, B.; Libert, J.; Litzinger, J.; Ljungvall, J.; Louchart, C.; Michelagnoli, C.; Napoli, D. R.; Navin, A.; Pillet, N.; Pipidis, A.; Recchia, F.; Rejmund, M.; Rother, W.; Sahin, E.; Schmitt, C.; Siem, S.; Sulignano, B.; Valiente-Dobon, J. J.; Zell, K. O.

    2013-01-01

    Lifetimes of first 4 + and 6 + states have been measured in neutron-rich isotopes of Zr, Mo, Ru and Pd using the recoil distance Doppler shift method at GANIL. The nuclei were produced through a fusion-fission reaction in inverse kinematics. The fission fragments were fully identified in the large-acceptance VAMOS spectrometer and γ-rays were detected in coincidence with the EXOGAM germanium array. Lifetimes of excited states in the range of 1-100 ps were measured with the Cologne plunger. Preliminary lifetime results are presented as well as a discussion on the evolution of the collectivity in this region. (authors)

  2. A Ge-Si active target for the measurement of short lifetimes

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Bedeschi, F.; Bertolucci, E.; Bettoni, D.; Bosisio, L.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giannetti, P.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Scribano, A.; Tenchini, R.; Triggiani, G.; Tonelli, G.; Bologna, G.; D'Ettorre Piazzoli, B.; Mannocchi, G.; Picchi, P.; Consiglio Nazionale delle Ricerche, Turin; D'Angelo, P.; Manfredi, P.F.; Menasce, D.; Meroni, E.; Moroni, L.; Pedrini, D.; Perasso, L.; Sala, S.; Fabbri, F.L.; Enorini, M.; Laurelli, P.; Spillantini, P.; Zallo, A.

    1984-01-01

    A new Ge-Si active target is presently used in the Na1 experiment at CERN to study photoproduction of charmed particles and to measure their lifetimes. Some general comments on the active target technique are made. (orig.)

  3. Gating circuit for single photon-counting fluorescence lifetime instruments using high repetition pulsed light sources

    International Nuclear Information System (INIS)

    Laws, W.R.; Potter, D.W.; Sutherland, J.C.

    1984-01-01

    We have constructed a circuit that permits conventional timing electronics to be used in single photon-counting fluorimeters with high repetition rate excitation sources (synchrotrons and mode-locked lasers). Most commercial time-to-amplitude and time-to-digital converters introduce errors when processing very short time intervals and when subjected to high-frequency signals. This circuit reduces the frequency of signals representing the pulsed light source (stops) to the rate of detected fluorescence events (starts). Precise timing between the start/stop pair is accomplished by using the second stop pulse after a start pulse. Important features of our design are that the circuit is insensitive to the simultaneous occurrence of start and stop signals and that the reduction in the stop frequency allows the start/stop time interval to be placed in linear regions of the response functions of commercial timing electronics

  4. Lifetime measurements in an electrostatic ion beam trap using image charge monitoring

    International Nuclear Information System (INIS)

    Rahinov, Igor; Toker, Yoni; Heber, Oded; Rappaport, Michael; Zajfman, Daniel; Strasser, Daniel; Schwalm, Dirk

    2012-01-01

    A technique for mass-selective lifetime measurements of keV ions in a linear electrostatic ion beam trap is presented. The technique is based on bunching the ions using a weak RF potential and non-destructive ion detection by a pick-up electrode. This method has no mass-limitation, possesses the advantage of inherent mass-selectivity, and offers a possibility of measuring simultaneously the lifetimes of different ion species with no need for prior mass-selection.

  5. Measurement of the [Formula: see text] meson lifetime using [Formula: see text] decays.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Cartelle, P Alvarez; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Gutierrez, O Aquines; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dorosz, P; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Hafkenscheid, T W; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Manzali, M; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spinella, F; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    The lifetime of the [Formula: see text] meson is measured using semileptonic decays having a [Formula: see text] meson and a muon in the final state. The data, corresponding to an integrated luminosity of [Formula: see text], are collected by the LHCb detector in [Formula: see text] collisions at a centre-of-mass energy of 8 TeV. The measured lifetime is [Formula: see text]where the first uncertainty is statistical and the second is systematic.

  6. Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy

    Science.gov (United States)

    Schweitzer, Dietrich; Deutsch, Lydia; Klemm, Matthias; Jentsch, Susanne; Hammer, Martin; Peters, Sven; Haueisen, Jens; Müller, Ulrich A.; Dawczynski, Jens

    2015-06-01

    The time-resolved autofluorescence of the eye is used for the detection of metabolic alteration in diabetic patients who have no signs of diabetic retinopathy. One eye from 37 phakic and 11 pseudophakic patients with type 2 diabetes, and one eye from 25 phakic and 23 pseudophakic healthy subjects were included in the study. After a three-exponential fit of the decay of autofluorescence, histograms of lifetimes τi, amplitudes αi, and relative contributions Qi were statistically compared between corresponding groups in two spectral channels (490diabetic patients and age-matched controls (p450 ps, and the shift of τ3 from ˜3000 to 3700 ps in ch1 of diabetic patients when compared with healthy subjects indicate an increased production of free flavin adenine dinucleotide, accumulation of advanced glycation end products (AGE), and, probably, a change from free to protein-bound reduced nicotinamide adenine dinucleotide at the fundus. AGE also accumulated in the crystalline lens.

  7. Fluorescent nanosensors for intracellular measurements: synthesis, characterisation, calibration and measurement

    Directory of Open Access Journals (Sweden)

    Arpan Shailesh Desai

    2014-01-01

    Full Text Available Measurement of intracellular acidification is important for understanding fundamental biological pathways as well as developing effective therapeutic strategies. Fluorescent pH nanosensors are an enabling technology for real-time monitoring of intracellular acidification. The physicochemical characteristics of nanosensors can be engineered to target specific cellular compartments and respond to external stimuli. Therefore nanosensors represent a versatile approach for probing biological pathways inside cells. The fundamental components of nanosensors comprise a pH-sensitive fluorophore (signal transducer and a pH-insensitive reference fluorophore (internal standard immobilised in an inert non-toxic matrix. The inert matrix prevents interference of cellular components with the sensing elements as well as minimizing potentially harmful effects of some fluorophores on cell function. Fluorescent nanosensors are synthesised using standard laboratory equipment and are detectable by non-invasive widely accessibly imaging techniques. The outcomes of studies employing this technology are dependent on reliable methodology for performing measurements. In particular special consideration must be given to conditions for sensor calibration, uptake conditions and parameters for image analysis. We describe procedures for: 1 synthesis and characterisation of polyacrylamide and silica based nanosensors 2 nanosensor calibration and 3 performing measurements using fluorescence microscopy.

  8. Comparitive study of fluorescence lifetime quenching of rhodamine 6G by MoS2 and Au-MoS2

    Science.gov (United States)

    Shakya, Jyoti; Kasana, Parath; Mohanty, T.

    2018-04-01

    Time resolved fluorescence study of Rhodamine 6G (R6G) in the presence of Molybdenum disulfide (MoS2) nanosheets and gold doped MoS2 (Au-MoS2) have been carried out and discussed. We have analyzed the fluorescence decay curves of R6G and it is observed that Au-MoS2 is a better fluorescence lifetime quencher as compare to MoS2 nanosheets. Also, the energy transfer efficiency and energy transfer rate from R6G to MoS2 and Au-MoS2 has been calculated and found higher for Au-MoS2.

  9. The rotational predissociation of HeH+ energy and lifetime measurements, ch. 3

    International Nuclear Information System (INIS)

    Locht, R.; Maas, J.G.; Asselt, N.P.F.B. van; Los, J.

    1976-01-01

    Relative lifetimes and energies above the dissociation limit have been determined for the rotational predissociation of several quasi-bound levels of the X'Σ + state of 4 HeH + . In particular, the lifetimes are very sensitive to the shape of the potential energy curve. These measurements are used to discriminate between two ab initio potential curves which differ by only 0.00004 a.u. (approximately 1 meV). Using the lifetime data, relative population factors were determined for the observed levels

  10. Measurement of the average B hadron lifetime in Z0 decays using reconstructed vertices

    International Nuclear Information System (INIS)

    Abe, K.; Abt, I.; Ahn, C.J.; Akagi, T.; Allen, N.J.; Ash, W.W.; Aston, D.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D'Oliveira, A.; Damerell, C.J.S.; Daoudi, M.; De Sangro, R.; De Simone, P.; Dell'Orso, R.; Dima, M.; Du, P.Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Falciai, D.; Fan, C.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jackson, D.J.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kang, H.J.; Karliner, I.; Kawahara, H.; Kendall, H.W.; Kim, Y.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.S.; Liu, M.X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Reidy, J.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; Russell, J.J.

    1995-01-01

    We report a measurement of the average B hadron lifetime using data collected with the SLD detector at the SLAC Linear Collider in 1993. An inclusive analysis selected three-dimensional vertices with B hadron lifetime information in a sample of 50x10 3 Z 0 decays. A lifetime of 1.564±0.030(stat)±0.036(syst) ps was extracted from the decay length distribution of these vertices using a binned maximum likelihood method. copyright 1995 The American Physical Society

  11. Preparation and properties of Nd{sup 3+}:SrAlF{sub 5} nanocrystals embedded fluorophosphate transparent glass-ceramic with long fluorescence lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruilin; Wang, Jinlong; Zhang, Liaolin; Liu, Chunxiao; Wei, Wei [Nanjing University of Posts and Telecommunications, School of Optoelectronic Engineering, Nanjing (China)

    2016-07-15

    Nd{sup 3+}:SrAlF{sub 5} nanocrystals embedded fluorophosphate glass-ceramics were prepared by the melt quenching and subsequent thermal treatment method. The formation of SrAlF{sub 5} nanocrystals in the glass was confirmed by X-ray diffraction and scanning electron microscope. The fluorescence intensity and lifetime of the glass-ceramics increased with the increase of size of nanocrystals. Importantly, by controlling growth of nanocrystals, an obvious enhancement of lifetime (725 μs) emerged in the glass-ceramics heat-treated at 510 C and the transmittance can reach to 72.2 % at 1049 nm. The enhanced fluorescence intensity and lifetime were ascribed to the comfortable local environment to the Nd{sup 3+} ion and scattering of the nanoparticle embedded into the glass matrix. (orig.)

  12. Peroxy Radical Measurements via Laser Induced Fluorescence

    Science.gov (United States)

    Trawny, Katrin; Tatum Ernest, Cheryl; Novelli, Anna; Elste, Thomas; Plaß-Dülmer, Christian; Rudolf, Markus; Martinez, Monica; Harder, Hartwig; Lelieveld, Jos

    2013-04-01

    We present a newly built Laser Induced Fluorescence (LIF) system to measure the sum of all peroxy radicals (RO2) utilizing chemical conversion to OH. This instrument operates in two different modes: the ROx mode (sum of OH, HO2, and RO2) and the HOx mode (sum of OH and HO2). The HOx mode is used to derive the RO2 data from the ROx measurements. A model approach was used during instrumental development to identify the key parameters needed for the conversion process in front of the detection area and to optimize sensitivity. The instrument was then carefully characterized in various lab experiments, where it could be shown that the wall losses for HO2 are negligible and that nearly all HO2 is converted to OH in front of the detection zone. The pressure and temperature dependencies were also analyzed and assured that the instrument does not show any photolytical interference. As the instrument is calibrated with only one kind of peroxy radicals it was very important that the differences in sensitivity for different peroxy radicals are acceptable. Lab experiments as well as first results from the HOPE 2012 intensive field campaign, which took place in summer 2012 at the Global Atmosphere Watch (GAW) station of the German Weather Service, will be discussed.

  13. Lifetime measurements using the Jefferson Lad Load-Lock Electron Gun

    International Nuclear Information System (INIS)

    J. Grames; P. Adderley; M. Baylac; J. Brittian; D. Charles; J. Clark; J. Hansknecht; M. Poelker; M. Stutzman; K. Surles-Law

    2000-01-01

    Lifetime measurements of bulk GaAs using a 100 kV load-lock electron gun and beam line were made. Initial tests used anodized samples to study lifetime under various conditions (gun vacuum, laser spot location, activated area). Subsequent tests used a mechanical mask to limit the active area and included improved monitoring of the gun chamber and beam line vacuum pressure. Results of these measurements support claims made at past workshops, namely photocathode lifetime improves when gun vacuum is enhanced and when electron emission from the edge of the photocathode is eliminated. The dependence upon laser spot location is less certain. Tests studying lifetime at higher beam intensity (I ∼ 8 mA) have begun

  14. MEASUREMENT OF MINORITY-ARRIER LIFETIME IN SILICON ...

    African Journals Online (AJOL)

    Dr Obe

    1982-09-01

    Sep 1, 1982 ... This manuscript describes the measurement of minority ... In thermal equilibrium, the voltage drop along ... can be determined from observations ... during the period of conductance ... laser beam, bunch of glass slides were.

  15. Cascade Problems in Some Atomic Lifetime Measurements at a Heavy-Ion Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E; Hoffmann, J; Krantz, C; Wolf, A; Ishikawa, Y; Santana, J

    2008-10-09

    Lifetimes of 3s{sup 2}3p{sup k} ground configuration levels of Al-, Si-, P-, and S-like ions of Be, Co, and Ni have been measured at a heavy-ion storage ring. Some of the observed decay curves show strong evidence of cascade repopulation from specific 3d levels that feature lifetimes in the same multi-millisecond range as the levels of the ground configuration.

  16. Measuring upconversion nanoparticles photoluminescence lifetime with FastFLIM and phasor plots

    Science.gov (United States)

    Sun, Yuansheng; Lee, Hsien-Ming; Qiu, Hailin; Liao, Shih-Chu Jeff; Coskun, Ulas; Barbieri, Beniamino

    2018-02-01

    Photon upconversion is a nonlinear process in which the sequential of absorption of two or more photons leads to the anti-stoke emission. Different than the conventional multiphoton excitation process, upconversion can be efficiently performed at low excitation densities. Recent developments in lanthanide-doped upconversion nanoparticles (UCNPs) have led to a diversity of applications, including detecting and sensing of biomolecules, imaging of live cells, tissues and animals, cancer diagnostic and therapy, etc. Measuring the upconversion lifetime provides a new dimension of its imaging and opens a new window for its applications. Due to the long metastable intermediate excited state, UCNP typically has a long excited state lifetime ranging from sub-microseconds to milliseconds. Here, we present a novel development using the FastFLIM technique to measure UCNP lifetime by laser scanning confocal microscopy. FastFLIM is capable of measuring lifetime from 100 ps to 100 ms and features the high data collection efficiency (up to 140-million counts per second). Other than the traditional nonlinear least-square fitting analysis, the raw data acquired by FastFLIM can be directly processed by the model-free phasor plots approach for instant and unbiased lifetime results, providing the ideal routine for the UCNP photoluminescence lifetime microscopy imaging.

  17. Measurement of carrier lifetime and linewidth enhancement factor for 1.5- mu m ridge-waveguide laser amplifier

    DEFF Research Database (Denmark)

    Storkfelt, Niels; Mikkelsen, B.; Olesen, D. S.

    1991-01-01

    Semiconductor optical amplifiers are used for investigation of the effective carrier lifetime and the linewidth enhancement factor. Contrary to semiconductor lasers, semiconductor optical amplifiers allow measurement at high levels of injected carrier density. The carrier lifetime and the linewid...

  18. Ion implanted Na22 source for positron lifetime measurements

    International Nuclear Information System (INIS)

    Fluss, M.J.; Smedeskjaer, L.C.

    1979-04-01

    A new positron source-sample fabrication technique, intended for high temperature positron annihilation measurements, was developed. The method makes use of a mass separator to implant pure Na 22 into the sample surface. The application of this technique to Cu is described. A brief discussion of the origin of the source component is given, and different possibilities of correcting for it are pointed out. 3 references

  19. Positron lifetime measurements as a non-destructive technique to monitor fatigue damage

    International Nuclear Information System (INIS)

    Byrne, J.G.

    1975-09-01

    In the fatigue cycling of initially hard copper, self consistent positron lifetime and x-ray particle size measurements followed the softening process and revealed a new feature which may be the final development of microvoids before fracture. In the cyclic fatigue of initially soft 4340 steel closely spaced concurrent measurements of these parameters are now in progress. For initially hard 4340 steel fatigue softening was revealed with a large positron lifetime decrease. In hydrogen embrittlement studies positron lifetime was found to be sensitive to hydrogen in an interesting way, i.e., if a specimen is already at its maximum defect density, hydrogen is trapped at some of the defects, reduce their attraction for positrons and hence cause a decrease in positron lifetime; conversely in a soft specimen, hydrogen generates more dislocation length than it can trap at (thus cancelling) hence a positron lifetime increase occurs. In electron irradiated and annealed single crystal copper 4 annealing peaks were seen at 125, 270, 400, and 650 0 K. A clear correlation between decreasing positron lifetime and increasing percent porosity in α alumina was established. This behavior is quite []he opposite to that in metals. (auth)

  20. Automatic Segmentation of Fluorescence Lifetime Microscopy Images of Cells Using Multi-Resolution Community Detection -A First Study

    Science.gov (United States)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar

    2014-01-01

    Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410

  1. Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection--a first study.

    Science.gov (United States)

    Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z

    2014-01-01

    Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  2. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.

    Science.gov (United States)

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1 ± 2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6 ± 8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  3. The modifier effects of chymotrypsin and trypsin enzymes on fluorescence lifetime distribution of "N-(1-pyrenyl)maleimide-bovine serum albumin" complex.

    Science.gov (United States)

    Özyiğit, İbrahim Ethem; Karakuş, Emine; Pekcan, Önder

    2016-02-05

    Chymotrypsin and trypsin are the well known proteolytic enzymes, both of which are synthesized in the pancreas as their precursors - the inactive forms; chymotrypsinogen and trypsinogen - and then are released into the duodenum to cut proteins into smaller peptides. In this paper, the effects of activities of chymotrypsin and trypsin enzymes on fluorescence lifetime distributions of the substrat bovine serum albumin (BSA) modified with N-(1-pyrenyl)maleimide (PM) were examined. In the labeling study of BSA with PM, it is aimed to attach PM to the single free thiol (Cys34) and to all the free amine groups in accessible positions in order to produce excimers of pyrene planes of the possible highest amount to form the lifetime distributions in the widest range, that may show specifically distinguishing changes resulting from the activities of the proteases. The time resolved spectrofluorometer was used to monitor fluorescence decays, which were analyzed by using the exponential series method (ESM) to obtain the changes of lifetime distributions. After the exposure of the synthesized substrat PM-BSA to the enzymes, the fluorescence lifetime distributions exhibited different structures which were attributed to the different activities of the proteases. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The modifier effects of chymotrypsin and trypsin enzymes on fluorescence lifetime distribution of "N-(1-pyrenyl)maleimide-bovine serum albumin" complex

    Science.gov (United States)

    Özyiğit, İbrahim Ethem; Karakuş, Emine; Pekcan, Önder

    2016-02-01

    Chymotrypsin and trypsin are the well known proteolytic enzymes, both of which are synthesized in the pancreas as their precursors - the inactive forms; chymotrypsinogen and trypsinogen - and then are released into the duodenum to cut proteins into smaller peptides. In this paper, the effects of activities of chymotrypsin and trypsin enzymes on fluorescence lifetime distributions of the substrat bovine serum albumin (BSA) modified with N-(1-pyrenyl)maleimide (PM) were examined. In the labeling study of BSA with PM, it is aimed to attach PM to the single free thiol (Cys34) and to all the free amine groups in accessible positions in order to produce excimers of pyrene planes of the possible highest amount to form the lifetime distributions in the widest range, that may show specifically distinguishing changes resulting from the activities of the proteases. The time resolved spectrofluorometer was used to monitor fluorescence decays, which were analyzed by using the exponential series method (ESM) to obtain the changes of lifetime distributions. After the exposure of the synthesized substrat PM-BSA to the enzymes, the fluorescence lifetime distributions exhibited different structures which were attributed to the different activities of the proteases.

  5. Lifetime measurements using the recoil distance method—achievements and perspectives

    Science.gov (United States)

    Krücken, R.

    2001-07-01

    The recoil distance method (RDM) for measuring pico-second nuclear level lifetimes and its use in nuclear structure studies is reviewed and perspectives for the future are presented. High precision measurements in the mass-130 region, studies of multi-phonon states in rare earth nuclei, the investigation of shape coexistence and the recently discovered phenomenon of "magnetic rotation" are reviewed. Prospects for lifetime measurements in exotic regions of nuclei such as the measurement of lifetimes in neutron rich nuclei populated via spontaneous and heavy-ion induced fission are discussed. Other prospects include the use of the RDM technique in conjunction with recoil separators. The relevance of these techniques for experiments with radioactive ion beams will be discussed.

  6. Measurement of the $\\bar{B}_s^0$ meson lifetime in $D_s^+\\pi^-$ decays

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gavrilov, Gennadii; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-10-24

    We present a measurement of the ratio of the $\\bar{B}_s^0$ meson lifetime, in the flavor-specific decay to $D_s^+\\pi^-$, to that of the $\\bar{B}^0$ meson. The $pp$ collision data used correspond to an integrated luminosity of 1 fb$^{-1}$, collected with the LHCb detector, at a center-of-mass energy of 7 TeV. Combining our measured value of 1.010 +/- 0.010 +/- 0.008 for this ratio with the known $\\bar{B}^0$ lifetime, we determine the flavor-specific $\\bar{B}_s^0$ lifetime to be $\\tau(\\bar{B}_s^0)$ = 1.535 +/- 0.015 +/- 0.014 ps, where the uncertainties are statistical and systematic, respectively. This is the most precise measurement to date, and is consistent with previous measurements and theoretical predictions.

  7. Simulating fluorescence light-canopy interaction in support of laser-induced fluorescence measurements

    International Nuclear Information System (INIS)

    Rosema, A.; Verhoef, W.; Schroote, J.; Snel, J.F.H.

    1991-01-01

    In the Netherlands an operational field instrument for the measurement of laser induced fluorescence of vegetation (LEAF) is developed. In addition, plant physiological and remote sensing research is done to support this new remote sensing instrument. This paper presents a general introduction on the subject of laser-induced fluorescence, including the relation between chlorophyll fluorescence and photosynthesis, spectral characteristics, and previous research. Also the LEAF system is briefly described. Subsequently, the development of a leaf fluorescence model (KMF) and a canopy fluorescence model (FLSAIL) are reported. With these simulation models a sensitivity study is carried out. Fluorescence of 685 nm appears to be most suitable to obtain information on photosynthesis and stress, but is also influenced by canopy structure. Separation of these two effects is studied

  8. LHCb: Lifetime measurements and angular analysis of $B_s \\to J/\\Psi\\Phi$

    CERN Multimedia

    Sparkes, A

    2011-01-01

    Extracting the CP violating phase $\\Phi_s$ from the channel $B_s \\to J/\\Psi\\Phi$ is an important measurement for LHCb. This decay is a pseudoscalar to vector-vector transition and has three decay amplitudes which can be extracted by an angular analysis. Studies of untagged $B_s \\to J/\\Psi\\Phi$ decays using LHCb data recorded in 2010 allows us to measure the lifetime difference in $B_s$ mesons and verifies the method for extracting the weak CP violating phase $\\Phi_s$. Lifetime measurements for $B^+, B_d, B_s$ and $\\Lambda_b$ will also be presented.

  9. Recoil Distance Method lifetime measurements via gamma-ray and charged-particle spectroscopy at NSCL

    Science.gov (United States)

    Voss, Philip Jonathan

    The Recoil Distance Method (RDM) is a well-established technique for measuring lifetimes of electromagnetic transitions. Transition matrix elements derived from the lifetimes provide valuable insight into nuclear structure. Recent RDM investigations at NSCL present a powerful new model-independent tool for the spectroscopy of nuclei with extreme proton-to-neutron ratios that exhibit surprising behavior. Neutron-rich 18C is one such example, where a small B(E2; 2+1 → 0+gs) represented a dramatic shift from the expected inverse relationship between the B(E2) and 2+1 excitation energy. To shed light on the nature of this quadrupole excitation, the RDM lifetime technique was applied with the Koln/NSCL plunger. States in 18C were populated by the one-proton knockout reaction of a 19N secondary beam. De-excitation gamma rays were detected with the Segmented Germanium Array in coincidence with reaction residues at the focal plane of the S800 Magnetic Spectrometer. The deduced B(E2) and excitation energy were both well described by ab initio no-core shell model calculations. In addition, a novel extension of RDM lifetime measurements via charged-particle spectroscopy of exotic proton emitters has been investigated. Substituting the reaction residue degrader of the Koln/NSCL plunger with a thin silicon detector permits the study of short-lived nuclei beyond the proton dripline. A proof of concept measurement of the mean lifetime of the two-proton emitter 19Mg was conducted. The results indicated a sub-picosecond lifetime, one order of magnitude smaller than the published results, and validate this new technique for lifetime measurements of charged-particle emitters.

  10. Lifetime measurement of prompt neutrons using the neutronic noise analysis

    International Nuclear Information System (INIS)

    Ortiz Servin, J.J.

    1992-01-01

    The purpose of this work is to estimate the life of the prompt neutrons, i, of a nuclear reactor utilizing the neutron noise analysis. This technique carry to development of mathematical model that is valid for lower powers reactor. The equation resulting convey to the observation about power spectrum behaviour respect to the frecquency. In this case, the reactor in study is the Triga Mark III of Nuclear Center of Mexico that it was provided of fission chambers for register the neutron fluxes. These fluxes was digitized and storage in computer disc as signals dependents of time, for later apply the Fourier Transformation and obtain the spectras. The spectras measured to different reactor powers were adjusted to the development equation before, using the method of square minimum and so estimate the parameter i. The analysis of results throw a value of 22.73 +/- 0.92 μs. On the other hand, the calculate value to the resolve the kinetic equation of reactor defer in lower than 4 % about the estimate. Of this, it concludes that the model utilized is trusty with a good mistake margin, moreover of that the technique of Neutron Noise analysis demonstrate be competitive (Author)

  11. First application of the spectral difference method for lifetime measurements of doppler attenuated line shapes

    Energy Technology Data Exchange (ETDEWEB)

    Duckwitz, Hannah [Institut fuer Kernphysik, Koeln Univ. (Germany); Petkov, Pavel [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2016-07-01

    In this new approach to lifetime measurements via Doppler attenuated line shapes, the spectra of a feeding f and a deexciting transition d of the level of interest are used to determine the lifetime without any lineshape analysis of the feeding transition (direct or indirect). Similarly to the DDC method, the decay function λ{sub d}n{sub d}(t) of the deexciting transition is determined. The feeding of the level is included via the spectral difference of the two successive decays. Consequently, the determined lifetime is the real lifetime. After transforming both transitions into the same energy region, their spectral difference D(v{sub θ}) = S{sub d}(v{sub θ})-S{sub f}(v{sub θ}) = ∫{sub 0}{sup ∞}(∂P{sub θ}(t,v{sub θ}))/(∂t)n{sub d}(t) dt, is solved for n{sub d}(t). Dividing n{sub d}(t) by the decay function λ{sub d}n{sub d}(t) should yield a constant τ value for the level lifetime as a function of the time t. After the development and test of the procedure in 2015, it is now applied for the first time. Two level lifetimes are determined in {sup 86}Sr for the 2{sup +}{sub 2} and the 2{sup +}{sub 3} levels.

  12. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    International Nuclear Information System (INIS)

    Gupta, C.K.; Rohilla, Aman; Abhilash, S.R.; Kabiraj, D.; Singh, R.P.; Mehta, D.; Chamoli, S.K.

    2014-01-01

    A thin isotopic 94 Zr target of thickness 520μg/cm 2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm 2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94 Zr from peeling off, a very thin layer of gold has been evaporated on a 94 Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94 Zr target material was utilized for the fabrication of 94 Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC

  13. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    Science.gov (United States)

    Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.

    2014-11-01

    A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  14. Fabrication of {sup 94}Zr thin target for recoil distance doppler shift method of lifetime measurement

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, C.K.; Rohilla, Aman [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Abhilash, S.R.; Kabiraj, D.; Singh, R.P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Mehta, D. [Department of Physics, Panjab University, Chandigarh 160014 (India); Chamoli, S.K., E-mail: skchamoli@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-11-11

    A thin isotopic {sup 94}Zr target of thickness 520μg/cm{sup 2} has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm{sup 2} thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of {sup 94}Zr from peeling off, a very thin layer of gold has been evaporated on a {sup 94}Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched {sup 94}Zr target material was utilized for the fabrication of {sup 94}Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  15. LHCb : Measurement of the $B_c$ Lifetime in semileptonic decays at LHCb

    CERN Multimedia

    Anderlini, Lucio

    2014-01-01

    The lifetime of the $B_c^+$ meson is measured using semileptonic decays having a $J\\!/\\!\\psi$ meson and a muon in the final state. The data, corresponding to an integrated luminosity of $2\\mathrm{fb^{-1}}$, are collected by the LHCb detector in $pp$ collisions at a centre-of-mass energy of $8\\,\\mathrm{TeV}$. The measured lifetime is $$\\tau = 509 \\pm 8 \\pm 12 \\mathrm{~fs},$$ where the first uncertainty is statistical and the second is systematic.

  16. Measurement of the Bc+ meson lifetime using the decay mode Bc+ --> J/Psie+nue.

    Science.gov (United States)

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cresciolo, F; Cruz, A; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Devlin, T; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Heijboer, A; Heinemann, B; Heinrich, J; Herndon, M; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Mitra, A; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-07-07

    We present a measurement of the Bc+ meson lifetime in the decay mode Bc+ --> J/Psie+nue using the Collider Detector at Fermilab II detector at the Fermilab Tevatron Collider. From a sample of about of 360 pb(-1) of pp collisions at square root of s = 1.96 TeV, we reconstruct J/Psie+ pairs with invariant mass in the kinematically allowed range 4< M(J/Psie) < 6 GeV/c2. A fit to the decay-length distribution of 238 signal events yields a measured Bc+ meson lifetime of 0.463(-0.065)(+0.073)(stat) +/- 0.036(syst) ps.

  17. First measurement of the lifetime of the doubly charmed baryon $\\Xi_{cc}^{++}$

    CERN Document Server

    Aaij, Roel; LHCb Collaboration; Adinolfi, Marco; Aidala, Christine Angela; Ajaltouni, Ziad; Akar, Simon; Albicocco, Pietro; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Alfonso Albero, Alejandro; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Arzymatov, Kenenbek; Aslanides, Elie; Atzeni, Michele; Audurier, Benjamin; Bachmann, Sebastian; Back, John; Baker, Sophie; Balagura, Vladislav; Baldini, Wander; Baranov, Alexander; Barlow, Roger; Barsuk, Sergey; Barter, William; Baryshnikov, Fedor; Batozskaya, Varvara; Batsukh, Baasansuren; Battista, Vincenzo; Bay, Aurelio; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Beiter, Andrew; Bel, Lennaert; Beliy, Nikita; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Beranek, Sarah; Berezhnoy, Alexander; Bernet, Roland; Berninghoff, Daniel; Bertholet, Emilie; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bhasin, Srishti; Bhom, Jihyun; Bian, Lingzhu; Bifani, Simone; Billoir, Pierre; Birnkraut, Alex; Bizzeti, Andrea; Bjørn, Mikkel; Blago, Michele Piero; Blake, Thomas; Blanc, Frederic; Blusk, Steven; Bobulska, Dana; Bocci, Valerio; Boente Garcia, Oscar; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bozzi, Concezio; Braun, Svende; Brodski, Michael; Brodzicka, Jolanta; Brossa Gonzalo, Arnau; Brundu, Davide; Buchanan, Emma; Buonaura, Annarita; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Byczynski, Wiktor; Cadeddu, Sandro; Cai, Hao; Calabrese, Roberto; Calladine, Ryan; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Cattaneo, Marco; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Chapman, Matthew George; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chekalina, Viktoriia; Chen, Chen; Chen, Shanzhen; Chitic, Stefan-Gabriel; Chobanova, Veronika; Chrzaszcz, Marcin; Chubykin, Alexsei; Ciambrone, Paolo; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Coelho, Joao A B; Cogan, Julien; Cogneras, Eric; Cojocariu, Lucian; Collins, Paula; Colombo, Tommaso; Comerma-Montells, Albert; Contu, Andrea; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Da Silva, Cesar Luiz; Dall'Occo, Elena; Dalseno, Jeremy; Danilina, Anna; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Del Buono, Luigi; Delaney, Blaise; Dembinski, Hans Peter; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Desse, Fabrice; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Nezza, Pasquale; Didenko, Sergey; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Douglas, Lauren; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Durante, Paolo; Durham, John Matthew; Dutta, Deepanwita; Dzhelyadin, Rustem; Dziewiecki, Michal; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Ene, Alexandru; Escher, Stephan; Esen, Sevda; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fazzini, Davide; Federici, Luca; Fernandez Declara, Placido; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Lopes, Lino; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Funk, Wolfgang; Färber, Christian; Féo Pereira Rivello Carvalho, Mauricio; Gabriel, Emmy; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gan, Yuyue; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; Garcia Plana, Beatriz; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Gerstel, Dawid; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, Vladimir; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Govorkova, Ekaterina; Grabowski, Jascha Peter; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greim, Roman; Griffith, Peter; Grillo, Lucia; Gruber, Lukas; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gu, Chenxi; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hamilton, Brian; Han, Xiaoxue; Hancock, Thomas Henry; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Thomas; Hasse, Christoph; Hatch, Mark; He, Jibo; Hecker, Malte; Heinicke, Kevin; Heister, Arno; Hennessy, Karol; Henry, Louis; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hidalgo Charman, Raoul; Hill, Donal; Hilton, Martha; Hopchev, Plamen Hristov; Hu, Wenhua; Huang, Wenqian; Huard, Zachary; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hutchcroft, David; Hynds, Daniel; Ibis, Philipp; Idzik, Marek; Ilten, Philip; Ivshin, Kuzma; Jacobsson, Richard; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kazeev, Nikita; Kecke, Matthieu; Keizer, Floris; Kelsey, Matthew; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kim, Kyung Eun; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Klimkovich, Tatsiana; Koliiev, Serhii; Kolpin, Michael; Kopecna, Renata; Koppenburg, Patrick; Kostiuk, Igor; Kotriakhova, Sofia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreps, Michal; Kress, Felix Johannes; Krokovny, Pavel; Krupa, Wojciech; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lancierini, Davide; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Pei-Rong; Li, Tenglin; Li, Zhuoming; Liang, Xixin; Likhomanenko, Tatiana; Lindner, Rolf; Lionetto, Federica; Lisovskyi, Vitalii; Liu, Xuesong; Loh, David; Loi, Angelo; Longstaff, Iain; Lopes, Jose; Lovell, George Holger; Lucchesi, Donatella; Lucio Martinez, Miriam; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Macko, Vladimir; Mackowiak, Patrick; Maddrell-Mander, Samuel; Maev, Oleg; Maguire, Kevin; Maisuzenko, Dmitrii; Majewski, Maciej Witold; Malde, Sneha; Malecki, Bartosz; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Marangotto, Daniele; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marinangeli, Matthieu; Marino, Pietro; Marks, Jörg; Marshall, Phillip John; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Massafferri, André; Materok, Marcel; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurice, Emilie; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McNab, Andrew; McNulty, Ronan; Mead, James Vincent; Meadows, Brian; Meaux, Cedric; Meier, Frank; Meinert, Nis; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Millard, Edward James; Minard, Marie-Noelle; Minzoni, Luca; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Mombächer, Titus; Monroy, Igancio Alberto; Monteil, Stephane; Morandin, Mauro; Morello, Gianfranco; Morello, Michael Joseph; Morgunova, Olga; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Murphy, Colm Harold; Murray, Donal; Mödden, Antje; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nanut, Tara; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Thi Dung; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nogay, Alla; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Ossowska, Anna; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Pajero, Tommaso; Palano, Antimo; Palutan, Matteo; Panshin, Gennady; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Pereima, Dmitrii; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petrucci, Stefano; Petruzzo, Marco; Pietrzyk, Boleslaw; Pietrzyk, Guillaume; Pikies, Malgorzata; Pili, Martina; Pinci, Davide; Pinzino, Jacopo; Pisani, Flavio; Piucci, Alessio; Placinta, Vlad-Mihai; Playfer, Stephen; Plews, Jonathan; Plo Casasus, Maximo; Polci, Francesco; Poli Lener, Marco; Poluektov, Anton; Polukhina, Natalia; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Ponce, Sebastien; Popov, Alexander; Popov, Dmitry; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Pullen, Hannah Louise; Punzi, Giovanni; Qian, Wenbin; Qin, Jia-Jia; Quagliani, Renato; Quintana, Boris; Rachwal, Bartlomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Ratnikov, Fedor; Raven, Gerhard; Ravonel Salzgeber, Melody; Reboud, Meril; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Reiss, Florian; Remon Alepuz, Clara; Ren, Zan; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rinnert, Kurt; Robbe, Patrick; Robert, Arnaud; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Roehrken, Markus; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Vidal, Joan; Saborido Silva, Juan Jose; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Gras, Cristina; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarpis, Gediminas; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saur, Miroslav; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schreiner, HF; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepulveda, Eduardo Enrique; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seuthe, Alex; Seyfert, Paul; Shapkin, Mikhail; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shmanin, Evgenii; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Skidmore, Nicola; Skwarnicki, Tomasz; Smeaton, John Gordon; Smith, Eluned; Smith, Iwan Thomas; Smith, Mark; Soares, Marcelo; Soares Lavra, Lais; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavomira; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stepanova, Margarita; Stevens, Holger; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Stramaglia, Maria Elena; Straticiuc, Mihai; Straumann, Ulrich; Strokov, Sergey; Sun, Jiayin; Sun, Liang; Swientek, Krzysztof; Syropoulos, Vasileios; Szumlak, Tomasz; Szymanski, Maciej Pawel; T'Jampens, Stephane; Tang, Zhipeng; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Tou, Da Yu; Tourinho Jadallah Aoude, Rafael; Tournefier, Edwige; Traill, Murdo; Tran, Minh Tâm; Trisovic, Ana; Tsaregorodtsev, Andrei; Tuci, Giulia; Tully, Alison; Tuning, Niels; Ukleja, Artur; Usachov, Andrii; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagner, Alexander; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Verlage, Tobias Anton; Vernet, Maxime; Veronesi, Michele; Veronika, Naomi; Vesterinen, Mika; Viana Barbosa, Joao Vitor; Vieira, Daniel; Vieites Diaz, Maria; Viemann, Harald; Vilasis-Cardona, Xavier; Vitkovskiy, Arseniy; Vitti, Marcela; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Walsh, John; Wang, Jianchun; Wang, Mengzhen; Wang, Yilong; Wang, Zhenzi; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Weisser, Constantin; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Ifan; Williams, Mark Richard James; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Winn, Michael Andreas; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wyllie, Kenneth; Xiao, Dong; Xie, Yuehong; Xu, Ao; Xu, Menglin; Xu, Qingnian; Xu, Zehua; Xu, Zhirui; Yang, Zhenwei; Yang, Zishuo; Yao, Yuezhe; Yeomans, Lauren Emma; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Dongliang; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zheng, Yangheng; Zhu, Xianglei; Zhukov, Valery; Zonneveld, Jennifer Brigitta; Zucchelli, Stefano

    2018-01-01

    The first measurement of the lifetime of the doubly charmed baryon $\\Xi_{cc}^{++}$ is presented, with the signal reconstructed in the final state $\\Lambda_c^+ K^- \\pi^+ \\pi^+$. The data sample used corresponds to an integrated luminosity of $1.7\\,\\mathrm{fb}^{-1}$, collected by the LHCb experiment in proton-proton collisions at a centre-of-mass energy of $13\\mathrm{\\,Te\\kern -0.1em V}$. The $\\Xi_{cc}^{++}$ lifetime is measured to be $0.256\\,^{+0.024}_{-0.022}{\\,\\rm (stat)\\,} \\pm 0.014 {\\,\\rm(syst)}\\mathrm{\\,ps}$.

  18. A Measurement of $R_b$ using a Lifetime-Mass Tag

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Miquel, R; Mir, L M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Ghete, V M; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Brown, D; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1997-01-01

    ALEPH's published measurement of $R_b$ using a lifetime tag, is updated using the full LEP~1 data sample. Considerable effort has been devoted to understanding systematic effects. Charm background is better controlled by combining the lifetime tag with a tag based on the b/c hadron mass difference. Furthermore, the algorithm used to reconstruct the event primary vertex is designed so as to reduce correlations between the two hemispheres of an event. The value of $R_b$ is measured to be $0.2167\\pm 0.0011{\\mathrm (stat)}\\pm 0.0013{\\mathrm (syst)}$.

  19. DSAM lifetime measurements for the chiral pair in {sup 194}Tl

    Energy Technology Data Exchange (ETDEWEB)

    Masiteng, P.L.; Bvumbi, S.P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); University of Johannesburg, PO Box 524, Auckland Park (South Africa); Pasternak, A.A. [A.F. Ioffe Physical-Technical Institute, St.-Petersburg (Russian Federation); Lawrie, E.A.; Shirinda, O.; Lawrie, J.J.; Bark, R.A.; Kheswa, N.Y.; Lieder, E.O.; Lieder, R.M.; Mullins, S.M.; Murray, S.H.T. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); Lindsay, R. [University of the Western Cape, Private Bag X17, Bellville (South Africa); Madiba, T.E.; Sharpey-Schafer, J.F. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); Ndayishimye, J.; Papka, P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Stellenbosch, Department of Physics, Private Bag X1, Matieland (South Africa); Ntshangase, S.S. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Cape Town, Department of Physics, Private Bag, Rondebosch (South Africa)

    2016-02-15

    Most important for the identification of chiral symmetry in atomic nuclei is to establish a pair of bands that are near-degenerate in energy, but also in B(M1) and B(E2) transition probabilities. Dedicated lifetime measurements were performed for four bands of {sup 194}Tl, including the pair of four-quasiparticle chiral bands with close near-degeneracy, considered as a prime candidate for best chiral symmetry pair. The lifetime measurements confirm the excellent near-degeneracy in this pair and indicate that a third band may be involved in the chiral symmetry scenario. (orig.)

  20. Variations in the electrical short-circuit current decay for recombination lifetime and velocity measurements

    Science.gov (United States)

    Jung, Tae-Won; Lindholm, Fredrik A.; Neugroschel, Arnost

    1987-01-01

    An improved measurement system for electrical short-circuit current decay is presented that extends applicability of the method to silicon solar cells having an effective lifetime as low as 1 microsec. The system uses metal/oxide/semiconductor transistors as voltage-controlled switches. Advances in theory developed here increase precision and sensitivity in the determination of the minority-carrier recombination lifetime and recombination velocity. A variation of the method, which exploits measurements made on related back-surface field and back-ohmic contact devices, further improves precision and sensitivity. The improvements are illustrated by application to 15 different silicon solar cells.

  1. Extreme-ultraviolet wavelength and lifetime measurements in highly ionized krypton

    CERN Document Server

    Kukla, K W; Vogt, C M V; Berry, H G; Dunford, R W; Curtis, L J; Cheng, S

    2005-01-01

    We have studied the spectrum of highly ionized krypton in the extreme-ultraviolet wavelength region (50-300 Aa), using beam-foil excitation of fast krypton ions at the Argonne ATLAS accelerator facility. We report measurements of transition wavelengths and excited-state lifetimes for n=2 states in the lithiumlike, berylliumlike, and boronlike ions, Kr/sup 31+,32+,33+/. Excited state lifetimes ranging from 10 ps to 3 ns were measured by acquiring time- of-flight-delayed spectra with a position-sensitive multichannel detector.

  2. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    International Nuclear Information System (INIS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-01-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×10 8 cm −2 s −1 to 10 14 cm −2 s −1 . The 202 Hg(n,γ) 203 Hg nuclear reaction was used for mercury mass evaluation. Activities of 203 Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg 2 Cl 2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps. - Highlights: • Mercury is an essential component of fluorescent lamps. • Fluorescent lamps were irradiated in neutron fields in research reactor. • 203 Hg induced radionuclide activity was measured using gamma spectrometry. • Mercury mass in fluorescent lamps can be measured by neutron activation analysis.

  3. Interpreting aerosol lifetimes using the GEOS-Chem model and constraints from radionuclide measurements

    Energy Technology Data Exchange (ETDEWEB)

    Croft, B. [Dalhousie Univ., Halifax (Canada). Dept. of Physics and Atmospheric Science; Pierce, J.R. [Dalhousie Univ., Halifax (Canada). Dept. of Physics and Atmospheric Science; Colorado State Univ., Fort Collins, CO (United States); Martin, R.V. [Dalhousie Univ., Halifax (Canada). Dept. of Physics and Atmospheric Science; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2014-07-01

    Aerosol removal processes control global aerosol abundance, but the rate of that removal remains uncertain. A recent study of aerosol-bound radionuclide measurements after the Fukushima Daiichi nuclear power plant accident documents {sup 137}Cs removal (e-folding) times of 10.0-13.9 days, suggesting that mean aerosol lifetimes in the range of 3-7 days in global models might be too short by a factor of two. In this study, we attribute this discrepancy to differences between the e-folding and mean aerosol lifetimes. We implement a simulation of {sup 137}Cs and {sup 133}Xe into the GEOS-Chem chemical transport model and examine the removal rates for the Fukushima case. We find a general consistency between modelled and measured e-folding times. The simulated {sup 137}Cs global burden e-folding time is about 14 days. However, the simulated mean lifetime of aerosol-bound {sup 137}Cs over a 6-month post-accident period is only 1.8 days. We find that the mean lifetime depends strongly on the removal rates in the first few days after emissions, before the aerosols leave the boundary layer and are transported to altitudes and latitudes where lifetimes with respect to wet removal are longer by a few orders of magnitude. We present sensitivity simulations that demonstrate the influence of differences in altitude and location of the radionuclides on the mean lifetime. Global mean lifetimes are shown to strongly depend on the altitude of injection. The global mean {sup 137}Cs lifetime is more than one order of magnitude greater for the injection at 7 km than into the boundary layer above the Fukushima site. Instantaneous removal rates are slower during the first few days after the emissions for a free tropospheric versus boundary layer injection and this strongly controls the mean lifetimes. Global mean aerosol lifetimes for the GEOS-Chem model are 3-6 days, which is longer than that for the {sup 137}Cs injected at the Fukushima site (likely due to precipitation shortly after

  4. Search of collectivity at N >= 52 via lifetime measurements in ^96-98Ru

    Science.gov (United States)

    Kharraja, B.; Garg, U.; Ghugre, S. S.; Frohlich, A.; Ahmad, I.; Amro, H.; Blumenthal, D.; Carpenter, M. P.; Crowell, B.; Fisher, S.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Nissius, D.; Reviol, W.; Mueller, W.; Govil, I. M.; Ma, W. C.; Kaczarowski, R.; Ruchowska, E.

    1996-05-01

    Level structures of nuclei with N ~ 50 and Z ~ 40 exhibit interesting interplay between the single particle and collective degrees of freedom. Lifetime measurements are crucial to ascertain the intrinsic structures of the observed level sequences in this region and, specificaly to verify the onset of collectivity. This motivated us to undertake lifetime measurements using the RDM technique for ^96-98Ru nuclei. These nuclei were populated via the ^65Cu(^36Si,pyn) reaction at 142 MeV, and the Argonne-Notre Dame γ-ray facility was employed in conjonction with the Notre Dame plunger. Data were connected in coincidence at 12 distances rangin from 10 μm to 1000 μm giving us an effective lifetime range 1 ps to 400 ps.

  5. X detection in heavy ion induced reactions. Application to the lifetime measurement of a compound nucleus

    International Nuclear Information System (INIS)

    Liatard, E.

    1984-01-01

    The ionization of inner electronic shells can be used to determine the lifetime of a compound nucleus formed in a nuclear reaction. The principle of the measure is based on the comparison between the unknown lifetime of the nuclear process and the known lifetime of a K-shell vacancy created during the collision. Besides testing this method, which we call the ''atomic-clok'' method with the compound nucleus 112 Te formed by the reaction 20 Ne (205 MeV) + 92 Mo, the work in this thesis basically consists of a description and a study of the problems presented by the use of X-ray spectroscopy in nuclear-decay-time measurements and Z-identification of heavy nuclear products [fr

  6. Fluorescence lifetime selectivity in excitation-emission matrices for qualitative analysis of a two-component system

    International Nuclear Information System (INIS)

    Millican, D.W.; McGown, L.B.

    1989-01-01

    Steady-state fluorescence excitation-emission matrices (EEMs), and phase-resolved EEMs (PREEMs) collected at modulation frequencies of 6, 18, and 30 MHz, were used for qualitative analysis of mixtures of benzo[k]fluoranthene (τ = 8 ns) and benzo[b]fluoranthene (τ = 29 ns) in ethanol. The EEMs of the individual components were extracted from mixture EEMs by means of wavelength component vector-gram (WCV) analysis. Phase resolution was found to be superior to steady-state measurements for extraction of the component spectra, for mixtures in which the intensity contributions from the two components are unequal

  7. .A computer program for nuclear lifetimes measurements by DSAM using a self-supporting target

    International Nuclear Information System (INIS)

    Morand, C.; Chan, T.U.

    1981-02-01

    The present Doppler Shift Attenuation Method, for nuclear lifetimes measurements using self supporting target, has already been described. Therefore this paper only mentions the peculiar features of that DSAM, describes several code facilities, comments the subroutines working along the program structure, in order to be easily handled by other physicists

  8. Measurement of Minority-Carrier Lifetime in Silicon Solar Cells by ...

    African Journals Online (AJOL)

    This manuscript describes the measurement of minority - carrier lifetime of silicon solar cells, at room temperature, by photoconductive decay method. The Holobeam, Model 655 Double-Pulsed Holographic system, is used as the light source. This consists of a Q-switched, pulsed ruby laser oscillator with two ruby laser ...

  9. Measurement of the Xi(-)(b) and Omega(-)(b) baryon lifetimes

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Onderwater, G.; Pellegrino, A.

    2014-01-01

    Using a data sample of pp collisions corresponding to an integrated luminosity of 3 fb(-1), the Xi(-)(b) and Omega(-)(b) baryons are reconstructed in the Xi(-)(b) -> J/psi Xi(-) and Omega(-)(b) -> J/psi Omega(-) decay modes and their lifetimes measured to be tau(Xi(-)(b)) = 1.55(-0.09)(+0.10) (stat)

  10. A precise measurement of the $B^{0}_{d}$ meson lifetime using a new technique

    CERN Document Server

    Abreu, P; Adye, T; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbi, M S; Bardin, Dimitri Yuri; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Blume, M; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djama, F; Djannati, A; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Maio, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Novák, M; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sahr, O; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Siegrist, P; Silvestre, R; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stichelbaut, F; Stocchi, A; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chernyaev, E; Chikilev, O G; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zucchelli, G C; Zumerle, G

    1997-01-01

    From data recorded by DELPHI between 1991 and 1994, which correspond to 3.2 million hadronic $\\mbox{Z}^0$ decays, a measurement of the $\\Bdb$ meson lifetime has been performed based on the inclusive reconstruction of $3520 \\pm 150$ semileptonic decays of the type \\bc $\\Bdb \\rightarrow \\Dstarp ~X~\\ell^-~ \\overline{\

  11. Measurement of the effective $B_s^0 \\to K^+ K^-$ lifetime

    CERN Document Server

    Aaij, R; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hoballah, M; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li, Y; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McCarthy, J; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vesterinen, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-01-01

    A precise determination of the effective $B_s^0 \\rightarrow K^+ K^-$ lifetime can be used to constrain contributions from physics beyond the Standard Model in the $B_s^0$ meson system. Conventional approaches select $B$ meson decay products that are significantly displaced from the $B$ meson production vertex. As a consequence, $B$ mesons with low decay times are suppressed, introducing a bias to the decay time spectrum which must be corrected. This analysis uses a technique that explicitly avoids a lifetime bias by using a neural network based trigger and event selection. Using 1.0~fb$^{-1}$ of data recorded by the LHCb experiment, the effective $B_s^0 \\rightarrow K^+ K^-$ lifetime is measured as $1.455 \\pm 0.046 \\; \\mathrm{(stat.)} \\pm 0.006 \\; \\mathrm{(syst.)} \\, \\mathrm{ps}.$

  12. Measurement of the lifetimes of the neutral and charged D mesons

    International Nuclear Information System (INIS)

    Gladney, L.D.

    1985-03-01

    Results are presented on the use of a high-resolution drift chamber in the Mark II Detector at PEP to measure the lifetimes of D 0 and D +- mesons produced in e + e - annihilations at 29 GeV. Based on a sample of 74 events for the D 0 mesons and 23 events for the D +- mesons, the lifetimes are found to be tau/sub D 0 = 4.7/sub -0.8//sup +0.9/ +- 0.5 x 10 -13 s; tau/sub D +- / = 8.9/sub -2.7//sup +3.8/ +- 1.3 x 10 -13 s. The ratio of these lifetimes, tau/sub D 0 //tau/sub D +- / = 1.9/sub -0.7//sup +0.9/ +- 0.3, indicates that the decays of these mesons cannot be explained by the simple spectator model of charmed particle decay

  13. Positron annihilation lifetime measurement of electron-irradiated ZnO crystals

    International Nuclear Information System (INIS)

    Tomiyama, N.; Takenaka, M.; Kuramoto, E.

    1992-01-01

    In order to clarify the basic properties of radiation-induced defects in ZnO crystals positron annihilation lifetime measurements were performed for the ZnO crystals irradiated by 28 MeV electrons at 77 K. The electron-irradiation induced the color change of the specimens from the original yellowish-white to the orange and long lifetime component of about 200 psec. The isochronal annealing experiments showed that the decrease of the positron annihilation lifetime appeared in the temperature range between 423 and 473 K and between 723 and 923 K. The radiation-induced color change disappeared in the first temperature range. It can be considered that the first stage corresponds to migration and recovery of radiation-induced oxygen vacancies. It is difficult to identify the second stage, but it might be the recovery stage of small ZnO interstitial clusters formed through clustering of Zn and O interstitials

  14. Setup for precise measurement of neutro lifetime by UCN storage method with inelastically scattered neutron detection

    International Nuclear Information System (INIS)

    Arzumanov, S.S; Bondarenko, L.N.; Gel'tenbort, P.; Morozov, V.I.; Nesvizhevskij, V.V.; Panin, Yu.N.; Strepetov, A.N.

    2007-01-01

    The experimental setup and the method of measuring the neutron lifetime with a precision less then 1 s is described. The measurements will be carried out by storage of ultracold neutrons (UCN) into vessels with inner walls coated with fluorine polymer oil with simultaneous registration of inelastically scattered UCN leaving storage vessels. The analysis of statistical and methodical errors is carried out. The calculated estimation of the measurement accuracy is presented [ru

  15. Neutron lifetime measurements with a large gravitational trap for ultracold neutrons

    Science.gov (United States)

    Serebrov, A. P.; Kolomensky, E. A.; Fomin, A. K.; Krasnoshchekova, I. A.; Vassiljev, A. V.; Prudnikov, D. M.; Shoka, I. V.; Chechkin, A. V.; Chaikovskiy, M. E.; Varlamov, V. E.; Ivanov, S. N.; Pirozhkov, A. N.; Geltenbort, P.; Zimmer, O.; Jenke, T.; Van der Grinten, M.; Tucker, M.

    2018-05-01

    Neutron lifetime is one of the most important physical constants: it determines parameters of the weak interaction and predictions of primordial nucleosynthesis theory. There remains the unsolved problem of a 3.9σ discrepancy between measurements of this lifetime using neutrons in beams and those with stored ultracold neutrons (UCN). In our experiment we measure the lifetime of neutrons trapped by Earth's gravity in an open-topped vessel. Two configurations of the trap geometry are used to change the mean frequency of UCN collisions with the surfaces; this is achieved by plunging an additional surface into the trap without breaking the vacuum. The trap walls are coated with a hydrogen-less fluorine-containing polymer to reduce losses of UCN. The stability of this coating over multiple thermal cycles between 80 and 300 K was tested. At 80 K, the probability of UCN loss due to collisions with the trap walls is just 1.5% of the probability of β decay. The free neutron lifetime is determined by extrapolation to an infinitely large trap with zero collision frequency. The result of these measurements is τn=881.5 ±0 .7stat ±0 .6syst s which is consistent with the conventional value of 880.2 ± 1.0 s presented by the Particle Data Group. Future prospects for this experiment are in further cooling to 10 K, which will lead to an improved accuracy of measurement. In conclusion we present an analysis of currently available data on various measurements of the neutron lifetime.

  16. Lifetime measurements in {sup 170}Yb using the generalized centroid difference method

    Energy Technology Data Exchange (ETDEWEB)

    Karayonchev, Vasil; Regis, Jean-Marc; Jolie, Jan; Dannhoff, Moritz; Saed-Samii, Nima; Blazhev, Andrey [Institute of Nuclear Physics, University of Cologne, Cologne (Germany)

    2016-07-01

    An experiment using the electronic γ-γ ''fast-timing'' technique was performed at the 10 MV Tandem Van-De-Graaff accelerator of the Institute for Nuclear Physics, Cologne in order to measure lifetimes of the yrast states in {sup 170}Yb. The lifetime of the first 2{sup +} state was determined using the slope method, which means by fitting an exponential decay to the ''slope'' seen in the energy-gated time-difference spectra. The value of τ=2.201(57) ns is in good agreement with the lifetimes measured using other techniques. The lifetimes of the first 4{sup +} and the 6{sup +} states are determined for the first time. They are in the ps range and were measured using the generalized centroid difference method, an extension of the well-known centroid-shift method and developed for fast-timing arrays. The derived reduced transition probabilities B(E2) values are compared with calculations done using the confined beta soft model and show good agreement within the experimental uncertainties.

  17. Reliability and validity of an internet-based questionnaire measuring lifetime physical activity.

    Science.gov (United States)

    De Vera, Mary A; Ratzlaff, Charles; Doerfling, Paul; Kopec, Jacek

    2010-11-15

    Lifetime exposure to physical activity is an important construct for evaluating associations between physical activity and disease outcomes, given the long induction periods in many chronic diseases. The authors' objective in this study was to evaluate the measurement properties of the Lifetime Physical Activity Questionnaire (L-PAQ), a novel Internet-based, self-administered instrument measuring lifetime physical activity, among Canadian men and women in 2005-2006. Reliability was examined using a test-retest study. Validity was examined in a 2-part study consisting of 1) comparisons with previously validated instruments measuring similar constructs, the Lifetime Total Physical Activity Questionnaire (LT-PAQ) and the Chasan-Taber Physical Activity Questionnaire (CT-PAQ), and 2) a priori hypothesis tests of constructs measured by the L-PAQ. The L-PAQ demonstrated good reliability, with intraclass correlation coefficients ranging from 0.67 (household activity) to 0.89 (sports/recreation). Comparison between the L-PAQ and the LT-PAQ resulted in Spearman correlation coefficients ranging from 0.41 (total activity) to 0.71 (household activity); comparison between the L-PAQ and the CT-PAQ yielded coefficients of 0.58 (sports/recreation), 0.56 (household activity), and 0.50 (total activity). L-PAQ validity was further supported by observed relations between the L-PAQ and sociodemographic variables, consistent with a priori hypotheses. Overall, the L-PAQ is a useful instrument for assessing multiple domains of lifetime physical activity with acceptable reliability and validity.

  18. Measurement of B_{s}^{0} and D_{s}^{-} Meson Lifetimes.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Chubykin, A; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez, G; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Huard, Z-C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Komarov, I; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Meadows, B; Meier, F; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, C; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Gonzalo, D; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevens, H; Stoica, S; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M A; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zucchelli, S

    2017-09-08

    We report on a measurement of the flavor-specific B_{s}^{0} lifetime and of the D_{s}^{-} lifetime using proton-proton collisions at center-of-mass energies of 7 and 8 TeV, collected by the LHCb experiment and corresponding to 3.0  fb^{-1} of integrated luminosity. Approximately 407 000 B_{s}^{0}→D_{s}^{(*)-}μ^{+}ν_{μ} decays are partially reconstructed in the K^{+}K^{-}π^{-}μ^{+} final state. The B_{s}^{0} and D_{s}^{-} natural widths are determined using, as a reference, kinematically similar B^{0}→D^{(*)-}μ^{+}ν_{μ} decays reconstructed in the same final state. The resulting differences between widths of B_{s}^{0} and B^{0} mesons and of D_{s}^{-} and D^{-} mesons are Δ_{Γ}(B)=-0.0115±0.0053(stat)±0.0041(syst)  ps^{-1} and Δ_{Γ}(D)=1.0131±0.0117(stat)±0.0065(syst)  ps^{-1}, respectively. Combined with the known B^{0} and D^{-} lifetimes, these yield the flavor-specific B_{s}^{0} lifetime, τ_{B_{s}^{0}}^{fs}=1.547±0.013(stat)±0.010(syst)±0.004(τ_{B})  ps and the D_{s}^{-} lifetime, τ_{D_{s}^{-}}=0.5064±0.0030(stat)±0.0017(syst)±0.0017(τ_{D})  ps. The last uncertainties originate from the limited knowledge of the B^{0} and D^{-} lifetimes. The results improve upon current determinations.

  19. A new front-face optical cell for measuring weak fluorescent emissions with time resolution in the picosecond time scale.

    Science.gov (United States)

    Gryczynski, Z; Bucci, E

    1993-11-01

    Recent developments of ultrafast fluorimeters allow measuring time-resolved fluorescence on the picosecond time scale. This implies one is able to monitor lifetimes and anisotropy decays of highly quenched systems and of systems that contain fluorophores having lifetimes in the subnanosecond range; both systems that emit weak signals. The combination of weak signals and very short lifetimes makes the measurements prone to distortions which are negligible in standard fluorescence experiments. To cope with these difficulties, we have designed a new optical cell for front-face optics which offers to the excitation beam a horizontal free liquid surface in the absence of interactions with optical windows. The new cell has been tested with probes of known lifetimes and anisotropies. It proved very useful in detecting tryptophan fluorescence in hemoglobin. If only diluted samples are available, which cannot be used in front-face optics, regular square geometry can still be utilized by inserting light absorbers into a cuvette of 1 cm path length.

  20. CMOS direct time interval measurement of long-lived luminescence lifetimes.

    Science.gov (United States)

    Yao, Lei; Yung, Ka Yi; Cheung, Maurice C; Chodavarapu, Vamsy P; Bright, Frank V

    2011-01-01

    We describe a Complementary Metal-Oxide Semiconductor (CMOS) Direct Time Interval Measurement (DTIM) Integrated Circuit (IC) to detect the decay (fall) time of the luminescence emission when analyte-sensitive luminophores are excited with an optical pulse. The CMOS DTIM IC includes 14 × 14 phototransistor array, transimpedance amplifier, regulated gain amplifier, fall time detector, and time-to-digital convertor. We examined the DTIM system to measure the emission lifetime of oxygen-sensitive luminophores tris(4,7-diphenyl-1, 10-phenanthroline) ruthenium(II) ([Ru(dpp)(3)](2+)) encapsulated in sol-gel derived xerogel thin-films. The DTIM system fabricated using TSMC 0.35 μm process functions to detect lifetimes from 4 μs to 14.4 μs but can be tuned to detect longer lifetimes. The system provides 8-bit digital output proportional to lifetimes and consumes 4.5 mW of power with 3.3 V DC supply. The CMOS system provides a useful platform for the development of reliable, robust, and miniaturized optical chemical sensors.

  1. Measurement of cell volume changes by fluorescence self-quenching

    DEFF Research Database (Denmark)

    Hamann, Steffen; Kiilgaard, J.F.; Litman, Thomas

    2002-01-01

    At high concentrations, certain fluorophores undergo self-quenching, i.e., fluorescence intensity decreases with increasing fluorophore concentration. Accordingly, the self-quenching properties can be used for measuring water volume changes in lipid vesicles. In cells, quantitative determination...... concentrations of the fluorophore calcein suitable for measurement of changes in cell water volume by self-quenching. The relationship between calcein fluorescence intensity, when excited at 490 nm (its excitation maximum), and calcein concentration was investigated in vitro and in various cultured cell types...... to a decrease in calcein fluorescence with high signal-to-noise ratio (>15). Similar results were obtained with the fluorophore BCECF when excited at its isosbestic wavelength (436 nm). The present results demonstrate the usefulness of fluorescence self-quenching to measure rapid changes in cell water volume....

  2. Measurement of b hadron lifetimes in pp collisions at $\\sqrt{s} =$ 8 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Sirunyan, Albert M; et al.

    2017-10-24

    Measurements are presented of the lifetimes of the B$^0$, B$^0_\\mathrm{s}$, $\\Lambda^0_\\mathrm{b}$, and B$_\\mathrm{c}^+$ hadrons using the decay channels B$^0\\to$J/$\\psi$K*(892)$^0$, B$^0\\to$J/$\\psi$K$^0_\\mathrm{S}$, B$^0_\\mathrm{s}\\to$J/$\\psi \\pi^+\\pi^-$, B$^0_\\mathrm{s}\\to$J/$\\psi\\phi$(1020), $\\Lambda^0_\\mathrm{b}\\to$J/$\\psi\\Lambda^0$, and B$_\\mathrm{c}\\to$J/$\\psi\\pi^+$. The data sample, corresponding to an integrated luminosity of 19.7 fb$^{-1}$, was collected by the CMS detector at the LHC in proton-proton collisions at $\\sqrt{s}=$ 8 TeV. The B$^0$ lifetime is measured to be 453.0$\\pm$1.6 (stat)$\\pm$1.5 (syst)$\\mu$m in J/$\\psi$K*(892)$^0$ and 457.8$\\pm$2.7 (stat)$\\pm$2.7(syst)$\\mu$m in J/$\\psi$K$^0_\\mathrm{S}$, which results in a combined measurement of $c\\tau_{\\mathrm{B}^0} = $454.1$\\pm$1.4(stat)$\\pm$1.3(syst)$\\mu$m. The effective lifetime of the B$^0_\\mathrm{s}$ meson is measured in two decay modes, with contributions from different amounts of the heavy and light eigenstates. This results in two different measured lifetimes: $c\\tau_{\\mathrm{B}^0_\\mathrm{s} \\to \\mathrm{J}/\\psi \\pi^+\\pi^-} =$ 502.7$\\pm$10.2 (stat)$\\pm$3.2 (syst)$\\mu$m and $c\\tau_{\\mathrm{B}^0_\\mathrm{s} \\to \\mathrm{J}/\\psi\\phi(1020)} =$443.9$\\pm$2.0 (stat)$\\pm$1.2 (syst)$\\mu$m. The $\\Lambda^0_\\mathrm{b}$ lifetime is found to be 442.9$\\pm$8.2 (stat)$\\pm$2.7 (syst)$\\mu$m. The precision from each of these channels is as good as or better than previous measurements. The B$_\\mathrm{c}^+$ lifetime, measured with respect to the B$^+$ to reduce the systematic uncertainty, is 162.3$\\pm$8.2 (stat)$\\pm$4.7 (syst)$\\pm$0.1 $(\\tau_{\\mathrm{B}^+})\\mu$m. All results are in agreement with current world-average values.

  3. Lifetime measurements in odd-even 125La, 127La isotopes

    International Nuclear Information System (INIS)

    Starosta, K.; Droste, Ch.; Gundel, S.

    1995-01-01

    Recoil Distance Method (RDM); lifetime measurements have been carried out for the 125 La and 127 La nuclei to examine the collective structure of the decoupled band based on the unique parity πh 11/2 [550]1/2 orbital. The Stony Brook array of five BGO-suppressed Ge detectors placed at +/- 30, 90, 125 and 150 degree relative to the beam direction in conjunction with the Notre Dame/Argonne plunger was used to measure the stopped and shifted γ-ray peaks as a function of target-stopper distance. The 94 Mo( 35 Cl,2p2n) reaction at beam energy of 155 MeV was used to populate the excited states of 125 La and the 112 Cd( 19 F, 4n) reaction for the 127 La. The preliminary results of lifetime measurements are presented

  4. Lifetime Measurements of $ \\pi ^+ \\pi ^- $ and $\\pi^{+-} K^{-+}$ Atoms to Test Low-Energy QCD Predictions

    CERN Multimedia

    Iliescu, M A; Ponta, T C; Dumitriu, D E; Afanasyev, L; Zhabitskiy, M; Rykalin, V; Hons, Z; Schacher, J; Yazkov, V; Gerndt, J; Detraz, C C; Guaraldo, C; Dreossi, D; Smolik, J; Gorchakov, O; Nikitin, M; Dudarev, A; Kluson, J; Hansroul, M; Okada, K; Constantinescu, S; Kruglov, V; Komarov, V; Takeutchi, F; Tarta, P D; Kuptsov, A; Nemenov, L; Karpukhin, V; Shliapnikov, P; Brekhovskikh, V; Saborido silva, J J; Drijard, D; Rappazzo, G F; Pentia, M C; Gugiu, M M; Kruglova, L; Pustylnik, Z; Trojek, T; Duma, M; Ciocarlan, C; Kulikov, A; Ol'shevskiy, V; Ryazantsev, A; Chiba, M; Anania, A; Tarasov, A; Gritsay, K; Lapchine, V; Cechak, T; Vrba, T; Lopez aguera, A

    2002-01-01

    %PS212 \\\\ \\\\ The proposed experiment aims to measure the lifetime of $ \\pi ^+ \\pi ^- $ atoms in the ground state with 10\\% precision, using the 24~GeV/c proton beam of the CERN Proton Synchrotron. As the value of the above lifetime of order 10$ ^- ^{1} ^{5} $s is dictated by a strong interaction at low energy, the precise measurement of this quantity enables to determine a combination of S-wave pion scattering lengths to 5\\%. Pion scattering lengths have been calculated in the framework of chiral perturbation theory and values predicted at the same level of accuracy have, up to now, never been confronted with accurate experimental data. Such a measurement would submit the understanding of chiral symmetry breaking of QCD to a crucial test.

  5. Measurement of the Λb0 Lifetime Using Semileptonic Decays

    Science.gov (United States)

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.; Aguilo, E.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.; Ancu, L. S.; Andeen, T.; Anderson, S.; Andrieu, B.; Anzelc, M. S.; Arnoud, Y.; Arov, M.; Arthaud, M.; Askew, A.; Åsman, B.; Assis Jesus, A. C. S.; Atramentov, O.; Autermann, C.; Avila, C.; Ay, C.; Badaud, F.; Baden, A.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Banerjee, P.; Barberis, E.; Barfuss, A.-F.; Bargassa, P.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bauer, D.; Beale, S.; Bean, A.; Begalli, M.; Begel, M.; Belanger-Champagne, C.; Bellantoni, L.; Bellavance, A.; Benitez, J. A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Berntzon, L.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Biscarat, C.; Blazey, G.; Blekman, F.; Blessing, S.; Bloch, D.; Bloom, K.; Boehnlein, A.; Boline, D.; Bolton, T. A.; Borissov, G.; Bos, K.; Bose, T.; Brandt, A.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.; Burdin, S.; Burke, S.; Burnett, T. H.; Buszello, C. P.; Butler, J. M.; Calfayan, P.; Calvet, S.; Cammin, J.; Caron, S.; Carvalho, W.; Casey, B. C. K.; Cason, N. M.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chan, K.; Chandra, A.; Charles, F.; Cheu, E.; Chevallier, F.; Cho, D. K.; Choi, S.; Choudhary, B.; Christofek, L.; Christoudias, T.; Cihangir, S.; Claes, D.; Clément, C.; Clément, B.; Coadou, Y.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Crépé-Renaudin, S.; Cutts, D.; Ćwiok, M.; da Motta, H.; Das, A.; Davies, G.; de, K.; de Jong, S. J.; de Jong, P.; de La Cruz-Burelo, E.; de Oliveira Martins, C.; Degenhardt, J. D.; Déliot, F.; Demarteau, M.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Dominguez, A.; Dong, H.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duggan, D.; Duperrin, A.; Dyer, J.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Eno, S.; Ermolov, P.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Ferapontov, A. V.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Ford, M.; Fortner, M.; Fox, H.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Gallas, E.; Galyaev, E.; Garcia, C.; Garcia-Bellido, A.; Gavrilov, V.; Gay, P.; Geist, W.; Gelé, D.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Ginther, G.; Gollub, N.; Gómez, B.; Goussiou, A.; Grannis, P. D.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guo, J.; Guo, F.; Gutierrez, P.; Gutierrez, G.; Haas, A.; Hadley, N. J.; Haefner, P.; Hagopian, S.; Haley, J.; Hall, I.; Hall, R. E.; Han, L.; Hanagaki, K.; Hansson, P.; Harder, K.; Harel, A.; Harrington, R.; Hauptman, J. M.; Hauser, R.; Hays, J.; Hebbeker, T.; Hedin, D.; Hegeman, J. G.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hensel, C.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoeth, H.; Hohlfeld, M.; Hong, S. J.; Hooper, R.; Hossain, S.; Houben, P.; Hu, Y.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jain, S.; Jakobs, K.; Jarvis, C.; Jesik, R.; Johns, K.; Johnson, C.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Juste, A.; Käfer, D.; Kahn, S.; Kajfasz, E.; Kalinin, A. M.; Kalk, J. R.; Kalk, J. M.; Kappler, S.; Karmanov, D.; Kasper, J.; Kasper, P.; Katsanos, I.; Kau, D.; Kaur, R.; Kaushik, V.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. M.; Khatidze, D.; Kim, H.; Kim, T. J.; Kirby, M. H.; Kirsch, M.; Klima, B.; Kohli, J. M.; Konrath, J.-P.; Kopal, M.; Korablev, V. M.; Kothari, B.; Kozelov, A. V.; Krop, D.; Kryemadhi, A.; Kuhl, T.; Kumar, A.; Kunori, S.; Kupco, A.; Kurča, T.; Kvita, J.; Lacroix, F.; Lam, D.; Lammers, S.; Landsberg, G.; Lazoflores, J.; Lebrun, P.; Lee, W. M.; Leflat, A.; Lehner, F.; Lellouch, J.; Lesne, V.; Leveque, J.; Lewin, M.; Lewis, P.; Li, J.; Li, Q. Z.; Li, L.; Lietti, S. M.; Lima, J. G. R.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Liu, Z.; Lobo, L.; Lobodenko, A.; Lokajicek, M.; Lounis, A.; Love, P.; Lubatti, H. J.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madaras, R. J.; Mättig, P.; Magass, C.; Magerkurth, A.; Makovec, N.; Mal, P. K.; Malbouisson, H. B.; Malik, S.; Malyshev, V. L.; Mao, H. S.; Maravin, Y.; Martin, B.; McCarthy, R.; Melnitchouk, A.; Mendes, A.; Mendoza, L.; Mercadante, P. G.; Merkin, M.; Merritt, K. W.; Meyer, J.; Meyer, A.; Michaut, M.; Millet, T.; Mitrevski, J.; Molina, J.; Mommsen, R. K.; Mondal, N. K.; Moore, R. W.; Moulik, T.; Muanza, G. S.; Mulders, M.; Mulhearn, M.; Mundal, O.; Mundim, L.; Nagy, E.; Naimuddin, M.; Narain, M.; Naumann, N. A.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nilsen, H.; Nomerotski, A.; Novaes, S. F.; Nunnemann, T.; O'Dell, V.; O'Neil, D. C.; Obrant, G.; Ochando, C.; Onoprienko, D.; Oshima, N.; Osta, J.; Otec, R.; Otero Y Garzón, G. J.; Owen, M.; Padley, P.; Pangilinan, M.; Parashar, N.; Park, S.-J.; Park, S. K.; Parsons, J.; Partridge, R.; Parua, N.; Patwa, A.; Pawloski, G.; Penning, B.; Perea, P. M.; Peters, K.; Peters, Y.; Pétroff, P.; Petteni, M.; Piegaia, R.; Piper, J.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Pogorelov, Y.; Pol, M.-E.; Polozov, P.; Pompoš, A.; Pope, B. G.; Popov, A. V.; Potter, C.; Prado da Silva, W. L.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quadt, A.; Quinn, B.; Rakitine, A.; Rangel, M. S.; Rani, K. J.; Ranjan, K.; Ratoff, P. N.; Renkel, P.; Reucroft, S.; Rich, P.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Robinson, S.; Rodrigues, R. F.; Royon, C.; Rubinov, P.; Ruchti, R.; Safronov, G.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santoro, A.; Savage, G.; Sawyer, L.; Scanlon, T.; Schaile, D.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schieferdecker, P.; Schliephake, T.; Schmitt, C.; Schwanenberger, C.; Schwartzman, A.; Schwienhorst, R.; Sekaric, J.; Sengupta, S.; Severini, H.; Shabalina, E.; Shamim, M.; Shary, V.; Shchukin, A. A.; Shivpuri, R. K.; Shpakov, D.; Siccardi, V.; Simak, V.; Sirotenko, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, R. P.; Snow, J.; Snow, G. R.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Sopczak, A.; Sosebee, M.; Soustruznik, K.; Souza, M.; Spurlock, B.; Stark, J.; Steele, J.; Stolin, V.; Stone, A.; Stoyanova, D. A.; Strandberg, J.; Strandberg, S.; Strang, M. A.; Strauss, M.; Strauss, E.; Ströhmer, R.; Strom, D.; Strovink, M.; Stutte, L.; Sumowidagdo, S.; Svoisky, P.; Sznajder, A.; Talby, M.; Tamburello, P.; Tanasijczuk, A.; Taylor, W.; Telford, P.; Temple, J.; Tiller, B.; Tissandier, F.; Titov, M.; Tokmenin, V. V.; Tomoto, M.; Toole, T.; Torchiani, I.; Trefzger, T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Tuts, P. M.; Unalan, R.; Uvarov, S.; Uvarov, L.; Uzunyan, S.; Vachon, B.; van den Berg, P. J.; van Eijk, B.; van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vartapetian, A.; Vasilyev, I. A.; Vaupel, M.; Verdier, P.; Vertogradov, L. S.; Verzocchi, M.; Villeneuve-Seguier, F.; Vint, P.; Vokac, P.; von Toerne, E.; Voutilainen, M.; Vreeswijk, M.; Wagner, R.; Wahl, H. D.; Wang, L.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weber, M.; Weber, G.; Weerts, H.; Wenger, A.; Wermes, N.; Wetstein, M.; White, A.; Wicke, D.; Wilson, G. W.; Wimpenny, S. J.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yacoob, S.; Yamada, R.; Yan, M.; Yasuda, T.; Yatsunenko, Y. A.; Yip, K.; Yoo, H. D.; Youn, S. W.; Yu, J.; Yu, C.; Yurkewicz, A.; Zatserklyaniy, A.; Zeitnitz, C.; Zhang, D.; Zhao, T.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zivkovic, L.; Zutshi, V.; Zverev, E. G.

    2007-11-01

    We report a measurement of the Λb0 lifetime using a sample corresponding to 1.3fb-1 of data collected by the D0 experiment in 2002 2006 during run II of the Fermilab Tevatron collider. The Λb0 baryon is reconstructed via the decay Λb0→μν¯Λc+X. Using 4437±329 signal candidates, we measure the Λb0 lifetime to be τ(Λb0)=1.290-0.110+0.119(stat)-0.091+0.087(syst)ps, which is among the most precise measurements in semileptonic Λb0 decays. This result is in good agreement with the world average value.

  6. Precise measurement of tau lifetime in ALEPH experiment at the LEP

    International Nuclear Information System (INIS)

    Park, I.

    1995-02-01

    A new method is presented for the measurement of the tau lifetime using tau decays to hadrons. Precise measurements (σ ∼ 20μm) of impact parameters (d o and z o ) of charged tracks using full vertex detector informations allow the reconstruction of the 3-dimensional point of minimum approach of the track to the beam axis. On the other hand, it is shown that an axis perpendicular to the tau axis can be precisely determined (σ ∼ 10 mrad) in the hadronic-hadronic τ + τ - decay events using kinematics and the back-to-back nature of tau pairs in e + e - colliders. Combination of both quantities yields a generalized IPS relation in 3D space which is not affected by the beam size nor by the tau direction uncertainty. The experimental resolution can be fitted together with lifetime due to the small smearing. The method allows, therefore, a self-consistent and self-calibrating analysis of tau lifetime. The method has good stability against systematical uncertainties like tracking resolution, non-gaussian tails, etc...The method has been applied to the data collected by the ALEPH detector at LEP in 1992. From 2840 τ + + τ- → hadron + hadron (1-1) decay events and 794 hadron + 3 hadrons (1-3) decay events, the tau lifetimes of 292.9 ± 5.9 ± 2.7fs and 284.6 ± 11.9 ± 5.1fs are obtained respectively. The combined τ lifetimes is 290.8 ± 5.3 ± 2.7fs. Statistical uncertainty corresponds to 1.1/√N τ τ. This result has low statistical correlation with other precision methods. (author). 70 refs., 80 figs., 21 tabs., 7 ann

  7. Precision measurement of the ratio of the $\\Lambda^0_b$ to $\\overline{B}^0$ lifetimes

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Bauer, Thomas; Bay, Aurelio; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Callot, Olivier; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Caponio, Francesco; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coca, Cornelia; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bonis, Isabelle; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dorosz, Piotr; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Esen, Sevda; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Fitzpatrick, Conor; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Hafkenscheid, Tom; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Wallaa; Karacson, Matthias; Karbach, Moritz; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Kochebina, Olga; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Ian; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Manzali, Matteo; Maratas, Jan; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Muryn, Bogdan; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pavel-Nicorescu, Carmen; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Roberts, Douglas; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Oksana; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spinella, Franco; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teodorescu, Eliza; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Webber, Adam Dane; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiechczynski, Jaroslaw; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-01-01

    The LHCb measurement of the lifetime ratio of the $\\Lambda^0_b$ to the $\\overline{B}^0$ meson is updated using data corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected using 7 and 8 TeV centre-of-mass energy $pp$ collisions at the LHC. The decay modes used are $\\overline{\\Lambda}^0_b \\to J/\\psi p K^-$ and $\\overline{B}^0 \\to J/\\psi \\pi^+ K^-$, where the $\\pi^+K^-$ mass is consistent with that of the $\\overline{K}^{*0}(892)$ meson. The lifetime ratio is determined with unprecedented precision to be $0.974\\pm0.006\\pm0.004$, where the first uncertainty is statistical and the second systematic. This result is in agreement with original theoretical predictions based on the heavy quark expansion. Using the current world average of the $\\overline{B}^0$ lifetime, the $\\Lambda^0_b$ lifetime is found to be $1.479 \\pm 0.009 \\pm 0.010$ ps.

  8. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, M., E-mail: mdewey@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Coakley, K., E-mail: kevin.coakley@nist.go [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Gilliam, D., E-mail: david.gilliam@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Greene, G., E-mail: greenegl@ornl.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Lab, Building 6010, Oak Ridge, TN 37831 (United States); Laptev, A., E-mail: alaptev@nist.go [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nico, J., E-mail: jnico@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Snow, W., E-mail: wsnow@indiana.ed [Indiana University/IUCF, Bloomington, IN 47408 (United States); Wietfeldt, F., E-mail: few@tulane.ed [Tulane University, New Orleans, LA 70118 (United States); Yue, A., E-mail: ayue@nist.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States)

    2009-12-11

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  9. Laser induced fluorescence lifetime characterization of Bacillus endospore species using time correlated single photon counting analysis with the multi-exponential fit method

    Science.gov (United States)

    Smith, Clint; Edwards, Jarrod; Fisher, Andmorgan

    2010-04-01

    Rapid detection of biological material is critical for determining presence/absence of bacterial endospores within various investigative programs. Even more critical is that if select material tests positive for bacillus endospores then tests should provide data at the species level. Optical detection of microbial endospore formers such as Bacillus sp. can be heavy, cumbersome, and may only identify at the genus level. Data provided from this study will aid in characterization needed by future detection systems for further rapid breakdown analysis to gain insight into a more positive signature collection of Bacillus sp. Literature has shown that fluorescence spectroscopy of endospores could be statistically separated from other vegetative genera, but could not be separated among one another. Results of this study showed endospore species separation is possible using laser-induce fluorescence with lifetime decay analysis for Bacillus endospores. Lifetime decays of B. subtilis, B. megaterium, B. coagulans, and B. anthracis Sterne strain were investigated. Using the Multi-Exponential fit method data showed three distinct lifetimes for each species within the following ranges, 0.2-1.3 ns; 2.5-7.0 ns; 7.5-15.0 ns, when laser induced at 307 nm. The four endospore species were individually separated using principle component analysis (95% CI).

  10. Precision measurement of the mass and lifetime of the $\\Xi_b^-$ baryon

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang

    2014-01-01

    We report on measurements of the mass and lifetime of the $\\Xi_b^-$ baryon using about 1800 $\\Xi_b^-$ decays reconstructed in a proton-proton collision data set corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected by the LHCb experiment. The decays are reconstructed in the $\\Xi_b^-\\to\\Xi_c^0\\pi^-$, $\\Xi_c^0\\to pK^-K^-\\pi^+$ channel and the mass and lifetime are measured using the $\\Lambda_b^0\\to\\Lambda_c^+\\pi^-$ mode as a reference. We measure \\begin{equation} \\ M(\\Xi_b^-)-M(\\Lambda_b^0)=178.36\\pm0.46\\pm0.16~MeV/c^2, \\end{equation} \\begin{equation} \\frac{^\\tau\\Xi_b^-} {^\\tau\\Lambda_b^0}=1.089\\pm0.026\\pm0.011, \\end{equation} where the uncertainties are statistical and systematic, respectively. These results lead to a factor of two better precision on the $\\Xi_b^-$ mass and lifetime compared to previous best measurements, and are consistent with theoretical expectations.

  11. Precision measurement of the mass and lifetime of the Ξb⁻ baryon.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R F; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Orlandea, M; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilschut, H W; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L

    2014-12-12

    We report on measurements of the mass and lifetime of the Ξ(b)⁻ baryon using about 1800 Ξ(b)⁻ decays reconstructed in a proton-proton collision data set corresponding to an integrated luminosity of 3.0  fb⁻¹ collected by the LHCb experiment. The decays are reconstructed in the Ξ(b)⁻→Ξ(c)⁰π⁻, Ξ(c)⁰→pK⁻K⁻π⁺ channel and the mass and lifetime are measured using the Λ(b)⁰→Λ(c)⁺π⁻ mode as a reference. We measure M(Ξ(b)⁻)-M(Λ(b)⁰)=178.36±0.46±0.16  MeV/c², (τ(Ξ(b)⁻)/τ(Λ(b)⁰)=1.089±0.026±0.011, where the uncertainties are statistical and systematic, respectively. These results lead to a factor of 2 better precision on the Ξ(b)⁻ mass and lifetime compared to previous best measurements, and are consistent with theoretical expectations.

  12. Precision Measurements of Atomic Lifetimes and Hyperfine Energies in Alkali Like Systems

    International Nuclear Information System (INIS)

    Tanner, Carol E.

    2005-01-01

    Financial support of this research project has lead to advances in the study of atomic structure through precision measurements of atomic lifetimes, energy splittings, and transitions energies. The interpretation of data from many areas of physics and chemistry requires an accurate understanding of atomic structure. For example, scientists in the fields of astrophysics, geophysics, and plasma fusion depend on transition strengths to determine the relative abundances of elements. Assessing the operation of discharges and atomic resonance line filters also depends on accurate knowledge of transition strengths. Often relative transition strengths are measured precisely, but accurate atomic lifetimes are needed to obtain absolute values. Precision measurements of atomic lifetimes and energy splittings also provide fundamentally important atomic structure information. Lifetimes of allowed transitions depend most strongly on the electronic wave function far from the nucleus. Alternatively, hyperfine splittings give important information about the electronic wave function in the vicinity of the nucleus as well as the structure of the nucleus. Our main focus throughout this project has been the structure of atomic cesium because of its connection to the study of atomic parity nonconservation (PNC). The interpretation of atomic PNC experiments in terms of weak interaction coupling constants requires accurate knowledge of the electronic wave function near the nucleus as well as far from the nucleus. It is possible to address some of these needs theoretically with sophisticated many-electron atomic structure calculations. However, this program has been able to address these needs experimentally with a precision that surpasses current theoretical accuracy. Our measurements also play the important role of providing a means for testing the accuracy of many-electron calculations and guiding further theoretical development, Atomic systems such as cesium, with a single electron

  13. Precision Measurements of Atomic Lifetimes and Hyperfine Energies in Alkali Like Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Carol E.

    2005-03-04

    Financial support of this research project has lead to advances in the study of atomic structure through precision measurements of atomic lifetimes, energy splittings, and transitions energies. The interpretation of data from many areas of physics and chemistry requires an accurate understanding of atomic structure. For example, scientists in the fields of astrophysics, geophysics, and plasma fusion depend on transition strengths to determine the relative abundances of elements. Assessing the operation of discharges and atomic resonance line filters also depends on accurate knowledge of transition strengths. Often relative transition strengths are measured precisely, but accurate atomic lifetimes are needed to obtain absolute values. Precision measurements of atomic lifetimes and energy splittings also provide fundamentally important atomic structure information. Lifetimes of allowed transitions depend most strongly on the electronic wave function far from the nucleus. Alternatively, hyperfine splittings give important information about the electronic wave function in the vicinity of the nucleus as well as the structure of the nucleus. Our main focus throughout this project has been the structure of atomic cesium because of its connection to the study of atomic parity nonconservation (PNC). The interpretation of atomic PNC experiments in terms of weak interaction coupling constants requires accurate knowledge of the electronic wave function near the nucleus as well as far from the nucleus. It is possible to address some of these needs theoretically with sophisticated many-electron atomic structure calculations. However, this program has been able to address these needs experimentally with a precision that surpasses current theoretical accuracy. Our measurements also play the important role of providing a means for testing the accuracy of many-electron calculations and guiding further theoretical development, Atomic systems such as cesium, with a single electron

  14. Measurement of neuron soma size by fluorescent Nissl stain

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: James Cronk, Noel Derecki & Jonathan Kipnis ### Abstract This protocol describes how to measure neuron soma size by fluorescent Nissl stain. Mice are sacrificed, and fixed by PFA perfusion. Brains are removed, and further PFA fixed, followed by sucrose cryoprotection. They are then snap frozen, sliced by cryostat, and stained with fluorescent Nissl as floating sections. Confocal microscopy is used to take images of neurons, and a computer graphics tablet is used to calculate ...

  15. Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging.

    Science.gov (United States)

    Vinegoni, Claudio; Fumene Feruglio, Paolo; Brand, Christian; Lee, Sungon; Nibbs, Antoinette E; Stapleton, Shawn; Shah, Sunil; Gryczynski, Ignacy; Reiner, Thomas; Mazitschek, Ralph; Weissleder, Ralph

    2017-07-01

    The ability to directly image and quantify drug-target engagement and drug distribution with subcellular resolution in live cells and whole organisms is a prerequisite to establishing accurate models of the kinetics and dynamics of drug action. Such methods would thus have far-reaching applications in drug development and molecular pharmacology. We recently presented one such technique based on fluorescence anisotropy, a spectroscopic method based on polarization light analysis and capable of measuring the binding interaction between molecules. Our technique allows the direct characterization of target engagement of fluorescently labeled drugs, using fluorophores with a fluorescence lifetime larger than the rotational correlation of the bound complex. Here we describe an optimized protocol for simultaneous dual-channel two-photon fluorescence anisotropy microscopy acquisition to perform drug-target measurements. We also provide the necessary software to implement stream processing to visualize images and to calculate quantitative parameters. The assembly and characterization part of the protocol can be implemented in 1 d. Sample preparation, characterization and imaging of drug binding can be completed in 2 d. Although currently adapted to an Olympus FV1000MPE microscope, the protocol can be extended to other commercial or custom-built microscopes.

  16. NEW APPROACHES: Measurement of the mean lifetime of cosmic ray muons in the A-level laboratory

    Science.gov (United States)

    Dunne, Peter; Costich, David; O'Sullivan, Sean

    1998-09-01

    The Turning Points in Physics module from the NEAB A-level Modular Physics syllabus requires students to have an understanding of relativistic time dilation and offers the measurement of the mean lifetime of cosmic ray muons as an example of supporting experimental evidence. This article describes a direct measurement of muon lifetime carried out in the A-level laboratory.

  17. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Guevara, Z. E., E-mail: zjguevaram@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co [Physics Department, Universidad Nacional de Colombia, Bogotá D.C. (Colombia)

    2016-07-07

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of {sup 106}Cd to study excited states of {sup 110}Sn and the beam nuclei itself will be presented.

  18. Improved measurement of the $\\overline{B}^{0}$ and B$^{-}$ meson lifetimes

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palla, Fabrizio; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Wildish, T; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    The lifetimes of the \\b0 \\ and \\bp\\ mesons have been measured with the \\aleph\\ detector at LEP, using approximately 3 million hadronic Z decays collected in the period 1991--1994. In the first of three methods, semileptonic decays of \\b0 \\ and \\bp\\ mesons were partially reconstructed by identifying events containing a lepton with an associated \\ds\\ or \\d0 \\ meson. The second method used fully reconstructed \\bz\\ and \\bp\\ mesons. The third method, used to measure the \\bz\\ lifetime, employed a partial reconstruction technique to identify \\bz\\to D^{*+}\\pi^- X decays. The combined results are \\begin{eqnarray*} \\t0 & = & 1.55\\pm 0.06\\pm 0.03 \\mathrm{\\ ps}, \\\\ \\tp & = & 1.58\\pm 0.09\\pm 0.03 \\mathrm{\\ ps}, \\\\ \\trat & = & 1.03\\pm 0.08\\pm 0.02.

  19. Measurements of μ capture rates in liquid hydrogen by the lifetime method

    International Nuclear Information System (INIS)

    Martino, Jacques.

    1982-04-01

    The μ capture reaction is a weak interaction. It can be observed as a result of the formation of muonic atoms for which the overlopping of the wave functions of the muon and nucleus is a maximum in the 1s state. The production of this (μp) bound state leads to a capture rate in relatively favorable competition with the disintegration rate. The capture rate for a pulsed muon beam (from the Saclay linear accelerator) was measured in liquid hydrogen by the lifetime method. The method and experimental equipment used for the lifetime measurements are described together with the different sources of systematic error and the results obtained. The interpretation of these results is discussed [fr

  20. Lifetime measurements of nuclear states in 92,91,90Mo, 89,88Nb

    International Nuclear Information System (INIS)

    Chakrawarthy, R.S.; Singh, Pragya; Pillay, R.G.; Devare, H.G.

    1993-01-01

    In order to test the correctness of the wave functions calculated by the shell-model calculations, the knowledge of transition probabilities is important. This, in turn, requires the determination of half lives of these states. We have performed two different experiments, based on Recoil Distance Method (RDM), to measure the lifetime in picosecond range, of states belonging to 92,91,90 Mo and 89,88 Nb nuclei. (author). 3 refs., 1 tab., 1 fig

  1. Determination of ππ scattering lengths from measurement of π+π- atom lifetime

    International Nuclear Information System (INIS)

    Adeva, B.; Afanasyev, L.; Benayoun, M.; Benelli, A.; Berka, Z.; Brekhovskikh, V.; Caragheorgheopol, G.; Cechak, T.; Chiba, M.; Chliapnikov, P.V.; Ciocarlan, C.; Constantinescu, S.; Costantini, S.; Curceanu, C.; Doskarova, P.; Dreossi, D.; Drijard, D.; Dudarev, A.; Ferro-Luzzi, M.; Fungueirino Pazos, J.L.

    2011-01-01

    The DIRAC experiment at CERN has achieved a sizeable production of π + π - atoms and has significantly improved the precision on its lifetime determination. From a sample of 21 227 atomic pairs, a 4% measurement of the S-wave ππ scattering length difference |a 0 -a 2 |=(0.2533 -0.0078 +0.0080 | stat +0.0078 -0.0073 | syst )M π + -1 has been attained, providing an important test of Chiral Perturbation Theory.

  2. Measurements of the $B^{0}_s$ and $\\Lambda^{0}_b$ lifetimes

    CERN Document Server

    Ackerstaff, K.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Bartoldus, R.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S.D.; Blobel, V.; Bloodworth, I.J.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Clarke, P.E.L.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; del Pozo, L.A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M.S.; Doucet, M.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Eatough, D.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Evans, M.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Feld, L.; Fiedler, F.; Fierro, M.; Fischer, H.M.; Fleck, I.; Folman, R.; Fong, D.G.; Foucher, M.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Geddes, N.I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Goodrick, M.J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Hargrove, C.K.; Hart, P.A.; Hartmann, C.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hobson, P.R.; Hocker, James Andrew; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Hutchcroft, D.E.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jawahery, A.; Jeffreys, P.W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C.R.; Jones, M.; Jost, U.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kirk, J.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G.D.; Lahmann, R.; Lai, W.P.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lefebvre, E.; Lellouch, D.; Letts, J.; Levinson, L.; List, B.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Markus, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mincer, A.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nellen, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Oldershaw, N.J.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Posthaus, A.; Rembser, C.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rooke, A.; Rossi, A.M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D.R.; Sachs, K.; Saeki, T.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schleper, P.; Schmitt, B.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Springer, Robert Wayne; Sproston, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, David M.; Strohmer, R.; Szymanski, P.; Tafirout, R.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Utzat, P.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Vikas, P.; Vokurka, E.H.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-01-01

    This paper presents updated measurements of the lifetimes of the B^0_s meson and the \\Lambda_b baryon using 4.4 million hadronic Z^0 decays recorded by the OPAL detector at LEP from 1990 to 1995. A sample of B^0_s decays is obtained using D_s^- \\ell^+ combinations, where the D_s^- is fully reconstructed in the in the \\phi \\ell^- \

  3. Shape coexistence in 140Sm and the onset of deformation below N=82 from lifetime measurements

    Science.gov (United States)

    Cardona, M. A.; Lunardi, S.; Bazzacco, D.; de Angelis, G.; Roca, V.

    1991-08-01

    Different deformations for the two bands built above the (πh11/2)2 10+ and the (νh11/2)-2 10+ states in 140Sm have been determined from lifetime measurements using the reaction 106Pd(37Cl,p2n)140Sm at 143 MeV. The β values derived for the N=78 and N=80 core nuclei, coexisting in 140Sm, complete the systematics of nuclear deformation from N=72 to 80.

  4. Measurement of the Bs0→J/ψη lifetime

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A., Jr.; Amato, S.; Amerio, S.; Amhis, Y.; Everse, LA; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J.E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Romeu, J. Arnau; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M-O.; Van Beuzekom, Martin; Bifani, S.; Billoir, P.; Bird, T.D.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Perez, D. H. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S-F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coquereau, S.; Corti, G.; Corvo, M.; Sobral, C. M. Costa; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, C.R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; de Miranda, J. M.; Paula, L.E.; De Serio, M.; De Simone, P.; Dean, C-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Deleage, N.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T. M.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, Mark; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Lima, V. Franco; Frank, M.; Frei, C.; Fu, J.; Furfaro, E.; Farber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Pardinas, J.; Tico, J. Garra; Garrido, L.; Garsed, P. J.; Gascon, D.; Carvalho-Gaspar, M.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T. J.; Ghez, Ph; Giani, S.; Gibson, V.; Gillies, C.E.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.Q.; Gorelov, I. V.; Gotti, C.; Gandara, M. Grabalosa; Graciani Diaz, R.; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Cazon, B. R. Gruberg; Gruenberg, O.; Gushchin, E.; Guz, Yu; Gys, T.; Gobel, M.C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.J.; He, J.; Head, T.; Heister, A.J.G.A.M.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, H.M.; Hicheur, A.; Hill, D.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D. E.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M. H.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.M.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G. D.; Lai, A.; Lambert, D.M.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T. E.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. P.; Leflat, A.; Lefrancois, J.; Lefevre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, S.C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli-Boneschi, F.; Martinez-Santos, D.; Martinez-Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; Mcnab, A.; McNulty, R.; Meadows, B. T.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M. N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Muller, D; Mueller, J.; Muller, K.; Mueller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Otalora Goicochea, J. M.; Otto, E.A.; Owen, R.P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L.L.; Pappenheimer, C.; Parker, W.S; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, D.A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; PloCasasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, M. E.; Price, J.D.; Prisciandaro, J.; Pritchard, C.A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, Y.W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, Jennifer S; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, L.E.T.; Rodriguez Lopez, J. A.; Perez, P. Rodriguez; Rogozhnikov, A.; Roiser, S.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, R. H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Coutinho, R. Silva; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; de Souza, D.K.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson-Moore, P.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M. N.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, N.T.M.T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, M.A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valat, S.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Vecchi, S.; van Veghel-Plandsoen, M.M.; Velthuis, M.J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voneki, B.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; de Vries, J. A.; Vazquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, John; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M.P.; Williams, M.; Williams, T.; Wilson, James F; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.J.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yin, H; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhukov, V.; Zucchelli, S.

    2016-01-01

    Using a data set corresponding to an integrated luminosity of 3 fb−1, collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV, the effective lifetime in the Bs0→J/ψη decay mode, τeff, is measured to be τeff=1.479±0.034 (stat)±0.011 (syst) ps. Assuming CP

  5. An investigation into radiosensitizer mechanisms using o-Ps lifetime measurements

    International Nuclear Information System (INIS)

    Beling, C.D.; Smith, F.A.

    1982-01-01

    Lifetime measurements have been made in a number of radiosensitizer solutions as a function of both concentration and temperature. The o-Ps yields, which were corrected for chemical quenching, showed that these compounds are strong Ps inhibitors. The temperature dependence of the yields in Misonidazole/water and Misonidazole/ethanol solutions may be associated either with the different electron solvation times in the two solvents, or with changes in electron mobility. (Auth.)

  6. Measurement of the $B^-$ lifetime using a simulation free approach for trigger bias correction

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Adelman, J.; /Chicago U., EFI; Alvarez Gonzalez, B.; /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.; /Fermilab; Apresyan, A.; /Purdue U. /Waseda U.

    2010-04-01

    The collection of a large number of B hadron decays to hadronic final states at the CDF II detector is possible due to the presence of a trigger that selects events based on track impact parameters. However, the nature of the selection requirements of the trigger introduces a large bias in the observed proper decay time distribution. A lifetime measurement must correct for this bias and the conventional approach has been to use a Monte Carlo simulation. The leading sources of systematic uncertainty in the conventional approach are due to differences between the data and the Monte Carlo simulation. In this paper they present an analytic method for bias correction without using simulation, thereby removing any uncertainty between data and simulation. This method is presented in the form of a measurement of the lifetime of the B{sup -} using the mode B{sup -} {yields} D{sup 0}{pi}{sup -}. The B{sup -} lifetime is measured as {tau}{sub B{sup -}} = 1.663 {+-} 0.023 {+-} 0.015 ps, where the first uncertainty is statistical and the second systematic. This new method results in a smaller systematic uncertainty in comparison to methods that use simulation to correct for the trigger bias.

  7. Measurement of the B- lifetime using a simulation free approach for trigger bias correction

    International Nuclear Information System (INIS)

    2010-01-01

    The collection of a large number of B hadron decays to hadronic final states at the CDF II detector is possible due to the presence of a trigger that selects events based on track impact parameters. However, the nature of the selection requirements of the trigger introduces a large bias in the observed proper decay time distribution. A lifetime measurement must correct for this bias and the conventional approach has been to use a Monte Carlo simulation. The leading sources of systematic uncertainty in the conventional approach are due to differences between the data and the Monte Carlo simulation. In this paper they present an analytic method for bias correction without using simulation, thereby removing any uncertainty between data and simulation. This method is presented in the form of a measurement of the lifetime of the B - using the mode B - → D 0 π - . The B - lifetime is measured as τ B# sup -# = 1.663 ± 0.023 ± 0.015 ps, where the first uncertainty is statistical and the second systematic. This new method results in a smaller systematic uncertainty in comparison to methods that use simulation to correct for the trigger bias.

  8. Measurement of the b baryon lifetime and branching fractions in Z decays

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rizzo, G; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Stacey, A M; Williams, M D; Ghete, V M; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Williams, M I; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Lutters, G; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1998-01-01

    Using approximately 4 million hadronic Z decays recorded with the Aleph detector from 1991 through 1995, the lifetime of the b baryon is measured with three independent methods. From the impact parameter distribution of candidate leptons in 1063 events with Lambda-lepton combinations, the average b baryon lifetime is measured to be 1.20 +-0.08 +-0.06 ps. From a sample of 193 fully reconstructed Lambda_c candidates correlated with a lepton and a sample of 46 Lambda-lepton-lepton combinations, the Lambda_b lifetime is measured to be 1.21 +-0.11 ps. The product branching fractions to these final states are Br(b->Lambda_b).Br(Lambda_b->Lambda l nu X) = 0.326 +-0.016 +-0.039 % for the first sample and Br(b->Lambda_b).Br(Lambda_b->Lambda_c l nu X) = 0.86 +-0.07 +-0.14 % for the second and third samples combined.

  9. A plunger device for in-beam measurements of nuclear lifetimes

    International Nuclear Information System (INIS)

    Battistuzzi, G.; Dainese, B.; Signorini, C.; Stefanini, A.M.

    1977-01-01

    An experimental apparatus was built to measure life-times of excited nuclear states with the recoil-distance method (RDM). A millesimal micrometer and an electromagnetic gauge-head are used to measure the target-stopper distance, and their parallelism is tested by optical and capacitance methods. Measurements were performed in the nuclei 22 Na and 153 Dy, populated by the reactions 19 F(α, n) and 144 Nd( 12 C, 3n), respectively. A minimum target-stopper distance of approximately 3 μm has been reached. (Auth.)

  10. Subnanosecond lifetime measurements of excited states in nuclei far from stability

    International Nuclear Information System (INIS)

    Nettles, W.G.; Ramayya, A.V.; Hamilton, J.H.; Avignone, F.T. III; Carter, H.K.

    1979-01-01

    A system was developed to measure the lifetimes of nuclear states in the range of 0.05 to 1 nanosecond in nuclei far from stability. A Gerholm magnetic lens was placed on-line with the UNISOR mass separator to observe conversion electrons in coincidence with γ rays detected in a plastic scintillator. With this system, the half-life of the 522 keV, O + level in 186 Hg was measured to be 155 +- 70 picoseconds. Improvements in this system should make possible on-line measurements of half-lives as short as approx. = 50 picoseconds. 12 references

  11. Subnanosecond lifetime measurements of excited states in nuclei far from stability

    International Nuclear Information System (INIS)

    Nettles, W.G.; Ramayya, A.V.; Hamilton, J.H.; Avignone, F.T. III; Carter, H.K.

    1980-01-01

    A system has been developed to measure the lifetimes of nuclear states in the range of 0.05 to 1 nanosecond in nuclei far from stability. A Gerholm magnetic lens was placed on-line with the UNISOR mass separator to observe conversion electrons in coincidence with γ rays detected in a plastic scintillator. With this system, the half-life of the 522 keV, 0 + level in 186 Hg was measured to be 155 +- 70 picoseconds. Improvements in this system should make possible on-line measurements of half-lives as short as approximately 50 picoseconds. (Auth.)

  12. Breast cancer: in vitro measurements of native fluorescence

    Science.gov (United States)

    Lohmann, Wolfgang; Bohle, Rainer M.; Dreyer, Thomas; Haas, Sabine; Wallenfels, Heike; Schwemmle, Konrad; Schill, Wolf-Bernhard

    1996-12-01

    Unfixed, HE stained cryosections of breast tissue obtained from 67 patients during surgery were illuminated with 395 - 440 nm and their fluorescence response as well as the 2- dimensional fluorophore distribution were measured. The histological evaluation of the same cryosection, illuminated as usual with a transmitted light obtained from a halogen lamp, revealed 9 patients with healthy tissue, 11 with benign epithelial hyperplasia, 4 with ductal carcinoma in situ, 35 with invasive ductal carcinoma, 7 with invasive lobular carcinoma, and one with invasive tubular carcinoma. A comparison between the fluorescence and the HE images shows that both match very nicely and that the fluorescence images are also characteristic for the different pathological condition of the biopsy sample. Moreover, benign tumors e.g. fibroadenomas, exhibit a fluorescence response different from cancer and healthy tissue.

  13. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    Science.gov (United States)

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  14. Recoil distance method lifetime measurements at TRIUMF-ISAC using the TIGRESS Integrated Plunger

    Science.gov (United States)

    Chester, A.; Ball, G. C.; Bernier, N.; Cross, D. S.; Domingo, T.; Drake, T. E.; Evitts, L. J.; Garcia, F. H.; Garnsworthy, A. B.; Hackman, G.; Hallam, S.; Henderson, J.; Henderson, R.; Krücken, R.; MacConnachie, E.; Moukaddam, M.; Padilla-Rodal, E.; Paetkau, O.; Pore, J. L.; Rizwan, U.; Ruotsalainen, P.; Shoults, J.; Smallcombe, J.; Smith, J. K.; Starosta, K.; Svensson, C. E.; Van Wieren, K.; Williams, J.; Williams, M.

    2018-02-01

    The TIGRESS Integrated Plunger device (TIP) has been developed for recoil distance method (RDM) lifetime measurements using the TIGRESS array of HPGe γ-ray detectors at TRIUMF's ISAC-II facility. A commissioning experiment was conducted utilizing a 250 MeV 84Kr beam at ≈ 2 × 108 particles per second. The 84Kr beam was Coulomb excited to the 21+ state on a movable 27Al target. A thin Cu foil fixed downstream from the target was used as a degrader. Excited nuclei emerged from the target and decayed by γ-ray emission at a distance determined by their velocity and the lifetime of the 21+ state. The ratio of decays which occur between the target and degrader to those occurring after traversing the degrader changes as a function of the target-degrader separation distance. Gamma-ray spectra at 13 target-degrader separation distances were measured and compared to simulated lineshapes to extract the lifetime. The result of τ = 5 . 541 ± 0 . 013(stat.) ± 0 . 063(sys.) ps is shorter than the literature value of 5 . 84 ± 0 . 18 ps with a reduction in uncertainty by a factor of approximately two. The TIP plunger device, experimental technique, analysis tools, and result are discussed.

  15. A method of measurement of lifetimes of excited ion levels, using orientation transfer by Penning collisions

    International Nuclear Information System (INIS)

    Hamel, J.; Barrat, J.-P.

    1978-01-01

    A method for measuring the lifetimes of ionic excited levels is described. This method uses the transfer of coherence in a Penning collision using metastable optically oriented He 2 3 S 1 atoms. If R.F. transitions are induced in the (2 3 S 1 )He level, a transverse component of the magnetic moment of this level is created, which precesses coherently at the angular frequency ω of the R.F. field. The helium transverse orientation is partially transferred to the ions produced by Penning collisions. After the collision, the orientation transferred precesses around the external magnetic field at the Larmor frequency ω 0 ' of the ion excited level. The degree of orientation of the excited ion level depends, in the stationary state, on the average phase shift, during the lifetime tau prime of this level, between the Larmor precession at angular frequency ω 0 ' and the forced precession of helium (at angular frequency ω). The orientation of the ions is monitored by the modulation of the light emitted during their radiative decay. It is possible to determine the lifetime tau prime by measuring the degree of modulation of the reemitted light as a function of ω [fr

  16. Measurement of the overlineB0 and B- meson lifetimes

    Science.gov (United States)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Sau Lan Wu; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-06-01

    The lifetimes of the overlineB0 and B- mesons have been measured with the ALEPH detector at LEP. Semileptonic decays of overlineB0 and B- mesons were partially reconstructed by identifying events containing a lepton with an associated D ∗+or D 0 meson. The proper time of the B meson was estimated from the measured decay length and the momentum and mass of the D-lepton system. A fit to the proper time of 77 D ∗+ℓ - and 77 D0ℓ - candidates, combined with a constraint on the lifetime ratio ( {τ -}/{τ 0}) arising from the relative rates of observed D ∗+ℓ - and D0ℓ - events, yielded the following lifetimes: τ 0=1.52 -0.18+0.20( stat.) -0.13+0.07( syst.) ps, τ - = 1.47 -0.19+0.22( stat.) -0.14+0.15( syst.) ps, {τ -}/{τ 0} = 0.96 -0.15+0.19( stat.) -0.12+0.18( syst.) .

  17. Radiative lifetime and Lande-factor measurements of the Se I 4p35S 5S2 level using pulsed laser spectroscopy

    International Nuclear Information System (INIS)

    Zerne, R.

    1992-01-01

    This diploma project consists of spectroscopic examinations of atomic selenium. Natural selenium was thermally dissociated in a quarts resonance cell keeping the background pressure of selenium molecules low by differential heating. The 4p 3 5S 5 S 2 level was excited by frequency-tripled pulsed dye-laser radiation at 207 nm. From time-resolved recording of the fluorescence decay at 216 nm the natural radiative lifetime of the 5 S 2 level was determined to be 493(15) ns. Quantum-beat and optical double resonance measurements in an external magnetic field yielded g j = 2.0004(10) for the Lande factor

  18. 128Xe Lifetime Measurement Using the Coulex-Plunger Technique in Inverse Kinematics

    International Nuclear Information System (INIS)

    Konstantinopoulos, T.; Lagoyannis, A.; Harissopulos, S.; Dewald, A.; Rother, W.; Ilie, G.; Jones, P.; Rakhila, P.; Greenlees, P.; Grahn, T.; Julin, R.; Balabanski, D. L.

    2008-01-01

    The lifetimes of the lowest collective yrast and non-yrast states in 128 Xe were measured in a Coulomb excitation experiment using the recoil distance method (RDM) in inverse kinematics. Hereby, the Cologne plunger apparatus was employed together with the JUROGAM spectrometer. Excited states in 128 Xe were populated using a 128 Xe beam impinging on a nat Fe target with E( 128 Xe)≅525 MeV. Recoils were detected by means of an array of solar cells placed at forward angles. Recoil-gated γ-spectra were measured at different plunger distances

  19. 128Xe Lifetime Measurement Using the Coulex-Plunger Technique in Inverse Kinematics

    Science.gov (United States)

    Konstantinopoulos, T.; Lagoyannis, A.; Harissopulos, S.; Dewald, A.; Rother, W.; Ilie, G.; Jones, P.; Rakhila, P.; Greenlees, P.; Grahn, T.; Julin, R.; Balabanski, D. L.

    2008-05-01

    The lifetimes of the lowest collective yrast and non-yrast states in 128Xe were measured in a Coulomb excitation experiment using the recoil distance method (RDM) in inverse kinematics. Hereby, the Cologne plunger apparatus was employed together with the JUROGAM spectrometer. Excited states in 128Xe were populated using a 128Xe beam impinging on a natFe target with E(128Xe)~525 MeV. Recoils were detected by means of an array of solar cells placed at forward angles. Recoil-gated γ-spectra were measured at different plunger distances.

  20. Measurement of the average lifetime of the beauty hadrons on the Z resonance

    International Nuclear Information System (INIS)

    Fernandez, D.

    1997-01-01

    From a fit to the impact parameter distribution of inclusive electron and muons from semileptonic b decay, the average lifetime of beauty hadrons produced in e + e - collisions on the Z resonance was measured to be: T B =1.543+-0.016(est)+-0.024(sis)ps Combining this measurement with the earlier semileptonic braching ratio B gamma(B→y ν Χ) the Cabbibo-Kowayashi-Maskawa matrix element vertical barV cb vertical bar is determined to be: vertical barV cb vertical bar=(38.8+-0.8 (exp)+- ''3.0 2 .6 (teor))x10 -3

  1. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Higashi, N. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Igarashi, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Iwashita, Y. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Ino, T. [High Energy Accelerator Research Organization, Ibaraki (Japan); Katayama, R. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Kitaguchi, M. [Kobayashi-Maskawa Institute, Nagoya University, Aichi (Japan); Kitahara, R. [Graduate School of Science, Kyoto University, Kyoto (Japan); Matsumura, H.; Mishima, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); Nagakura, N.; Oide, H. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Otono, H., E-mail: otono@phys.kyushu-u.ac.jp [Research Centre for Advanced Particle Physics, Kyushu University, Fukuoka (Japan); Sakakibara, R. [Department of Physics, Nagoya University, Aichi (Japan); Shima, T. [Research Center for Nuclear Physics, Osaka University, Osaka (Japan); Shimizu, H.M.; Sugino, T. [Department of Physics, Nagoya University, Aichi (Japan); Sumi, N. [Faculty of Sciences, Kyushu University, Fukuoka (Japan); Sumino, H. [Department of Basic Science, University of Tokyo, Tokyo (Japan); Taketani, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); and others

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with {sup 6}Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  2. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Science.gov (United States)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  3. A Measurement of the Charged and Neutral B Meson Lifetimes Using Fully Reconstructed Decays

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Barbara

    2000-08-30

    Data collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC are used to study the lifetimes of the B{sup 0} and B{sup +} mesons. The data sample consists of 7.4 fb{sup -1} collected near the {Upsilon}(4S) resonance. B{sup 0} and B{sup +} mesons are fully reconstructed in several exclusive hadronic decay modes to charm and charmonium final states. The B lifetimes are determined from the flight length difference between the two B mesons which are pair-produced in the {Upsilon}(4S) decay. The preliminary measurements of the lifetimes are {tau}B{sup 0} = 1.506 {+-} 0.052 (stat) {+-} 0.029 (syst) ps, {tau}B{sup +} = 1.602 {+-} 0.049 (stat) {+-} 0.035 (syst) ps, and of their ratio is {tau}B{sup +}/{tau}B{sup 0} = 1.065 {+-} 0.044 (stat) {+-} 0.021 (syst).

  4. A Measurement of the Charged and Neutral B Meson Lifetimes Using Fully Reconstructed Decays

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Barbara

    2000-08-30

    Data collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC are used to study the lifetimes of the B{sup 0} and B{sup +} mesons. The data sample consists of 7.4 fb{sup {minus}1} collected near the Upsilon(4S) resonance. B{sup 0} and B{sup +} mesons are fully reconstructed in several exclusive hadronic decay modes to charm and charmonium final states. The B lifetimes are determined from the flight length difference between the two B mesons which are pair-produced in the Upsilon(4S) decay. The preliminary measurements of the lifetimes are tau{sub B0} = 1.506 {+-} 0.052 (stat) {+-} 0.029 (syst) ps, tau{sub B+} = 1.602 {+-} 0.049 (stat) {+-} 0.035 (syst) ps, and of their ratio is tau{sub B+}/tau{sub B0} = 1.065 {+-} 0.044 (stat) {+-} 0.021 (syst).

  5. In situ observation of sol-gel transition of agarose aqueous solution by fluorescence measurement.

    Science.gov (United States)

    Wang, Zheng; Yang, Kun; Li, Haining; Yuan, Chaosheng; Zhu, Xiang; Huang, Haijun; Wang, Yongqiang; Su, Lei; Fang, Yapeng

    2018-06-01

    Sol-gel transition behavior of agarose aqueous solution was investigated by using rheology and fluorescence measurement. On heating, the storage modulus G' decreased gradually, then deviated abruptly at the temperature of about 65°C, and finally decreased slowly again. For fluorescence measurement, the phase transition point kept almost at the temperature of 65°C, which was consistent with that in rheology measurement. Upon compression, it was indicated that the fluorescence lifetime for the probe in the agarose aqueous solution showed a dramatic change in the vicinity of the phase transition point. T vs. P phase diagram of agarose aqueous solution was constructed, which showed that the melting point was an increasing function of pressure. Based on the phase diagram, the agarose gels were prepared by cooling under atmospheric pressure and the pressure of 300MPa, respectively. From the result of the recovered samples studied by optical rheometry, it was found that agarose gel prepared under high pressure had a higher elasticity and lower viscosity index, compared with that under atmospheric pressure. It could be speculated that such kinds of properties might be attributed to the smaller pore size during gelation under high pressure. Copyright © 2018. Published by Elsevier B.V.

  6. New way of doppler lifetime measurements used in a case of 119I

    International Nuclear Information System (INIS)

    Pasternak, A.A.; Srebrny, J.; Droste, Ch.; Morek, T.

    2000-01-01

    Complete text of publication follows. An experience gained during data analysis of lifetime measurements (1) in 119 I is presented. The experiment was done using NORDBALL array with plunger inside. The 119 I were produced in the reaction 109 Ag( 13 C,3n) 119 I. Two type of Ag targets were used: thin one (about 0.8 mg/cm 2 ) for RDM measurements and thick one (about 6 mg/cm 2 ) for DSA measurements. Both types of lifetime data were analysed by the same code SHAPE (2) originaly devoted to DSA method. Such sofisticated analysis alowed to determined lifetimes for about 60 levels. The following topics are important for precise lifetime determination: I. Application of DSA software to RDM data. Recoil Distance Doppler Shift Attenuation Method RDDSAM takes into consideration exact γ-lineshape measured using plunger. The information obtained from RDDSAM is more rich than when standard RDM analysis is used. II. Reaction, energy of projectile and statistical side-feeding time. The reaction and the energy of projectile should be chosen to get similar angular momentum distribution of entry states as the one of investigated states. In such case, E2 stretched cascade from entry states to the measured levels is strongly reduced. Then, one can use a simple formula for calculation of the statistical side feeding time: τ sidefeeding = k sf x (E exc - E lev ), where: E exc is the energy of entry state with spin value being the same as spin of investigated level, and E lev is the energy of investigated level. The value of k sf = 0.020(5) ps/MeV was deduced from the analysis of a few fastest transitions in 119 I. III. Self-calibration of stopping power. To perform self calibration of stopping power we propose (1) to use 'semi-thick' target with thickness comparable to recoil range. In our case 0.8 mg/cm 2 target fulfils such condition. For the semi-thick target the observed γ-lineshape is governed by the velocity distribution of recoils leaving target if τ level is much larger than

  7. MEASUREMENT OF THE B{sup 0} LIFETIME USING PARTIAL RECONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, M

    2003-10-31

    We present here the first measurement of the B{sup 0} lifetime using partial reconstruction in B{sup 0} {yields} D*{sup -} {rho}{sup +} decay. A sample of approximately 5500 B{sup 0} {yields} D*{sup -} {rho}{sup +} events were identified among 22.7 million B{bar B} pairs collected by the BABAR experiment during the years 1999-2000. With this data, the B{sup 0} lifetime is measured to be 1.616 {+-} 0.064 {+-} 0.075 ps, in good agreement with the world average. This measurement demonstrates that is it possible to use this technique to perform time-dependent B{sup 0} decay analysis that is central to the measurement of the charge-parity (CP) asymmetries. Investigation of CP observables through measurements of the decays of B{sup 0} mesons is the primary goal of the BABAR experiment at the PEP-II storage ring located at Stanford Linear Accelerator Center (SLAC). As the B{sup 0} particle decays to final states that are directly sensitive to the CP parameter {gamma} are highly suppressed, a promising alternative approach is to use the final state B{sup 0} {yields} D*h. Using the partial event reconstruction analysis method it is possible to compensate for the small CP asymmetries in this decay.

  8. A direct-measurement technique for estimating discharge-chamber lifetime. [for ion thrusters

    Science.gov (United States)

    Beattie, J. R.; Garvin, H. L.

    1982-01-01

    The use of short-term measurement techniques for predicting the wearout of ion thrusters resulting from sputter-erosion damage is investigated. The laminar-thin-film technique is found to provide high precision erosion-rate data, although the erosion rates are generally substantially higher than those found during long-term erosion tests, so that the results must be interpreted in a relative sense. A technique for obtaining absolute measurements is developed using a masked-substrate arrangement. This new technique provides a means for estimating the lifetimes of critical discharge-chamber components based on direct measurements of sputter-erosion depths obtained during short-duration (approximately 1 hr) tests. Results obtained using the direct-measurement technique are shown to agree with sputter-erosion depths calculated for the plasma conditions of the test. The direct-measurement approach is found to be applicable to both mercury and argon discharge-plasma environments and will be useful for estimating the lifetimes of inert gas and extended performance mercury ion thrusters currently under development.

  9. Design and construction of a Vertex Chamber and measurement of the average B-Hadron lifetime

    International Nuclear Information System (INIS)

    Nelson, H.N.

    1987-10-01

    Four parameters describe the mixing of the three quark generations in the Standard Model of the weak charged current interaction. These four parameters are experimental inputs to the model. A measurement of the mean lifetime of hadrons containing b-quarks, or B-Hadrons, constrains the magnitudes of two of these parameters. Measurement of the B-Hadron lifetime requires a device that can measure the locations of the stable particles that result from B-Hadron decay. This device must function reliably in an inaccessible location, and survive high radiation levels. We describe the design and construction of such a device, a gaseous drift chamber. Tubes of 6.9 mm diameter, having aluminized mylar walls of 100 μm thickness are utilized in this Vertex Chamber. It achieves a spatial resolution of 45 μm, and a resolution in extrapolation to the B-Hadron decay location of 87 μm. Its inner layer is 4.6 cm from e + e - colliding beams. The Vertex Chamber is situated within the MAC detector at PEP. We have analyzed botht he 94 pb -1 of integrated luminosity accumulated at √s = 29 GeV with the Vertex Chamber in place as well as the 210 pb -1 accumulated previously. We require a lepton with large momentum transverse to the event thrust axis to obtain a sample of events enriched in B-Hadron decays. The distribution of signed impact parameters of all tracks in these events is used to measure the B-Hadron flight distance, and hence lifetime. 106 refs., 79 figs., 20 tabs

  10. Design and construction of a Vertex Chamber and measurement of the average B-Hadron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, H.N.

    1987-10-01

    Four parameters describe the mixing of the three quark generations in the Standard Model of the weak charged current interaction. These four parameters are experimental inputs to the model. A measurement of the mean lifetime of hadrons containing b-quarks, or B-Hadrons, constrains the magnitudes of two of these parameters. Measurement of the B-Hadron lifetime requires a device that can measure the locations of the stable particles that result from B-Hadron decay. This device must function reliably in an inaccessible location, and survive high radiation levels. We describe the design and construction of such a device, a gaseous drift chamber. Tubes of 6.9 mm diameter, having aluminized mylar walls of 100 ..mu..m thickness are utilized in this Vertex Chamber. It achieves a spatial resolution of 45 ..mu..m, and a resolution in extrapolation to the B-Hadron decay location of 87 ..mu..m. Its inner layer is 4.6 cm from e/sup +/e/sup -/ colliding beams. The Vertex Chamber is situated within the MAC detector at PEP. We have analyzed botht he 94 pb/sup -1/ of integrated luminosity accumulated at ..sqrt..s = 29 GeV with the Vertex Chamber in place as well as the 210 pb/sup -1/ accumulated previously. We require a lepton with large momentum transverse to the event thrust axis to obtain a sample of events enriched in B-Hadron decays. The distribution of signed impact parameters of all tracks in these events is used to measure the B-Hadron flight distance, and hence lifetime. 106 refs., 79 figs., 20 tabs.

  11. Measurement of the inclusive b-lifetime using Jp's at the CDF-experiment.

    Science.gov (United States)

    Wenzel, Hans; Benjamin, Doug

    1996-05-01

    We present the measurement of the average lifetime of b-hadrons produced in pbarp collisions at √s = 1.8 TeV weighted by their branching ratios into J/ψ We use dimuon data which corresponds to an integrated luminosity of ≈ 90 pb-1 recorded with the CDF-detector during the 1994 to 95 running period. After all selection cuts and background subtraction we are left with a high statistics sample of 62656 J/ψ decaying into μ^+μ^- reconstructed in the CDF Silicon VerteX detector (SVX) where 17.8% of these events come from b-decays. We measure the average B lifetime to be 1.52 ; ± 0.015; (stat);^+0.038_-0.027;(sys); ps (preliminary). The precision of this measurement is significantly improved compared to the inclusive lifetime measurement published previously using ≈ 10 pb-1 of data recorded in 91-92. ^ Supported by U.S. DOE DE-AC03-76SF00098. ^ Supported by U.S. DOE DEFG03-95-ER-40938. ^*We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; and the A. P. Sloan Foundation.

  12. Design and construction of a vertex chamber and measurement of the average B-hadron lifetime

    International Nuclear Information System (INIS)

    Nelson, H.N.

    1988-01-01

    Four parameters describe the mixing of the three quark generations in the Standard Model of the weak charged current interaction. These four parameters are experimental inputs to the model. A measurement of the mean lifetime of hadrons containing b-quarks, or B-Hadrons, constrains the magnitudes of two of these parameters. Measurement of the B-Hadron lifetime require a device that can measure the locations of the stable particles that result from B-Hadron decay. This device must function reliably in an inaccessible location, and survive high radiation levels. We describe the design and construction of such a device, a gaseous drift chamber. Tubes of 6.9 mm diameter, having aluminized mylar walls of 100 μm thickness are utilized in this Vertex Chamber. It achieves a spatial resolution of 45 μm, and a resolution in extrapolation to the B-Hadron decay location of 87μm. Its inner layer is 4.6 cm from e +- colliding beams. The Vertex Chamber is situated within the MAC detector at PEP. We have analyzed both the 94 pb -1 of integrated luminosity accumulated at √s = 29 GeV with the Vertex Chamber in place as well as the 210 pb -1 accumulated previously. We require a lepton with large momentum transverse to the event thrust axis to obtain a sample of events enriched in B-Hadron decays. The distribution of signed impact parameters of all tracks in these events is used to measure the B-Hadron flight distance, and hence lifetime. If b-c dominates b-quark decay the corresponding weak mixing matrix element |V cb | = 0.47 ± 0.006 ± 0.005, where the first error is from this experiment, and the second theoretical uncertainty. If b-u dominates, |V ub | = 0.033 ± 0.004 ± 0.12

  13. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.

    Science.gov (United States)

    Murakoshi, Hideji; Shibata, Akihiro C E; Nakahata, Yoshihisa; Nabekura, Junichi

    2015-10-15

    Measurement of Förster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) is a powerful method for visualization of intracellular signaling activities such as protein-protein interactions and conformational changes of proteins. Here, we developed a dark green fluorescent protein (ShadowG) that can serve as an acceptor for FLIM-FRET. ShadowG is spectrally similar to monomeric enhanced green fluorescent protein (mEGFP) and has a 120-fold smaller quantum yield. When FRET from mEGFP to ShadowG was measured using an mEGFP-ShadowG tandem construct with 2-photon FLIM-FRET, we observed a strong FRET signal with low cell-to-cell variability. Furthermore, ShadowG was applied to a single-molecule FRET sensor to monitor a conformational change of CaMKII and of the light oxygen voltage (LOV) domain in HeLa cells. These sensors showed reduced cell-to-cell variability of both the basal fluorescence lifetime and response signal. In contrast to mCherry- or dark-YFP-based sensors, our sensor allowed for precise measurement of individual cell responses. When ShadowG was applied to a separate-type Ras FRET sensor, it showed a greater response signal than did the mCherry-based sensor. Furthermore, Ras activation and translocation of its effector ERK2 into the nucleus could be observed simultaneously. Thus, ShadowG is a promising FLIM-FRET acceptor.

  14. Laser-induced luminescence lifetime measurement as an analytical probe for speciation of poly carboxylates in aqueous solutions

    International Nuclear Information System (INIS)

    Yoshio Takahashi; Takaumi Kimura; Yoshiharu Kato; Yoshitaka Minai

    2001-01-01

    Luminescence from lanthanide or actinide ion is influenced by hydration structure of the ion in aqueous solution system. In particular lifetime of the luminescence has been regarded as a measure of hydration number of the lanthanide or the actinide ion based on the studies on lifetime measurement of the ion in solid and solution system. Compared with other technique like NMR to determine the hydration number, laser induced lifetime measurement is advantageous in sensitivity and selectivity. This allows us to apply this method to determining the hydration number of lanthanide or actinide ion even at low concentration. (authors)

  15. Measurement of the CKM angle gamma and B meson lifetimes at the LHCb detector

    CERN Document Server

    Gligorov, Vladimir V; Rademacker, J

    2008-01-01

    LHCb is the dedicated B physics experiment at the Large Hadron Collider (LHC) at CERN. It will make precision measurements of CP violating effects in the Bd and Bs systems, as well as making precision measurements of the lifetimes of all flavours of B hadrons. In this thesis, two possible measurements of the CKM angle gamma are evaluated:from the decay mode B0d -> D- pi+, and from the combined analysis of the decay modes B0d -> D- pi+ and B0s -> D-s K+ under the conditions of U-spin symmetry. Also, a Monte Carlo independent method of measuring the lifetimes of B hadrons is described. The reconstruction of the decay mode B0d -> D- pi+ is studied using the LHCb simulation software, and a general method for categorising background at LHCb is developed. The decay mode B0d -> D- pi+ is found to have a yearly yield of 1340k events, and a signal to background ratio of ~5. It is shown that the analysis of time dependent decay rate asymmetries in B0d -> D- pi+ can result in a ...

  16. Measurement of the lifetime of the charm baryon ΛC

    International Nuclear Information System (INIS)

    Luecking, B.

    1989-10-01

    The results presented in this thesis are based on the analysis of the data taken by the ACCMOR Collaboration in the experiment NA 32 at the CERN Super Proton Synchrotron (SPS) in the years 1985/86. The experiment NA 32 is a fixed-target experiment with a high-resolution semiconductor vertex detector for the reconstruction of the charm production and decay vertices. The energy of the incident π-beam amounts to 230 GeV. A magnetic spectrometer allows the momentum measurement and particle identification of the charged particles arising in the interaction, beside altogether 15 silicon strip detectors two charge-coupled devices (CCD's) are the most important components of the vertex detector. NA 32 is the first experiment in high energy physics in which CCD's are applied as track detectors. The mean transverse measurement error of the reconstructed particle tracks amounts in the region of the target to about 5 μm in two together orthogonal directions. The analysis of altogether 17.1 million interactions recorded on magnetic tape yields about 1200 completely reconstructed decays of the charm particles D 0 , D + , D S , Λ C , and Ξ C + in altogether 22 different decay channels over a very low background. Six new, hitherto not yet observed decay channels were detected. For the measurement of the lifetime of the Λ C baryon about 100 Λ C →pK - π + decays are available over a background of 5%. A combined maximum-likelihood fit to the distribution of the invariant masses and the lifetime distribution corrected for the detector acceptance gives a mean Λ C lifetime of: τ=(2.03+0.28-0.03)x10 -13 s and a Λ C mass of: m=(2285.8±0.6±1.2) MeV/c 2 . (orig./HSI) [de

  17. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Czech Academy of Sciences Publication Activity Database

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, Jan; Koleska, M.; Voljanskij, A.

    2015-01-01

    Roč. 116, NOV (2015), s. 56-59 ISSN 0969-806X R&D Projects: GA TA ČR TA01010237; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : fluorescent lamp * mercury measurement * neutron activation analysis * research reactor Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.207, year: 2015

  18. Kr II laser-induced fluorescence for measuring plasma acceleration.

    Science.gov (United States)

    Hargus, W A; Azarnia, G M; Nakles, M R

    2012-10-01

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d(4)D(7/2) to the 5p(4)P(5/2)(∘) state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the